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Abstract

Handheld computers are widely used, be it a mobile phone, personal digital assistant
(PDA), or a media player. Although these devices are personal, often a small set
of persons can use a given device, for example a group of friends or a family.

The most natural way to communicate for most humans is through speech.
Therefore a natural way for these devices to know who is using them is for the
device to listen to the user’s speech, i.e., to recognize the speaker based upon their
speech.

This project exploits the microphone built into most of these devices and asks
whether it is possible to develop an effective speaker recognition system which can
operate within the limited resources of these devices (as compared to a desktop
PC). The goal of this speaker recognition is to distinguish between the small set
of people that could share a handheld device and those outside of this small set.
Therefore the criteria is that the device should work for any of the members of this
small set and not work for anyone outside of this small set. Furthermore, within
this small set the device should recognize which specific person within this small
group is using it.

An application for aWindows Mobile PDA has been developed using C++. This
application and its underlying theoretical concepts, as well as parts of the code and
the results obtained (in terms of accuracy rate and performance) are presented
in this thesis. The experiments conducted within this research indicate that it is
feasible to recognize the user based upon their speech is within a small group and
further more to identify which member of the group is the user. This has great
potential for automatically configuring devices within a home or office environment
for the specific user. Potentially all a user needs to do is speak within hearing range
of the device to identify themselves to the device. The device in turn can configure
itself for this user.
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Sammanfattning

Handdatorer används mycket, det kan vara en mobiltelefon, handdator (PDA) eller
en media spelare. Även om dessa enheter är personliga, kan en liten uppsättning
med personer ofta använda en viss enhet, t.ex. en grupp av vänner eller en familj.

Det mest naturliga sättet att kommunicera för de flesta människor är att tala.
Därför ett naturligt sätt för dessa enheten att veta vem som använder dem är för
enheten att lyssna på användarens röst, till exempel att erkänna talaren baserat på
deras röst.

Detta projekt utnyttjar mikrofonen inbyggd i de flesta av dessa enheter och
frågar om det är möjligt att utveckla ett effektivt system högtalare erkännande
som kan verka inom de begränsade resurserna av dessa enheter (jämfört med en
stationär dator). Målet med denna högtalare erkännande är att skilja mellan den
lilla set av människor som skulle kunna dela en handdator och de utanför detta lilla
set. Därför kriterierna är att enheten bör arbeta för någon av medlemmarna i detta
lilla set och inte fungerar för någon utanför detta lilla set. Övrigt inom denna lilla
set, bör enheten erkänna som specifik person inom denna lilla grupp.

En ansökan om emph Windows Mobile PDA har utvecklats med C++. Denna
ansökan och det underliggande teoretiska begreppet, liksom delar av koden och
uppnådda resultat (i form av noggrannhet hastighet och prestanda) presenteras i
denna avhandling. Experimenten som utförs inom denna forskning visar att det
är möjligt att känna användaren baserat på deras röst inom en liten grupp och
ytterligare mer att identifiera vilken medlem i gruppen är användaren. Detta har
stor potential för att automatiskt konfigurera enheter inom en hemifrån eller från
kontoret till den specifika användaren. Potentiellt behöver en användare tala inom
hörhåll för att identifiera sig till enheten. Enheten kan konfigurera själv för denna
användare.

iii





Acknowledgements

First of all I would like to sincerely thank to my advisor, Professor Gerald Q.
Maguire Jr., for overcoming all my doubts, sharing his huge knowledge, answering
my questions as quickly as possible, and being always willing to help me.

I would like also to thank all my colleagues in the department, Sergio, Luis,
Joaquin, Victor, David,... They have helped to create a really good atmosphere
that has made my work easier and more fun.

My family must be mention here, especially my parents and my brother, because
they have been encouraged me every day, even when they have not had their best
moments.

There is another “family” in Stockholm: Gema, Victor, and Sandra. They have
been happy when I was happy and they have been worried when I was worried.

And last but not least, my friends: especially those of you who are here (Victor,
Patrica, Sergio, Manu, Mario, Álvaro, Fer, ...) the ones that are located in the rest
of the world (Raquel, Hector, Alberto, Jaime, Jesús, Santos, Elena, Pedro, Cristina,
...) all of whom have encouraged me, making my life easier and making me laugh.
Thank you to all!

v





Contents

Contents vii

List of Figures viii

List of Tables ix

List of abbreviations xi

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 5
2.1 How does human speech work? . . . . . . . . . . . . . . . . . . . . . 5
2.2 Phases in a speaker recognition system . . . . . . . . . . . . . . . . . 6
2.3 Kinds of speaker recognition systems . . . . . . . . . . . . . . . . . . 7
2.4 Recognition and Verification . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Steps performed in a speaker recognition system 11
3.1 Extracting features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Sampling the speech . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.2 Silence suppression . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.3 Hamming Windowing . . . . . . . . . . . . . . . . . . . . . . 15
3.1.4 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.5 Mel Frequency Cepstrum Coefficients . . . . . . . . . . . . . 17

3.2 Recognition algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.1 Vector quantization . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Euclidean Distance . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Robust speaker Recoginition 23
4.1 Standart techniques used to improve the robustness . . . . . . . . . 23
4.2 Feature Warping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vii



5 A speaker recognition system in C++ 27
5.1 Reading audio samples from the microphone . . . . . . . . . . . . . . 27
5.2 Fixed point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Look up tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.4 Fast Fourier and Discrete Cosine Transforms in C++ . . . . . . . . . 33
5.5 Calculating Mel Filterbank . . . . . . . . . . . . . . . . . . . . . . . 37
5.6 Vector Quantization algorithm . . . . . . . . . . . . . . . . . . . . . 39
5.7 Feature warping algorithm . . . . . . . . . . . . . . . . . . . . . . . . 42
5.8 Distance between models . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Results 45
6.1 Accuracy measurements . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.2 Performance measurements . . . . . . . . . . . . . . . . . . . . . . . 48
6.3 Required size in RAM . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 Conclusions and future work 51
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Bibliography 55

A Fixed class 59
A.1 Fixed.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
A.2 Fixed.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

viii



List of Figures

2.1 Speech production. Figure from Charles A. Bourman [4], appears here
under the Creative Commons Attribution License BY 2.0 and it is an is
an Open Educational Resource 1 . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Flowchart of a speaker recognition system. . . . . . . . . . . . . . . . . . 8
2.3 Flowchart of a speaker verification system. . . . . . . . . . . . . . . . . . 9

3.1 Flow chart of the training phase. . . . . . . . . . . . . . . . . . . . . . 11
3.2 Analog speech signal vs. Sampled and Quantized speech signal. . . . . 13
3.3 Execution of the silence suppresion algorithm. . . . . . . . . . . . . . . 14
3.4 Hamming Window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Logarithmic spectrum of a speech signal as a function of time. . . . . . 16
3.6 Mel-spaced Filterbank. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.7 Representation of vectors and centroids. . . . . . . . . . . . . . . . . . 20

4.1 Variation of a component (above) and a histogram of these observations
(bellow) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 The cumulative distribution matching performed by HEQ [27]. . . . . . 25
4.3 Variation of the first component of a set of feature vectors before and

after performing feature warping. . . . . . . . . . . . . . . . . . . . . . . 26

6.1 Different spots where microphone was placed during the tests. . . . . . . 46
6.2 Picture of a test phase under matched conditions. . . . . . . . . . . . . 46

1Details about Creative Commons Attribution License BY 2.0 can be found at: http:
//creativecommons.org/licenses/by/2.0/ and Open Educational Resources can be found at
http://www.oercommons.org/.

ix

http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/
http://www.oercommons.org/


List of Tables

2.1 Advancenment in speaker recognition [2]. . . . . . . . . . . . . . . . . . 9

5.1 Major number of bits in each state. . . . . . . . . . . . . . . . . . . . . 32

6.1 Features of the HP iPAQ 5500. . . . . . . . . . . . . . . . . . . . . . . 45
6.2 Accuracy rate in different spots and conditions without feature warping. 47
6.3 Accuracy rate in different spots and conditions with feature warping. . 47
6.4 Processing time without feature warping (msec). . . . . . . . . . . . . . 48
6.5 Size of the look up tables. . . . . . . . . . . . . . . . . . . . . . . . . . 49

x



List of abbreviations

ADC Analog Digital Converter
AT&T American Telephone and Telegraph
BBN Bolt, Beranek, and Newman
CCAL Creative Commons Attribution License
CMS Cepstral Mean Subtraction
DCT Discrete Cosine Transform
DFT Discrete Fourier Transform
DTW Dynamic Time Warping
FFT Fast Fourier Transform
GMM Gaussian Mixture Model
HMM Hidden Markov Model
IDE Integrated Development Environment
LAR Log-Area Ratios
LBG Linde, Buzo, and Grey
LP Linear Prediction
MFC Microsoft Foundation Class
MFCC Mel Frequency Cepstrum Coefficients
MIT-LL Massachusetts Institute of Technology Lincoln Laboratory
ORE Open Educational Resources
PDA Personal Digital Assistant
PIN Personal Identification Number
RAM Random Access Memory
RASTA Representation Relative Spectra
ROM Read Only Memory
SDK Software Development Kit
WLAN Wireless Local Area Network

xi





Chapter 1

Introduction

1.1 Overview

Almost everyone owns a mobile device, be it a mobile phone, a personal digital
assistant (PDA), or a media player. The main features of these devices is that
they are small and you can use them wherever you want (With of course some
limitations on their use in aircraft, hospitals, etc.). These devices are continually
improving. These devices also have many components, including microphone,
speakers, and a relatively powerful processor. Some of these device also offer internet
connectivity (via a wireless interface), Bluetooth connectivity, integrated camera,
accelerometer(s), fingerprint reader, etc.

With these devices we can measure a lot of information about the user’s
environment (i.e., the user’s context) and we can use some of this to decide how
to configure features of the device. For example, if we detect there is an available
wireless local area network (WLAN), then we can attempt to connect to this WLAN,
to have broadband wireless internet access. Similarly, we can look for other devices
using a Bluetooth interface, for example to utilize a Bluetooth headset. Additionally,
we can recognize if the device is lying face up or face down using the accelerometer(s)
or we can authenticate a person based upon his or her his fingerprint or using a
camera.

