
Not the official thesis.

IPsec Intrusion Detection Analysis:

Using data from an Ericsson Ethernet Interface Board

Master Thesis Report

20 March 2008

 Achi l le Faienza

and

Ju l ian Amso

KTH Examiner and Supervisor

Professor Gerald Q. Maguire Jr .

Ericsson Supervisors

Kar l Knutsson

Sheng-Chou L i

Not the official thesis.

THIS PAGE INTENTIONALLY LEFT BLANK

Not the official thesis.

i

PREFACE

This report is part of the final examination for the Master of Science in Engineering program,

Civilingenjörsprogrammet, at Royal Institute of Technology (KTH) in Stockholm, Sweden. The

project was conducted at Ericsson AB in Älvsjö, IP Design department, FTP/DRX section

during year 2007 and 2008. The supervisor and examiner at KTH was Professor Gerald Q.

Maguire Jr. at Department of Communication Systems (CoS), School of Information and

Communication Technology (ICT), KTH. Our supervisors at Ericsson AB were Karl Knutsson

and Sheng-Chou Li.

Not the official thesis.

ii

ABSTRACT

IP security (IPsec) is commonly used for protection in Virtual Private Networks (VPN). It is

also used for the protection of traffic between nodes in third generation (3G) mobile networks.

The main duty of telecommunication operators is to assure the quality of service and

availability of the network for their users. Therefore knowledge of threats that could affect these

requirements is of relevance. Denial of Service (DoS) and other attacks could constitute serious

threats in 3G networks and, if successful, they could lead to financial and reputation damage for

the telecommunication operator. One of the goals of each telecommunications vendor is to

produce equipment and software in such a way as to reduce the risk of successful attacks upon

networks built using their equipment and software. This master’s thesis aims to identify the

classes of attacks that could affect the regular operation of an IPsec-protected network.

Therefore, the IPsec protocol and its possible weaknesses are explained. As practical

demonstration of these ideas, an Intrusion Detection Analyzer prototype for an Ericsson

Ethernet Interface board was developed to detect anomalous IPsec-protected traffic.

Not the official thesis.

iii

SAMMANFATTNING

IP Security (IPsec) protokollet används bl.a. för att skydda Virtuellt Privat Nätverk (VPN).

Protokollet används även för att skydda noderna i tredje generationens (3G) mobila nätverk.

Telekomoperatöreranas uppgift går bl.a. ut på att se till att de mobila näten är tillgängliga för

användarna samt garanterna en viss garanterad tjänstekvalitet. Därför är kunskapen om de olika

hoten som påverkar dessa faktorer relevant. Överbelastningsattacker och andra attacker kan

utgöra ett stort hot mot bl.a. 3G nät. Om dessa attacker lyckas kan de leda till finansiella skador

och ett skadat anseende för telekomoperatörerna. Ett av målen för telekomtillverkarna är att

tillverka produkter och program som kan minimera riskerna för en attack och skadorna som

åstadkoms på ett nätverk uppbyggt med deras utrustning. Detta examensarbete har som mål att

identifiera de olika typer av attacker som kan påverka driften av IPsec-skyddade nätverk. IPsec-

protokollet och dess svagheter är förklarade. Svagheter och problem med vissa

implementationer nämns också. I detta arbete ingår också att utveckla en Intrusion Detection

Analyzer prototyp för ett Ericssons Ethernet Gränssnitt kort för att upptäcka avvikande IPsec-

skyddad trafik.

Not the official thesis.

iv

ACKNOWLEDGMENT

We would start with expressing the sincerest gratitude towards our KTH supervisor, Professor

Gerald Q. "Chip" Maguire Jr., for the valuable advices and help during the thesis project,

through hi-tech comments and corrections and real-time email replies.

We would also like to express our gratitude towards Ericsson AB, in particular to Sheng-Chou

Li at Ericsson Älvsjö and Daniel Flemström at Mälardalens högskola, for offering us the

opportunity to work on an interesting topic for the Master’s Thesis project. We are grateful for

the help and advices received from our Ericsson supervisor, Karl Knutsson. We would also like

to thank Sven Stenström at Ericsson AB for his help and clear explanations about the Ericsson

Ethernet Interface board used. We are grateful for the help and advices received from our KTH

colleague, Daniel Jaurén.

Julian

Finally, I would like express my gratitude towards my mother, father and brother for their

support and care.

Achille

I would like to thank my supervisor at Politecnico di Torino, Professor Marco Mellia. Last but

not least, I would like to thank my family for their continuous support.

Stockholm, March 2008

Not the official thesis.

v

TABLE OF CONTENTS

Preface ... i

Abstract .. ii

Sammanfattning .. iii

Acknowledgment ... iv

List of figures ... viii

List of tables .. xi

Acronyms and Abbreviations ... xii

1 Introduction .. 1

1.1 Problem Statement ... 1

1.2 Ericsson Platforms ... 1

1.3 Ericsson Ethernet Interface board .. 2

1.3.1 �etwork Processor .. 4

1.3.2 IPsec processing in Ericsson Ethernet Interface board ... 5

1.4 Intrusion Detection ... 8

2 Background ... 12

2.1 The Internet Protocol ... 12

2.2 IP Security .. 14

2.2.1 Security Association .. 15

2.2.2 Security modes .. 18

2.2.3 Security protocols ... 19

2.2.4 Authentication algorithms ... 25

2.2.5 Encryption algorithms .. 26

2.2.6 Key Management .. 27

Not the official thesis.

vi

2.2.7 Implementations and Architectures .. 27

2.3 Related work .. 28

3 Criticism against and weaknesses in IPsec ... 30

3.1 Ferguson and Schneier evaluation.. 30

3.2 Probable plaintext in IPsec ... 31

3.2.1 Probable Plaintext in the IP Header... 31

3.2.2 Probable Plaintext in the TCP header and UDP header .. 32

4 Attacks against IPsec ... 33

4.1 Replay attack .. 33

4.2 CPU overload DoS attack .. 33

4.3 Sliding Window Attack .. 34

4.4 Attacks against unauthenticated ESP traffic in CBC mode .. 35

4.4.1 Bellovin’s attack ... 35

4.4.2 Paterson’s and Yau’s attack ... 36

4.5 IPsec attacks summary ... 39

5 Method .. 41

5.1 Different scenarios of IPsec processing ... 42

5.1.1 SA lookup failure .. 43

5.1.2 IPsec processing failure .. 44

5.1.3 Security policy violation ... 45

5.1.4 Correct IPsec packet ... 45

5.2 LSI System Performance Analyzer .. 46

5.2.1 Classification of modified IPsec packets .. 47

5.2.2 Traffic Management of modified IPsec packets .. 48

5.2.3 Creating a SED Script in the SPA ... 50

5.2.4 Creating a DID in the SPA ... 50

5.3 Software IPsec stack implementation .. 51

5.3.1 Traffic Generator .. 51

Not the official thesis.

vii

5.3.2 Analyzer program ... 52

5.3.3 Monitoring IPsec traffic .. 55

5.3.4 The Sniffer ... 57

6 Analysis ... 58

6.1 Simulation in the LSI System Performance Analyzer .. 58

6.1.1 Capturing IPsec packets ... 58

6.1.2 Reinjecting modified IPsec packets... 58

6.1.3 Forwarding modified IPsec packets to the Analyzer .. 59

6.2 Simulation using a software IPsec stack implementation .. 60

6.2.1 Simulation of attack at SA lookup phase ... 64

6.2.2 Simulation of attack at IPsec processing phase .. 67

6.2.3 Simulation of attack at Security Policy verification phase ... 71

7 Conclusions ... 77

7.1 Conclusion ... 77

7.2 Future work .. 78

REFERE-CES .. 79

Appendix A ... 84

Appendix B ... 87

Appendix C ... 89

Appendix D ... 90

Appendix E ... 91

Not the official thesis.

viii

LIST OF FIGURES

Figure 1: Ericsson Layered Platform Structure [14] ... 2

Figure 2: Main modules of the Ericsson Ethernet Interface board .. 3

Figure 3: Main blocks of the APP300 Network processor series... 5

Figure 4: SPP Result Header.. 5

Figure 5: Position of Fatal Errors bits in SPP Result Header ... 6

Figure 6: Position of Non Fatal Errors bits in SPP Result Header ... 7

Figure 7: IDS placed before an IPsec gateway .. 10

Figure 8: IDS placed after an IPsec gateway ... 10

Figure 9: IDS placed in direct connection with IPsec gateway .. 10

Figure 10: A matrix illustrating different IDS outcomes ... 11

Figure 11: Format of IPv4 Datagram ... 12

Figure 12: Format of an IP datagram showing transport mode and tunnel mode in comparison to the

original packet ... 19

Figure 13: AH Header ... 20

Figure 14: Format of IPv4 datagram protected with IPsec AH Transport mode 21

Figure 15: IPv4 Datagram Protected with IPsec AH Tunnel Mode ... 22

Figure 16: ESP packet.. 23

Figure 17: IPv4 Datagram Protected with IPsec ESP Transport Mode ... 24

Figure 18: IPv4 Datagram Protected with IPsec ESP Tunnel Mode .. 25

Figure 19: Modification of an IPsec packet in Bellovin’s attack. .. 36

Figure 20: Phase 1 modification of IPsec packet in Paterson’s and Yau’s attack [64] 37

Figure 21: Phase 2 modification of IPsec packet in Paterson’s and Yau’s attack [64] 38

Figure 22: A logical overview of the Intrusion Detection Setup for the Ericsson Ethernet Interface Board

 ... 42

Figure 23: The different steps for an incoming IPsec packet to traverse through an IPsec gateway 43

Figure 24: View of a network protected by two IPsec gateways ... 43

Not the official thesis.

ix

Figure 25: Screenshot of the LSI System Performance Analyzer .. 46

Figure 26: Chart of fields in the fTransmit() function ... 47

Figure 27: Only the indicated data of the IPsec packet is sent from the Classification Engine to the Traffic

Manager in case of an IPsec processing failure (E2 error packet) ... 48

Figure 28: The prepended headers of the PDU sent to the Analyzer in case of an IPsec processing failure

(E2 error packet) .. 48

Figure 29: Creating a Destination ID (DID) in the SPA .. 51

Figure 30: Screenshot of the packet traffic generator executing .. 52

Figure 31: An illustration of sliding window 1 to monitor E1 error packets ... 53

Figure 32: An illustration of sliding window 1 and 2 implementation to monitor E1 error packets 53

Figure 33: Different sliding window alert cases (No size or theshold value set, just for illustration) 55

Figure 34: Configuration in case of data analysis from one Ericsson Ethernet Interface board, using TAP

 ... 56

Figure 35: Configuration in case of data analysis from one Ericsson Ethernet Interface board, using port

mirroring .. 56

Figure 36: Screenshot of IPsec reinjection in the SPA simulator .. 59

Figure 37: Screenshot of a modified IPsec packet with an IPsec block error set in the SPP result header in

the SPA .. 60

Figure 38: Screenshot of the startup of Analyzer... 61

Figure 39: Logical configuration for simulation .. 62

Figure 40: Screenshot of Tcpdump trace of traffic between Belkar and Elan ... 63

Figure 41: Configuration of the hosts in the lab and the flow of datagrams (traffic on interface wm0) 64

Figure 42: Screenshot of programs running on Elan during SA lookup attack simulation (Sniffer) 65

Figure 43: Screenshot of programs running on Elan during SA lookup attack simulation (Script to filter

logfile) ... 65

Figure 44: Screenshot of programs running on Elan during SA lookup attack simulation (SPD) 65

Figure 45: Screenshot of programs running on Elan during SA lookup attack simulation (Tcpdump) 66

Figure 46: Screenshot of programs running on Belkar during SA lookup attack simulation (Analyzer) .. 66

Figure 47: Screenshot of programs running on Belkar during SA lookup attack simulation (Attacker) ... 67

Figure 48: Screenshot of programs running on Belkar during SA lookup attack simulation (SAD and

SPD)... 67

Not the official thesis.

x

Figure 49: Screenshot of Netdude used for IPsec packet modification ... 68

Figure 50: Screenshot of programs running on Elan during IPsec processing failure (SPD) 68

Figure 51: Screenshot of programs running on Elan during IPsec processing failure (Script to filter

logfile) ... 69

Figure 52: Screenshot of programs running on Elan during IPsec processing failure (Sniffer)................. 69

Figure 53: Screenshot of programs running on Elan during IPsec processing failure (Tcpdump) 70

Figure 54: Screenshot of programs running on Belkar during IPsec processing failure (SPD and SAD) . 70

Figure 55: Screenshot of programs running on Belkar during IPsec processing failure (Analyzer) 71

Figure 56: Screenshot of programs running on Belkar during IPsec processing failure (Attacker) 71

Figure 57: Screenshot of Tcpdump trace of the traffic and SPD dump on Elan testing security policy

enforcement (SPD) .. 72

Figure 58: Screenshot of Tcpdump trace of the traffic and SPD dump on Elan testing security policy

enforcement (Tcpdump) .. 72

Figure 59: Tcpdump trace of the traffic on Belkar testing the faulty IPsec implementation on Elan 73

Figure 60: SPD dump on Belkar testing the faulty IPsec implementation on Elan 73

Figure 61: Screenshot of programs running on Elan during Security Policy violation (Tcpdump) 74

Figure 62: Screenshot of programs running on Elan during Security Policy violation (SPD) 74

Figure 63: Screenshot of programs running on Elan during Security Policy violation (Script to filter

logfile) ... 74

Figure 64: Screenshot of programs running on Elan during Security Policy violation (sniffer) 75

Figure 65: Screenshot of programs running on Belkar during Security Policy violation (SAD and SPD) 75

Figure 66: Screenshot of programs running on Belkar during Security Policy violation (Analyzer) 76

Figure 67: Screenshot of programs running on Belkar during Security Policy violation (Attacker) 76

Not the official thesis.

xi

LIST OF TABLES

Table 1: The two most significant bits in the SPP result header indicating type of IPsec processing error . 6

Table 2: IPsec block Fatal Error Codes .. 7

Table 3: IPsec block Non-Fatal Error Codes ... 8

Table 4: Sample of Security Association .. 16

Table 5: Attack scenarios during SA lookup failure ... 44

Table 6: Attack scenarios during IPsec processing failure .. 44

Table 7: Attack scenarios during security policy violation .. 45

Table 8: The different packet types sent to the Analyzer ... 49

Table 9: The probabilities of different type of errors received from the board .. 54

Table 10: The different cases when the Analyzer program need to alert the operator 54

Not the official thesis.

xii

ACRONYMS AND ABBREVIATIONS

2G Second Generation Mobile Networks

TDES Triple DES

3G Third Generation Mobile Networks

3GPP The 3rd Generation Partnership Project

AAA Authentication, Authorization And Accounting

ACK Acknowledgment

AES Advanced Encryption Standard

AES-CTR AES Counter Mode

AH Authentication Header

ALG Algorithm

APP Advanced Payload Plus (LSI Processor Family)

ARP Address Resolution Protocol

ATM Asynchronous Transfer Mode

BITS Bump In The Stack

BITW Bump In The Wire

BSC Base Station Controller

BSD Berkeley Software Distribution

CBC Cipher Block Chaining

CDMA2000 Code Division Multiple Access 2000

CE Classification Engine

C--P C For Network Processor

CoS Class Of Service

CPP Connectivity Packet Platform

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CTR Counter

CVE Common Vulnerabilities And Exposures

DES Data Encryption Standard

DID Destination ID

DMA Direct Memory Access

DoS Denial Of Service

DS Differentiated Services

E1 E1 Error Packet (SA Lookup Failure)

E2 E2 Error Packet (Ipsec Processing Failure)

Not the official thesis.

xiii

E3 E3 Error Pocket (Security Policy Violation)

ECB Electronic Code Book

EDE Encryption Decryption Encryption

EEE Encryption Encryption Encryption

ESP Encapsulated Security Payload

FE Fatal Error

FIPS Federal Information Processing Standard

FPL Functional Programming Language

GCC Gnu C Compiler / Gnu Compiler Collection

GSM Global System For Mobile Communications

HLE- Header Length

HLR Home Location Register

HMAC Hashed Message Authentication Code

IA-A Internet Assigned Numbers Authority

ICMP Internet Control Message Protocol

ICV Integrity Check Value

IDS Intrusion Detection System

IPS Intrusion Prevention System

IETF Internet Engineering Task Force

IKE Internet Key Exchange Protocol

IP Internet Protocol

IPsec IP Security

IPv4 IP Version 4

IPv6 IP Version 6

ISAKMP Internet Security Association And Key Management Protocol

IV Initialization Vector

LA- Local Area Network

LIU Line Interface Unit

MAC Message Authentication Code

MAC Media Access Control

MD5 Message Digest 5

MGCF Media Gateway Control Function

MSC Mobile Switching Center

MTU Maximum Transmission Unit

-AT Network Address Translation

-E Non Fatal Error

-etdude Network Dump Data Displayer And Editor

-IST National Institute Of Standards And Technology

Not the official thesis.

xiv

-P Network Processor

-PU Network Processor Unit

-SA National Security Agency

O&M Operation & Maintenance

OSI Open System Interface

PDS- Packet Data Serving Nodes

PDU Protocol Data Unit

PKI Public Key Infrastructure

QoS Quality Of Service

RBS Radio Base Station

RFC Request For Comments

R-C Radio Network Controller

RSP Route Switch Processor

SA Security Association

SAD Security Association Database

SED Stream Editor

SHA Secure Hash Algorithm

S/- Signal To Noise Ratio

SPA System Performance Analyzer

SPA- Switch Port Analyzer

SPD Security Policy Database

SPI Security Parameter Index

SPI-3 System Packet Interface Level 3

SPP Security Protocol Processor

STCP Secure TCP

SW Sliding Window

SY- Synchronize

TAP Test Access Port

TCP Transmission Control Protocol

TM Traffic Manager

TOS Type Of Service

TSP Telecom Server Platform

TTL Time To Live

UDP User Datagram Protocol

UMTS Universal Mobile Telecommunications System

WCDMA Wideband Code Division Multiple Access

VER Version

VP- Virtual Private Network

Not the official thesis.

