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Abstract

GMPLS is a still developing protocol family which is indented to assume
the role of a control plane in transport networks. GMPLS is designed
to provide traffic engineering in transport networks composed of different
network technologies such as wavelength switched optical networks, Ethernet
networks, point-to-point microwave links, etc. Integrating the different network
technologies while using label switched paths to provide traffic engineering
poses a challenge.

The purpose of integrating multiple technologies under a single GMPLS
control plane is to enable rapid service provisioning and efficient traffic
engineering. Traffic engineering in networks provides two primary advantages,
network resource utilization optimization and the ability to provide Quality
of Service. Utilizing network resources more efficiently translates to lower
expenditures for the network provider. Quality of Service can be used to
provide the customer with for example guaranteed minimum bandwidth packet
services.

Specifically this thesis focused on the problems of signaling and establishing
Forward Adjacency Label Switched Paths (FA-LSPs), and on a experimental
method of connecting different network technologies. A testbed integrating an
Ethernet network and a wave length division multiplexing network was used
to show that the proposed solutions can work in practice.



Sammanfattning

GMPLS består av en samling protokoll under utveckling, de är tänkta
att anta rollen som kontrollplan i transportnätverk. GMPLS är designat för
att tillhandahålla trafikplanering i transportnätverk bestående av flera olika
nätverksteknologier såsom Ethernet, våglängds switchande nätverk m.fl. Integ-
ration av dessa olika nätverksteknologier under ett gemensamt kontrollplan och
uppsättning av ”label switched paths” i dataplanet är en utmaning.

Syftet med att integrera multipla teknologier under ett ensamt GMPLS
kontroll plan är att snabbt kunna tillhandahålla tjänster över nätverket
samt möjliggöra advancerad trafikplanering. Trafikplanering i nätverk ger två
stora fördelar, optimering av utnyttjandet av nätverksresurser samt ökade
möjligheter att erbjuda ”Quality of Service” till kunder. Bättre utnyttjande
av nätverksresurser innebär lägre kostnader för nätverksleverantören medans
”Quality of Service” kan ge kunden t.ex. en garanterad bandbredd.

Specifikt fokuserar denna avhandling på problemen med att signalera och
etablera ”Forwarding Adjaceny Label Switched Paths” samt en experimentell
metod som båda sammankopplar olika typer av nätverk. En testbed bestående
av ett Ethernet nätverk samt ett optiskt våglängdsswitchande nätverk användes
för att visa att lösningarna kan fungera i praktiken.
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Chapter 1

Introduction

One of the “growing pains” of the Internet in the early and mid-1990s was the
computational cost of performing route look-ups for Internet Protocol (IP) packets.
This look-up was becoming a problem when trying to keep up with the increasing
speed of data links. For each packet entering an IP router a Longest Matching Prefix
look-up based on this packet’s destination address has to be performed in order to
calculate its next hop. In an effort to remedy this Multi-Protocol Label Switching
(MPLS) was developed. In MPLS networks only the ingress router (i.e. the edge
router in the network) has to perform such a look-up. It then assigns the packet to
a Forwarding Equivalence Class based on its destination and other characteristics.
This Forwarding Equivalence Class is represented by a label which is added to the
packet and subsequently used by Label Switching Routers (LSRs) in the network
to forward the packet. A LSR that receives a labeled packet needs only to perform
a table look-up, not a longest prefix match.

Independent development in techniques for IP forwarding increased the perfor-
mance of the forwarding look-up so that it could cope with the increasing data link
speeds and the primary motivation behind the development of MPLS was no longer
relevant. However, MPLS still offered other features such as its ability to be used for
Traffic Engineering in which more complicated routing schemes than Shortest Path
First can be used to guarantee Quality of Service for some traffic, to optimize the
utilization of network equipment, and to prevent congestion for prioritized traffic.

The desire to perform automated service provisioning and traffic engineering
on network technologies other than packet switched networks has led to the
development of Generalized MPLS (GMPLS). GMPLS extends the concept of
label switching to the link layer (ISO OSI layer 2), Time division multiplexing
(TDM), Wavelength Division Multiplexing (WDM), and Fiber switching network
technologies. GMPLS is a relativity young protocol which still has many technical
problems that have to be solved in order to produce a functional solution. Many
of these problems relate to the implementation of a Multi-Layer Control Plane and
integrating different network technologies (called “regions” in GMPLS terminology).
A multi-layered control plane allows signaling and routing decisions to be made for

1



2 CHAPTER 1. INTRODUCTION

a network consisting of multiple (potentially different technology) regions, allowing
for more efficient and automated traffic engineering than would be possible if
each region did its own traffic engineering. The hope is that the ability to do
efficient traffic engineering over multiple regions would lower costs for constructing,
extending, and operating transport networks.

This thesis will focus on the problems of signaling and establishing of Forward
Adjacency Label Switched Paths (FA-LSPs). A testbed integrating an Ethernet
and WDM region will be used as an example to show that the suggested solution
can work in practice.

1.1 Objectives
The goal of this thesis is to investigate the possibilities of creating a Multi-region
GMPLS network containing at least two regions of networking technology (in this
case we will use specifically Ethernet as the Layer 2 network and a optical WDM
network as Layer 1). In order to achieve this the primary objectives are:

• Implement and verify that an RSVP-TE implementation has the ability to
create and remove regular LSPs and FA-LSPs (see sections 2.1.1 and 3.3.2 for
a clarification of these terms).

• Implement and verify conversion of LSPs at border nodes of the Ethernet
tagged GMPLS traffic to and from WDM GMPLS traffic.

These can be divided into several sub-objectives:

• Implement a virtual test bed with nodes acting as Ethernet, WDM, and border
nodes.

• Verify that the RSVP-TE implementation has the ability to create and remove
LSPs within each region.

• Implement a region border node that can use triggered signaling to create
(and remove) a FA-LSP if appropriate.

This work should result in an operational multi-region GMPLS network with the
ability to create and remove LSPs over a combined Ethernet and WDM network.
This work is part of a project called ”Multi-Layer Control Plane” (MLCP) which is
a joint research project between Ericsson1 and Acreo2.

1.2 Thesis Outline
Chapter 2 gives an introduction to GMPLS networks and discusses the reasoning
behind the development of multi-region control planes. Chapter 3 introduces

1http://www.ericsson.com
2http://www.acreo.se

http://www.ericsson.com
http://www.acreo.se


1.2. THESIS OUTLINE 3

the network technologies that are considered in this thesis and the proposed
solutions to handle the control of region border nodes. In Chapter 4 the software
implementation is described. Chapter 5 describes the testbed used and verification
of the functionality of the implementation is performed. In Chapter 6 the solution is
evaluated. In Chapter 7.1 conclusions drawn and ideas for future work are presented.



Chapter 2

Introduction to GMPLS

Generalized Multi-Protocol Label Switching (GMPLS) is a rapidly developing
collection of protocols, of which some parts are still being standardized. The
Internet Engineering Task Force (IETF) is further extending the routing and
signaling protocols associated with MPLS-TE in order to support the specific needs
of the technologies that are desirable to support GMPLS on.

2.1 Multi-Protocol Label Switching (MPLS)

To understand some of the ideas underlying GMPLS it is useful to know the basics
of MPLS. The primary motivation for developing MPLS was to reduce the cost
of making forwarding decisions in Layer 3 (primarily IP) networks, which must be
made by every router on a path between the source and destination. In MPLS
the destination of the incoming IP packet is only examined at the ingress router,
which is the first router on the border of the MPLS network. This is known as
a Label Edge Router (LER). The LER assigns the packet to a particular Forward
Equivalence Class based not only on the Layer 3 header but additional information
such as which port it has arrived on may be taken into account. If a path does not
already exist for this Forward Equivalence Class, the router signals all the MPLS
routers (known as Label Switching Routers, LSRs) on the path to the egress router
(the other LER in the path to the destination). The signaling creates a fixed path
for all traffic assigned to this particular Forward Equivalence Class. For a simple
example of an MPLS network see figure 2.1.

2.1.1 Pushing, Popping, Swapping, and Stacking Labels

Attaching a label to a packet is called “pushing” a label, the reverse operation which
removes the label is called “popping” the label. Labels can be ”swapped” by first
popping a label - examining this label, making a forwarding decision, then pushing
a new label on the packet. It is also possible to push more than one label onto a
packet, known as “stacking” labels. Each label, or entry in the label stack, consists

4
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IP Router
Label Edge Router

Label Switching Router

IP
MPLS MPLS MPLS

IP

Label Edge Router
IP Router

Figure 2.1: Example of an MPLS network showing IP routers, Label Edge Routers,
and Label Switching Routers. Traffic between the IP and Edge routers are forwarded
based on the IP header, within the MPLS network packets are switched on labels.

0 19 20 22 23 24 31

Label Exp S TTL

Figure 2.2: MPLS label stack entry. Exp is a 3-bit field reserved for experimental
use. S is the Bottom of Stack bit which is set on the first label pushed to the label
stack [2].

of four fields; the 20-bit Label field, a 3 bit Experimental field, a 1-bit Bottom of
Stack field, and a 8-bit Time-to-live field (see figure 2.2)[2].

Using a signaling protocol each pair of routers agrees on a label to use on the
link between them for a particular Forward Equivalence Class. The mapping of an
incoming label to an outgoing label creates a Label Switched Path (LSP) defined
by the label used at the ingress. It should be noted that the labels can be link-
local or node-local, which is controlled by a label space which is assigned to the
different network interfaces. If all interfaces on a router share the same label space
the labels are node-local, a labeled packet will be forwarded to the same destination
regardless of which interface it enters. If on the other hand all interfaces are assigned
to different label spaces, the labels are link-local. Interfaces may also be grouped
into label spaces, which may be useful if for example two nodes have several parallel
links to each other and wish to perform load-balancing over these links.

Conceptually each label space has a three different maps for keeping track of
the labels and how to forward packets. These are the Next Hop Label Forwarding
Entry (NHLFE) map, the Incoming Label Map (ILM), and the FEC-to-NHLFE
(FTN) map [3]. The NHLFE tables primary content is the next hop of the packet
and what kind of operation should be performed on the label stack of the packet,
for example a label swap operation. The ILM is a mapping between incoming labels
and NHLFE entries and is used when a packet enters the LSR with a label already
attached. The FTN performs the same mapping as the ILM, but for unlabeled
packets, the mapping can be between for example an IPv4 destination address and
a NHLFE, see figure 2.3 for an example of how these tables might look. Based on
this mapping the LSRs pushes, pops, and swaps labels and forwards a packet to its
next hop. Based upon this hop-to-hop forwarding and swapping of labels; packets
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Input Label Map
Incoming Label NHLFE

544 1
325 2

(a)

FEC-to-NHLFE
Destination Address NHLFE

172.16.100.1 3
172.16.200.1 4

(b)

NHLFE
Operation Next Hop
Swap(123) 172.16.0.1
Swap(44) 172.16.0.2
Push(321) 172.16.0.1
Push(77) 172.16.0.2

(c)

Figure 2.3: Example of MPLS tables for one label space with IPv4 addresses. ILM
with two entries (a). FTN with two entries (b). NHLFE with four entries (c).

Host 1

Host 2

Host 3

Host 4

Host 5

Host 6

13 67

Host 6

Host 5

Host 4

13 32

13 52 92 67

92 52

92 32

Host 6

Host 5

Host 4

32

52

67

Figure 2.4: Label swapping and stacking.

are sent through the network on the path.
By stacking several labels on a packet LSPs may be tunneled through other

LSPs. Stacking improves scaling and path setup time since fewer new paths have
to be signaled and maintained (see figure 2.4 for an example of MPLS forwarding
with stacking).

2.1.2 MPLS Routing and Signaling

In order to set up a LSP a path between the ingress and egress LERs must
somehow be calculated and label mappings signalled. This can be done by using a
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0 3 4 7 8 15 16 31

Version Flags Msg Type RSVP Checksum
Send_TTL (Reserved) RSVP Length

Figure 2.5: Common RSVP header [4].

routing protocol such as Open Shortest Path First (OSPF) or Intermediate System
to Intermediate System (IS-IS) to distribute information about network topology
throughout the network. The topology information can then be used to create a
routing database from which appropriate paths can be calculated. After the ingress
LER has calculated a path the label mapping setup is handled by the signaling
protocol. The IETF does not mandate a specific signaling protocol for MPLS.
This has led to the use of two different protocols: Resource ReSerVation Protocol
(RSVP) and the Constraint based Label Distribution Protocol (CR-LDP). In this
thesis only RSVP and more specifically the extended version called the Resource
ReSerVation Protocol - Traffic Engineering (RSVP-TE) will be considered.

RSVP was originally designed to allocate resources for the Integrated Service
extension to the Internet Protocol [4]. In order to allocate resources on the path
between two nodes the RSVP Path packet would be sent to IP destination address
of the end node. This would allow the packet to be routed using regular routing
protocols and pass through routers that do not support RSVP. Those routers
that support RSVP would inspect every RSVP packet it forwards, create a “soft
state” with information about for example the previous RSVP capable router (this
information is carried in the Previous Hop object), make alterations to the packet,
and forward to the next hop. Referring to the state information as “soft” means
that the state will be removed after a specific time unless it is refreshed (and that
loss of this state will not result in the loss of the ability to correctly forward packet,
but rather simply the loss of the RSVP based path forwarding.). Upon reaching
the end node a RSVP Resv packet will be propagated back, hop-by-hop, using the
same path as stored (the soft state information). When each RSVP capable router
receives a Resv packet the reservation is confirmed and installed. If any errors
occur when processing either the Path or Resv packet a PathErr or ResvErr packet
is transmitted in order to alert the sender.

All RSVP packets share a common header, followed by a number of Type-
Length-Value (TLV) fields called objects which may have additional TLV field within
(these are called sub-objects). The TLV fields are actually in the Length-Type-Value
order1 with the Type field split into two separate field, the Class field and the C-
Type field. The common header carries the type of the message, total length of
the message, and information for defragmentation (see figure 2.5). Any additional
information is carried in objects or sub-objects (see figure 2.6).

1I will refer to them as TLVs or objects despite this order of the fields.
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Figure 2.6: The RSVP Object/Sub-Object header [4].

To allocate labels using RSVP the Path message is sent to the egress LER and
each router on the way checks that requested resources are available. The Path
message does not create a label mapping, rather labels are allocated when the LSR
receives a Resv message. The downstream LSR, i.e. the one closer to the egress LSR,
allocates an available label and sends this label in the Resv message in a LABEL
object. If any LSRs on the path do not have sufficient resources for the LSP, then
this LSR must send a PathErr message which propagates to the ingress LSR, which
then aborts the path setup, removing any previously reserved states (belonging to
this specific LSP) on the way. Similarly, errors that occur when processing Resv
packets are reported with a ResvError. Note that this procedure only establishes
labels for uni-directional communication, for bi-directional communication in MPLS
another LSP must be created from the egress to the ingress LSR. The actual path
traversed by the Path message may be explicit or hop by hop routed. A hop by
hop routed Path message travels through the network according to the Layer 3
forwarding tables, like any other Layer 3 packet. Explicitly routed Path messages
travels across the network following a path that has been specified by the ingress
LER.

2.1.3 Traffic engineering

Once regular IP routing had sufficient speed to handle the maximum rate of the
underlying communication technology the main reason for developing MPLS was
lost as label switching no longer offered lower switching delay. However, MPLS
turned out to be easily extended to support traffic engineering in packet networks.
Traffic engineering is an familiar concept for those who plan road construction,
they are concerned with getting the best flow of traffic through congested roads
while minimizing the risk of collisions. For example, what effects do junctions have,
how many lanes should the new road have in order to avoid congestion? How long
should the traffic light be red and is there any way to allow prioritized traffic such as
ambulances to get priority at intersections without causing problems for the regular
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traffic?
If one imagines data packets as cars, network links as roads, and switches and

routers as road junctions the same issues more or less apply to traffic engineering
in packet networks. Congestion on roads causes delays and accidents, in packet
networks it causes delays and packet loss. IP networks are generally Shortest Path
First routed – which is a great scheme as long as the network is unused, packets reach
their destination quickly while using the minimum amount of network resources
possible (assuming that all links have basically the same cost – thus the goal is to
minimize the number of hops). However, if the network has got a lot of traffic going
through it the shortest path may become congested and routers will start to drop
the packets they cannot forward. Even if there are routes that avoid the congested
routers, traffic will still be routed over the shortest path leaving alternative paths
underutilized. There are ways to manage congestion, for example DiffServ or IntServ
can be used to prioritize traffic so that it is not dropped and TCP has mechanisms
for lowering transmission rates when congestion is detected [5][6][7]. These are good
for improving the reliability and quality of traffic delivery, but do not increase the
amount of traffic which can go from one point to another in an Shortest Path First
network [8].

In order to increase the amount of traffic the network can deliver some parts
of the traffic has to be delivered via these alternate paths. Equal-cost multi-path
routing is another routing scheme which under some circumstances is able to make
use of these alternate paths. When an Shortest Path First router calculates routes
and is confronted with more than one path to a destination with the same length or
cost it chooses one of them, equal-cost multi-path instead stores both paths. It can
then choose to either use an alternative path when the first one becomes congested
or to load balance the different paths. The road analogy for this would be two
parallel roads of the same lengths to a destination. The second road would either
be opened when the first becomes congested or one would direct every other car
down the second road. However, if these equal-cost paths converge at one point
and the congestion occurs on a link further down the parallelism might not make
a difference. The problem of not using alternate paths still exists as well, a path
which costs one unit more would not be used with equal-cost multi-path.

Better traffic engineering can be achieved if one knows all the paths and links
of the network and the current utilization of them and then somehow directs traffic
based on that information. And here is where MPLS has found a niche, if one
extends it to support an explicit route instead of only a Shortest Path First route it
can be used to direct traffic over predetermined links chosen for traffic engineering
reasons. By extending the MPLS routing protocols to carry information such as the
available bandwidth of links and extending signaling protocols to create an LSP on
an explicit path one can support advanced traffic engineering. These extensions of
the original MPLS protocols are called MPLS TE [9].
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2.2 Generalized MPLS

The origin of GMPLS was a wish to automate previously manual systems for
provisioning services in transport networks. The manual planning and configuration
of the services could take a long time and negatively affect other services [10].
As networks grew in size the demand for an automated way to deal with this
grew. As optical networks became more popular, ways to deal specifically with
lambda switching networks (see section 3.1.2) was developed. It was realized that
distributing label mappings {incoming label, outgoing label} and lambda mappings
{incoming lambda, outgoing lambda} was essentially the same problem and could
utilize a similar solution. One proposal which borrowed heavily from MPLS was
called Multi-protocol Lambda Switching (MPλS), however it never became an
official standard [11].

