
Master of Science Thesis
Stockholm, Sweden 2010

TRITA-ICT-EX-2010:27

E D O A R D O P A O N E

 OSSIE and SCA Waveform Development

 Open-Source SCA Implementation-
Embedded and Software

Communication Architecture

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Open-Source SCA Implementation-Embedded
and

Software Communication Architecture
OSSIE and SCA Waveform Development

Edoardo Paone

15 February 2010

School of Information and Communication Technology
Royal Institute of Technology (KTH)

Stockholm, Sweden

Supervisor and examiner at KTH:
Prof. Gerald Q. Maguire Jr

Industrial supervisor at Saab:
Dr. Anders Edin

Abstract

Software Defined Radios (SDRs) are redefining the current landscape of
wireless communications in both military and commercial sectors. The rapidly
evolving capabilities of digital electronics are making it possible to execute
significant amounts of signal processing on general purpose processors rather
than using special-purpose hardware.

As a consequence of the availability of SDR, applications can be used to
implement flexible communication systems in an operating prototype within a
very short time. However, the initial lack of standards and design rules leads
to incompatibility problems when using products from different manufacturers.
This problem is critical for the military and public safety sectors, for this
reason the US Army was interested in SDR and carried out research into
the specification of a common software infrastructure for SDR. This initiative
started in the mid-1990s and evolved into the Software Communications
Architecture (SCA).

SCA is a non-proprietary, open architecture framework that allows a
designer to design interoperable and platform independent SDR applications.
At the same time the SCA framework, by abstracting the radio communication
system, speeds up waveform development because developers no longer have to
worry about hardware details.

This thesis project uses OSSIE, an open source SCA implementation, to
illustrate the process of developing a waveform. Today companies are exploiting
open source solutions and investing money to evaluate and improve available
technologies rather than developing their own solutions: OSSIE provides a
working SCA framework without any license cost. OSSIE also provides some
tools to develop SCA waveforms. Of course open source software comes with
some limitations that a designer must take into account. Some of these
limitations will be described for OSSIE (specifically the limited documentation
and lack of libraries), along with some suggestions for how to reduce their
impact.

This thesis project shows in detail the development process for SCA
waveforms in OSSIE. These details are examined in the course of successfully
implementing a target waveform to enable the reader to understand the
advantagies and disadvantages of this technology and to facilitate more people
using OSSIE to develop waveforms. Although a waveform was successfully
implemented there were unexpected issues with regard to the actual behavior
of the waveform when implemented on the hardware used for testing.

Sammanfattning

Software Defined Radio (SDR) hȧller pȧ att förändra hur trȧdlös kommu-
nikation utvecklas inom bȧde den militära och den kommersiella sektorn. Den
snabba utvecklingen av digital elektronik gör det möjligt att utföra digital
signalbehandling pȧ generella processorer istället för att använda särskild
hȧrdvara för signalbehandling.

Tack vare tillgȧngen till SDR, kan mjukvara användas för att utveckla
flexibla kommunikationssystem pȧ väldigt kort tid. Bristen pȧ utvecklingsregler
kan leda till problem med kompatibilitet när produkter frȧn olika tillverkare
används tillsammans.

Den amerikanska armén har därför utvecklat en arkitektur för SDR.
Detta initiativ startade i mitten av 1990-talet och har lett fram till Software
Communications Architecture (SCA).

SCA är en generisk, öppen arkitektur som möjliggör att utveckla interope-
rabla och plattformsoberoende SDR-applikationer. Samtidigt kan SCA, genom
att abstrahera radiokommunikationssystemet, pȧskynda vȧgformsutveckling
eftersom utvecklarna inte längre behöver ta lika stor hänsyn till radiohȧrdvaran.

Detta examensarbete använder OSSIE, en implementation av SCA som
öppen källkod, för att illustrera utvecklingsprocessen för en vȧgform. Företag
utnyttjar idag öppen-källkodslösningar och investerar pengar för att utvärdera
och förbättra tillgänglig teknik istället för att utveckla sina egna lösningar.
OSSIE ger tillgȧng till en SCA platform utan nȧgon licenskostnad. OSSIE
erbjuder ocksȧ enkla verktyg för att utveckla SCA-vȧgformer. Naturligtvis
leder öppen källkod tilll vissa problem som en utvecklare mȧste ta hänsyn till.
Nȧgra av dessa begränsningar kommer att beskrivas för OSSIE (särskilt brist
pȧ dokumentation), tillsammans med nȧgra förslag för att lösa problemen.

Mȧlet med detta examensarbete är att förstȧ, samt visa fördelar och
nackdelar med vȧgformsutveckling med OSSIE.

Acknowledgements
This thesis work took place during the fall of 2009 at Saab Systems in Järfälla,
Sweden. There are a number of people whom I would like to thank for being
helping during my thesis work.

First and foremost I would like to thank my supervisor at Saab AB, Anders
Edin, for helping me and guiding me through the thesis work. Also my supervisor
at KTH, Pr. Gerald Q. Maguire Jr, has given me great support: this report would
not have shaped up so nice without his help and advice.

Also, I would like to thank my director at Saab AB, Stefan Hagdahl, and all
my collegues in the Communication Systems section. The work environment has
been very nice and I had a very good time. I really appreciate the open atmoshere
where I have been able to get support when needed. The friday afternoons have
been really nice, I have had the opportunity to enjoy the swedish fika. I am greatful
to you all, thanks.

Contents

Abstract i

Acknowledgements iii

Contents iv

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Motivations . 1
1.2 Problem description . 3
1.3 Thesis organization . 3

2 Background 5
2.1 Software Defined Radio . 5

2.1.1 Introduction . 5
2.1.2 History . 6
2.1.3 Waveforms . 6
2.1.4 SDR applications . 6
2.1.5 Operation scheme of an ideal SDR 8

2.2 The Universal Software Radio Peripheral 10
2.2.1 Characteristics . 10

2.3 GNU Radio . 10
2.3.1 GNU Radio architecture . 11
2.3.2 An example: Generating a Dial Tone 12
2.3.3 The development process . 14
2.3.4 Conclusions . 14

2.4 Software Communications Architecture 16
2.4.1 Introduction . 16
2.4.2 What is SCA? . 16

iv

Contents v

2.4.3 CORBA . 17
2.4.4 Component ports in SCA . 20
2.4.5 XML . 21
2.4.6 The SCA Operating Environment (OE) 22
2.4.7 Base Application Interfaces 23
2.4.8 OSSIE . 25

2.5 The IEEE 802.15.4 protocol . 26
2.5.1 Personal Area Network . 26
2.5.2 LR-WPAN applications . 27

2.6 Python . 29
2.6.1 Dynamic programming languages 29
2.6.2 Rapid prototyping . 31

3 Method 33
3.1 The waveform structure . 33

3.1.1 Introduction . 33
3.1.2 The physical layer and the MAC sublayer 34
3.1.3 The upper layers . 35
3.1.4 Conclusions . 36

3.2 The UCLA Zigbee library . 36
3.2.1 Description . 36
3.2.2 OSSIE and GNU Radio . 38

3.3 The work method . 40
3.3.1 Working on the interfaces . 40
3.3.2 The design method . 41
3.3.3 Conclusions . 43

3.4 OSSIE components . 44
3.4.1 The OSSIE plugin for Eclipse 44
3.4.2 An example of creating a component 45
3.4.3 Conclusions . 47

3.5 Component structure . 48
3.6 Assembly controller . 50
3.7 Custom interfaces . 52

3.7.1 The interfaces . 52
3.7.2 IDL compilation . 53

4 Analysis 55
4.1 The MAC Layer . 55

4.1.1 Interface . 55
4.1.2 Functionalities . 58
4.1.3 Component implementation 61
4.1.4 Simulation and final considerations 62

4.2 The Physical Layer . 64
4.2.1 Interface . 65

vi Contents

4.2.2 Functionalities . 65
4.2.3 Implementation . 67
4.2.4 Simulation and final considerations 68

4.3 The GNU Radio solution . 69
4.3.1 Description . 69
4.3.2 OSSIE component . 71
4.3.3 Test . 72
4.3.4 A chat application . 73
4.3.5 Results . 74

4.4 The OSSIE solution . 75
4.4.1 Description . 75
4.4.2 MODULATOR component 76
4.4.3 DEMODULATOR component 79
4.4.4 An alternative method . 81
4.4.5 Simulation . 82
4.4.6 A chat application . 83

4.5 The TUN/TAP functionality . 84
4.5.1 Description . 84
4.5.2 The TAP component . 84
4.5.3 Simulation . 85
4.5.4 The waveform . 86

4.6 Results . 86
4.6.1 The GNU Radio solution . 86
4.6.2 The OSSIE solution . 88
4.6.3 PHY/MAC design in SDR . 90
4.6.4 Measurements . 91

5 Conclusions and Future Work 95
5.1 Conclusions . 95
5.2 Future Work . 96

Bibliography 97

A Acronyms and Abbreviations 101

B Standard OSSIE component structure 103

C Custom OSSIE component 109

D IDL custom interfaces 115

List of Figures

2.1 Ideal transmitter and receiver in SDR 9
2.2 GNU Radio architecture . 11
2.3 GNU Radio dial tone example . 12
2.4 GNU Radio Companion . 15
2.5 Client-server model in CORBA . 18
2.6 Inter-ORB communication using GIOP 20
2.7 SCA abstraction layers . 22
2.8 Resource Interface UML Diagram . 24
2.9 Operating spaces of WLAN and WPAN standards 28

3.1 The waveform structure . 36
3.2 Block schema of the modulator implemented in GNU Radio 37
3.3 Block schema of the demodulator implemented in GNU Radio 37
3.4 Waveform implementation without the SCA platform abstraction layer . 39
3.5 Waveform implementation using the SCA platform abstraction layer . . 40
3.6 One level structure in OSSIE waveforms 42
3.7 Blocks hierarchy in GNU Radio . 43
3.8 OSSIE perspective for creating a new component in OSSIE 44
3.9 OSSIE perspective for creating MyComponent 45
3.10 Internal component structure . 48
3.11 WaveDash GUI for configuring a waveform 51
3.12 Custom interfaces in 802.15.4 waveform 53

4.1 LR-WPAN device architecture . 56
4.2 IDL interfaces for the MAC layer . 57
4.3 Message sequence chart describing the MAC data service 61
4.4 Testbench component for simulation of digital circuits in VHDL 63
4.5 Ad hoc technique for testing OSSIE component 63
4.6 Waveform for testing the MAC layer component 64
4.7 IDL interfaces for the physical layer . 66
4.8 Waveform for testing the PHY layer component 68
4.9 Physical layer structure in the GNU Radio IEEE 802.15.4 waveform . . 70
4.10 MODEM_USRP component structure 72

vii

viii List of Figures

4.11 Test waveform for MODEM_USRP component 73
4.12 OSSIE waveform using the components MODEM_USRP and CHAT . . 74
4.13 GNU Radio implementation of the chat waveform 74
4.14 MODULATOR and DEMODULATOR components in the target waveform 76
4.15 Internal structure of the MODULATOR component 77
4.16 Internal structure of the DEMODULATOR component 79
4.17 Waveform for testing MODULATOR and DEMODULATOR 82
4.18 OSSIE waveform for the chat application 83
4.19 Waveform used to test the TAP component 85
4.20 The target waveform with the TAP component 86
4.21 Data transfer size for the USRP (OSSIE implementation) 92
4.22 Data transfer size for the USRP (GNU Radio implementation) 92
4.23 Data transfer delay for the USRP (OSSIE implementation) 93
4.24 Data transfer delay for the USRP (GNU Radio implementation) 93

List of Tables

2.1 USRP and USRP2 specifications . 10
2.2 Comparison of LR-WPAN and other wireless technologies 28

4.1 MAC frame format . 59
4.2 Format of the Frame Control field . 59
4.3 The PHY protocol data unit (PPDU) format 66
4.4 Input data rate for the receiver path . 91

ix

Chapter 1

Introduction

The goal of this master’s thesis is to illustrate waveform development using OSSIE
(Open Source SCA Implementation - Embedded). Software Communications
Architecture (SCA) is a standard architecture that is widely used for specifying
software defined radios (SDRs). The waveform that has been selected for
implementation is part of the protocol described by IEEE 802.15.4 [24], a standard
protocol for wireless personal area networks (WPANs). The two main properties of
SCA, portability andmodularization, will be described referring to development
process of the target waveform.

This thesis project also utilizes other open-source initianitives for SDR, specifi-
cally GNU Radio (section 2.3) and the Universal Software Radio Peripheral (USRP,
section 2.2). These two efforts (the first software and the second hardware) allow
developers to implement software radios using readily-available, low-cost external
RF hardware and commodity processors.

This thesis project took place during the fall of 2009 at Saab Systems in Järfälla,
Sweden.

1.1 Motivations

Before starting this project, I did not know anything about SDR: I had studied
computer engineering and my background was limited to system on a chip (SoC)
design and low-level programming. After reading some documentation about OSSIE
and SCA, in two months I implemented a radio communication protocol and
could transmit data between two USRP stations. SDR enables rapid waveform
prototyping, even for people who are not experienced in radio applications. SDR
removes a significant barrier to the development of new radio communication
systems and communication protocols, as SDR shifts the focus from RF circuit
design to programming.

1

2 CHAPTER 1. INTRODUCTION

Rapid prototyping is not the only advantage of SDR, another important
feature comes with using SCA: waveform applications can be both interoperable
and platform independent, so that the waveform developer does not need to
understand the radio engineering aspects of the design. Additionally, since SCA
abstracts the details of the underlying hardware platform, it is easier to interface
correctly with the underlying software core framework. Hence, the report will focus
on the characteristic of SCA, abstraction, modularization, and portability;
these characteristics, in fact, represent the difference and – at the same time – the
advantage of SCA compared to other SDR frameworks, such as GNU Radio.

Since SDR waveforms are implemented as software, it is possible to run more
than one waveform on the same platform; in the same way as different programs
can be executed in parallel on the same PC. However, just as in the case of other
software the bound is the computational resources available on the platform, such
as available memory at each layer of the memory hierarchy, the performance of
each type of memory, CPU speed and number of CPU cores, capabilities of the
analog to digital and digital to analog converters (ADC and DAC), and attached RF
hardware. The resources that are generally available today enable the integration
of multiple different waveforms on the same platform, with a decrease in product
size and potentially a greater than linear decrease in cost. One result is that
implementing five different waveforms is not five times as expensive, but perhaps
only a little more expensive than a single waveform. This is achieved because the
margin cost of replicating software is nearly zero – this is the true contribution of
SDR. Additionally, SDR is able to exploit the Moore’s law developments of digital
electronics – providing cost versus performance improvements at a far greater rate
than traditional radio communication technologies.

The flexibility of using software for waveform development facilitates the
development process, but it also means that radios can be modified over their life-
cycle, for example to keep up with new radio protocols, via a software upgrade. In
this way radio manufacturers can rapidly add functionality to their radios – while
simultaneously a better product quality can be achieved. The ability to program
(and reprogram) the radio is why reconfigurability is a key feature of SDR.

Last, but not least, the economic aspect has to be considered. In the past radios
were typically designed to implement a specific functionality and this was often
done using hardware components such as filters and amplifiers. In comparison,
using SDR an FM receiver can be implemented by writing a few lines of code and
running the waveform on a normal PC connected to a low-cost hardware device with
a generic RF front-end (for example a USRP, described in section 2.2), creating a
very expensive and power consuming FM radio. However, this same platform - a
normal PC and an USRP - can be used to implement a TV receiver, a WLAN
interface, or an ad hoc wireless network without requiring any additional hardware.

SDR allows functionality to evolve or change, for the manufacturer, this means
that there is a late binding of what the functionality is – this enables (1) hardware

1.2. PROBLEM DESCRIPTION 3

and software to be developed in parallel, reducing time to market and (2) multiple
products to share the same hardware platform, but be differentiated by the software
that is installed on this platform, increasing the product manufacturing volume.
The increased product volume is important because this means that SoC techniques
can be used – because there will be sufficient return on investment to justify the
development cost – this reduces the marginal cost of the hardware. SDR has a
disruptive effect due to both hardware and software marginal costs being reduced
– turning radios into commodities.

The advantages and disadvantagies of the waveform development with SCA will
be discussed in details in the following chapters.

1.2 Problem description

This thesis project concerns the development of a waveform using OSSIE, an open-
source software package which includes an SDR core framework based on the
Software Communications Architecture (SCA). More information about OSSIE is
given in section 2.4. This waveform allows two nodes to communicate with each
other by implementing (part of) the IEEE 802.15.4 standard. The nodes are each a
PC running Linux with a USB attached USRP (described in section 2.2) and an RF
daughter board card installed in the USRP; the only additional hardware required
is an antenna.

This waveform had already been implemented using GNU Radio, another
SDR framework (described in section 2.3). What is unique to this thesis is the
waveform development process, because OSSIE waveforms – according to the SCA
specification – use CORBA for communications between components.

Hence as part of this thesis project I will analyze the benefits of the SCA
and compare the SCA implementation of this waveform with the GNU Radio
implementation, in order to understand why SCA-compliant software defined radios
are becoming a standard. Moreover, rather than simply implementing a single
specific waveform I want to understand and evaluate the SCA development process,
including the different stages of waveform development, the architectural choices,
and the problems that were encountered during this process. The end goal is both
to learn about this important new area technology and to provide input to my
employer about OSSIE and SCA.

1.3 Thesis organization

Chapter 2 introduces SDR and the SCA and illustrates their characteristics,
together with some example applications. To understand SCA requires some
knowledge of both CORBA and XML, hence these will be presented when needed

4 CHAPTER 1. INTRODUCTION

in the chapter. The protocol to be implemented, IEEE 802.15.4, is also introduced
in this chapter; but the details of this standard will be explained in chapter 3 during
the discussion of the development process of the selected waveform.

In chapter 4 the different stages of the design are described along with a proposed
solution. This chapter will also present the problems that occurred during the thesis
project. The chapter ends with a section dedicated to the testing of the selected
waveform application. This will be followed by a discussion of possible extensions
of the waveform and an analysis of the advantages and disadvantages of the SCA
development process. Finally the thesis will conclude with some conclusions and
suggestions for future work.

Chapter 2

Background

The possibility to change the waveform implemented by a radio by using software
and the ability to use the same software on different platforms have lately become
more and more interesting capabilities for both users and manufacturers. This
flexibility is enabled by a technique called Software Defined Radio (SDR). In
response to this interest a standardized architecture for creating software waveforms
has been developed in the United States by the Department of Defense. This
architecture is known as the Software Communications Architecture (SCA) and
is described in section 2.4.

There are other methods of developing software waveform applications, one of
them is GNU Radio. This method is presented in section 2.3. Section 2.2 describes
the hardware platform that has been used in this thesis. This same hardware
platform was used for the GNU Radio effort described in chapter 4.

2.1 Software Defined Radio

This section is an introduction to Software Defined Radio (SDR) in general. In
sections 2.3 and 2.4 two different ways to implement SDR are introduced.

2.1.1 Introduction

Tranter, et al., describe software radio as: “Software radio is a radio that
is substantially defined in software and whose physical layer behavior can be
significantly altered through changes to its software” [16]. Since radio was invented,
waveforms and radio functions were implemented by using signal generation,
modulation/demodulation, filter functions, and up/down-conversion of frequencies.
Because of cost and manufacturing volumes, each radio was designed for a specific
function, for example a consumer FM-radio implements exactly one waveform, the
receiver converts an FM modulated radio signal into sound.

5

6 CHAPTER 2. BACKGROUND

The master’s thesis by Sundquist states: “Now imagine a radi technology that
can turn your kitchen radio into a GSM telephone, or a GPS receiver, or maybe
a satellite communications terminal. Or why not a garage door opener? That is
exactly the opportunities that emerge with software radios!” [25]

2.1.2 History

The term “Software Defined Radio” was coined in 1991 by Joseph Mitola, who
published the first paper on the topic in 1992 [14]. Though the concept was
first proposed in 1991, software-defined radios have their origins in the defense
sector in the late 1970s in both the U.S. and Europe. One of the first public
software radio initiatives was a U.S. military project named SpeakEasy, from 1992
to 1995. The primary goal of the SpeakEasy project was to use programmable
processing to emulate more than ten existing military radios, operating in frequency
bands between 2 and 2000 MHz. Further, another design goal was to be able to
easily incorporate new coding and modulation standards in the future, so that
military communications could keep pace with advances in coding and modulation
techniques.

2.1.3 Waveforms

There are a lot of references to the word “waveform” in this thesis, so it is important
to explain what this term means when talking about radio communications. A
waveform can be described as a radio’s function, everything that is used to generate
and to decode the radio signal making communication possible is included in the
concept of a waveform. Amplification, modulation, filtering, . . . , are components
used to implement a radio communication channel. Together they are used to realize
a waveform.

For instance, Wideband Code-Division Multiple-Access (WCDMA) is one of the
main technologies for the implementation of third-generation (3G) cellular systems.
This is an example of a waveform. While GSM and FM are other examples of
waveforms.

Hence when talking about a waveform, we are referring to more than the actual
electromagnetic waves, as one might think when first encountering the word.

2.1.4 SDR applications

A Software Defined Radio (SDR) is one way to realize a radio communication
system. In this approach, many of the components that have typically been
implemented in hardware (e.g. mixers, filters, amplifiers, modulators/demodulators,
detectors. etc.) are instead implemented using software. Since the radio
communication system is now implemented primarily as software, it can be run on a

2.1. SOFTWARE DEFINED RADIO 7

personal computer (PC) or other embedded computing device with sufficient input,
output, and computational capabilities. Therefore, to realize the selected waveform
I connected a laptop computer to a USRP (see 2.2), thus the SDR application,
running on the processor of my PC, performs some of the computations and passes
samples to and from the USRP, which in turn transmits (or receives) an RF signal
through an antenna (or antennas).

While the concept of SDR is not new, the application of this technology was
limited in the past by the limited execution performance of low cost general
purpose processors. Today the rapidly evolving capabilities of digital electronics
are making practical many processes that were once only theoretically possible.
In fact, significant amounts of signal processing are performed today on a general
purpose processor, rather than using special-purpose hardware. For example, when
using the USRP, the processor installed in a modern PC is fast enough to execute
several different kinds of waveform. In fact, the bottleneck is in many practical cases
the limited throuput of the USB connection between the PC and the USRP. This
is why the USRP2, the successor version of the USRP, utilizes a Gigabit Ethernet
rather than a USB interface.

The principle of performing this signal processing using the main processor of a
PC is the basis for softmodem technology: a softmodem, or software modem, is a
modem with minimal hardware, designed to use a host computer’s resources (mostly
CPU power and RAM, but sometimes even using the built-in audio hardware)
to perform most of the tasks previously performed by dedicated hardware in a
traditional modem. Similarly many WLAN interfaces are implemented today by
executing much of the processing on the PC’s CPU rather than having a separate
digital signal processing chip associated with the WLAN interface. Having most
of the modulation functions implemented in software provides the advantage of
easier upgrades and allows easily implementing new modem standards. A more
practical advantage of softmodems is given by the reductions in production costs,
component size, and weight compared to a hardware modem. Today most modems
that are integrated in portable computer systems (including laptops and PDAs) are
softmodems.1

Since waveforms are implemented in software, SDR makes it possible to execute
different waveforms in parallel on the same processor in the same way as different
programs run at the same time in a PC2. This represents a challenge for SDR
developers: never before have there been so many consumer and military devices
that use at least one form of wireless technology, with many implementing two or
more wireless protocols in a single device. One way to do this is to add transistors

1Christian Olrog, Direct Radio Link Protocol Interface, Masters Thesis, KTH, Stockholm,
Sweden, April 1999 - implemented a softmodem for GSM using Linux.

2Of course doing this comes with the same problems of running two different programs, along
with the additional limitations that these are generally near-real-time programs – hence scheduling
and interleaving of the execution of these parallel executions becomes an issue. Fortunately, multi-
core machines make this easier – as one core can be assigned to each waveform.

8 CHAPTER 2. BACKGROUND

and electrical components, so that each waveform is implemented by a specific signal
processor. SDR instead allows one platform to support multiple wireless protocols,
hence reusing the same hardware for different waveforms.3

Radio communications are particularly important in the militar sector, this
explains why SDR projects often involve the military. Different kinds of communi-
cations are used by the military and the radio equipment is traditionally single-
purpose, meaning that each specific waveform requires dedicated hardware. A
driving force was the incompatibility of the different devices with each other –
especially bad when the different services could not even talk to each other (for
example, the Navy shelling a beach, on which there are Marine and Army units
– but none of these different units can talk to each other because their radios
are incompatible). SDR technology allows different protocols to be integrated in
the same platform, thus compact radios can replace multiple traditional radios
needed for the same communication capabilities. Additionally, the flexibility of the
software makes it easy to upgrade the equipment in order to keep pace with new
communication protocols. It also allows units to change waveforms when in battle
– to use different waveforms than during peace-time exercises. This flexibility is
also necessary because increasingly ad hoc coalitions are formed for specific actions
and they need to communicate, but at other times they might be opponents; hence
there is a need to have shared waveforms and a need for different waveforms.