1

1 INTRODUCTION

1.1 Problem Statement

Internet Protocol (IP) is increasingly used to carry telecommunication traffic, an example of this which is

specifically relevant to this thesis is the traffic between Radio Base Stations (RBS) and Radio Network

Controllers (RNC). The 3rd Generation Partnership Project (3GPP), a collaborating group of

telecommunication vendors & associations concerned with the evolution of GSM and its 3rd Generation (3G)

mobile network specification, has specified that IPsec must be supported in order to provide IP network layer

security [1]. Ericsson Ethernet Interface board, used to provide a modular interface to IP and ATM

networks, is used in many mobile networks and because of the 3GPP requirements it will need to support
IPsec ESP in tunnel mode with authentication in the future.

Although IPsec provides network security, specifically confidentiality & authentication, the protocol has

been criticized for its complexity and because certain configurations could expose an implementation to

serious attacks. Even if a secure configuration is used, a system protected by IPsec could still be vulnerable

to some forms of attacks, i.e. Denial of Service (DoS) attacks. A DoS attack might reduce the capacity of a

mobile network, affecting the quality of service of one or more calls and/or limit the number of simultaneous

users. Traditional Intrusion Detection Systems (IDS) cannot detect these attacks, since this IDS is usually

located after the IPsec gateway. If the IDS is located after the IPsec gateway, then attack traffic rejected and

discarded during IPsec processing will not reach an IDS, hence the IDS will neither be able to generate alerts

for attacks nor capture traffic for subsequent analysis. Thus while IPsec may be successful in preventing this

traffic from crossing the gateway, the network still suffers from the loss in capacity due to the resources

which have been utilized by this rejected traffic, and these attempts should be detected.

This thesis will survey known weaknesses and attacks against the IPsec protocol. It will also look in detail at

attacks on IPsec, when configured according to the 3GPP specification and other configurations. The

relevant IPsec standards are IETF RFC 2401–2412 [2-13]. The Ericsson CPP IPsec implementation to be

used in Ericsson Ethernet Interface board will be referred as “Ericsson IPsec implementation” in this

document. This thesis will cover only IP version 4 (IPv4), since the testing environment and the initial

Ericsson IPsec implementation is IPv4. At this stage of the Ericsson IPsec implementation, no automatic key

management protocol exists, e.g. IKE is not implemented. Therefore, this thesis will not cover the key

management protocol and only manual keying is used, but any actual Ericsson IPsec implementation will
use IKE or other key management protocol. To demonstrate the theoretical ideas for detecting attacks, a

prototype without a graphical interface will be developed in C programming language.

1.2 Ericsson Platforms

Ericsson uses a layered network approach in order to structure a telecommunication system’s functionalities.

The layers are: content and user application, communications control, and connectivity (see Figure 1). The

layered system approach has evolved from the Ericsson’s earlier successful AXE telephone exchange

system. Two new platforms extend the AXE platform [14]: Telecom Server Platform (TSP) and the Ericsson

Connectivity Packet Platform (CPP), previously called Cello Packet Platform. These new platforms extend

the existing AXE platform to handle both circuit switching and packet data transport.

Not the official thesis.

2

The Ericsson AXE 810 platform supports Global System for Mobile communications (GSM) and Universal

Mobile Telecommunications System (UMTS) networks. The AXE platform has many built-in functions,

specifically it supports both a Mobile Switching Center (MSC) and Base Station Controller (BSC). Most

Ericsson platforms are built with commercially available standardized components, interfaces, buses, and

software.

TSP was introduced in order to support the second generation of mobile phone standards (2G). It handles

content and user applications, and offers several network operator services in the same physical structure.

TSP is able to offer network operator services, i.e. Home Location Register (HLR); Media Gateway Control

Function (MGCF); Authentication, Authorization and Accounting (AAA) [15].

CPP [16] was introduced in order to support the third generation of mobile phone standards (3G) building

upon GSM. CPP supports both Asynchronous Transfer Mode (ATM) and IP traffic. Physically CPP employs

several chassis containing different kinds of circuit boards, processor boards, switch boards, interface boards,

echo cancellers, and transcoders. CPP products are currently on the market and used to provide a variety of

telecommunication services, such as RBS and RNC for Wideband Code Division Multiple Access

(WCDMA) networks and Radio Access and Packet Data Serving Nodes (PDSNs) for Code Division

Multiple Access 2000 (CDMA2000) networks.

Figure 1: Ericsson Layered Platform Structure [14] 1

1.3 Ericsson Ethernet Interface board

The Ericsson Ethernet Interface board is an Ethernet-to-ATM (Asynchronous Transfer Mode) backplane

converter. The board can be used in Radio Base Stations or in a Radio Network Controllers with an LSI

Corporation APP300 family (formerly Agere) network processor.

1 This figure appears here with the permission of CGA Information AB.

Not the official thesis.

3

 The main modules of the board are:

Opto/Line Interface Unit (LIU) module Optical and electrical Gigabit interfaces

(1000BASE-X and 1000BASE-T)

Ethernet switch module Ethernet switch (operates at the data link layer,

layer 2 in the Open System Interface (OSI)

model). In RBS nodes the switch is used for

switching between the site LAN (temperature

sensors and site equipment) and Operation &

Maintenance (O&M) terminals and mainly as

connection point for the IP/Ethernet backbone

Network processor module Network Processor Unit (NPU), that allows IP

termination and internetworking to ATM, and

the IPsec block, to provide IPsec functionality

Device Board Module Main Processor and memories. The main

processor belongs to PowerPC family and is

referred in Ericsson documentation as “Board

processor”. It manages the traffic on the board,

which includes board processing support, switch

function monitoring and configuration, NPU

monitoring & configuration, and NPU error &

special packets (also called exception packet)

processing

Figure 2: Main modules of the Ericsson Ethernet Interface board

Ericsson Ethernet Interface board

Opto/Liu

module

Ethernet

Switch module

NPU Module

NPU

IPsec block

Device Board Module

Main

Processor

Memories

Not the official thesis.

4

1.3.1 �etwork Processor

Due to the enormous demand for bandwidth and computationally intensive applications in

telecommunication environments, network processors have a crucial role in assuring high-speed data

processing. For a good review on network processors see [18].

Network processors are used in an RBS or RNC to provide IP to ATM interworking, when this is necessary.

In a network processor [19], time-critical processes, i.e. forwarding, shaping, etc., are executed in the data

path/dataplane, also called the Wire-Speed Path since it receives the packets that need minimal processing;

hence, these packets should be processed at the speed of the incoming packets on the relevant line interface.

While management duties, i.e. error processing, configuration, aggregating and reporting of statistics, etc.,

are executed in the control path/controlplane, also called the Slow-Speed Path since it receives only packets

that need unusual, less time critical, or complex processing. This division into fast path and slow path

assumes that there is a division between packets which can be processed using the fast path and all other

packets and that the majority of packets do not need slow path processing.

The network processor (NP) used on the Ericsson Ethernet Interface board is from the LSI Corporation

Advanced PayloadPlus APP300 family of software-programmable network processors. The processor offers

a fully integrated, single-chip solution with data-path and control-path functions offering a bandwidth in the

range 400 Mbits/s up to 2 Gbits/s [20]. Each member of the APP300 family provides classification for

processing protocols as well as policing/metering and statistics functions to enable flexible billing and

accounting metrics for both ATM cells and IP/Ethernet packets. The APP300 uses SDRAM memories and

standards interfaces to provide connectivity to the physical layer or backplane devices.

The APP300 Network processor series uses the Functional Programming language (FPL) [21] [22], to

classify the incoming data, and the C for Network Processor (C-NP) language [23], to perform Traffic

Management functions on the data processed by the classifier, to execute checks (policing), and collect

statistics.

The main blocks of the APP300 are (see Figure 3):

Physical interfaces data is received in the input interfaces and

delivered to the output interfaces

Classification and Policing incoming packets are stored in queues, pattern

matching and classification is performed, and

finally the packets are reassembled; during the

process statistics are collected

Traffic management enforces discard-policies, shapes the Quality

of Service (QoS) and Class of Service (CoS),

and performs any necessary packet

modifications

The Agere Payload Plus Network [24] processor series is produced by LSI (following the merger of Agere

corporation into LSI).

Not the official thesis.

5

Figure 3: Main blocks of the APP300 -etwork processor series

1.3.2 IPsec processing in Ericsson Ethernet Interface board

The NP sends IPsec processing information to the IPsec block via SPI-3 by appending an extra header to the

packet to be processed, called the Security Protocol Processor (SPP) transform internal header. Different

headers can be added to the packet according to the desired IPsec functionality, inbound/outbound direction,

and to request AH or ESP processing. The format of the first 3 words (32 bits per word) in each header is the

same for all headers, but additional information can be added after the first 3 words.

During IPsec processing, the IPsec block removes the previously added SPP header and adds a two word

SPP result header to the packet. This header contains error codes generated during processing (if any) and

the (original) Opaque Software Tag from the incoming SPP header, see Figure 4.

Figure 4: SPP Result Header

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

B
it

F
E

N
E Error Status Result Packet Length

Opaque Software Tag

APP300

Classification
and Policing

FPL code

Policing C-NP

Traffic management

Buffer management C-NP

Traffic Shaping C-NP

Stream editing C-NP

In
p

u
t P

h
ysical in

terfaces

O
u

tp
u

t
P

h
ys

ic
al

 in
te

rf
ac

es

Data in Data out

Not the official thesis.

6

Fatal Error (FE) Indicates if a fatal error has occurred. (Error

codes are explained later in this section)

Non Fatal Error (NE) Indicates if a non fatal error has occurred

Error Status If FE or NE are set, this field indicates the type of

error, otherwise it should contains zeros

Result Packet Length Specifies the length of the packet processed

Opaque Software Tag The 32 bit field specified in the SPP transform

internal header passing unmodified

During processing, two types of errors might occur: fatal or non fatal errors. It is possible to have more than

one error code per packet. Fatal error occurs only if the input token or the SA context record is incorrect,

therefore they are due to programming errors. Note that a modified IPsec packet should not generate a fatal

error, but only one or more non-fatal errors, see Table 2. The upper two bits of the SPP result header indicate

whether an error has occurred, see Figure 4 and Table 1. Once a fatal error occurs, the packet must be

discarded. If one or more errors occur, the Error Status field is set, see Figure 4. In this thesis we are

only concerned with the non fatal errors that might be generated by (maliciously) modified IPsec packets.

Table 1: The two most significant bits in the SPP result header indicating type of IPsec processing error

Bit set Type of Error

00 No error

01 Non fatal error

10 Fatal Error

11
Fatal Error and

Non Fatal Error

Figure 5: Position of Fatal Errors bits in SPP Result Header

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

B
it

F

E

E
1
5

E
1
4

E
6

E
5

E
4

E
3

E
2

E
1

E
0
 Result Packet Length

Opaque Software Tag

Not the official thesis.

7

Figure 6: Position of -on Fatal Errors bits in SPP Result Header

Table 2: IPsec block Fatal Error Codes

Error
ID

Description

E0 Packet Length error: token instructions vs. input fetch

E1 Token Error, unknown token instruction

E2 Token contains too much bypass data

E3
Crypto block size error(ECB, CBC) / Counter

Overflow(CTR)

E4 Basic Hash: block size error

E5 Invalid algorithm/command/mode/combination

E6
Using algorithm which is prohibited by the virtue of SPP

Core register 4

E14 Time-out Error (i.e. the SPP core hung and timed out)

E15 Output DMA Error

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

B
it

N
E

E
1
3

E
1
2

E
1
1

E
1
0

E
9

E
8

E
7
 Result Packet Length

Opaque Software Tag

Not the official thesis.

8

Table 3: IPsec block -on-Fatal Error Codes

Error
ID

Description

E7 Basic Hash: hash input overflow

E8 TTL / HOP-limit underflow

E9 Authentication failed (Inbound)

E10 Sequence Number check failed / rollover

E11 SPI Check Failed

E12 Checksum Incorrect

E13 Pad Verification failed

1.4 Intrusion Detection

A definition of intrusion detection is given in U.S. Department of Commerce, National Institute for Science

and Technology’s (NIST) Special Publication on Intrusion Detection Systems (IDS) [26]: “Intrusion

detection is the process of monitoring the events occurring in a computer system or network and analyzing

them for signs of possible incidents, which are violations or imminent threats of violation of computer

security policies, acceptable use policies, or standard security practices”. These incidents could be of

malicious nature or caused by inexpert use of the system.

There could be several reasons to use Intrusion Detection Systems, depending on the aim of the system [27]:

• To monitor a system in order to track attempts against the security of the system

• To detect if a system is unprotected against attacks not prevented by other security measures

• To detect if an user is probing the system (retrieving information prior to perform an attack)

• To retrieve feedback concerning the security of the system

• To provide the history of a successful attack, in order to understand the cause and to restore the

system

Telecommunication networks are a very important part of the modern world’s infrastructure, therefore it is

crucial to detect any “strange activities” on the network. Activities of interest could be an attack against a

network (detection when the attack has already been performed), an attempt to attack the network (detection

during the attack is being performing), or retrieval of information prior to performing an attack (also called

probing). Furthermore, an Intrusion Detection System must be able to reveal possible vulnerabilities of the

system by analyzing, tracking, and alerting the network operator.

Not the official thesis.

9

The main parts of an IDS are:

Information

Sources
The sources of information used to determine whether an intrusion has taken

place. In our work, the information source is the error codes generated, by the

IPsec block during the IPsec processing and by the NP during SA lookup or

Security Policy lookup

Analysis This part of the intrusion detection systems analyses the data retrieved from

the information sources and decides if there is evidence of an attack against

the system. The three main approaches to analyze events to detect attacks are:

 Signature-based

detection

Based on a known attack pattern (also called a

signature). The major limitation of this approach

is that it only detects known attacks

 Anomaly detection Based on comparison of abnormal system activity

against normal system activity observed during a

period of time (also called profile). This could be

effective in detecting previously unknown

threats, but the approach could also produce

many false positive (false detection alarms)

depending on how much the current traffic differs

from the profile

 Stateful protocol

analysis or deep

packet inspection

Based on comparison of predetermined profiles

of accepted state transitions of a protocol against

observed events. This technique could detect

unexpected sequences of commands in the

execution of a protocol, but it cannot detect many

forms of attacks, e.g., denial of service attacks,

that execute the correct transitions in the

protocol’s states

 In our work, we focus on the Analysis sub-system of an IDS. This sub-system

is designed to run external to the network processor board and to manage

several Ericsson Ethernet Interface board.

Response The set of actions that the system takes once it detects intrusions. These

actions are basically divided into active response, i.e. automated intervention,

and passive response, i.e., reporting the events. In our project, the Analyzer

is designed to simply alert the operator in case of detected intrusions. Thus

our solution will not include implementing any automatic responses to the

detection of a potential attack also known as Intrusion Prevention System

(IPS)

The placement of an IDS is of importance, as these systems are limited when IPsec protocol is used. The

possible scenarios are described below. If the IDS is placed before an IPsec gateway, see Figure 7, the IDS

will not be able to analyze encrypted traffic and therefore will not be able to detect attacks.

Not the official thesis.

10

Figure 7: IDS placed before an IPsec gateway

Also when placing an IDS behind an IPsec gateway, as in Figure 8, the IDS will not be able to detect IPsec

specific attacks, i.e. replayed packets, incorrect encrypted packet, DoS attacks, etc., since these packets are

discarded before they are forwarded for IP processing, hence the traffic data is never forwarded to the IDS

for analysis.