The generalization of MPLS was expanded to include switching time slots in
TDM systems, switching between optical fibers, and switching layer 2 frames –
as these are more or less the same thing. Why not create a unified standard
for managing all these technologies since they were essentially the same problem?
Another advantage of creating a general protocol it that networks of different types
can now interoperate easily. That means that end-to-end services could be set up
and maintained over networks composed of different networking technology without
any complicated interoperability layers. The ability to distribute traffic engineering
information between technologies may also lead to more efficient provisioning of
services, for example if there is a problem within one segment this can be taken into
account before any signaling is performed. Larger networks also lead to a larger
amount of routing traffic, hence GMPLS can be deployed in several models which
balance control plane overhead against TE efficiency (see section 2.2.6 for more on
this).

The effort needed to calculate paths grows with the number of nodes involved
and is likely to be slower when performed for many different kinds of technologies
at once – due to different constraints on each of the different technologies. Path
calculation is only necessary when initially provisioning the service so this may
not be a large problem, however if many paths fail simultaneously this could be
a problem since many new routes would be requested at once. This could be
mitigated by pre-calculating failure paths, perhaps completely disjoint from the
original path. If the original path fails one of the pre-calculated alternatives can be
signalled without any need for additional calculation. The task of performing route
calculation, which may be computationally expensive, can either be centralized or
distributed or somewhere in between, this is discussed in section 2.2.10.

2.2.1 Control and Data plane

The nature of some of the technologies intended to be used with GMPLS requires
that the control plane and data plane must be separated. In packet switching
systems control data can be sent over the same channels as traffic, as routers and
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In-band control Out-band control

Data traffic

Control traffic

Figure 2.7: Example of in-band and out-band control. Data traffic (shown as a
dashed line) and control traffic (shown as a filled line - above the data traffic) going
through packet routers and splitting up when going over optical network components
connected to packet routers.

switches read the header of each packet and if a packet is found to be destined to
itself it can pass it along to the control system within, this is called in-band control.
This is not possible for some devices (e.g. optical switches, see section 3.1.2) since
they do not examine the data that they transport, therefore control data must be
communicated through a separate control channel (see figure 2.7), this is called
out-band control. In WDM systems this can be done either by having a separate
connection, for example an Ethernet link connected to the switch or, if the switch
supports it, a data channel reserved for control data.

Separating control and data plane also adds resilience to the network, the data
plane can continue to function even if the control plane is broken (although no new
connections can be made) and vice versa. However, detecting errors in the data
plane may be harder since you cannot detect errors by loss of control traffic as in
networks with in-band control data. Errors such as “loss of light” in some optical
networks can only be detected at the end of the light path and thus finding the faulty
link or device may not be a trivial task. To aid this process the Link Management
Protocol (LMP) and LMP-WDM for optical systems may be used which are covered
briefly in section 2.2.9. The Link Management Protocol helps the switch to discover
its links and their capabilities, as well as assisting in the detection and isolation of
errors on the links.

2.2.2 Interface Switching Type

Five kinds of interface switching types have been defined: Packet switching capable
(PSC), Layer 2 switching capable (L2SC), Time division switching capable (TDM),
Lambda switching capable (LSC), and Fiber switching capable (FSC). The values
used to represent these switching types in the signaling and routing protocols can
be seen in table 2.1, how they are used is described in sections 3.3.4 and 2.2.8. A
network interface on a node is said to have a Interface Switching Capability (ISC)
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Table 2.1: Interface Switching Types and their corresponding values

Switching type Value
PSC-1 1
PSC-2 2
PSC-3 3
PSC-4 4
L2SC 51
TDM 100
LSC 150
FSC 200

depending on what information the node can use to switch data that arrives on
that interface. For example if data arriving on an interface can be switched based
on a Layer 2 header, such as an Ethernet frame header, then that interface is L2SC
capable. If the interface can separate different colors of light from an optical fiber
and the node can direct them into different optical fibers, then the interface is of
type LSC. If the interface can switch packets based on an MPLS label, it is of
type PSC and so on. The four different PSC types can be used with MPLS label
stacking to tunnel LSPs within LSPs (see section 2.1.1)[12]. All interfaces on a node
do not have to have the same switching type. Additionally an interface may actually
have several switching types. For example an interface may be able to switch on
both an MPLS label and a Ethernet header, then it would then be both PSC and
L2SC capable. Nodes that have interfaces which support multiple switching types
(per interface) are called ”hybrid” nodes whereas those with only a single switching
type per interface are called ”plain” or ”simplex” nodes [13]. Hybrid nodes are not
considered in this thesis.

2.2.3 Regions and Layers

There is some confusion regarding the nomenclature surrounding GMPLS, the terms
region and layer need to be clarified. In this thesis the terms will be used as they are
defined in RFC 4397 which defines a layer as “a set of [data plane] resources of the
same type that could be used for establishing a connection or used for connectionless
data delivery.” [14]. Using this definition a multi-layer data plane device could for
example be an Ethernet interface capable of sending in 100 Mbit/s as well as 1
Gbit/s. A “TE region” is defined as “a set of one or more layers that are associated
with the same type of data plane technology”, such as MPLS, ATM, WDM, etc.
The term “TE region”, “LSP region”, and just “region” can be used interchangeably.
Multi-layer networks are not considered in this thesis; we will instead only focus
on multi-region networks where each region consists of only a single layer. For an
example of a multi-region GMPLS network see figure 2.8.
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Figure 2.8: Multi-region network with three regions, LSC, L2SC, and PSC.

2.2.4 Labels

In MPLS labels describe a Forward Equivalence Class; this is also true in GMPLS,
but a label may also describe a physical resource, for example a wavelength or a time
slot. When the labels describe a physical resource the label is often not actually
carried with the data (as for example an MPLS shim label or Ethernet label).
Instead the label only exists in the control plane where it describes how the switching
matrix of the particular switch should be set up. In that case the label may be
referred to as a ”virtual” label. The need to support different switching techniques
means that the label format has to be generalized in order to fit the switching
capability and encodings used by different switches (e.g. ATM and Ethernet are
both L2SC, but need different label formats since they switch on different kinds
of headers). The collection of these specific label formats are called “generalized
labels”, and each of them has to contain the information necessary for the specific
technology to control its cross-connect in order to create a path. As in MPLS the
labels may be link-local, but in some networks (e.g. WDM, Ethernet) the same
label may have to be used through the whole network segment (so called end-to-end
labels). The generalized label itself is has a variable length; in most cases it is a
32-bit value, but longer labels are supported. Shorter labels such as MPLS or Frame
Relay labels are right justified within a 32-bit value [15].

The different generalized labels have no field to indicate what type of label it
contains, therefore one cannot easily conclude how to interpret a label. Finding
out how to interpret a generalized label requires information about the TE-link to
which the label should be allocated. By examining the Switching Capability of the
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far- and near-end of the TE-link one can determine the label type in some cases. In
other cases the Encoding taken either from the Traffic Engineering Database (see
section 2.2.8) or the Label Request (see section 2.2.7) might be necessary. If for
example the switching capabilities of the TE-link are [PSC, PSC] the label is an
MPLS label; if the switching capabilities are [PSC, LSC], then the label indicates a
lambda [12].

2.2.5 Interface Identification
The data plane consists of links between data interfaces, which may have different
capabilities (such as a switching capability, adaption capability, and termination
capability). These different capabilities and other constraints (such as available
bandwidth) are taken into account when calculating a path. When signaling an
LSP these interfaces have to be identified in some way in the Explicit Route Object
(ERO) of the RSVP Path message (see section 2.2.7), this identification can be
either numbered or unnumbered. A numbered interface has a public or private IP
address assigned to it, this IP address can then be used to unambiguously identify
the link in RSVP-TE and OSPF-TE. However, for other interfaces, such as Ethernet
or WDM interfaces that cannot terminate traffic, assigning an IP address to identify
the interface may be a waste of IP address space (if the addresses are public) and
assigning this interface an IP address makes little sense if it cannot receive IP traffic.
When assigning private IP addresses to you need to keep track of all the addresses
since they have to be unique within the network, this is error prone and may requires
a significant amount of work. Instead of assigning IP addresses one can use so called
unnumbered identifiers. The unnumbered identifier consists of the LSR’s Router ID
(which usually is a network unique loop back IPv4 or IPv6 address, in order to
be reachable through any of its interfaces) combined with a node-unique 32-bit
identifier. This combination is a network unique identifier that can be generated
by any node without the need for some kind of address management scheme. One
can imagine other identifiers that could be used, for example MAC addresses which
are already used by some networking technologies. However, adding technology
specific identifiers complicates the protocols and implementations, especially when
there already are generic identifiers defined.

2.2.6 Network Architecture
GMPLS can be deployed in three distinct architectural models:

• The peer or unified service model

• The overlay or domain service model

• The hybrid or augmented model

The models primarily differ in how much information is distributed between
domains and how services are set up. In the peer model all LSRs in the network
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Figure 2.9: The peer model. A common control plane is used to route and signal a
path across a network of different technologies and realize an end-to-end service.

have full visibility of the entire GMPLS network, each node knows the complete
topology of the network and what resources are available (see figure 2.9). A single
common signaling protocol is used through the network which allows clients at the
border to set up end-to-end services. However, this model has scaling problems as
the number of nodes grow, but it is also the most flexible model in terms of service
establishment since a full view of the network is kept and paths are fully traffic
engineered end-to-end.
In the overlay model (see figure 2.10) each LSR has a limited visibility – either
to the network it is a part of (i.e. with the same switching capability) or to
its administrative domain. This means that no TE information is shared with
a neighbor of either a different technology (e.g. between MPLS and Ethernet
switched networks) or of a different administrator (e.g. between two Internet
Service Providers). Instead a User-to-Network Interface (UNI) is placed at the
border of network domains, there the client network asks the interface for service
and the ”server” network is free to deliver the service in its own fashion. This
allows for greater separation of networks which are free to operate independently
of each other. In this approach service providers can operate their own network
without allowing any routing information or signaling from partners or competitors
into their own control plane and similarly not permitting any of their routing or
signaling information to leave their network. Several protocols for communicating
via a UNI have been developed, for example the Optical Internetworking Forum’s
UNI implementation which sends the service request as a new RSVP-TE object.
This model scales better but obviously paths cannot be fully traffic engineered
since each network performs setup on its own.

The hybrid model is a mixture of the above models (see figure 2.11). It allows for
some trust between network domains and a bit of leakage of routing and signaling
information between domains, but not the full topology. This removes the need for
extra protocols such as UNI, as all domains can utilize GMPLS. Depending on how
much information is shared over domain borders path setup may be fully or almost
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Figure 2.10: The overlay model. ”Client” or ”higher layer” networks request services
from another network in order to create an end-to-end service. No signaling or
routing information is shared between the networks.

Figure 2.11: View of the network from nodes in the leftmost network segment in
the hybrid model. Signaling is handled in the same fashion as in the peer model.

fully traffic engineered.
This model is similar to the way the Internet is designed, typically each

autonomous system runs an inter gateway routing protocol (IGP) and a exterior
gateway routing protocol (EGP). The IGP handles routing internally in the
autonomous system, but exchanges some information with the EGP that is
responsible for routing between the autonomous systems.

In the rest of this thesis only the peer model will be considered since it is the
simplest model, it avoids the need for UNI protocols, and does not need to restrict
control plane information at borders.

2.2.7 Signaling Extensions

RSVP-TE is the primary signaling protocol used in GMPLS. (The IETF stopped
development of CR-LDP, thus it is unlikely that it will be extended to support
GMPLS.) Many of the features of RSVP are reused in RSVP-TE, but some
extensions have been made to support label distribution, explicit routing, different
data plane network technologies, separation of control and data plane, and more.
A number of these signaling extensions were introduced when creating MPLS TE,
these are kept or updated by GMPLS which also introduces several extensions of
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Figure 2.12: The Generalized Label Request object, request a label for specific type
of LSP while informing the egress what kind of traffic it will carry [15]

.

its own. Some of the more important extensions are presented here in the form in
which they appear within GMPLS.

• Label management

– Generalized Label Request
– Suggested Label
– Upstream Label

• Explicit routing

– Explicit Route Object
– Record Route Object

• Control and data plane separation

– Extended HOP Object

Label Management

By adding a Label Request object to a RSVP Path message the sending node can
request that the downstream node return a label which can be used to send traffic
to the downstream node. The Label Request object carries three fields: encoding,
switching type, and Generalized Payload Identifier (G-PID) (see figure 2.12). The
encoding field describes how data traffic will be presented to the transport medium
and determines what type of LSP is created. For example an encoding of ”Packet”
would request an MPLS label (and MPLS data plane reservation). The switching
capability field is useful if the LSR is a so called hybrid node, i.e. it can switch on
multiple switching type levels. For example an optical switch can be both LSC and
FSC at the same time – if it is capable to not only switch individual wavelengths
but also switch between different fibers. In that case it may be necessary to specify
on what level the switching should take place. The G-PID indicates to the egress
node what type of payload is carried within the LSP. The G-PID can use regular
EtherType values, but some additional values have been specifically defined for
GMPLS (such as SONET/SDH and HDLC traffic) [15].

In MPLS labels are returned in the RSVP Resv message which makes the LSPs
uni-directional, but GMPLS uses by default bi-directional LSPs. Instead of having
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to setup two separate LSPs to achieve bi-directional communication (as in MPLS)
GMPLS can send labels downstream in the RSVP Path message in order to establish
a two-way label mapping during a single Path setup. This label is carried in the
Upstream Label object which has the same properties as the regular Resv Label
object, i.e. it can be swapped at each hop, carry the same types of labels, etc.
The use of the Upstream Label object reduces both the signaling overhead and
the time needed to create LSPs, since only one reservation request is necessary.
Another label carrying object is the Suggested label object. This object can be sent
within a Path message to indicate what label the upstream node would like to use.
Using the suggested label object can also reduce LSP setup time as it can be used
with a pre-configured data plane (i.e., the configuration is done before the actual
reservation is made) when a Resv message is received. In many switches the time
to create a switching rule is negligible, but in (for example) some optical switches
which need to move physical components this many increase the overall LSP setup
time significantly.

Explicit Routing

To support explicitly routed LSPs the Explicit Route Object (ERO) has been added.
This object holds a list of ”abstract nodes” which should be traversed by the LSP
(see figure 2.13). There are three different abstract node types defined: IPv4, IPv6
prefix, and Autonomous System (AS) number subobject. Each of these abstract
nodes can contain several real nodes. For example the AS subobject contains all
the GMPLS nodes within an Autonomous System, an IPv4 subobject contains all
the GMPLS nodes within a specific subnet (for example a /24 subnet or a single
host if the subnet prefix is /32). By creating a list of these objects an explicit route
can be specified with large flexibility in granularity.

Each abstract node is defined as either ”strict” or ”loose”. This ”strictness”
and ”looseness” is always relative to the previous abstract node, if a node is strict
the path traversed must consist of nodes which are part of the previous and the
strict abstract node. When traversing the previous abstract node in conjunction
with a loose hop the path may traverse nodes which are not part of either abstract
node. Note that this does not mean that all the nodes specified in a strict abstract
node has to be traversed, it is not necessary to traverse all the nodes in an AS for
example, only the ones needed to reach the following abstract node.

While traversing the nodes specified in the ERO in the Path message the nodes
are successively removed from the ERO. When the egress node is reached it has no
way to know what path was used to reach it (except the previous hop). In order to
collect this information the Record Route Object contains a list of abstract nodes.
The abstract nodes used in the Record Route Object is identical to the ones used
in the ERO with the exception of that the AS number subobject is not allowed
while a Label subobject can be used to record what label was used on a specific
link. By adding abstract nodes (and optionally the label used) to this list as the
Path message traverses the network both ingress and egress node may find out the
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Figure 2.13: Abstract node (left) and IPv4 subobjects (right). The L flag indicates
of the hop is loose or strict. The Type field holds the type of the subobject (IPv4
or IPv6 prefix, AS number). The IPv4 subobject contains an IPv4 address and
netmask (prefix length) [16]. (Note that the widths of these figures are 16 bits.)

exact path used (as the egress is allowed to send the Record Route Object back to
the ingress in the Resv message)[16].

Control and data plane separation

When an LSR receives an Path message it stores some information about it in a so
called Path State Block. The Path State Block contains, for example, information
about the previous hop. This information is taken from the RSVP_HOP object
carried in the Path message. Before GMPLS the RSVP_HOP contained only an
IPv4 or IPv6 address and a Logical Interface Handle (a node local value identifying
the interface used to send the RSVP message) which was used by the LSR to
find out whom to send replies to. The previously stored RSVP_HOP object is
returned within the Resv message to make it easier for the previous hop to find
out which interface it used to send the Path message. The previous node cannot
assume that the Path message was sent on the same interface that receives the Resv
message, since the message may pass through a network between these two nodes
(which is why this information is sent along with the messages). Since GMPLS
supports out-of-band signaling – and multiple data plane links per control plane link
– the RSVP_HOP object has been extended to indicate which data plane interface
the message refers to as well as the control plane interface. There are two new
RSVP_HOP objects which contains either an IPv4 or IPv6 control plane address
and a Logical Interface Handle and a TLV identifying the data plane interface (see
figure 2.14). There are five types of data plane interface identifier TLVs: IPv4, IPv6,
unnumbered interface, and two component interface identifiers which are identical
to the unnumbered interface TLV except for the Type field.

2.2.8 IGP Extensions

As previously stated GMPLS can use both ISIS-TE and OSPF-TE for routing of the
control plane and dissemination of TE information in the network. I will however
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Figure 2.14: An IF_ID RSVP_HOP object with an IPv4 control plane identifier
and a unnumbered interface data plane identifier [15] [17].
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Figure 2.15: The OSPF packet header. The version field indicates what OSPF
version is used, the Type field differentiates the different messages types, and the
Packet length is the length of the entire packet in bytes. Router ID is the ID of
the source of the packet. The AuType and Authentication fields can be used to
authentication the packet [19].

focus on the extensions to OSPF which enables this.
OSPF was designed to be used within an autonomous system. The networks in

an AS can be subdivided into areas making routing more efficient [18]. The areas are
connected by area border routers which summarize the routing information about
an area and send it into other areas. A OSPF network contains at least one area,
the backbone area. OSPF has five different kinds of messages, all with a common
header (see figure 2.15) [19]. These five messages are Hello, Database Description,
Link State Request, Link State Update, and Link State Acknowledge (see table 2.2
for details).