2.1.5 Operation scheme of an ideal SDR

The ideal receiver scheme would be to attach an analog-to-digital converter to an
antenna. The operational scheme is illustrated in figure 2.1. The digital signal
would be received and processed by a general purpose processor (GPP), according
to the software that implements a specific waveform. An ideal transmitter would
be similar: a GPP would generate a stream of samples as the output of the SDR
application. These samples would be sent to a digital-to-analog converter connected
to a radio antenna.

Such a design produces a radio that can receive and transmit different waveforms
by running different software. However, this is the ideal scheme, in reality a low-
noise amplifier must precede the analog to digital conversion step; unfortunatly,
non-linearities and noise in the amplifier may introduce distortion in the desired
signals. The standard solution is to insert band-pass filters between the antenna
and the amplifier, but unfortunatly these reduce the radio’s flexibility. Today
microelectricalmechanical systems are being used to physically switch in and out
filters (and to implement filters), thus restoring some of the flexibility.

Antennas are designed for a specific range of frequencies, so the same antenna
would usually not be used for 2 MHz and 3 GHz.4 Another aspect to take into

3See note above with respect to multicore processors and scheduling.
4Note that there are log periodic antennas that cover the range from 200 MHz to 2GHz (see for

2.1. SOFTWARE DEFINED RADIO 9

account when deploying a SDR is the capability of the ADC and DAC because they
have a limited sampling rate.5 As a result of power and cost considerations, SDR
applications that work in different frequency bands utilize different RF front-ends.
The USRP, as will be described in section 2.2, has been designed to be flexible and
is open source hardware so that developers can make their own daughterboards for
specific needs.

RECEIVER RF
Front End

GPP

GPP
TRANSMITTER RF

Front End

ADC

DAC

Figure 2.1. Ideal transmitter and receiver in SDR

example the Agilent 11956A antenna), there are horn antennas that cover 200 MHz to 2GHz (see
the ATH200M2G) or the Agilent 11966P 26 MHz to 2GHz BiConiLog antenna, 26 MHz to 2GHz
with the ETS Lindgren 314B (Biconic/log) antenna, etc. There is a AOR SA7000 that is designed
for 30kHz to 2GHz (receiving antenna) – this antenna is 1.8m high and consists of two antennas
and built-in duplexer.

5Commercial ADCs are available today that sample at upto several Gsps (Tektronix has a
number of oscilloscopes that sample at 50 Gsps); while DACs such as Analog Devices AD9122
can process 16 bit samples at 1.2 Gsps or the AD9739 with 14 bit samples at 2.4Gsps, TEK
Microsystems dual 14 bit DACs at 3Gsps, Tektronix has a number of arbitrary waveform generators
that operate at upto 24 Gsps.

10 CHAPTER 2. BACKGROUND

2.2 The Universal Software Radio Peripheral

The Ettus Research LLC Universal Software Radio Peripheral (USRP) is a
peripheral for implementing software radios. The USRP was developed by a team
led by Matt Ettus [10].

2.2.1 Characteristics

The USRP is a low-cost hardware device designed for rapid prototyping and research
in SDR applications. Its first realization allows a developer to create a software radio
using any computer with a USB 2.0 port. The USRP has an open design, with freely
available schematics and drivers, and free software to integrate with GNU Radio. It
was also designed to be flexible. In addition to the open source hardware approach
that has been used for the USRP and the daughterboards sold by Ettus Research,
developers can make their own daughterboards for specific needs with regard to
connectors, different frequency bands, etc.

As showed in table 2.1, the USRP2 offers higher performance and increased
flexibility in comparison to the original USRP. It also utilizes a much larger FPGA
which can even be used to operate the device in a standalone mode, i.e., without a
host computer.

Table 2.1. USRP and USRP2 specifications

subsystem USRP USRP2
ADC 64 Msps, 12bit (AD9862) 100 Msps, 14 bit (LTC2284)
DAC 128 Msps, 14 bit (AD9862) 400 Msps, 16 bit (AD9777)
FPGA Altera Cyclone EP1C12Q240C8 Xilinx Spartan 3-2000
interface High-speed USB 2.0 Gigabit Ethernet

expansion sockets 2 TX, 2 RX 2 Gbps serial interface

2.3 GNU Radio

GNU Radio6 is an open-source SDR platform. A large worldwide community
of developers and users have contributed to it and to provide many practical
applications for the hardware and software7. Using GNU Radio it is very easy
to create your own SDR applications because it provides libraries to support all
common software radio needs, including various modulations, error-correcting codes,
signal processing constructs, and scheduling. It is a very flexible system and it allows

6http://www.gnu.org/projects/gnuradio/
7Refer to the Comprehensive GNU Radio Archive Network (CGRAN), a free open source

repository for 3rd party GNU Radio applications

2.3. GNU RADIO 11

applications to be developed using C++ and Python. The signal processing code
(blocks) in the libraries are written in C++, while Python is used to interconnect
the blocks and to provide various user interface functions.

2.3.1 GNU Radio architecture

Figure 2.2 illustrates the GNU Radio architecture. The top layer provides the user
interface to do waveform development. The waveform can be represented as a flow
graph, where the nodes correspond to the signal processing blocks and the arcs
represent interconnections between these processing blocks (see the flow graph for a
simple dialtone – shown in figure 2.3). The interconnection of the blocks is done by
writing Python code. Details of the waveform development process will be described
later in section 2.3.2.

Python Flow Graph

(Created using the processing blocks)

SWIG (Interfaces C++ blocks to Python)

GNU Radio Signal Processing Blocks (C++)

USB Interface

Generic RF Font End (USRP)

Figure 2.2. Block diagram of the GNU Radio architecture

The signal processing blocks have attributes, such as the number of inputs and
outputs, type of data that each stream consists of, etc. The most common types
of data are shorts, floats, and complex numbers. Some building blocks have only
output ports or only input ports, these serve as data sources and sinks (respectively).
Examples of sources include blocks for reading from a file or a block which generates
a specific signal (such as a sine wave). A sink might be a sound card, a graphical
display, or a USRP transmitter.

If you need a building block that is not (yet) available in the GNU Radio library,
you can create it yourself. C++ is the language used to create signal processing
blocks in GNU Radio. From a high-level point of view, unbounded streams of data
flow through the ports; at the C++ level, these streams correspond to arrays of the
particular data type to be used. There is a lot of documentation and very good
tutorials that explain in detail how to write your own signal processing block.

12 CHAPTER 2. BACKGROUND

One of GNU Radio’s strengths is that it uses Python, a powerful scripting
language, to construct the flowgraph for the waveform at a high level, but uses
C++ functions at a lower level of abstraction to implement the signal processing
blocks. In order for programs written in Python to communicate (which in GNU
Radio means to transfer streams of data) with the building blocks written in C++
a library, called SWIG (Simplified Wrapper and Interface Generator), is used. The
advantage of SWIG is that it makes the details of passing the data between the
blocks transparent to the waveform developer.

As we saw in figure 2.2, the signal processing blocks access the USRP RF
resources through the USB interface. The blocks needed to talk to the USRP
already exist in the GNU Radio library, thus the waveform developer does not have
to worry about low-level programming in order to communicate with the external
device. However, sometimes the waveform developers do have to concern themselves
with these details in order to get the performance that they want. As with many
systems, getting a functional implementation is not too difficult, but tuning the
performance in order to get high performance (or in some cases to actually meet the
protocol’s specification) may require very deep knowledge across the entire protocol
stack from the hardware to the waveform.

2.3.2 An example: Generating a Dial Tone

A North America dial tone consists of a combination of a 350 Hz sine wave and a
440 Hz sine wave at -13dBm each [11]. The flow graph in figure 2.3 represents the
waveform we want to implement in GNU Radio, i.e., a simple signal generator that
reproduces the North American dial tone.

+------------------------+
| Sine generator (350Hz) +---+
+------------------------+ | +------------+

+-->+ |
| Audio sink |

+-->+ |
+------------------------+ | +------------+
| Sine generator (440Hz) +---+
+------------------------+

Figure 2.3. Flow graph of the GNU Radio dial tone example

The source code shown in listing 2.1 comes with the GNU Radio package. If this
application is executed on a PC, the user will hear on the PC’s audio (output)
device a dial tone. However, the actual dial tone that is heard is generated by the
appropriate two sine waves, with one heard on the left channel and the other on the

2.3. GNU RADIO 13

right channel of the audio device.8 A complete tutorial and all the details about
this source code can be found on the GNU Radio website9, here only the main
properties will be described.� �
#!/ usr / bin / env python

from gnuradio import gr
from gnuradio import audio

class my_top_block (gr. top_block):
def __init__ (self):

gr. top_block . __init__ (self)

sample_rate = 32000
ampl = 0.1

src0 = gr. sig_source_f (sample_rate , gr. GR_SIN_WAVE , 350 , ampl)
src1 = gr. sig_source_f (sample_rate , gr. GR_SIN_WAVE , 440 , ampl)
dst = audio .sink (sample_rate , "")
self. connect (src0 , (dst , 0))
self. connect (src1 , (dst , 1))

if __name__ == ’__main__ ’:
try:

my_top_block (). run ()
except KeyboardInterrupt :

pass
� �
Listing 2.1. Dial Tone application for GNU Radio

The class my_top_block is derived from another class, gr.top_block. This class is
basically a container for the flow graph. Hence by deriving the my_top_block from
gr.top_block it becomes possible to add your own block and connect it to other
blocks.

The class has only a constructor method where the sub-components are
instanciated and properly connected. Two signal sources are generated (called src0
and src1). These sources continuously create sine waves at the specified frequencies
(350 and 440Hz) and a given sampling rate (here 32 thousand samples per second).
The amplitude is controlled by the ampl variable and set (arbitrarily) to 0.1.

The call to audio.sink() returns a block which provides soundcard control and
plays any samples input to it (note that the sampling rate needs to be set explicitly
as the stream does not provide such meta-information about itself).

8 Note that the tones are not actually combined in a single channel – as would be required
in a telephony system – however, another block could be added to the flow graph to sum these
two inputs and output a single output to one (or both) channels of the audio device. Additionally,
there is no guarantee that the amplitude of the audio output is correct, to correct this the developer
would need to calibrate the audio device and adjust the value of the “ampl” variable of the program
to produce a 10 dBm signal at the audio output (Note that a 10 dBm signal is the sum of two 13
dBm signals).

9http://gnuradio.org/trac/wiki/Tutorials/WritePythonApplications

14 CHAPTER 2. BACKGROUND

The general syntax for connecting blocks is self.connect(block1, block2,
block3...) which would connect the output of block1 with the input of block2,
the output of block2 with the input of block3, and so on. The audio sink, which
is your PC’s audio device, has two channels specified by the tuples (dst, 0) and
(dst, 1), in this way one sine wave is played on the left channel and the other on
the right channel.

The waveform that has been created can be executed by running the main
method (for example, if you are in the source directory you can simply say:
./dial_tone.py).

2.3.3 The development process

The above example illustrates some properties of developing a waveform using GNU
Radio:

• The GNU Radio library includes many useful blocks, thus often a waveform
can be created by simply connecting library components. This allows rapid
prototyping and facilitates development of new waveforms.

• It is easy to implement a waveform, as the flow graph representing the
connections between components can be easily translated into calls to the
function connect().

• In the example, the audo sink has two ports; these can be addressed using
tuples of form: (block_name, port_name).

• GNU Radio applications are primarily written using the Python programming
language, which provides the glue logic for interconnecting components (see
figure 2.2).

• Performance-critical signal processing blocks can be implemented in C++
using floating point processing extensions (where available).

• There is a graphical tool, called GNU Radio Companion (GRC), for creating
signal flow graphs and generating flow-graph source code (see figure 2.4).

2.3.4 Conclusions

GNU Radio comes with a large amount of user written documentation. In addition,
very good tutorials are available on the web. The libraries and examples provide
many building blocks, often allowing waveform development to be easy and rapid.

In addition to writing Python code, graphical tools enable a waveform developer
to draw a flow graph and have the glue logic automatically generated. The

2.3. GNU RADIO 15

Figure 2.4. GNU Radio Companion (GRC), a tool for creating signal flow graphs
and generating flow-graph source code

communication between Python programs and C++ signal processing blocks is
transparent to the (casual) developer, so the developer does not have to worry
about these details.

The building blocks for accessing the RF resources on the USRP are included
in the GNU Radio library, thus it is easy to create your own waveforms – as a
waveform developer can concentrate on using the higher layer abstraction.

All these aspects, and the fact that it is free, are advantages of the GNU
Radio platform. Together these make GNU Radio a nearly-perfect toolkit for
learning about, building, and deploying a software radio. Several projects have been
developed using GNU Radio, including a complete HDTV receiver & transmitter
and a multichannel FM receiver capable of listening to several channels at the same
time.

It should be noted that GNU Radio is primarily intended to enable research
and education concerning SDR and wireless communications (see for example the
recent thesis project using GNU Radio and the USRP for laboratory execises to
teach undergraduates about the physical and media access and control (MAC) layer
of protocols [15]). “While the GNU Radio project is educational and potentially
beneficial in a research environment, the architecture definition is not yet extensive
enough to compete for serious commercial or military applications” [7]. This is why
a lot of research is done using the SCA, as described in the next chapter.

16 CHAPTER 2. BACKGROUND

2.4 Software Communications Architecture

SDR is a technology without any prior constraints or design specification. SDRs
are characterized by a significant software component and provide flexibility on
the physical layer. The utilization of this technology by both the military and
commercial firms is only practical if a common SDR architecture is defined and a
design model is standardized. In the 2006 master’s thesis by Jacob A. DePriest,
he says “The JTRSs Software Communications Architecture (SCA) is currently the
most complete and well-dened architecture available for SDRs”[7]. This appears to
still be true today.

2.4.1 Introduction

Following Moore’s law, the computational capabilities of general purpose processors
(GPPs), digital signal processors (DSPs) and field programmable gate arrays
(FPGAs) are growing very rapidly and as a consequence more of the radio signal
processing can be now be done in software, thus has lead to practical SDRs.
However, each manufacturer has developed solutions with different architectures and
often multiple implementations. So even if each product could support SDR, it is not
always possible to communicate using radio products from different manufacturers.

This issue is critical in the military and public safety sectors. ”When
multiple radio sets from different manufacturers came together in response to some
coordinated exercise, military operation, or disaster, the radios did not operate
and could not be easily reconfigured to do so” [4]. This is the reason why
the US military sponsored research into the specification of a common software
infrastructure for SDR. This initiative started in the mid-1990 and evolved into the
Software Communications Architecture (SCA).

2.4.2 What is SCA?

The Software Communications Architecture (SCA) is a non-proprietary, open
architecture framework that tells designers how elements of hardware and software
have to operate in harmony within a software defined radio. The SCA is not a
system specification, but was intended to be implementation independent. Thus
rather than being a specification, it is a set of design constraints. If a developer
designs a system according to these design rules, the system will be portable to
other SCA implementations regardless of what operating system or hardware that
implementation utilizes.

The aim of SCA is to define an Operating Environment (OE), often referred to
as the Core Framework (CF). This CF implements the management, deployment,
configuration, and control of the radio system and the applications that run on top

2.4. SOFTWARE COMMUNICATIONS ARCHITECTURE 17

of it. The following excerpt from the introduction to the SCA specification, explains
what the SCA is.

“The Software Communication Architecture (SCA) specification is pub-
lished by the Joint Tactical Radio System (JTRS) Joint Program Office (JPO).
This program office was established to pursue the development of future
communication systems, capturing the benefits of the technology advances
of recent years, which are expected to greatly enhance interoperability of
communication systems and reduce development and deployment costs. The
goals set for the JTRS program are:

• greatly increased operational flexibility and interoperability of globally
deployed systems;

• reduced supportability costs;
• upgradeability in terms of easy technology insertion and capability

upgrades; and
• reduced system acquisition and operation cost.

In order to achieve these goals, the SCA has been structured to
• provide for portability of applications software between different SCA

implementations;
• leverage commercial standards to reduce development cost;
• reduce development time of new waveforms through the ability to reuse

design modules; and
• build on evolving commercial frameworks and architectures.”

SCA V2.2, November 17, 2001, p. vii

There are two key objectives of the SCA: flexibility and interoperability. They are
important because SCA is intended to provide for portability of applications
and support the reuse of waveform design modules.

2.4.3 CORBA

SCA is based on several underlying technologies: Object-Orientation (OO) design,
the Common Object Request Broker Architecture (CORBA), and CORBA Compo-
nent Model (CCM). CORBA is an industry standard for describing interfaces using
Interface Description Language (IDL). IDL allows designers to specify the interfaces
between two components, then an IDL compiler generates the code necessary to
support communication between the components – using remote procedure calls.
The remote procedure calls can be between processes on the same computer or
between computers, i.e. in a distrubuted environment.

CORBA is one of the most specific characteristics of the SCA. The transfer of
data between two components in the waveform is implemented as CORBA remote
procedure calls. Figure 2.5 shows an example of a client making a request to a
server using a remote procedure call.

18 CHAPTER 2. BACKGROUND

CLIENT (ex. C++) SERVER (ex. Java)

REQUEST

Client STUB
Server

SKELETON

USER

Figure 2.5. Client-server model in CORBA using stubs and skeletons

2.4.3.1 IDL

The component’s interface must be described using IDL. An example of IDL is
shown in listing 2.2. The listing shows two interfaces, corresponding to two classes.
The IDL compiler generates the necessary application code by producing skeletons
for the server and stubs for the client, making these interfaces and methods available
to callers. These stubs and skeletons run on top of an Object Request Broker (ORB)
acting as proxies for servers and clients, respectively.

module bankidl {

interface Account {
readonly attribute float balance ;
exception rejected { string reason ; };
void deposit (in float value) raises (rejected);
void withdraw (in float value) raises (rejected);

};

interface Bank {
exception rejected { string reason ; };
Account newAccount (in string name) raises (rejected);
Account getAccount (in string name);
boolean deleteAccount (in string acc);

};

};

Listing 2.2. IDL interface for a banking application

2.4. SOFTWARE COMMUNICATIONS ARCHITECTURE 19

Using IDL compilers, it is possible to generate stubs and skeletons in different
languages (such as C, Java, Python, . . .). As a result each client and server can be
written in a different language, but they can communicate with each other because
the remote procedure calls are done through the ORB.

2.4.3.2 ORB

Figure 2.5 illustrates how remote methods are invoked in CORBA. Every CORBA
server object has a unique object reference. In order to invoke the methods
implemented by this server, a client needs to know this reference. There are several
ways the client can retrieve the reference, one of these is to use a Naming Service (the
Naming Service is part of the Domain Manager – see figure 2.7). Once the reference
is obtained, the client can invoke the operations implemented by the server object.
The client stub uses the ORB to forward a request to the server object, through the
server skeleton.

The ORB manages all the communication necessary to forward the request from
the client’s stub to the server’s skeleton. The client and server do not need to be
connected to the same ORB so the General Inter-ORB Protocol (GIOP) is used
to forward the request, from one domain to another. The communication within
and between ORB domains is transparent both to the client and the server, in fact
the client just needs to know the server’s reference and the ORB handles all the
communication details (as shown in figure 2.6).

While it might seem that the overhead introduced by CORBA for remote calls
causes a large delay and would make it impossible to use for SDR, this turns out not
to be true. First there are optimizations for local invocation: in SCA, components
often run on the same platform so that it is possible for CORBA ORBs to exchange
requests via shared memory rather than via interprocess communication. As
Schmidt, et al., note: “In such cases, CORBA ORBs can transparently employ co-
location optimizations to ensure there is no unnecessary overhead of (de)marshaling
data or transmitting requests/replies through a “loopback” communication device”
[22].

2.4.3.3 Naming Service

The Naming Service allows a potential client to retrieve the reference to a server
object. The basic function of the naming service is to provide a mapping between
names and object references. In order to be invokable, each server object creates an
association between a name and its object reference and registers this information
with the Naming Service. Consequently, a client that knows the name of an object
can retrieve the server’s object reference by querying the Naming Service.

20 CHAPTER 2. BACKGROUND

CLIENT (ex. C++)
(server proxy)

SERVER (ex. Java)

REQUEST

Client STUB
Server

SKELETON

GIOP

ORB 1 ORB 2

USER

Figure 2.6. The inter-ORB communication using GIOP

2.4.4 Component ports in SCA

Each component has a well-defined set of ports. When instanciating a port it is
necessary to specify two properties:

1. A port can be either an input or output port.
Input ports can receive remote procedure calls, while output ports can make
remote procedure calls to the components they are connected to. A connection
can be done only between an input port and an output port of the same type
(it is not possible to connect two input ports or two output ports nor to
connect two ports with different types). The type is defined based upon the
type of the object that is to be passed across this connection (see the next
property). Input ports represent the server side, hence they wait (passively)
for remote calls; while output ports are used by clients to send requests to the
server. Thus in the context of waveform output ports send data; while input
ports receive data. An SCA component can be both a client, a server, or both
depending on wheter it is sending data to another component, it is waiting
for data on its input ports, or is doing both.

2. Each port has a well-defined type.
To assign a type to a port is equivalent to defining its interface. It is possible
to use standard types (such as integer, floating point, etc.) or to create your
own custom interface. When creating a custom interface, you have to give a
name to the port type and define the available methods. This is done using
the Interface Description Language (IDL) (see chapter 4).

2.4. SOFTWARE COMMUNICATIONS ARCHITECTURE 21

Bard and Koverik have stated that IDL and CORBA represent “an important step
forward in the ability to develop modular software while encapsulating the internal
logic and requiring that each of the developers agree on a set of IDL” [4]. The main
advantages of using a set of standard interfaces are:

• that it is possible to reuse the same component on different SCA-based
platforms and

• interface and implementation become two distinct concepts as two components
can communicate using CORBA calls, but can be implemented using two
different languages, for example one can be written in Python and the other
one in C++. CORBA plays a comparable role to SWIG that was described
earlier in section 2.3, but offering the additional features of language
independence and distributed computation.

The expressions “uses port” and “provides port” are commonly used in SCA
development. The statement “uses port” requests data or a service from another
component, while the statement “provides port” indicates that a component returns
the requested data or has performed the requested service. Under this model, a SCA
component assumes the role of a CORBA client when it is calling through a uses port
and the role of a CORBA server when it is answering at a provides port. Therefore,
in the waveform development context provide port is a synonym for input port and
use port is a synonym of output port.

2.4.5 XML

The eXtensible Markup Language (XML) is used in the SCA to describe component
properties and configurations as well as to describe the interconnections between
components in a waveform. In the same way as graphical tools are available in
GNU Radio to generate the Python code which represents the waveform, in SCA
waveforms can be generated with graphical tools by interconnecting components.
To do this, the tool needs to know the component’s properties (the set of available
ports), to configure the component (for example, by setting the gain for an
amplifier), and to produce the flowgraph corresponding to the waveform, in a
standard format that the SCA infrastructure can understand: all this is done in
XML.

XML is a text-based language that utilizes tags to define items, their attributes
and values. XML can be used to describe data components, records, and other
data structures. XML is a markup language much like HTML. It is extensible
because it is not a fixed format like HTML (which is a single, predefined markup
language). Instead, XML is actually a metalanguage, i.e. a language for describing
other languages. A specific language is called a profile. The SCA Domain Profile is
based on XML and will be described in the next sub-section.

22 CHAPTER 2. BACKGROUND

2.4.6 The SCA Operating Environment (OE)

The SCA OE consists of the Core Framework (CF), the CORBA ORB, and the
underlying operating system. The aim of this thesis is not to describe how to create
a SCA-compliant radio system, but to explain how to devolop waveforms on an
SCA-based platform, thus only the properties of the SCA OE that are needed to
understand waveform development will be presented. Readers interested in details
of the SCA OE are referred to [4].

As shown in figure 2.7, a SCA-based radio has conceptually three segments: (i)
Waveform Deployment, (ii) Core Framework, and (iii) Domain Profile.

Devices Configuration
Descriptor (DCD)

Domain Manager
Descriptor (DMD)

File Manager

Naming Service

FPGA
DAC
ADC

A

B

C

G

F

E

D

Applications

Components

Radio HW

WAVEFORM DEVELOPMENT
Resources Domain Manager

CORE FRAMEWORK
DOMAIN PROFILE XML

Components

Dependencies

Connections

Device Manager

GPP

P
H

Y
S

IC
A

L
LO

G
IC

A
L

Figure 2.7. Abstraction layers in an SCA system

2.4.6.1 Waveform Deployment

From a physical point of view, a waveform uses some hardware resources (for
example the RF front-end available on a USRP daughterboard or the GPP of
the computer). When developing a waveform, only the logical view is used; the
components are software entities that are platform independent, thus they can be

2.4. SOFTWARE COMMUNICATIONS ARCHITECTURE 23

reused on different radio systems. It is important to note with the abstraction layer
offered by the SCA: waveform development in theory does not have to care about
the technical details of the underlying hardware platform. However, in practice
sometimes it is necessary to understand the underlying hardware in detail.