Figure 8: IDS placed after an IPsec gateway

In case of IPsec traffic, the best location for the IDS is incorporating it into the IPsec gateway, see Figure 9,

in order to learn of processing failures: if any processing errors occur, the IDS will still be able to retrieve

and analyze the data.

Figure 9: IDS placed in direct connection with IPsec gateway

IDS

IPsec Gateway
Interior Exterior

IDS IPsec Gateway Interior Exterior

IDS IPsec Gateway Interior Exterior

Not the official thesis.

11

An IDS that is able to detect attacks against IPsec gateways is therefore an interesting research topic. An IDS

could have several outcomes as shown by Figure 10. The outcomes are:

False Positive The IDS alerts when no attack is occurring

True Positive The IDS alerts when an attack is occurring

False -egative The IDS does not alert when an attack is occurring

True -egative The IDS does not alert when no attack is occurring

 Attack

 True False

Alarm

True
True

Positive

False

Positive

False
False

Negative

True

Negative

Figure 10: A matrix illustrating different IDS outcomes

The ultimate IDS should generate as few false positives and false negatives as possible. False positive errors

usually require an operator’s attention to solve the situation and a high number of these alerts might lead to

the operator to ignore future alerts. False negatives on the other side are the situations labeled as normal by

the IDS, whereas an attack is occurring and the IDS does not fulfill its expected function.

Not the official thesis.

12

2 BACKGROUND

2.1 The Internet Protocol

The Internet Protocol (IP) operates at the network layer in the Open System Interface (OSI) model and is a

best effort protocol, consequently, it is unreliable and connectionless. There are currently two versions of the

protocol: IP version 4 (IPv4) [28] and IP version 6 (IPv6) [29]. One of the differences between the two

versions is the number of IP addresses: just over 4 billion of addresses for IPv4 (address size of 32-bit), over

16 billion-billion of addresses for IPv6 (address size of 128-bit).

At the IP layer, packets are called datagrams. A datagram is composed of a header part and a data part, the

latter is also called an IP payload. In IPv4 the header can be 20 to 60 bytes long and contains the information

for routing and delivering the packet. The data part can be 0 to 65515 bytes long. The maximum size of IP

datagram is 65535 bytes, but the data link protocol imposes a limit to this size. For example, Ethernet frames

can have maximum payload of 1500 bytes, therefore IP datagram over Ethernet cannot be longer than 1500

bytes. The limit on the maximum IP datagram size imposed by the data link protocol is called Maximum

Transmission Unit (MTU).

Figure 11: Format of IPv4 Datagram

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

B
it

Version
Header

Length
DiffServ Total Length

IP
 H

e
a
d

e
r

Identification Flags Fragment Offset

Time to Live Protocol Header Checksum

Source Address

Destination Address

Options

Data

P
a
y
lo

a
d

Not the official thesis.

13

Description of the header fields:

Version (VER) This field contains the version number of the IP

protocol. The version can be 4 (IPv4) or 6 (IPv6).

In this thesis we are only concerned with IP

version 4 (see Section 1.1)

Header Length (HLEN) This 4-bit field defines the total length of the

datagram header in 4 byte words and,

consequently, specifies the offset to the data. The

value of this field depends on the variable length

of the header: if the Options field is not used, the

length of the header is 20 bytes (the value 5 x 4

bytes = 20 bytes), otherwise the length could be up

to 60 bytes (the value 15 x 4 bytes = 60 bytes)

Differentiated services (DS) Previously called Type of Service [2] specifies a

preference for how the datagram has to be handled

(delay, throughput, reliability). Recently [30], this

field has been redefined as Differentiated Services,

due to the new technologies that require real-time

data streaming and different classes of service

Total length This field specifies the total size of the datagram in

bytes (header plus data). The total size can be the

minimum of 20 bytes (20 bytes header plus no

data) and up to 65535 bytes. The length field is 16

bits long

Identification This field is used during datagram fragmentation

to identify the fragments of the original datagram

Flags This field is used to control fragmentation (the

Don’t Fragment bit) or to indicate if there are more

fragments (the More Fragments bit), the third bit is

reserved and should be set to zero

Fragment offset This field is used in fragmentation and specifies

the offset of a fragment from the beginning of

original IP datagram.

Time to live (TTL) This field specifies the lifetime of a packet.

Originally designed as the time in seconds, today it

expresses the maximum number of hops the packet

can transit. The TTL value is decremented every

time a datagram is processed by a router, and the

datagram is discarded once the value is zero

Not the official thesis.

14

Protocol This field indicates the protocol used for the

payload of the IP datagram. The protocol-number

is assigned by Internet Assigned Numbers

Authority (IANA) [31]

Header checksum This field is used to check the header for

transmission errors; the checksum of the header

must be computed and compared to the stored

value of this header at every router (Section 3.1 in

[28]); when this check fails, the datagram is

discarded

Source IP address This field contains the source IP address.

However, if Network Address Translation (NAT)

is used, the original source IP address is translated

to a global network IP address associated with the

NAT device or vice versa

Destination IP address This field contains the destination IP address, but

if NAT is used, then a global IP address is used in

place of the original destination IP address or vice

versa; this global address will be associated with

the destination NAT

Options This field is a an optional field used for

application-specific information and it affects the

length of the HLEN field

At the network layer the main processing steps are routing, fragmentation, reassembly, and Address

Resolution Protocol (ARP) [32].

2.2 IP Security

IP Security (IPsec) was designed by Internet Engineering Task Force (IETF) to provide a security framework

at the network layer, i.e., layer 3 of the OSI model. IPsec ensures private communication over a public IP

network [2] and is commonly used to implement Virtual Private Networks (VPN) [33].

Depending on its implementation and configuration, IPsec could provide the following types of security

services:

Confidentiality IPsec prevents the disclosure of transmitted data to

unauthorized parties through encryption. The data is encrypted

using cryptographic algorithms and the receiver must have a

key to decrypt the data

Not the official thesis.

15

Connectionless

Integrity

IPsec detects the modification of transmitted data, without

regard to the ordering of the datagram in a stream of traffic.

The integrity is assured through a Hashed Message

Authentication Code (HMAC), which is the output of a

cryptographic hash function of the data

Data origin

authentication

IPsec guarantees the origin of the data through cryptographic

processing

Anti-Replay IPsec is able to detect and reject replayed packets sent by an

attacker

Access control IPsec is based on policies that are applied to classify and filter

the traffic. The policies can regulate the user’s behavior or

shape the network traffic

IPsec consists of the several components [34] [35]:

• Security associations (SA)

• Security Policy Database (SPD)

• Security Association Database (SAD)

• Two Security protocols: Authentication Header (AH) and Encapsulated Security Payload (ESP)

• Two Modes: Transport mode and Tunnel mode

• Cryptographic algorithms: used to provide authentication (i.e. MD5 and SHA-1) and encryption

(i.e. DES, TDES, Blowfish and AES)

• Key management: Internet Key Exchange protocol (IKE) or manual keying

2.2.1 Security Association

Since the IP protocol is unreliable and connectionless, Security Associations (SA) are used to create a secure

and protected connection between two hosts. An SA is a unidirectional association between a pair of hosts,

therefore, for two-way IPsec communication, two SAs are needed, one for each direction (i.e. inbound and

outbound traffic). Either an automatic key management protocol (IKE) is used for SA negotiation or it is set

manually. Every SA is uniquely identified by three basic elements:

• Security Parameter Index (SPI): is an arbitrary 32-bit value selected by the destination to identify

the SA’s entry in the database. The same SPI can be assigned to a different SA (for a given

destination address), but only if a different security protocol is used (thus there is an SPI for each of

AH and ESP)

• Security protocol: AH or ESP

Not the official thesis.

16

• Destination IP address: unicast address, IP broadcast, or multicast group address. There can be

many SAs associated with a given destination address.

The SA stores also information about IPsec mode, cryptographic algorithms, cryptographic keys, and

lifetime of the keys agreed by both peers for the communication (see the example in Table 4).

Table 4: Sample of Security Association

Source Address 192.168.66.10

Destination Address 192.168.70.10

Security Parameter Index 1000

Mode tunnel

Security Protocol ESP

ESP algorithm AES-CBC 128 bits

ESP algorithm key “123456789….”

2.2.1.1 Security Policy Database

The Security Policy Database (SPD) [2] consists of a list of policy entries. This database is consulted during

the processing of all traffic, IPsec and non-IPsec. Each entry in the SPD must specify one or more selectors

(depending on the granularity of the actions to be taken) and a processing action. The selector is a set of IP or

upper layer protocol header field values, used by the SPD to map traffic to a policy. The selectors can

include Destination IP address, Source IP address, Transport Layer Protocol, System Name, and User ID 2.

The SPD three possible processing actions are:

Discard the traffic is not allowed to pass and is discarded

Bypass the traffic is allowed to pass further without any IPsec protection

Protect the traffic requires IPsec protection

The SPD processing scheme is different for inbound and outbound traffic. During both processing phases, an

audit log should be utilized.

2 Not all selectors might be available

Not the official thesis.

17

2.2.1.1.1 IPsec Inbound Processing

Inbound processing [2] is performed on the incoming IPsec-protected packets. If the received packet was

fragmented, the reassembly of the packet is performed prior to the AH or ESP processing. After the packet is

reassembled, the Fragment offset field is set to zero and the Flags field is reset.

When a packet is received, the following steps are executed:

1. The SPI, the packet’s destination address (outer IP header), and the Security Protocol are used to

look up one or several SAs in the SAD

2. If a SA is found. The following steps are taken:

a. If anti-replay protection is enabled, the Sequence Number is validated

b. If integrity protection is enabled, the hash of the authenticated data must be verified by

computing the Integrity Check Value and checking if it matches the value in the HMAC field

see Figure 12

c. If confidentiality protection is enabled, the packet is decrypted and the original IP datagram

is de-encapsulated or (re-)constructed (depending upon the mode used)

d. The inbound SPD is consulted to determine what policies and actions should be applied

e. A check to see whether the required IPsec processing has been applied according to the

selected policies is done

f. Forward the packet to IPsec outbound processing or send the datagram further for IP

processing

3. If no SA is found, the packet is discarded and an error should logged

2.2.1.1.2 IPsec Outbound Processing

Outbound processing [2] is applied to packets prior transmission. If a packet has to be fragmented, IP

fragmentation occurs after IPsec processing. The SPD is consulted during the processing of IPsec and non-

IPsec traffic, to determine what kind of action is to be taken. The outbound policies in the SPD are matched

against the packet’s selector fields to locate the first of the appropriate policies. This can result in a decision

to discard the packet, bypass IPsec processing, or protecting the packet with IPsec. In the last case a number

of further steps are taken. These are:

1. The policy will point to zero or more SAs in the SAD

2. If one or more SAs exist, match the packet’s selector fields against those in the existing SAs.

Otherwise, if no SAs were found or none match, the packet is dropped. Note that while normally an

IPsec implementation would create a new SA using IKE, since currently we only support manually

established keys, the absence of a relevant SA is an indication of either an error or an attack and

hence should be reported to the IDS

3. IPsec header is added to the packet (more formally: the existing packet is encapsulated in a new IP

packet (Tunnel mode))

Not the official thesis.

18

4. The selected SA is used for IPsec processing: if confidentiality protection is required, then

encryption is performed. Afterwards, if integrity protection is required, a keyed hash value is

calculated and added to the new packet

2.2.1.2 Security Association Database

The Security Association Database (SAD) [2] contains the parameters associated with each active security

association. Each entry in the SAD corresponds to a security association and it must contain the value or

values negotiated when the security association was created. The entries in the SAD are ordered because a

security policy may require more than one SA to be applied to a specific set of traffic. For example, the ESP

SA might be applied first and then the AH SA (or vice-versa); each order has a particular semantics. The

way that the SAD is consulted during inbound processing is different from how it is consulted for outbound

processing, see Sections 2.2.1.1.1 and 2.2.1.1.2.

2.2.2 Security modes

IPsec has two modes: transport mode and tunnel mode. The transport mode is usually used between two

hosts to protect the end-to-end communication. This mode could also be used between a host and a security

gateway, if the security gateway acts as a host.

Tunnel mode is used mainly for secure IP tunneling where one or both the ends of the SA are security

gateways that forward the traffic. This IPsec mode is widely used to create VPNs. This mode could also be

used for host to host communication, and in this case the source and destination addresses would be the same

in the inner and outer IP header. In out thesis project we work with ESP tunnel mode.

Not the official thesis.

19

Figure 12: Format of an IP datagram showing transport mode and tunnel mode in comparison to the original packet

2.2.3 Security protocols

2.2.3.1 Authentication Header

The Authentication Header protocol (AH) [3] can provide data origin authentication, connectionless

integrity, and optionally anti-replay protection for IP traffic. Authentication and integrity checks are

performed by applying a hash-based algorithm (such as MD5 or SHA-1) to the packet, excluding the outer IP

header’s mutable fields: TOS/DS, Flags, Fragment Offset, TTL, and header checksum. Anti-replay is

performed by including a unique sequence number in each packet. Usually a monotonically increasing

counter is used for this purpose, with an initial value of zero.

Data
Payload

AH
Header

Data
Payload

Transport mode

Original packet

HMAC

ESP
Header

ESP
Trailer

HMAC
(optional)

AH

ESP

Data
Payload

-ew IP
Header

AH
Header

Data
Payload

Tunnel mode

HMAC

ESP
Header

ESP
Trailer

HMAC
(optional)

Data
Payload

AH

ESP IP
Header

IP
Header

IP
Header

-ew IP
Header

IP
Header

IP
Header

Encrypted

data

Authenticated

data

Partially

authenticated data

Not the official thesis.

20

Figure 13: AH Header

Description of the fields:

Next Header This field identifies the protocol of the data in the

payload. It is the same as Protocol field value in IP

header for transport mode and IP version value for

tunnel mode

Payload Length The size of the AH header expressed in 32-bit words

Reserved Reserved for future use and must be set to zero

SPI See Section 2.2.1, used to locate a SA in the SAD

Sequence Number Used for anti-replay protection, a monotonically

increasing counter value. It is mandatory for the sender

to include the sequence number in a transmitted packet,

but it is optional for the receiver to process it. The

counters on both sides of transmission are initialized to

zero when an SA is established and must be reset by

establishing a new SA and thus a new key as soon as 232

packets has been sent. In case of manual keying, anti-

replay protection should not be used (according to

Section 5 in [7]). If anti-replay is disabled, the sender

still increments the counter value and it will start from

zero after reaching the maximum value (according to

Section 3.3.3 in [7])

Authentication Data Contains the Integrity Check Value (ICV) of the packet,

see Section 2.2.5, and must be multiple of 32-bits for

IPv4. The recipient computes a hash over the received

packet and compares the two hash values (i.e., calculated

versus received): if they do not match the packet is

discarded

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

B
it

Next header Payload length Reserved

Security Parameter Index (SPI)

Sequence Number

Authentication data (variable)

Not the official thesis.

21

2.2.3.1.1 AH in Transport Mode

AH in Transport mode contains the value 51 (AH) in the Protocol field, which indicates that there is an

AH header, see Figure 14. The Next header field in the AH header specifies the protocol value of the

packet actually encapsulated in the payload. In transport mode, this packet has to be the upper layer protocol,

i.e. TCP, UDP, or STCP. During inbound processing, once all the IPsec fields are stripped off and the

original IP packet is reconstructed, the Protocol field of the reconstructed IP packet will contain the value

saved in Next header field in the AH header.

Figure 14: Format of IPv4 datagram protected with IPsec AH Transport mode

2.2.3.1.2 AH in Tunnel Mode

For AH in tunnel mode, the original IP datagram is appended after the AH header, and a new outer IP header

is prepended (see Figure 15). The Next Header field contains the protocol value of the encapsulated

packet, this is always 4 (IPv4) for tunnel mode. The Source Address and Destination Address

fields might be different from the original source and destination address included in the original IP header

(since they now represent the tunnel end-points). This creates a tunnel which can be used to implement a

VPN.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

B
it

Version
Header
Length

DiffServ Total Length

IP
 h

e
a
d

e
r

Identification Flags Fragment Offset

Time to Live Protocol Header Checksum

Source Address

Destination Address

Next header Payload length Reserved

A
H

 H
e
a
d

e
r

Security Parameter Index (SPI)

Sequence Number

Authentication data (variable)

Data

P
a
y
lo

a
d

 Authenticated part

Not the official thesis.