Because many of these devices are equipped with a built-in microphone we
can exploit algorithms that can extract features of human speech in order to
determine who is speaking (i.e., speaker recognition), what is being said (i.e.,
speech recognition), what is the emotional state of the speaker, etc. Because the
microphone is connected to an analog to digital converter, we can sample the voice
and perform a digital signal processing. One of the types of processing that we can
do is to extract features, then compare these features with previously recorded and
processed signals in order to recognize words, syllables, languages, or even speakers.
Depending on the task, we need to extract different features from the speech and
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2 CHAPTER 1. INTRODUCTION

we have to apply different algorithms to the signal to accomplish the desired task.

In this thesis we study the feasibility of applying some of these algorithms on
a mobile device, specifically on a PDA 1, in order to be able to recognize who is
speaking to the device or who is speaking near the device.

1.2 Problem Statement
The goal of a speaker recognition algorithm is “to decide which voice model from a
known set of voice models best characterizes a speaker” [23]. Speaker recognition
systems can be used in two different ways: verification or identification. In the first
a person who is claiming an identity speaks, then the system decides if he/she is
an imposter or not. In identification systems we have a set of users and the system
decides who is the most likely for a given speech utterance. There are two types
of errors, first an impostor could be incorrectly accepted as a true claimant, and a
true claimant could be falsely rejected as an impostor [23].

In this thesis project we have built an identification system that will execute on
the user’s PDA, because this platform can and will be used by the user for for a
number of applications. Some example applications that can be enabled by speaker
a recognition are described in the next paragraphs.

Suppose you own a media player, with a speech recognition system, you could
control it using your voice [29], but if you want to loan it to your son, he could not use
it, because the speech recognition system was trained for your voice. Additionally
your son probably wants to use a different playlist than you, hence not only does
your son want to use the media player but he wants it to act as his media player.
When using a speaker recognition system, we could use the first word to distinguish
which of a small set of users is speaking, and then we can initialize the appropriate
speech recognition system that has been trained with this specific speaker’s voice.
Additionally, we can configure the media player with his or her playlist or favorite
radio station. This speaker recognition is possible by training the PDA for only a
few minutes per user.

Another possible application is to detect who is near the PDA, suppose you
want to meet with a colleague (named Hans) when your device detects that Hans
is speaking, it can advice you that Hans is nearby and remind you that you wanted
to meet with him [24].

In addition to learning who is using the PDA or who is near it, we can detect
what is near the device. For example, we can measure characteristics of the audio

1The PDA used for this project is the HP iPAQ 5500.
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in order to know if I am alone in which case the device could use its speaker output
rather than a headset.

Another goal of this thesis is to measure the limits of such an application. For
example, we want to understand how many users the application can distinguish
between, what is the accuracy of the recognition, and how does this accuracy
depends on the environment. While we might not distinguish a specific individual
from 1000 potential speakers, it is perhaps both interesting and sufficient to
recognize members of your family, your friends, or colleagues/classmates/... in
your department.





Chapter 2

Background

In this chapter we present how typical speaker recognition systems have been
developed. Furthermore we present the parts that the system used to recognize
who is speaking and summarize the results of some previous systems.

2.1 How does human speech work?

While speaking is a common way to communicate, it is a complex process and many
parts or the body are involved as shown in Figure 2.1.

Figure 2.1. Speech production. Figure from Charles A. Bourman [4], appears here
under the Creative Commons Attribution License BY 2.0 and it is an is an Open
Educational Resource a

aDetails about Creative Commons Attribution License BY 2.0 can be found at: http:
//creativecommons.org/licenses/by/2.0/ and Open Educational Resources can be found at
http://www.oercommons.org/.
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6 CHAPTER 2. BACKGROUND

To produce a vowel air comes from the lungs and flows along the vocal cords
causing them to vibrate. The frequency of this vibration is called the pitch of the
sound. This vibration propagates though the oral and nasal cavity, which acts as
a filter. The output is a pressure wave through the lips that can be recorded by a
microphone, and later analysed to extract features, such as the pitch. The features
of this pressure wave vary between speakers because the vocal cords, oral cavity, and
nasal cavity are different from person to person. Furthermore, the wave varies even
if a speaker repeats the same utterance because it depends on their mood, changes
in the voice, ..., thus it is impossible for a human being to reproduce exactly the
same speech twice1, this complicates the speaker recognition task.

2.2 Phases in a speaker recognition system
Every speaker recognition system has two phases: a training and a test phase. It is
mandatory to perform the phases in this order, thus first we perform the training
phase and only after finishing this phase can we perform the test phase. It is this
final phase that will be used to recognize the speaker at some later point in time.
We can further describe these two phases as:

Training phase In the training phase we teach the system to recognize a speaker.
The longer this phase lasts, the more information we have about the speaker
and higher the accuracy. The training set could be a recording from just
one word or several minutes (or even hours) of speech. This phase must be
completed before using the system and we have to record every user’s voice
(among those who will use the system). The result of this phase is the Model
that we can see in Figure 2.2. There are as many Models as users in the
system, hence every user must complete the training phase.

Test phase Once the system has created a model for the voices of the set of
speakers, then we can start to use the system. To do this we record speech
from an initially unknown user, then compare it with all the speakers who
were enrolled during the training phase. The closest match is chosen as the
output of the test phase.

We assume that there is e a finite number, N , of users in the system. However the
set of users could be a closed set or an open set. If we have a closed set we have
N users and anyone who is in this set can use the system. Otherwise, we have an
open set where anyone can use the system, but only N users can be successfully

1There are persons who can imitate other speakers voices to some degree, see for example [6]
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recognized. In order to work with an open set we need to include a threshold in the
greatest likelihood decision: if the greatest likelihood is larger than the threshold,
then the user is recognized as a member of the open set, but if the greatest likelihood
is smaller than the threshold the user is unknown to the system[10].

2.3 Kinds of speaker recognition systems

There are some different kinds of speaker recognition system depending on the
utterances that the users should speak to the system

Text-dependent In a text-dependent approach we have to say exactly the same
thing during both the training phase and the test phase. This utterance could
be a word, a few numbers, your name, or whatever you want; but must be the
same in both phases. It is important to note that all speakers must say the
same thing.

Text Independent A text independent approach is the opposite of the text-
dependent approach. Here during the training phase and during the test
phase the speaker can say anything. Typically in this kind of system the
training phase is longer and the test phase may require more speech (i.e., a
longer utterance) in order to recognize the speaker.

2.4 Recognition and Verification

There are two main goals of speaker recognition technologies: speaker recognition
and speaker verification.

The goal of speaker recognition is to distinguish between speakers, based upon
the data collected during the training phase we will identify one of these speakers as a
specific speaker during the test phase. Typically such systems require a long training
phase. The training and test phases can be text-dependent or text-independent.

As we can see in Figure 2.2 the process starts when an unknown user speaks to
the system, then some features are extracted and later these features are compared
with the models of the speakers that previously had been calculated during the
training phase. Finally the speaker whose model has the greatest likelihood
compared with the extracted features is recognized as the user who is speaking
to the system.
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Figure 2.2. Flowchart of a speaker recognition system.

Speaker recognition is widely used to provide security as part of user verification.
The claimant tells the system who he or she (i.e., the speaker indicates who they
claim to be), for example by typing a user name, and then the user starts speaking.
The system checks if this speaker matches with the supposed user. If they do
not match the user is marked as an impostor. Typically security systems are text-
dependent in order to reduce the false positive rate (i.e., to minimize the probability
of rejecting valid users). Note that in practice the specific text that the user must
say may be indicated by the system, for example the user is prompted to speak a
generated sequence of words - this can be done to reduce the possibility of an attack
using a recording of the user’s voice.

An example of a verification application could be a user saying a PIN code or
credit card number. This approach could be used to increase the security of an
on-line purchase using the user’s personal mobile device.

As we can see in Figure 2.3 the process is similar, the main difference is the
threshold. In order to ensure that a claimant is who they claim to be, the likelihood
must be greater than this threshold.

A detailed explanation about extracting features and the way to calculate the
similarity is given in Chapter 3.



2.5. PREVIOUS WORK 9

Figure 2.3. Flowchart of a speaker verification system.

2.5 Previous work
In the 1960s Bell Labs started studying the feasibility of developing an automatic
speaker recognition system. Over many years, several text dependent dependent
and independent systems were developed using different ways to extract the features,
different ways to match the models, and varying the length of the training and test
phases[7]. Table 2.1 lists some of these systems in chronological order.

Table 2.1. Advancenment in speaker recognition [2].

Organization Features Method Input Text Population Error
AT&T Cep. Pattern Match Lab D 10 2%@0.5s
STI LP L. T. Statistic Labs I 17 2%@39s
BBN LAR Nonpar.pdf Phone I 21 2%@2.5s
ITT LP Cep. DTW Lab I 11 21%@3s

MIT-LL Mel-Cep. HMM Office D 138 0.8%@10s

The organization column show the company who developed the system. The
features and Method columns show the methods used to extract the features and
to match the patterns. Input indicates the quality of the speech: Lab indicating
laboratory recordings, Phone indicating telephone recordings, and Office indicating
recordings in a typical office environment. The column labelled text indicates if
the system is text dependent (abbreviated “D”) or independent (abbreviated “I”).
The population column indicates the number of users in the system. The final
column error shows the percentage of incorrectly recognized users together with an
indication of the length of the training phase.Today several high level features are
being studied, specifically idiolect, phone usage, pronunciation,...Some researches
are using a combination of audio and visual features, i.e. studying the lip movement
of the speaker as they speak.





Chapter 3

Steps performed in a speaker
recognition system

This chapter presents the theoretical concepts used in our speaker recognition
system. In the following sections and subsections the algorithms used are presented
in chronological order of use, first the algorithms needed for the training phase and
last the algorithms used in the test phase. Figure 3.1 show the flow chart of the
training phase.

Figure 3.1. Flow chart of the training phase.