2.4.6.2 Core Framework

The Core Framework segment of the OE includes all the software required to manage
the radio system and to deploy applications. The physical view provides high-level
management of the physical devices in the radio system. The waveform sees only
the logical view, that is a set of resources and services. The resources may include
the available components, these components can be addressed through the Naming
Service.

2.4.6.3 Domain Profile

The Domain Profile segment consists of a set of XML files that describe the hardware
resources within the radio system, the waveform application structure, and the
properties of the available components. Details of the XML files are described in
[4].

2.4.7 Base Application Interfaces

SCA specifies a set of specific operational interfaces for components: PortSupplier,
LifeCycle, Port, PropertySet, TestableObject, Resource, and ResourceFactory. Each
interface defines the methods used by the Domain profile to install and control the
components. The relationship between many of these interfaces are shown in Figure
2.8. Note that a Resource is created by a ResourceFactory.

2.4.7.1 PortSupplier interface

Provide ports (in the waveform context “provide” means that this is an input port to
a component) inherit from the PortSupplier interface which defines the getPort()
operation. This is used (for example by connectPort()) to obtain a specific port
from a component, as described below.

2.4.7.2 Port interface

An SCA system is composed of components, these components communicate with
each other through ports. These ports are inherited from the class Port, whose
interface provides two operations to set up communications, connectPort() and
disconnectPort(). When a waveform is installed, all the connections between

24 CHAPTER 2. BACKGROUND

components must be set up. Suppose for example that we want to establish a
connection between a use port on component A and a provide port on component
B, then during the set up the method connectPort() on A’s use port is called and
a connection with B’s provide port is established. This is done by contacting the
naming service provided by the Domain Manager to retrieve B’s reference, i.e. get
the requested port. All this is done automatically by the SCA framework.

identifier:string

getPort() runTest()connectPort()
disconnectPort()

initialize()
releaseObject()

PortSupplier Port PropertySet TestableObject

Resource

start()
stop()

LifeCycle

configure()
query()

Figure 2.8. Resource Interface UML Diagram

2.4.7.3 LifeCycle interface

The LifeCycle interface defines two operations, initialize() and releaseObject().
The operation initialize() is used to set a component to a known initial state,
while releaseObject() tears a component down when it is no longer needed.

2.4.7.4 PropertySet interface

The PropertySet interface is used to access component properties/attributes. It
defines two operations: configure(), which makes runtime configuration possible,
and query(), to read the values of the properties of a component.

2.4.7.5 TestableObject interface

TestableObject is inherited by a component to run built-in tests. The system
designer can use the runTest() operation to test the component, for example to
search for errors within the component.

2.4. SOFTWARE COMMUNICATIONS ARCHITECTURE 25

2.4.7.6 Resource

Every software component in an SCA waveform inherits the Resource interface; this
in turn inherits from LifeCycle, TestableObject, PortSupplier, and PropertySet (as
shown in figure 2.8). Two operations are provided, start() and stop(), to be able
to start and stop the component (these methods are useful to start and stop the
generation of a signal).

2.4.7.7 ResourceFactory

A Resource can be created by a ResourceFactory. The same ResourceFactory should
be used to tear down the Resource.

2.4.8 OSSIE

Open Source SCA Implementation - Embedded (OSSIE) is being developed by
the Mobile and Portable Radio Research Group at Virginia Polytechnic Institute
and State University. It is primarily intended for research and education in
SDR and wireless communications. The software package includes an SDR core
framework based on the Software Communications Architecture (SCA), tools for
rapid development of SDR components and waveforms applications, and an evolving
library of pre-built components and waveform applications.

Pre-built VMWare images are available on the website and can be used on any
operating system that supports the VMWare Player10. Otherwise OSSIE can be
installed on Linux systems. The user guide [6] describes the installation procedures
for Fedora and Ubuntu. A plugin allows developers to develop waveforms and
components in the Eclipse IDE11.

2.4.8.1 The OSSIE framework

The OSSIE framework is an implementation that follows the SCA 2.2 specifications
[19]. OSSIE uses omniORB to make CORBA calls. OmniORB is a compliant
Object Request Broker (ORB) implementation of the 2.6 version of the Common
Object Request Broker Architecture (CORBA) specification.

Several measurements of the impact of the use of CORBA for inter-component
communication in SCA have been done. In [2] P. Balister, et al., conclude:
“Results show that while CORBA’s impact on the performance of the system is
measurable, they were significanly lower than the signal processing time required for
this waveform. [. . .] Furthermore, when weigthed against the benefits associated

10For information about VMWare see the company’s website http:www.vmware.com.
11For details of the Eclipse Integrated Development Environment (IDE) see the website

http:www.eclipse.org.

26 CHAPTER 2. BACKGROUND

with the use of CORBA, namely distributed system support, strong typing, and
memory management, it is clear that the use of CORBA is compatible with the
overall performance needs of an SDR, even one in a constrained environment”.

The configuration file for omniORB specifies the transport rules for CORBA
calls, such as Unix domain sockets or TCP/IP. In [26] Thomas Tsou, et al., compared
the use of Unix domain sockets as transport layer for omniORB to Internet Inter-Orb
Protocol (IIOP) using TCP. They measured the mean latency for the transmission
of a sequence of 512 short integers, which equates to 2048 bytes of sample data per
call. They conclude that “the use of Unix domain sockets provided a significant
performance improvement with a mean latency of 62µs compared 107µs for TCP”
[26].

Most of the tutorials available on the OSSIE website concern the development of
distributed waveforms, which are deployed on one or more computers and use TCP
for the transport layer. However, OSSIE can also be installed on embedded devices
(see the master’s thesis of Philip J. Balister [3]). Today the goal is to exploit modern
multicore architectures, deploying waveform components on different processors in
the same computer, hence shared memory and UNIX domain sockets can be used.

2.4.8.2 The OSSIE plugin for Eclipse

OSSIE waveforms can be developed in Eclipse. The plugin available on the OSSIE
webside allows the waveform developer to create a project in Eclipse, both for
components and waveforms. Eclipse was used for this thesis project; refer to chapter
3 for further information about the OSSIE waveform development using Eclipse.

2.5 The IEEE 802.15.4 protocol

The IEEE 802.15.4 protocol was designed to be used in applications that require
simple wireless communications over short-ranges, with limited power, at the cost
of low throughput. This standard has been implemented by many manufacturers
and it is widely used for wireless communication with sensors and actuators.

2.5.1 Personal Area Network

Many modern devices contain embedded control and monitoring. However, these
devices were not necessarily designed to facilitate connectivity, hence applications
that wish to utilize many of these devices face an integration bottleneck. These
communication links are typically wired. On one hand wires allow reliable
transmission of signals from a controller to its peripherals; on the other hand the
required wiring raises issues such as cost of installation, safety, and integration
difficulty. Wireless technology overcomes some of these obstacles, although it

2.5. THE IEEE 802.15.4 PROTOCOL 27

introduces new challenges: propagation, interference, security, radio spectrum
regulations, power source & power consumption, etc.

Applications that do not require a wireless communication system with high
performance, such as provided by IEEE 802.11 WLAN, can often utilize a low-
cost wireless technology. Unfortunately, there are many different low-cost wireless
solutions, many of them proprietary, hence a standard solution would increase
interoperability among different manufacturers and lead to cost, functionality, and
integration benefits to the end consumer.

Gutiérrez, et al. have stated: “A low-rate personal area network (LR-
WPAN) is a network designed for low-cost and very low-power short-range wireless
communications. This definition is at odds with the current trend in wireless
technologies whose focus has been on communications with higher data throughput
and enhanced quality of service (QoS)” [12]. Wireless personal area networks
(WPANs) are designed to operate in the Personal Operating Space (POS), covering
the volume of space around a person of up to 10 m in all directions. Unlike WLANs,
connections in WPANs utilize limited (or no) infrastructure.

The IEEE 802.15 (WPAN) Working Group has defined three classes of WPANs
that are differenciated by data rate, battery drain, and QoS:

• IEEE Std 802.15.3: a high-data WPAN suitable for multimedia applications
that require high QoS;

• IEEE Std 802.15.1/Bluetooth™ : a medium-rate WPAN designed to replace
cables for consumer electronic devics (mobile phones and PDAs);

• IEEE 802.15.4-2006 : a LR-WPAN for aplications with low power and low
rate requirements (for example, for Wireless Sensor Networks).

Figure 2.9 illustrates the operating space of the IEEE 802 WLAN and WPAN
standards. Table 2.5.1 compares the principal characteristics of standards IEEE
802.11b, IEEE 802.15.1 (Bluetooth™) and IEEE 802.15.4.

2.5.2 LR-WPAN applications

IEEE 802.15.4 was designed to be used in applications requiring simple wireless
communication links over short-ranges with limited power and low throuput. These
applications can be placed in four classes:

• Stick-On Sensor : Wireless sensor networks often belong to this classification;
sensors perform monitoring and remote diagnostics and often use battery-
powered transceivers.

28 CHAPTER 2. BACKGROUND

C
om

pl
ex

ity

P
ow

er
 C

on
su

pt
io

n

Data Rate

WPAN

802.15.3

802.15.4

802.15.1
Bluetooth

802.11a

802.11g

802.11b

802.11 WLAN

Figure 2.9. Operating spaces of WLAN and WPAN standards

Table 2.2. Comparison of LR-WPAN and other wireless technologies

802.11 WLAN Bluetooth™WPAN Low rate WPAN
Range 100 m 10-100 m 10 m
Data Rate 54 Mb/s12 1 Mb/s 0.25 Mb/s
Power Consuption Medium Low-Medium13 Ultra Low

• Virtual Wire: Monitoring and control applications can only be enabled
through wireless connectivity, in places where a wired communication link
cannot be implemented, e.g. tire pressure monitoring.

• Wireless Hub: a wireless hub acts as a gateway between a wired network and
a wireless LR-WPAN network.

• Cable Replacement: it is possible to add value to some consumer electronic
portable devices by removing wires (for example, Bluetouth™applications for
mobile phones).

12Today this value ranges up to 54 Mb/s for a single stream and 600 Mb/s with 4 spatial streams
(using 40 MHz channels), see IEEE 802.11n-2009.

13The power consumption of Bluetooth is not always lower and when a 100m range is desired
the power consumption per bit is higher than for WLAN. Refer to [8] for some measurements of
Bluetooth vs. WLAN for distributing information.

2.6. PYTHON 29

Gutiérrez, et al. have stated: “IEEE Std 802.11, IEEE Std 802.15.1, and IEEE
Std 802.15.3 were created to target specific applications. In contrast, IEEE Std
802.15.4 was designed to address a wide range of applications in different market
segments” [12]. In fact IEEE 802.15.4 is primarily an application enabler, since the
value to the user will be in the application – rather than in the device’s wireless
capability. A view of the mobile phone’s market can clarify this concept. The design
of the first GSM cell-phones focused on the communication capabilities, since the
primarily function was to make calls. With new communication devices such as the
Apple iPhone, Huawei’s 3G USB modules, etc., the value has shifted away from the
voice as the main application.

2.6 Python

Python was the programming language used to write component implementations
in OSSIE for this thesis project. It is also used in GNU Radio to write the glue logic
for interconnecting components, as has been described in section 2.3. This section
presents some of its features.

2.6.1 Dynamic programming languages

There is a category of programming languages which share the properties of being
high-level, dynamically typed, and open source. These languages have been referred
to in the past by some as “scripting languages” and by others as “general-purpose
programming languages”. David Ascher proposes “the term dynamic languages as
a compact term which evokes both the technical strengths of the languages and the
social strengths of their communities of contributors and users”[1]. However, this
still leaves open the question: what is a dynamic language? For the purposes of this
thesis a dynamic language has the following properties: it is high-level, open-source,
and dynamically typed.

High-level Modern programming languages inherit most of their properties from
several earlier languages. These properties make the programming easier and hide
the details of the underlying operative system and hardware. Here we consider the
following specific properties:

1. the availability of more abstract built-in data types14;

2. particular syntactic choices emphasizing readability, conciseness, and other
“soft” aspects of language design;

14Algol-68 had this in the 1960s.

30 CHAPTER 2. BACKGROUND

3. more flexible typed variables, variously referred to as “loosely typed”,
“dynamically typed”, or “weakly typed”, in clear opposition to “static typing”;

4. automation of routine tasks such as memory management and exception
handling15;

5. a tendency to use interactive interpreter-based systems over machine-code-
generating compiler models16.

The main reason for these trends is that, as computers become commodities
and humans have more to do in the same amount of time, it is imperative
that programming languages should support the human programmers and users
while exploiting the decreased computational constraints (i.e., using the increased
resources to save human resources). Thus, high-level languages enable the human
programmer to more rapidly develop applications, by using the resources of the
computer to support the user in this task. This leads, generally, to languages that
are easier to use, but may be slower to execute. However, compiler technology often
allows the performance to be comparable (and in some cases much higher than
human generated code).

Open source Open source can refer to different aspects of software design:

• the legal usage of the term “open-source” refers to open source software
licenses which encourage code sharing; and

• the methodological usage of the term “open-source” refers to a development
model characterized by networks of volunteer developers and by close relation-
ships between users and developers. For this sense of open-source, the reader
is referred to [18].

Dynamically typed Dynamically typed languages are those languages where
the programmer does not need to declare a variable before using it, in fact a
variable is created at runtime when a value is assigned to it; unlike statically typed
languages such as C, where a variable must first be declared together with its
type. Dynamically typed languages are often also weakly typed, such as Python.
In contrast, the Java language is strongly typed and does not allow implicit type
conversion. In Python variables are untyped so that it is not possible to perform
type-checking before the program is executed. In addition to dynamic typing,
dynamic languages often include other dynamic behaviors, such as loading arbitrary
code at runtime and runtime code evaluation.

15Lisp had this since the 1950 and numerous languages have had this since at least Ada in the
late 1970s.

16Lots of systems since the LISP systems of the 1970s support intermixing of interpretive and
compiled code.

2.6. PYTHON 31

2.6.2 Rapid prototyping

SCA specifies the IDL interfaces for all components of a waveform independently
of the language used for the implementation of the component. The OSSIE tool
provides support for component implementations in C++ and Python. Python
makes it easy to create components with user-defined custom interfaces.

In this thesis project some custom interfaces were defined to enable interaction
between OSI layers and the IEEE 802.15.4 standard. The main reason for
implementing waveform components in Python was that by default IDL custom
interfaces are compiled in Python by OSSIE. Additionally, lots of the desired data
structures were already available in Python libraries. It should be noted that the
GNU Radio libraries are written in Python, thus they can be reused inside OSSIE
components, for example for signal modulation. This enables an OSSIE waveform
developer to directly leverage all of the work done by GNU Radio developers at the
cost of encapsulating the GNU Radio code into a OSSIE component and writing
the requisite IDL to make it available.

Since the aim of this thesis project was to develop a prototype of the
IEEE 802.15.4 waveform using OSSIE and there were no specific performance
requirements, I could focus on understanding SCA and the design of the waveform.
Prior to this project, I had not worked with either SDR or SCA; thus it was initially
difficult to have a clear concept of what should be done. For this reason I started
“sketching” with Python, the result was that after only two months I had an OSSIE
based waveform up and running. This idea of sketching is from the following excerpt
from Eric S. Raymond’s book “The Cathedral and the Bazaar” [18] (used in the
course “Dynamic Programming Languages” at KTH):

I was taught in college that one ought to figure out a program completely
on paper before even going near a computer. I found that I did not program
this way. I found that I liked to program sitting in front of a computer, not a
piece of paper. Worse still, instead of patiently writing out a complete program
and assuring myself it was correct, I tended to just spew out code that was
hopelessly broken, and gradually beat it into shape. Debugging, I was taught,
was a kind of final pass where you caught typos and oversights. The way I
worked, it seemed like programming consisted of debugging.

For a long time I felt bad about this, just as I once felt bad that I didn’t
hold my pencil the way they taught me to in elementary school. If I had only
looked over at the other makers, the painters or the architects, I would have
realized that there was a name for what I was doing: sketching. As far as I can
tell, the way they taught me to program in college was all wrong. You should
figure out programs as you’re writing them, just as writers and painters and
architects do.

Realizing this has real implications for software design. It means that
a programming language should, above all, be malleable. A programming
language is for thinking of programs, not for expressing programs you’ve
already thought of. It should be a pencil, not a pen. Static typing would
be a fine idea if people actually did write programs the way they taught me to
in college. But that’s not how any of the hackers I know write programs. We

32 CHAPTER 2. BACKGROUND

need a language that lets us scribble and smudge and smear, not a language
where you have to sit with a teacup of types balanced on your knee and make
polite conversation with a strict old aunt of a compiler.

The Cathedral and the Bazaar, Eric S. Raymond [18]

In my case not only was the project evolving, but the OSSIE tool itself was under
continuous development. OSSIE is a very young open-source project and it is
significantly updated from one release to the next one, thus changes in the tool
also affected the design. SCA itself is more stable, but OSSIE is an incomplete
implementation of SCA.

Chapter 3

Method

In this chapter the design properties of OSSIE based waveform development are
illustrated in detail, then analyzed. This chapter starts with some considerations
about the project organization and the method of working. As explained in the
previous chapter, the implementation of the IEEE 802.15.4 standard and realization
of a working prototype were important goals, but they are not the main aim of this
thesis project. Rather the goal was to analyze the usefulness of the OSSIE tool as a
base for future work on SCA waveform development in an open-source environment.

3.1 The waveform structure

The purpose of this section is to introduce the waveform design flow and the main
building blocks, i.e. the SCA components.

3.1.1 Introduction

The IEEE 802.15.4 specification describes the physical layer and the MAC sublayer.
The set of standards developed by the IEEE 802 working groups differ at the physical
layer and MAC sublayer, but share a common interface at the data link layer. This is
achieved through the standardized IEEE 802.2 Logical Link Control (LLC) sublayer.

This standard LLC interface was defined before WLANs and WPANs were
introduced, so it was basically designed for wired local area networks. Therefore,
IEEE 802.15.4 allows the definition of other LLC functions more appropriate for
wireless media. Gutiérrez, et al. remark that “The IEEE 802.15.4 MAC sublayer
definition contains enhanced functionality normally located in the LLC, making
it suitable to be interfaced with the network layer directly, allowing the simple
implementation of wireless devices”[12].

Since WPANs require very simple protocols, the complete design of an enhanced

33

34 CHAPTER 3. METHOD

LLC sublayer is out of the scope of this project. However, as suggested by Gutiérrez,
et al., the typical use of the IEEE 802.15.4 does not require the LLC sublayer; since
the MAC layer can in most cases interface directly with the network layer (note
that this is also typically the case for Ethernet – where the only real use of the
IEEE 802.2 LLC is to add a few extra (fixed) bytes to the frame header to enable
other protocols to utilize their own link layer protocols). For this reason our design
will focus on the physical layer and MAC sublayer.

3.1.2 The physical layer and the MAC sublayer

SCA allows a waveform developer to create a waveform by interconnecting
components, using a modular design. Therefore, the first step is to identify
those functions that are logically related in order to group them into the same
component. This was easy in our case because the physical layer and the MAC
sublayer are well defined in the ISO/OSI model, thus they can be considered as two
distinct components.

The physical layer requires some basic methods to interface with the MAC layer.
The physical layer component performs the encoding of the frames received from
the MAC layer and the decoding of the signal received from the USRP; in addition
to this, it is in charge of accessing the USRP and controlling the RF front-end under
the control of the MAC layer protocol (for example configuring it in receiving or
transmitting mode). So at this very early design step, the physical layer can be
split into two sub-components, one in charge of interfacing with the MAC layer and
the other hiding all the details about modulation and signal transmission. In future
steps each of the components can be split into further subcomponents:

• This modularization makes possible the reuse of library components.
When the functionality of a component is well defined, it becomes easier to
find this functionality in the libraries. For this reason it is better to split
the waveform into small components with well-defined functionalities, then
interconnect components to create more complex functionalities.

• Separating the modulation from the rest of the protocol makes it easy to
use different modulation schemes. In the case of many radio communication
protocols, the details of the modulation scheme chosen affect only the lowest
level of the protocol, specifically the modulation and the demodulation. If this
functionality is separated from the rest of the physical layer, then it is possible
to change modulation scheme simply by using a different component to realize
the modulation/demodulation functionalities. The only requirement is that
the components have to have the same interface. Fortunatly, this is generally
the case since typically the modulation component receives a stream of values
as input and returns a stream of complex values (for example, I-Q might be
produced as a stream of complex short integers).

3.1. THE WAVEFORM STRUCTURE 35

• It is better to split large blocks into smaller components, so that the design is
clearer and the functionality can be more easily recognized from the waveform
interconnections. In the limit as the data passes through different components,
it is possible to understand the signal processing performed to realize the
waveform by just looking at the operations done at each stage.

• However, modularization can become a performance problem if the modules
are too small, because the number of interconnections within a waveform are
proportional to the number of components. As will be discussed in section
3.3.2, complex waveforms may thus require a lot of CORBA calls, slowing
down signaling. Standard compiler techniques can be applied to produce
a smaller number of components that realize the same functionality, but
eliminate many of the inter-component communication steps.

3.1.3 The upper layers

What about the upper layers? The waveform uses TUN/TAP, a virtual kernel
network driver available on UNIX systems, to allow the waveform to be seen as
a virtual interface (also called a pseudo interface) by the operating system and
hence by the network and higher layer protocol stack. TAP emulates an Ethernet
device and it operates with layer 2 Ethernet frames. TUN (a contraction of network
TUNnel) emulates a network layer device, hence it receives and produces layer 3
packets, such as IP packets. Packets sent by an operating system via a TUN/TAP
device are delivered to a user-space program that opens the device. A user-space
program may also pass packets into a TUN/TAP device. In both cases, the behavior
is the same as sending and receiving packets via any network interface. This means
that you can easily set up the routing table to route network traffic to this interface.

The TUN/TAP functionality makes it possible to send and receive IP traffic
through the USRP. To realize this functionality it is necessary to add to the
waveform a component, whose function is to open the TUN/TAP of the underlying
operating system in order to instantiate the waveform as an active interface.

Since IP packets are larger than IEEE 802.15.4 frames, another component is
required to fragment IP packets into smaller packets. This component has been
associated with the link layer, but it simply splits the network data packet into
multiple link layer frames1. This is consistent with the earlier statement that the
IEEE 802.15.4 standard allows the definition of a LLC sublayer appropriate to the
specific waveform.

1In this solution the IP stack takes care of the message transfer units (MTUs); however, there
are some issues about the time to transmit fragments and the IEEE 802.15.4 superframe, see
optimization such as proposed in [28].

36 CHAPTER 3. METHOD

3.1.4 Conclusions

After this first step, the waveform structure is as illustrated in figure 3.1; a more
accurate description of the implementation is given in section 3.2.

TUN / TAP

LINK PHY

MODEM

MAC

OS USRP

Figure 3.1. The waveform structure

3.2 The UCLA Zigbee library

The introduction in chapter 1 mentioned that there is an existing implementation
of the IEEE 802.15.4 protocol. This implementation is called the “UCLA ZigBee
PHY” and it was developed by Thomas Schmid at the University of California at
Los Angeles (UCLA) [20].

3.2.1 Description

The UCLA Zigbee PHY project realized a GNU Radio implementation of the IEEE
802.15.4 physical layer. The GNU Radio library developed by Thomas Schmid is
publicy available and it is compatible with GNU Radio version 3.2.

Once his library (ieee802_15_4) is compiled and installed, it provides two GNU
Radio components: ieee802_15_4_mod and ieee802_15_4_demod, which perform
modulation and demodulation, respectively. This implementation is described in his
technical report “GNU Radio 802.15.4 En- and Decoding” [21]. This implementation
is illustrated in figures 3.2 and 3.3.

3.2. THE UCLA ZIGBEE LIBRARY 37

USRP

Multiply
Bytes To

Chips
Chips To
Symbols

Packet source
Python

send_packet() Message
Queue

Symbols To
Constellations

QPhase
Delay

QPSK
Modulator

gr_message_source

ucla.symbols_to_
chips_bi

ucla.packed_to_u
npacked_ii

ucla.delay_cc

ucla.qpsk_modula
tor_fc

gr.chuncks_to_sy
mbols_if

Figure 3.2. Block schema of the modulator implemented in GNU Radio (adopted
from [21])

USRP

Squelch Filter
Clock RecoveryFM Demod

Packet sink:
●Find start of the frame
●Decode chips to symbols

Python Callback
Message
Queue

ucla.ieee802_15_4_packet_sink

ieee802_15_4.ieee802_15_4_demod

gr.clock_recovery_mm_ffgr.quadrature_demod_ff

Figure 3.3. Block schema of the demodulator implemented in GNU Radio (adopted
from [21])

38 CHAPTER 3. METHOD

3.2.2 OSSIE and GNU Radio

OSSIE allows the developer to implement components in Python. As noted earlier,
this makes it possible to reuse GNU Radio libraries inside OSSIE components.
For this reason I realized the modulation and demodulation in a single OSSIE
component: MODEM_USRP (see section 4.3). This component is separated from
the physical layer interface. Inside this modem component the existing UCLA
Zigbee library is used to modulate and demodulate the signal.