22

Figure 15: IPv4 Datagram Protected with IPsec AH Tunnel Mode

2.2.3.2 Encapsulated Security Payload

Encapsulated Security Payload (ESP) [7] provides confidentiality and optionally, data origin authentication,

connectionless integrity protection, and anti-replay protection. If the encryption algorithm requires a random

initialization vector (IV), the value is stored just before the protected payload (indicated as the Encrypted

Payload in Figure 16). ESP includes a header and a trailer which surround the encrypted payload. The SPI,

Sequence Number, and Next Header fields have the same function as in AH, however in the case of

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

B
it

Version
Header
Length

DiffServ Total Length

IP
 h

e
a
d

e
r

Identification Flags Fragment Offset

Time to Live Protocol Header Checksum

Source Address

Destination Address

Next header Payload length Reserved

A
H

 H
e
a
d

e
r

Security Parameter Index (SPI)

Sequence Number

Authentication data (variable)

Version
Header
Length

DiffServ Total Length

O
rig

in
a
l

IP
 h

e
a
d

e
r

Identification Flags Fragment Offset

Time to Live Protocol Header Checksum

Source Address

Destination Address

Data

P
a
y
lo

a
d

 Authenticated part

Not the official thesis.

23

ESP the Next Header is encrypted, therefore it is not possible to determine if transport or tunnel mode is

used until the packet has been decrypted. In comparison with AH, the new fields are:

• Padding: this field enables use of a block-cipher for encryption by adding a variable amount of

padding data, in order to make the encrypted data a multiple of the block size required for this block-

cipher

• Padding length: this field specifies the length of the padding

• Authentication data: this field is optional and provides integrity only for the ESP header and

encrypted payload, not for the full IP packet as is the case of AH

Figure 16: ESP packet

2.2.3.2.1 ESP in Transport Mode

For ESP in transport mode, security services are provided only for ESP fields and the higher layer protocol

payload (i.e., TCP, UDP, and others) not for the IP header preceding the ESP header.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

B
it

Security parameters index (SPI) E
S

P

H
e
a
d
e
r Sequence number

Initial Vector (IV) (variable)

Payload data (variable)

P
a
y
lo

a
d

Padding (0-255 bytes) E
S

P

T
ra

ile
r Pad Length Next Header

Authentication Data (Optional)

Encrypted part

 Authenticated part

Not the official thesis.

24

Figure 17: IPv4 Datagram Protected with IPsec ESP Transport Mode

2.2.3.2.2 ESP in Tunnel Mode

For ESP in Tunnel mode, the original IP datagram is encapsulated between the ESP header and the encrypted

payload. The protection is applied only to the ESP header and original IP datagram. The Source and

Destination fields of the new IP datagram could be different from the original source and destination

address included in the original IP datagram (as these represent the end-points of the tunnel).

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

B
it

Version
Header

Length
DiffServ Total Length

IP
 H

e
a
d

e
r

Identification Flags Fragment Offset

Time to Live Protocol Header Checksum

Source Address

Destination Address

Security parameters index (SPI) E
S

P

H
e
a
d

e
r Sequence number

Initial Vector (IV) (variable)

P
a
y
lo

a
d

Payload data (variable)

Padding (0-255 bytes) E
S

P

T
a
ile

r Pad Length Next Header

Authentication Data (Optional)

Encrypted part

 Authenticated part

Not the official thesis.

25

Figure 18: IPv4 Datagram Protected with IPsec ESP Tunnel Mode

2.2.4 Authentication algorithms

An Integrity Check Value (ICV) is calculated to assure the integrity of the packet. The mechanism to create

the ICV is based on a secret key, shared between the two parties, and a hash algorithm such as MD5 and

SHA-1. This mechanism is called a Hash Message Authentication Code (HMAC) [36]. HMAC can be used

in both AH and ESP to assure integrity and data origin authentication. According to the 3GPP specification

[1], the authentication algorithms that can be used are MD5 and SHA-1, although both of them have been

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

B
it

Version Header
Length DiffServ Total Length

IP
 H

e
a

d
e

r

Identification Flags Fragment Offset

Time to Live Protocol Header Checksum

Source Address

Destination Address

Security parameters index (SPI) E
S

P

H
e
a
d

e
r Sequence number

Initial Vector (IV) (variable)

Original IP Header

O
rig

in
a

l

IP

H
e

a
d

e
r

Payload data (variable)

P
a

y
lo

a
d

Padding (0-255 bytes) E
S

P

T
ra

ile
r Pad Length Next Header

Authentication Data (Optional)

Encrypted part

 Authenticated part

Not the official thesis.

26

compromised. There are some authentication algorithms that haven’t been compromised, e.g., SHA-224,

SHA-256, SHA-384, SHA-512, but only MD5 and SHA-1 will be used in this project.

2.2.4.1 MD5

Message Digest 5 (MD5) algorithm [37] is a cryptographic hash function producing a 128-bit hash value. It

was designed by Ronald Rivest in 1991 to replace MD4. Though some vulnerabilities have been found [38],

MD5 is still a widely used hash function. The use of MD5 within AH and ESP for IPsec is specified in [4].

2.2.4.2 SHA-1

Secure Hash Algorithm (SHA-1) was designed by the National Security Agency (NSA) and published by the

National Institute of Standards and Technology (NIST) in FIPS PUB 180-1 and FIPS PUB 180-2 (the latest).

SHA-1 is one of the five cryptographic hash functions named SHA and produces a message digest of 160-

bit. The security of SHA-1 has been compromised by cryptography researchers [39]. SHA-1 was developed

to be the successor to MD5. The use of SHA-1 within AH and ESP for IPsec is specified in [5].

2.2.5 Encryption algorithms

Encryption algorithms, also called ciphers, are used to encrypt data prior to transmission, transforming the

content of the packet in order to assure confidentiality. Encryption algorithms operating on data blocks of

fixed length are called block ciphers. To avoid the repetition of blocks produced by encrypting the same

plaintext block, alternative encryption modes could be used or an Initialization Vector (IV) can be used to

encrypt the first block of the data.

According to the 3GPP specification [1], Cipher Block Chaining (CBC) mode is used in ESP for 3G systems.

This mode requires an IV to encrypt the first block and to randomize the process. The IV should be long

enough that it will not be used twice in the encryption process with the same secret key. When manual

keying is used, the secret key should be updated when all the possible IV values have been used. When IKE

is used, a new SA will be negotiated once the Sequence number is close to an overflow. The use of CBC

mode for encryption algorithm with IPsec ESP protocol is specified in [40].

According to Section 5.3.3 of the 3GPP specification [1], the encryption algorithms that must be supported

are DES-CBC, TDES-CBC, and AES-CBC 128 bit.

2.2.5.1 DES

The Data Encryption Standard (DES) is a cryptographic algorithm selected by NIST as an official Federal

Information Processing Standard (FIPS) [41] in 1976. DES can nowadays be easily broken since the 56-bit

key length is too small [42], therefore it is no longer considered to be sufficiently cryptographic. The use of

DES in CBC mode within ESP is specified in [6].

2.2.5.2 TDES

Triple DES (TDES) is a cipher derived from DES. It encrypts a plaintext block through DES three times and

its key length could be 112 or 168 bit. The EEE mode is implemented by encrypting a block using DES three

Not the official thesis.

27

times. The EDE mode is implemented by encrypting, decrypting and finally encrypting a block using DES.

The use of TDES in CBC mode within ESP is specified in [43].

2.2.5.3 AES

The Advanced Encryption Standard (AES), also known as Rijndael, is a block cipher adopted as a Federal

Information Processing Standard by NIST [44]. It has a variable key size of 128, 192, or 256 bits and a

block size of 128 bits. The encryption process is done by iterating 12-14 encryption rounds, depending on the

key size. The only successful attack against AES is side channel attacks: what is attacked is not the

underlying cipher but the implementation of the cipher on the system, which leaks some data. Daniel

Bernstein performed a cache timing attack using chosen cipher text and cache timing characteristics to

calculate the correct key [45]. The use of AES within ESP is specified in [46] (for AES-CBC) and [47] (for

AES-CTR).

2.2.6 Key Management

2.2.6.1 IKE

Internet Key Exchange (IKE) protocol [10] is an automated key management protocol used to set up a SA in

the IPsec protocol suite. IKE is built upon the Oakley protocol, a key-agreement protocol based on Diffie-

Hellman key exchange, allowing authenticated parties to set up a shared session secret, and to subsequently

derive cryptographic keys. Mutual authentication of the communicating hosts is provided using public key

techniques or a pre-shared key.

2.2.6.2 Manual Keying

Manual keying is the process of manually configuring keys and security associations on each host. Manual

keying can be used in small static environments, but it is not advisable for network with many hosts, due to

configuration and re-keying limitation. In our project manual keying is used because the Ericsson IPsec

system is currently in development and no automatic key management protocol has been implemented yet.

2.2.7 Implementations and Architectures

IPsec can be implemented in a host or in a router. Host-implementation is the most flexible solution to

provide end-to-end protection between a pair of devices in a network. However, IPsec need to be configured

on each of them. Router-implementation (in this case the routers are also called a Security Gateway) is

mainly used in tunnel mode to create a VPN, but can also be used in transport mode if the router is the final

destination. The latter implementation is recommended if the network consists of many clients, to avoid

IPsec configuration on each client, but leaving the connection between routers and local hosts unprotected by

IPsec.

In our project a router-implementation using tunnel mode is used, as specified in Section 4.5 and Section

5.3.2 of the 3GPP specification [1]. Three different IPsec architectures are defined in RFC 2401 (The term

“implementation” is used instead of “architecture” in the documentation):

Not the official thesis.

28

• Integrated architecture: integrates IPsec protocols and capabilities directly into IP. This is the most

elegant solution since no hardware or architectural layer has to be changed or reconfigured. IPv6

integrates IPsec as a mandatory part and the use is optional; while IPv4 requires making changes to

the IP implementation on each device

• Bump In The Stack (BITS) architecture: IPsec is implemented as separate architectural layer

between IP and the data link layer and adds security protection to datagrams created by the IP layer.

This approach is appropriate for use with legacy systems and used for IPv4 hosts

• Bump In The Wire (BITW) architecture: an outboard crypto processor is used to provide IPsec

services. This architecture allows non-IPsec compliant routers to provide IPsec services to the local

hosts

Since IPsec is based on cryptographic computation, an architecture implementing IPsec has to supply the

computing power for cryptographic algorithms. The current generation of network processors provides the

computational capacity for IPsec, and a dedicated fast connection is used in order to offload the processing

of memory expensive computation (look-ups for SA, encryption, and so on). In our project the BITW

architecture is used since IPsec block is used for IPsec processing in the Ericsson Ethernet Interface board,

see Section 1.3.

2.3 Related work

For commercial implementation of IPsec, the common way to warn users about a system’s vulnerabilities is

issuing a security advisory. Common Vulnerabilities and Exposures (CVE) [48] is a list of possible known

security vulnerabilities and exposures, each of them identified by a standard name called CVE Identifier.

Therefore, for CVE compliant IPsec implementation, the solution to remediate a problem can be searched for

in the CVE databases. If an entry in the database matches the CVE Identifier, then the problem can be easily

solved.

In case of proprietary implementations, an attack on the system must be detected in order to alert the

operator, who can take manual actions, e.g., applying filters to discard attack traffic and neutralize the effects

of these attacks.

Instead of taking manual action, a better solution would be to automate the process. VPNshield [49] is a

prototype for protecting edge networks and detecting denial of service attacks, thus enabling continuous

system operation. This product provides, as stated in [50], automated attack detection and a response

mechanism to enable uninterrupted VPN service, automatic installation of filters to quickly eliminate the

attack traffic. Currently, there is no version of this available as a commercial product.

In Mika Müller’s master thesis, entitled “Analysis tool for studying IP security Denial of Service resistance”

[51], DoS attacks against IPSec’s IKE protocol are examined. The resistance of different IKE

implementations were tested and evaluated. This thesis will likely be relevant to Ericsson and others who

carry on the work begun in this thesis but it does not cover the IPsec protocol itself.

Ari Muittari’s master thesis, entitled “Internet Key Exchange (IKE) protocol vulnerability risks”, [52]

examines vulnerabilities and possible ways to attack IKE version 1, reporting on experiments and the tools

used to perform these attacks.

Not the official thesis.

29

In Matti Järvinen’s master thesis, entitled “PKI Requirements for IPsec” [53], the PKI and IKE protocol are

investigated, to define the interface between IKE and PKI and enable a certificate-based authentication in

IKE implementation.

“Attacking the IPsec Standards in Encryption-only Configuration” [54] show that some attacks against

encryption-only IPsec configuration can be performed, even if the IPsec configurations reflects RFCs (2401-

2411 or 4301-4309) and does proper padding checks. They tested their attacks on different open-source

IPsec implementation and report the success of the attacks on the OpenSolaris implementation. They also

point out the need for more precise prescriptions of how to handle security-sensitive issues, instead of just

warning the IPsec manager on performing checks that, if badly implemented, could make the IPsec

implementation vulnerable to old attacks (i.e. Bellovin’s attacks – see Sections 3.2 and 4.4.1).

The website of Arnold K. L. Yau, [55], a doctoral student of prof. Kenneth G. Paterson at University of

London. This website contains links to both theoretical papers and attacks on IPsec, as well as articles on

several different IPsec implementations.

Henrik Dikvall’s master thesis “IPsec in hardware”, [56], discusses how the IPsec protocol can be

implemented efficiently in hardware, and in particular in a network switch, to make it acts as a security

gateway. The thesis is motivated by the need to run IPsec on application specific hardware at “wire-speed”,

instead of as software on common CPU, because of the demanding computations needed.

Not the official thesis.

30

3 CRITICISM AGAINST AND WEAKNESSES IN IPSEC

The IPsec protocol [2] has been criticized for being too complex. It tries to support many different situations

with different options, which makes it hard to analyze its security thoroughly. There are two different modes

that can be applied to each of the two security protocols, leading to four possible situations: ESP tunnel

mode, ESP transport mode, AH tunnel mode, and AH transport mode. Add to that the possibility to choose

from a number of encryption and authentication algorithms in different combinations. ESP mode must also

support no encryption mode (NULL Encryption algorithm) to provide authentication and integrity without

confidentiality and no authentication mode, which both could be used for debugging/testing.

This extensive variety of configurations makes IPsec hard to overview. Network administrators with limited

knowledge in cryptography might find it difficult to configure an IPsec network in a secure way. Security

experts have shown that certain security configurations make IPsec vulnerable and in some cases useless, as

shown later in Section 4.

3.1 Ferguson and Schneier evaluation

Cryptography researchers Niels Ferguson and Bruce Schneier published a lengthy evaluation of IPsec [57] in

1999. The writers point out several weaknesses in the protocol and blame the complexity of the protocol on

the way IPsec was developed, through a standardization committee. Too many options and too much

flexibility was a side effect, often resulting in several ways of doing the same or similar things. At the end of

the development process, nobody seems satisfied with the results. A better solution would be, according to

the writers, to organize a contest similar to the one organized by NIST for the development of the AES

algorithm.

IPsec documentation is also criticized for being hard to read and missing important sections in the RFCs,

e.g., rationale and overview section. It is pointed out that the ISAKMP specification [9] contains errors,

contradictions, and is missing essential explanations.

The writers question the need of having a separate transport mode and see it as a subset of the tunnel mode.

Tunnel mode provides the same services as transport mode, and the writers recommend the elimination of

the transport mode. The difference between the ESP protocol and AH protocol is also discussed. While the

AH protocol authenticates more data than ESP, i.e. the outer IP header in tunnel mode, since ESP could

authenticate the entire packet payload including the inner IP header in tunnel mode, this should be sufficient

to convince the recipient that the packet was sent by someone in possession of the authentication key. There

is no real explanation in the IPsec documentation, why the IP header should be authenticated, since IP is only

used to transport the packet from one destination to another. Therefore, the writers recommend the

elimination of the AH protocol.

The ESP specification [7] states that authentication is optional. This enables the configuration of encryption

with no authentication, which makes IPsec vulnerable to very serious attacks as described in Section 4.4. The

writers recommend that authentication should always be used, but that encryption should be optional. The

Security Associations are also discussed. Recall that each SA is unidirectional, thus to be able to send data

between two IP end-points, two SAs need to be negotiated. If encryption is provided by ESP and

authentication by AH, then a total of four SAs must be negotiated. However, the need to be able to send data

in one direction is unusual and a bidirectional SA would reduce the number of SAs required by the half and

Not the official thesis.

31

reduces the SA negotiation setup exchange. Of course this latter point is irrelevant in the case of manual

keying, since the SAs are statically configured.

Ferguson and Schneier [57] point out that IPsec ICMP processing is unclearly documented. Specifically, the

Security Architecture for IP [2], Section 6, states that unauthenticated ICMP messages should be discarded

since they could be used in a DoS attack. Since IPsec packets may traverse through routers not implementing

IPsec and hence incapable of providing IPsec authentication, these ICMP messages would be discarded, and

a critical function of IP would be lost. Local security policy determines if an IPsec implementation should

reject or accept unauthenticated ICMP traffic. Section 6 in RFC 2401 [2] states the following “Thus it MUST

be possible to configure an IPsec implementation to accept or reject (router) ICMP traffic as per local

security policy.”. For instance, Microsoft’s Windows 2000 Server IPsec implementation allows the user to

configure an IPsec filter list per policy [58].