3.1 Extracting features
This section explains in detail the box extracting features shown in Figures 2.2 and
2.3. The first step is to record the speech and sample and quantize it. Once we
have a digital signal, we can extract a lot of attributes from it, such as “clarity”,
“roughness”, “magnitude”, “animation”, “pitch intonation”, “articulation rate”, and
“dialect”. Some of these attributes are difficult to extract and some have little
significance for speaker recognition. Others attributes are more measurable and
depend on the nature of voice, thus they do not change very much over time. The
later types of attributes are called low-level attributes. These are useful for speaker

11



12 CHAPTER 3. STEPS PERFORMED IN A SPEAKER RECOGNITION SYSTEM

identification, hence they are more interesting for us. Three of these attributes are
spectrum, pitch1, and glottal flow2.

3.1.1 Sampling the speech

The first step in every speaker recognition system is to extract a digital signal
containing the information contained in the pressure wave that each person produces
when speaking. A microphone is used to convert this pressure wave into an analog
signal, and then this analog signal is converted into a digital signal using an analog
to digital converter.

The analog signal resulting from human speech contains most of its energy
between 4 Hz and 4 KHz, so we can use a low pass filter with a cut off frequency of
4 KHz in order to reduce aliasing 3 when digitizing the signal. In our test device (HP
iPAQ 5500 ) this filter is include in its Asahi Kasei AK4535 16 bit stereo CODEC
and its cut off frequency is set to 0.454 ∗ fs [11]. With this filter we can sample
the analog signal at 8 KHz (or a higher sampling rate). This filter bandwidth and
sampling rate can be increased to obtain more information about the speech signal.
In all cases, the sampling rate should be at least twice the highest frequency that
we expect in our signal and in this case this is the highest frequency that the low
pass filter allows. The Nyquist-Shannon sampling theorem [31] says that we can
reproduce an analog signal if we sample at a rate that is at least twice the highest
frequency contained in the signal.

Let x(t) be our low pass filtered analog signal, we can obtain the digital signal
by sampling:

x[n] =
∑
m

x(t).δ(t−m.Ts) (3.1)

were Ts is the sampling period, the sampling rate fs is 1
Ts
. We make fs samples

per second. The common rates for sampling voice are: 8 KHz, 12 KHz, or 22 KHz.

Once we have the samples we need to quantize them, this to assign a digital
number to represent each sample. The more bits you use to quantify this number,
the more precisely you quantize your signal. It is typical to use 8 or 16 bits to
quantize speech samples. We use 16 bits because an audio device have a 15 or 16
bit analog to digital converter (often as part of an audio CODEC chip) for audio.

1The pitch is the main frequency of the sound, in this case the signal.
2The glottal flow can be studied for speaker and dialect identification as we can see here [32].
3Aliasing is an effect that produces distortion in a signal when it is sampled , as higher frequency

signals will appear as lower frequency aliases[3].
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This both gives us a lot of resolution and such values are easy to represent in most
programming languages, for example with a short int in C.

The upper curve in Figure 3.2 shows the analog signal, while the lower curve
shows the signal sampled and quantized as 16 bit number. This stream of 16 bit
numbers is the digital signal that we will process.

Figure 3.2. Analog speech signal vs. Sampled and Quantized speech signal.

3.1.2 Silence suppression
When processing speech we generally divide the stream of samples into frames,
where each frame is a group of N samples. The first frame contains the first N
samples. Thus a single frame can contain samples from M until M +N . Therefore
we divided the signal such that there are overlapping N −M samples [5]. This
overlap enables us to process the frames independently.

It is possible to measure the energy in each frame by applying formula 3.2, where
N is the number of samples per frame. A typical value of N is 256.

Eframe =
∑
N

x[n]2 (3.2)
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When the stream of energies is analysed, if there are a number of consecutive
frames during which energy is larger than a specified threshold, then the start of an
utterance has been found. Conversely, if there are a number of consecutive frames
in which the energy is lower than the same, then it is not necessary to compute
more frames because the utterance has finished. This the process is repeated with
the following frames in order to find new utterances.

An example of such a silence suppression algorithm is shown in Figure 3.3. This
signal was recorded with the PDA, so the first peak does not correspond to the real
signal, it corresponds to the first readings of the buffer, before any samples have
been collected. So the first time we access the buffer we have to skip the first several
frames, and then start applying the silence suppression algorithm. The number of
consecutive frames needed to find the end and the start of an utterance was set to
5 and the threshold is set to 130. These specific values were found experimentally,
but 5 frames at an 8 KHz sampling rate corresponds to 160 milliseconds4 , while a
threshold of 130 was found to be effective in detecting silence.

Figure 3.3. Execution of the silence suppresion algorithm.

In order to establish the threshold in practice, it is possible to sample during a
couple of seconds of silence and then set the threshold to the average energy per

4As the the average phoneme duration is 100 milliseconds, and the phonemes must have energy
we can cover detect them[1].



3.1. EXTRACTING FEATURES 15

frame. Hence, the value of the threshold depends on the current audio environment.

3.1.3 Hamming Windowing
Every frame must be window in order to avoid discontinuities at the beginning and
at the end of each frame. The most widely used window in signal processing is the
Hamming window, shown in Figure 3.4 and described by Equation 3.3.

Figure 3.4. Hamming Window.

h(n) = 0.54− 0.46.cos(2.pi.n
N

) (3.3)

For more information about windowing functions and how they improve the
FFT see [13].

3.1.4 Fourier Transform
At this point in the process we have a number of meaningful frames (i.e., we have
suppressed the silence). One of the most useful ways to study these frames is to
compute their spectrum, i.e., a spectral measurement. We can easily do this by
computing a Short Time Fourier Transform. As each frame contains N = 256
samples, and the sampling rate used was 8 or 12 KHz, then each frames contains
between 20 and 30 milliseconds of speech.

In order to calculate the spectral measurements quickly a Fast Fourier Transform
(FFT) is computed. With this algorithm it is feasible to get the same result as with
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a Discrete Fourier Transform (DFT) in a faster way. Formula 3.4 presents how to
calculate the DFT.

X[k] =
N−1∑
n=0

x(n).e−i.2.π.k.
n
N k = 0, ..., N − 1 (3.4)

As the digital signal is real 5, the whole DFT is not needed. When x[n] is real,
then X[k] = X∗[−k]. Hence, half of the coefficients contain no information and are
not required in the rest of the process. Actually, just the module of X[k] is required
with k = 0...256

2 + 1.

After transforming each frame into the frequency domain we have a vector of
values as encoded as a color (in this figure a shade of gray) in each of the columns in
Figure 3.5. In this figure we transform a speech signal 6 with N = 256 andM = 100
and then take the logarithm of the resulting values before mapping them to a color
(see the scale to the right of the figure) in order to highlight the differences between
high and low values. Most of the energy is under 4 KHz, so a sampling rate of 8 -
12.5 KHz is quite suitable.

Figure 3.5. Logarithmic spectrum of a speech signal as a function of time.

5The signal is real because the imaginary part is 0.
6The signal is an English speaking man saying ”zero”, sampled at 12.5 KHz with 16 bits per

sample.
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3.1.5 Mel Frequency Cepstrum Coefficients
The most successful feature used for performing speaker recognition over the years
is called Mel Frequency Cepstrum Coefficients. This algorithm consists of applying
a set of filters to the spectrum of our signal in order to measure how much energy
is in each frequency band (channel). The result is a parametric representation[15]
of speech, while reducing the amount of information that needs to be compared
between samples of speech from a given speaker and previously recorded speakers.

Mel-Cepstrum is based on how the human ear works, as it exploits the variation
in amplitude sensitivity in different bands by applying different types of filters over
different ranges of frequencies. More information about Mel-Cepstrum can be found
in [15] and [23].

To calculate the Mel Frequency Cepstrum Coefficients (MFCC) we need to
perform two steps, first we translate the frequencies into the mel-frequency scale,
this is a logarithmic scale. We can apply this transformation with equation 3.5 .

mel(f) = 2595. log10(1 + f

700) (3.5)

The second step returns us to the time domain. For this we have to choose the
number of coefficients that we wish, a typical value is K=16 or 32. Then we will
apply these K filters, spaced over the mel scale as shown in Figure 3.6

Both, the center frequency and the bandwidth of the filter vary in the mel-
frequency scale. Due to the mel-frequency scale the first filters have a small
bandwidth compared to the last filters and there are more filters in the low frequency
part of the spectrum than in the high frequencies.

In Figure 3.6, the filters are shown in the frequency domain. Hence to filter
the signal we multiply the signal in the frequency domain by the coefficients of the
filter as shown in Formula 3.6, where X[k] is the DFT of a frame, Yp[k] is the filter
number p, K is the total number of filters, and N is the order of the DFT.

MFCp =
N
2 +1∑
k=0

X[k].Yp[k] p = 1..K (3.6)

Finally we need to apply a Discrete Cosine Transom (DCT) to the logarithm of
the output of the filterbank which transforms the results to the cepstrum domain,
thus we de-correlate the feature components[26]. Equation 3.7 shows the final result.

MFCCp = DCT (MFCp) =
K∑
k=1

log(MFCk). cos(n.(k − 1
2). π

K
) (3.7)
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Figure 3.6. Mel-spaced Filterbank.

After this process, a vector with p components (the number of filters in the
filterbank) is obtained per frame, this vector is called features vector or cepstral
vector. The amount of information has been reduced, from N = 256 samples to
p = 16 or 32 components.Consider an utterance of 2 second duration, roughly 100
frames, so 3200 components would need to be stored as the speaker model. To
further reduce the amount of data we can utilize algorithms that can reduce the
number of vectors, while maintaining most of the information. These algorithms
are presented in the following section.

3.2 Recognition algorithm

After extracting the features (in our case the MFCC) we need to compare them in
order to estimate which of the speakers is the most likely speaker. In this section
the box greatest likehood from Figure 2.2 on page 8 is explained in detail.