The main problem was that the OSSIE version available when this project began
(OSSIE 0.7.4) used GNU Radio 3.1 to communicate with the USRP while UCLA
Zigbee PHY requires GNU Radio 3.2. For this reason it was not initially possible
to use the UCLA Zigbee library and the OSSIE USRP device (the OSSIE interface
to talk to the physical USRP platform) on the same platform. This problem could
be solved in four different ways:

1. Use the OSSIE USRP commander to talk to the USRP and rewrite the UCLA
Zigbee PHY library so that modulation and demodulation could be performed
without GNU Radio;

2. Use two computers to run the waveform:

• one computer, configured with GNU Radio 3.2, could run the modem
component; thus the modem component would use the UCLA Zigbee
library to modulate and demodulate the signal

• the rest of the waveform could run on the other computer, configured with
GNU Radio 3.1 and the full-featured OSSIE 0.7.4 distribution: thus the
USRP commander would run on this computer and control the USRP.

SCA allows a waveform to be distributed, as the waveform can use the General
Inter-ORB Protocol (GIOP) to perform CORBA calls between different
CORBA domains. This is rather easy to realize if OSSIE is running in a
VMWare virtual machine – hence both implementations can be running on
the same physical processor and the GIP traffic will not actually be sent via
a network interface, but will simply pass through the loop back interface on
the same physical computer.

3. Edit the OSSIE source files and update OSSIE so that it could use GNU Radio
version 3.2. Since OSSIE uses just a few GNU Radio libraries, specifically
those required to access the USRP – only small changes would be required.

4. Use only one computer and configure the system with GNU Radio 3.2 and
OSSIE 0.7.4, but not compile the USRP node for OSSIE. In this case the
modem component, beside doing the modulation and demodulation with
UCLA Zigbee PHY libraries, would also access and control the USRP using
the GNU Radio code.

3.2. THE UCLA ZIGBEE LIBRARY 39

In the first version of the target waveform the forth strategy was used. This was the
most direct method and it allowed the waveform to easily be modified when the new
OSSIE version had been released. Although the third solution was interesting, it
was estimated that the time to update OSSIE would have reduced the time available
for the real focus of the thesis project itself, while clearly this functionality would
eventually become available in the next OSSIE release. For this reason I decided to
first implement the handshaking protocol in the MAC sublayer and in the physical
layer, using the available GNU Radio libraries to send and receive frames through
the USRP. Later, after the new OSSIE version was released, I worked on the physical
layer, to implement the modulation and demodulation of the signal in a dedicated
component and used another component, the USRP_commander available in the
OSSIE library, to control the RF front-end of the USRP.

Figure 3.4 represents my first implementation of the IEEE 802.15.4 waveform.
The waveform layer shows the SCA components that have been described in
section 3.1 and the interconnections between them. On this layer the arrows
in the diagram correspond to interconnections between input and output ports,
implemented through CORBA calls.

TUN / TAP LINK PHY MODEMMAC

TCP / IP USRP

OS / HW

USRP deviceGPP device

SCA waveform

SCA platform

Figure 3.4. Waveform implementation without the SCA platform abstraction layer

All the components are deployed on the GPP node since (as discussed before) the
USRP node was not initially available because of configuration problems. The work
around was for the modem to directly access the USRP device using the GNU Radio
libraries. In the same way, in this first implementation, the TCP/IP connection is
not implemented as a node in the SCA platform, but was accessed directly from
the TUN/TAP component.

This, of course, limits the abstraction of the underlying operating system
and hardware resources. However, the aim of the SCA framework (section 2.4)
was to abstract the hardware and software resources available on a platform by

40 CHAPTER 3. METHOD

implementing some nodes with well defined functionalities. The SCA waveform
should run over an SCA platform and the SCA components should not see the
hardware resources and the underlying operating system, but rather should interface
with the functionality provided by the SCA framework.

In order to hide the underlying OS and hardware, the next step in the design
was to create a OSSIE resource which offers the TUN/TAP functionality. In this
way it would be possible to hide the implementation details, including details of
the underlying operating system, thus improving the portability of the waveform.
In fact it would be possible to run the waveform on any platform which provides
the TUN/TAP functionality, no matter how it is implemented on the underlying
operating system. The resulting waveform has the form shown in figure 3.5.

TUN / TAP LINK PHY MODEMMAC

TCP / IP USRP

OS / HW

USRP deviceTUN /TAP device

SCA waveform

SCA platform

GPP device

Figure 3.5. Waveform implementation using the SCA platform abstraction layer

3.3 The work method

This section discusses how the project was carried out. Starting with a description
of the interface, followed by a presentation of the design method.

3.3.1 Working on the interfaces

One of the most specific aspects of SCA is the interconnection of components, which
is done through CORBA. This affects the development process from three aspects:

1. A lot of effort is required to analyze the interfaces, which precedes the first
design step.

3.3. THE WORK METHOD 41

2. Once the interfaces have been decided, then components can be developed in
parallel by different teams.

3. A waveform is made up of several components, but they can run on different
platforms, in this case the communication is performed through the General
Inter-Orb Protocol (GIOP).

Since I carried out the project alone and I ran the whole waveform on my PC, the
second and third considerations were not relevant in my case. What is specific for
SCA waveform development is that the design process starts from the interface, in
fact when you create components using the OSSIE plugin for Eclipse, the first step
is to define the component ports.

This approach has some similarities with the black/white box model: at the
beginning the components can be interpreted as black boxes as only the interface
is available outside. The methods available on the interfaces must be carefully
selected so that the waveform can be implemented in a second stage by properly
interconnecting the components.

This first step was not easy, as the MAC layer requires several methods in order
to control all the internal functions; then some problems emerged with the definition
of a custom interface in OSSIE. Both of these impediments are discussed later.

As a design choice, I decided to implement a first version with only the data
service primitives. This made it easier to develop the component interfaces, but
allowed me to understand how SCA works and how OSSIE must be used. Thus the
first waveform I implemented was a very simple protocol, with only a few functions
within the MAC and the physical layers. However, this design choice allowed me to
quickly transmit and receive radio signals through the USRP.

3.3.2 The design method

The approach described above must not be confused with a top-down approach. It
is not possible to develop waveforms in OSSIE in a top-down fashion because all
the components are on the same level and OSSIE does not support a hierarchy.
As shown earlier in figure 3.1, the signal modulation is performed by a specific
component on the same level as the physical layer. Since normally modulation
is done by the physical layer, it would have made sense to implement it in a
subcomponent, but this is not possible within OSSIE. Thus although SCA supports
functional composition, it does not support functional de-composition – as would
be required for top-down design.

SCA waveforms have a flat structure (figure 3.6) and inter-block communication
is done through CORBA calls, i.e., handled by the SCA framework. The splitting
of SDR applications into components enables scalable systems in that the various
components may be deployed on additional processors as needed. Generally, an

42 CHAPTER 3. METHOD

application composition with many small components increases the probability of
being able to reuse the components in other waveform applications. However, the
component approach adds CORBA overhead through the processing of the CORBA
invocations and format conversions in the system. Also, the approach increases the
number of separate processes and threads, which increases context switching in the
cases where several components are deployed on the same processor.

SOURCE

DEST

B

A

C D E

F

WAVEFORM

Figure 3.6. No blocks hierarchy in OSSIE waveforms

In [27] T. Ulversøy and J. Olavsson Neset have examined this by using a scenario
with one CORBA capable GPP which runs the same functional application, but
implemented as a variable number of components. As part of their experiment, other
parameters were controlled, such as the workload of components, the size of the
data packets transferred between the components and the data rate in the system.
The empirical analysis was performed using the OSSIE Core Framework (CF) which
uses omniORB. The result was that the processor workload increased as the number
of components increased, while the total functional processing work decreased for
increasing data packet sizes. Hence, T. Ulversøy and J. Olavsson Neset concluded
that “the scalability and reusability benefits that result from implementing the
SDR application with a high number of components, must be balanced against the
processing efficiency loss that occurs when having to run several components on the
same processor”.

Blocks could actually be emulated by the development tool, thus making it
possible to design hierarchical SCA waveforms, but unfortunatly this functionality is
not yet available in OSSIE. The OSSIE user guide mentions the Automation Tool [6],
a feature which allows the developer to aggregate waveforms to be built. However,
this functionality is still at the experimental stage and only allows aggregating only
waveforms, not components.

In contrast, GNU Radio allows the waveform developer to easily connect

3.3. THE WORK METHOD 43

together smaller blocks in order to obtain more complex functionality. The
combined structure can be put into an higher abstraction layer block, that acts
as a container and hides the internal implementation and the lower abstraction
layer components.

Figure 3.7 is the direct representation of a waveform flowgraph. In this flowgraph
there are no limits on the structure hierarchy, hence it is possible to design very
complex blocks by interconnecting smaller components. As noted in section 2.3
there is a graphical tool, called GNU Radio Companion (GRC), for creating signal
flow graphs and generating flow-graph source code.

SOURCE

DEST

B

A

C
D E

F

TOP BLOCK

BLOCK 1

BLOCK 2

BLOCK 3

Figure 3.7. Blocks hierarchy in GNU Radio

3.3.3 Conclusions

In conclusion, the interface between components is the most important aspect to
take into account when designing SCA waveforms, because the final functionality
will be a result of the interconnection between components. Once the interface is
agreed upon, then the component can be implemented in different ways to meet
different constraints, regarding performance, memory size, and development time
(these issues are discussed for each component in the next sections).

SCA allows components to be reused on different platforms, because the SCA
framework guarantees a standard set of interfaces that abstract the underlying
hardware and operating system. In contrast, GNU Radio has internal dependencies
that also have to be satisfied; this may be more difficult to mantain, because all the
necessary libraries need to be installed. However, GNU Radio makes it possible to
develop components with a hierarchical structure, so that waveform development
leads to more flexible and modular results.

44 CHAPTER 3. METHOD

3.4 OSSIE components

This section illustrates how waveform components can be created in OSSIE.

3.4.1 The OSSIE plugin for Eclipse

To develop OSSIE components I used the OSSIE plugin for Eclipse. To begin it is
necessary to create a new project and select the option “OSSIE component”. After
giving a name to the project, the OSSIE perspective is opened (figure 3.8).

Figure 3.8. OSSIE perspective for creating a new component in OSSIE

We can see four panels that offer different functionalities:

• Description - The developer can enter a basic description of the component
here (as text).

• Ports - Allows for the addition and removal of ports for the component. When
you add a port, you have to give a name, set the input or output direction, and
specify the type. Each type has a specific interface and provides the methods
specified in the corresponding IDL file.

• Generation Options - Defines the ports template to be used and indicates
if Timing Port Support and Adaptive Communication Environment (ACE)
Support are enabled. It is possible to choose among three port templates:

3.4. OSSIE COMPONENTS 45

1. basic_ports, use standard types and the implementation is written in
C++;

2. custom_ports, use custom types and the implementation is written in
C++;

3. py_comp, ports are implemented in Python, using both standard types
and custom types.

• Properties - Allows for the addition and removal of editable properties for
the component. When you add a property you have to set some values:

1. property name
2. property description
3. value type
4. default value

All this information is stored into XML files, providing a description of the
component for the Domain Profile.

3.4.2 An example of creating a component

To illustrate some issues about OSSIE we will create a new component called
MyComponent, with the following configuration (see figure 3.9):

Figure 3.9. OSSIE perspective for creating MyComponent

46 CHAPTER 3. METHOD

• an input port named “dataIn” of type realChar ;

• an output port named “dataOut” of type realChar ;

• a property prop1 of type short, default value 0; the type and the default value
can be selected in a window, which will pop up when the button “Add” is
clicked2;

• a property prop2 of type float, default value 2.0;

• the py_comp template option has been selected, since all components in the
target waveform are to be written in Python.

After saving the current configuration, the component can be generated by selecting
“Generate Component” from the OSSIE menu: we can see that several files are
generated and stored in the project folder (the contents of these files are in appendix
B):

• MyComponent.prf.xml, component property file: this XML file contains a list
of the component properties, each one associated with a unique ID.

• MyComponent.scd.xml, software component descriptor: this XML file de-
scribes the component ports and the set of interfaces used.

• MyComponent.spd.xml, software package descriptor: this XML file provides a
basic description of the component together with some information about the
executable file.

• MyComponent.py, Python file with port implementations.

• WorkModule.py, Python file where processing is done.

• setup.py, install script used to copy Python and XML files into the appropriate
subdirectories under /sdr once the component is edited to provide function-
ality. This is executed by typing python setup.py install.

OSSIE is a young project and even these basic operations have some bugs:

• You need to edit MyComponent.spd.xml before the Python component will
work properly. Find the XML tag below the tag <code type="Executable">.
By default the next tag is:

<localfile name ="bin/MyComponent"/>

This needs to be changed to:
2Note that the default value is not shown in the Property window, because of a bug.

3.4. OSSIE COMPONENTS 47

<localfile name ="bin/MyComponent/MyComponent.py"/>

• The class for the input port is called dataIn_complexShort_i but it should be
dataIn_realChar_i

• Some spelling errors exist in the automatically generated comments.

• The methods for receiving and processing data are defined for ports of type
complexShort (for this reason the AddData method receives two signals, I and
Q). As the comment suggests, I and Q may have to be changed depending on
what data you are receiving (e.g. to bytesIn for realChar).

• It is not possible to change the default value for properties by using the Eclipse
plugin, rather it is necessary to open the property file (MyComponent.prf.xml)
and manually change it in the XML code (tag name <value>).

3.4.3 Conclusions

Some properties of the code structure reveal what the OSSIE developers aim to do:

• A class is created for every input port type, these classes inherit from
the corresponding IDLs (in this example, the dataIn port is derived from
standardInterfaces__POA.realChar); for this reason the methods defined for
the interface must be implemented (initially the realChar interface has only
the method pushPacket).

• A class is created for every output port, all these classes inherit from
CF__POA.Port which provides the methods connectPort, disconnectPort,
releasePort, and send_data. In order to establish a connection with another
component, the connect method needs to know the IDL:

port = connection._narrow(standardInterfaces__POA.realChar)

• The start and stop methods are empty by default: the reason is that
components become active after they are initialized and configured. In fact,
the processing thread for the output ports are created when the ports are
instantiated; while the processing thread in the work module, which processes
the data received on the input ports, is started when the work module is
created, i.e., after the first call to the configure method. So after an
OSSIE component is created and configured, the component is active and
starts waiting for input data to process. It will remain in this state until
it is explicitly released, that is until the waveform is terminated and the
Application Factory releases all the components. This point is discussed
further in the section dedicated to the Assembly Controller, see section 3.6.

48 CHAPTER 3. METHOD

• The implementation of the standard Interfaces separates the CORBA handling
from the signal processing code. This is performed by buffering data in
the WorkModule class and subsequently returning the CORBA call without
entering the signal processing code. The goal of this structure is to decouple
the CORBA call from signal processing [26].

• The OSSIE tool is still young and does not provide much support for various
types of data. When creating a port, it is necessary to specify the port type
and it is only possible to choose among a limited set of types. The current
limitation is that the code generated by the tool does not actually consider the
port type, thus the component implementation has to be manually modified
or written.

3.5 Component structure

Section 3.4 showed how to create OSSIE components in Eclipse. The code generated
by the tool is included in appendix B. This code works well for components with only
one input port and one processing thread. Unfortunatly, the design of the physical
layer and MAC layer in the target waveform required more complex blocks, with
several input and output interfaces and different processing threads. Therefore,
I decided to create an internal component structure that would make it easy to
customize the functionality and add/remove ports on the interface.

The resulting structure is shown in figure 3.10 and reproduced in appendix C.

IN_BUFFER 2

IN_BUFFER 1
OUT_BUFF

OUT_BUFF

Method OUT 'A'

Method OUT 'B'

Method OUT 'C'

Method OUT 'A'

Method OUT 'B'

OUT PORT 1

OUT PORT 2

IN
TE

R
FA

C
E

 1
IN

TE
R

FA
C

E
 2

Method IN 'A'

Method IN 'B'

Method IN 'A'

Method IN 'B'

Method IN 'C'

WORK MODULE

C
A

LL
B

A
C

K
 1

C
A

LL
B

A
C

K
 2

Figure 3.10. Internal component structure

3.5. COMPONENT STRUCTURE 49

This component is the same component previously described in appendix B, but
the code was manually modified (according to the spirit of SCA, the interface is
unchanged, but the internal implementation is different). The main properties of
the customized code are listed below:

• I created a class buffer to easily instantiate buffers inside components.
This class inherits from the Thread class because, after the start method
is called, a thread checks for new data in the buffer. Each buffer object
has an internal queue, which is created with the Python Queue library by
specifying the maximum number of elements. Different kinds of subclasses
can be instantiated (for example queue_buffer or circular_buffer) which
allow the developer to change the behaviour of the buffer.

• The MyComponent.py source file also has some changes. For example, in this
implementation the start and stop methods control the execution of the
buffers on the output ports and in the work module. Another difference is
that the work module is created when the component is instantiated, rather
than when the configure method is called.

• The port implementation is not in MyComponent.py, but has been moved to
another source file (portImpl.py) so that new port types can easily be added.

• Output ports are derived from the use_port class, so that the methods to
connect ports in the SCA framework do not need to be rewritten for every port.
Output ports have an optional internal buffer which allows to temporarely
store data when sending data to other components.

• When an output port is instanciated, a callback function for the buffer has
to be declared: this function is called when new data is put into the buffer,
causing the data to be processed. Also the methods on the port interface have
to be implemented such that it is possible to send data to a port of the same
type on another component.

• Input ports have an interface with the available methods, but the methods
are implemented in the WorkModule class so that it is easier to exchange data
between different processes.

• The WorkModule.py source file contains a buffer for each input port and a
callback function for each buffer to process input data. Therefore, a call to
a method available on the interface corresponds to putting the data into a
buffer, this causes a callback function to be invoked and the data retrieved
from the buffer and processed. This implementation allows several processing
threads to work in parallel within the same component.

50 CHAPTER 3. METHOD

3.6 Assembly controller

OSSIE components inherit from the Resource interface. The key functions
introduced by the Resource interface are the start and stop operations, which
provide the top-level mechanism for controlling the Resource that is implemented.

According to the SCA specification, once a resource is instantiated and
initialized, the start operation is used to place it into an operational mode. The
stop operation halts the processing performed by the Resource. This means that
the operational functions of the Resource are stopped, but it does not terminate
the Resource or remove it from the system.

As stated in section 3.4, the start and stop methods are empty by default
when the component is first generated by the OSSIE tool. For example, the
components available in the OSSIE library become active after they are initialized
and configured. They can process input signals until the releaseObject method is
called. When a waveform is run the start and stop method can be invoked only
on the Assembly Controller while all the other components, already active, remain
in an active state waiting for data to process.

A discussion thread found in the OSSIE discuss archive [13] says: “There is
the right way, and there is the OSSIE way......” This discussion concerned the
design of the assembly controller in OSSIE waveforms. According to the SCA
specification, calling start on CF::Application shall delegate the implementation
of the inherited Resource operations (runTest, start, stop, configure, and query)
to the Application’s Resource component (Assembly Controller) identified by the
Application’s Software Assembly Descriptor (SAD). So it would be appropriate
for the designated Assembly Controller to in turn call start and stop on
other Resources within the waveform. Therefore, the Assembly Controller, as a
component, is not meant to be an active participant within the waveform, but
rather it is a controller. The reason a component is designated as the Assembly
Controller is so that modeling tools can generate appropriate code to meet the
behaviorial requirements of the specification. However, OSSIE does not provide, as
of the current release (0.7.4), any support to automatically generate an Assembly
Controller!

The idea suggested by Michael Ihde, et al., in the discussion thread is to add a
getResource method (listing 3.1) to the Assembly Controller so that it is possible
to retrieve the reference to all the components in the waveform [13]. This approach
assumes that the Assembly Controller knows the names of the other components.
However, this seems to be a fair compromise given that the component is already
tightly coupled to the waveform specification. OSSIE should automatically generate
the code for the Assembly Controller. For example, when the Assembly Controller
is generated, all the references to the other components in the waveform should be
retrieved so that the waveform can be controlled through the Assembly Controller.

3.6. ASSEMBLY CONTROLLER 51

� �
def getResource (self , name):

ns_obj = self. prnt_orb . resolve_initial_references (" NameService ")
rootContext = ns_obj . _narrow (CosNaming . NamingContext)

compRef = [CosNaming . NameComponent (x, ’’)
for x in self. naming_service_name . split ("/")][0:2]

compRef . append (CosNaming . NameComponent (name , ’’))

compRsrcObj = rootContext . resolve (compRef). _narrow (CF. Resource)
return compRsrcObj
� �

Listing 3.1. getResource method used to retrieve the reference to a resource

Another issue related to the Assembly Controller is the configure method. It
would be useful to call the configure method on the Assembly Controller in order
to modify the properties of the waveform. In this approach the Assembly Controller
would in turn call the configure method on the other components, setting specific
properties on each one. This enables the control of the waveform’s behaviour at run
time through the Assembly Controller. In order to do this, the Assembly Controller
must know the list of properties for each component and be able to call the configure
method on each one. Currently, OSSIE does not provide any support to do this,
but there is a tool, called WaveDash [23], which is an interactive configurable GUI
used to work with OSSIE SDR waveforms (figure 3.11) that might be used.

Figure 3.11. WaveDash GUI for configuring a waveform

Through WaveDash, users can install/uninstall, start/stop waveforms, or configure
the component properties at run time. This eliminates the need to restart or rebuild
the waveform every time a component’s properties need to be changed. Users can
also customize the GUI to view only the components and properties in which they
are intersted. Further, it also allows users to change the widget type of a property
making the configuration process more interactive. For further information about
WaveDash refer to the OSSIE user guide [6].

52 CHAPTER 3. METHOD

3.7 Custom interfaces

When a port is to be defined, the first step is to choose a port type. The type
determines the kind of data that can be handled (transmitted or received) through
the port and the methods available on the interface, i.e., the methods that can be
called by other components. OSSIE comes with quite a large set of predefined port
types to manage different kinds of signal, such as realChar, complexShort, etc. The
list is available when you create a component using the OSSIE plugin for Eclipse
(see figure 3.8 on page 44).

Using IDL it is possible to describe new custom interfaces, then compile them
with an IDL compiler. The predefined data types are well suited for signal
processing, but there is no support to manage link layer frames or complex data
structures.

3.7.1 The interfaces

The waveform to be implemented requires a MAC layer and a physical layer. Both
can be represented as SCA components. Both the MAC and physical layers have
to follow the protocol described in the IEEE 802.15.4 standard. Fortunatly, there
are already some available methods for each layer, but they must be called in the
correct order according to a handshake protocol. The definition of the interface
and the methods is done during the first phase of component creation; while the
protocol is implemented later, inside the component.

As shown in figure 3.12 six different interfaces have to be defined (the source
code is included in appendix D)3:

• sap_app_to_link and sap_link_to_app
• sap_link_to_mac and sap_mac_to_link
• sap_phy_to_mac and sap_mac_to_phy

A general requirement for the interfaces in my waveform is that an interface should
contain all unidirectional methods between two layers. Looking at figure 3.12 and
considering the physical layer and the MAC layer, there are two interfaces between
these two components: sap_mac_to_phy contains all the methods that the MAC
layer can call on the physical layer and sap_phy_to_mac contains all the methods
that can be called on the MAC layer. Both the MAC and the physical layer have
a port with type sap_mac_to_phy, but it is an input port on the physical layer
and an output port on the MAC layer; correspondingly the physical layer has an
output port with type sap_phy_to_mac and the MAC layer has an input port
sap_phy_to_mac.

3The Service Access Point (SAP) is a conceptual location at which one Open Systems
Interconnection (OSI) layer can request the services of another OSI layer (see section 4.1.1).

3.7. CUSTOM INTERFACES 53

sap_mac_to_phy

sap_phy_to_mac

sap_mac_to_link

sap_app_to_link

sap_link_to_mac

sap_link_to_app

PHYSICAL LAYER

MAC LAYER

LINK LAYER

PHYSICAL LAYER

APPLICATION LAYER

Figure 3.12. Custom interfaces in 802.15.4 waveform

Since in my waveform I need six interfaces, I created the six IDL files listed above
(the IDL is included in appendix D). After creating these six files, I need to compile
them to produce the stub code. The procedure for this is described in the next
subsection.

3.7.2 IDL compilation

In order to be used, the custom IDL interfaces need to be compiled to produce the
code that will be used in the various components. The procedure to compile custom
interfaces is:

1. You need the source files of the OSSIE distribution you are currently using.

2. Change to the root directory of the folder containing the OSSIE source files
(in my case ossie-0.7.4)

3. Change to ossie-0.7.4/system/customInterfaces/

4. Copy the IDL files describing your custom interfaces into this directory.

5. Edit the file customInterfaces.idl to include the IDL files copied in the previous
step.

54 CHAPTER 3. METHOD

6. Edit the file Makefile.am to add the names of the IDL files to dist_pkginclude-
_DATA. This will enable the compiled interfaces to appear in the OSSIE menu
along with the other port types.