Some of these message can carry a list of Link State Advertisements (LSAs)
or a list of LSA headers. Most important is the Link State Update message which
performs the actual flooding of link state information in the network by distributing
LSAs. In OSPFv2 there are five kinds of LSAs which describe the local topology
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Figure 2.16: The common LSA header [19].

of the router transmitting them (see table 2.3). For example, a router originates a
router-LSA which contains a list of all its links, whether the link is a point-to-point
link to another router, a link to a network without any other routers, or any of the
other four types of links that exist in OSPFv2. If a router is the Designated Router
for a network segment (either by being the only router on the segment or by election)
it transmits a network-LSA which describes all routers attached to that particular
network segment. The other LSA types announce links across areas (Summary
Link), links that reach AS border nodes (Summary Link to AS Boundary Router),
and links received from other routing processes such as BGP (External LSA). All
LSAs share a common header and are distinguished from each other by a 8-bit value
(see figure 2.16). The header contains several fields, the LS age field is a timer which
holds the age of the LSA in seconds, updated by each router. The Options field
contains some flags, for example it can indicate if the area is a stub area or not. LS
type is the type field which is shown in table 2.3. The Link State ID field holds an
identifier for the link which this LSA concerns, for example the router IP address in
a router LSA. The Advertising router field holds the Router ID of the originator of
the message. The LS sequence number field is a sequence number assigned to each
LS Update message. The length field is the length of the whole packet in bytes.

All routers within an area receive and store the router- and networks-LSAs
from that area in a Link State Database. After the Link State Database has been
constructed it is used to calculate Shortest Path First routing tables.

The ”OSPF Opaque LSA Option” is an additional three LSA types which makes
it easy to extend OSPF for application specific purposes [20]. These LSAs are
flooded like the other LSAs, but are not used for regular OSPF routing, instead
they carry application specific data. Of importance to us, these are the LSAs2

used to carry TE information in GMPLS [21]. The TE LSAs have a standard LSA
header followed by a Type-Length-Value field to distinguish between the different
TE objects. The TE LSA TLV contains a number of sub-TLVs which hold the
actual TE link information, such as Link ID, remote and local addresses, reservable
bandwidth, etc. An actual LS Update message may look like the one in figure 2.17
where the OSPF header can be seen along with three different LSA headers, the

2Actually only the area local opaque (type 10) LSA is used
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Table 2.2: OSPF message types.

Type Name Description
1 Hello Sent periodically on all interfaces to create and

maintain routing adjacencies
2 Database Description Sent when an adjacency is created in order to

exchange information about the LSAs in the
router’s database

3 Link State Request Used to request fresh information if part of the
router’s database is out-of-date

4 Link State Update Performs the actual flooding of LSAs to
neighbors, multicasted if the network supports
it

5 Link State Acknowledge Sent to acknowledge Link State Updates in order
to make the flooding reliable

Table 2.3: Different LSAs, their use and flooding scope.

Type Name Scope Description
1 Router Area local Describes all links of a particular

router
2 Network Area local Describes all routers in a network
3 Summary Inter-area Summarizes the links in one area

and informs the other attached
areas

4 ASBR-Summary AS (except stubs) Informs areas which networks are
attached to AS border nodes

5 External AS (except stubs) Informs areas of routes received
from external routing processes,
such as BGP

9 Link local opaque Link local Carries opaque information
within one network

10 Area local opaque Area local Carries opaque information
within one area

11 External opaque AS (except stubs) Carries opaque information
within one AS
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OSPF header, Type 4 (Update)

Number of LSAs: 3

LSA header, Type 1

Router LSA header, links: X

X links

LSA header, Type 2

Network LSA header

Attached routers

LSA header, Type 10, length: Y

Type 2 (Link info) Length: Z

Sub-TLV Type 2 (Link ID) Length: 4

Link ID: A.B.C.D
Sub-TLV Type 6 (Bandwidth) Length: 4

Bandwidth: X bytes/s
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Figure 2.17: Simplified illustration of how an OSPF LS Update message may be
constructed. This one carries three LSAs, one router LSA, one network LSA, and
a TE LSA. The TE LSA is in turn composed of one TLV consisting of several sub-
TLVs which holds information such as Link ID, Maximum reservable bandwidth,
Interface Switching Capability Descriptor and so on.

TE LSA TLV and sub-TLVs are also shown. Unlike the regular LSAs the TE LSAs
are not stored in the Link State Database, but in a separate Traffic Engineering
Database.

2.2.9 Link Management Protocol

The Link Management Protocol (LMP) is responsible for data plane link discovery,
configuration, and fault isolation. This could partly be done manually, at least the
configuration of data plane links could be done, but with a large number of links this
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becomes error prone and can be quite a lot of work to both initially configure and
keep up to date. The LMP protocol is UDP based and runs on port 701 between
GMPLS nodes. The messages are similar to the RSVP-TE message with a common
message header followed by objects and sub-objects (TLVs) distinguished by Class
and C-Type. The main functions of LMP are:

Control channel management Initialization and management of control chan-
nels. Initially data plane neighbors establish each others identity and
capabilities, after this is done they enter a management phase which
periodically sends Hello messages to make sure there is still connectivity.

Data plane link discovery Discovery of and connectivity check are needed on
each of the data plane links to and from neighbors. Before this is done the
node only knows the local identifier of each link, but not the state of or the
remote identifier of each link.

Data plane link capability exchange Depending on data plane technology an
exchange of link information may follow link discovery. This may also be
necessary if multiple types of links are supported.

Data plane link verification Verification can be conducted at any time to check
connectivity and the status of a data plane link. The procedures followed to
verify a link are identical to the link discovery procedures.

Fault isolation One of the most important parts of LMP is fault isolation. It is
initialized by a downstream node whenever a fault such as signal degradation
is noticed. Since some data plane technologies are oblivious to the data they
are transporting another protocol is sometimes necessary to find the faulty
link in order to bypass it.

Authentication LMP has support for authentication, although it is not a
requirement it may be a good idea to use authentication. Since the control
link or channel can traverse a public IP network each message should be
authenticated in order to prevent spoofing attacks.

An extended LMP protocol is LMP-WDM which runs between a OXC (see
section 3.1.2) and optical components which may be external to the OXC, such as
optical amplifiers and multiplexers. These external components are known as an
Optical Line System.

2.2.10 Path Computation Element

The Path Computation Element is responsible for performing path calculation
within the GMPLS network. Since path calculation is usually only necessary at
the edge of the network, there is no requirement that each node in the network
can perform path calculation, unlike for example IP networks (where each routes is
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expected to be able to perform route calculation). Instead the LSRs implement a
protocol that can send requests to the Path Calculation Element which calculates
a route and returns it to the LSR. This client-server path calculation architecture
makes it possible to make path calculation fully decentralized, centralized, or various
degrees thereof. This is useful since constraint-based path calculation may be a
computationally expensive operation, if it is centralized the LSRs can be ”dumber”
and cheaper to produce. Multiple Path Calculation Elements can be used to make
the path calculation more resilient and route request can be distributed between
the Path Calculation Elements in order to balance load.



Chapter 3

Multi-region GMPLS Networks

Many complicated and interesting issues in GMPLS networks arise when going from
one network region to another. Path calculation has to take into account constraints
specific to each region; additionally extra signaling may be necessary to tunnel
switching types and a correct “inter-technology” mapping must be established. The
focus of this thesis is the switch between L2SC and LSC regions, specifically between
Ethernet and a Wavelength Division Multiplexing system. How these different
switching systems operate is discussed below.

3.1 Network Technologies Considered in this Thesis

3.1.1 Ethernet
Ethernet has been a very popular network technology since it was invented in the
mid-1970s. It is standardized by the Institute of Electrical and Electronics Engineers
(IEEE) in the IEEE 802.3 family of standards [22]. Traditionally Ethernet has been
used in Local Area Networks (LANs). In recent years Ethernet has also been used to
implement Metropolitan Area Networks and carrier backbone networks, displacing
legacy time division multiplexing systems such as synchronous optical networks
(SONET/SDH). Metropolitan and carrier networks frequently use 1 or 10 Gigabit
Ethernet; as the physical layer supports both short twisted-pair cables and longer
optical fibers. A major reason for the popularity of Ethernet is the relative low
price of Ethernet equipment due to the large production volume [23].

The Ethernet frame header contains two addresses, a source and destination
Media Access Control (MAC) address. When a switch receives a Ethernet frame
the destination MAC address is examined and a table look-up indicates on which
port the frame should be forwarded; this is based upon an earlier procedure called
”learning” which has discovered the MAC addresses of Ethernet interfaces attached
to the different ports. If the destination MAC address is not found in the forwarding
table, i.e. the destination address is unknown, the frame is transmitted on all ports
except for the one it arrived on. Each port of a Ethernet switch belongs to a
different collision domain, every node in a collision domain can intercept frames

26
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Figure 3.1: Ethernet Type II frame format. The header contains source and
destination address and a field indicating what type of data is carried in the payload.
The frame check sequence (FCS) is a checksum of the frame inserted after the
payload.

Figure 3.2: Example of two connected Ethernet switches, each with 2 VLANs.
Equipment on a VLAN can only communicate with equipment on the same VLAN.

sent on that domain and if they try to send frames at the same time the frames
will collide. Another important domain is the broadcast domain, this is the set
of collision domains reached by sending a local broadcast frame (a frame with the
destination MAC address ff:ff:ff:ff:ff:ff). The broadcast domain generally covers all
collision domains on a bridged network, but does not extend past network layer
routers. Several slightly different Ethernet frame formats exists, see figure 3.1 for
the format of the common Ethernet Type II frame. The two byte EtherType field
indicates what type of data is carried in the Payload (for example the value 080016
represents IP traffic, 080616 ARP, etc). The four byte Frame Check Sequence (FCS)
is a checksum used to detect corrupted frames.

Sometimes it can be useful to create different broadcast domains on top of a
physical network in order to create logical network topologies different from that
of the physical network. This can be done on Ethernet networks by using Virtual
LANs (VLANs). Using VLANs one can partition different ports on a switch to be
part of different networks.

The example shown in figure 3.2 shows two connected switches with two VLANs
each. Interfaces on VLAN 1 can communicate with interfaces on the same VLAN
on both switches, but not with interfaces connected to VLAN 2.

VLANs were implemented on Ethernet following the IEEE 802.1Q standard
which adds a tag after the source MAC address in the Ethernet header. In figure
3.3 an Ethernet Type II frame with a 802.1Q VLAN tag is shown in which one can
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Figure 3.3: Ethernet Type II frame tagged with 802.1Q VLAN Tag.

Figure 3.4: End-to-end Ethernet label using VID and destination MAC address.

see the VLAN tag inserted between the source address and the EtherType field. The
VLAN tag consists of two parts: the Tag Protocol Identifier (TPID) and the Tag
Control Information (TCI). The TPID takes the previous position of the EtherType
field and is set to the value 810016 and informs the switch that the frame is tagged,
the actual EtherType is placed after the TCI. The 2 byte TCI is divided into a
3-bit field for priority, a 1-bit field called Canonical Format Indicator (CFI), and a
12-bit field for the VLAN identifier (VID) [24]. The priority field can be used to
with IEEE 802.1p (part of IEEE 802.1D since 1998) to provide link layer Quality of
Service. The CFI field is used to provide interoperability with Token Ring networks,
on Ethernet networks it is always set to zero. The 12-bit VID identifies what VLAN
the frame belongs to. The VID could be used as a GMPLS label in the same way
MPLS labels are used, with swapping at each LSR. Unfortunately, this violates the
802.1Q standard and is not supported by Ethernet switches. If the VID is used as
a label we are forced to use it as an end-to-end label, meaning that the same label
is used for each hop along the entire Ethernet segment of the path. This constraint
limits the number of LSPs to 4093 (12 bits minus 3 reserved labels) per link and
Ethernet segment. By using the VID in combination with the destination address
of the egress as the label; LSPs can share VIDs and the limitation changes to 4093
LSPs per destination address, quite an improvement (see figure 3.4).

Other possibilities for a GMPLS Ethernet labels can be found in the IEEE
802.1ad (Provider bridge [25]) and IEEE 802.1ah (Provider Backbone Bridges [26])
standards. These two standards allow provider networks to transport VLAN tagged
Ethernet traffic, which makes it possible to create for example link layer private
networks (virtual private LAN services). IEEE 802.1ad (also known as Q-in-Q) is
an amendment to the 802.1Q VLAN tags which adds another almost identical VLAN
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tag in addition to the original one. These so called Service Tags may be a better
choice for GMPLS labels since it would allow the GMPLS network to transport
Ethernet frames which are already tagged (perhaps for use in a customer’s network).
The other possibility is using IEEE 802.1ah which adds additional MAC address
fields as well as an additional VID. At the time of writing neither the GMPLS label
format or which of these available tags to use has been standardized. Work on this
is being done in the IETF Common Control and Measurement Plane (CCAMP)
work group [27].

3.1.2 Optical Networks
Wavelength Division Multiplexing (WDM) is very similar to the Frequency Division
Multiplexing (FDM) that is used in systems operating in the lower frequencies of
the electromagnetic domain. The bandwidth of a channel is split into multiple
discrete channels, in WDM the sub-channels are commonly referred to as lambdas,
from the Greek letter λ used in physics to denote wavelength. In WDM the media
typically is an optical fiber instead of open air. The bandwidth frequently ranges
from the infra-red to ultraviolet - as this frequency range has low attenuation within
that fiber, due to the materials used and the design of the fiber. Depending on the
difference between the frequencies of the different lambdas (the so called channel
spacing) the technique is called either Coarse Wavelength Division Multiplexing
(CWDM) or Dense Wavelength Division Multiplexing (DWDM). Typical channel
spacing for CDWM signals is 2500 GHz and in DWDM between 12.5 and 100 GHz
(see table 3.1).

Table 3.1: Values used in the Grid field and in the Channel Spacing (C.S.) field.

Grid Value
ITU-T DWDM 1
ITU-T CWDM 2

Future use 3 - 7

C.S.(GHz) Value
12.5 1
25 2
50 3
100 4

Future use 5 - 15

Components of Optical Networks

In order to switch optical signals there are two basic approaches: optical-electronic-
optical and the optical-optical-optical. In optical-electrical-optical the optical signal
is demuxed and converted into an electric signal. An advantage of this approach
is that an electrical signal can be switched easily and regenerated at perhaps a
different wavelength than the incoming signal and emitted into a different fiber. A
disadvantage of optical-electrical-optical is that the optical signal has to be decoded
and sent through an electronic switching fabric, limiting the device to specific signal
encodings and data rates. In the optical-optical-optical case the incoming signal is
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Figure 3.5: 1st and 2nd degree OADM.

demuxed (if necessary) and sent through a optical switching fabric. Such an optical
switching fabric may be constructed by an array of micro-electromechanical system
mirrors. These mirrors reflect the signal into a fiber or multiplexer that is a function
by the configurable orientation of the mirrors.

The optical-optical-optical approach is generally cheaper since it does not involve
any transceivers which are necessary in optical-electrical-optical to decode and
regenerate the signal. Since the signal is transparent to the optical-optical-optical
system it more easily supports upgrades to the systems; while an optical-electrical-
optical switch would need to be replaced since each signal has to be decoded and
regenerated. However, a disadvantage of the optical-optical-optical approach is that
it does not even know if there is a signal present - so failures of switches or fibers
might not be easily detected.

An optical add-drop multiplexer (OADM) is a device that has two or more so
called “trunk” ports, and one or more pairs of add and drop ports (sometimes called
tributary ports). If you have 1 tributary port, the device is called a 1-degree OADM,
and so on. The add and drop ports are used to add and remove lambdas from the
fibers connected to the trunk ports. This is usually used to connect networks into a
fiber optic ring topology, but the trunk ports do not necessarily have to be connected
in a ring. Which lambda that is added and dropped is statically configured in a
traditional OADM, however more modern devices can be remotely reconfigured and
are therefore called a reconfigurable optical add-drop multiplexers (ROADMs) [28].

The simplest, 1-degree ROADM has one input, from which you can drop a single
lambda, and one output to which you can add a lambda (left side of figure 3.5).
If you want bidirectional communication this forces you to have a ring topology.
A common design is to have an input and output on both trunk ports and two or
more add-drop ports (i.e. a 2- or N degree ROADM). The fibers used are either two
bidirectional fibers for each port, or a single bidirectional fiber. As can be seen in
the righthand portion of figure 3.5 the left trunk can only be added from or dropped
to the left port, and vice versa on the right side. This light path constraint must
be taken into account when calculating LSP paths.

Another switching device is the optical cross-connect (OXC). These devices allow
arbitrary switching between input and output ports, which may be single lambdas
(wavelength cross-connect), several lambdas (waveband cross-connect), or a whole
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Figure 3.6: Architecture of an optical cross-connect [1].

fiber (fiber cross-connect)1 [1]. In figure 3.6 the architecture of a optical-optical-
optical wavelength cross-connect (WXC) can be seen. These devices are commonly
used to join two or more rings together or in mesh topologies. Since they allow
arbitrary switching there are no light path constraints other then that you cannot
switch two or more incoming lambdas of the same wavelength into an outgoing
fiber. In connect an incoming lambda to a different outgoing lambda the cross-
connect must be able to perform wavelength conversion, which is available in some
products. The optical signal is generated by a laser in a transponder, for example by
a Gigabit Ethernet network interface. These usually operate on a static wavelength,
but tunable lasers are under development. Such a transceiver usually only utilizes
a single wavelength, it is therefore not WDM per se. The optical signal is turned
into a WDM signal by connecting it to a OADM, WXC, or a WDM multiplexer. A
WDM network containing these devices may look like the one illustrated in figure
3.7.