3.2 Probable plaintext in IPsec

Steven M. Bellovin published an article about probable plaintext attacks [59] against encryption used in

IPsec in ESP tunnel mode. These attacks show how traffic could be used in cryptanalysis, providing a fair

amount of probable plaintext to the attacker.

An attacker starts with prediction about certain properties of the encrypted packets. Bellovin states that

measurements have shown that 30-40% of network packet traffic [60] [61] is 40-byte TCP ACK-packets. If

random padding is not used, analysis of packet length distribution would yield sufficient information to

probably suggest the type of an encrypted packet. The attacker starts analyzing the positions of bits in the

encrypted packet.

3.2.1 Probable Plaintext in the IP Header

In tunnel mode, the first part of the encrypted ESP payload is the IP header of the original datagram (IPv4).

Since the position of inner IP header fields are known [28], only the guessed values of the fields will be

given (see Figure 11).

The Version number is always 4 for IPv4 and the Header Length of the packet is mostly 5, followed by

ToS/DiffServ field which generally is 10. From the length of the packet, the Total Length field could be

determined and in case of TCP ACK packet, the value should be 28. If random padding is not used, traffic

analysis could be used to determine the Total Length field value. Prediction of these fields results in 32 bits

of probable plaintext.

We proceed by looking at values which could be guessed with some certainty. The Flags field and the

Fragment offset field are generally set to zero. Protocol field is 6 if TCP is used as transport protocol or 11

for UDP. In case the attacker has some knowledge about the distance between the packet sender and

recipient, the high order bits of the TTL field could also be guessed.

The rest of the packet header is the source and destination address fields. Assuming that the Options field is

not used, then, through traffic analysis, a TCP ACK packet could be chosen for analysis. There are several

scenarios for determining the address fields. First, if an ESP tunnel mode connection is established between a

host and a gateway, either the Source Address or Destination Address field could be known. Since the IP

address could easily be known for a host, this knowledge gives an additional 32 bit of plaintext. Secondly, if

Not the official thesis.

32

an ESP tunnel mode connection is used between two hosts, then both the Source Address and Destination

Address are known, giving 64 bits of plaintext. Alternatively, when we have an ESP tunnel mode connection

between two gateways, 16-24 of most significant bits of the Source and Destination Addresses could be

guessed.

3.2.2 Probable Plaintext in the TCP header and UDP header

Bellovin continues analyzing IPsec ESP in details, and follows the same methodology as used in the previous

section. Traffic analysis helps us to identify encrypted TCP packets among the rest of packet traffic. Bellovin

starts by identifying and guessing values of TCP header fields, the Source Port and Destination Port field

could be considered random, but Bellovin claims in Section 6 in [59] that these values could be deduced

from the traffic characteristics, giving an additional 16 bits of probable plaintext. Sequence �umber should

also be considered as random, but in certain cases the value could be predicted [62]. The Acknowledgment

�umber is the value of Sequence �umber in case an acknowledgment packet is sent back. However, if the

initial SYN packet sent by the client to open the connection could be identified, the Acknowledgment

�umber field is zeroed in this specific case, giving 32 bit of plaintext. Bellovin claims in Section 4.2 of [59],

that some values of the Flags, Window, and Urgent Pointer field could be predicted. These predictions

would give a total of 88 bits with some uncertainty of probable plaintext. If a UDP header is analyzed,

Bellovin claims in Section 4.3 of [59] that 28 bits of probable plaintext can be guessed.

IPsec uses padding in different cases: to pad encryption data to cipher block size (ESP) and align the packet

to a 4-byte word boundary. Padding could be used to provide partial traffic flow confidentiality. Since IPsec

ESP padding (0-255 bytes) is added at the end of the data payload, the positions of the different fields

mentioned are known and the padding does not obscure the identification.

Not the official thesis.

33

4 ATTACKS AGAINST IPSEC

In this section, attacks against IPsec protocol in general will be reviewed. The attacks are not theoretical but

proof of concepts has been implemented in most cases. At the end of Section 4 a conclusion of the effects

and risks of these attacks against the IPsec configuration used in this thesis work is included.

4.1 Replay attack

IPsec’s Encapsulating Security Payload [7] and IPsec’s Authentication Header protocol [3] require the anti-

replay service to be disabled, if manual keying is used. The explanation in Section 5 in both [7] and [3] states

the following:

 “If the key used to compute an ICV is manually distributed, correct provision of the anti-replay service

would require correct maintenance of the counter state at the sender, until the key is replaced, and there

likely would be no automated recovery provision if counter overflow were imminent. ”

Ferguson and Schneier [57] gives a scenario of a possible attack if the anti-replay service is turned off.

Suppose that both an AH transport mode SA (denoted SAAH) and an ESP transport mode SA (denoted

SAESP1) have been negotiated. Now a tunnel is established providing both confidentiality through SAESP1 and

authentication through SAAH , but no anti-replay protection is enabled. After the data has been transmitted,

SAESP1 is deleted from the SAD but SAAH is kept.

Later a new ESP transport mode SA is negotiated, denoted SAESP2 , and the user chooses the same SPI value

for SAESP2 as used for SAESP1. The attacker now replays packets used from the first exchange. The receiver

authenticates the packets through SAAH , and finds the packets valid. The receiver proceeds to decrypt the

packets, but the data has been encrypted by SAESP1 which probably garbles the original data. The receiver

believes that the traffic is authentic and presents the decrypted data, garbled data, to the application with

unknown consequences.

This situation could have been avoided by authenticating the data and then encrypting it. In case several SAs

are used for IPsec processing, all the related SAs should be deleted when not needed anymore. The SPI

number should also be different each time a SA is created, a counter would be suitable for this purpose. Also,

manual keying has its limitations in busy and larger networks, although it is easier to administer in a small

scale network - but where the threshold of shifting to automatic keying is - lies outside the scope of this

thesis.

4.2 CPU overload DoS attack

One of the steps in the IPsec inbound processing, is packet authentication verification, a moderately

computational costly process. Section 5.2, in RFC 2401 [2] explains the steps taken when an incoming IPsec

packet is processed. An attacker could misuse the MAC verification process to launch a Denial of Service

attack against an IPsec endpoint by sending a large number of bogus IPsec packets to the IPsec endpoint.

Depending on the processing capacity of the system, the vulnerability for this kind of Denial of Service

attack is obvious. Both ESP and AH protocols are vulnerable to such an attack, and an IPsec endpoint cannot

distinguish between legal and illegal packets until it performs computation. Even if anti-replay service is

Not the official thesis.

34

applied, packets could be sent with correct sequence numbers. Recall that the sequence number field could

be known to an attacker, because the sequence number, both in AH or ESP processed packet is sent in clear

text and the value is increased monotonically. Therefore the receiving endpoint, will accept the sequence

number value, rendering the anti-replay service useless in this case, and forwarding the packet for

authentication processing.

Touch and Yang published a paper regarding this problem [63]. The authors published their experiment

measurements about throughput reduction when an IPsec endpoint is attacked. The paper handles three types

of attacks. Alg stands for Algorithm:

• Alg-SPI, an attacker sending spoofed IPsec packets with incorrect IPsec SPI value

• Alg-key, an attacker sending spoofed IPsec packets with correct IPsec SPI value but encrypted with

incorrect key

• Alg-OK, an attacker sending spoofed IPsec packets with correct IPsec SPI value and processed with

the correct key

The attacks in the experiment were conducted against four different IPsec configurations, IPsec HMAC MD5

authenticated transport mode, IPsec HMAC SHA1 authenticated transport mode, DES encrypted IPsec

transport mode, and TDES encrypted IPsec transport mode.

The paper shows that an attacker is able to reduce IPsec authenticated traffic throughput by 20% with Alg-

SPI attack, 40% with Alg-key attack, and with 50% with the Alg-OK attack (see Figure 4 in [63]). In case of

attacks against IPsec encrypted traffic, the throughput reduction was similar to the previous results, but the

Alg-key attack caused a reduction of about 50% (see Figure 5 in [63]).

4.3 Sliding Window Attack

The IPsec anti-replay service is implemented through a sliding window. The window size must be a

minimum of 32 packets long, but can also be larger, e.g. 64 or 128 packets long or even longer. All packets

sent with sequence number falling to the left of the sliding window (low values) are automatically dropped.

The same applies to packets with sequence number within in the window, but marked as already received.

ESP RFC 2406, Section 3.4.3, states the following:

“All ESP implementations MUST support the anti-replay service, though its use may be enabled or disabled

by the receiver on a per-SA basis. This service MUST �OT be enabled unless the authentication service also

is enabled for the SA, since otherwise the Sequence �umber field has not been integrity protected.”

Since the mandatory simultaneous use of the anti-replay service and authentication service is a configuration

matter, IPsec is vulnerable for misconfiguration errors by system administrators. The vast number of

different settings of modes, protocols, and other security settings might lead to weak security configurations.

This issue was pointed out by Ferguson and Schneier in Section 3.1 in [57]. The IPsec documentation states

that the implementation of the anti-replay sliding window is a local matter, but requires packets to be

authenticated before updating the window. Paterson and Yau [64] have previously explained weaknesses of

unauthenticated ESP tunnel mode packets encrypted in CBC mode. The same technique and configuration

used by Paterson and Yau, would help an attacker to change the Sequence �umber to the desired value.

Not the official thesis.

35

Liang and Muradyan explain in Appendix A of [65] that the anti-replay sliding window is moved to the right

once a packet with a Sequence �umber higher than the sliding window´s right edge arrives. If the update is

simply made by shifting one step to the right, an attacker could send several packets with a high Sequence

�umber which will update the sliding window far to the right. This will cause incoming legitimate packets to

be labeled as old or replayed, and therefore to be dropped. This would cause a total IPsec traffic stop and a

Denial of Service situation. If the sliding window gets updated to the position of the incoming packet´s

Sequence �umber, a single packet with a very high Sequence �umber is sufficient for a Denial of Service

attack against the IPsec endpoint. Since the packet would be updated to the far right, no legitimate packet

would be accepted. Liang and Muradyan warn about this situation and point out that the sliding window

should not be updated until the packet passes an acceptance test. There is no explanation about what a

suitable acceptance test is, but probably authentication verification is meant. Since the 3GPP specification

requires that ESP mode with authentication must be used, this class of attack will not succeed in this

configuration.

4.4 Attacks against unauthenticated ESP traffic in CBC mode

4.4.1 Bellovin’s attack

Bellovin published an article [59] about an attack which defeats a specific configuration of IPsec encryption.

To succeed with the attack there are some prerequisites: IPsec ESP without authentication is used and for

encryption CBC mode [40] [6] [46] is applied. CBC encryption mode is vulnerable to a bit-flipping attack,

see Section 2.3 in [64], which enables an attacker to introduce controlled changes to the decrypted cipher

text. In this attack, the attacker needs to be able to send packets through the same IPsec gateway and should

be able to capture, delete, and modify packets.

The attack works as following: Eve, denoted E, wants to read the secret sent by Alice, denoted A, to Bob,

denoted B (see Figure 19). Therefore E captures the packet sent from A to B, denoted PA. E also sends an

UDP packet through the same IPsec connection and captures the packet after it has been encrypted, denoted

PE1. Now E cuts out the encrypted TCP header and the encrypted secret from PA. E also cuts out the IP

header, ESP header and encrypted UDP header from his first packet PE1 and constructs a new IPsec packet.

E sends PE2 through the IPsec tunnel and the receiving gateway will start decrypting the data. This will

probably cause a decryption error in the first cipher block, the TCP header of A’s original packet, PA., but

because of the self healing property of CBC mode3, the receiving gateway will proceed and correctly decrypt

the rest of packet. Since the UDP header of PE2 is constructed by E, the decrypted packet could be sent to an

IP address controlled by E. Authentication of IPsec packets stops this attack.

3 If one block of ciphertext is altered, the error propagates for at most two blocks.

Not the official thesis.

36

Figure 19: Modification of an IPsec packet in Bellovin’s attack.

4.4.2 Paterson’s and Yau’s attack

Paterson and Yau published a paper [64] about serious attacks against IPsec that would enable an attacker to

decrypt IPsec traffic due to certain configurations. Their research is a further development of Bellovin´s

attack [66]. A proof of concept was implemented and vulnerability warnings were issued worldwide

afterward [67] [68]. There were several factors that made the attacks successful: the optional use of

encryption without authentication, the use of CBC encryption mode, faulty IPsec inbound processing

implementation, and some properties of an ICMP packet reply.

They presented three different attacks that could be launched: attacks based on destination address rewriting,

attacks based on IP options processing, and attacks based on protocol field manipulation. The general ideas

and methods of the attack will be described, for detailed information we refer to [64].

An assumption to succeed with the attack is that no security policy check is made after IPsec inbound

processing for the inner IP header. However, RFC 2401 mandates that an IPsec implementation should

consult the SPD after IPsec processing. This faulty IPsec implementation existed in Linux kernel release

2.6.8.1.

4.4.2.1 Attacks based on destination address rewriting

There are two versions of the attack, a 64-bit cipher block and 128-bit cipher block version. Only the 64-bit

version will be described in this brief introduction. The IPsec traffic is sent between two gateways running

ESP in tunnel mode with CBC encryption mode. An assumption is made that the attacker knows the

destination address of the inner IP packet (see Figure 11). Recall that bit flipping in CBC for the first cipher

block introduces controlled changes in the decrypted second cipher block, see Section 2.3 in [64].

IP ESPK TCP SECRET

IP ESPK UDP ANY DATA

A → B

E1 → E2

IP ESPK E1 → E2

Monitored Traffic

Reinjected Traffic

TCP SECRET UDP

PA

PE1

PE2

K = SA/key used for sending all packets

Not the official thesis.

37

Phase 1

An attacker captures a packet from the traffic he wants to decrypt (see Figure 20). The first 32 bit of second

cipher block C2 are masked with the attacker’s IP address and the assumed known destination address. This

would cancel out the original IP destination address and the decrypted cipher block would then have the

attacker’s IP address as destination address. Also the first half of cipher block C2 (32 bit) are changed but to

a random value. A problem will arise once C2 is decrypted to plaintext, P2. The plaintext P2 will contain the

TTL, Protocol, IP Header Checksum and Source Destination fields. Those values must

be valid to successfully reroute the encapsulated IP packet to the desired IP address. The TTL value should

be large enough to reach the destination. The Protocol Field could be arbitrary because the IP

destination is controlled by the attacker who handles the IP processing. The IP Header Checksum must

be valid to not be dropped, and Source Destination should be routable.

Figure 20: Phase 1 modification of IPsec packet in Paterson’s and Yau’s attack [64] 4

The attack succeeds once a decrypted IP packet is routed to the attacker’s IP address. The attacker repeats

the alteration of the IPsec packet with different random value in C2 and injects it within the IPsec traffic until

he succeeds. The paper shows that success probability for the attack for each new constructed IP packet with

random value in the last 32 bit in C2 is roughly 2-17. The major obstacle in the attack is succeeding to decrypt

a valid value for the IP Header Checksum field. The paper estimates that 2-16 is the success probability

to get a valid Header Checksum field. It is calculated that 217 iterations of the attack would give a 60%

success probability.

4 This figure appears here with the permission of Professor Kenneth G. Paterson

Not the official thesis.

38

Phase 2

Once we succeed in phase 1, we reuse the information to be able to decrypt any data encrypted by the same

SA. We chop the encrypted version (see Figure 21) of IPsec packet arriving to our chosen destination

address into several blocks C1 , C2 , C3 , … , Cq-2 , Cq-1 , Cq .

The blocks C1 , C2 , C3 consists of the encrypted IP and ESP headers and the blocks Cq-2, Cq-1, Cq

constitutes of the ESP tail. We insert (q-6) blocks of any cipher blocks encrypted by the same SA in-

between. Once our modified packet is reinjected in the IPsec traffic, it will get decrypted and sent to our

chosen IP address. A lot of details have been omitted and the paper should be consulted for more detailed

information.

Figure 21: Phase 2 modification of IPsec packet in Paterson’s and Yau’s attack [64] 5

4.4.2.2 Attacks based on IP options processing

In the second attack outlined by Paterson and Yau, the Internet Control Message Protocol (ICMP) is used to

defeat the IPsec encryption.

Phase 1

The attacker starts with modifying the Header Length field of the inner datagram of a captured IPsec

packet (Figure 20) to a value higher than 5 by flipping a few bits, and then randomizing the last 32 bytes of

C2 . The modified packet is resent to the IPsec gateway.

Once the inner datagram is processed by the IPsec gateway, the first bits of the IP payload will be interpreted

as IP options bytes. Then with a high probability, an ICMP “parameter problem” error message would

be generated. The ICMP message will contain the IP header of the inner datagram and segments of the

payload. If an attacker is able to capture the ICMP message, he will be able to obtain plaintext information

from the IPsec.