7. Execute the command ./bootstrap, then ./configure

8. Now you can execute make and if everything is OK (no error messages were
output during compilation) you can run make install as the root user.

9. The custom interfaces have been compiled and are now installed in your OSSIE
distribution.

This process is very simple, but is incompletely described in the OSSIE user guide
[6]. For this reason, at the beginning of my thesis project, I spent a lot of time
trying to understand how to use the OSSIE tool. The lack of documentation is
a major disadvantage of the OSSIE environment as compared with GNU Radio
that has extensive documentation. I have submitted my additions to the OSSIE
documentation as part of my work.

Chapter 4

Analysis

Chapter 3 illustrated the SCA waveform development in OSSIE. The results of this
analysis were used to implement the target waveform. In this chapter, a section is
dedicated to analyzing each design phase.

4.1 The MAC Layer

The first step in the thesis project was to understand IDL and learn how to create
custom interfaces. The general procedure has been presented in section 3.7. Below
a practical example is described in detail. We begin with the definition of a custom
interface for the MAC layer component in the target waveform. Following this some
implementation issues are analyzed, regarding both Python, the language used to
write the component code, and the functionality of this component.

4.1.1 Interface

The IEEE 802.15.4-2006 standard specification [24] was the main reference for the
MAC layer interface. The IEEE 802.15.4 architecture defines a number of blocks –
called layers – in order to simplify the standard. Each layer is responsible for one
part of the standard and offers services to the higher layers. This architecture is
based on the open systems interconnection (OSI) seven-layer model.

A low-rate wireless personal area network (LR-WPAN) device comprises a
physical layer (PHY), which contains the radio frequency (RF) transceiver along
with its low-level control mechanism, and a MAC sublayer that provides access to
the physical channel. These concepts are illustrated in figure 4.1.

55

56 CHAPTER 4. ANALYSIS

Upper Layers

802 LLC

SSCS

MAC

PHY

MCPSSAP MLMESAP

PDSAP PLMESAP

Physical Medium

Figure 4.1. LR-WPAN device architecture (adapted from [24])

The MAC sublayer specification divides the functions into two groups, the MAC
data service and the MAC management service:

• The MAC data service enables the transmission and reception of MAC
protocol data units (MPDUs) across the PHY data service.

• The MAC management service provides an interface to the MAC sublayer
management entity (MLME) service access point (SAP) (known as MLME-
SAP); the MLME-SAP allows the transport of management commands
between the next higher layer and the MLME.

This thesis project focused on the MAC data service because the goal was to
implement only the basic function of the protocol. The MAC data service requires
three types of methods:

4.1. THE MAC LAYER 57

• request: On receipt of a MCPS-DATA.request primitive, the MAC sublayer
entity creates a frame containing the supplied MSDU and transmits it (the
frame is passed to the physical layer).

• confirm: The MCPS-DATA.confirm primitive reports to the upper layers the
result of a request to transfer a MAC service data unit (MSDU).

• indication: The MCPS-DATA.indication primitive indicates the transfer of a
MSDU from the MAC sublayer to the upper layer.

In the target waveform, the layer above the MAC sublayer is represented by
the LLC layer (which in our case simply splits the network packet into multiple
link layer frames, as said in section 3.1). The primitives listed above represent
the function available to the LLC layer. For this reason, the interface between
the MAC layer and the LLC layer has to be defined. The IDL files for
this interface are sap_mac_to_link.idl and sap_link_to_mac.idl (included in
appendix D). The other interface is between the MAC layer and the physical
layer – sap_mac_to_phy.idl and sap_phy_to_mac.idl (IDL files included in
appendix D). Figure 4.2 illustrates how these interfaces are used. The interfaces
sap_mac_to_link and sap_link_to_mac represent the MAC layer functionalities
that are available to the upper layer, therefore they are illustrated in this section;
while sap_mac_to_phy and sap_phy_to_mac represent the functionalities exported
by the physical layer, they will be illustrated in section 4.2.

sap_mac_to_phy

sap_phy_to_mac

sap_mac_to_link

sap_link_to_mac

PHYSICAL LAYER

MAC LAYER

LINK LAYER

PHYSICAL LAYER

Figure 4.2. IDL interfaces for the MAC layer

58 CHAPTER 4. ANALYSIS

The procedure for defining the interfaces for a SCA component is described in the
steps below:

1. Pick the components which the selected component is connected to.

2. Consider one adjacent component at a time, for each component follow the
steps ’a’ to ’c’.

a Select the services to be implemented between the selected component and
the adjacent one, representing each service as a primitive function call.

b Divide the selected functionalities into input and output primitives for the
selected component.

c Represent the input primitives in an IDL file and the output primitives in
another IDL file.

3. Collect all the IDL files created at the previous step and follow the procedure
described in section 3.7.2 to compile the interfaces and make them available
in OSSIE.

One observation is that during the SCA waveform development process the
definition of SCA component interfaces is flexible and the creation of SCA custom
interfaces is easy. Given a protocol specification, its interfaces can be directly
translated into IDL files. The only limitation was the lack of clear documentation
for this process using the design tool, i.e., OSSIE allows creation of custom interfaces
but the procedure to do so was initially not clear.

4.1.2 Functionalities

As said in the previous section, this thesis project focused on the MAC data service.
For this reason, most of the functionality consists of creating frames, packing the
received information into frames, and sending the created frames to the physical
layer. Hence, we will begin with an analysis of the MAC frame structure, followed
by an examination of the service primitives that can be applied to these frames.

4.1.2.1 MPDU structure

Each MAC frame consists of the following basic components:

• A MAC header (MHR), which includes frame control, sequence number,
address information, and security-related information.

• A MAC payload, of variable length, which contains information specific to the
frame type. Acknowledgment frames do not contain a payload.

• A MAC footer (MFR), which contains a Frame Check Sequence (FCS).

4.1. THE MAC LAYER 59

The format of a generic MAC frame is illustrated in table 4.1. Some fields, such as
the source and destination addresses, have variable length. The number of octets
used to represent this information is specified in the frame control field (see table
4.2).

Table 4.1. MAC frame format

Octets:
2

1 0/2 0/2/8 0/2 0/2/8 0/5/6/
10/14

variable 2

Frame
Control

Sequence
Number

Destination
PAN
Identifier

Destination
Address

Source
PAN
Identifier

Source
Address

Auxiliary
Security
Header

Frame
Payload

FCS

Addressing fields
MHR MAC

Payload
MFR

Table 4.2. Format of the Frame Control field

Bits:
0-2

3 4 5 6 7-9 10-11 12-13 14-15

Frame
Type

Security
Enabled

Frame
Pending

ACK
Request

PAN-ID
Compression

Reserved Destination
Addressing
Mode

Frame
Version

Source
Addressing
Mode

The 16 bits of the frame control field are used to:

• define the frame type;

• specify the length of the addressing fields;

• set control flags to activate/deactivate some functionalities.

Refer to the IEEE 802.15.4 standard [24] for additional information about each of
these fields and the meaning of different values in these fields.

4.1.2.2 Data service primitives

The MAC layer in the target waveform supports data and acknowledge frames.
According to the standard specification, the primitives to be implemented are:

• MCPS-DATA.request

• MCPS-DATA.indication

• MCPS-DATA.confirm

60 CHAPTER 4. ANALYSIS

MCPS-DATA.request is an input primitive for the MAC layer. The semantics
of this service primitive are illustrated below. The msdu parameter contains the
data to be transmitted. The MAC layer, on receipt a a request from the upper
layer, creates a data frame and copies the msdu into the frame payload. All the
other fields in the frame must be properly set, according to the values of the request
parameters; the request parameters also indicate the number of octetets required
to represent these values. When the frame is ready, it can be sent to the physical
layer using the available methods provided by the PHY interface (this interface is
described section 4.2).

MCPS-DATA.request (SrcAddrMode, DstAddrMode, DstPANId,
DstAddr, msduLength, msdu,
msduHandle, TxOptions, SecurityLevel,
KeyIdMode, KeySource, KeyIndex)

MCPS-DATA.indication is an output primitive for the MAC layer. The se-
mantics of this service primitive are illustrated below. The MCPS-DATA.indication
primitive is generated by the MAC sublayer and issued to the upper layer on receipt
of a data frame from the physical layer. The received data frame is parsed according
to the bits of the frame control field, which determine the length of the addressing
fields and of the security options in the frame header. The information retrieved
from the frame fields is then copied into the parameters of this primitive and passed
to the upper layer.

MCPS-DATA.indication (SrcAddrMode, SrcPANId, SrcAddr,
DstAddrMode, DstPANId, DstAddr,
msduLength, msdu, mpduLinkQuality,
DSN, Timestamp, SecurityLevel,
KeyIdMode, KeySource, KeyIndex)

MCPS-DATA.confirm MCPS-DATA.confirm is an output primitive for the
MAC layer. The semantic of this service primitive is illustrated below. The MCPS-
DATA.confirm primitive is generated by the MAC sublayer entity in response to
an MCPS-DATA.request primitive. The MCPS-DATA.confirm primitive returns a
status of either SUCCESS, indicating that the request to transmit was successful,
or the appropriate error code (refer to the IEEE 802.15.4 specification [24] for the
status values).

MCPS-DATA.confirm (msduHandle, status, Timestamp)

4.1. THE MAC LAYER 61

4.1.2.3 Operational mode

Figure 4.3 illustrates the order in which the MAC data service primitives must be
used in order to successfully transfer data between two devices.

Originator next
higher level

Originator
MAC

Recipient
MAC

Recipient next
higher level

MCPSDATA.request

MCPSDATA.confirm

MCPSDATA.indication

Data frame

Acknowledgment (if requested)

Figure 4.3. Message sequence chart describing the MAC data service (adapted from
[24])

4.1.3 Component implementation

OSSIE allows the waveform developer to write component implementations in C++
and Python. For the implementation of the MAC layer component in the target
waveform, Python has been used for two reasons:

• The processing required at this level is very limited, compared to components
in charge of modulating and demodulating the signal. The overhead of using
an interpreter-based language for the implementation of the MAC layer does
not affect the overall performance.

• Although the target waveform implements only the data service, using Python
the functionality of the MAC layer component can be rapidly extended or
modified.

To generate the Python code, the option py_comp is selected in OSSIE when
defining the component (see section 3.4). The component ports use the interfaces
described above. The internal architecture is the same as presented in section 3.5.

62 CHAPTER 4. ANALYSIS

What is specific to the MAC layer component is the marshaling of the information
to be transmitted and demarshaling of the frames received from the physical layer.
This is done using a python class called frame. The frame class provides methods for
creating frames, checking frame integrity, and retrieving information from frames.

The frame is considered as an array of bytes (a string) and the information
fields are accessed with the methods pack and unpack offered by the python module
struct. This module performs conversions between Python values and C structs
represented as Python strings. It uses format strings as compact descriptions of the
layout of the C structs and the intended conversion to/from Python values.

For the de-marshaling process the frame control field has to be read first, since
it has a standard layout and contains information about the format of the following
addressing fields. The format information is then used together with the unpack
method to retrieve the values of the addressing and security fields. Similarly, for the
creation of frames, the pack method is used and the bits in the frame control field
are set according to the format used to represent the fields in the frame header.

4.1.4 Simulation and final considerations

The OSSIE development tool does not provide, as of the current release (0.7.4), any
testing technique for OSSIE components. Therefore, an ad hoc technique has been
used, inherited from the VHSIC hardware description language (VHDL, VHSIC:
very-high-speed integrated circuit).

In VHDL, the circuit to be tested is referred to as unit-under-test (UUT) and
it is considered as a black box, that is only the input and output connections can
be accessed. VHDL allows the circuit designer to test the UUT by applying some
signals to the input connections and observing the signals on the output connections.
This can be done automatically by creating a testbench component, a circuit entity1

without input or output connections. Inside the testbench component, the UUT is
instantiated and its external ports are connected to internal signals. A processes
controls these signals and generates a sequence of stimuli. Another process observes
the values of the output signals of the UUT and compares them with the expected
values (according to the design specification).

Similarly, a testbench OSSIE component (referred to as TEST component) was
created for testing the target waveform. This is illustrated in figure 4.4. The
advantage of this technique is that the same TEST component can be used for
testing the lower layers of the target waveform. Figure 4.3 earlier illustrated how
the data service primitives available on the MAC layer interface must be called by
the upper layer in order to successfully transfer data between two devices. Here
our TEST component represents the layer above the MAC layer, thus it must call

1Entity is a technical word in VHDL used to refer to a digital circuit, which represents the
same concept as component in SCA

4.1. THE MAC LAYER 63

the request primitive on the MAC layer interface and verify that the MAC layer
component returns the correct values with the indication and confirm primitives.
This results in the ad hoc testing technique shown in figure 4.5.

TESTBENCH COMPONENT

UUTTEST INPUT
GENERATOR

TEST OUTPUT
OBSERVER

INPUT SIGNALS OUTPUT SIGNALS

Figure 4.4. Testbench component for simulation of digital circuits in VHDL

COMPONENT
TO BE TESTED

INPUT SIGNALS OUTPUT SIGNALS

TEST OUTPUT
OBSERVER

TEST INPUT
GENERATOR

TEST
COMPONENT

TEST WAVEFORM

Figure 4.5. Ad hoc tecnique for testing OSSIE component

At this stage of the thesis project only the MAC layer component is available. Hence
the test waveform uses the TEST component and two MAC layer components. The
two MAC components are interconnected through the interfaces sap_mac_to_phy
and sap_phy_to_mac (described in section 4.2): the output ports of one MAC
layer component are directly connected to the input ports of the other one. SCA
makes it possible to abstract the underlying OSI levels and to test the correct
functionment of the MAC layer component (specially in terms of message sequence
and marshaling/demarshaling of the information).

64 CHAPTER 4. ANALYSIS

The TEST component uses the sap_link_to_mac and sap_mac_to_link
interfaces (the IDL files are included in appendix D) to communicate with the
MAC layer component. For example, the TEST component can request MAC1 to
send some data to the other device and wait for a confirm from MAC1; on the other
side, the TEST component waits for an indication from MAC2 containing the data
supplied to MAC1. This is illustrated in figure 4.6.

MAC 1 MAC 2

TEST OUTPUT
OBSERVER

TEST INPUT
GENERATOR

TEST
COMPONENT

TEST WAVEFORM

Figure 4.6. Waveform for testing the MAC layer component

Using this model, it is possible to test different scenarios and functions of the MAC
layer by simply changing the implementation of the TEST component. Note that
there is no need for a physical layer component to do testing at this stage; in fact,
the MAC components can be connected using the stubs and scheletons available on
the interfaces sap_mac_to_phy and sap_phy_to_mac. In a next phase, the same
TEST component will be used to test the lower layers of the protocols; in fact, the
components implementing the lower layers will be inserted between the two MAC
layer components, in the same order as they appear in the OSI model.

4.2 The Physical Layer

The implementation of the physical layer of the target waveform was the second step
in this thesis project. As said in section 3.1, modulation and demodulation were
delegated to separate components, thus the physical layer in the target waveform
represents an interface for sending and receiving frames. Therefore, the functionality
implemented in this component is minimal.

The design method for this component is the same used for the MAC layer
component (section 4.1), thus this section focuses on the features specific to the
physical layer; while the reader can refer to the previous section for a more detailed
description of the design method.

4.2. THE PHYSICAL LAYER 65

It is important to note that the IEEE 802.15.4 standard specifies four different
physical layers, with different operating frequency ranges and modulation schemes.
The physical layer implemented in this thesis project uses 2450 MHz direct sequence
spread spectrum (DSSS) PHY with offset quadrature phase-shift keying (OQPSK)
modulation.

4.2.1 Interface

The physical layer of the IEEE 802.15.4 standard provides an interface between the
MAC layer and the physical radio channel, via the RF hardware represented by
the USRP in the target waveform. Like the MAC layer, the physical layer provides
two services, accessed through two service access points (SAPs): the data service,
accessed through the physical layer data SAP (PD-SAP), and the management
service, accessed through the physical layer management entity service access point
(PLME-SAP).

In the target waveform, the PD-SAP is implemented in the PHY component,
thus it is described in this section. The PLME-SAP, instead, is in charge of
configuring the RF hardware of the USRP, using the GNU Radio libraries. Since
the PLME-SAP is (partially) implemented in the lower layer components, it is
illustrated in the next sections.

The IDL files sap_mac_to_phy.idl and sap_phy_to_mac.idl (included in
appendix D) represent the functions the physical layer makes available to the MAC
layer. These interfaces export the same primitives as the MAC layer (request,
indication, and confirm). These primitives are described in the next section.

The PHY component has also to interface with the lower layer components,
as they are in charge of modulating/demodulating the signal. Therefore, this
component also uses the realChar standard interface, available in the OSSIE library.
The realChar output port sends the data to be modulated to the next component;
the realChar input port, instead, receives the demodulated frames (see figure 4.7).
In this implementation, the frames are seen as messages consisting of a set of bytes,
because the PHY layer is only transmitting when there is a frame to transmit.

4.2.2 Functionalities

The physical layer component has very little functionality in the target waveform,
only creating PHY protocol data units (PPDUs). However, it has been included in
order to make it possible, as future work, to extend its functionality.

66 CHAPTER 4. ANALYSIS

realChar_u

sap_phy_to_mac

sap_mac_to_phy

PHYSICAL LAYER

MAC LAYER

MODULATOR

realChar_u

DEMODULATOR

realChar_p

realChar_p

Figure 4.7. IDL interfaces for the physical layer

4.2.2.1 PPDU structure

Each PPDU packet consists of the following basic components:

• A synchronization header (SHR), which allows a receiving device to synchro-
nize with the bit stream; the start-of-frame delimiter (SFD) octet indicates
the end of the SHR and the start of the frame.

• A PHY header (PHR), which contains the frame length; since 7 bits are used
to represent this information, the maximum frame size is 128 bytes.

• A variable length payload, which carries the MAC sublayer frame.

The size of the preamble and of the SHD depend on the frequency range and the
modulation scheme used. The PPDU structure is formatted as illustrated in table
4.3; the size, in number of octets, of the SHR field refers to the PHY used in the
target waveform, i.e., the 2450 MHz DSSS PHY employing OQPSK modulation.

Table 4.3. The PHY protocol data unit (PPDU) format

Octets: 4 1 1 variable
(7 bits) (1 bit)

Preamble SFD Frame length Reserved PSDU
SHR PHR PHY Payload

4.2. THE PHYSICAL LAYER 67

4.2.2.2 Data service primitives

The PD-SAP supports the transport of MAC protocol data units (MPDUs) between
peer MAC sublayer entities. The physical layer provides the following data service
primitives to the MAC layer:

• PD-DATA.request
• PD-DATA.confirm
• PD-DATA.indication

PD-DATA.request is an input primitive for the physical layer. The PD-
DATA.request primitive is generated by a local MAC sublayer entity and issued to
its PHY entity to request the transmission of a MPDU. The PHY first constructs
a PPDU, containing the supplied MPDU, then transmits the PPDU. Once the
PHY entity has completed the transmission, it will issue a PD-DATA.confirm
primitive with a status of SUCCESS. The semantics of the request service primitive
are illustrated below.

PD-DATA.request (psduLength, psdu)

PD-DATA.confirm is an output primitive for the physical layer. The PD-
DATA.confirm primitive is generated by the PHY entity and issued to its
MAC sublayer entity in response to a PD-DATA.request primitive. The PD-
DATA.confirm primitive will return a status of either SUCCESS, indicating that the
request to transmit was successful, or an error code. The semantics of this service
primitive are illustrated below.

PD-DATA.confirm (status)

PD-DATA.indication is an output primitive for the physical layer. The PD-
DATA.indication primitive is generated by the PHY entity and issued to its MAC
sublayer entity to transfer a received MPDU. The semantics of this service primitive
are illustrated below.

PD-DATA.indication (psduLength, psdu, ppduLinkQuality)

4.2.3 Implementation

Since only the PHY data service is implemented in the PHY component, most of
the functionality consists in creating the PPDU, that is adding the synchronization
header (SHR) and PHY header (PHR) to the MPDU to be transmitted. All the

68 CHAPTER 4. ANALYSIS

considerations of the MAC layer component in the previous section (4.1) are still
valid for the PHY component, thus the PHY component was also implemented in
Python. As for the MAC component, a python class packet is in charge of creating
a PPDU on receipt of a MPDU; both PPDUs and MPDUs are considered as data
units (messages consisting of a set of bytes).

4.2.4 Simulation and final considerations

The same technique illustrated in the previous section (section 4.1) was used to test
the physical layer component, called PHY. The test waveform is illustrated in figure
4.8; in this case, the two PHY components can directly communicate with each
other, while the modulation/demodulation and the transmission of the radio signal
are not yet implemented. The TEST component is the same used for testing the
MAC component, but some tests were added to verify the correct behaviour of the
lower layer components (in this waveform the PHY component) in some particular
cases; for example, when sending a MPDU larger then the maximum size or with
size zero (the PHY component should not transmit any PPDU). By adding tests at
each design step, at the end of the thesis project the TEST component provided an
extensive set of tools for debugging the target waveform. In addition, due to the
partitioning of the testing - different groups could be designing, implementing, and
testing their components in parallel.

MAC 2

TEST OUTPUT
OBSERVER

TEST INPUT
GENERATOR

TEST
COMPONENT

TEST WAVEFORM

MAC 1

re
a
lC

h
a
r

PHY 1 PHY 2

re
a
lC

h
a
r

Figure 4.8. Waveform for testing the PHY layer component

The TEST component must verify the correct behaviour of the target waveform
according to the initial specification. Therefore, the internal implementation of the
TEST component is a formal representation of the waveform requirements. It would
be useful, as future work, to study some more advanced technique to automatically
generate the implementation of this component: given the requirements of the
target waveform represented in a standard format, a tool could translate this formal

4.3. THE GNU RADIO SOLUTION 69

specification into a TEST component for the waveform. Hence, the design would
start with testing: this approach is called test-driven development and requires
developers to create automated unit tests that define code requirements before
writing the code itself.

As said before, the IEEE 802.15.4 standard provides four different PHYs, with
different operating frequency ranges and modulation schemes; while the interface
to/from the physical layer is always the same, the underlying modulation/demod-
ulation components and RF hardware may be different. For this reason, the PHY
component in the target waveform is only an interface, providing to the MAC layer
methods to transmit MPDUs. The advantage of SCA is that it is possible to change
modulation schemes and operating frequency range by using alternative components
for these functions; while the upper layers in the waveform do not need to be
changed. The 2450 MHz DSSS PHY with OQPSK modulation is the modulation
scheme used in the target waveform.

Sections 4.3 and 4.4 illustrate two different approaches to the design of the modu-
lation/demodulation components, along with two possible ways of sending/receiving
data from the USRP. The goal is to analyze the possibility of using the existing
GNU Radio libraries inside OSSIE components to perform signal processing. One
solution will acces the USRP using the OSSIE device interface while the other one
will represent the USRP as a GNU Radio source/sink component and will access it
without CORBA.

4.3 The GNU Radio solution

This section illustrates how to use existing GNU Radio components in OSSIE.

4.3.1 Description

At the beginning of this thesis project, a basic GNU Radio implementation of the
target waveform already existed, which used the UCLA Zigbee PHY library. The
GNU Radio UCLA Zigbee PHY library was presented in section 3.2. Figure 4.9
illustrates the structure of the physical layer in that implementation. The python
class phy is derived from gr.top_block, as it is the container for the flow graph.
The GNU Radio components used in the waveform are listed below:

• gr.message_source, gr.multiply_const_cc, gr.pwr_squelch_cc, usrp.sink_c,
usrp.source_c: these components are available in the standard GNU Radio
library (the latest release during the thesis project was version 3.2.2);

• ucla.ieee802_15_4_packet_sink, ieee802_15_4.ieee802_15_4_demod,
ieee802_15_4.ieee802_15_4_mod: the UCLA Zigbee PHY library provides
these components.

70 CHAPTER 4. ANALYSIS

phy

modem transciever

modulator_path

demodulator_path

transmitter_path

receiver_path

gr.
message_source

ieee802_15_4.
ieee802_15_4_mod

ieee802_15_4.
ieee802_15_4_demod

ucla.ieee802_15_4_
packet_sink

gr.
multiply_const_cc

usrp.
sink_c

gr.
pwr_squelch_cc

usrp.
source_c

Figure 4.9. Physical layer structure in the GNU Radio IEEE 802.15.4 waveform

Since all the components are already available in libraries, the PHY component
(phy) can be easily implemented by interconnecting these components; this can be
done by writing some Python code or using the graphical tool GRC (as described
in section 2.3). The phy component has three functions:

1. as a sender, modulating frames to be sent and transmitting the modulated
signal through the USRP;

2. as a receiver, reading the signal from the USRP and demodulating the
received frames;

3. as a controller, configuring the RF-hardware on the USRP.