WDM Labels

In order to advertise available wavelengths or signal paths the nodes involved must
agree upon a generalized label format to use. Currently one format is standardized
in RFC 3471 and another is progressing as an Internet draft [15] [30]. The format
in RFC 3471 is a 32-bit value used to identify a FSC port or a LSC wavelength.
This value is either manually configured or locally agreed upon via LMP. The label
format proposed in the Internet draft supports both coarse and dense WDM. It
is based on wavelength grids (lists of wavelengths and distances) published by the

1For simplicity I will refer to all these devices as OXCs.
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Figure 3.7: A possible design of an optical network. The backbone consists of a mesh
of optical cross-connects (1) connected to a fiber ring. Rings may be concatenated
by an optical cross-connect (3), on the rings ROADMs are used to drop specific
wavelengths into customer networks. At the customer the optical signal is passed
through a WDM system (4 and 5) and is converted into electrical signals [29].

ITU-T as G.694.1 and G.694.2 [31][32]. The CWDM label specifies the grid and
a wavelength, the wavelength in the label is added to a reference wavelength to
calculate the final wavelength of the signal (equation 3.1 and figure 3.8). In the
DWDM label the frequency is calculated by multiplying the Channel Spacing, the
Sign (positive or negative), the channel number (n), and adding the value to a
reference frequency (equation 3.2 and figure 3.8). However, these labels are only
usable on so called ”colored” links, on which the optical signal is well defined and
conforms to the ITU-T grids. Unfortunately, there are optical links which do not
conform to the ITU-T grids, therefore some other means must be used to specify
labels for such links. Such non-conforming links are outside of the scope of this
thesis.

Wavelength (nm) = 1470(nm) + n× 20(nm) (3.1)

Frequency (THz) = 193.1(THz)± n× Channel Spacing (THz) (3.2)
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Grid Reserved n
0 2 3 6 7 8 15 16 31

Grid C.S. S Reserved n

Figure 3.8: Proposed CWDM (top) and DWDM (bottom) label. Grid values can
be found in table 3.1 along with values for Channel Spacing (C.S.). The Sign (S)
value in the DWDM label indicates if the value should be added or removed from
the reference frequency (see equation 3.2) [30].
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Border Border

Figure 3.9: Three nodes of different switching capability. Nodes are (from left)
MPLS, Ethernet, and WDM nodes. Above are the switching capabilities and their
values of the interfaces on the links. Since 1 < 51 the MPLS node is the border on
the leftmost link. Since 51 < 150 the Ethernet node is the border on the rightmost
link.

3.2 Region Boundaries
When two nodes with different switching capabilities are connected a region border
is created, but which of the two nodes should be responsible for handling the
problems of connecting the two different regions? In RFC 4206 a procedure for
determining which LSR is the responsible border node is defined as follows:

”Define an ordering among interface switching capabilities as follows: PSC-1
< PSC-2 < PSC-3 < PSC-4 < TDM < LSC < FSC. Given two interfaces if-1
and if-2 with interface switching capabilities isc-1 and isc-2 respectively, say
that if-1 < if-2 iff isc-1 < isc-2 or isc-1 == isc-2 == TDM, and if-1’s max LSP
bandwidth is less than if-2’s max LSP bandwidth.

Suppose an LSP’s path is as follows: node-0, link-1, node-1, link-2, node-
2, ..., link-n, node-n. Moreover, for link-i denote by [link-i, node-(i-1)] the
interface that connects link-i to node-(i-1), and by [link-i, node-i] the interface
that connects link-i to node-i.

If [link-(i+1), node-i)] < [link-(i+1), node-(i+1)], we say that the LSP has
crossed a region boundary at node-i; with respect to that LSP path, the LSR
at node-i is an edge LSR.”

In the case of simple nodes, nodes with only one switching capability per TE-link,
this procedure boils down to the node with the lower ISC is the border node. In
figure 3.9 three nodes are shown together with their ISCs (see table 2.1 for the
values assigned to different switching capabilities). One can see that the middle
node is the border on the Ethernet to WDM link since 51 < 150; however it is
not the border on the MPLS to Ethernet link. On the MPLS to Ethernet link the
MPLS node is the border since 1 < 51. This way border nodes are defined together
with region boundaries. Note that a node is a border node with respect to a LSP.
A node with for example two L2SC interfaces and one PSC interface is not a border
node (relative the LSP) if an LSP enters and leaves the node through the L2SC
links. However, if the LSP enters through the PSC interface and leaves through a
L2SC interface the node is a border node in respect to that particular LSP.
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Figure 3.10: Example of LSP conversion. An LSP is created through three regions,
at each region border it is converted to the lower region.

3.3 Cross Region LSP setup

Cross region hops cannot be treated like hops within regions. Two ways of dealing
with cross region LSP setup are presented below.

3.3.1 LSP Conversion

The ”naïve” or simple way of handling cross region LSP setup would be to
treat it more or less as a intra-region TE-link hop. This would mean that in
for example a Path message one would replace the switching capability in the
LABEL_REQUEST object and changes the labels in any UPSTREAM_LABEL
and/or SUGGESTED_LABEL object (see figure 3.10 for an example). If its
possible to simply convert the labels (for example an MPLS label with value 22
converted to a Ethernet label with VID 22) this could be done or completely new
labels could be allocated.

This simple way of dealing with cross-region LSPs however has some problems.
The most obvious one is the issue of granularity and label space. If the minimum
reservable bandwidth in one region is significantly larger than in the other region,
then a large amount of bandwidth may be reserved but not utilized. For example
an LSP with 100 Mbit/s can be reserved on a Gigabit Ethernet without any wasted
bandwidth, but on a optical WDM network the only reservable bandwidth might be
2.5 Gigabits/s. Reserving 2.5 Gigabit/s when only 100 Mbit/s is used is of course
a waste of resources (at least if there is other traffic which could have used the
bandwidth).

However, if label space and bandwidth granularity are similar in both regions,
then LSP conversion is a fast and simple way to do cross-region LSPs.
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Figure 3.11: Example of how an FA-LSP is used to cross regions. At each region
border the creation of a FA-LSP is triggered.

3.3.2 Forwarding Adjacencies

A more efficient way to handle cross region LSP setup is the concept of a Forwarding
Adjacency LSP (FA-LSP), which is similar to the Label Stacking technique discussed
in section 2.1.1. However, in GMPLS one cannot stack labels in the same sense since
some labels (implicitly) refer to quantified physical resources and these cannot be
stacked within each other. This can be solved by creating an LSP over the LSRs
in the path that belong to the same continuous region. This LSP can then be
used as if it was a link of the same switching type as the bordering region – but
with the characteristics of such a link. The FA-LSP may also be advertised by the
routing plane like a regular TE-link so that it may be used by other nodes for path
computation, it is actually only when announced that the link becomes an FA-LSP,
otherwise it is called an Hierarchical LSP (H-LSP). In figure 3.11 an example of
cross-region LSP setup with FA-LSPs can bee seen.

The TE-link ”produced” by the FA-LSP inherits most of its TE-link information
from the underlying LSP, for example bandwidth. Other information such as
TE-link identifiers are generated while the Interface Switching Capabilty Descriptor
is copied from the ingress node [33]. By using a LSP as a logical link the two border
LSRs become neighbors in the incoming switching type region and thus they have
a forwarding adjacency.

For an example of how the exchange of RSVP signaling messages look when
two FA-LSPs are created via triggered setup see figure 3.12. In this example the
FA-LSP setup is triggered, the LSRs decide to create a FA-LSP themselves. An
FA-LSP may also be commissioned by other means, for example by a management
plane. When triggered the Traffic Engineering Database must be used to find the
other end of the FA-LSP.
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Figure 3.12: Simplified view of RSVP signaling triggering the creation of two
FA-LSPs in order to bridge LSC and L2SC regions.
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3.3.3 Keeping State

As previously mentioned RSVP is a soft state protocol. This means that unless
periodically updated the reserved resources will be released and Tear-down messages
sent to remove the state in other routers. In the original RSVP specification state
was maintained by retransmitting the original Path and Resv messages [4]. This
method has some problems, for example it has scaling issues, and an improved way
of keeping state was introduced.

The RSVP Refresh Overhead Reduction extensions contain a number of new
RSVP sub-objects and new RSVP message types [34]. A new sub-object is the
MESSAGE_ID object which can be carried in the Path and Resv messages that
triggers the creation of a reservation. The MESSAGE_ID carries a 32 bit node-local
identifier which is used to identify the reservation. This identifier can later be used
to refresh the state for that reservation either by piggybacking it within another
RSVP messages or by using the RSVP Summary Refresh (Srefresh) message. The
Srefresh message can carry a list of identifiers received in MESSAGE_ID objects
which when received refreshes all the reservations identified in the list. This allows
a node to periodically send a single message to refresh all reservations to a neighbor
node instead of keeping track of individual timeouts for each reservation and sending
one message per reservation. The RSVP Refresh Overhead Reduction extension has
many other uses, for example it also supports reliable RSVP message delivery.

3.3.4 Signaling extensions for FAs

There are two different FA-LSP signaling procedures that have been standardized,
one for numbered FA-LSPs and one for unnumbered [33] [35]. The procedure for
signaling numbered FA-LSPs is:

1. The ingress node allocates a /31 IPv4 address and sets it as the tunnel source
address in the Sender Template object of a RSVP Path message.

2. Upon receiving a Path message the egress node sets up the LSP as usual and
allocates the other address in the /31 space (this is possible because the /31
netmask contains exactly two addresses).

3. When reservation is complete the ingress node announces the LSP as a TE-link
in the IGP using the local /31 address.

4. The egress node examines every TE-link advertisement looking for links with
a Link-ID matching its own Router-ID, if so – then it tries to match the
interface addresses with the /31 address which was the source in the Sender
Template object.

5. If a matching link is found the egress node also announces the LSP as a
TE-link using the other /31 address as local interface address.
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This procedure has several drawbacks; since the ingress node cannot indicate
that the LSP should be announced as an FA-LSP and the ingress node’s Router-
ID is not carried to the egress node, therefore the egress node must wait for a
routing advertisement to be able to realize that the LSP should be announced as
an FA-LSP. It may potentially also have to examine many local LSPs for each new
TE-link advertisement it receives which consumes processing power. The procedure
used for unnumbered FA-LSPs is faster and cheaper in terms of processing power.
The unnumbered FA-LSP signaling procedure defined in RFC 3477 is [35]:

1. The ingress node allocates a local unnumbered interface identifier. This identi-
fier along with the ingress node’s Router-ID is sent in a LSP_TUNNEL_INTERFACE_ID2

object (see figure 3.13). The LSP_TUNNEL_INTERFACE_ID object is
inserted in the Path message.

2. The egress node proceeds with LSP setup as usual and processes the
LSP_TUNNEL_INTERFACE_ID object which indicates that this LSP
should be announced as an FA-LSP. It stores the ingress node’s Router-
ID and interface identifier and allocates its own local interface identifier.
The new identifier and the egress node’s Router-ID are inserted in a new
LSP_TUNNEL_INTERFACE_ID object which is sent back to the ingress
node in the Resv message.

3. The egress node announces the LSP as an unnumbered FA-LSP in the IGP.
Since it knows the ingress node’s Router-ID and local interface identifier it
can assign a Link-ID to the link and local/remote interface ids.

4. When LSP setup is complete the ingress node announces the LSP as an
unnumbered TE-link.

This method is both faster and computationally cheaper than the numbered
approach. Both ingress and egress nodes can announce the FA as soon as
reservation is made and there is no need to examine newly announced TE-links
for potential FA-LSPs. A current IETF draft suggests an extension of the
LSP_TUNNEL_INTERFACE_ID object. This extension adds (among other
things) numbered interface support and deprecates the previous numbered signaling
method [36].

3.3.5 End-to-End Label Allocation

If the data plane does not support the MPLS notion of swapping labels, as is the
case in for example optical networks without wavelength conversion, then a single
label has to be used over the entire LSP. A label used over the entire LSP is called
an end-to-end label, GMPLS offers several ways to allocate such a label:

2Not to be confused with the LSP_TUNNEL_IPv4 and LSP_TUNNEL_IPv6 objects from
RFC 3209 [16]
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

LSR’s Router ID
Interface ID (32 bits)

Figure 3.13: The LSP_TUNNEL_INTERFACE_ID object which indicates that
an LSP should be announced as an FA-LSP. It contains the senders Router-ID and
a unnumbered interface identifier. The LSP_TUNNEL_INTERFACE_ID object
is allowed in Path and Resv messages [35].

SUGGESTED_LABEL

UPSTREAM_LABEL

SUGGESTED_LABEL

UPSTREAM_LABEL

RSVP PATH RSVP PATH

Figure 3.14: End-to-end label setup using UPSTREAM_LABEL and
SUGGESTED_LABEL.

• The UPSTREAM_LABEL and SUGGESTED_LABEL objects

• The LABEL_SET object

• The Explicit Label Control ERO extension

Using the UPSTREAM_LABEL, and using the same label, across the entire
LSP one can force the label to be used in the upstream direction. Since
the UPSTREAM_LABEL must be accepted or an error transmitted – if the
downstream node cannot use it (i.e., is not possible for the downstream node to
use another label in the upstream direction than the received one). In the same
way the SUGGESTED_LABEL, suggests what label should be used to send data
to the downstream node (see figure 3.14). However, to force a label allocation using
the SUGGESTED_LABEL object would go against standards, as RFC 3473 states
that ”Errors in received Suggested_Label objects must be ignored. This includes
any received inconsistent or unacceptable values.” (emphasis mine). If one wants to
use this approach either the standards should be changed or a new object introduced
(DOWNSTREAM_LABEL).

Another option to limit label selection is by using the LABEL_SET object (this
is actually the standard way [37]). This object (see figure 3.15) can be used to define
inclusive or exclusive labels or label ranges. Several of these objects can be sent in
order to define the permitted label space from which the downstream node must
choose a label to send upstream in the Resv message. The LABEL_SET object
can be used instead of the hypothetical DOWNSTREAM_LABEL object without
breaking the standards; however it is more complicated to process.

A third option is the Explicit Label Control extension to the Explicit Route
Object. This extension enables the ingress node to decide upon the labels for each
hop in the Explicit Route Object, by adding one or two Label ERO subobjects
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0 7 8 15 16 23 24 31

Length Class-Num (36) C-Type (1)

Action Reserved Label Type

Subchannel 1
...

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Subchannel N
...

Figure 3.15: The LABEL_SET object, can be carried in Path messages. By setting
different values in the ”Action” field the object can specify inclusive or exclusive
labels or label ranges. The label range or list is specified in the ”Subchannel” fields
[17].

0 1 7 8 15 16 17 23 24 31

L Type (3) Length U Reserved C-Type

Label
...

Figure 3.16: The Label ERO sub object. The L-bit must be set to 0, the Type field
is 3 and the C-Type copied from the label. The U-bit indicates if the label is an
upstream or downstream label [17].

following a IP address or interface identifier in the ERO. The Label ERO subobject
(see figure 3.16) can carry both upstream and downstream labels.

3.4 Literature Study Conclusions
Based on a literature study some conclusions of what is appropriate and necessary
to implement in order to reach the goal of cross region LSP setup over Ethernet
and Optical regions can be drawn. Due to the differences in bandwidth granularity
between these different regions the integration should be done by using FA-LSPs,
preferably triggered, since this seems to be the most suitable solution for this
scenario. One of the methods for enforcing end-to-end labels should be used,
the Suggested label is the simplest one (however, it breaks standards). Since the
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standardized procedure for creating numbered FA-LSPs requires both an IP address
allocation scheme (since the addresses are global) and there are interactions between
OSPF-TE and RSVP-TE, the simpler unnumbered FA-LSPs procedure is preferred.
Creating an FA-LSP consists of a few steps:

1. Creating an LSP in the LSC region The LSP should be able to traverse
both OXCs and ROADMs and it should support end-to-end labels since the
nodes may not be able to perform wavelength conversion.

2. Identifier allocation Unnumbered interface identifiers should be allocated
and included in the LSP setup using the LSP_TUNNEL_INTERFACE_ID
object.

3. TE-link announcement When LSP setup is completed the OSPF-TE
daemon should announce a new TE-link. This requires communication
between the RSVP-TE and OSPF-TE daemon as well as a method for
dynamically creating TE-links in the OSPF-TE daemon.

Once the FA-LSP has been created the next step is to use it – just as any other
TE-link in the network. This needs additional support, specifically:

1. Control plane traffic forwarding Control plane traffic utilizing the FA-LSP
has to be forwarded to the tail-end LSR of the LSPs. Information about the
FA-LSP’s TE-link identifiers and the tail-end of the LSP needs to be stored
so that traffic can be forwarded to the correct LSR.

2. Data plane binding When creating switching rules information mapping
the FA-LSP TE-link to the lambda reserved by the LSP is necessary in order
to forward traffic into the correct LSP.

Both the control and data plane mappings should be created when the FA-LSP has
been setup.
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Software Implementation

4.1 DRAGON Software Suite
The Dynamic Resource Allocation via GMPLS Optical Networks (DRAGON)
software suite is an open source GMPLS suite developed by a number of universities
and others in the U.S. with support of the U.S. National Science Foundation [38].
It consists of a number of UNIX daemons for RSVP-TE, OSPF-TE, and Path
Computation Element, and other functions.

The DRAGON version used was the release made in June 2006. This release is
available at the DRAGON homepage: http://dragon.east.isi.edu/twiki/bin/
view/Main/WebHome. The following DRAGON components used in the Multi-Layer
Control Plane project:

OSPF-TE The OSPF daemon is an extended version of the OSPF daemon
provided by the Zebra routing daemon project. It has been extended to
support distribution of Opaque LSAs with TE information. It also plays
the role of part of the LMP protocol which is not implemented in this suite.
It is written in C.

RSVP-TE The RSVP daemon is based on an open source RSVP daemon called
KOM-RSVP. This daemon is written in C++.

PCE This is provided by the NARB daemon created by the DRAGON project. It
can among other things be used to perform path calculation. It is written in
C++.

Dragon A daemon which acts as the endpoint of and LSP, this daemon can be
used to initiate RSVP signaling. It is written in C.

In figure 4.1 the relationships between these daemons is shown. The different
daemons communicate with each other using Inter-Process Communication (IPC).
The communication between the NARB and the RSVP-TE daemon is IP based. The
RSVP-TE daemon has a number of built-in Data Plane Controller modules which is
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OSPF-TE

RSVP-TE Dragon

NARB

Control Plane
Signaling

Control Plane
Routing

Control Plane
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Linux
MPLS

Linux
Ethernet/Optical

Switchcore
Ethernet

IPC

IPC

Data Plane
Controller

IP

Control Plane
Path calculation

IPC

Figure 4.1: The different DRAGON daemons, their use and the relationship between
them.

used to communicate with data plane hardware using Telnet, SSH or Sredir (allows
a telnet session via a serial port [39]).