Randomizing the last 32 bytes of C2 , will probably render in incorrect decrypted IP header values for, TTL,

protocol, header checksum and source address, and the packet would probably be dropped

5 This figure appears here with the permission of Professor Kenneth G. Paterson

Not the official thesis.

39

before any IP Options processing takes place. This means that ICMP packets will rarely be generated. In

case an ICMP message is generated, it will probably be routed to an unknown source address if ICMP traffic

is allowed through IPsec gateway. The attacker is thought to be able to capture the traversing ICMP packet.

Even though the mentioned difficulty with correct header checksum, iterating the attack with new random

value in the C2 sufficiently often will achieve a sufficient success rate, as proved in the paper.

Phase 2

Once an ICMP has been captured, the attacker would be able to capture about 64 bits of IPsec payload

plaintext. The attacker uses the same header causing the ICMP packet generation but inserting the chosen

cipher blocks after the ESP payload header. The attacker will in this way receive decrypted cipher blocks

through ICMP packet.

4.4.2.3 Attacks based on protocol field manipulation

This attack is carried out by changing the value of the Protocol field in the inner IP header, through bit-

flipping, to one that is not supported by the end host receiving the inner datagram. This action will generate

an ICMP “protocol unreachable” error message with the same properties as in the previous attack, Section

4.4.2.2, containing parts of the decrypted payload. The ICMP packet will in this case be generated by the end

host, not by the security gateway. To succeed with the attack, the source address must be changed to be

routed back to the attacker. The header checksum must also be correct in order to not be dropped. The same

iteration and block cipher copy-and-paste techniques as used in the previous attack, applies also here. For

more detailed information, see Section 5 in [64].

4.5 IPsec attacks summary

The attacks mentioned earlier pose a serious threat against some IPsec configurations. In this thesis work,

ESP tunnel mode with authentication is used as specified in the 3GPP specification TS 33.210 [1].

The replay attack described in Section 4.1 will not work because AH is not used to provide authentication,

but rather ESP is. The same ESP SA will provide both authentication and encryption. Also, once a new SA is

created, a new SPI number must be given which preferably has not been used recently. Remember, the SPI

field is 32 bit long. According to the RFC as explained in the section, anti replay should be turned off if

manual keying is used. The solution with manual keying is temporary and automatic key management will

be used in the future. The attack is not a threat. However, if anti replay is turned off, the system is
vulnerable to “regular” replay attacks, i.e., resending captured packets at later stage.

The CPU overload DoS attack described in the Section 4.2 is a real threat to some IPsec architectures. In this

work, BITW IPsec architecture is used, i.e., IPsec processing is done by a dedicated hardware which works

on wire speed and the attack will not work. This attack poses a threat in case the IPsec processing is done by

software on a multipurpose CPU.

The Sliding Window Attack described in Section 4.3 works only if anti-replay is turned off. The temporary

solution with manual keying should avoid anti-replay protection. If anti-replay is not used, this attack is a

threat. However, since automatic key management and anti-replay protection will be used this attack is not a

threat.

Not the official thesis.

40

The attacks against unauthenticated ESP traffic in CBC mode described in Section 4.4 do not pose a threat

against the IPsec configuration used in this thesis. The 3GPP specification [1] requires authentication to be

used and the attacks would fail in that case. It is crucial to have authentication protection, since such attacks

are among the most serious attacks against IPsec. A proof of concept has been implemented, which led to

issuance of worldwide warnings about the risks of such attacks.

In addition to those attacks mentioned above, an attacker might make use of program specific

implementation vulnerabilities to attack a system. If an IPsec gateway generates log files and no restriction is

placed on the volume of these log files, an attacker might try to generate large amounts of log data to use all

available storage space or to exhaust the system resources in some way. An attacker might also use the

fragmentation properties of IP to force the discard of legitimate IPsec packets. By sending fake IPsec packet

fragments, the fragments will be saved in the fragmentation reassembly memory area, which at some point

will overflow which will might lead to legitimate IPsec packets being discarded.

Not the official thesis.

41

5 METHOD

IPsec packets might be modified during transport because of natural occurring transmission errors. On an

1000BASE-T/1000BASE-X Ethernet link as our incoming data will be received on, a 32 bit CRC (Cyclic

Redundancy Check) will be able to detect 1-2-32 ≈ 99.99999998 % of all errors [69]. If we have 300 Mb/s

ESP traffic with SHA-1/AES-CBC in tunnel mode, assuming we sent the maximum amount of data possible

in each Ethernet frame, i.e., 1500 bytes, we will receive around 25000 Ethernet packets/s. The probability of

getting a bit error in a coaxial cable is 10-9 and fiber optics is 10-12 [70]. If we make the unrealistic

assumption that every Ethernet frame we receive contains a random error, the time until we receive an

incorrect Ethernet frame with a correct CRC is:

hours 48 seconds 171799
225000

1
32

≈≈

×
−

This shows that it is very unlikely that a transmission error will corrupt an IPsec packet, but a hardware

failure could generate incorrect packets with correct CRC values. A malfunctioning switch might corrupt a

packet before adding the CRC. The receiver will not detect such errors by verifying the CRC, but hopefully

these errors will be detected in later stages of the packet processing. A third party might also intentionally

modify IPsec packets in an effort to attack a system or to gain information. These modifications will cause

the IPsec packet to fail probably authentication (or at later checks).

Therefore it is important to notice that some failures will occur for reasons other than an attack. Hence it

is important to look in detail at both the rate and number of such failures and to exploit other information to

determine if there really is an attack in progress.

The IPsec configuration used in this project uses ESP Tunnel Mode with authentication protection as

specified in Sections 5.3.1, 5.3.2, 5.3.3, and 5.3.4 in the 3GPP specification TS 33.210 [1]. Figure 22 shows

an overview of the logical setup used in this thesis for detecting intrusions against IPsec. The source labeled

Traffic generator sends IPsec packets to the Traffic destination. The network processor on

the Ericsson Ethernet Interface board processes the received packets through the IPsec block before

forwarding them to the Traffic destination. If a modified packet is processed, the IPsec

processing will fail and the network processor will forward the modified IPsec packet together with the error

codes to the Analyzer.

Not the official thesis.

42

Figure 22: A logical overview of the Intrusion Detection Setup for the Ericsson Ethernet Interface Board

In this project, the classification engine in the network processor was modified to send the interesting parts

of the modified IPsec packets (see Table 8) to the Analyzer for further analysis, instead of simply

discarding the packets. The encrypted payload of a modified IPsec packet is not interesting for our

implementation of the Analyzer, since it will consume bandwidth in the network processor and it will not

yield any further information for analysis. This project is divided in two main parts. Since the IPsec hardware

and the software implementation are not ready yet at this date, a simulation of the NP in the Ericsson

Ethernet Interface board will be used. In the first part of the project, steps 1, 2, and 3 (see Figure 22) of the

data flow diagram are simulated using the LSI System Performance Analyzer (SPA) software (see Section

5.2).

The second part of the project will simulate the entire process, using an IPsec software implementation

instead of hardware implementation. A second traffic generator (see Section 5.3.1) developed based upon the

first phase, will be used to specify and simulate the data sent from the board to the Analyzer, and an IPsec

stack implementation will be modified to simulate the behavior of the NP in the board.

5.1 Different scenarios of IPsec processing

In each case, the error codes generated by the NP could either be due to hardware failure/bad IPsec

processing before sending to the Ericsson Ethernet Interface board, or an attacker. However, the knowledge

about what type of failure occurs can be useful to investigate the possible reasons. In this section we explain

the possible classes of failure and what resources the attacker needs to access to avoid detection.

Not the official thesis.

43

Figure 23: The different steps for an incoming IPsec packet to traverse through an IPsec gateway

Referring to the IPsec processing diagram in Figure 23, there can be the following types of failure:

• SA lookup failure

• IPsec processing failure

• Security Policy violation

The attacker is able to send a “correct” IPsec packet only when the packet is able to pass all checks. In the

following discussion, we will refer to the letters in Figure 24 to identify the parts of the network the attacker

can access.

Figure 24: View of a network protected by two IPsec gateways

5.1.1 SA lookup failure

Detection of an SA lookup failure reveals that the attacker can inject packets at B (see Table 5). However, in

the first case, the attacker has no knowledge of valid SAs, but can only guess. Unless the attacker has

guessed valid SA, a SA lookup failure will occur.

In the second case the attacker is able also to sniff the packets at B, then the attacker could create a packet

with a valid SA and avoid detection at this stage, but such a packet will most probability be detected at next

stage, “IPsec processing failure”.

SA Lookup
Failure

S
A

 L
o

o
k

u
p

IPsec
Processing
Failure

A
u

th
e

n
tic

a
io

n

V
e

rfic
a

tio
n

D
e

c
ry

p
tio

n

Correct IPsec packet

Security
Policy
Violation

S
P

 V
e
rific

a
tio

n

(E3 Error
Packet)

(E2 Error
Packet)

(E1 Error
Packet)

Plaintext traffic

Security

Gateway 1

Security

Gateway 2

IPsec tunnel

A B

Plaintext traffic

C

Not the official thesis.

44

Table 5: Attack scenarios during SA lookup failure

Case
Attacker’s
capability

Attack scenario
Detection by
Analyzer at

this stage

1 Inject packets at B
Attacker injects a packet at B, trying to guess a

valid SA.
Yes

2
Inject packets at B

Sniff packets at B

Attacker sniffs the traffic at B and injects a

packet with valid SA selectors value at B.
No

5.1.2 IPsec processing failure

Detection of an IPsec processing failure reveals that the attacker can inject and sniff packets at B (see Table

6). The attacker is able to pass the SA lookup step simply by sniffing the packets passing through B and

looking at the SA selectors: Destination Address and IPsec Protocol (Protocol field) in the IP header, and SPI

in the ESP header. The attacker needs only to read these fields, transmitted in plaintext, create a new packet

with the correct selectors for a valid SA, and inject the packet. However, the attacker has no knowledge of

the authentication key for the SA, therefore the packet will be discarded at the authentication verification

step, causing an IPsec processing failure.

Table 6: Attack scenarios during IPsec processing failure

Case
Attacker’s
capability

Attack scenario
Detection by
Analyzer at

this stage

1
Inject packets at B

Sniff packets at B

The attacker sniffs the traffic at B and injects a

packet with valid SA selectors at B but

incorrect authentication data.

Yes

2
Inject packets at A

(Sniff packets at B)

The attacker injects a plaintext packet at A,

which will be encapsulated in an IPsec packet

with correct authentication data. The attacker

could also sniff the authenticated packet at B to

gain information about the authentication key.

No

Not the official thesis.

45

5.1.3 Security policy violation

The detection of a security policy violation reveals that the attacker can inject and sniff packets in A (see

Table 7) and sniff packets in B (not necessary), but is unaware of the security policy set at the Security

Gateway 2. By injecting packets at A, the attacker will have the packets IPsec processed by Security

Gateway 1, since it shares the keys with Security Gateway 2. Therefore the packets will pass the

authentication and decryption step. The attacker could use this attack to gain information on the encryption

key used for the SA, comparing the plaintext packets injected at A with the (same) encrypted packets, sniffed

at B (if possible). If the attacker is able to find the encryption key before detection and rekeying, he could

decrypt protected traffic. Therefore, detection time and the time before rekeying must be configured properly

in order to avoid this situation.

Table 7: Attack scenarios during security policy violation

Case
Attacker’s
capability

Attack scenario
Detection by
Analyzer at

this stage

1

Inject packets at A

(Sniff packets at B)

The attacker injects a plaintext packet in A,

which will be encapsulated in an IPsec packet

with correct authentication data. The attacker

could also sniff the authenticated packet at B to

compare cipher and plain text pairs for

cryptanalysis.

Yes

2

Sniff packets at A

 Inject packets at A

(Sniff packets at B)

Attacker sniffs the traffic at A and injects a

plaintext packet at A, which will be

encapsulated in an IPsec packet with right

authentication and will have the same selectors

as the “normal” packets. The attacker could

also sniff the authenticated packet at B to

compare cipher and plain text pairs for

cryptanalysis.

No

5.1.4 Correct IPsec packet

To send a correct IPsec packet, the attacker needs to inject packets in A, and sniff packets in A. Assuming he

is able to pass all the previous steps, in order to pass the security policy verification step, the attacker needs

to eavesdrop the security policy selectors of packets to be IPsec processed. Some of these selectors are the

original source and destination addresses, and transport layer protocol, which, in case of tunnel mode, will be

encrypted when the packet is processed by Security Gateway 1. Therefore, the attacker also needs to sniff the

packets at A, intercept the security policy selectors, create a new packet with the correct selectors for a valid

security policy, and inject the packet at A. Note that being able to sniff at C would also reveal which packets

make it through all the way, hence it is possible to learn the correct security policy selector values.

Not the official thesis.

46

5.2 LSI System Performance Analyzer

The first part of the project is performed in a simulated environment. The LSI System Performance Analyzer

(SPA) [71] version AG_NP-3.9.0.56, sample configuration file app3_ipsec_ipv4_lb.xml is used to

simulate two IPsec gateways communicating, by looping back the data in the same IPsec gateway,

loopback mode, see Figure 25.

Figure 25: Screenshot of the LSI System Performance Analyzer

The following steps are executed to simulate two IPsec gateways (SPA and sample configuration file

specific):

1. A traffic generator sends an IP packet to a destination through the IPsec gateway (the APP340

network processor (NP) and APP155 IPsec coprocessor)

2. The packets are split into protocol data units (PDUs) of 64 bytes for internal routing within the

network processor.

3. The blocks of the IP packet are received at input port 2 in NP

4. The blocks are passed to the classifier which executes FPL code to process the data in two passes:

o In Pass 1, the blocks are identified and reassembled

o In Pass 2, the IP packet is classified and a Destination ID (DID) is derived based on the

Destination Address field in the IP header, to identify IPsec mode and protocol, and

Not the official thesis.

47

on the Next Header field, to identify if inbound or outbound IPsec processing is

necessary. Details of this DID are explained in Section 5.2.4

5. The IP packet is passed to the NP’s Traffic Manager, which executes the Stream Editor (SED) script

(written in C-NP) linked with the chosen DID. The script prepends the SPP Transform Internal

Header to the packet for IPsec processing

6. The IP packet is sent to the IPsec block through output port 4

7. The IP packet is encrypted and authentication data is added (IP → IPsec) and the IPsec packet is

sent back to NP input port 4

8. The IPsec packet is classified in the NP and sent to loopback port 3 to simulate an incoming IPsec

packet

9. The incoming IPsec packet is received from input port 3 and classified as in steps 4 and 5

10. The IPsec packet is sent to the IPsec block through output port 4

11. The IPsec packet is decrypted and authentication is verified (IPsec → IP) and the IP packet is sent

back to NP input port 4

12. The IP packet is classified in the NP and sent to port 2 to its final destination

5.2.1 Classification of modified IPsec packets

As mentioned earlier, if a modified packet is processed by the IPsec block, only a non-fatal error will occur,

since fatal errors only occur because of an incorrect SED script executed to add SPP processing header (see

Section 7.3.1 in [72]). The IPsec block will prepend a result header to the IPsec packet (Figure 4) setting the

relevant error bits (Figure 6). The Classification Engine (CE) is programmed in a language called Functional

Programming Language (FPL). The CE FPL code checks the two most significant bits in the SPP result

header that was appended to the IPsec packet. In our case, the CE FPL code has been modified such that if a

non-fatal error occurs (i.e., the error bits are 01), see Table 1, then instead of discarding the packet, it should

be sent to the Traffic Manager (TM). The traffic manager will in turn forward the packet to the output port,

which will result in its being sent to the Analyzer. The CE sends the packet to the TM by executing the

fTransmit() function [22], which is used to specify:

Figure 26: Chart of fields in the fTransmit() function

multicastSkip
�

�
multicast

76 75 74 53 52 37 36 32 31 24 23 0

 Destination ID PDU Length

PDU
offset

TM
Flags

Information

Not the official thesis.

48

Destination ID the DID assigned to the IPsec packet points to the SED script to encapsulate this

packet in an UDP packet destined to the Analyzer. See details in Section 5.2.4.

PDU length specifies the length of the packet sent from the CE to the TM. The PDU length is

different depending on the error type generated.

PDU offset this field specifies the starting byte to read the PDU

Information this field can be used to pass information to the TM (see Figure 26). We have used

this field to pass a counter value, which is used and updated in the FPL code of the

CE. This value is copied into the Identification field of the IP header through

the SED script executed in the TM

Figure 27: Only the indicated data of the IPsec packet is sent from the Classification Engine to the Traffic Manager in case of an IPsec
processing failure (E2 error packet)

5.2.2 Traffic Management of modified IPsec packets

Once classification is done, the TM receives the packet and encapsulates it in a UDP packet destined to the

Analyzer. To do this a SED script is executed which prepends an Ethernet header, IP header, UDP header,

and Analyzer packet ID header to the portion of the packet sent from the CE to the TM, see Figure 28. The

Analyzer packet ID header is used by the Analyzer to identify the type of packet received, see Table 8.