Sender The phy component provides a method, send_packet, which allows
the upper layer to transmit a PPDU (of type string, passed as argument to
send_packet) with the USRP.

Receiver The constructor method for the class phy requires a callback function
as parameter. The callback function must have a parameter of type string. Inside
the phy component, a process running in a separate thread checks for available
frames in the ucla.ieee802_15_4_packet_sink queue: when a frame is available,
the callback function is called and the frame is passed as argument. In this way,
the upper layer can receive frames from the USRP.

4.3. THE GNU RADIO SOLUTION 71

Note that the USRP does not have any concept of frame. In fact, the component
usrp_source_c simply reads a sequence of bytes from the buffer internal to the
USRP and passes this data to the next component as a stream of samples; the frame
are actually built by the component ucla.ieee802_15_4_packet_sink, which
searches for the PHY synchronization header to know when a PPDU starts and
then uses the length field in the PPDU header to know when the frame (the content
of the PPDU payload, refer to table 4.3 on page 66) ends.

Controller As said in section 4.2, the PHY component in the target waveform
does not implement the management service for the physical layer described by
the IEEE 802.15.4 standard specification. Some of these functionalities, in fact,
are implemented inside the phy GNU Radio block. The GNU Radio classes
usrp_sink_c and usrp_source_c provide methods to configure the USRP, for
example setting the operating frequency and the amplifier gain.

4.3.2 OSSIE component

The goal is to create a OSSIE component, called MODEM_USRP. Inside this
component we instanciate the existing GNU Radio phy block. Hence, in order
to send and receive PPDUs from the USRP, the ports of the OSSIE components
would simply use the functionality available in the existing GNU Radio block.

As port type, the realChar type available in the standard OSSIE library was
used, since the PPDUs are represented as streams of bytes. The option py_comp
was selected when creating the component, to make it possible to use the phy python
class (section 4.4 will show that it is also possible to create C++ GNU Radio blocks
in order to use C++ code for implementing OSSIE components).

Figure 4.10 illustrates the internal structure of the MODEM_USRP OSSIE
component. Since the phy block already has internal structures for buffering
data, this OSSIE component does not contain any buffer on the ports. In fact,
the send_packet method available in the phy class creates an object of type
gr.message and copies the PPDU into it; then this object is inserted into a first-
in-first-out (FIFO) queue before being modulated. Similarly, the queue included
in the GNU Radio component ucla.ieee802_15_4_packet_sink implements the
buffering needed for the output port.

Some properties are defined for this component, such as the frequency (by default
2.45 GHz), the gain, and the usrpId (used to select the target USRP, if several
USRPs are connected to the same computer). The usrpId property must be specified
when the component is created, since it is passed as parameter to the constructor
method of the phy class and it is used to instantiate the USRP sink/source
components. While for the frequency and gain properties, the corresponding get/set
method in the GNU Radio phy class can be called also at runtime. As seen in section

72 CHAPTER 4. ANALYSIS

3.6 (figure 3.11 on page 51), the tool WaveDash allows the waveform designer to
configure the components while the waveform is running.

frameIn

(OSSIE input port)

frameOut

(OSSIE output port)

phy

(GNU Radio block)

send_packet(frameIn)

callback(frameOut)

MODEM_USRP

(OSSIE component)

Figure 4.10. GNUARDIO_MODEM component structure

As noted in section 3.3.2, SCA waveforms have a flat structure. However, the
development method presented in this section shows that it is possible to implement
a hierarchical structure by instanciating GNU Radio components internal to an
OSSIE component.

4.3.3 Test

The TEST component described in sections 4.1 and 4.2 can be used to verify the
correct behaviour of the MODEM_USRP component. The waveform is configured
as illustrated in figure 4.11. Two USRPs are connected to the computer where the
waveform was deployed. The components MODEM_USRP1 and MODEM_USRP2
are configured with usrpId 0 and 1, respectively; while the frequency and the gain
properties are set to the same values (2.45 GHz and 20 db).
In order to execute this test, a OSSIE waveform must be deployed on a node. The
OSSIE plugin for Eclipse provides four possible nodes and one of them must be
selected when the waveform is created. The nodes used in this thesis project are
either:

• default_GPP_node, the OSSIE components run on the CPU of the computer;

• default_GPP_USRP_node, the OSSIE components run on the CPU of the
computer, but can also access the USRP.

4.3. THE GNU RADIO SOLUTION 73

MODEM
USRP 2

MODEM
USRP 1

MAC 1 PHY 1 MAC 2PHY 2

TEST

Figure 4.11. Test waveform for MODEM_USRP component

The MODEM_USRP OSSIE component accesses the USRP internally, as an
internal subcomponent, rather than as an OSSIE device; hence, the waveform
presented in this section must be deployed on a default_GPP_node.

In sections 4.1 and 4.2, the simulated waveform used a virtual channel, while
this realization of the waveform actually uses the physical wireless channel. Note
that the same TEST component used for simulation can be also used to test the
real wireless communication. This is another advantage of using the ad hoc UUT
technique that we have used.

4.3.4 A chat application

The MODEM_USRP component, together with the MAC and PHY components,
implement a complete receiver and transmitter. To complete the testing process we
designed an application component to connect to the MAC layer component. This
specific OSSIE component implements a chat application.

The chat application uses the Tkinter python module to show a graphical user
interface (GUI). The user can:

• set the destination address,
• write the messages to be sent,
• read the received messages.

The OSSIE component has two ports, which use the interfaces sap_link_to_mac.idl
and sap_mac_to_link.idl; hence, the CHAT component can be connected to the
MAC component and use its data service primitives. The waveform is illustrated
in figure 4.12. When a message is typed in, the CHAT component calls the request
method on the MAC interface to send the message; while on receipt of a message,
the message is displayed via the user’s GUI.

74 CHAPTER 4. ANALYSIS

CHAT MAC PHY MODEM_
USRP

Figure 4.12. OSSIE waveform using the components MODEM_USRP and CHAT

To test the MODEM_USRP component, the waveform shown above was used
together with the existing GNU Radio implementation of the same waveform
(illustrated in figure 4.13). The test configuration was as follow:

• two USRPs connected to the same computer;

• the GNU Radio waveform using USRP 0 (usrpId=0), destination address set
to 1;

• the OSSIE waveform using USRP 1 (usrpId=1), destination address set to 0;

• in both waveforms, the operating frequency was set to 2.45 GHz and gain set
to 20 db.

gui_mac_chat

phy

mac

Figure 4.13. GNU Radio implementation of the chat waveform

4.3.5 Results

The implementation of the MODEM_USRP component was straight forward and
it was possible to run the target waveform in a short time. The design method
consisted in defining a OSSIE interface for the GNU Radio block. The mechanism
for passing data from the OSSIE input ports to the GNU Radio block was by
inserting the received data into the GNU Radio queues. Conversely, when some

4.4. THE OSSIE SOLUTION 75

data is available in the output queue of the GNU Radio block, this data is passed
to the output ports of the component through a callback method.

The solution illustrated in this section utilizes the USRP via a GNU Radio
component (usrp_sink_c and usrp_source_c). As a result, the USRP is accessed
within a OSSIE component. As stated in section 2.4, the aim of SCA is to abstract
the underlying hardware platform, allowing waveform development without having
to worry about the technical details of the physical radio hardware. This approach
makes SCA components platform independent, that is they can run on different SCA
platforms. However, in this case the OSSIE component described in this section
directly accesses a hardware resource, the USRP, hence this component will not be
independent of the underlying platform. It should be noted that this component
could be replaced with another component to realize this protocol operating on a
different physical radio – with a different modulation scheme.

The goal in the next phase of this thesis project was to modify the waveform in
order to access the USRP as a SCA resource. This is possible because OSSIE
provides a SCA device interface for the USRP, but requires the components
implementing the signal modulation and demodulation be modified in order to be
connected to the USRP interface via the SCA device interface.

4.4 The OSSIE solution

The implementation illustrated in the previous section allowed the waveform
developer to use existing GNU Radio blocks in OSSIE. However, this leads to the
USRP being used as a component rather than being accessed as an SCA device.
The goal of the next design step, illustrated in this section, is to modify the previous
waveform – specifically, the MODEM_USRP component – in order to access the
USRP through the OSSIE device interface.

4.4.1 Description

Figure 4.10 (page 72) illustrated the internal structure of the MODEM_USRP
component. The transmitter and receiver functionalities are separated, thus the
signal processing performed on the transmitter path is independent of the signal
processing on the receiver path. Therefore, this component was split into two OSSIE
components:

• MODULATOR: implementing the modulator path and the transmitter
path;

• DEMODULATOR: implementing the receiver path and the demodulator
path.

76 CHAPTER 4. ANALYSIS

Next, the usrp_sink_c and uspr_source_c components were removed from the
design, in their place the OSSIE interface for the USRP device was used. The
waveform to be implemented is illustrated below in figure 4.14.

CHAT MAC PHY

MODULATOR

DEMODULATOR U
S

R
P

Figure 4.14. MODULATOR and DEMODULATOR components in the target
waveform

The MODEM_USRP component was split into two components for two reasons:

• as seen in section 3.1, modularization makes possible the reuse of components;

• two different design methods were used in this thesis project. Here one
method will be illustrated for the the MODULATOR and the other one for
the DEMODULATOR.

4.4.2 MODULATOR component

The MODULATOR component implements both the modulator and the transmitter
path. The difference from the previous solution using the GNU Radio is that the
block usrp_sink_c must be removed and replaced with another sink; in this case
realized as a GNU Radio block implementing a queue. This queue works as a buffer
for the output signal (represented as a stream of pairs of shorts) to be sent via the
SCA device interface to the USRP. Figure 4.15 illustrates the internal structure
of the MODULATOR component. The symbol_sink component does not exist in
the GNU Radio standard library. Therefore, a GNU Radio library – mylib – was
created; the C++ block for the symbol_sink component was created and included
in mylib. The details of how this was done is described next.

4.4.2.1 How to write a signal processing block

The title of this paragraph refers to a guide available on the GNU Radio website
(see [5]) with the same title. As said in section 2.3, if you need to build a block
that is not (yet) available in the GNU Radio library, you have to create it. C++ is
the language used to create signal processing blocks in GNU Radio and the guide
describes the procedure to do so in detail.

4.4. THE OSSIE SOLUTION 77

MODULATOR
(OSSIE component)

ieee802_15_4.
ieee802_15_4_mod

gr.
multiply_const_cc

WorkModule
(GNU Radio top block)

frameIn
(OSSIE port, realChar)

signalOut
(OSSIE port, complexShort)

gr.
message_source

input buffer

mylib.
symbol_sink

output buffer

Figure 4.15. Internal structure of the MODULATOR component

To implement the component symbol_sink, the design of gr.message_sink was
adapted by making some changes:

1. the input port of symbol_sink is defined to be of type gr_complex in order
to receive the modulated signal;

2. the internal queue stores arrays of floating point numbers instead of strings;

3. a method – get_short_I_and_Q_vectors – allows the top block to retrieve
data from the queue;

4. the data returned by get_short_I_and_Q_vectors is an object of type
std::pair containing two vectors of shorts; therefore, it was necessary to write
some wrap code in order to make the SWIG library pass this object to the
top block as a Python tuple (I, Q).

This component was included in a library called mylib. Following the guide
[5] cited above, the mylib.i file was edited, then compiled. The symbol_sink
component, implemented as a Python module, can be called as mylib.symbol_sink
by importing mylib.

78 CHAPTER 4. ANALYSIS

4.4.2.2 Component structure

The MODULATOR component was designed as an OSSIE component with the
following properties:

1. Python implementation: by implementing it in Python, it is possible to write
Python code for interconnecting GNU Radio components;

2. OSSIE standard types for the ports: the input port must be able to receive
the PPDUs to be modulated, thus the input port was defined to use the type
realChar ; while the output port must be connected to the USRP interface,
hence it is defined as the type complexShort;

3. as shown in figure 4.15, the WorkModule class represents the GNU Radio top
level block and this class is derived from the class gr.top_block;

4. WorkModule, implementing a GNU Radio waveform, already includes input
and output queues to buffer data; therefore, no additional buffers are used in
the OSSIE component;

5. on receipt of a PPDU on the input port, this data is inserted into the
gr.message_source component; since the PPDU is represented as an array of
chars, a gr.message object is created calling the method gr.make_message_-
from_string and then inserted into the queue;

6. a thread inside WorkModule checks for available data in symbol_sink and a
callback function is used to pass this data to the output port.

4.4.2.3 Considerations

The method used to design the MODULATOR component is easy and flexible.
Once the custom library mylib was created, the sink/source components could be
instantiated in different waveforms, making it possible to use GNU Radio libraries
inside OSSIE components to perform signal processing. The DEMODULATOR
component was initially implemented in this way, therefore a symbol_source
component was also created and included in mylib. However, another method
to implement the DEMODULATOR will be illustrated in the next section.

The disadvantage of this method is that it reduces the portability of OSSIE
components. In fact, the implementation illustrated in this section for the MODU-
LATOR and DEMODULATOR components introduce the following dependencies:

• Python 2.5
• GNU Radio 3.2.2
• UCLA Zigbee PHY library
• mylib library

4.4. THE OSSIE SOLUTION 79

In order to be able to run this waveform, the platform must be configured with all
the libraries and programs listed above, in addition to the OSSIE distribution.

4.4.3 DEMODULATOR component

The development method illustrated in this section aims to increase the portability
of the OSSIE components, while still using GNU Radio libraries to perform signal
processing.

4.4.3.1 Description

For the definition of the interface, the considerations in the previous section are still
valid for this component:

• since the DEMODULATOR must be connected to the OSSIE device interface
for the USRP, the input port is defined to be of type complexShort.

• as the demodulated frames are represented as arrays of bytes, the output port
uses the realChar type.

Also the internal architecture (illustrated in figure 4.16) is similar to that shown in
the previous section. However, this OSSIE component was implemented in C++.
To generate the C++ interface the option basic ports was selected for compilation
(see section 3.4). Next we will described how to implement this component in C++.

DEMODULATOR
(OSSIE component)

fm_demodulation.h gr_pwr_squelch_cc.h

receiver_path
(C++ class)

frameOut
(OSSIE port, realChar)

signalIn
(OSSIE port, complexShort)

ucla_ieee802_15_4_
packet_sink.h

symbol_source.h

output buffer input buffer

Figure 4.16. Internal structure of the DEMODULATOR component

80 CHAPTER 4. ANALYSIS

4.4.3.2 GNU Radio C++ libraries

For the transmitter path in the MODULATOR component (previous section), the
standard approach for developing GNU Radio components was followed. The
basic processing blocks are implemented in C++ (for the MODULATOR, the
symbol_sink component) while higher layer blocks can be implemented in Python
to interconnect basic blocks (for example, the WorkModule class). The design of the
DEMODULATOR component does not require any Python code.

The GNU Radio library components can be used as C++ classes. The top-
block C++ class (<gnuradio/gr_top_block.h>) allows interconnecting library
components and implementing the waveform in C++. Eric Blossom’s guide “How
to write a signal processing block” [5] helps to understand smart pointers, which
are often used to instantiate C++ GNU radio blocks.

4.4.3.3 Component structure

In figure 4.16 the components symbol_source, gr_pwr_squelch_cc.h, and ucla_ieee802-
_15_4_packet_sink.h are already available, either because they are included in
the libraries or were designed in the previous steps. Therefore, the design of the
DEMODULATOR component focused on the component fm_demodulation.

In the target waveform, fm_demodulation replaces the library component
ieee802_15_4_demod, included in the UCLA Zigbee PHY library. Therefore, this
Python library had to be translated in C++, using the C++ classes for the GNU
Radio blocks. Then the component fm_modualtion was connect to the other
components inside receiver_path, the class that inherits from top_block.

Hence, the demodulation functionality was implemented in the receiver_path
class and could be instaciated and used within a C++ OSSIE component. The class
receiver_path provides a method that allows the DEMODULATOR class to insert
the received signal into a queue; while a thread running in the DEMODULATOR
component checks for available demodulated frames and passes them to the output
port.

4.4.3.4 Considerations

This approach to implementation requires only the standard GNU Radio library.
In fact, for compiling this component, only the library libgnuradio-core needs
to be linked. This is done by modifying the configuration file (configure.ac) in
the OSSIE project folder for the DEMODULATOR component. The changes to
the file configure.ac are shown in listing 4.1: the variables GNURADIO_HEADERS,
GNURADIO_LIBS, and GNURADIO_DEFINES must be manually added in order to allow
the compiler to link to the GNU Radio standard library.

4.4. THE OSSIE SOLUTION 81

� �
GNURADIO_HEADERS ="-I/usr/ local / include / gnuradio "
GNURADIO_LIBS ="-lgnuradio -core"
GNURADIO_DEFINES ="-DOMNITHREAD_POSIX "

export PKG_CONFIG_PATH =" $PKG_CONFIG_PATH :/ usr/ local /lib/ pkgconfig "
CXXFLAGS =" $CXXFLAGS $OSSIE_CFLAGS $GNURADIO_HEADERS $GNURADIO_DEFINES "
LIBS=" $LIBS $OSSIE_LIBS $GNURADIO_LIBS "
� �

Listing 4.1. Changes to the file configure.ac in the OSSIE project

Because GNU Radio is the only dependency for this OSSIE component, this
DEMODULATOR component can be compiled and run on any OSSIE platform
provided with GNU Radio2.

Another aspect of this solution is that the resulting OSSIE component is an
executable binary file and not a python module. The major reason why the
DEMODULATOR was designed with this method was to test if avoiding the use of
the Python interpreter would give better performance. The DEMODULATOR, in
fact, is directly connected to the USRP interface and receives the signal from the
ADC, which operates at a sampling rate of 64 Msps. See section 4.6 for further
information about this performance evaluation.

4.4.4 An alternative method

The thesis project designed and evaluated the target waveform following the
approaches presented in the previous sections. The goal of both the approaches
was to use the existing GNU Radio libraries to perform signal processing inside
OSSIE components. This is very useful since the current OSSIE library is, in
fact, small, when compared with the standard GNU Radio library; in addition,
the Comprehensive GNU Radio Archive Network (CGRAN) is a free open source
repository for third party GNU Radio applications that are not officially supported
by the GNU Radio project.

Section 4.6 presents the results of evaluation of the target waveform, using
several different configurations. In order to understand these results, it was useful
to evaluate a particular configuration, which used another component to implement
the modulation. This particular implementation avoided linking to any GNU Radio
library, thus the libraries for the IEEE 802.15.4 standard modulation were re-written
in C++. This section describes this method (effectively giving a third approach that
can be evaluated and compared to the two earlier approaches).

Re-implementing the modulation in C++ and debugging it took a long time
since the waveform developer needs to understand all the details of the signal pro-

2At the end of this thesis project, OSSIE 0.8.0 was released: the compatibility problem with
GNU Radio 3.2.2 had been fixed, thus OSSIE 0.8.0 and GNU Radio 3.2.2 can be installed on the
same platform.

82 CHAPTER 4. ANALYSIS

cessing. However, the time available for this thesis project was limited. Therefore,
only modulation was implemented with this method; the resulting component was
named FM_MODULATION and can be used in place of MODULATOR.

The compilation of FM_MODULATION does not need any external library
and produces an executable file about half the size of MODULATOR (C++
implementation with GNU Radio libraries). In comparison with figure 4.15,
gr.message_source and mylib.symbol_sink were removed, while the library
ieee802_15_4_mod (a python module, included in UCLA Zigbee PHY library) was
re-implemented in C++; and the component gr.multiply_const_cc was replaced
with a multiplication.

This design required less computational resources (in terms of both memory
and CPU cycles) since only one thread was running, to control the buffer on the
input port. Additionally, the code for this component can be compiled for use on
any OSSIE platform, because it does not need any external library (even not the
standard GNU Radio libraries). One of the clear conclusions from this effort was
that OSSIE library components should be implemented with this method, for the
benefit of performance and portability.

4.4.5 Simulation

Once the MODULATOR and DEMODULATOR components were ready, the
simulation waveform was configured and run in order to test the system for the
correct behaviour. The MODULATOR and DEMODULATOR components can
replace the MODEM_USRP component (see figure 4.14 at the beginning of this
section). The TEST component illustrated in section 4.1 was also used in this
simulation, as illustrated in figure 4.17.

MAC 1 PHY 1 MAC 2PHY 2
MODULATOR

DEMODULATOR

DEMODULATOR

MODULATOR

TEST

CH 1

CH 2

Figure 4.17. Waveform for testing MODULATOR and DEMODULATOR

4.4. THE OSSIE SOLUTION 83

The MODULATOR and DEMODULATOR components are interconnected through
the channel component, which has an input port and an output port, both of type
complexShort. This component is available in the standard OSSIE library and
simulates the wireless physical channel; in fact, it is possible to set parameters such
as added noise. Simulating the wireless physical channel makes it possible to deploy
the waveform on the GPP of the computer (in OSSIE, default_GPP_node) and to
test the MODULATOR and DEMODULATOR implementation without needing a
USRP.

4.4.6 A chat application

Finally, the target waveform that was illustrated in the beginning of this section
(figure 4.14 at page 76) was deployed on the OSSIE node default_GPP_USRP_node,
which accesses the USRP.

The USRP_commander is a component available in the standard OSSIE library;
it allows the waveform developer to configure and control the RF hardware on
the USRP. This functionality implements (partially) the management service for
the physical layer, as required by the IEEE 802.15.4 standard specification. This
component can be easily modified and other functions can be added in order to
satisfy all the requirements for the IEEE 802.15.4 management service for the
physical layer. The USRP_commander, combined with the WaveDash tool, allows
the waveform developer to control the waveform, by calling at runtime the configure
method to set the frequency and gain properties. The final waveform is illustrated
in figure 4.18.

CHAT MAC PHY

MODULATOR

DEMODULATOR U
S

R
P

USRP
commander

Figure 4.18. OSSIE waveform for the chat application

84 CHAPTER 4. ANALYSIS

4.5 The TUN/TAP functionality

In chapter 3, when the goals of this thesis project were presented, the target
waveform included two additional components, the LINK and the TUN/TAP
components.

4.5.1 Description

TAP (as in network tap) emulates an Ethernet interface and it operates with layer 2
packets such as Ethernet frames. TUN (as in network TUNnel) emulates a network
layer interface, by operating on layer 3 packets (such as IP packets). TAP can be
used to create a network bridge, while TUN can be used together with routing (i.e.,
you can route packets to a TUN instance the same way that you can route them to
an other network destination).

In this thesis project, TAP was used to implement tunneling of Ethernet frames
over a point-to-point connection between two USRPs. More specifically we have
used the IEEE 802.15.4 standard protocol to realize radio communication between
two TAP interfaces (thus effectively building a IEEE 802.15.4 bridge – but without
the computation of the bridge topology).

4.5.2 The TAP component

In order to determine the maximum size of the data payload in a IEEE 802.15.4
MPDU, a waveform designer must take into account the following considerations:

• according to the IEEE 802.15.4 standard specification, the maximum MAC
frame size is 127 bytes (as described in section 4.2 the frame length field in
the physical header of a PPDU is represented on 7 bits);

• the standard MPDU header fields and the checksum field require 5 bytes;

• within the MAC frame, the addressing fields have variable length: as a design
choice in this project, only the source and destination fields were used and
each address was represented using 2 bytes, thus 4 bytes were required for the
addressing fields (for the MAC frame structure, see table 4.1 at page 59).

Therefore, in the target waveform, the maximum MPDU payload size is 127 - 5 - 4
= 118 bytes. Since TAP works with Ethernet frames and the maximum size of an
Ethernet frame is 1518 bytes, each Ethernet frame can require up to 13 MPDUs in
order to be transmitted through the USRP.

The original idea was to use two different components, the LINK component
and the TUN/TAP component. However, the functionality of the LINK component
in the target waveform was limited to splitting Ethernet frames into a set of smaller

4.5. THE TUN/TAP FUNCTIONALITY 85

frames and doing re-assembly at the receiver. Since the transmission of each
MPDU requires a CORBA call to the MAC layer, the LINK component would have
introduced additional CORBA overhead without offering any advantage. Given
these considerations and in order to reduce the complexity of the target waveform,
the TAP functionality and the splitting Ethernet frames were implemented in the
same OSSIE component, in this case the TAP component. Hence this augmented
TAP component was connected directly to the MAC layer component.

4.5.3 Simulation

In order to test the correct implementation of the TAP component, the waveform
illustrated in figure 4.19 was deployed. This waveform can run on the GPP node
and does not need any USRP, since the physical radio channel is emulated by the
channel component.

MAC 1 PHY 1 MAC 2PHY 2

MODULATOR

DEMODULATOR

DEMODULATOR

MODULATOR

CH 1

CH 2

TAP 1 TAP 2

Figure 4.19. Waveform used to test the TAP component

An IP address must be specified for each TAP network interface. This address
allows the TAP interface to be reached by other applications. For testing purposes
the component TAP1 was configured with the IP address 192.168.0.1 and TAP2
with 192.168.0.2. The connection between the two TAP components was tested
with the ping program. By executing ‘‘ping 192.168.0.1’’ it was possible to
verify that the IP packets were received on TAP2. Similarly, by executing ‘‘ping
192.168.0.2’’ the internet control message protocol (ICMP) packets were received
on the TAP interface of component TAP1.