4.2 Emulating an Optical region

Creating LSPs in the optical region as well as implementing border node func-
tionality requires some sort of programmable optical switches, either OXCs or
ROADMs. However, none of the OXCs or ROADMs available in the MLCP project
are programmable. To overcome this problem an emulated optical data plane has
been developed. The emulated data plane uses common PC hardware and standard
Linux kernel features.

4.2.1 Model

In order to emulating a WDM system using common hardware (such as Ethernet
components and standard PCs) we make a a number of assumptions. For example it
is assumed that the optical inputs and outputs are ”colored”, i.e. the optical signal is
well defined in a specific frequency when arriving at or leaving the WDM component.
Specifically we assume that they conform to ITU-T G.694.1 and G.694.2.

The developed WDM emulator uses the Linux kernel and common network
tools. The emulation is rather superficial in that it does not try to emulate physical
characteristics of WDM systems such as interference or errors at the optical level.
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(a) (b) (c)

Figure 4.2: Some possible configurations of the Linux Bridge Controller. In figure
(a) interfaces eth0-4 are bridged by a single bridge. In figure (b) interfaces eth0
and eth2 are bridged by one bridge and interfaces eth1 and eth3 by another bridge.
In figure (c) the same connections as in (b) are made with the addition of another
bridge (br1) that connects eth2 and eth3.

However, it simply allows for traffic to be switched by using GMPLS optical labels.
Details on how the emulation operates is described in the following sections.

4.2.2 Linux Bridge Controller

The Linux kernel has support for connecting Ethernet segments by acting as an
Ethernet bridge based upon an implementation of a subset of the ANSI/IEEE
802.1D MAC Bridges standard [40]. By enabling these features in the kernel
at compile time, or loading them as kernel modules into a running system, one
can create and control “virtual” bridges using the command line interface “brctl”.
Using brctl one can create several bridges, connect interfaces to them, turn on
or off the Spanning Tree Protocol (STP) on individual bridges, and adjust STP
parameters (see appendix A for details). Interfaces can be connected to several
bridges at once, enabling all the configurations shown in figure 4.2. Since lambdas
are emulated as regular Ethernet point-to-point links we can emulate bi-directional
lambda switching by creating a bridge and adding two interfaces to it, thereby
switching traffic from interface A (lambda X) into interface B (lambda Y) and vice
versa.

4.2.3 Ethernet bridge tables

While the Linux Bridge Controller is sufficient for emulated bi-directional lambda
switching it cannot perform uni-directional emulation and is cumbersome to
automate since a new bridge has to be created for each switching decision. Ethernet
bridge tables, or ebtables for short, are a firewalling tool that can filter traffic
passing through a Linux Bridge [41]. Ebtables are similar to the standard Linux
IP firewall tool “iptables”, as they use a similar syntax. Ebtables can work
together with iptables and other Linux filtering tools (such as arptables). Ebtables
makes it possible to filter traffic based on Ethernet link layer information such
as source/destination MAC address, incoming/outgoing interface, VLAN IDs, and
more. Ebtables can also perform both source and destination Network Address
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Translation (NAT) on the link layer. For more information on Ebtables see appendix
B where a summary of ebtables commands can be found.

Ebtables are useful in the optical emulation model as it gives us the ability to
limit traffic flows between interfaces attached to a Linux Bridge. If traffic enters a
Linux Bridge and the destination MAC is unknown to the bridge, the bridge will
send the data on all the other attached interfaces. Using ebtables this broadcast
can be limited so that traffic entering on interface A is only allowed to leave through
interface B. Filtering, NAT, and the other operations Ebtables support is done by
inserting rules into ”chains” that are put into one of Ebtables’ three tables: “broute”,
“nat”, and “filter”. The ”filter” table controls filtering operations, such as allowing
traffic to enter from for example interface A and only leave through interface B. The
filter table has three different chains: “INPUT”, “OUTPUT’, and “FORWARD”.
The INPUT and OUTPUT chains apply rules to Ethernet frames destined for the
node and frames generated by the node respectively. The FORWARD chain apply
rules to frames forwarded by the node, by setting the default policy to DROP we can
prevent any traffic from passing through the bridge. In order to switch traffic from
interface A (lambda X) to interface B (lambda Y) uni-directionally, the following
rule is inserted in the FORWARD chain of the filter table:

# ebtables -P FORWARD DROP
# ebtables -A FORWARD --in-if interfaceA --out-if interfaceB -j ACCEPT

The first command sets the default policy on the FORWARD chain to DROP, traffic
not matching any of the inserted rules will be sent to the target DROP and thus
not forwarded. The second command appends (-A) a rule to the chain FORWARD,
if the incoming interface matches interfaceA and outgoing interface is interfaceB,
then the frame is sent to target (-j) ACCEPT and thus forwarded. To switch a
bi-directional lambda the same rule is inserted again, but with the interface names
are reversed (to establish forwarding in the reverse direction). By using ebtables
to perform the switching in this manner all involved ”lambda interfaces” can be
inserted into a single bridge and switching is done by adding and removing rules to
ebtables, resulting in a cleaner solution that also allows for more advanced switching
than simply using Linux Bridges alone. Since ebtables also can filter on the VLAN
ID it is simple to handle the border node case where Ethernet frames on a particular
VLAN and a particular destination MAC address enters from an Ethernet interface
(called “eth0”) and should be forwarder to a specific lambda (here we assume that
the outgoing interface is named “lambda”). The ebtables command for inserting
such a filtering rule is:

# ebtables -A FORWARD --in-if eth0 --out-if lambda -p 802_1Q
--vlan-id VID -j ACCEPT
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4.2.4 Mapping between Control and Data plane

In order to identify which DWDM frequency or CWDM wavelength an interface
represents, a mapping between each interface and a frequency or wavelength is
necessary. Since the same frequency or wavelength may be emulated on several links
each “lambda interface” must also be mapped to a control plane interface. These
mappings are done by renaming the interfaces. The standard Linux “ip” command
can be used to rename interfaces from their normal names (such as “eth0”, “tun0”
etc.) to an ASCII string of a maximum of 15 characters. By naming control plane
interfaces “control-ID” and lambda interfaces “ID-frequency” one can map control
to data plane interfaces by the ID and frequencies or wavelengths to data plane
interfaces. For example a control plane interface may be called “control-45ab”,
the interface representing frequency 193.1 THz on the data plane would be named
“45ab-1931000”. For DWDM the frequency part of the ”lambda interface” name is a
7 digit number, since the label format allows increments of 12.5 GHz the value must
be in tenths of a GHz. For CWDM the frequency is the wavelength in nanometers,
a 4 digit number.

4.2.5 VTund

Using a physical Ethernet interface for each lambda would require many interfaces
if a WDM supporting a lot of lambdas is to be emulated. By using virtual interfaces
the number of physical interfaces required can be limited. Linux supports a number
of different IP tunnel interfaces for example Generic Routing Encapsulation (GRE),
IP-in-IP, and IPsec tunnels [42] [43] [44]. However, these can not be used to carry
VLAN tagged Ethernet frames since they only tunnel IP traffic. The ”Universal
TUN/TAP” tunnel drivers included in Linux kernel version 2.6 and above allow
the creation of several kinds of tunnels; IP tunnels, Ethernet tunnels, PPP tunnels,
and others [45]. By using Ethernet tunnels as ”lambda interfaces”, 802.1Q VLAN
tagged Ethernet frames can be sent through the emulated lambdas. Setup of tunnels
is handled by the VTun userspace tool which is started in daemon mode on the
server. A client can connect to the server and request the creation of a pre-configured
tunnel. The tunnel is then created on both the client and server. In addition to
several different tunnel types’ many other settings are supported, for example the
tunnels can be compressed, have traffic shaping, use UDP or TCP for transporting
data, be password protected, etc. More information about VTun can be found on
the VTun homepage [46] and in appendix C where an example configuration can be
found.

The VTun daemon can also execute arbitrary commands when setting up
tunnels, this makes it easy to automatically add the ”lambda interfaces” to a bridge
when the tunnels are created, and remove them from the bridge if the tunnel is torn
down.
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4.2.6 OXC and ROADM Emulation
Using the tools discussed above a simple emulation of OXCs and ROADMs can be
realized. For example, if we want to emulate a OXC with two bi-directional fiber
optic connections carrying ten lambdas (as in figure 4.3), each the following steps
must be performed:

1. Create 2 control plane interfaces to neighbor nodes using for example GRE
tunnels or physical Ethernet interfaces. Name them “control-oxc1” and
“control-oxc2”.

2. Create 20 data plane lambda interfaces, 10 to each neighbor. Name the
interfaces going to the same node as “control-oxc1” to “oxc1-1931000” ranging
to “oxc1-1941000” (for emulating 193.1 THz to 194.1 THz lambdas). Apply
the same naming to the data plane interfaces going to the node that the
“control-oxc2” interface is attached to (but change “oxc1” to “oxc2” in the
name).

3. Create a Linux Bridge and attach the lambda interfaces to it, set the default
FORWARD policy to DROP.

With this configuration in place lambdas can be switched by inserting ebtables rules,
if we for example want to switch lambda frequency 193.1 THz on interface oxc1 to
lambda frequency 193.6 THz on interface "oxc2" two rules are inserted:

# ebtables -A FORWARD --in-if oxc1-1931000 --out-if oxc2-1936000 -j ACCEPT
# ebtables -A FORWARD --in-if oxc2-1936000 --out-if oxc1-1931000 -j ACCEPT

Traffic from interface oxc1-1931000 will now be forwarded into oxc2-1936000.
This behavior emulates a OXC, if we want to enforce the reachability constraints
imposed by ROADMs we can simply add more bridges. If we want to emulate a
ROADM with two tributary ports and two trunk ports and enforce the reachability
constraints that tributaries cannot communicate directly, but can only communicate
with trunk ports, we create bridges in the layout used in figure 4.2c. In this case
interfaces "eth0" and "eth1" would be tributary ports and "eth2" and "eth3" trunk
ports. The ebtables rules used to switch lambdas look the same, but since the
interfaces "eth0" and "eth1" are not connected to the same bridge data cannot flow
between them.

4.2.7 Emulating Other Technologies
Since the emulation uses regular interfaces in Linux, this emulation could be
extended with tools such as netem [47] [48]. Netem is a Linux tool for adding
a specific queuing discipline for an interface. This can be used to provide
programmable delays, packet loss, etc. Thus this could be used to emulate some
types of optical error sources. Netem is implemented as a traffic control (tc) queuing
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Figure 4.3: Models of OXCs and ROADMS and how they are emulated. The names
of the OXC links have no special meaning, on the ROADM TRU refers to a trunk
and TRI refers to a tributary.

discipline (qdisc). All interfaces in a Linux system are per default assigned a
(simple) queueing discipline, however, this can be changed to more complicated
disciplines. One can for example limit traffic to or from specific IP addresses to a
certain bandwidth. These traffic control tools can be used to apply the bandwidth
reservations made by RSVP-TE to the data plane (see relevant HOWTO documents
for more information [49] [50]). However, no work on optical error emulation nor
actual data plane resource reservation with tc has been done in this thesis.

The emulation model could also be extended to emulate other network technolo-
gies such as IEEE 802.1ad (Q-in-Q) Ethernet by using the interfaces to represent
VLANs instead of lambdas (see section 6.3.

4.2.8 Extensions of OSPF-TE
A number of changes to the DRAGON OSPF-TE daemon were necessary in order to
make it possible to dynamically announce new TE-links. Most of the changes made
to the OSPF-TE daemon were required in order to circumvent the design of the
daemon itself. A major limitation of the daemon is that each TE-link is coupled to
a regular OSPF link in a 1:1 relation (see appendix D for details). This means that it
is not possible to have several TE-links controlled by a single control channel using
this daemon. After auditing the code it was concluded that a thorough rewrite
of the code to separate control and data plane links was not possible within the
assigned time. Therefore instead of separating these planes a configuration option
called ”fa-lsp” was implemented. The rationale behind this modification are:

1. For an interface to be handled by the DRAGON OSPF daemon it must be a
”real” interface1, it must exist in the operating system, have an IP address and

1So called aliased or secondary interfaces cannot be used. These are virtual interfaces that are
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be in state UP. (Here we have assumed that the operating system is Linux.)

2. TE-link information is coupled to a regular OSPF interface, therefore adding
a TE-link causes the regular OSPF interface to be distributed in the network
and inserted in the routing tables on all participating nodes.

What the ”fa-lsp” option does is to turn off or on distribution of the regular OSPF
LSAs when distributing TE LSAs. This makes it possible to add TE-links to the
network without polluting the routing tables or transmitting any superfluous routing
data. The ”fa-lsp” option can be set on a single OSPF-TE link in the configuration
file or during operation via a command-line interface. The different arguments this
option can take are:

OFF With ”fa-lsp” set to OFF the TE link will behave as usual, OSPF will emit
link-state advertisements for the link and for the coupled TE-link.

ON With ”fa-lsp” set to ON the link will behave as a FA-LSP and only the TE-
LSAs will be transmitted. No regular OSPF LSAs about this interface will
be sent.

HOLD When set to HOLD, no LSAs will be sent at all, neither for the OSPF link
nor the coupled TE-link.

When using this option to announce FA-LSPs (i.e. dynamically adding TE-links
to the network) one needs a ”real” interface per FA-LSP, this can be provided
by the ”dummy” Linux kernel module. Using this kernel module one can create
”dummy-interfaces”, i.e., fake network interfaces which do not correspond to an
actual physical interface. These interfaces can be assigned IP addresses and set to
state UP which allows OSPF to pick them up and transmit routing LSAs about them
as if they were real network interfaces. By configuring a number of these (say 10)
dummy-interfaces and setting their ”fa-lsp”option to HOLD in the configuration
file one has 10 interfaces ready to be used as FA-LSP ”holders”. Assigning FA
information to one of these interface and then setting the ”fa-lsp” option to ON
creates a new TE-link in the network.

There is a simple communication protocol running between the OSPF-TE
and RSVP-TE daemon. The protocol enables the RSVP-TE daemon to retrieve
information from the Traffic Engineering Database about interfaces, routes, etc. The
existing TLV protocol was extended to retrieve the TE-link information necessary
to create a FA-LSP. When RSVP-TE sends the information the OSPF-TE daemon
loops through all configured interfaces and tries to find an interface in the HOLD
state. If one is found, then it sets the TE information of this interface and changes

used to receive traffic on several IP-addresses on a single physical interface. Their names are based
on the physical interface combined with an additional number, for example ”eth0:1”. If the inability
to use these types of interfaces is due to that the daemon is unable to parse interface names with
”:” or a more fundamental reason is not clear. Had the daemon been able to use aliased interfaces
they would have been a good alternative to the ”dummy” interfaces discussed later.



4.2. EMULATING AN OPTICAL REGION 51

it to the ON state and triggers a LSA update which to disseminates the TE
information.

Additionally, a function for retrieving the switching type and encoding of the
near and far ends of a TE-link was added to the protocol as well. This information is
necessary when determining how to interpret labels and when determining whether
or not the node is a domain border node.

For an example of a OSPF-TE configuration file containing among other things
the ”fa-lsp” option and a summary of functions added to the OSPF-TE daemon see
appendix D.

4.2.9 Extensions of RSVP-TE
While the changes to the OSPF-TE daemon were rather straightforward to
implement, the RSVP-TE daemon changes took a lot more time and effort. This
is probably mostly due to the fact that OSPF-TE daemon has been a part of the
Zebra project and has been more thoroughly reviewed [51]. The RSVP-TE code
was, at least for me, a lot harder to understand. Additions to the RSVP-TE daemon
include:

• A data plane controller for the emulated optical OXC/ROADM

• Handling of the LSP_TUNNEL_INTERFACE_ID object (used to indicate
that this LSP should be used as a FA-LSP)

• Handling of the SUGGESTED_LABEL RSVP-TE object (used for end-to-
end label allocation)

• Two new GMPLS label formats (for Ethernet and WDM labels) based on
Internet drafts [52] [30]

• IPC functions to announce and remove FA-LSPs in the OSPF-TE daemon

The Optical labels added are the DWDM and CWDM labels discussed in section
3.1.2. The Ethernet labels are based on a Internet draft from year 2005 which has
expired (and has not been replaced by either a new draft or RFC). This label
contains a VLAN ID and a destination MAC address (see figure 4.4). Both these
labels are sent as a generalized label with a length of 4 and 8 bytes respectively.
The functions for receiving, creating, and sending these types of labels was added to
the RSVP-TE code; along with functions to decode these labels. By ”decoding” we
mean the ability to convert for example a DWDM Optical label to the frequency it
represents. While encoding means creating a DWDM label from a given frequency.

The LSP_TUNNEL_INTERFACE_ID object (discussed in section 3.3.4) was
also implemented. This object requires more complicated handling (than the labels)
since it should be treated differently depending on whether the node is ingress,
egress, or a ”transit” node (i.e. neither ingress nor egress). In the ingress case this
object should already be in the Path message received from the dragon daemon.
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0 3 4 15 16 31

0000 VLAN ID MAC (highest 2 bytes)

MAC Address

Figure 4.4: Proposed Ethernet label format [52].

If it is present in the Path message, then the node chechs whether or not it is
the ingress node, and if so sets a flag in the Path State Block (PSB). This flag
is used by the data plane controller to see whether it should create a FA-LSP
identifier → actual TE-link binding. When a Resv message has been received and
the data plane configuration is complete, then the LSP should be announced as an
FA-LSP – but only if the node is either an ingress or egress to the LSP and the
LSP_TUNNEL_INTERFACE_ID object is present. If this is the case, then the
daemon will try to announce the LSP via the IPC functions to OSPF-TE daemon.
If the announcement is successful, then a reference to the LSP is inserted in a map
along with the far-end and near-end TE link identifiers. This map is used when
forwarding control plane messages; for example, if the next hop in the ERO of a
Path is found in the mapping, then the message is forwarded to the far-end control
plane address instead of to a neighbor.

The SUGGESTED_LABEL object (discussed in section 3.3.5) was imple-
mented. The SUGGESTED_LABEL object is a generalized label with Class-Num
129 and the C-Type of the label it contains. This object is carried in RSVP Path
messages and passed along to the specific data plane controller instantiated. If the
controller cannot handle the label, then it may ignore it or abort the setup with
a PathError message (in our implementation; the standards says it should only be
ignored). Since the SUGGESTED_LABEL is used to enforce end-to-end labels an
error would typically be generated if the resource is busy or does not exist on the
particular data plane (i.e. only on optical or Ethernet data plane).