A number of approaches can be used to measure the distance between the
measured features and the features captured during the training phase, such as
Gussian Mixture Model (GMM) and Hidden Markov Model (HMM). In this project
I have chosen to use a Vector Quantization approach because it is widely used in
text dependent speaker recognition systems.

As stated in Section 3.1, the amount of data resulting from several seconds of
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samples is quite a large number of bits, even after it has been reduced. Comparing
3200 components per speaker would take a long time. In order to reduce this
information a compression algorithm can be used. As will be described below vector
quantization provides both this compress and prepares them for computing the
distance between the current speaker and the speaker models from the training
phase.

3.2.1 Vector quantization

There are many algorithms that try to compress information by calculating
centroids. This is: vectors in a vector space are clustered into centroids and the label
of the nearest centroid can be used to represent the vector. Ideally there are few but
well separated centroids (the more centroids we have, the lower the distortion). A
model is the set of centroids {c1, c2, ..., cL}. An entry in this codebook is the model
of each speaker, see Section 2.4

Let assume that there are M vectors, {x1, x2, ..., xM} (in a speaker recognition
system there are as many vector as frames in the utterance) and each vector has k
components (as same as the number of Mel Frequency Cepstrum Coefficients).

Supposing that the codebook contains L = 1 vectors, then centroid c1 can
easily be calculated as the average of all the vectors, see Formula 3.8.The distortion
measure is given by Formula 3.9.

c1 = 1
M

M∑
m=1

xm (3.8)

Daverage = 1
M.k

M∑
m=1
||xm − c1||2 (3.9)

The distortion when there are only one centroid is large, hence the model will
not be a good representation of the speaker’s voice. To decrease this distortion we
needed to introduce more centroids. The algorithm used called the Linde, Buzo
and Grey (LBG) design [8].

Once the first centroid is calculated it is feasible to split it, two multiplying by
(1 + ε) and (1 − ε) where ε is a small value. The results are two centroids, c1 and
c2. Centroid c1 is updated to be the average of the vectors which are closest to
centroid c1, and the same process is performed for c2. The update operation must
be repeated until the variation of the centroids is as small as needed7.

7 In practice between 15 and 20 iterations are sufficient to determine the real centroid.
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After calculating c1 and c2, we can repeat the splitting operation to obtain four
centroids, and so on until we obtain L centroids (L must be a power of 2).

A summary of the vector quantization algorithm is presented in Figure 3.7, in
the first subplot we can see a representation of the vectors 8. It is important to
notice that every vector is composed of k components and in the plot only two of
these components are shown, hence the centroid we can see in this plot is not exactly
the centre of the of the points in the signal. In the second sublplot the same signal
is presented with one centroid, this is L = 1. Similarly, the third subplot presents
the signal with two centroids (L = 2) and the last subplot is a comparison between
the signal and centroids from two different speakers. In the figure the 5th and the
6th components of the features vectors are represented because corresponds to the
peak of energy of the speech spectrum.

Figure 3.7. Representation of vectors and centroids.

Notice that the amount of information has been reduced from more than 3000
components to k ∗ L elements.

At this point we can calculate the model of each speaker, as explained in

8In a speaker recognition system these vectors are the Mel Frequency Cepstrum Coefficients of
each frame.
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Subsection 2.2. The training phase is finished when the model of the speaker is
obtained. Now the question is: how can we distinguish models? The answer is
explained in Subsection 3.2.2.

3.2.2 Euclidean Distance
In the test phase we need to measure the distance between the model from an
unknown speaker’s voice and the models previously calculated in the training phase.

Suppose we have two models from speakers A and B. Then a feasible approach
to measure distance between A and B is to measure the euclidean distance between
each feature vector from speaker A and its closest feature vector from speaker B,
then normalize the distance by dividing by the number of vectors in the A model.
Equation 3.10 shows how to compute this distance, where C∗B is the closest vector
to CiA belonging to modelB.

modelA = (C1
A, C

2
A, ..., C

N
A )

modelB = (C1
B, C

2
B, ..., C

N
B )

DA−>B = 1
N

N∑
1
||CiA − C∗B||

(3.10)

If the codebook length is 1 (N = 1), then each model is a vector containing the
average of the mel coefficients from each frame, and the distance between models
is the euclidean distance between the vectors. Thus we are now able to recognize
the unknown speaker as one of the speakers who were enrolled during the training
phase.





Chapter 4

Robust speaker Recoginition

If we apply algorithms explained in Chapter 3 we can obtain a good accuracy rate
in matched conditions. Matched conditions exist when the speaker is located at
the same relative position to the microphone during both the training and the test
phases. But, what happens if we perform the training phase with the speaker
close to the microphone and then we perform the test phase with the microphone
in a different location? The answer to this question is that the accuracy rate
decreases really fast. The further the speaker is from the microphone, the lowest
the accuracy rate. Furthermore, if the speaker is not speaking directly into the
microphone the accuracy rate will be even worse. To solve this problem we can
apply Skosan and Mashao’s “Modified Segmental Histogram Equalization for robust
speaker verification" [27].

4.1 Standart techniques used to improve the robustness
In this section several techniques that have been used to improve the robustness in
speaker recognition are presented.

Cepstral Mean Substraction (CMS) In this method the mean of the cepstral
vectors is subtracted. It works like a high-pass filter. It was indicated that
using CMS on clear speech decrease the accuracy[9], hence it is not useful in
our case.

(RASTA) This method high-pass filter the the cepstral coefficients. It was indi-
cated that this method was suitable for speech recognition, but when applied
to speaker recognition removed significant portions of speaker information[9].

Feature Warping The aim of feature warping is to construct a more robust
representation of each cepstral feature distribution. This method conforms the
individual cepstral feature to follow a specific target distribution [9]. It was
reported that this method increases the accuracy in mismatched conditions,

23
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hence we have included it in the project. A detailed explanation of this method
is presented in Section 4.2.

4.2 Feature Warping

In this subsection an algorithm to increase the robustness is presented. The basic
idea of the algorithm is to transform the features to get a desired probability
distribution of the transformed features.

Assume that there are M feature vectors 1, {x1, x2, ..., xM}. We study the
variation of each component from the feature vector in time from the set of feature
vectors from the utterance. Hence, we have a set of M values and we can compute
the probability density function of these values.

Figure 4.1. Variation of a component (above) and a histogram of these observations
(bellow)

In the upper part of Figure 4.1 we can see the variation of the first component
of the feature vector along a utterance that contains 35 frames. In the low subplot
we have present an histogram of these observations. In order to calculate the
histogram of observations we split the whole interval into 64 subintervals, then
we have analysed how many values of the first component fall into each interval.

1These feature vectors are the result of Subsection 3.1.5
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With this histogram, it is easy to calculate the cumulative distribution function
by sorting the values and computing the probability of an observation being smaller
than each value. See Formula 4.1, where X is the set of values of each component.

x 7→ F (x) = P (X ≤ x) (4.1)

The goal now is transform this cumulative distribution to the desired distri-
bution, in this case we want a normal distribution. Hence we have to transform
each value x to a value y which has the same cumulative probability in a normal
distribution. See Figure 4.2 and Formula 4.2 to clarify this transformation.

∫ x

−∞
Cx(x) =

∫ y

−∞
Cref (y) (4.2)

Figure 4.2. The cumulative distribution matching performed by HEQ [27].

In Figure 4.3 it is possible to see that the variation of the feature vector becomes
sharper, hence it is easier to distinguish between the feature vectors from different
speakers. A very similar technique is used in photography [12].
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Figure 4.3. Variation of the first component of a set of feature vectors before and
after performing feature warping.



Chapter 5

A speaker recognition system in C++

In Chapters 3 and 4 all the theoretical concepts have been explained in detail.
This chapter presents and explains some of the main parts of the code of an
application that has been developed during this master thesis project. C++ was
chosen bor development, because compiled C++ execute faster than Java or Python
implementations of the same algorithms. To develop this application the Microsoft
Visual Studio 2008 Integrated Development Environment (IDE) has been used [17].

As the the application runs on a PDA , specifically the HP iPAQ h5500, which
runsMicrosoft’s Windows Mobile 2003 operative system, the Software Development
Kit (SDK) for Windows Mobile 2003-based Pocket PCs has been useful [19].

5.1 Reading audio samples from the microphone

First of all we need to sample the voice based upon the output of a microphone.
As the number of bits per sample is 16, we store each sample in a short int. The
Microsoft Foundation Class (MFC) [16] provides easy access to the microphone
through the class HWAVEIN.

The structure PCMWAVEFORMAT stores the parameters required to record sounds
with a microphone. In the code below the encoding will be pulse code modulation
(PCM), the sampling is mono (a single channel rather than stereo), the sampling
rate is set to 11025 Hz, and each sample has 16 bits:

1
2 HWAVEIN Input;
3 PCMWAVEFORMAT Format ;
4
5 // Record format
6 Format .wf. wFormatTag = WAVE_FORMAT_PCM ;
7 Format .wf. nChannels = 1; // One channel
8 Format .wf. nSamplesPerSec = SamplesPerSecond ; //11025 Hz

27
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9 Format . wBitsPerSample =16; //16 bits per sample
10 Format .wf. nAvgBytesPerSec = Format .wf. nChannels * Format .wf.

nSamplesPerSec
11 * Format . wBitsPerSample /8; // Bytes
12 Format .wf. nBlockAlign = Format .wf. nChannels * Format .

wBitsPerSample /8; // Length of the sample

Next we open the device for recording, specifying a handler that processes the
messages produced during the recording (i.e. when the device driver’s buffer is full).
The result of this operation is a MMRESULTS type value which contains a status code
indicating success or the type of error. For more information about the possibles
failures in the recording process see [18].

1
2 MMRESULT mRes =0;
3 mRes= waveInOpen (& Input ,0,( LPCWAVEFORMATEX )&Format ,
4 (DWORD)this ->m_hWnd ,0, CALLBACK_WINDOW );

Once the device is open we need to allocate memory for a buffer to contain the
samples from the device and to prepare the buffer for waveform input. This can
be done with the following code, where LGbuf contains the size of the buffer in bytes.