The ping program generates ICMP requests encapsulated in IP packets and
sends them to the IP address 192.168.0.1 which causes them to be sent to the
virtual network device created by component TAP1. The TAP interface allows the
TAP component to read this data from the user memory space. Since TAP is a
layer 2 network interface, Ethernet frames are read from the TAP interface; as seen
above, these frames are then split into smaller frames to fit a MPDU and sent to
the MAC layer interface. The (emulated) radio connection between the two TAP
components allows the TAP2 component to receive the ICMP packets.

Referring to the semantics of the MAC request call in table 4.1.2.2 on page 60,
the sub-frame number can be specified in the msduHandle argument. Thus, a future
improvement could do Automatic Repeat-reQuest (ARQ) with retransmission of the
sub-frames rather than having to retransmit the full frame.

86 CHAPTER 4. ANALYSIS

4.5.4 The waveform

Once the implementation was successfully tested, the channel component was
replaced by the physical radio channel between two USRPs. Figure 4.20 shows
the configuration of the target waveform.

MAC 1 PHY 1TAP 1 USRP
MODEM 1 MAC 1PHY 2 TAP 2USRP

MODEM 2

Figure 4.20. The target waveform with the TAP component

4.6 Results

Each design step described in the previous sections produced a OSSIE component
to be added to the target waveform. After being designed and implemented,
each component was then simulated, which could be done using only the GPP,
i.e., without any RF hardware; as the channel component made it possible to
simulate the physical wireless channel. Once the correct behaviour of the waveform
components had been verified, the target waveform could be deployed upon the
USRP.

4.6.1 The GNU Radio solution

4.6.1.1 The development method

The target waveform was first implemented using the MODEM_USRP component
to modulate the signal and to access the USRP. The method for importing and
using GNU Radio libraries within an OSSIE component was simple and easy to
apply to the target waveform. This solution also made it possible, in the beginning
of this thesis project, to solve the compatibility issues between OSSIE 0.7.4 and
GNU Radio 3.2.2 (see secion 3.2).

This method is flexible and can be applied to other GNU Radio waveforms. The
practical result was a running OSSIE waveform in a short time. The OSSIE chat
waveform, in fact, could communicate with the GNU Radio chat waveform, using
the configuration described in the end of section 4.3.

The MODEM_USRP component was also used with the TAP component in
order to implement the point-to-point radio connection between two TAP interfaces
(the configuration is illustrated in figure 4.20): the resulting waveform worked as
expected.

4.6. RESULTS 87

4.6.1.2 The GNU Radio framework

The ease of development is not the only advantage of this solution:

• Accessing the USRP within the same component that modulates/demodulates
the signal requires fewer CORBA calls, thus requiring less CPU and memory
resources.

• The top_block class implements data transfer synchronization and realtime
scheduling for the USRP source/sink component and the demodulator/de-
modulator component.

The last point is very important, for SDR development. In the MODEM_USRP
solution, the USRP sink/source block and the MODEM block run within the
top_block class and the GNU Radio framework hides the low level implementation
details of the real-time scheduling. The waveform developer only has to call
the connect method to interconnect the subcomponents within the top_block
component.

Each GNU Radio block defines a work function that operates on its input to
produce output streams. In order to help the scheduler to decide when to call the
work function, blocks also provide forecast functions that tell the runtime system
the number of input items it requires to produce a number of output items and
how many output items it can produce given a number of input items. At runtime,
blocks tell the system how many input (output) items they consumed (produced).
Blocks may consume data on each input stream at a different rate, but all output
streams must produce data at the same rate.

The connect function specifies how the output stream(s) of a processing
block connects to the input stream of one or more downstream blocks. A key
function during flow graph construction is the allocation of data buffers to connect
neighboring blocks. The buffer allocation algorithm considers the input and output
block sizes used by blocks and the relative rate at which blocks consume and produce
items on their input and output streams. The flowgraph is then implemented as
a single thread that loops over all the blocks in the graph, executing each block
sequentially until all the data has been consumed.

However, GNU Radio is not designed to work in packet mode, rather the
scheduler is designed to operate on continuous data streams. This, of course, is not
a good fit for the packet oriented protocol implemented in this thesis project. In [9]
Rahul Dhar, et al., report their experience of adding a Carrier Sense Multiple Access
with Collision Avoidance (CSMA/CA) MAC protocol to GNU Radio: “GNU Radio
was designed to support signal processing on continuous data streams. There is no
concept of (fixed or variable sized) packets or frames. The stream-centric design is
most prominent in the flowgraph mechanisms, specifically buffer management and
scheduling”.

88 CHAPTER 4. ANALYSIS

4.6.2 The OSSIE solution

4.6.2.1 The development method

SCA allows the waveform developer to structure a waveform and implement each
function in a different component. Within each component, it is possible to
instanciate the GNU Radio top_block class and interconnect different subcom-
ponents: hence, the functionality implemented by an OSSIE component can be
de-composed into a GNU Radio flowgraph. Since each GNU Radio flowgraph
represents one processing thread, flowgraphs within different OSSIE components
will be independent threads with separate scheduling.

The possibility to define custom interfaces makes it easy to implement a
communication protocol, because IDL allows the waveform developer to define both
new methods and data types. Thus, given a communication protocol based on
the OSI model, each layer can be implemented as a SCA component. For each
component, a custom interface is defined; the methods available on this interface
represent the functions exported to the upper layer.

OSSIE supports Python and C++ implementations, however other languages
can be used to implement SCA components. CORBA, in fact, makes it possible to
interconnect components written in different languages. The advantage of OSSIE,
from this point of view, is that it is possible to rapidly develop a waveform prototype
using Python; once the design is verified, then the Python implementation can be
translated in C++ in order to improve performance.

4.6.2.2 Simulation

Before deploying the target waveform, the MODULATOR and DEMODULATOR
components were simulated (see figure 4.17 at page 82). This design phase made
it possible to debug the waveform components. The most common problem for
the MODULATOR and DEMODULATOR components was memory leaks. When
started the waveform could run, but after a while (depending on the transmitter’s
rate) the waveform crashed. It was possible to observe (for example by running the
program “top” in a shell) the memory usage for each OSSIE component, since each
component runs in a separate thread.

Another kind of problem concerned the buffers. Both input and output ports
use buffers to make up for possible delays in CORBA calls. However, in a SCA
waveform the processing blocks are independent from each other. Since the data
transfer is implemented by CORBA, there is no synchronization between the blocks.
Therefore, unbounded buffers should be avoided, because they would cause a high
rate processing thread to never release the CPU.

The simulation of the modulation scheme and of the TAP functionality showed
that OSSIE is a useful tool for prototyping and learning about SCA waveforms. The

4.6. RESULTS 89

channel component made it possible to simulate the radio channel and deploy the
whole waveform (transmitter and receiver) on a GPP (i.e., on a PC). The WaveDash
utility makes it possible to configure the waveform at runtime, for example to
analyze the behaviour by changing the data transmission rate.

4.6.2.3 The USRP OSSIE device

Using the OSSIE interface for the USRP device turned out to be challenging.
The waveform illustrated in figure 4.18 did not work as expected. In fact, only
a few messages could be correctly received and demodulated, depending on the
transmission rate. In order to understand the problem, different configurations
were deployed. The parameters that were modified in each configuration were:

• buffer size: the symbol_sink has a queue for buffering the data to be sent
to the USRP, while the symbol_source component has a queue to store the
received signal;

• transmitter rate: a component was designed, to generate PPDUs at a
constant rate;

• receiver packet size: this parameter can be set by the USRP_Commander
component and determines how many bytes must be read from the USRP
buffer (it must be a multiple of 512 bytes);

Since the OSSIE framework ran over Ubuntu, other parameters affected the
waveform execution. In fact, the waveform components run on the GPP together
with other user applications, such as the X Window System, the Java Virtual
Machine (JVM) runtime, Eclipse, etc.

This problem seemed not to depend on the implementation of the MODULA-
TOR and DEMODULATOR components. Section 4.4.4 illustrated an alternative
implementation for the modulation, which did not use any GNU Radio library.
Even using this component, the waveform presented the same undesired behaviour.
Because of the poor transmission capabilities of this waveform, the TUN/TAP
functionality could not be implemented in this configuration.

4.6.2.4 The OSSIE framework

Using the device interface for sending/receiving data from the USRP seems to imply
that the problem is due to making CORBA calls to transfer data (arrays of shorts)
between the modulator/demodulator component and the USRP interface. However,
this should not be a problem since CORBA uses shared memory to implement local
invocations. The configuration file for omniORB – the CORBA framework used by
OSSIE – allows the user to set a priority for the transport rules (by default, the

90 CHAPTER 4. ANALYSIS

local filesystem is used, without using TCP/IP). This may mean that the problem
is due to the thread scheduling.

A result was that by using a high transmission rate, the signal could be received
and correctly demodulated. While in GNU Radio the top_block class is in charge
of synchronizing the data transfer between components, the processing threads for
OSSIE components are suspended when no data is available on the input ports, but
are reactivated when new data is received. Another difference is that the GNU Radio
flowgraph is implemented as a single thread, while in OSSIE waveforms several
threads run in parallel, at least one for each component.

R. Dhar, et al., had a similar problem with implementing a MAC layer in GNU
Radio: “We observed during test runs that the first frame was always transferred
correctly while later frames were often corrupted. We discovered that this problem
was caused by the basic TX cards. Since the cards were designed for stream-
oriented communication, they continue to transmit, even after all the data in the
USRP transmit queue has been sent. This transmission interferes with later frame
transmissions by other nodes, often resulting in the corruption of those frames”[9].

4.6.3 PHY/MAC design in SDR

Both GNU Radio and OSSIE are designed to operate in stream mode and it is
difficult to develop waveforms for transmitting packets. In fact, traditional SDRs
receive a stream of samples from the RF hardware, captured at a specific decimation
rate. The radio hardware (in this project, the USRP) cannot determine when
packets for the destination MAC layer will arrive; as a result, the radio must remain
in receiving state. The downside of this solution is that the demodulation process
uses significant memory and processor resources despite the low rate of incoming
packets. Thus, the solution to the problem would be to implement a packet mode
for both GNU Radio and OSSIE.

Another solution would be to use the split-functionality approach for SDR
development – proposed by George Nychis in [17], in opposition to the host-
based approach, such as GNU Radio. While the host-based approach implements
everything on the GPP of the host computer, the split-functionality approach is
based on the principle that a set of core MAC functions must be implemented on
the radio hardware for performance and efficiency reasons, while mantaining control
on the host CPU through an API.

The goal of this solution is to achive fast-packet recognition at the radio
hardware in order to demodulate only when necessary (CPU intensive); fast-packet
recognition can also be used to trigger pre-modulated dependent packets, such as
ACK messages. “Our results show three orders of magnitude greater precision for
the scheduling of packets and carrier sense, along with a high level of accuracy in
fast packet detection”, compared with a GNU Radio implementation of the same
MAC layer [17].

4.6. RESULTS 91

4.6.4 Measurements

The target waveform did not work as expected when using the OSSIE interface for
the USRP, but worked using GNU Radio to access the USRP. In order to understand
the reason for this undesired behaviour, some measurements were made on both the
GNU Radio waveform and the OSSIE waveform. Only the results for the receiver
path are considered in this section because the demodulation of the received signal
is the most CPU intensive function in the waveform.

The goal is to evaluate the rate of read operations from the USRP buffer,
thus calculating the input data rate for the demodulator path. This was done by
measuring the delay between two successive read operations from the USRP buffer
– the physical buffer, on the USRP hardware. The measurements were done using
the function gettimeofday, available in the library time.h. This function returns
the absolute time with precision of microseconds. Note that it was not needed to
make an exact measurement (for this purpose, a tool like oprofile would have been
used), while to compare the OSSIE and the GNU Radio implementations.

The GNU Radio implementation of the chat application accessed the USRP
through the component usrp_source_c. This component is derived from the class
usrp_basic_source, which internally calls the read method of the USRP driver
to read data from the USRP buffer. The read function is called within the work
method of the usrp_basic_source class, hence the GNU Radio scheduler is in
charge of calling this method.

The OSSIE implementation accesses the USRP through the OSSIE interface.
This interface uses a separate thread to read data from the USRP buffer. The
receiver thread is always running and its execution is independent of the other
components in the waveform. Within this thread, the same read method is called,
since OSSIE uses the GNU Radio driver to access the USRP.

This test was run using a Pentium M processor with clock speed of 1.73 GHz
and 1 GB RAM. The results show the following average input data rate for the
receiver path in the waveform.

Table 4.4. Input data rate for the receiver path

GNU Radio OSSIE
Data rate 8 MB/s 15.3 MB/s

4.6.4.1 Data transfer size

The plot in figure 4.21 shows that the number of bytes read from the USRP is
constant in OSSIE: this value is specified in the packet_size option of the component
USRP_commander, which is in charge of controlling the RF hardware on the USRP.

92 CHAPTER 4. ANALYSIS

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

61
62

63
64

65
66

67
68

69
70

71
72

73
74

75
76

77
78

79
80

81
82

83
84

85
86

87
88

89
90

91
92

93
94

95
96

97
98

99
100

101

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Size of data read from the USRP OSSIE receiver

Experiment number

D
at

a
tra

ns
fe

r s
iz

e
(b

yt
es

)

Figure 4.21. Data transfer size for the USRP (OSSIE implementation)

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

61
62

63
64

65
66

67
68

69
70

71
72

73
74

75
76

77
78

79
80

81
82

83
84

85
86

87
88

89
90

91
92

93
94

95
96

97
98

99
100

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Size of the data read from the USRP GNU Radio receiver

Experiment number

D
at

a
tra

ns
fe

r s
iz

e
(b

yt
es

)

Figure 4.22. Data transfer size for the USRP (GNU Radio implementation)

In the GNU Radio implementation, instead, the data transfer size is variable,
since it is calculated at runtime by the GNU Radio scheduler, according to the
buffer availability. Note that the data size can assume only four different values:
2048 KB, 4096 KB, 14336 KB, and 16384 KB. The plot in figure 4.22 also shows
the average value, that is 12844 KB.

4.6. RESULTS 93

4.6.4.2 Data transfer delay

The average data transfer delay in the OSSIE receiver is 1 ms and the plot in figure
4.23 shows the measurements made in this test. These measurements indicate that
the data transfer delay was almost constant during the test.

0 20 40 60 80 100 120 140 160 180 200

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Delay between successive read operations OSSIE receiver

Experiment number

D
at

a
tra

ns
fe

r d
el

ay
 (m

ic
ro

se
co

nd
s)

Figure 4.23. Data transfer delay for the USRP (OSSIE implementation)

0 20 40 60 80 100 120 140 160 180 200

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Delay between successive read operations GNU Radio receiver

Experiment number

D
at

a
tra

ns
fe

r d
el

ay
 (m

ic
ro

se
co

nd
s)

Figure 4.24. Data transfer delay for the USRP (GNU Radio implementation)

The plot in figure 4.24 shows the measurements of the data transfer delay for
the GNU Radio implementation. There are two differences between the OSSIE and

94 CHAPTER 4. ANALYSIS

the GNU Radio receiver:

• The average value of the data transfer delay for the GNU Radio receiver (1.5
ms) is higher than in OSSIE (1 ms).

• The distribution of the measurements is uniform in OSSIE, since the data
transfer delay is almost constant; while in GNU Radio the data transfer delay
has an higher variance from the average value.

As described earlier, a GNU Radio flowgraph is a single processing thread and there
are synchronization techniques for intercomponent communication. Therefore the
delay between two read operations depends not only on the time required to access
the USRP (via USB) but also on the GNU Radio scheduling.

In the OSSIE receiver, the delay between two read operations depends (i) on the
CORBA delay to send the data to the next component (in charge of demodulating
the signal), (ii) on the time required to read data from the USRP buffer, and (iii)
on the scheduling of the threads on the CPU. However, the second parameter is the
same for both OSSIE and GNU Radio, thus it does not have to be considered; while
the CORBA delay is minimal compared to the data processing performed within
the components, since in this test CORBA uses Unix domain sockets to transfer
data.

Thus, the main difference between the two implementations seems to be the
scheduling algorithm: in fact, the GNU Radio scheduler considers at runtime the
buffer availability between all the components in a flowgraph and calculates the
optimal data transfer size; while in OSSIE there is not any scheduler, thus the
OSSIE receiver uses a separate thread to read data from the USRP, which has
a scheduling independent of the other components in the waveform. This allows
OSSIE waveforms to have an higher data transfer rate but at the same time may
cause some problems because of the lack of synchronization.

Chapter 5

Conclusions and Future Work

5.1 Conclusions

Both GNU Radio and OSSIE are free toolkits for developping SDR applications.
Both include a framework which provides the waveform developer a high level
interface making it possible to develop a waveform by interconnecting library
components; both GNU Radio and OSSIE include graphical tools for doing this.

However, the waveform developer needs in some cases to understand how the
SDR framework works, since some unexpected problems may occur. In this thesis
project, the goal was to use a USRP for sending and receiving an IEEE 802.15.4
frame as an RF signal. The target waveform was successfully realized using GNU
Radio to connect the USRP device component to the modulator/demodulator
component: the waveform implemented a radio point-to-point connection between
two TAP interfaces, as illustrated in figure 4.20 at page 86. Unfortunatly,
the OSSIE device interface for the USRP could not be used to realize the
same waveform: the lack of synchronization between the USRP interface and
the demodulator/modulator component was considered to be the reason for the
unexpected behaviour of the waveform.

This thesis showed a general method for implementing a OSI-based communica-
tion protocol in OSSIE. SCA allows the waveform developer to create a component
for each OSI layer. Internally, a GNU Radio block can be instanciated and
connected to the ports of the OSSIE component. Hence, several subcomponents
can be connected together to implement a more complex functionality, for example
modulation and demodulation of the signal. The advantage is that it is possible
to use existing GNU Radio components, thus making the OSSIE waveform
development more rapid.

At the same time, portability – one of the key features of SCA – is still
guaranteed: as shown in this report, the only requirement to run the target
waveform is a platform configured with the OSSIE framework and the standard

95

96 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

GNU Radio library. The latest OSSIE package, released at the time of the end of
this thesis project, is fully compatible with the latest GNU Radio distribution.

OSSIE is a young open-source project, thus it lacks the documentation and
library components of more mature projects (such as GNU Radio). As a result
these represent the main obstacles to waveform development. The aim of this
thesis project was to explore an alternative method of implementation, by using
GNU Radio libraries within OSSIE components to leverage the existing GNU Radio
libraries. This should hopefully contribute to the OSSIE project and help waveform
developers new to OSSIE.

5.2 Future Work

The initial directives for this thesis project where not restrictive, the goal was to
evaluate the OSSIE toolkit by implementing a prototype waveform. Thus, the
design was carried out in order to achieve a flexible solution and to explore methods
of developing waveforms, which would allow a designer to implement any other
waveform. Specially, the waveform design took into account existing GNU Radio
solutions and used existing GNU Radio blocks within OSSIE components.

Another approach to the design would have been to implement the components
needed for the target waveform without using any existing library. This would
have been a valuable attempt to provide the OSSIE library with new components.
Such an addition would be valuable as the OSSIE library is much smaller than
the GNU Radio library, therefore as of today waveform development is more rapid
in GNU Radio. The GNU Radio library was used to guide an implementation of
a modulation scheme directly in C++ for OSSIE: it took longer to implement the
modulation algorithm in this way, since the waveform developer needs to understand
all the signal processing details. However, the resulting executable file was half the
size of the equivalent GNU Radio component and needed only one processing thread.

A lot of time was spent in trying to fix the initial compatibility problem between
OSSIE 0.7.4 and GNU Radio 3.2. However, the OSSIE developer team provided
a patch to make OSSIE 0.7.4 work with GNU Radio 3.2. Lots of effort was also
dedicated to understanding the reason for the problem with the OSSIE interface for
the USRP. This problem required studying the source files for the USRP for both
OSSIE and GNU Radio and examining the differences between them. Instead of
spending time to understand the details of OSSIE and GNU Radio, this time could
have been spent on the MAC layer and the management service described in the
IEEE 802.15.4-2006 standard.

In the end of this thesis project, OSSIE version 0.8.0 was released by the
OSSIE team. A continuation of this project sould first analyze any improvement
in the OSSIE toolkit and trying to use the USRP interface provided by this new
distribution.

Bibliography

[1] David Ascher. Dynamic languages: ready for the next challenges, by design.
ActiveState, July 2004.

[2] P. Balister, M. Robert, and J. Reed. Impact of the use of CORBA for
intercomponent communication in SCA based radio. In SDR Forum Technical
Conference, Orlando, Florida, USA, November 2006.

[3] Philip Balister. A software defined radio implemented using the OSSIE
core framework deployed on a TI OMAP processor. Master’s thesis,
Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA,
December 2007.

[4] John Bard and Vincent J. Koverik Jr. Software Desined Radio: the Software
Communication Architecture. John Wiley and Sons, April 2007. ISBN 978-
0470865187. 462 pages.

[5] Eric Blossom. How to Write a Signal Processing Block. GNU Radio, July 2006.
URL http://gnuradio.org/redmine/wiki/gnuradio.

[6] Matt Carrick, Drew Cormier, Christopher Covington, Carl B. Dietrich, Joseph
Gaeddert, Benjamin Hilburn, C. Ian Phelps, Shereef Sayed, Deepan Seeralan,
Jason Snyder, and Haris Volos. OSSIE 0.7.4 Installation and User Guide,
September 2009. URL http://ossie.wireless.vt.edu.

[7] Jacob A. DePriest. A practical approach to rapid prototyping of SCA
waveforms. Master’s thesis, Virginia Polytechnic Institute and State University,
Blacksburg, Virginia, USA, April 2006.

[8] A. Devlic, A. Graf, P. Barone, A. Mamelli, and A. Karapantelakis. Evaluation
of context distribution methods via Bluetooth and WLAN: Insights gained
while examining battery power consumption. In Fifth Annual International
Conference on Mobile and Ubiquitous Systems: Computing, Networking and
Services (MobiQuitous 2008), July 2008. Dublin, Ireland.

[9] Rahul Dhar, Gesly George, Amit Malani, and Peter Steenkiste. Supporting
integrated MAC and PHY software development for the USRP SDR. In

97

http://gnuradio.org/redmine/wiki/gnuradio
http://ossie.wireless.vt.edu

98 BIBLIOGRAPHY

1st IEEE Workshop on Networking Technologies for Software Defined Radio
Networks, September 2006.

[10] Matt Ettus. USRP family brochure. Ettus Research. http://www.ettus.com.

[11] B. Foster and F. Andreasen. Basic media gateway control protocol MGCP
packages. Technical Report 3660, IETF, Network Working Group, December
2003. Request for Comments.

[12] José A. Gutiérrez, Edgar H. Callaway Jr., and Raymond L. Barrett Jt. Low-
Rate Wireless Personal Area Networks. Institute of Electrical & Electronics
Engineers (IEEE), November 2003. ISBN 978-0738135571.

[13] Michael Ihde, Philip Balister, and Shereef Sayed. How should assembly
controller start other components. URL http://listserv.vt.edu/archives/
open-source.html. OSSIE-discuss forum, September 2009.

[14] Joseph Mitola III. Software radios survey, critical evaluation and future
directions. In IEEE National Telesystems Conference, Washington, DC, USA,
May 1992.

[15] Alaelddin Mohammed. Studying media access and control protocols. Master’s
thesis, Royal Institute of Technology (KTH), School of Information and
Communication Technology, Stockholm, Sweden, November 2009.

[16] James Neel. Simulation of an implementation and evaluation of the layered
radio architecture. Master’s thesis, Virginia Polytechnic Institute and State
University, Blacksburg, Virginia, USA, December 2002.

[17] George Nychis, Thibaud Hottelier, Zhuocheng Yang, Srinivasan Seshan, and
Peter Steenkiste. Enabling MAC protocol implementations on software-defined
radios. In NSDI’09: Proceedings of the 6th USENIX symposium on Networked
systems design and implementation, number 10.1109/VETECS.2007.18, pages
91–105, Berkeley, CA, USA, 2009. USENIX Association.

[18] Eric S. Raymond. The Cathedral & the Bazaar: Musings on Linux and Open
Source by an Accidental Revolutionary. O’Reilly Media, 1st edition, January
2001. ISBN-10: 0596001088 and ISBN-13: 978-0596001087.

[19] Max Robert, Shereef Sayed, Carlos Aguayo, Rekha Menon, Karthik Channak,
Chris Vander Valk, Craig Neely, Tom Tsou, Jay Mandeville, and Jeffrey H.
Reed. OSSIE: Open source SCA for researchers. SDR Forum Technical
Conference, 47, 2004.