Prepended Headers PDU

14 Bytes 20 Bytes 8 Bytes 1 Byte 8 bytes 20 Bytes 8 Bytes 4 Bytes

Ethernet Header IP Header
UDP

Header

A
na

ly
ze

r
P

ac
ke

t I
D

SPP
Header IP Header

ESP
header

CRC
Checksum

Figure 28: The prepended headers of the PDU sent to the Analyzer in case of an IPsec processing failure (E2 error packet)

PDU Length

8 bytes 20 Bytes 8 Bytes 12 Bytes

SPP
Header IP Header

ESP
Header Data (Variable)

ESP
Trailer

Authentication
data

Not the official thesis.

49

Table 8: The different packet types sent to the Analyzer

Analyzer

ID

Packet
type

Description
UDP packet payload Payload size

0x01

E1 Error

Packet

Packet with SA lookup

failure data

Analyzer ID + IP

header + ESP header

1 + 20 + 8 = 29

byte

0x02

E2 Error

Packet
Packet with IPsec

processing failure data

Analyzer ID + SPP

Header + IP header +

ESP header

1 + 8 +20 + 8 =

37 byte

0x03

E3 Error

Packet

Packet with IPsec

violation data

Analyzer ID + IP

header

1 + 20 = 21 byte

0x04

IPsec

packet
Packet with SA selectors

of sniffed IPsec packet

Analyzer ID + IP

destination address +

ESP SPI number

1 + 4 + 4 = 9

byte

The SED script must execute quickly and complete processing during two “global pulses”. “When writing a

C-NP script, you must know how much time it takes to process a block and maintain line rate. In the Traffic

Manager, this duration is called the global pulse and refers to the unit of processing time available for each

of the processing units, or pipe stages. The global pulse is configurable. APP300 scripts must complete

within 23 clocks (1 global pulse) for full line rate, except in the SED compute engine that can have up to 46

clocks (2 global pulses) for full line rate due to its double compute engine structure” (Section Compute

Engine Overview, Compute Engine Timing in [73]). Our SED script completes all modifications in 38

clocks. The script calculates the IP header checksum, but does not calculate a UDP checksum, it is simply set

to zero, due to processing time limitations mentioned earlier. This is allowed because of the optional use of

the UDP checksum field, as specified in [74]. All the values for the Ethernet header, IP header, and UDP

header are known in advance and can be statically specified in the SED script, e.g.:

• The Ethernet frame source MAC address (Ericsson Ethernet Interface board), and destination MAC

Address (Analyzer) are known

• The IP header checksum can be calculated in advance since all IP header values are known and fixed

in value, e.g. source IP address (Ericsson Ethernet Interface board), destination IP address

(Analyzer), Protocol (IP), and packet length

• The UDP header values are also known, the source port (Ericsson Ethernet Interface board),

destination port (Analyzer), and length are all fixed value; and the checksum is zero since

calculation of the UDP checksum is optional

Not the official thesis.

50

5.2.3 Creating a SED Script in the SPA

To be able to execute the necessary SED script, a SED script entity must be created in the SPA. Using the

graphical user interface in the simulator we navigated to APP340E3 → RSP → SEDScripts and created a

new SED script. This requires that we specify the id (SED script number) and file (location) values.

5.2.4 Creating a DID in the SPA

To create a DID entity in the SPA, we navigate to APP340E3 → RSP → DestinationIds and create a new

DID. Figure 29 shows the different values the can be set. Here we will mention only the values of interest in

this case:

headerDelta specifies the number of bytes prepended to the PDU

Id specifies the ID number of the DID

queueId specifies the queue which will be used in the TM. A queue has a priority and

port ID

sedScriptId specifies the ID number of the SED script to be executed

sedScriptParms sets the SED_param_blockin the SED register file map, see Appendix D.

In this field we specify the Analyzer packet ID header value. The SED script

will read this value from the SED register file map and write it into the

prepended Analyzer packet ID header

Not the official thesis.

51

Figure 29: Creating a Destination ID (DID) in the SPA

5.3 Software IPsec stack implementation

5.3.1 Traffic Generator

To simulate different types of data used in both verification of the Analyzer’s functionality and used later for

simulation, a traffic generator was developed. The traffic generator reads data in hexadecimal format from

standard input or a file and sends UDP packets to the specified IP address and port number. The command

usage is shown executing the traffic generator with –h flag. In the data file, a user can specify, e.g., the

payload, the number of packets to send of the specific payload format, and the time to wait before sending

the next UDP packet.

Not the official thesis.

52

Figure 30: Screenshot of the packet traffic generator executing

5.3.2 Analyzer program

As mentioned earlier, to simulate incoming packets as the one generated during the simulation part Section

5.2, a traffic generator was developed Both the Analyzer program and traffic generator has been developed

in NetBSD 3.0.0 operating system environment and compiled by gcc version 3.3.3 (NetBSD

nb3 20040520).

5.3.2.1 The logic of the Analyzer

The Analyzer has been designed around the concept of Signal to Noise ratio (S/N). Discarding erroneous

packets at each stage of the IPsec processing (see Figure 23) can be compared to applying a filter to the

incoming signal. The signal part of the ratio consists of the correctly processed IPsec packets, whereas the

noise part consists of hardware failure/attack packets which generated errors. After passing a stage in the

IPsec processing, the total S/N ratio for IPsec processing (see Figure 23) increases, since the incorrect

packets detected at the previous stage have been discarded.

Not the official thesis.

53

This motivates the use of a sliding window, to monitor IPsec traffic per each stage. However, the final alert

decision should be based on combination of alerts from multiple-size sliding windows per stage, because the

size of the sliding window will affect accuracy and detection time:

Short sliding window Advantage: shorter reaction time

 Disadvantage: increased false positive rate

Long sliding window Advantage: decreased false positive rate

 Disadvantage: longer reaction time

In our prototype implementation of the Analyzer, two sliding windows per IPsec processing stage and per

board (described in Section 5.1) will detect abnormalities by monitoring both the error and normal packets.

A shorter sliding window SW1 (see Figure 31 and Figure 32) is implemented to shorten the detection time. A

longer sliding window SW2 is implemented to have more data to analyze and is able to react more

accurately. A scheme of alert situations is defined later on.

Figure 31: An illustration of sliding window 1 to monitor E1 error packets

Figure 32: An illustration of sliding window 1 and 2 implementation to monitor E1 error packets

There is currently no statistics about IPsec failure rate using the actual Ericsson IPsec implementation.

Therefore suitable sliding window sizes are not determined, but are easily configured through a configuration

file. Board specific sliding windows will keep track of E1 and E3 errors whereas SA specific sliding

windows will keep track of E2 errors. A SA is identified by the SPI, IPsec mode (ESP), and IP destination

address (IPsec gateway). All these data are available per IPsec packet.

 Sliding Window 2

 Sliding Window 1

* * E1 * * E1 * * * * * * * * * * E1 * * * * * * * * * * * * * * * * *

*

E1

Normal IPsec packet

Error Packet type E1

 Sliding Window 1

* * E1 * * E1 * * * * * * * * * * E1 * * *

*

E1

Normal IPsec packet

Error Packet type E1

Not the official thesis.

54

Table 9: The probabilities of different type of errors received from the board

Error Packet
Probability

Value
SA

specific

E1 Unknown No

E2 Unknown Yes

E3 Unknown No

Every SW (sliding window) might generate two different threshold alerts. For instance SW1 might generate

SW1 threshold 1 alert if number of error packets in sliding window 1 is higher than the allowed threshold 1.

Threshold Alert 2 is set to be higher, representing a more serious situation than Threshold Alert 1. Table 10

and Figure 33 illustrate the different cases when the Analyzer program should alert the operator.

Table 10: The different cases when the Analyzer program need to alert the operator

Sliding Window 1 Sliding Window 2 -ote

Threshold 2 alert *

Threshold 1 alert Threshold 1 alert Only SW1 consults

SW2 before alert

* Threshold 2 alert

(* = either -ormal situation, Threshold 1 alert or Threshold 2 alert)

Not the official thesis.

55

Figure 33: Different sliding window alert cases (-o size or theshold value set, just for illustration)

5.3.2.2 Executing the Analyzer

The Analyzer starts by reading two configuration files located in the configuration folder at startup

and configure the program accordingly. The program reads from the settings.cfg file the port to open

for the listening socket and the threshold and size values for sliding windows 1 and 2, as shown in Figure 38.

Since at this stage of the Ericsson IPsec implementation no statistics were available, therefore the setting of

the appropriate variable values should be determined in future work. In the same folder the boards.cfg

file is located and the Analyzer reads the number of boards to analyze, their IP addresses, and other data

needed. The Analyzer also saves logs of the error packets in the Log folder.

5.3.3 Monitoring IPsec traffic

In order to update the sliding windows per SA, we need to keep track of the transmitted IPsec packets per

SA. The idea is to mirror all the IPsec traffic to the Analyzer. The possible techniques are:

• Port-mirroring, also called SPAN (Switch Port Analyzer) in Cisco terminology: the switch

replicates packets on a port for monitoring. See the reference for different switch manufacturers

[75].

Threshold 1

Threshold 2

-ormal

SW 1

Threshold 1

Threshold 2

-ormal

SW 2

ALERT
operator

ALERT
operator

ALERT
operator

-ormal
Situation

consult

consult

Not the official thesis.

56

• TAP (Test Access Port): the tap sends traffic data to the monitoring device by splitting or

regenerating the network signal, see [76]

Due to port-mirroring limitations, e.g.. packet loss and switch resources impact, passive TAP is considered a

better solution, as discussed in [77]. However, since a TAP is a passive device, it will not filter anything, and

the Analyzer machine has to be physically connected to the TAP device. Since the Analyzer has to manage

more than one board and the different boards will not be connected to the same network, a sensor per board

could be used to filter the IPsec traffic out of all the traffic directed to the board, encapsulate the SA selectors

in a UDP packet and sent it to the Analyzer. In this way the amount of traffic sent to the Analyzer is less than

mirroring all the traffic for each board to the Analyzer: the only information needed is the Analyzer ID (1

byte) and the SA selectors, Destination address (4 byte) and SPI (4 byte), encapsulated in an UDP packet

(see Table 8).

Figure 34: Configuration in case of data analysis from one Ericsson Ethernet Interface board, using TAP

Figure 35: Configuration in case of data analysis from one Ericsson Ethernet Interface board, using port mirroring

Analyzer

UDP packet with

error codes

UDP packet with SA selectors

Sensor

Switch NP

Ericsson board

Replicated packets

Analyzer

UDP packet with

error codes

UDP packet with SA selectors

Sensor

Switch NP

Ericsson board

TAP

Replicated packets

Not the official thesis.

57

5.3.4 The Sniffer

In order to monitor incoming IPsec traffic and emulate the TAP and sensor, we modified the example code

of sniffex.c Version 0.1.1 (Copyright (c) 2005 The Tcpdump Group), found at [78]. The

program captures data on the network using libpcap library [79]. Our modified version reads the network

traffic and sends the IPsec SA selectors (SPI and Destination) as UDP packets to the Analyzer as specified in

Table 8

Not the official thesis.

58

6 ANALYSIS

6.1 Simulation in the LSI System Performance Analyzer

6.1.1 Capturing IPsec packets

To be able to modify IPsec packets for the simulation, network traffic containing IPsec traffic is dumped to a

file through command line instructions, see Appendix A. The IPsec packet produced in the IPsec gateway

simulation as described in Section 5.2 is used for later steps.

6.1.2 Reinjecting modified IPsec packets

Once the IPsec packet has been captured in the earlier steps, specific bits or field values can be modified.

ESP SPI value, sequence number, and/or encrypted payload can be modified, which will generate an error

when processed by the IPsec block. To generate error packets we ran some tests (see Appendix B), but we

were not able to generate all the possible non-fatal errors, e.g. authentication failure, basic hash, TTL/HOP-

limit underflow (see Table 3), because of limitations in the SPA. Once the packet has been modified, the

IPsec payload (ESP header + payload + ESP trailer) is reinjected into the simulator by specifying the IP

payload in the traffic generator as shown in Figure 36. The IP header is constructed as follow: the

Protocol value is set to 50 (ESP) to indicate inbound processing and the Destination IP address

value is set to select the correct IPsec protocol and mode. In a real implementation, the selectors of the IP

packet will be used to lookup the policy in the SPD.

Not the official thesis.

59

Figure 36: Screenshot of IPsec reinjection in the SPA simulator

6.1.3 Forwarding modified IPsec packets to the Analyzer

Once the modified IPsec packet has been reinjected in the simulator, the network processor processes the

incoming packet as usual. When the modified packet is sent to the IPsec block for IPsec processing, a non-

fatal error will occur during processing and the prepended SPP result header will indicate this error, see

Figure 37. The IPsec block sends the error codes and IPsec packet to the network processor where and the

CE assign it a DID (the DID created earlier in the simulator and specified in the CE FPL code). The DID

selected (1” in this case) will forward the packet to the correct port by encapsulating the data into an UDP

packet after executing the SED script described in Section 5.2.2.

Not the official thesis.

60

Figure 37: Screenshot of a modified IPsec packet with an IPsec block error set in the SPP result header in the SPA

6.2 Simulation using a software IPsec stack implementation

The purpose of the simulation is to show the different classes of attack, the potential abilities of the attacker,

and to provide a functional test of the Analyzer implementation. The simulation did not define any threshold

values, since no statistics were provided and, without them, discussion about reasonable threshold values is

not possible. Therefore, all the thresholds in the Analyzer were set to zero which will generate both threshold

alerts (see Figure 33).

Not the official thesis.

61

Figure 38: Screenshot of the startup of Analyzer

The simulation required the following components:

Fast IPsec modified Fast IPsec [80] is an implementation of IPsec, based on KAME [81],

that can use cryptographic hardware devices whenever possible to

carry out cryptographic operations, and consequently, to optimize the

performance of IPsec. The Fast IPsec source code for NetBSD was

modified to print a tag (ANALYZER_E[1,2,3]) in the system log file,

when an E1, E2, or E3 failure occurs

Not the official thesis.

62

Script to filter the logfile tail –n0 –f /var/log/messages | awk -f analyzer_case

The scripts reads the last line of the logfile (option -n0 of tail) and

sends a line on the pipe as soon as it is written to the file (option -f of

tail). Awk receives the new line from the pipe and calls the

analyzer_case script (Appendix E), where is specified in case the line

contains ANALYZER_E[1,2,3], send the packet (see Table 8) using

the traffic generator created earlier

Traffic generator see Section 5.3.1

Sniffer see Section 5.3.4

Figure 39: Logical configuration for simulation

The simulation was performed on two machines (NetBSD 3.0.2 with Fast IPsec enabled), named Belkar and

Elan. The lab configuration and the programs executed on Belkar and Elan are shown in Figure 41. To set up

the IPsec tunnel between Belkar and Elan, the SAD and SPD had to be configured on both machines. A good

tutorial on how to set up an IPsec VPN can be found at [82]. The setkey command is used to set up the SAs,

security policy and keys. The commands to be executed by setkey can be specified in a scriptfile. Both

Belkar and Elan have their own key configuration files, called setkey.conf, which can be found in Appendix

C. The setkey.conf script is executed by the following command under both machines:

/sbin/setkey –f /etc/setkey.conf

Host 1

(Belkar)

Host 2 (Elan)

IPsec traffic

Sniffer

Modified IPsec implementation to generate

error messages and send them to the Analyzer

Analyzer

Error message

in UDP

packet

Modified existing sniffer to

encapsulate the SA selectors of

the sniffed IPsec packet in a

UDP packet and send it to the

Analyzer SA selectors in

UDP packet

Sniff IPsec

packets

Not the official thesis.

63

The content of the SAD can be shown executing the command:

/sbin/setkey –D

While the content of the SPD is dumped with:

/sbin/setkey -DP

After having configured the IPsec tunnel, we started the Analyzer, Sniffer, and the script to filter the logfile,

monitoring the traffic with Tcpdump. To generate traffic from Belkar we executed the traffic generator. By

monitoring the traffic with Tcpdump (version 3.8.3) we observed IPsec packets from Belkar to Elan, along

with UDP packets (sniffer packets) from Elan to Belkar, as expected.

Figure 40: Screenshot of Tcpdump trace of traffic between Belkar and Elan

Not the official thesis.