The largest addition to RSVP-TE is a data plane controller module able to
act as a controller for the emulated optical plane, ”emulated” Ethernet, and as an
emulated optical border node. There are several different data plane controllers
implemented based on a abstract controller interface (i.e. a common superclass).
Depending on the nodes configuration the daemon instantiates a suitable controller.
The interface consists of a number of functions for operations which are common
among all controllers (such as allocation of new labels, binding of {label, interface}
pairs (i.e. create a switching rule), removing bindings, checking for free resources,
etc.)
Typical calls to the controller during LSP setup are:

• PATH message received

1. allocateFreeInLabel() is called with a label and an interface identifier. It
either allocates a new upstream label or checks that upstream label is
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available (if the LSP is bidirectional). In the emulated optical case a label
must be provided since end-to-end labels are required. The controller
converts the given label and interface pair to an identifier (e.g. oxc1-
1930000) and checks that the interface exists and is not already bound.
If it is bound, then an error is returned with results in the transmission
of a PathError message and further signaling is aborted. If the checks
are successful, then the controller returns the label that it tested which
is put into a new Path message and sent downstream.

• RESV message received

1. allocateFreeInLabel() is called. This checks that the received (down-
stream) label is available, if the LSP is bi-directional then the upstream
label is checked as well. The procedure is identical to the one described
above.

2. InstallInLabel() and InstallOutLabel() are called. These have serve no
purpose in the LSC-Linux controller since the switching rules are created
in a single step during bindLabels(). However, other controllers such as
MPLS need to perform additional operations before binding.

3. bindLabels() is called with two {data plane identifier, label} pairs which
should have a uni-directional switching rule created between them. The
interface identifiers and labels are converted to emulated identifiers and
an ebtables rule is created, allowing traffic to flow – uni-directionally –
from one interface to another.

However, the above is a very simplified description of what actually goes on during
these calls. Since the controller supports both Ethernet and emulated optical links
all operations first have to determine how to interpret any received label. This
is done via an IPC call to the OSPF-TE daemon which requests the Interface
Switching Capabilty Descriptor for the corresponding TE-link. By examining the
Switching Capability and Encoding fields the controller can conclude that the label
is for example a WDM label (Switching Capability LSC, encoding lambda). The
controller then calls a corresponding internal function which handles that specific
label type. In order to support FA-LSPs the controller cannot assume that the data
plane interface identifier refers to an actual interface it might refer to an FA-LSP.
When performing label binding the controller checks if the LSP is supposed to be
announced as an FA and if the node is either the ingress or egress of the LSP – if so
an entry in a map is created, pairing the FA-LSP unnumbered interface identifier
with the actual data plane interface. Each function then looks for the data plane
identifier in the map and calls a corresponding FA-LSP function (bindLabelsFA()
for example). For more detailed information about the data plane controller see
appendix E.
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Testing and Verification

The implementation has been tested in several ways. The parts of the code that
could be tested independently (i.e. without a complete Traffic Engineering Database
etc.) were tested with regression tests which calls the different functions and makes
sure that they perform as expected. Unfortunately this was not possible for much of
the implementation concerning signaling LSPs. These part were tested in a testbed
by manually signaling different LSPs and verifying that the they were correctly set
up. The final test was to create a multi-region LSP using both LSP conversion
(MPLS to Ethernet) and FA-LSP (Ethernet to WDM).

5.1 Testbed

The testbed at Acreo has been used to test multi-region GMPLS. This testbed
contains a number of different kinds of nodes. Roughly half the nodes in the network
is virtualized using VMWare running on two servers. The physical part of the
network consists of:

Juniper IP/MPLS routers In the network there are three different Juniper M-
series IP/MPLS routers: M5, M7i, and M10i [53]. These are called JR1 to
JR3 in figure 5.1.

Linux IP/MPLS routers There are three Linux (Ubuntu 6.06.1) machines run-
ning, using a kernel version 2.6.15.1 patched with MPLS support. They each
run on a Dell Dimension 5150 with a 3 GHz CPU and 512 MB RAM. These
machines are called LR1 to LR3 in figure 5.1.

Switchcore Ethernet switches There are three Switchcore Xpeedium2 RD1100
Ethernet switches in the network. Each of these are controlled by a computer
identical to the Linux IP/MPLS routers, except that they do not have a
patched kernel. The Ethernet switches are reference implementations, this
combined with the acquisition of Switchcore by eSilicon makes it difficult

54
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to find documentation of these switches. The switches are called SwCE1 to
SwCE3 in figure 5.1.

Lumentis optical network elements There are three optical cross-connects in
the network, called T1 and T3 in figure 5.1. They consist of a Mentis 3000
chassi with several modules such as TP-MR2500 transponders, AD1AB add-
drop multiplexers, and OXC8 cross-connect modules[54]. Lumentis has since
these were bought been acquired by Transmode which is what I refer to these
nodes as.

The virtual network is hosted by two computers, a HP xw8400 server with a
quad-core Intel Xeon x5355 processor at 2.66 GHz and 4 GB RAM, and a Dell
Optiplex GX620 dual-core Pentium processor at 3.00 GHz and 3 GB RAM. These
computers are both running Ubuntu as their operating system (version 7.04 and
6.10 respectively) and VMWare server (version 1.0.3) to host virtual machines. The
virtual machines are all running Ubuntu 6.06.1 as their operating system, the virtual
optical nodes (vROADM1-3, vEC1-3, and vOXC1) are hosted by the HP computer
while the others (vE1-3 and vR1-3) are hosted by the Dell computer.

The Transmode nodes were not operational during testing and are therefore
missing from figure 5.2. This figure was generated from a dump of the Traffic
Engineering Database (retrieved with an ”expect” script) using GraphViz and a
simple C program which parsed the dump and generated a GraphViz source file
[55].

All nodes except the Switchcore Ethernet switches consist of both control and
data plane running on a single (sometimes virtual) machine. Each Switchcore
Ethernet switch has a Linux PC acting as the control plane which is communicating
with the data plane (the Switchcore switch) via serial cable. The control plane links
shown in figure 5.1 consists of either VLAN-interfaces or GRE tunnels which are
used to create a topology on top of the backbone used to connect all nodes.

Control plane IP addresses and data plane identifiers can be seen in figure 5.1
and 5.2 respectively. In table 5.1 the Router-ID and node type for all testbed nodes
are summarized.

5.2 Multi-Region LSP Setup
In order to test multi-region LSP setup in the testbed two LSPs need to be setup
and their functionality tested. First an FA-LSP over the optical layer and then a
”client” LSP that utilizes the FA-LSP.

The FA-LSP starts on node one of the emulated Ethernet/Optical border nodes
and is add/dropped into one of the emulated optical ring networks. The emulated
optical cross-connect switches the LSP onto the other ring network and from there
it is add/dropped to another emulated Ethernet/Optical border node. When the
setup is complete the border nodes announce the FA-LSP in the IGP and FA-LSP
setup is complete.
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Figure 5.1: Overview of the testbed at Acreo. Different colored links indicate data
plane switching capability, node icons indicate the type of node. The numbers
next to each link is the least significant octets of the control plane interface IPv4
addresses, they have the prefix 172.16 which is not shown in order to save space.
Links going to the Transmode physical optical OXCs lack IPv4 addresses since the
nodes were not operational during testing. Some of the nodes that are connected
to each other with multiple data plane links are shown with only one of the links.
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Figure 5.2: Overview of the data plane connections in the testbed. Link identifiers
are shortened due to space. Adding 0x80000000 to unnumbered links (hexadecimal
values) gives the actual value. Only the least significant two octets of numbered
interfaces are show, they have the prefix 172.16. The dashed red link shows a
FA-LSP between vEC1 and vEC3. In this figure the physical optical Transmode
OXCs are missing since these nodes were not operational during testing. The nodes
that are connected to each other with multiple data plane links are shown with only
one of the links.
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Table 5.1: Name, types, and Router-ID of the nodes in the testbed.

Node name Type Router-ID
vEC1 Virtual Ethernet/Optical border 172.16.100.230
vEC2 Virtual Ethernet/Optical border 172.16.100.231
vEC3 Virtual Ethernet/Optical border 172.16.100.232
vROADM1 Virtual ROADM 172.16.100.233
vROADM2 Virtual ROADM 172.16.100.234
vROADM3 Virtual ROADM 172.16.100.235
vOXC1 Virtual OXC 172.16.100.236
vE1 Virtual Ethernet 172.16.100.243
vE2 Virtual Ethernet 172.16.100.244
vE3 Virtual Ethernet 172.16.100.245
vLR1 Virtual Linux IP/MPLS 172.16.100.251
vLR2 Virtual Linux IP/MPLS 172.16.100.252
vLR3 Virtual Linux IP/MPLS 172.16.100.253
LR1 Physical Linux IP/MPLS 172.16.100.248
LR2 Physical Linux IP/MPLS 172.16.100.249
LR3 Physical Linux IP/MPLS 172.16.100.250
JR1 Physical Juniper IP/MPLS 192.168.1.1
JR2 Physical Juniper IP/MPLS 192.168.1.2
JR3 Physical Juniper IP/MPLS 192.168.1.3
T1 Physical Transmode OXC 192.168.80.1
T2 Physical Transmode OXC 192.168.80.17
T3 Physical Transmode OXC 192.168.80.25
SwCE1 Physical Switchcore Ethernet 172.16.100.240
SwCE2 Physical Switchcore Ethernet 172.16.100.241
SwCE3 Physical Switchcore Ethernet 172.16.100.242

When the FA-LSP has been created a client LSP will be created from a
physical IP/MPLS node and then go through an MPLS/Ethernet border node
and be converted from PSC to L2SC. Then the LSP will enter one of the
Ethernet/Optical border nodes and utilize the FA-LSP (which is of switching type
L2SC). After leaving the FA-LSP the path will pass through a L2SC node into
another MPLS/Ethernet border node where the path will be converted back into
type PSC and finally ends on a physical IP/MPLS node. When the client LSP is
setup a IP/MPLS route is added on the ingress and egress nodes (a routing entry
that forwards a /32 address into an MPLS tunnel). When the routing entries are
setup an ICMP ping will be sent through the tunnel. If the data plane has been
correctly configured and is functional through the whole path, then an ICMP ping
reply should be received at the ingress node.
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5.2.1 FA-LSP Setup
The FA-LSP path used is vEC1 ↔ vROADM1 ↔ vOXC1 ↔ vROADM3 ↔ vEC3.
The FA-LSP is configured in the dragon daemon like:

edit lsp favec1vec3
set source ip-address 172.16.100.230 lsp-id 32768 destination

ip-address 172.16.100.232 tunnel-id 54
set bandwidth gige_f swcap lsc encoding lambda gpid ethernet
set direction bi
set upstream dwdm label spacing 4 n 17 sign 1
set suggested dwdm label spacing 4 n 17 sign 1
set fa-lsp on
add ero unnum 172.16.100.230 if_id 0x80000002
add ero unnum 172.16.100.233 if_id 0x80000002
add ero unnum 172.16.100.233 if_id 0x80000004
add ero unnum 172.16.100.236 if_id 0x80000001
add ero unnum 172.16.100.236 if_id 0x80000004
add ero unnum 172.16.100.235 if_id 0x80000004
add ero unnum 172.16.100.235 if_id 0x80000002
add ero unnum 172.16.100.232 if_id 0x80000002

exit

This configuration first sets the ingress and egress Router-ID addresses as source
and destination, with LSP-ID 32768 and Tunnel-ID 54 (the number 54 is just a
random number, however the LSP-ID 32768 is necessary for TE-link dissemination).
Then the correct LABEL_REQUEST object is created with a bandwidth request
for 1 Gigabit, switching capability LSC, encoding lambda, and G-PID Ethernet.
Upstream and suggested DWDM labels with a frequency of 191.4 THz are then
added. The ”set fa-lsp on” option creates a LSP_TUNNEL_INTERFACE_ID
based on the LSP-ID and Tunnel-ID. The last lines creates an eight hop Explicit
Route Object, by combining table 5.1 and the link information from figure 5.2 each
link can be identified.

This LSP is activated (by the Dragon command ”commit lsp favec1vec3”) and
signaled. A packet capture of the signaling can be found in appendix G.1. When the
signaling is complete the data plane has been configured. Examining the TE-link
database one can see that a new link between vEC1 and vEC3 has been created.
The new link can be seen in figure 5.2 as a dashed red line.

5.2.2 Client LSP Setup
The client LSP uses this path: LR3 ↔ vLR1 ⇀↽ vE1 ↔ vEC1 ⇔ vEC3 ↔ vE3 ⇀↽
vLR3 ↔ LR2, where the thick arrow (⇔) is the FA-LSP and the broken arrow (⇀↽)
indicate LSP conversion. The dragon configuration for this LSP can be seen below:

edit lsp f32
set source ip-address 172.16.100.250 lsp-id 32

destination ip-address 172.16.100.249 tunnel-id 3032
set bandwidth eth100M swcap psc1 encoding ethernet gpid ethernet
set upstream mpls label 332
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set direction bi
add ero ip 172.16.112.1
add ero ip 172.16.112.2
add ero unnum 172.16.100.246 if_id 0x80000001
add ero unnum 172.16.100.243 if_id 0x80000001
add ero unnum 172.16.100.243 if_id 0x80000002
add ero unnum 172.16.100.230 if_id 0x80000003
add ero unnum 172.16.100.230 if_id 0x80000036
add ero unnum 172.16.100.232 if_id 0x80000036
add ero unnum 172.16.100.232 if_id 0x80000003
add ero unnum 172.16.100.245 if_id 0x80000003
add ero unnum 172.16.100.245 if_id 0x80000001
add ero unnum 172.16.100.253 if_id 0x80000001
add ero ip 172.16.100.153
add ero ip 172.16.100.154

exit

Note the FA-LSP in the ERO (underlined) is used like any other TE-link. This
LSP is committed and signaled, a packet capture of the signaling messages can be
found in appendix G.2.

When the reservation was complete an IP/MPLS route was added on the ingress
and egress nodes. This is a simple host route which says that a IP address can be
reached via a MPLS tunnel. A ping was then sent from the ingress node to the IP
address routed via the MPLS tunnel. Ping replies were received and by capturing
traffic along the path it was verified that the data packets were actually traveling
in the LSP. Thus an operational multi-region LSP with LSP conversion and manual
FA-LSP setup had been created.
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Evaluation

6.1 Performance

6.1.1 Data plane
By assigning IP addresses to the Linux Bridge Controller bridges at the ingress
and egress of an ”optical LSP” IP packets can be sent across the LSP. To give a
ballpark figure of the performance of the emulated optical data plane ICMP Ping
packets can be sent to the other side and the time to receive a reply measured. This
measurement will contain additional delays which is unrelated to the data plane,
such as creating the ICMP Reply packet at the end node and so on. Four different
data plane setups have been measured this way:

1. Only the two relevant rules are inserted in the Ebtables FORWARD chain.

2. The two relevant rules followed by a thousand additional nonsense rules.

3. Two relevant rules followed by ten thousand nonsense rules.

4. A thousand nonsense rules followed by the two relevant rules.

5. Ten thousand nonsense rules followed by the two relevant rules.

The optical LSP used during these tests was the same as mentioned in section 5.2.1,
the rules were inserted on the machines vROADM1, vOXC1, and vROADM3, which
are the only ones that forward traffic using ebtables in this LSP. The results of these
tests can be seen in table 6.1. It is evident from the data that the position of the
forwarding rules in the chain can have a significant impact on the time it takes to
forward the traffic specified in the rule. As long as the rule is placed early in the
chain the length of the chain does not make a big difference.

By performing the same test, using the same path, on the control plane gives an
indication of the relative forwarding speed of the emulated data plane compared to
regular IP routing on Linux. A number of ping packets was again sent from vEC1
to vEC3 but this time to and from the Router-ID instead of the IP address assigned

61



62 CHAPTER 6. EVALUATION

Case Packets Min (ms) Mean (ms) Max (ms) Mean deviation (ms)
1 50 1.477 3.608 6.215 0.911
1 200 1.430 3.274 8.135 1.193
2 50 1.527 3.702 22.896 2.869
2 200 1.417 3.430 8.057 0.952
3 50 1.446 3.820 8.022 1.405
3 200 1.415 3.680 27.813 2.021
4 50 1.299 3.976 14.163 1.885
4 200 1.391 3.601 12.978 1.292
5 50 4.199 9.413 23.991 3.030
5 200 3.830 8.933 18.422 2.617

Table 6.1: Round-trip times for ICMP Ping in the data plane. The min, mean, and
max round-trip times are specified in milliseconds, as is the mean deviation. The
number of packets sent in each test case is shown in the packets column.

Packets Min (ms) Mean (ms) Max (ms) Mean deviation (ms)
50 0.588 1.499 4.532 0.753
200 0.673 1.499 7.594 0.786

Table 6.2: Round-trip times for ICMP Ping in the control plane. The different
round-trip times are specified in milliseconds. Two tests were run, one with 50
packets and one with 200. The same path is used as in the data plane test.

to the bridge interfaces. That the packets followed the same path as on the control
plane was verified by tracing the path in both directions using ”traceroute”.

As can be seen in table 6.2 the round-trip times are about half as long (compared
to case 1 in the data plane) when using the control plane. This is not surprising
since the data plane packets has to be packed in and out of additional tunnels, in
and out of TCP packets as well as go through Ebtables.

6.1.2 Control plane

The performance of the control plane is for many reasons harder to measure. There
are issues with synchronizing the clocks of the machines, and even getting the virtual
machines’ clocks not to race ahead of time. Trying to get synchronized packet
captures from multiple networks at the same time is another problem.