[20] Thomas Schmid. The UCLA Zigbee PHY library. The Comprehensive GNU
Radio Archive Network (CGRAN). http://www.cgran.org/wiki/UCLAZigBee.

http://listserv.vt.edu/archives/open-source.html
http://listserv.vt.edu/archives/open-source.html

99

[21] Thomas Schmid. GNU Radio 802.15.4 En- and Decoding. NESL Technical
Report, September 2006. University of California, Los Angeles, USA.

[22] Douglas C. Schmidt, Nanbor Wang, and Steve Vinoski. Object Interconnections
- Collocation Optimizations for CORBA. SIGS C++ Report magazine,
September 1999.

[23] Deepan N. Seeralan, Stephen Edwards, and Carl Dietrich. The Waveform
DashBoard: An interactively configurable GUI for prototype SCA-based SDR
waveforms. In SDR’09 Technical Conference and Product Exposition, December
2009. Washington, DC.

[24] IEEE Computer Society. IEEE std 802.15.4-2006. IEEE standard, Institute of
Electrical & Electronics Engineers (IEEE), June 2006.

[25] Thomas Sundquist. Waveform development using software defined radio.
Master’s thesis, Linköping Universitet, Linköping, Sweden, April 2006.

[26] T. Tsou, P. Balister, and J. Reed. Latency profiling for SCA software radio. In
SDR Forum Technical Conference, Denver, CO, November 2007.

[27] T. Ulversøy and J. Olavsson Neset. On workload in an SCA-based system,
with varying component and data packet sizes. In Papers presented at the
RTO Information Systems Technology Panel (IST) Symposium held in Prague,
Czech Republic, on 21-22 April 2008, number RTO-MP-IST-083 AC/323(IST-
083)TP/221. NATO Research and Technology Organisation, July 2008. ISBN
978-92-837-0065-4.

[28] Jongwon Yoon, Hyogon Kim, and Jeong-Gil Ko. Data fragmentation scheme
in IEEE 802.15.4 wireless sensor networks. In IEEE 65th Vehicular Technology
Conference, 2007, number 10.1109/VETECS.2007.18, pages 26–30. VTC2007-
Spring, April 2007. ISBN 1-4244-0266-2.

Appendix A

Acronyms and Abbreviations

ADC Analog to Digital Converter
CF Core Framework
CGRAN Comprehensive GNU Radio Archive Network
CORBA Common Object Request Broker Architecture
CPU Central Procesing Unit
DAC Digital to Analog Converter
DSSS Direct Sequence Spread Spectrum
EDA European Defence Agency
ESSOR European Secure Software Defined Radio
FCS Frame Check Sequence
FIFO First In First Out
FM Frequency Modulation
FPGA Field Programmable Gate Array
GUI Graphical User Interface
ICMP Internet Control Message Protocol
ICT Information and Communication Technology
IDL Interface Description Language
ISO International Organization for Standardization
GIOP General Inter-ORB Protocol
GNU GNU is Not Unix
GPP General Purpose Processor
GSM Global System for Mobile communications
GSPS GigaSamples Per Second
IEEE Institute of Electrical and Electronics Engineers
JTRS Joint Tactical Radio System
LAN Local Area Network
LLC Local Link Layer
LR-PAN Low Rate Personal Area Network
MAC Media Access Control

101

102 APPENDIX A. ACRONYMS AND ABBREVIATIONS

MCPS MAC Common Part Sublayer
MFR MAC FooteR
MHR MAC HeadeR
MLME MAC sublayer management entity
MPDU MAC Protocol Data Unit
MSDU MAC Service Data Unit
MSPS MegaSamples Per Second
OE Operating Environment
OQPSK Offset Quadrature Phase-Shift Keying
ORB Object Request Broker
OSI Open Systems Interconnection
OSSIE Open Source SCA Implementation - Embedded
PAN Personal Area Network
PC Personal Computer
PD-SAP Physical layer Data - Service Access Point
PHR Physical HeadeR
PLME Physical Layer Management Entity
PPDU PHY Protocol Data Unit
POS Personal Operating Space
QoS Quality of Service
RAM Random Access Memory
RF Radio Frequency
SAP Service Access Point
SCA Software Communications Architecture
SDR Software Defined Radio
SFD Start-of-Frame Delimiter
SoC System on Chip
SFDR Spurious-Free Dynamic Range
SHR Synchronization HeadeR
SPDU SSCS Protocol Data Units
SSCS Service-Specific Convergence Sublayer
SWIG Simplified Wrapper and Interface Generator
USB Universal Serial Bus
USRP Universal Software Radio Peripheral
VHDL VHSIC Hardware Description Language
VHSIC Very-High-Speed Integrated Circuit
WCDMA Wideband Code-Division Multiple-Access
WLAN Wireless Local Area Network
WPAN Wireless Personal Area Network
XML eXtensible Markup Language

Appendix B

Standard OSSIE component structure

Source file MyComponent.py� �
#! / usr /bin /env python

’’’
/**

Copyright 2009 by your_name_or_organization , all rights reserved .

**/

’’’

from omniORB import CORBA
from omniORB import URI
import CosNaming
from ossie . standardinterfaces import standardInterfaces__POA
from ossie . custominterfaces import customInterfaces__POA
from ossie .cf import CF , CF__POA
import sys

import WorkModule # module found in the component directory .
this module is where the main processing
thread resides .

import threading
import time # primarily availble for time . sleep () statements

MyComponent_i class definition (main component class)

class MyComponent_i (CF__POA . Resource):

def __init__ (self , uuid , label , poa):
CF. _objref_Resource . __init__ (self. _this ())
print " MyComponent_i __init__ : " + label
self. naming_service_name = label
self.poa = poa

self. inPort0_servant = dataIn_complexShort_i (self , " dataIn ")
self. inPort0_var = self. inPort0_servant . _this ()

self. outPort0_servant = dataOut_realChar_i (self , " dataOut ")
self. outPort0_var = self. outPort0_servant . _this ()

103

104 APPENDIX B. STANDARD OSSIE COMPONENT STRUCTURE

self. WorkModule_created = False

self. propertySet = []
self. work_mod = None

def start (self):
print " MyComponent start called "

def stop(self):
print " MyComponent stop called "

def getPort (self , id):
if str(id) == " dataIn ":

return self. inPort0_var
if str(id) == " dataOut ":

return self. outPort0_var

return None # port not found in available ports list

def initialize (self):
print " MyComponent initialize called "

def configure (self , props):
’’’ The configure method is called twice by the framework :
once to read the default properties in the component .prf
file , and once to read the component instance properties
storred in the waveform .sad file. This method should be
called before the start method . This method is where
the properties are read in by the component .
’’’

print " MyComponent configure called "
buffer_size = 0

for property in props :
if property not in self. propertySet :

self. propertySet . append (property)
if property .id == ’DCE :4 f047ae2 -cad1 -11de -b541 -00014 ac5c4dc ’:

self. prop1 = int(property . value . value ())
if property not in self. propertySet :

self. propertySet . append (property)
if property .id == ’DCE :638 b6fca -cad1 -11de -b541 -00014 ac5c4dc ’:

self. prop2 = float (property . value . value ())

make sure that only one WorkModule thread is started ,
even if configure method is called more than once
if not self. WorkModule_created :

self. work_mod = WorkModule . WorkClass (self , buffer_size)
self. WorkModule_created = True

def query (self , props):
return self. propertySet

def releaseObject (self):
release the main work module
self. work_mod . Release ()

release the main process threads for the ports
self. outPort0_servant . releasePort ()

deactivate the ports

105

iid0 = self.poa. reference_to_id (self. inPort0_var)
oid0 = self.poa. reference_to_id (self. outPort0_var)

self.poa. deactivate_object (iid0)
self.poa. deactivate_object (oid0)

--
dataIn_realChar_i class definition
--
class dataIn_realChar_i (standardInterfaces__POA . realChar):

def __init__ (self , parent , name):
self. parent = parent
self.name = name

WARNING : I and Q may have to be changed depending on what data you
are receiving (e.g., bytesIn for realChar)
def pushPacket (self , I, Q):

self. parent . work_mod . AddData (I, Q)

--
dataOut_realChar_i class definition
--
class dataOut_realChar_i (CF__POA .Port):

def __init__ (self , parent , name):
self. parent = parent
self. outPorts = {}
self.name = name
self. active = False

self. data_buffer = []
self. data_event = threading . Event ()
self. data_buffer_lock = threading .Lock ()

self. is_running = True
self. process_thread = threading . Thread (target = self. Process)
self. process_thread . start ()

def connectPort (self , connection , connectionId):
port = connection . _narrow (standardInterfaces__POA . realChar)
self. outPorts [str(connectionId)] = port
self. active = True

def disconnectPort (self , connectionId):
self. outPorts .pop(str(connectionId))
if len(self. outPorts)==0:

self. active = False

def releasePort (self):
shut down the Process thread
self. is_running = False
self. data_event .set ()

WARNING : I and Q may have to be changed depending on what data you
are receiving (e.g., bytesIn for realChar)
def send_data (self , I, Q):

self. data_buffer_lock . acquire ()
self. data_buffer . insert (0, (I,Q))
self. data_buffer_lock . release ()
self. data_event .set ()

106 APPENDIX B. STANDARD OSSIE COMPONENT STRUCTURE

def Process (self):
while self. is_running :

self. data_event .wait ()
while len(self. data_buffer) > 0:

self. data_buffer_lock . acquire ()
new_data = self. data_buffer .pop ()
self. data_buffer_lock . release ()

for port in self. outPorts . values ():
port. pushPacket (new_data [0] , new_data [1])

self. data_event . clear ()

ORB_Init class definition

class ORB_Init :

""" Takes care of initializing the ORB and bind the object """

def __init__ (self , uuid , label):
initialize the orb
self.orb = CORBA . ORB_init ()

get the POA
obj_poa = self.orb. resolve_initial_references (" RootPOA ")
poaManager = obj_poa . _get_the_POAManager ()
poaManager . activate ()

ns_obj = self.orb. resolve_initial_references (" NameService ")
rootContext = ns_obj . _narrow (CosNaming . NamingContext)

create the main component object
self. MyComponent_Obj = MyComponent_i (uuid , label , obj_poa)
MyComponent_var = self. MyComponent_Obj . _this ()

name = URI. stringToName (label)
rootContext . rebind (name , MyComponent_var)

self.orb.run ()

Code run when this file is executed

if __name__ == " __main__ ":

if len(sys.argv) != 3:
print sys.argv [0] + " <id > <usage name > "

uuid = str(sys.argv [1])
label = str(sys.argv [2])

print " Identifier - " + uuid + " Label - " + label

orb = ORB_Init (uuid , label)
� �

107

Source file WorkModule.py� �
#! / usr /bin /env python

’’’
/**

Copyright 2009 by your_name_or_organization , all rights reserved .

**/

’’’

#!/ usr / bin / env python
import threading

class WorkClass :
"""This class provides a place for the main processing of the
component to reside ."""

def __init__ (self , MyComponent_ref , buffer_size):
’’’Initialization . Sets a reference to parent .
Initializes the buffer . Starts the Process data
thread , which waits for data to be added to the buffer ’’’

self. MyComponent_ref = MyComponent_ref
self. buffer_size = buffer_size

self. data_queue = []
self. data_queue_lock = threading .Lock ()
self. data_signal = threading . Event ()

self. is_running = True

self. process_thread = threading . Thread (target =self. Process)
self. process_thread . start ()

def __del__ (self):
’’’Destructor ’’’
pass

def AddData (self , I, Q):
’’’Generally called by parent . Adds data to a buffer .
The Process () method will wait for this buffer to be set.
’’’
self. data_queue_lock . acquire ()
self. data_queue . insert (0, (I,Q))
self. data_queue_lock . release ()
self. data_signal .set ()

def Release (self):
self. is_running = False
self. data_signal .set ()

def Process (self):
while self. is_running :

self. data_signal .wait () # wait for data to be aded to the
buffer in self . AddData ()

while len(self. data_queue) > 0:
get the data from the buffer :
self. data_queue_lock . acquire ()
new_data = self. data_queue .pop ()

108 APPENDIX B. STANDARD OSSIE COMPONENT STRUCTURE

self. data_queue_lock . release ()

get data out of tuple
I = new_data [0]
Q = new_data [1]

newI = [0 for x in range (len(I))]
newQ = [0 for x in range (len(Q))]

Insert code here to do work
Example :
for x in range (len (I)):
newI [x] = I[x]
newQ [x] = Q[x]

Output the new data
if self. MyComponent_ref . outPort0_servant . active :

self. MyComponent_ref . outPort0_servant . send_data (newI , newQ)

self. data_signal . clear () # done reading the buffer
� �

Appendix C

Custom OSSIE component

Source file MyComponent.py� �
#! / usr /bin /env python

from ossie . standardinterfaces import standardInterfaces__POA
from ossie .cf import CF , CF__POA

from omniORB import CORBA
from omniORB import URI
import CosNaming

import sys

import WorkModule
import portImpl

buffer_size = 16

MyComponent_i class definition (main component class)

class MyComponent_i (CF__POA . Resource):

def __init__ (self , uuid , label , poa):
CF. _objref_Resource . __init__ (self. _this ())
print " MyComponent_i __init__ : " + label
self. naming_service_name = label
self.poa = poa

self. dataIn_servant = portImpl . dataIn_realChar_i (self , " realChar ")
self. dataIn_var = self. dataIn_servant . _this ()

self. dataOut_servant = portImpl . dataOut_realChar_i (self , " realChar ",
buffer_size)

self. dataOut_var = self. dataOut_servant . _this ()

self. work_mod = WorkModule . WorkClass (self , buffer_size)

self. propertySet = []

def start (self):
print " MyComponent start called "

109

110 APPENDIX C. CUSTOM OSSIE COMPONENT

self. dataOut_servant . start ()
self. work_mod . start ()

def stop(self):
print " MyComponent stop called "
self. work_mod .stop ()
self. dataOut_servant .stop ()

def getPort (self , id):
if str(id) == " dataIn ":

return self. dataIn_var
if str(id) == " dataOut ":

return self. dataOut_var

return None # port not found in available ports list

def initialize (self):
print " MyComponent initialize called "

def configure (self , props):
print " MyComponent configure called "

for property in props :
if property not in self. propertySet :

self. propertySet . append (property)
if property .id == ’DCE :4 f047ae2 -cad1 -11de -b541 -00014 ac5c4dc ’:

self. prop1 = int(property . value . value ())
elif property .id == ’DCE :638 b6fca -cad1 -11de -b541 -00014 ac5c4dc ’:

self. prop2 = float (property . value . value ())

def query (self , props):
return self. propertySet

def releaseObject (self):
deactivate the ports
iid0 = self.poa. reference_to_id (self. dataIn_var)
oid0 = self.poa. reference_to_id (self. dataOut_var)

self.poa. deactivate_object (iid0)
self.poa. deactivate_object (oid0)

ORB_Init class definition

class ORB_Init :

""" Takes care of initializing the ORB and bind the object """

def __init__ (self , uuid , label):
initialize the orb
self.orb = CORBA . ORB_init ()

get the POA
obj_poa = self.orb. resolve_initial_references (" RootPOA ")
poaManager = obj_poa . _get_the_POAManager ()
poaManager . activate ()

ns_obj = self.orb. resolve_initial_references (" NameService ")
rootContext = ns_obj . _narrow (CosNaming . NamingContext)

create the main component object
self. MyComponent_Obj = MyComponent_i (uuid , label , obj_poa)
MyComponent_var = self. MyComponent_Obj . _this ()

111

name = URI. stringToName (label)
rootContext . rebind (name , MyComponent_var)

self.orb.run ()

Code run when this file is executed

if __name__ == " __main__ ":

if len(sys.argv) != 3:
print sys.argv [0] + " <id > <usage name > "

uuid = str(sys.argv [1])
label = str(sys.argv [2])

print " Identifier - " + uuid + " Label - " + label

orb = ORB_Init (uuid , label)
� �
Source file WorkModule.py� �
#! / usr /bin /env python
from buffer import circular_buffer

class WorkClass :

def __init__ (self , MyComponent_ref , buffer_size =0):
self. parent = MyComponent_ref
self. dataIn_buffer = circular_buffer (self. dataIn_callback , buffer_size)

def start (self):
self. dataIn_buffer . start ()

def stop(self):
self. dataIn_buffer .stop ()

def pushPacket (self , dataIn):
self. dataIn_buffer .put(dataIn)

def dataIn_callback (self , data):
self. parent . dataOut_servant . send_data (data)
� �

Source file portImpl.py� �
from ossie . custominterfaces import customInterfaces__POA
from ossie .cf import CF__POA

from buffer import circular_buffer

--
use port class definition
--
class use_port (CF__POA .Port):

def __init__ (self , parent , idl , buffer_size =None):
self. _parent = parent
self. _outPorts = {}
self. _active = False
self. _interface = eval(" customInterfaces__POA ." + idl)

112 APPENDIX C. CUSTOM OSSIE COMPONENT

self. _buffer = None
if buffer_size != None:

self. _buffer = circular_buffer (self. buffer_callback , buffer_size)

def connectPort (self , connection , connectionId):
port = connection . _narrow (self. _interface)
self. _outPorts [str(connectionId)] = port
self. _active = True

def disconnectPort (self , connectionId):
self. _outPorts .pop(str(connectionId))
if len(self. _outPorts)==0:

self. _active = False

def start (self):
if self. _buffer != None:

self. _buffer . start ()

def stop(self):
if self. _buffer != None:

self. _buffer .stop ()

def buffer_callback (self , data):
print " ERROR : method buffer_callback not implemented "

--
dataIn_realChar_i class definition
--
class dataIn_realChar_i (standardInterfaces__POA . realChar):

def __init__ (self , parent , idl):
self. parent = parent
self.idl = idl

def pushPacket (self , dataIn):
self. parent . work_mod . pushPacket (self , dataIn)

--
dataOut_realChar_i class definition
--
class dataOut_realChar_i (use_port):

def send_data (self , dataOut):
if self. _buffer != None:

self. _buffer .put(dataOut)
elif self. _active :

for port in self. _outPorts . values ():
port. pushPacket (dataOut)

def buffer_callback (self , data):
if self. _active :

for port in self. outPorts . values ():
port. pushPacket (data)
� �

113

Source file buffer.py� �
import Queue
from threading import Thread

class buffer (Thread):

def __init__ (self , callback , buffer_size):
Thread . __init__ (self)
self. _callback = callback
self. _queue = Queue . Queue (buffer_size)
self. _running = False

def run(self):
self. _running = True
while self. _running :

data = self. _queue .get ()
if self. _running :

self. _callback (data)

start () method inherited from Thread class

def stop(self):
self. _running = False
try:

self. _queue . put_nowait (None)
except Queue .Full:

pass
reinitialize the thread so it is possible to call start again
Thread . __init__ (self)

class queue_buffer (buffer):

def put(self , data):
try:

self. _queue . put_nowait (data)
except Queue .Full:

print " ERROR - buffer overflow : the newest data will be discarded !"
pass

class circular_buffer (buffer):

def put(self , data):
try:

self. _queue . put_nowait (data)
except Queue .Full:

print " ERROR - buffer overflow : the oldest data will be discarded !"
self. _queue .get ()
self.put(data)
pass
� �

Appendix D

IDL custom interfaces

Source file sap_app_to_link.idl� �
include " ossie / PortTypes .idl"

module customInterfaces {

/* link layer SAP for applications */
interface sap_app_to_link {

void request (in unsigned short source_address ,
in unsigned short destination_address ,
in PortTypes :: CharSequence data ,
in unsigned short priority);

};
};
� �
Source file sap_link_to_app.idl� �
include " ossie / PortTypes .idl"

module customInterfaces {

/* application layer SAP for link */
interface sap_link_to_app {

void indication (in unsigned short source_address ,
in unsigned short destination_address ,
in PortTypes :: CharSequence data ,
in unsigned short priority);

};

};
� �

115

116 APPENDIX D. IDL CUSTOM INTERFACES

Source file sap_link_to_mac.idl� �
include " ossie / PortTypes .idl"

module customInterfaces {

/* mac layer SAP for link layer */
interface sap_link_to_mac {

void mcpsData_request (in octet SrcAddrMode ,
in octet DstAddrMode ,
in unsigned short DstPANId ,
in unsigned long long DstAddr ,
in octet msduLength ,
in PortTypes :: CharSequence msdu ,
in octet msduHandle ,
in octet TxOptions ,
in octet SecurityLevel ,
in octet KeyIdMode ,
in unsigned long long KeySource ,
in octet KeyIndex);

};
};
� �
Source file sap_mac_to_link.idl� �
include " ossie / PortTypes .idl"

module customInterfaces {

/* link layer SAP for mac layer */
interface sap_mac_to_link {

void macpsData_confirm (in octet msduHandle ,
in octet status ,
in unsigned long Timestamp);

void mcpsData_indication (in octet SrcAddrMode ,
in unsigned short SrcPANId ,
in unsigned long long SrcAddr ,
in octet DstAddrMode ,
in unsigned short DstPANId ,
in unsigned long long DstAddr ,
in octet msduLength ,
in PortTypes :: CharSequence msdu ,
in octet msduLinkQuality ,
in octet DSN ,
in unsigned long Timestamp ,
in octet SecurityLevel ,
in octet KeyIdMode ,
in unsigned long long KeySource ,
in octet KeyIndex);

};
};
� �

117

Source file sap_phy_to_mac.idl� �
include " ossie / PortTypes .idl"

module customInterfaces {

/* mac layer SAP for physical layer */
interface sap_phy_to_mac {

void pdData_indication (in octet psduLength ,
in PortTypes :: CharSequence psdu ,
in octet ppduLinkQuality);

void pdData_confirm (in octet status);

};

};
� �
Source file sap_mac_to_phy.idl� �
include " ossie / PortTypes .idl"

module customInterfaces {

/* physical layer SAP for mac layer */
interface sap_mac_to_phy {

void pdData_request (in octet psduLength ,
in PortTypes :: CharSequence psdu);

};

};
� �

www.kth.se

TRITA-ICT-EX-2010:27

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivations
	1.2 Problem description
	1.3 Thesis organization

	2 Background
	2.1 Software Defined Radio
	2.1.1 Introduction
	2.1.2 History
	2.1.3 Waveforms
	2.1.4 SDR applications
	2.1.5 Operation scheme of an ideal SDR

	2.2 The Universal Software Radio Peripheral
	2.2.1 Characteristics

	2.3 GNU Radio
	2.3.1 GNU Radio architecture
	2.3.2 An example: Generating a Dial Tone
	2.3.3 The development process
	2.3.4 Conclusions

	2.4 Software Communications Architecture
	2.4.1 Introduction
	2.4.2 What is SCA?
	2.4.3 CORBA
	2.4.4 Component ports in SCA
	2.4.5 XML
	2.4.6 The SCA Operating Environment (OE)
	2.4.7 Base Application Interfaces
	2.4.8 OSSIE

	2.5 The IEEE 802.15.4 protocol
	2.5.1 Personal Area Network
	2.5.2 LR-WPAN applications

	2.6 Python
	2.6.1 Dynamic programming languages
	2.6.2 Rapid prototyping

	3 Method
	3.1 The waveform structure
	3.1.1 Introduction
	3.1.2 The physical layer and the MAC sublayer
	3.1.3 The upper layers
	3.1.4 Conclusions

	3.2 The UCLA Zigbee library
	3.2.1 Description
	3.2.2 OSSIE and GNU Radio

	3.3 The work method
	3.3.1 Working on the interfaces
	3.3.2 The design method
	3.3.3 Conclusions

	3.4 OSSIE components
	3.4.1 The OSSIE plugin for Eclipse
	3.4.2 An example of creating a component
	3.4.3 Conclusions

	3.5 Component structure
	3.6 Assembly controller
	3.7 Custom interfaces
	3.7.1 The interfaces
	3.7.2 IDL compilation

	4 Analysis
	4.1 The MAC Layer
	4.1.1 Interface
	4.1.2 Functionalities
	4.1.3 Component implementation
	4.1.4 Simulation and final considerations

	4.2 The Physical Layer
	4.2.1 Interface
	4.2.2 Functionalities
	4.2.3 Implementation
	4.2.4 Simulation and final considerations

	4.3 The GNU Radio solution
	4.3.1 Description
	4.3.2 OSSIE component
	4.3.3 Test
	4.3.4 A chat application
	4.3.5 Results

	4.4 The OSSIE solution
	4.4.1 Description
	4.4.2 MODULATOR component
	4.4.3 DEMODULATOR component
	4.4.4 An alternative method
	4.4.5 Simulation
	4.4.6 A chat application

	4.5 The TUN/TAP functionality
	4.5.1 Description
	4.5.2 The TAP component
	4.5.3 Simulation
	4.5.4 The waveform

	4.6 Results
	4.6.1 The GNU Radio solution
	4.6.2 The OSSIE solution
	4.6.3 PHY/MAC design in SDR
	4.6.4 Measurements

	5 Conclusions and Future Work
	5.1 Conclusions
	5.2 Future Work

	Bibliography
	A Acronyms and Abbreviations
	B Standard OSSIE component structure
	C Custom OSSIE component
	D IDL custom interfaces