1
2 HGLOBAL IdCab ,IdBuf;
3 LPWAVEHDR Head;
4 LPSTR Buffer ;
5
6 IdCab= GlobalAlloc ( GMEM_MOVEABLE |GMEM_SHARE , sizeof ( WAVEHDR ));
7 Head =( LPWAVEHDR ) GlobalLock (IdCab);
8
9 IdBuf= GlobalAlloc ( GMEM_MOVEABLE |GMEM_SHARE ,LGbuf);

10 Buffer =( LPSTR) GlobalLock (IdBuf);
11
12 Head -> lpData = Buffer ;
13 Head -> dwBufferLength = LGbuf;
14
15 mRes = waveInPrepareHeader (Input ,Head , sizeof ( WAVEHDR ));

Finally, we must pass this buffer to the device and start recording.

1
2 mRes = waveInAddBuffer (Input ,Head , sizeof ( WAVEHDR ));
3 mRes= waveInStart (Input);
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When the buffer is full an MM_WIM_DATA message is automatically generated,
hence we have to handle this message. First we capture the message defining the
message map as follows:

1
2 BEGIN_MESSAGE_MAP ( CTestPhaseDlg , CDialog )
3 #if defined ( _DEVICE_RESOLUTION_AWARE ) && ! defined (

WIN32_PLATFORM_WFSP )
4 ON_WM_SIZE ()
5 #endif
6 //}} AFX_MSG_MAP
7 ON_MESSAGE ( MM_WIM_DATA , OnMM_WIM_DATA )// When the buffer

is full
8 END_MESSAGE_MAP ()

Then every time a MM_WIN_DATA message is received the method onMM_WIM_DATA
is executed. In this later method we close the input and start processing the signal.

1
2 LRESULT CTestPhaseDlg :: OnMM_WIM_DATA (UINT wParam ,LONG lParam )
3 {
4 waveInUnprepareHeader (Input ,Head , sizeof ( WAVEHDR ));
5 waveInClose (Input); //We close the input
6 return 0;
7 }

As each sample contains 16 bits, we can store it in a short int, we can access
the buffer as short integers with the following lines of code:

1
2 short int * Buffer16 ;
3 Buffer16 = (short int *) Buffer ;// Each sample is a short int

Now all the samples are accesible from the Buffer16 as short int. At this point
the sampling (as described in Subsection 3.1.1) is finished and we start processing
the digital speech signal.

In some speaker recognition applications it is necessary to record samples a long
time (i.e., longer than a single buffer can contain). In this situation we use a circular
buffer. In order to develop this circular buffer we must define several buffers, and
each time one buffer is full we store the samples in the next buffer while we process
the buffer that has just been filled [28] [20].
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5.2 Fixed point

After sampling the speech we need to suppress silence (Subsection 3.1.2). Hence,
we need real numbers, that can be stored as a float in C++. The problem is that
most handheld devices do not have a floating-point unit and it takes a long time to
perform operations on floating point numbers 1.

To solve this problem we have used fixed point. This approach uses a fixed
number of bits to represent real numbers. Some of the bits represent the decimal
part and other bits represent the integer part [21].

The approach uses a scaling factor R = 216 and the result is stored in a long.
The scaling factor could be any value, it can even change during the computation.
For example, suppose the real number is 2.45. In fixed point this number could
be represented as 160563 = round(2.45 ∗ R). It is most efficient to use a power of
2 as the scaling factor because then multiplication is just a shift operation. Note,
that this is only an approximation and real numbers smaller than 1

R can not be
represented.

In order to perform operations on fixed point a C++ class has been developed
and all the required operations have been redefined. The following lines of code
show part of the header of this class named Fixed. The complete definition of this
class is given in Appendix A.

1
2 # ifndef FIXED_H
3 # define FIXED_H
4 class Fixed
5 {
6 private :
7
8 long m_nVal ;
9

10 public :
11 Fixed& operator =( float floatVal );
12 Fixed& operator =( Fixed fixedVal );
13 Fixed operator *( Fixed b);
14 Fixed operator -( Fixed b);
15 Fixed operator +( Fixed b);
16
17 };
18 #endif

1A first version of the system was developed using floats and it took more than 15 seconds to
process a two second utterance
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As we can see in the code, the class contains a long attribute called m_nVal.
Such a variable can store 32 bits per number. Furthermore, we can see the most
important operations, in the full code there are several more operations in order to
perform operations on different types of numbers such as int or short int.

The implementation in fixed point of the most important operations in signal
processing (+,−, ∗), are explained in detail below.

1
2 # include " stdafx .h"
3 # include "Fixed.h"
4
5 # define RESOLUTION 65536L
6 # define RESOLUTION_BITS 16
7
8 Fixed Fixed :: operator + (Fixed b)
9 {

10 Fixed a;
11 a. m_nVal = m_nVal +b. m_nVal ;
12 return a;
13 }
14 Fixed Fixed :: operator - (Fixed b)
15 {
16 Fixed a;
17 a. m_nVal = m_nVal -b. m_nVal ;
18 return a;
19 }
20 Fixed Fixed :: operator *( Fixed b)
21 {
22 Fixed a;
23 a. m_nVal =((( long) m_nVal *b. m_nVal )>>RESOLUTION_BITS );
24 return a;
25 }

Hence, we can perform as many operations as required in fixed point, keeping
in mind that this is an approximation and error is induced in each operation.

Finally it is important to ensure that the result of the operations is not larger
than the maximum value that we can represent with our current fixed point
representation, in our case this 216. If the value is larger we need to eliminate
the least relevant bits (this is the same as changing the scaling factor). In our
system we have studied the worst case, this is: what is the maximum number of bits
needed in each part of the process?. The results are shown in Table 5.1.

As there are never more than 32 bits needed in any part of the computation we
have avoided overflow2. It is important to consider the size of the result of every

2A situation where the data value exceeds that which can be stored.
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Table 5.1. Major number of bits in each state.

State Bits for integer part Bits for decimal part Total
Input 0 16 16
Hamming Window 0 16 16
Power spectrum 15 16 31
Mel coefficients (log) 13 16 29
DCT 11 16 27

operation because otherwise overflow might occur and the result will make no sense.

5.3 Look up tables
The next step in the our speaker recognition system 3.1 consists of Hamming
windowing. It is not efficient to calculate the Formula 3.3 for every frame, because
the result for a given input value is always the same and because is difficult to
compute it in fixed point. Instead we precompute the result for the 256 points and
store these results in a look up table.

The following lines of MATLAB [14] code produces the lookup table that will
be included in the C++ code. Notice that the constructor Fixed(true, value)
returns a Fixed value whose attribute m_nVal is value. Following this we show the
first few lines of resulting HammingTable[] that will be inserted into the C++ code.

1
2RESOLUTION = 65536;
3hw = hamming (256);
4for i =1:156
5msg = sprintf (’Fixed(true , %.0f),’, round (hw(i)*

RESOLUTION ));
6disp(msg);
7end

1 const Fixed HammingTable [n] = {
2 Fixed(true , 5243) ,
3 Fixed(true , 5252) ,
4 Fixed(true , 5279) ,
5 Fixed(true , 5325) ,
6 Fixed(true , 5389) ,
7 ...};
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Now windowing is simply implemented as a loop multiplying the value stored in
frame[i] by HammingTable[i]. Furthermore, using look up tables is much more
efficient than performing arithmetic computations in the PDA.

Another look up table is used to perform the Fast Fourier Transform. The FFT
algorithm will be explained in detail in the following sections. . To facilitate this
computation we need to precompute a look up table containing sin(−2.π

n ), where
n is an integer smaller than 512. To clarify the need fir the sine look up table see
Section 5.4.

We will use a final look up table containing the coefficients of the filters in
the filterbank (described in Subsection 3.6). Hence, in order to obtain the mel
coefficients we simply multiply each power spectrum frame value with each filter
stored in the look up table.

5.4 Fast Fourier and Discrete Cosine Transforms in C++
As explained in Subsection 3.1.4 it is important to calculate the Fourier Transform
efficiently. The algorithms from theNumerical recipes in C book [22] has been
adapted to work on fixed point (using the functions described in Subsection 5.2).
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Listing 5.1. Fast Fourier Transform algorithm in fixed point (adapted from [22]).

1 /* Calculate the Fourier transform of a set of n-real valued
data points . Replaces the

2 *data (which is stored in array data [0..n -1]) by the positive
frequency half of its complex

3 * Fourier Transform . Data [0] -> Real Part of F_0 , Data [1] ->
Real part of F_N /2 Real part -> Data[even], Imaginary part

-> Data[odd] */
4 void FastFourierTransform :: realft (Fixed data [], unsigned long

n, int isign) {
5 unsigned long i,i1 ,i2 ,i3 ,i4 ,np3;
6 Fixed c1 =0.5f,c2 ,h1r ,h1i ,h2r ,h2i , wr ,wi ,wpr ,wpi ,wtemp ,

theta;
7
8 if (isign == 1) {
9 c2 = -0.5f;

10 f.four1(data ,n>>1,1);
11 } else
12 c2 =0.5f;
13 wtemp=Fixed ( -1.0f)*Fixed(isign)* sinetable [n < <1];// sin

(0.5* theta);
14 wpr = Fixed ( -2.0f)*wtemp*wtemp;
15 wpi=Fixed ( -1.0f)*Fixed(isign)* sinetable [n];// sin(theta

);
16 wr=Fixed (1.0f)+wpr;
17 wi=wpi; np3=n+3;
18 for (i=2;i <=(n>>2);i++) {
19 i4 =1+( i3=np3 -(i2 =1+( i1=i+i -1)));
20 h1r=c1*( data[i1 -1]+ data[i3 -1]);
21 h1i=c1*( data[i2 -1]- data[i4 -1]);
22 h2r = Fixed ( -1.0f)*c2*( data[i2 -1]+ data[i4 -1]);
23 h2i=c2*( data[i1 -1]- data[i3 -1]);
24 data[i1 -1]= h1r+wr*h2r -wi*h2i;
25 data[i2 -1]= h1i+wr*h2i+wi*h2r;
26 data[i3 -1]= h1r -wr*h2r+wi*h2i;
27 data[i4 -1] = Fixed ( -1.0f)*h1i+wr*h2i+wi*h2r;
28 wr=( wtemp=wr)*wpr -wi*wpi+wr;
29 wi=wi*wpr+wtemp*wpi+wi;
30 }
31 if (isign == 1) {
32 data [0] = (h1r=data [0])+data [1];
33 data [1] = h1r -data [1];
34 } else {
35 data [0]= c1 *(( h1r=data [0])+data [1]);
36 data [1]= c1*(h1r -data [1]);
37 f.four1(data ,n>>1,-1);
38 }
39 }
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The line 19 shows that we need to calculate sin( θ2), where θ = 2.π
n and n ∈

[2, 512]. Hence, we can avoid this operations with the sinetable[n] look up table
as explained in Subsection 5.3:

sinetable[n] = sin(−2.π
n

) (5.1)

This look up table is used in other parts of the complete code in the same way.
The next listing is the adaptation to fixed point of the Discrete Cosine Transform
algorithm. Note that this method also uses the method explained in Listing 5.1.
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Listing 5.2. Discrete Cosine Transform algorithm in fixed point (adapted from [22].