Despite these problems two packet captures has been performed to measure the
processing time of Path and Resv messages on the different nodes as well as the
total time for LSP setup. These two captures can be found in in appendix G.1 and
G.2. The first capture consists of the FA-LSP setup discussed in section 5.2.1 and
the second capture is of the client LSP discussed in section 5.2.2. The client LSP
setup takes place in both the physical and virtual network and therefore consists of
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Type Mean Ptime (s) Standard deviation (s)
Path 0.03659 0.00278
Resv 0.51372 0.19615

Table 6.3: Mean ”processing time” and standard deviation of Path and Resv
messages when setting up an FA-LSP.

merged data from two simultaneous Wireshark sessions.
The processing time (Ptime) has been approximated as the time between capture

of the previous packet and the current packet. This time is roughly the time spent in
one node and contains the time spent in the operating system, transmission time on
the link, etc. However, these external contributions should be negligible with large
Ptime values. When applying the same Ptime calculation to ICMP ”Ping Request”
packets the mean Ptime for a sample of 50 packets was about 0.25 ms, a magnitude
lower than the times measured for the RSVP-TE daemon. Since ICMP packet
processing occurs in kernel space (and not user space as is the case with the RSVP-
TE daemon) the ICMP data does not include time spent on for example context
switching. However, it does give a hint about the amount of time contributed by
external sources.

In table 6.3 the mean Ptime for Path and Resv messages can be found. They
show a small amount of time spent on Path messages while the Resv messages take
about half a second to process. The long time spent during Resv is probably related
to the data plane communication through Telnet/SSH which is not very optimised.

The packet capture of the client LSP is composed of two simultaneous captures
which were not synchronized which makes it impossible to calculate correct Ptime
values for some of the packets. When possible the Ptime has been calculated and
it shows similar results to the FA-LSP setup, at least on the same hardware. The
total time to complete FA-LSP setup with four hops was slightly more than two
seconds while the client LSP with seven hops took approximately six seconds to
complete.

6.2 Objectives
Most of the objectives set out in section 1.1 have been successfully met, it is possible
to create FA-LSPs and set up LSPs from an Ethernet region over a WDM region
(although this was done using an emulated WDM). However, not all objectives
has been met, the ability for LSR to trigger FA-LSP setup on demand is a major
objective that has not been met. The initial plan was to implement manual FA-LSP
setup and following this to triggered setup if there was sufficient time, unfortunately
there was not enough time to implement this automatic setup.

Other minor missing components is correct forwarding and receiving of all types
of control plane message across FA-LSPs. The RSVP-TE daemon seems to have
been designed with the assumption that messages always are sent to a neighbor
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node. Unfortunately, there was not sufficient time to find all the places where this
assumption is made and to correct it taking FA-LSPs into account. Unfortunately,
this causes Srefresh messages sent over FA-LSPs to be interpreted incorrectly, which
in turn causes the client LSP to timeout after a certain amount of time and the
LSP is torn down. However, if one disables the RSVP Refresh Overhead Reduction
extension (which makes the daemon fall back to the original Path/Resv LSP refresh
mechanism) processing is performed correctly and the LSP is not torn down.

A minor mistake was the use of the Suggested Label object to force end-to-
end labels, this approach was implemented because it was the simplest available
solution. However, when examining the standards carefully it turns out that this
solution violates them. It should be replaced by the Label Set object – which can
do the same job – although it requires more complicated processing.

Other parts of the implementation are a bit cumbersome to deal with, for
example the way dynamically created TE-links were implemented. Overall the
implementation was successful and performs its role in a proof-of-concept multi-
region GMPLS network.

6.3 Emulation model

One interesting result of the work performed is the emulation model. The
OXC/ROADM emulation shows a rather simple way to perform traffic engineering
in packet networks without the need for MPLS. Traffic flows are separated with
the use of IP based tunnels instead of labeling packets with MPLS labels. The IP
based tunnels are set up between nodes (hop-by-hop) instead of end-to-end (which
is the common way to use tunnels), this makes it possible to forward certain traffic
separate from other traffic and independent of regular routing. On top of the tunnels
one can create paths which can forward traffic based on an large array of headers.
In this work only the link layer (VLAN ID, Destination MAC address) and physical
layer (incoming interface) are used but ebtables is able to filter on network layer
as well (some IP header fields). With the help of iptables and ip6tables forwarding
can be based on IPv6 flow labels or transport layer headers, for example TCP
destination port 80. These different modes of forwarding used in conjunction with
Linux traffic queueing disciplines and GMPLS makes it possible to use cheap Linux
computers to create flexible traffic engineered overlay networks. Such a network
based on this kind of cheap devices may be useful for research where one wishes to
separate production traffic from research traffic.

One idea on how to create such networks is called OpenFlow [56]. It proposes
that networking equipment vendors add support for a special ”flow table” in their
regular networking equipment. An entry in the flow table match fields ranging from
the physical layer to the transport layer and decides how to process the matching
traffic. A controller (for example a regular PC) communicates with the networking
device through a secure channel and adds entries to the flow table. In its basic form
a flow entry either forwards a flow to specified port(s), drops the traffic, or sends it
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to the controller for further processing.
This idea is rather similar to the OXC/ROADM emulation but differs on some

points, namely the forwarding is done entirely in hardware on devices which may
have a large amount of ports. These devices are likely a better fit in regular network
designs which allows for large scale deployment in (for example) campus networks.
However, there is also an Linux implementation of OpenFlow on the OpenFlow
homepage (http://www.openflowswitch.org).

http://www.openflowswitch.org


Chapter 7

Conclusions and future work

7.1 Conclusions

The implementation shows that both FA-LSPs are a feasible way of handling cross
region LSPs. The LSP conversion introduced by the MLCP project were tested
as well and shown to work, although the conversion has a more limited use. The
packet captured performed (shown in appendix G) indicate that the processing
time of Path and Resv messages was not significantly affected by the introduction
of FA-LSPs and LSP conversion.

The emulated WDM data plane based on Linux and a few common networking
tools proved to function as intended and successfully emulated optical cross-connects
and ROADMs. The initial model was successfully extended to function as an
Ethernet bridge as well as an Ethernet-WDM region border node. However, the
data plane delay introduced by the software based emulation could be a problem
with a large amount of LSPs if the traffic is sensitive to delays.

The unnumbered method (with LSP_TUNNEL_INTERFACE_ID) proved to
be a straightforward method of establishing FA-LSPs. Deprecating the numbered
method and extending the unnumbered to take its place is a good idea.

Once should always be able to conclude how to interpret a label, at least if the
links in the network are configured correctly. However, if the network is badly
configured (and/or your implementation is bad or malicious) you may end up
misinterpreting a label and install bogus switching rules. Adding explicit label
type identifiers would lower the risk of this happening, at least in the case of badly
behaving implementations and misconfigured nodes. The cost of adding explicit
identifiers would be a small increase of signaling overhead and the risk of running
out of identifiers.

7.2 Future Work

FA-LSPs have several scaling problems: the increased size of the Traffic Engineering
Database when an FA-LSP is announced, the time required to set up the LSPs,
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and the time required for the IGP to distribute the new TE-link throughout the
network. These scaling issues should be investigated further. The results of such an
investigation should clarify how FA-LSP setup should be initiated, either triggered,
manually or via a network management system.

The existing multi-region testbed could also be used to test different approaches
to multi-region path calculation which also may have some scaling problems
(primarily in the peer-model). To be able to calculate a path (which should have a
high probability to actually be available) while using for example end-to-end labels
some knowledge of what resources are available in the network is necessary. The
availability of resources could be announced as TE information in the IGP along
with available bandwidth etc, but this would dramatically increase the routing
overhead. For example a bitmap of what VLANs are available on a L2SC link is
about 512 bytes long. How to deal with such issues are not clear.

Another important part of providing traffic engineered services is protection
(i.e. managing different kinds of failures). The emulated optical network could
be extended to emulate some typical types of transmission problems and could be
used to test procedures for failure recovery. The delay introduced by the emulation
(which would not be present in actual OOO OXCs or ROADMs) could be a problem
if data plane delay is considered as a failure which would trigger failure recovery.
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Appendix A

Brctl

The brctl command can be used to create virtual bridges, set STP parameters on
a bridge, and add interfaces to a bridge. In table A.1 all arguments to the "brctl"
command are shown. Creating a bridge, turning off STP, and adding interfaces to
the bridge is done as follows:

# brctl addbr br0
# brctl stp br0 off
# brctl addif br0 eth0
# brctl addif br0 eth1
# brctl show
bridge name bridge id STP enabled interfaces
br0 8000.00508d651fa1 no eth0

eth1

This creates a bridge called "br0", turns of STP on the bridge and adds two
interfaces: "eth0" and "eth1".
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Table A.1: Arguments to the brctl command

addbr <bridge> add bridge
delbr <bridge> delete bridge
addif <bridge> <device> add interface to bridge
delif <bridge> <device> delete interface from bridge
setageing <bridge> <time> set ageing time
setbridgeprio <bridge> <prio> set bridge priority
setfd <bridge> <time> set bridge forward delay
sethello <bridge> <time> set hello time
setmaxage <bridge> <time> set max message age
setpathcost <bridge> <port> <cost> set path cost
setportprio <bridge> <port> <prio> set port priority
show show a list of bridges
showmacs <bridge> show a list of mac addrs
showstp <bridge> show bridge stp info
stp <bridge> {on|off} turn stp on/off



Appendix B

Ebtables

Ebtables is used to create firewall rules on Linux virtual Ethernet bridges. By
adding rules to chains one can for example drop unwanted frames, change fields in
some frames etc. When receiving, forwarding or sending a frame one of the default
chains is "traversed" by the frame until it matches one of the rules in the chain and
the action defined in the rule is applied. If no specific rule is matched the default
policy for that chain is executed, for example dropping all forwarding packets which
do not match a rule.

Frames can be matched in many ways, for example by destination MAC address,
incoming interface, payload protocol, VLAN ID etc. In the emulated optical and
Ethernet nodes matching is done on interfaces, destination MAC addresses and
VLAN IDs. Following commands sets the default forwarding policy to ”drop all
traffic”, adds three forwarding rules, and displays the rules on the chain:

# ebtables -P FORWARD DROP
# ebtables -A FORWARD --in-if eth0 --out-if eth1 -j ACCEPT
# ebtables -A FORWARD -p 8021Q --vlan-id 10 -d 01:23:45:67:89:AB

--out-if eth0 -j ACCEPT
# ebtables -L FORWARD
Bridge table: filter

Bridge chain: FORWARD, entries: 2, policy: DROP
-i eth0 -o eth1 -j ACCEPT
-p 802_1Q -d 1:23:45:67:89:ab -o eth0 --vlan-id 10 -j ACCEPT

The first line sets the default policy on the FORWARD chain. The second line
matches traffic coming from interface ”eth0” and leaving through ”eth1”, this is
set to the target ACCEPT which means that the traffic will be forwarded. The
third line matches traffic on VLAN 10 with a specific destination MAC address and
leaving on interface eth0, traffic matching this rule will also be forwarded. The
fourth line lists the current rules in and the policy of the forwarding chain. More
details about the many operations that can be performed with Ebtables can be
found on the Ebtables homepage or in the Ebtables manual pages [57].
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Vtun

Vtun is a simple way of creating tunnels. It supports several tunnel types such as
IP, PPP, Ethernet and others. The host in one end of the tunnel runs in server
mode while the other connect as a client. The client requests the creation of a
pre-configured tunnel between the hosts. All of the emulated optical nodes have an
identical configuration file and a script that depending on the hostname either starts
Vtun in server mode or in client mode. By a command line argument the client
can be made to attempt to connect until a tunnel is established, if the connection
is dropped the client will attempt to reconnect and bring it back up. Below is part
of the configuration file used in the testbed:

1 options {
2 port 6000;
3 syslog daemon;
4 timeout 60;
5 ppp /usr/sbin/pppd;
6 ifconfig /sbin/ifconfig;
7 route /sbin/route;
8 firewall /sbin/iptables;
9 ip /sbin/ip;

10 firewall /usr/sbin/brctl;
11 }
12 default {
13 type tun;
14 proto tcp;
15 compress no;
16 speed 0;
17 keepalive yes;
18 }
19 13ba-1913000{
20 passwd abc123;
21 keepalive yes;
22 proto tcp;
23 type ether;
24 up {
25 program "ip link set %% name 13ba-1913000" wait;
26 ifconfig "13ba-1913000 up";
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27 program "brctl addbr br0" wait;
28 program "brctl addif br0 13ba-1913000" wait;
29 ifconfig "br0 up";
30 };
31 down {
32 ifconfig "13ba-1913000 down";
33 };
34 }

The first eleven lines sets some default parameters for the server and client such as
a default port and path to some programs used by Vtun. The next segment (line
12-18) sets default values for tunnels. This includes the type of tunnel ("tun"), what
protocol to use to transport tunnel traffic ("tcp"), whether tunnel traffic should be
compressed or limited to a certain bitrate, and if keepalive packets should be sent
between the hosts to make sure firewalls do not close the ports used. The rest
(lines 19-34) is the configuration for a specific tunnel called 13ba-1913000. It is
configured as an Ethernet tunnel using TCP, which means that TCP is used to
transport entire Ethernet frames. The "up" and "down" parameters defines calls
that should be made when the tunnel has been brought up or down. The "up"
command is used to rename the tunnel from the name it receives by default to the
name of the tunnel, then it is brought up and added to a bridge.



Appendix D

OSPF-TE

The OSPF-TE daemon is responsible for routing the control plane and distributing
the data plane Traffic Engineering Database. As the suite does not have any LMP
support the OSPF-TE daemon has taken some of LMP’s responsibilities such as
data plane link configuration. It can be controlled either via a configuration file
or by a command line interface reachable with Telnet. The configuration file for a
node (in this case vEC1 which can be seen in figure 5.1) looks like this:

1 ! host name and password
2 hostname vec1
3 password dragon
4 enable password dragon
5 log file /var/log/ospfd.log
6
7 ! control plane interfaces
8 interface control-13ba
9 description GRE tunnel between vec1 and vroadm1

10 ip ospf network point-to-point
11 interface control-13cb
12 description GRE tunnel between vec1 and vroadm1
13 ip ospf network point-to-point
14 interface control-ve1
15 description GRE tunnel between vec1 and ve1
16 ip ospf network point-to-point
17 interface control-e3
18 description GRE tunnel between vec1 and swce3
19 ip ospf network point-to-point
20
21 ! FA-LSP dummy interfaces
22 interface dummy0
23 ip ospf network point-to-point
24 interface dummy1
25 ip ospf network point-to-point
26 interface dummy2
27 ip ospf network point-to-point
28 interface dummy3
29 ip ospf network point-to-point
30 interface dummy4
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31 ip ospf network point-to-point
32
33 ! OSPF settings
34 router ospf
35 ospf router-id 172.16.100.230
36 ! distribute route to router-id
37 network 172.16.100.230/32 area 0.0.0.0
38 ! connected networks
39 network 172.16.100.0/29 area 0.0.0.0
40 network 172.16.100.56/29 area 0.0.0.0
41 network 172.16.105.8/29 area 0.0.0.0
42 network 172.16.105.48/29 area 0.0.0.0
43
44 ! dummy interfaces for FA-LSPs
45 network 127.0.1.1/32 area 0.0.0.0
46 network 127.0.1.2/32 area 0.0.0.0
47 network 127.0.1.3/32 area 0.0.0.0
48 network 127.0.1.4/32 area 0.0.0.0
49 network 127.0.1.5/32 area 0.0.0.0
50
51 ! OSPF-TE configuration
52 ospf-te router-address 172.16.100.230
53 ospf-te interface control-13ba
54 level gmpls
55 fa-lsp off
56 metric 10
57 link-type point-to-point
58 data-interface unnumbered protocol snmp switch-ip 127.0.0.1 switch-port 8
59 swcap l2sc encoding ethernet
60 max-bw 12500000000
61 max-rsv-bw 12500000000
62 wavegrid new dwdm 100 191400 1 1250000000
63 constraint add 0 0
64 constraint add 1 1
65 constraint add 2 5
66 exit
67
68 ospf-te interface control-13cb
69 level gmpls
70 fa-lsp off
71 metric 10
72 link-type point-to-point
73 data-interface unnumbered protocol snmp switch-ip 127.0.0.1 switch-port 9
74 swcap l2sc encoding ethernet
75 max-bw 12500000000
76 max-rsv-bw 12500000000
77 wavegrid new dwdm 100 191300 1 1250000000
78 constraint add 0 0
79 constraint add 1 10
80 constraint add 2 5
81 exit
82
83 ospf-te interface control-ve1
84 level gmpls
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85 link-type point-to-point
86 fa-lsp off
87 metric 10
88 link-type point-to-point
89 data-interface unnumbered protocol snmp switch-ip 127.0.0.1 switch-port 2
90 swcap l2sc encoding ethernet
91 max-bw 12500000000
92 max-rsv-bw 12500000000
93 exit
94
95 ospf-te interface control-e3
96 level gmpls
97 link-type point-to-point
98 fa-lsp off
99 metric 10

100 link-type point-to-point
101 data-interface unnumbered protocol snmp switch-ip 127.0.0.1 switch-port 4
102 swcap l2sc encoding ethernet
103 max-bw 12500000000
104 max-rsv-bw 12500000000
105 exit
106
107 ! Dummy interface configuration
108 ospf-te interface dummy0
109 level gmpls
110 fa-lsp hold
111 exit
112 ospf-te interface dummy1
113 level gmpls
114 fa-lsp hold
115 exit
116 ospf-te interface dummy2
117 level gmpls
118 fa-lsp hold
119 exit
120 ospf-te interface dummy3
121 level gmpls
122 fa-lsp hold
123 exit
124 ospf-te interface dummy4
125 level gmpls
126 fa-lsp hold
127 exit

The first lines (1-5) sets the hostname, passwords and log file for the daemon. Then
the interfaces which should be used by the OSPF-TE daemon is defined (lines 7-31),
this is followed by the configuration of OSPF parameters such as the Router-ID and
which networks should be included (lines 33-49). Note that the dummy interfaces
have been assigned local IP addresses (127.0.1.1/32-127.0.1.5/32) and that they
are included with the ”network” command even though we do not want OSPF to
announce these networks. After the OSPF parameters the OSPF-TE configuration
follows (lines 51-127). First the regular OSPF-TE interfaces are configured then the
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dummy interfaces. The regular interfaces are assigned their various TE information
such as maximum reservable bandwidth, Interface Switching Capabilty Descriptor,
metric etc. All the interfaces which are control links for data plane links have their
”fa-lsp” option set to off, since they should have both regular OSPF and TE LSAs
distributed. The dummy interfaces (lines 107-127) are only configured with the
fa-lsp option set to ”hold”. One of the lines that stand out in this configuration is
the ”data-interface” (line 58, 73, . . . ). This line indicates the method of control, IP
address of and a port number for the data plane link this control plane link should
be associated with. For example port number 4 on a Switchcore Ethernet switch
with IP address A.B.C.D. Other odd lines are the ”wavegrid” and ”constraint” lines
which add additional sub-TLVs used for path computation in the optical region,
they were added by previous thesis workers at Ericsson [58].
Changes made to the OSPF-TE daemon are:

• The ”fa-lsp” option

• Interprocess Communication with the RSVP daemon

The FA-LSP option adds a flag to the structure holding information about
interfaces. This structure holds both the regular OSPF information as well as
TE information. When the daemon constructs the LSA packets this flag is checked
and depending on its value the link is or is not added to the LSAs.
The interprocess communication consists of two functions, one that create a TE-link
and one that removes a TE-link. When creating TE-link this function is called with
all the TE-link information as arguments. It then tries to locate an interface with
the FA-LSP option set to HOLD. If one is found the TE-link information is assigned
to the interface and the FA-LSP option set to ON and a function to update LSA
information is called. This causes the new link to be disseminated. The remove
TE-link function is called with the local interface ID, it finds the interface with that
ID and sets the fa-lsp flag to HOLD, removing it from any LSA.
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RSVP-TE

Many changes to the RSVP-TE daemon has been made in order to support FA-LSPs
and the emulated optical data plane.In this appendix more technical details about
how these changes have been implemented is given. The RSVP-TE daemon is
configured by a configuration file, unlike other daemons it has no command line
interface. The configuration for the same node as the one shown in appendix D is:

1 interface control-13ba tc none mpls
2 interface control-13ba tc none mpls
3 interface control-13cb tc none mpls
4 interface control-ve1 tc none mpls
5 interface control-e3 tc none mpls
6 dataplane LSC-Linux
7 api 4000

The configuration is rather simple, the interfaces on which RSVP-TE message
should be received are listed (line 1-5). The ”dataplane” option determines which
data plane controller module which is instantiated by the daemon, in this case the
”LSC-Linux” daemon for emulated optical and emulated Ethernet. The data plane
controller was implemented using a class structure created by the MLCP project.
The structure generalizes the functions of a controller which allows the daemon
to instantiate an appropriate controller object based on a configuration file. The
controller object (called ”LSC-Linux”) can control emulated optical, Linux Ethernet
and Linux Ethernet to emulated optical border nodes. During the MLCP project
several data plane controllers were developed, all of these were implemented as sub-
classes of a generic data plane controller class. In figure E the operations performed
by one of the two major functions in the data plane controller is depicted. As
can be seen there are some interprocess calls to the OSPFd daemon and some
communication with the switch. The communication with the switch is performed
using regular command line interface which is connected by Telnet or SSH. On the
CLI regular unix commands are used, for example the operation ”Check for interface
in bridge” executes a shell command which lists all interfaces in the bridge and uses
a regular expression to match the output:
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# sudo ebtables -L | egrep ’\\-i[[:space:]]+INTERFACE_NAME’
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Parameter sanity check

allocateFreeInLabel()

IPC OSPFd:
getTELinkInfo()

ISCD comparisonallocateFreeInLambda()

Convert Generalized
to WDM label

IPC OSPFd:
getInterfaceByData()

Combine CP interface name with
WDM label to find DP interface

Check for interface in bridge

Create WDM switching rule

Check for rule in bridge

Return label

allocateFreeInPBB()

Convert Generalized
to Ethernet label

Check for interface in bridge

Create Ethernet switching rule

Check for rule in bridge

FA-LSP map lookup
TE-Link represents FA?

Return label

FA-LSP map lookup
Find data plane interface

Interface map lookup
Get data plane interface name

Figure E.1: Operations performed by the function allocateFreeInLabel() in the
LSC-Linux data plane controller.
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Dragon daemon

The dragon daemon is responsible for initiating and terminating LSPs. It is
controlled similarly to the other daemons (i.e. Telnet command line interface and
configuration file). A few configuration options has been added to this daemon,
these are described here.

Added options are:

• FA-LSP option

• Upstream and Suggested WDM labels

• Manual ERO configuration

The FA-LSP option can be set to either on or off and is usable when editing an
LSP:

set fa-lsp (on|off)

When set to ”on” a LSP_TUNNEL_INTERFACE_ID object is created and added
to the RSVP request sent to the RSVP-TE daemon. This option requires that
LSP and Tunnel ID has already been set since it uses these two values to create
the unnumbered interface identifier. The identifier is created by shifting LSP-ID
16-bit field 16 steps the left and adding the 16-bit Tunnel-ID. This results in a 32-
bit unnumbered interface identifier, however since the OSPF-TE daemon requires
unnumbered interface identifiers to be above 0x8000000 (231) the LSP-ID must be
set to 32768 or larger if the LSP is to become an FA-LSP.

The Upstream and Suggested CWDM/DWDM label options can be used to add
WDM labels to the RSVP request. Like the FA-LSP option it is usable when editing
an LSP. These options take as arguments the different fields shown in figure 3.8 to
construct the label objects, the commands are:

set upstream dwdm label spacing <1-4> n <0-65535> sign <0-1>
set suggested dwdm label spacing <1-4> n <0-65535> sign <0-1>
set upstream cwdm label wavelength <0-65535>
set suggested cwdm label wavelength <0-65535>
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Where the numbers in brackets are possible values. When an WDM label is added
the frequency or wavelength is calculated and printed so that it can be verified.
The reason for havin multiple variables for the DWDM label selection and not just
a frequency is that a single frequency can be represented in several ways since for
example 2× 50.0GHz = 1× 100.0GHz, this way there is no ambiguity about what
label to create.

The third addition to the Dragon daemon is the commands for adding a manual
ERO. These commands are usable when editing an LSP and support IPv4 and
unnumbered addresses. The commands are:

add ero ip A.B.C.D
add ero unnum A.B.C.D if_id WORD
del ero <0-31>
show ero

The two ”add ero” commands add a single hop to the ERO, either an IPv4 address
or an IPv4 address plus a hexadecimal number (the WORD parameter) which is
the unnumbered interface ID. The hops are added in a ”downstream” order, i.e. the
first hop added to the ERO is the next-hop. The ”del ero” command removes a
single hop from the ERO, a number between 0 and 31 identify which hop should be
removed. There is limit of 32 hops per ERO hard-coded into the daemon, however
there is no significance to the number other than that. The ”show ero” command
prints the current ERO hops along with a number that identifies each hop (used with
”del ero”). Note that there is no possibility to set a prefix length when adding ERO
entries, it is hard-coded to /32 which is a mistake made during implementation.
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Packet captures

G.1 FA-LSP setup

Packet capture from setup of the FA-LSP described in section 5.2.1, fields that
are identical between packets has been removed to save space. Captured with
Wireshark. The time indication are in seconds relative to the first packet. The
Ptime field is the time when the packet was captured minus the time since previous
packet was captured, it is an estimation of how much time the sending node spent
processing the incoming and outgoing packets.

No. Time (s) Ptime (s) Source Destination
1 0.000000 0.000000 172.16.100.1 172.16.100.2
RSVP Header. PATH Message.
SESSION: IPv4-LSP, Destination 172.16.100.232, Tunnel ID 54, Ext ID e66410ac.
HOP: IPv4 IF-ID. Control IPv4: 172.16.100.1. Data If-Index: 172.16.100.230,

-2147483647.
TIME VALUES: 30000 ms
LABEL REQUEST: Generalized: LSP Encoding=Lambda (photonic), Switching

Type=Lambda-Switch Capable (LSC), G-PID=Ethernet (SDH, Lambda, Fiber)
SUGGESTED LABEL: Generalized: 0x29000011
UPSTREAM LABEL: Generalized: 0x29000011
LSP INTERFACE-ID: IPv4, Router-ID 172.16.100.230, Interface-ID -2147483594
EXPLICIT ROUTE: Unnum 172.16.100.233/-2147483647, Unnum

172.16.100.233/-2147483644, Unnum 172.16.100.236/-2147483647, ...
SESSION ATTRIBUTE: SetupPrio 7, HoldPrio 7, [favec1vec3\000\000]
SENDER TEMPLATE: IPv4-LSP, Tunnel Source: 172.16.100.1, LSP ID: 32768.
SENDER TSPEC: IntServ: Token Bucket, 156250000 bytes/sec.
ADSPEC

No. Time (s) Ptime (s) Source Destination
2 0.039219 0.039219 172.16.100.89 172.16.100.90
RSVP Header. PATH Message.
HOP: IPv4 IF-ID. Control IPv4: 172.16.100.89. Data If-Index: 172.16.100.233,

-2147483644.
EXPLICIT ROUTE: Unnum 172.16.100.236/-2147483647, Unnum

172.16.100.236/-2147483645, Unnum 172.16.100.235/-2147483645, ...

88



G.2. CLIENT LSP SETUP 89

No. Time (s) Ptime (s) Source Destination
3 0.072902 0.033683 172.16.100.185 172.16.100.186
RSVP Header. PATH Message.
HOP: IPv4 IF-ID. Control IPv4: 172.16.100.185. Data If-Index: 172.16.100.236,

-2147483645.
EXPLICIT ROUTE: Unnum 172.16.100.235/-2147483645, Unnum

172.16.100.235/-2147483647, Unnum 172.16.100.232/-2147483647

No. Time (s) Ptime (s) Source Destination
4 0.109764 0.036862 172.16.100.201 172.16.100.202
RSVP Header. PATH Message.
HOP: IPv4 IF-ID. Control IPv4: 172.16.100.201. Data If-Index: 172.16.100.235,

-2147483647.
EXPLICIT ROUTE: Unnum 172.16.100.232/-2147483647

No. Time (s) Ptime (s) Source Destination
5 0.329423 0.219659 172.16.100.202 172.16.100.201
RSVP Header. RESV Message.
SESSION: IPv4-LSP, Destination 172.16.100.232, Tunnel ID 54, Ext ID e66410ac.
HOP: IPv4 IF-ID. Control IPv4: 172.16.100.202. Data If-Index: 172.16.100.235,

-2147483647.
TIME VALUES: 30000 ms
LSP INTERFACE-ID: IPv4, Router-ID 172.16.100.232, Interface-ID -2147483594
STYLE: Fixed Filter (10)
FLOWSPEC: Controlled Load: Token Bucket, 156250000 bytes/sec.
FILTERSPEC: IPv4-LSP, Tunnel Source: 172.16.100.1, LSP ID: 32768.
LABEL: Generalized: 0x29000011

No. Time (s) Ptime (s) Source Destination
6 0.932248 0.602825 172.16.100.186 172.16.100.185
RSVP Header. RESV Message.
HOP: IPv4 IF-ID. Control IPv4: 172.16.100.186. Data If-Index: 172.16.100.236,
-2147483645.

No. Time (s) Ptime (s) Source Destination
7 1.547518 0.615270 172.16.100.90 172.16.100.89
HOP: IPv4 IF-ID. Control IPv4: 172.16.100.90. Data If-Index: 172.16.100.233,

-2147483644.

No. Time (s) Ptime (s) Source Destination
8 2.164658 0.617140 172.16.100.2 172.16.100.1
RSVP Header. RESV Message.
HOP: IPv4 IF-ID. Control IPv4: 172.16.100.2. Data If-Index: 172.16.100.230,

-2147483647.

G.2 Client LSP setup
Packet capture from setup of the FA-LSP described in section 5.2.2, fields that
are identical between packets has been removed to save space. Captured with
Wireshark on two different networks then merged together. The merge of the two
files introduced timing errors since the two clocks were not perfectly synced. A
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heading has been added to indicate where the following packets were captures,
session 1 is from the physical network while session 2 is from the virtual network.
The Ptime field has been added for the same reasons as for the previous capture.
------ Wireshark session 1
No. Time (s) Ptime (s) Source Destination
1 0.000000 0.000000 172.16.112.1 172.16.112.2
RSVP Header. PATH Message.
SESSION: IPv4-LSP, Destination 172.16.100.249, Tunnel ID 3784, Ext ID 101000a.
HOP: IPv4 IF-ID. Control IPv4: 172.16.112.1. Data IPv4: 172.16.112.1.
TIME VALUES: 30000 ms
LABEL REQUEST: Generalized: LSP Encoding=Packet, Switching Type=Packet-Switch

Capable-1 (PSC-1), G-PID=IP
UPSTREAM LABEL: Generalized: 0x308
EXPLICIT ROUTE: IPv4 172.16.112.2, Unnum 172.16.100.246/-2147483647, Unnum

172.16.100.243/-2147483647, ...
SESSION ATTRIBUTE: SetupPrio 7, HoldPrio 7, [mefaem\000\000]
SENDER TEMPLATE: IPv4-LSP, Tunnel Source: 172.16.112.1, LSP ID: 99.
SENDER TSPEC: IntServ: Token Bucket, 12500000 bytes/sec.
ADSPEC

No. Time (s) Ptime (s) Source Destination
2 0.147486 0.147486 172.16.100.105 172.16.100.106
RSVP Header. PATH Message.
HOP: IPv4 IF-ID. Control IPv4: 172.16.100.105. Data If-Index: 172.16.100.246,

-2147483647.
LABEL REQUEST: Generalized: LSP Encoding=Ethernet v2/DIX, Switching

Type=Layer-2 Switch Capable (L2SC), G-PID=IP
UPSTREAM LABEL: Generalized: 0x5e4000c, 0x29f833f5
EXPLICIT ROUTE: Unnum 172.16.100.243/-2147483647, Unnum

172.16.100.243/-2147483646, Unnum 172.16.100.230/-2147483645, ...

No. Time (s) Ptime (s) Source Destination
3 0.258414 0.110928 172.16.105.10 172.16.105.9
RSVP Header. PATH Message.
HOP: IPv4 IF-ID. Control IPv4: 172.16.105.10. Data If-Index: 172.16.100.243,

-2147483646.
EXPLICIT ROUTE: Unnum 172.16.100.230/-2147483645, Unnum

172.16.100.230/-2147483594, Unnum 172.16.100.232/-2147483594, ...

------ Wireshark session 2
No. Time (s) Ptime (s) Source Destination
4 -------- 0.067305 172.16.100.230 172.16.100.232
RSVP Header. PATH Message.
HOP: IPv4 IF-ID. Control IPv4: 172.16.100.1. Data If-Index: 172.16.100.230,

-2147483594.
EXPLICIT ROUTE: Unnum 172.16.100.232/-2147483594, Unnum

172.16.100.232/-2147483645, Unnum 172.16.100.245/-2147483645, ...

No. Time (s) Ptime (s) Source Destination
5 -------- 0.065828 172.16.105.25 172.16.105.26
RSVP Header. PATH Message.
HOP: IPv4 IF-ID. Control IPv4: 172.16.105.25. Data If-Index: 172.16.100.232,

-2147483645.
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EXPLICIT ROUTE: Unnum 172.16.100.245/-2147483645, Unnum
172.16.100.245/-2147483647, Unnum 172.16.100.253/-2147483647, ...

------ Wireshark session 1
No. Time (s) Ptime (s) Source Destination
6 0.496727 --------- 172.16.100.145 172.16.100.146
RSVP Header. PATH Message.
HOP: IPv4 IF-ID. Control IPv4: 172.16.100.145. Data If-Index: 172.16.100.245,

-2147483647.
EXPLICIT ROUTE: Unnum 172.16.100.253/-2147483647, IPv4 172.16.100.153, IPv4

172.16.100.154

No. Time (s) Ptime (s) Source Destination
7 0.579304 0.082577 172.16.100.153 172.16.100.154
RSVP Header. PATH Message.
HOP: IPv4 IF-ID. Control IPv4: 172.16.100.153. Data IPv4: 172.16.100.153.
LABEL REQUEST: Generalized: LSP Encoding=Packet, Switching Type=Packet-Switch

Capable-1 (PSC-1), G-PID=IP
UPSTREAM LABEL: Generalized: 0x14
EXPLICIT ROUTE: IPv4 172.16.100.154

No. Time (s) Ptime (s) Source Destination
8 0.914794 0.335490 172.16.100.154 172.16.100.153
RSVP Header. RESV Message.
SESSION: IPv4-LSP, Destination 172.16.100.249, Tunnel ID 3784, Ext ID 101000a.
HOP: IPv4 IF-ID. Control IPv4: 172.16.100.154. Data IPv4: 172.16.100.153.
TIME VALUES: 30000 ms
STYLE: Fixed Filter (10)
FLOWSPEC: Controlled Load: Token Bucket, 12500000 bytes/sec.
FILTERSPEC: IPv4-LSP, Tunnel Source: 172.16.112.1, LSP ID: 99.
LABEL: Generalized: 0x14

No. Time (s) Ptime (s) Source Destination
9 2.278155 1.363361 172.16.100.146 172.16.100.145
RSVP Header. RESV Message.
HOP: IPv4 IF-ID. Control IPv4: 172.16.100.146. Data If-Index: 172.16.100.245,

-2147483647.
LABEL: Generalized: 0x6dd000c, 0x295a4742

No. Time (s) Ptime (s) Source Destination
10 2.977480 0.699325 172.16.105.26 172.16.105.25
RSVP Header. RESV Message.
HOP: IPv4 IF-ID. Control IPv4: 172.16.105.26. Data If-Index: 172.16.100.232,

-2147483645.

------ Wireshark session 2
No. Time (s) Ptime (s) Source Destination
11 -------- 0.497052 172.16.100.232 172.16.100.230
RSVP Header. RESV Message.
HOP: IPv4 IF-ID. Control IPv4: 172.16.100.232. Data If-Index: 172.16.100.230,

-2147483594.

------ Wireshark session 1
No. Time (s) Ptime (s) Source Destination
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12 4.094135 --------- 172.16.105.9 172.16.105.10
RSVP Header. RESV Message.
HOP: IPv4 IF-ID. Control IPv4: 172.16.105.9. Data If-Index: 172.16.100.243,

-2147483646.

No. Time (s) Ptime (s) Source Destination
13 4.739199 0.645064 172.16.100.106 172.16.100.105
RSVP Header. RESV Message.
HOP: IPv4 IF-ID. Control IPv4: 172.16.100.106. Data If-Index: 172.16.100.246,

-2147483647.
LABEL: Generalized: 0x6dd000c, 0x295a4742

No. Time (s) Ptime (s) Source Destination
14 5.969861 1.230662 172.16.112.2 172.16.112.1
RSVP Header. RESV Message.
HOP: IPv4 IF-ID. Control IPv4: 172.16.112.2. Data IPv4: 172.16.112.1.
LABEL: Generalized: 0x14
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