1 void FastFourierTransform :: cosft32 (Fixed y[], int isign){
2 int n = NUMBEROFFILTERS ; int i;
3 FastFourierTransform f;
4 void realft (Fixed data [], unsigned long n, int isign);
5 Fixed sum ,sum1 ,y1 ,y2 ,ytemp ,theta ,wi =0.0f,wi1 ,wpi ,wpr ,

wr =1.0f,wr1 ,wtemp;
6 // theta =0.5* PI/n;
7 wr1=Fixed(true , cosPI64 );// cos(theta);
8 wi1=Fixed ( -1.0f)* sinetable [n < <2];// sin(theta);
9 wpr = Fixed ( -2.0f)*wi1*wi1;

10 wpi=Fixed ( -1.0f)* sinetable [n < <1];// sin (2.0* theta);
11 if (isign == 1) {
12 for (i=1;i<=n/2;i++) {
13 y1=Fixed (0.5f)*(y[i -1]+y[n-i]);
14 y2=wi1 *(y[i-1]-y[n-i]);
15 y[i -1]= y1+y2;
16 y[n-i]=y1 -y2;
17 wr1 =( wtemp=wr1)*wpr -wi1*wpi+wr1;
18 wi1=wi1*wpr+wtemp*wpi+wi1;
19 }
20 f. realft (y,n ,1);
21 for (i=3;i<=n;i+=2) {
22 wr=( wtemp=wr)*wpr -wi*wpi+wr;
23 wi=wi*wpr+wtemp*wpi+wi;
24 y1=y[i -1]*wr -y[i]*wi;
25 y2=y[i]*wr+y[i -1]* wi;
26 y[i -1]= y1;
27 y[i]=y2;
28 }
29 sum=Fixed (0.5f)*y[2];
30 for (i=n;i >=2;i -=2) {
31 sum1=sum;
32 sum = sum + y[i -1];
33 y[i -1]= sum1;
34 }
35 } else if (isign == -1) {
36 ytemp=y[n];
37 for (i=n;i >=4;i -=2) y[i]=y[i-2]-y[i];
38 y[1]= Fixed (2.0f)*ytemp;
39 for (i=3;i<=n;i+=2) {
40 wr=( wtemp=wr)*wpr -wi*wpi+wr;
41 wi=wi*wpr+wtemp*wpi+wi;
42 y1=y[i -1]* wr+y[i]*wi;
43 y2=y[i]*wr -y[i -1]* wi;
44 y[i -1]= y1;
45 y[i]=y2;
46 }
47 f. realft (y,n,-1);
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48 for (i=1;i<=n/2;i++) {
49 y1=y[i -1]+y[n-i];
50 y2=( Fixed (0.5f). divide (wi1))*(y[i-1]-y

[n-i]);
51 y[i -1]= Fixed (0.5f)*(y1+y2);
52 y[n-i]= Fixed (0.5f)*(y1 -y2);
53 wr1 =( wtemp=wr1)*wpr -wi1*wpi+wr1;
54 wi1=wi1*wpr+wtemp*wpi+wi1;
55 }
56 }
57 for(int i=0; i<n; i++){
58 if(i==0)
59 y[i] = y[i]* Fixed(true , 11585) *Fixed(

true ,92681) ;
60 else
61 y[i] = y[i]. divide (Fixed(true ,

2621440) );//
62 }
63 }

5.5 Calculating Mel Filterbank
In section 3.1.5 the theoretical concept of Mel Frequency Cepstrum Coefficients
(MFCC) was explained. The question is: How can we calculate the filters to obtain
the MFCC?. As the result is stored in a look up table, we can precompute the filters
using MATLAB, because it is faster and easier than computing the coefficients at
runtime on the PDA.

A function has been developed in order to obtain the filters simply by specifying
the sampling rate, the number of filters required, and the number of points in the
DFT. The code of this function appears below. The algorithm splits the frequency
sampled in the mel scale in nFilters slices, then transforms each slice into the
frequency scale yielding an index in the DFT domain. Finally each filter starts in
the previous centre and finishes in the next centre in a triangle shape.
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Listing 5.3. Calculating the filterbank.
1function filters = melfilterbank (nFilters , N, sf)
2% nFilters -> number of filters
3%N -> number of points in the FFT
4%sf -> sampling rate
5%max frequency on the mel scale
6melmax = freq2mel (sf /2);
7% increment on the mel scale
8melinc = melmax ./( nFilters +1);
9%index of the centers on the frequency scale
10indexcenter = round( mel2freq ((1: nFilters ).* melinc )./( sf/N));
11%index of the starts and stops on the frequency scale
12indexstart = [1, indexcenter (1: nFilters -1) ];
13indexstop = [ indexcenter (2: nFilters ), N/2];
14filters = zeros (nFilters , N/2);
15for c = 1: nFilters
16%left side
17increment = 1.0/( indexcenter (c) - indexstart (c));
18for i = indexstart (c): indexcenter (c)
19filters (c,i) = (i - indexstart (c))* increment ;
20end
21%right side
22decrement = 1.0/( indexstop (c) - indexcenter (c));
23for i = indexcenter (c): indexstop (c)
24filters (c,i) = 1.0 - ((i - indexcenter (c))* decrement );
25end
26end
27function b = mel2freq (m)
28% compute frequency from mel value
29b = 700*((10.^( m ./2595) ) -1);
30function m = freq2mel (f)
31% compute mel value from frequency f
32m = 2595 * log10 (1 + f ./700) ;

Finally, as explained in Section 5.3 we include the values of the filters as a
look up table and multiply each FFT result by each filter obtaining the MFCC.
The following lines of code shows how to do it if the look up table FILTERBANK[]
contains all the filters placed consecutively and spectrum contains the FFT of the
frame.

1 for (int i=0; i< NUMBEROFFILTERS ; i++){
2 for(int j=0; j<HALFN; j++){
3 MelFrequencyCepstrumCoefficients [i] =

MelFrequencyCepstrumCoefficients [i] +
espectrum [j]* FILTERBANK [i*HALFN+j];

4 }
5 }
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5.6 Vector Quantization algorithm
The vector quantization algorithm used is the Linde, Buzo, and Gray (LBG)
approach. Assuming that the MCFCs are stored in an array accessed by double
pointer, each row contains the MCFC from a frame, and there are as many rows as
frames in the utterance. A method has been developed in this project to return as
many centroids as needed 3 in an array accessed by double pointer. This is useful
because we can easily vary the number of centroids and study the difference in the
accuracy rate. The algorithm follows the explanation given in the next listing.

3The number of centroids must be a power of 2
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1 /*
2 * length -> Number of frames in the utterance
3 * N MUST BE A POWER OF 2
4 */
5 Fixed ** VectorQuantization :: getCentroids (Fixed ** mfcc , int

length , int n)
6 {
7 Fixed *** tempgroups = new Fixed **[n];// Stores the

vectors belonging to a centroid
8 for(int i=0; i<n; i++){
9 tempgroups [i] = new Fixed *[ length ];

10 for(int j=0; j< length ; j++){
11 tempgroups [i][j] = new Fixed[

NUMBEROFFILTERS ];
12 }
13 }
14 // count of the vectors in each centroid
15 int * tempcount = new int[n];
16 // pointer to the centroids
17 Fixed ** centroids = new Fixed *[n];
18 for(int i=0; i<n; i++){
19 centroids [i] = new Fixed[ NUMBEROFFILTERS ];
20 }
21 // first centroid is the average ;
22 for(int j=0; j< length ; j++){
23 for(int i=0; i< NUMBEROFFILTERS ; i++){
24 centroids [0][i] = centroids [0][i] +

mfcc[j][i]. divide ( length );
25 }
26 }
27 if(n == 1){
28 return centroids ;
29 }
30 // start iterating
31 int centroidsCalculated = 1;
32
33 while(true){
34 for(int j=0; j< NUMBEROFFILTERS ; j++){
35 for(int k= centroidsCalculated ; k >0; k--){
36 // split each vector already calculated
37 centroids [2*k -1][j] = centroids [k][j]*

me;
38 centroids [2*k -2][j] = centroids [k][j]*

pe;
39 }
40 }
41 for(int l=0; l< ITERATIONS ; l++){
42 for(int i=0; i <2* centroidsCalculated ;i++)
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43 tempcount [i]=0;
44 for(int i=0; i< length ; i++){
45 Fixed mindistance = MAXFIXED ;
46 Fixed * tempdist = new Fixed [2*

centroidsCalculated ];
47 int min = 0;
48 for(int j=0; j <2* centroidsCalculated ;

j++){
49 tempdist [j] = eu. getDistance (

mfcc[i], centroids [j]);
50 if( tempdist [j]< mindistance ){
51 mindistance = tempdist [

j];
52 min=j;
53 }
54 }
55 tempgroups [min ][ tempcount [min ]] = mfcc

[i];
56 tempcount [min ]++;
57 }
58 // update the temp centroid
59 for(int k=0; k <2* centroidsCalculated ; k++){
60 for(int j=0; j< tempcount [k]; j++){
61 for(int i=0; i< NUMBEROFFILTERS

; i++){
62 centroids [k][i] =

centroids [k][i] +
tempgroups [k][j][i
]. divide ( tempcount [
k]);

63 }
64 }
65 }
66 }
67 centroidsCalculated = centroidsCalculated *2;
68 if( centroidsCalculated == n)
69 return centroids ;
70 }
71 return centroids ;
72 }

It is important to notice that there is a variable called ITERATIONS, the bigger
this value is, the better the centroids are. The number ITERATIONS represents how
many times a centroid is updated to reach its final value.



42 CHAPTER 5. A SPEAKER RECOGNITION SYSTEM IN C++

5.7 Feature warping algorithm
This algorithm follows the explanation given in Section 4.2 and utilizes a look up
table containing the inverse of the cumulative normal distribution function. This
look up table is called NORMINV in the code below. This method also uses a sorting
algorithm. An implementation of the quicksort algorithm is used because it is much
more efficient than other sorting algorithms (such as bubble sort), but the code does
not appear because it is not specific in this thesis. For more information about the
quicksort algorithm see [25]. The rest of the algorithm appears in the next listing.
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1 void FeatureWarping :: warpFeatures (Fixed ** melCoefficients ,
int length ){

2 int M = 64; // Number of intervals in the histogram of
observation

3 for(int k=0; k< NUMBEROFFILTERS ; k++){
4 Fixed * arr = new Fixed[ length ];
5 for(int i=0; i< length ; i++){
6 arr[i] = melCoefficients [i][k];
7 }
8 int * histogram = new int[M];
9 for(int i=0; i<M; i++)

10 histogram [i]=0;
11 quick(arr , 0, length -1) ;// sort the numbers
12 Fixed min = arr[length -1];
13 Fixed intervalSize = (arr [0]- arr[length -1]);
14 long intervalSizel = intervalSize . m_nVal /M;
15 intervalSize = Fixed(true , intervalSizel );
16 // Histogram of observation with M intervals
17 for(int i=0; i< length ; i++){
18 arr[i] = arr[i]-arr[length -1];
19 int index = arr[i]/ intervalSize ;
20 histogram [index ]++;
21 }
22 // Cumulative histogram of original variable
23 for(int i=1; i<M; i++){
24 histogram [i]= histogram [i]+ histogram [i

-1];
25 }
26 Fixed * histogramF = new Fixed[M];
27 int * normInvIndex = new int[M];
28 for(int i=0; i<M; i++){
29 histogramF [i]= Fixed (( float) histogram [

i]/ length );
30 normInvIndex [i] = histogramF [i].

m_nVal /256;
31 }
32 for(int i=0; i< length ; i++){
33 melCoefficients [i][k] = melCoefficients [i

][k]-min;
34 int index = arr[i]/ intervalSize ;
35 melCoefficients [i][k] = NormInv [

normInvIndex [index ]];
36 }
37 }
38 }
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5.8 Distance between models
Finally we can obtain the feature vectors from each speaker’s voice, each of these
is a speaker model. To match an unknown voice against these models we need to
measure the distance between models. Suppose we have two arrays each accessed by
double pointers, these arrays contain the feature vectors from two different speakers
A and B. We calculate the euclidean distance between each feature vector from
speaker A with its closest feature vector from speaker B and then add up the
results. The value of this sum is the distance between A and B. The listing below
shows how to compute this distance, where the method getDistance returns the
euclidean distance between two vectors.

Listing 5.4. Distance between models

1
2 /*
3 * Calculates the Euclidean distance between two groups of

feature vectors with lengths lengthA and lengthB
4 */
5
6 Fixed EuclideanDistance :: getTotalDistance (Fixed ** mfccA , int

lengthA , Fixed ** mfccB , int lengthB )
7 {
8 Fixed totalDistance =0;
9 Fixed minimumDistance = MAXFIXED ;

10 Fixed distance = 0;
11 for (int i=0; i< lengthA ; i++){
12 minimumDistance = MAXFIXED ;
13 for (int j=0; j< lengthB ; j++){
14 distance = getDistance (mfccA[i], mfccB[j]);
15 if( distance < minimumDistance ){
16 minimumDistance = distance ;
17 }
18 }
19 totalDistance = totalDistance +

minimumDistance . divide ( lengthA );
20 }
21 return totalDistance ;
22 }

It is important to normalize, this is to divide the result by lengthA, if we do
not normalize a short utterance will have a small distance even if it is compared to
a different speaker. In the training phase a model of each speaker is stored, after
that, during the test phase we compute the model of the unknown speaker and
calculate the distance to all the speakers in the system as explained earlier. Finally,
the claimant is recognized as the speaker whose model has the smallest distance
from the unknown model.
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Results

The final application has been tested in a HP iPAQ 5500. The features of this
device are shown in Table 6.1.

Table 6.1. Features of the HP iPAQ 5500.

Feature
Processor Intel XScale 400 MHz
RAM (Random Access Memory) 128 MB SDRAM
ROM (Read Only Memory) 48 MB ROM
Microphone Integrated microphone up to 44.1 KHz

sampling rate with 16 bits per sample
Connections Integrated wireless LAN (802.11b)
Operative System Windows Mobile 2003

There are two main questions to answer in this chapter, first of all: How many
users is it feasible to distinguish? and finally: How long does it take to distinguish
a user?. The answer to these questions are presented in the following sections.

In order to perform the tests a simple database of speakers from the Image
Formation & Processing Group at the University of Illinois has been used. The
database contains 8 speakers, all of them uttered the same word “zero”1 once in
a training session and once in a test session. The sessions were at least 6 months
apart to take in account variations of the voice with time. As the database only
contains two sessions, the first session is used in the training phase and the second
session is used in the first attempt to evaluate the test phase.

1“Zero” is a good word for speaker recognition because the z sound is voiced, and contains a
lot of energy. Furthermore the word contains the two most used vowels e and o.
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6.1 Accuracy measurements

The accuracy has been measured in two different conditions: first when the training
and test phase occur with the mouth in the same position with respect to the
microphone. The result is that the first situation is an analysis of accuracy under
matched conditions. In the second analysis of accuracy the training and test phase
do not have the same relation of the mouth with respect to the microphone,
this evaluates the accuracy under mismatched conditions. Figure 6.1 show where
the microphone was located during test phase. The training phase always used
voice samples taken in Spot1, hence Spot2, Spot3 and Spot4 represent mismatched
conditions while Spot1 in the test phase represents matched conditions. In all
case the microphone used was a Cosonic CD-610MV. Figure 6.2 shows how the
microphone was oriented.

Figure 6.1. Different spots where microphone was placed during the tests.

Figure 6.2. Picture of a test phase under matched conditions.
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Table 6.2 shows the results for each of the accuracy tests that have been
performed. Column Codebook length show the number of vectors in the speaker
model, the next column show how many filters were there in the filterbank, and
finally the columns for SpotX show how many users from the database (of 8 speakers)
could be properly recognized in each spot. The training and test phases each took
about 1 second. This first table does not use feature warping.

Table 6.2. Accuracy rate in different spots and conditions without feature warping.

Codebook length N. of filters Spot1 Spot2 Spot3 Spot4
1 16 5 2 2 3
4 16 5 2 2 3
16 16 5 2 2 3
1 32 7 4 3 2
4 32 6 3 2 2
16 32 6 3 3 3

The same tests were repeated using feature warping, but the results are not
good (See Table 6.3). In matched conditions we can distinguish fewer users than
without using it. Furthermore, in missmatched conditions the result of using feature
warping are not better than without using feature warping.

Table 6.3. Accuracy rate in different spots and conditions with feature warping.

Codebook length N. of filters Spot1 Spot2 Spot3 Spot4
1 32 3 - 1 2
4 32 2 - 1 2
16 32 2 1 2 2

The tests were all made in a lab environment, where there is computer noise
and other people maybe speaking (softly). The utterances from the database have
been played out using common speakers in order to systematically include the noise
of the laboratory when the PDA is recording.

Although all the test shown in this thesis have been performed with a sampling
rate of 11025 Hz. Additional test were made with various sampling rate ranging
from 8000 Hz to 12500 Hz, however, there is no noticeable difference in results.
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6.2 Performance measurements
The second question, How long does it take to distinguish a user? is answered in
this section. Table 6.4 show how long it takes to process a utterance, from when the
utterance is completely uttered until we obtain the speaker model under different
conditions. The sampling rate is set to 11025 Hz.

Table 6.4. Processing time without feature warping (msec).

CODEBOOKLENGTH Number of filters 16 Number of filters 32
1 747 908
2 765 990
4 828 1187
8 1630 1724
16 1763 1932

The time shown in Table 6.4 includes finding the utterance within a period of two
seconds, obtaining the codebook with the specified length, and writing the results
into a file. Performing feature warping requires about 20 milliseconds more time in
the worst case. Finally we need to measure the distance between models, this takes
12 milliseconds per user enrolled in the system. Thus with 8 users, computing the
minimum distance with respect to all of the models takes less than 100 milliseconds.

6.3 Required size in RAM
The application needs to store the model from each speaker. These stored models
are needed the next time an unknown user’s utterance is to be analysed. Each
model needs codebookLength ∗ numberOfFilters ∗ 32. For example, for 8 users, a
codebook of length 1, and 32 filters the total model storage is 8192 bits or 1024 bytes.

During the test phase the models were loaded in the Random Access Memory
(RAM) in order to be able to access them quickly. Furthermore, the various look
up tables must be also loaded in the RAM. Table 6.5 shows the size of each look up
table. It takes about 200 nanoseconds to read a value from a look up table.

The whole application needs 1.476 MB of storage2 (including a simple graphic
interface). When the program is running needs 0.86 MB in RAM.

2This storage corresponds to the “.exe” file of the application.
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Table 6.5. Size of the look up tables.

Look up table Size in bits
Hamming Window 8192

Sine 16384
Mel filters numberOfFilters ∗ 129 ∗ 32

Normal inverse 8192
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Conclusions and future work

In this chapter the conclusions are presented along with some suggestions about how
to continue this work, specifically identifying the next obvious things to be done.

7.1 Conclusions

A speaker recognition system has been developed. It works properly in a handheld
device when the number of users is limited (6 or 7 users) under matched conditions,
highlighting that these matched conditions are the worse because there are 20
centimetres between the mouth and the microphone. Users using a headset can
reach better accuracies.

The system needs only one word for the training phase, and the same word for
the test phase. This is very good because the users can be recognised by the system
quickly, and they do not need to spend a lot of time training the system.

The fixed point and look up table approaches work very well in handheld devices
and reduced the processing time from more than 10 seconds to less than one second
while having a similar accuracy rate.

I suggest using a 32 filter filterbank because increases the accuracy and does
not require much more time (about 20 % more time) than when using 16 filters.
It is important to note that the required storage space for each speaker is exactly
double, hence some application might not be afford this amount of storage space.

I suggest using a codebook length of 1. In speaker recognition where the training
and test phase is only one word, one vector of information is sufficient as seen
in Table 6.2. Using a larger codebook length increases the processing time and
the required model storage space, but does not increase the accuracy. Given the
current processing time and memory requirements, this algorithm would be useful
in a speaker recognition system even with a longer training or test phase.
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The feature warping algorithm was not useful when the training and test phase
each take less than one second. But Qin Jin [10] has reported increased accuracy
in mismatched conditions by about 40 percent when the training phase takes about
10 seconds.

To summarize: a set of algorithms have been developed in C++ that are easily
adaptable to another operating system given suitable computing power versus the
required processing time and given sufficient space in memory. These algorithms
can distinguish in about one second between a small set of users that trained the
system based upon one second of audio captured by a handheld devices. These
algorithms could also be used in systems where the training or test phase utilized
longer utterances. Note that some of the processing could be overlapped with the
acquisition of voice samples, hence reducing the apparent time of the computation.
Thus this project met its goal of being able to distinguish a speaker from among
family members or a small number of colleagues. If we remember Table 2.1 we can
notice that a few years ago AT&T developed a speaker recognition system similar
than ours (training phase = 0.5s, population = 10) using a large computer, and
now we obtain similar results with a simple handheld computer.

7.2 Future work

The first future work to continue with this thesis project is to build some useful
applications that exploit this speaker recognition system. The speaker recognition
system alone is not useful, but it could be utilized by a number of applications. For
example, an application could exploit the speaker recognition system to manage
meetings, if the device recognises that a specific person is near the device, and
the owner of the device is waiting to meet him/her, then the device could notify
both persons that the meeting could start immediately. Another example, is
automatically configuring the device with the users’s calendar, favorite wall paper,
etc. when this user’s voice is heard. There are as many possible applications as you
can imagine.

The system have been tested with 8 users, but it would be interesting to test
the system with more users and different databases.

As these devices are more and more connected to online servers, another
alternative solution to analyse is the feasibility of executing the speaker recognition
system on a network attached server. Inmaculada Rangel Vacas in her thesis [30]
explains how to establish a connection between the PDA and a laptop sending the
captured audio data to the remote laptop. In this approach the speaker recognition
system would execute on the server, by sending an audio stream to the server. Then
when an utterance is detected, recognition is triggered at the server and the result
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sent back to the PDA. This approach could be faster, but requires connectivity and
potentially more communication traffic from the PDA to the server - which will
consume batter power and network bandwidth.

Finally the system could be improved in terms of robustness and noise. A lot
of researchers have demonstrated that it is feasible to increase the accuracy in bad
conditions, i.e. when there is a lot of noise. This research should be applied to this
system to allow it to work in worse conditions.
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Appendix A

Fixed class

A.1 Fixed.h

Listing A.1. Fixed.h

1
2 # ifndef FIXED_H
3 # define FIXED_H
4 class Fixed
5 {
6 private :
7 long m_nVal ;
8
9 public :

10
11 Fixed(void);
12 Fixed(const Fixed& fixedVal );
13 Fixed(const Fixed* fixedVal );
14 Fixed(bool bInternal , long long nVal);
15 Fixed(long nVal);
16 Fixed( __int64 nVal);
17 Fixed(int nVal);
18 Fixed(short nVal);
19 Fixed(float nVal);
20 Fixed& operator =( float floatVal );
21 Fixed& operator =( Fixed fixedVal );
22 Fixed& operator =( int intVal );
23 Fixed& operator =( long long longVal );
24 Fixed& operator =( unsigned int intVal );
25 Fixed operator *( Fixed b);
26 int operator <( Fixed b);
27 Fixed operator *( unsigned short int b);
28 Fixed& Fixed :: operator =( unsigned short shortVal );
29 Fixed operator /( int b);

59
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30 Fixed divide (Fixed b);
31 Fixed operator -( Fixed b);
32 Fixed operator +( Fixed b);
33 Fixed Fixed :: abs ();
34 Fixed Fixed :: log ();
35 BOOL Fixed :: operator > (Fixed a);
36 BOOL Fixed :: operator > (Fixed a);
37
38 };
39 #endif
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A.2 Fixed.cpp

Listing A.2. Fixed.cpp

1
2 # include " stdafx .h"
3 # include "Fixed.h"
4
5 # define RESOLUTION 65536L
6 # define RESOLUTION_BITS 16
7 # define FLOAT_RESOLUTIONf 0.0000005 f
8 # define LOGSTEPS 80
9

10
11 Fixed :: Fixed(void)
12 {
13 m_nVal = 0;
14 }
15
16 Fixed :: Fixed(const Fixed& fixedVal )
17 {
18 m_nVal = fixedVal . m_nVal ;
19 }
20
21 Fixed :: Fixed(const Fixed* fixedVal )
22 {
23 m_nVal = fixedVal -> m_nVal ;
24 }
25
26 Fixed :: Fixed(bool bInternal , long long nVal)
27 {
28 m_nVal = nVal;
29 }
30
31 Fixed :: Fixed(long nVal)
32 {
33 m_nVal = (long long)nVal << RESOLUTION_BITS ;
34 }
35 Fixed :: Fixed(long long int nVal)
36 {
37 m_nVal = nVal << RESOLUTION_BITS ;
38 }
39 Fixed :: Fixed(int nVal)
40 {
41 m_nVal = (long long)nVal << RESOLUTION_BITS ;
42 }
43
44 Fixed :: Fixed(short int nVal)
45 {
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46 m_nVal = nVal << RESOLUTION_BITS ;
47 }
48 Fixed :: Fixed(float floatVal )
49 {
50 floatVal += FLOAT_RESOLUTIONf ;
51 m_nVal = (long long):: floorf ( floatVal * RESOLUTION );
52 }
53
54 Fixed& Fixed :: operator =( float floatVal )
55 {
56 floatVal += FLOAT_RESOLUTIONf ;
57 m_nVal = (long long int):: floorf ( floatVal * RESOLUTION );
58 return *this;
59 }
60
61 Fixed& Fixed :: operator =( Fixed fixedVal )
62 {
63 m_nVal = fixedVal . m_nVal ;
64 return *this;
65 }
66 Fixed& Fixed :: operator =( int intVal )
67 {
68 m_nVal = intVal << RESOLUTION_BITS ;
69 return *this;
70 }
71 Fixed& Fixed :: operator =( long long longVal )
72 {
73 m_nVal = longVal << RESOLUTION_BITS ;
74 return *this;
75 }
76
77 Fixed& Fixed :: operator =( unsigned int intVal )
78 {
79 m_nVal = intVal << RESOLUTION_BITS ;
80 return *this;
81 }
82
83 Fixed Fixed :: operator *( Fixed b)
84 {
85 Fixed a;
86 a. m_nVal =((( long long) m_nVal *b. m_nVal )>>

RESOLUTION_BITS );
87 return a;
88 }
89
90 Fixed Fixed :: operator *( unsigned short b)
91 {
92 Fixed a;
93 a. m_nVal = m_nVal *b;
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94 return a;
95 }
96
97 Fixed& Fixed :: operator =( unsigned short shortVal )
98 {
99 m_nVal = shortVal << RESOLUTION_BITS ;

100 return *this;
101 }
102
103 Fixed Fixed :: operator /( int b)
104 {
105 Fixed _b = b;
106 return divide (_b);
107 }
108 Fixed Fixed :: divide (Fixed b)
109 {
110 Fixed a;
111 a. m_nVal = ( m_nVal * RESOLUTION )/b. m_nVal );
112 return a;
113 }
114
115 Fixed Fixed :: operator - (Fixed b)
116 {
117 Fixed a;
118 a. m_nVal = m_nVal -b. m_nVal ;
119 return a;
120 }
121
122 Fixed Fixed :: operator + (Fixed b)
123 {
124 Fixed a;
125 a. m_nVal = m_nVal +b. m_nVal ;
126 return a;
127 }
128 Fixed Fixed :: abs ()
129 {
130 Fixed a;
131 if(m_nVal <0)
132 a. m_nVal = -1* m_nVal ;
133
134 return a;
135 }
136
137
138 Fixed Fixed :: log ()
139 {
140 // According to Taylor Series
141 Fixed p_Base = Fixed(true , m_nVal );
142 Fixed y = (p_Base -1). divide ( p_Base +1);
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143 Fixed y2 = y*y;
144 Fixed res = new Fixed(true ,65536) ;
145 for(int i=2* LOGSTEPS +1; i >0; i=i -2){
146 res= res*y2 + 1/i;
147 }
148 return Fixed (2)*y*res;
149 }
150
151 int Fixed :: operator < (Fixed b)
152 {
153 if(m_nVal <b. m_nVal ){
154 return 1;
155 }else{
156 return 0;
157 }
158 }
159
160 BOOL Fixed :: operator > (Fixed a)
161 {
162 if(m_nVal >a. m_nVal ){
163 return TRUE;
164 }else{
165 return FALSE;
166 }
167 }
168
169 BOOL Fixed :: operator < (Fixed a)
170 {
171 if(m_nVal <a. m_nVal ){
172 return TRUE;
173 }else{
174 return FALSE;
175 }
176 }
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