64

Figure 41: Configuration of the hosts in the lab and the flow of datagrams (traffic on interface wm0)

6.2.1 Simulation of attack at SA lookup phase

In this case the attacker has to forge a fake IPsec packet. It can be done using Netdude [83] (Network Dump

data Displayer and Editor), a tool that allows a user to modify all fields of a packet stored in a pcap file. The

attacker only needs to set the destination address of Elan, set the protocol field in the IP header to be 50

(ESP) and set the other fields of the packet. We forged a packet with Netdude (version 0.3.3-2.1), set SPI

0x666 and saved it in a pcap file SA_lookup_failure_SPI_666. To reinject the packet we used Tcpreplay

(version 2.3.5) [84], using the command:

belkar# tcpreplay –I wm0 SA_lookup_failure_SPI_666

Once we reinjected this packet, we received the SA lookup alerts on the Analyzer, since the only allowed

SPI was 256 (0x100), as specified in the setkey.conf for Elan, therefore the Analyzer printed two alerts since

the threshold was set to 0 for both sliding windows.

Belkar

192.168.66.1

Plaintext packets →

Attacker →

Analyzer

Elan

192.168.66.3

Script to filter logfile

 ← Sniffer

 ← Traffic generator

IPsec packets

Modified IPsec packets

SA selectors of normal IPsec packet in UDP

Error packet in UDP

Not the official thesis.

65

6.2.1.1 Screenshots of programs running on Elan during SA lookup attack simulation

Figure 42: Screenshot of programs running on Elan during SA lookup attack simulation (Sniffer)

Figure 43: Screenshot of programs running on Elan during SA lookup attack simulation (Script to filter logfile)

Figure 44: Screenshot of programs running on Elan during SA lookup attack simulation (SPD)

Not the official thesis.

66

Figure 45: Screenshot of programs running on Elan during SA lookup attack simulation (Tcpdump)

6.2.1.2 Screenshots of programs running on Belkar during SA lookup attack simulation

Figure 46: Screenshot of programs running on Belkar during SA lookup attack simulation (Analyzer)

Not the official thesis.

67

Figure 47: Screenshot of programs running on Belkar during SA lookup attack simulation (Attacker)

Figure 48: Screenshot of programs running on Belkar during SA lookup attack simulation (SAD and SPD)

6.2.2 Simulation of attack at IPsec processing phase

We captured some IPsec packets and stored them in a pcap file with the command:

belkar# tcpdump dst 192.168.66.3 –w capture

Then, we used Netdude to modify the (authenticated) payload of one of the sniffed packets, as shown in

Figure 49.

Not the official thesis.

Figure

We restarted Analyzer, Sniffer, and script

belkar# tcpreplay –I wm0 IPsec_processing_failure_modified_payload

This generated an IPsec processing failure alert on the Analyzer, since the packet failed the authentication

validation (see Section 6.2.2.1 and

6.2.2.1 Screenshots of programs running on Elan during IPsec

Figure 50: Screenshot of programs running on Elan during IPsec processing failure (SPD)

Modified data in the packet payload

68

Figure 49: Screenshot of -etdude used for IPsec packet modification

and script to filter the log file. Then we used Tcpreplay to reinject the packet:

I wm0 IPsec_processing_failure_modified_payload

This generated an IPsec processing failure alert on the Analyzer, since the packet failed the authentication

and 6.2.2.2).

Screenshots of programs running on Elan during IPsec processing failure

: Screenshot of programs running on Elan during IPsec processing failure (SPD)

Modified data in the packet payload

: Screenshot of -etdude used for IPsec packet modification

we used Tcpreplay to reinject the packet:

I wm0 IPsec_processing_failure_modified_payload

This generated an IPsec processing failure alert on the Analyzer, since the packet failed the authentication

processing failure

: Screenshot of programs running on Elan during IPsec processing failure (SPD)

Not the official thesis.

69

Figure 51: Screenshot of programs running on Elan during IPsec processing failure (Script to filter logfile)

Figure 52: Screenshot of programs running on Elan during IPsec processing failure (Sniffer)

Not the official thesis.

70

Figure 53: Screenshot of programs running on Elan during IPsec processing failure (Tcpdump)

6.2.2.2 Screenshots of programs running on Belkar during IPsec processing failure

Figure 54: Screenshot of programs running on Belkar during IPsec processing failure (SPD and SAD)

Not the official thesis.

71

Figure 55: Screenshot of programs running on Belkar during IPsec processing failure (Analyzer)

Figure 56: Screenshot of programs running on Belkar during IPsec processing failure (Attacker)

6.2.3 Simulation of attack at Security Policy verification phase

Before simulating this attack we had to change the security policy to discard the incoming traffic. We first

tried with non-IPsec traffic, by flushing the SPD on Belkar and Elan, and pinging from Belkar to Elan. As it

is shown in Figure 57 and Figure 58, we received an ICMP Reply for each ICMP Request (marked in dotted

line). Once we set up the security policy to discard traffic going out from Elan, we did not receive ICMP

Reply packets anymore (marked in full line).

Not the official thesis.

72

Figure 57: Screenshot of Tcpdump trace of the traffic and SPD dump on Elan testing security policy enforcement (SPD)

Figure 58: Screenshot of Tcpdump trace of the traffic and SPD dump on Elan testing security policy enforcement (Tcpdump)

Not the official thesis.

73

We set up the security policy on Belkar to encrypt the outgoing ICMP Request packet (Figure 60) and setting

the security policy on Elan to discard the incoming traffic as earlier. In this case we noticed something

strange: we observed ICMP Reply packets (Figure 59) which means the packets received from Elan were

IPsec processed, but no SPD lookup was actually done and no security policy was checked. We discovered

subsequently that this is a bug in NetBSD Fast IPsec implementation [85].

Figure 59: Tcpdump trace of the traffic on Belkar testing the faulty IPsec implementation on Elan

Figure 60: SPD dump on Belkar testing the faulty IPsec implementation on Elan

Not the official thesis.

74

To go on with the simulation of this type of attack, we changed the security policy on Elan to discard the

ICMP reply (outgoing traffic), and we restarted Analyzer, Sniffer and script to filter the log file. To have a

Security Policy violation we started to ping from Belkar to Elan, and we obtained the alert messages on the

Analyzer, as expected (see Section 6.2.3.1 and 6.2.3.2) .

6.2.3.1 Screenshots of programs running on Elan during Security Policy violation

Figure 61: Screenshot of programs running on Elan during Security Policy violation (Tcpdump)

Figure 62: Screenshot of programs running on Elan during Security Policy violation (SPD)

Figure 63: Screenshot of programs running on Elan during Security Policy violation (Script to filter logfile)

Not the official thesis.

75

Figure 64: Screenshot of programs running on Elan during Security Policy violation (sniffer)

6.2.3.2 Screenshots of programs running on Belkar during Security Policy violation

Figure 65: Screenshot of programs running on Belkar during Security Policy violation (SAD and SPD)

Not the official thesis.

76

Figure 66: Screenshot of programs running on Belkar during Security Policy violation (Analyzer)

Figure 67: Screenshot of programs running on Belkar during Security Policy violation (Attacker)

Not the official thesis.

77

7 CONCLUSIONS

7.1 Conclusion

The aim of this thesis project was to implement an Analyzer prototype to identify anomalous activity on

nodes when using an Ericsson Ethernet Interface board. We examined a variety of security weaknesses and

attacks against IPsec protocol. A significant effort in this thesis was to understand the board, Network

Processor, and its IPsec functionality.

We have met the goals stated for the thesis project, but we were not able to determine if the solution

implemented is the best one. However, since the implementation is easily configurable this should facilitate

future testing once the hardware is available. We have not been able to identify any weaknesses or attacks

against IPsec ESP tunnel mode with authentication as used in this thesis but still detection of an attempt to

attack the system is of relevance and reveals the compromised part of the network or incorrect

implementation of IPsec. We tested different attack scenarios on an IPsec connection established between

two hosts and the Analyzer detected all of the attacks successfully. The error threshold values were set to

zero as explained earlier. We encountered several limitations and obstacles during our work, e.g. confidential

information about the implementation of the IPsec coprocessor and the protocols used in the Ericsson

Ethernet Interface board and the lack of a clear description of the non-fatal error codes. Other limitations

included the incomplete implementation of IPsec both in hardware and software, which led us in splitting our

effort into two parts: simulation of the board side and a prototype of the Analyzer. These limitations lead to

the many assumptions that were made during this project. We had also to consider the requirements of

executing scripts in the network processor; along with understanding the FPL and C-NP programming

languages, as these had only a subset of the allowed functions typical of a high level programming language.

Through this thesis we gained a lot of understanding of the IPsec protocol, along with its weaknesses and

different attacks against the protocol. We have also learned how the Ericsson Ethernet Interface board and its

network processor functions e.g., packet classification, management, scheduling, etc. We have also learned

how a network processor communicates with the IPsec block and how an IPsec packet is processed. We

learned how to modify an IPsec implementation, setup an IPsec connection between two hosts, and

reconfigure an operating system kernel. During the simulation phase we realized, after some testing, that a

part of the NetBSD FAST IPsec implementation was incorrect and this was confirmed in an earlier bug

report submitted (by others). This faulty IPsec implementation is exactly the same type of vulnerability

exploited in Paterson’s attack (described in Section 4.4.2).

Our suggestion for future thesis students is to carefully understand what you need to do, and have as detailed

requirements as possible in the early stages of the work, even before starting the thesis project. Additionally,

it is important also to keep the supervisors updated continuously, as in our case we wasted some time on an

implementation that we subsequently had to redo.

Not the official thesis.

78

7.2 Future work

There are many suggestions about what to do next. A suggestion would be to test the code which we have

developed on the real hardware once the implementation is ready. That would require SAD, SPD, complete

support of IPsec in the classification code, and SED scripts to process IPsec traffic. There is also a need to

accumulate IPsec failure rate statistics in a simulated normal situation to be able to set the appropriate sliding

window sizes and thresholds. Another suggestion for future work is to identify IPsec failure patterns and

analyze IPsec packets by decrypting the payload. This would require synchronization with the SAD and SPD

in order to synchronize keys and policies. A further area of research would be to investigate the possibility to

prevent attacks by blocking suspicious IPsec traffic and investigate weaknesses in IPsec key management

protocols.

Not the official thesis.

79

REFERENCES

[1] 3rd Generation Partnership Project. Technical Specification Group Services and System Aspects; 3G

Security; �etwork Domain Security; IP network layer security. 3GPP, December 2006. TS 33.210 V7.2.0.

[2] R. Atkinson and S. Kent. Security Architecture for the Internet Protocol. IETF, November 1998. RFC

2401.

[3] —. IP Authentication Header. IETF, November 1998. RFC 2402.

[4] R. Glenn and C. Madson. The Use of HMAC-MD5-96 within ESP and AH. IETF, November 1998.

RFC 2403.

[5] —. The Use of HMAC-SHA-1-96 within ESP and AH. IETF, November 1998. RFC 2404.

[6] -. Doraswamy and C. Madson. The ESP DES-CBC Cipher Algorithms With Explicit IV. IETF,

November 1998. RFC 2405.

[7] R. Atkinson and S. Kent. IP Encapsulating Security Payload (ESP). IETF, November 1998. RFC 2406.

[8] D. Piper. The Internet IP Security Domain of Interpretation for ISAKMP. IETF, November 1998. RFC

2407.

[9] D. Maughan, M. Schertler, M. Schneider and J. Turner. Internet Security Association and Key

Management Protocol (ISAKMP). IETF, November 1998. RFC 2408.

[10] D. Carrel and D. Harkins. The Internet Key Exchange (IKE). IETF, November 1998. RFC 2409.

[11] R. Glenn and S. Kent. The �ULL Encryption Algorithm and Its Use With IPsec. IETF, November

1998. RFC 2410.

[12] R. Thayer, -. Doraswamy and Glenn R. IP Security Document Roadmap. IETF, November 1998.

RFC 2411.

[13] H. Orman. The OAKLEY Key Determination Protocol. IETF, November 1998. RFC 2412.

[14] Erik Ahlforn and Göran Örnulf. Ericsson’s family of carrier-class technologies. Ericsson Review.

2001, 04/2001, pp. 190-195.

[15] Victor Ferraro-Esparza, Michael Gudmandsen and Kristofer Olsson. Ericsson Telecom Server

Platform 4. Ericsson Review. 2002, 03/2002, pp. 104-113.

[16] Lars-Örjan Kling, Åke Lindholm, Lars Marklund and -ilsson Gunnar B. CPP—Cello packet

platform. Ericsson Review. 2002, 02/2002, pp. 68-75.

[17] LSI Corporation. Network & Storage Standard Products. [Online] September 2007.

http://www.lsi.com/documentation/networking/line_cards/NSPG_LineCard_082907.pdf. OT06-196OTH.

Not the official thesis.

80

[18] -. Shah. Understanding �etwork Processors. University of California. Berkeley , 2001. Master's

Thesis.

[19] M. Kohler. NP Complete. Embedded Systems Programming. November 2000, pp. 45-60.

[20] LSI Corporation. Product Brief - APP300 - Access Network Processors. [Online] October 2006.

http://www.lsi.com/documentation/networking/network_processors/LSI_PB_2pg_APP300.pdf. PB05-

039NP-1.

[21] Agere Systems, Inc. APP300 Functional Programming Language (FPL) User Guide. December 2004.

[22] —. APP300 Functional Programming Language (FPL) Reference Guide. December 2004.

[23] —. APP300 C-�P Language Reference Guide. December 2004.

[24] PayloadPlus Product Briefs. Agere Systems Inc. [Online] 2003. [Cited: November 1, 2007.]

http://nps.agere.com/support/non-nda/index.htm#ProdBriefs.

[25] Optical Internetworking Forum. System Packet Interface Level 3: OC-48 System Interface for

Physical and Link Layer Devices. [Online] June 2000. http://www.oiforum.com/public/documents/OIF-

SPI3-01.0.pdf. IA#OIF-SPI3-01.0.

[26] Guide to Intrusion Detection and Prevention Systems (IDPS). U.S. Department of Commerce, National

Institute of Standards and Technology, February 2007. SP 800-94.

[27] Intrusion Detection Systems. U.S. Department of Commerce, National Institute of Standards and

Technology, November 2001. SP800-31.

[28] J. Postel. Internet Protocol. IETF, September 1981. RFC 791.

[29] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification. IETF, December 1998.

RFC 2460.

[30] F. Baker, D. Black, S. Blake and K. -icolas. Definition of Differentiated Services Field (DS Field) in

the IPv4 and IPv6 Headers. IETF, December 1998. RFC 2474.

[31] IANA Protocol Numbers. [Online] [Cited: October 8, 2007.] http://www.iana.org/assignments/protocol-

numbers.

[32] Behrouz A. Forouzan. TCP/IP Protocol Suite. 3rd Revised Edition. McGraw-Hill, 2005. p. 992. ISBN

0071115838.

[33] Guide to IPsec VP�s. U.S. Department of Commerce, National Institute of Standards and Technology,

January 2007. SP 800-77.

[34] Stephen J. Friedl. An Illustrated Guide to IPsec. Steve Friedl's Unixwiz.net Tech Tips. [Online] August

24, 2005. [Cited: October 18, 2007.] http://www.unixwiz.net/techtips/iguide-ipsec.html.

[35] C. Kaufman, R. Perlman and M. Speciner. �etwork Security: Private Communication in a Public

World. 1. Prentrice Hall, 1995. 0130614661.

Not the official thesis.

81

[36] M. Bellare R. Canetti and H. Krawczyk. HMAC: Keyed-Hashing for Message Authentication. IETF,

February 1997. RFC 2104.

[37] R. Rivest. The MD5 Message-Digest Algorithm. IETF, April 1992. RFC 1321.

[38] How to Break MD5 and Other Hash Functions. Wang Xiaoyun and Hongbo Yu. 2005,

EUROCRYPT.

[39] Finding collisions in the Full SHA-1. X. Wang, Y. L. Yin and H. Yo. August 2005, Crypto 2005;

Lectures Notes in Computer Science, Vol. 2621.

[40] R. Adams and R. Pereira. The ESP CBC-Mode Cipher Algorithms. IETF, November 1998. RFC

2451.

[41] Data Encryption Standard (DES). U.S. Department of Commerce, National Institute of Standards and

Technology, October 1999. FIPS PUB 46-3.

[42] S. Kelly. Security Implications of Using the Data Encryption Standard (DES). IETF, December 2006.

RFC 4772.

[43] P. Karn, P. Metzger and W Simpson. The ESP Triple DES Transform. IETF, September 1995. RFC

1851.

[44] Advanced Encryption Standard (AES). U.S. Department of Commerce, National Institute of Standards

and Technology, November 2001. FIPS PUB 197.

[45] Daniel J. Bernstein. Cache-timing attacks on AES. [Online] November 11, 2004.

http://cr.yp.to/papers.html#cachetiming.

[46] S. Frankel, R. Glenn and S. Kelly. The AES-CBC Cipher Algorithm and Its Use with IPsec. IETF,

september 2003. RFC 3602.

[47] R. Housely. Using Advanced Encryption Standard (AES) Counter Mode With IPsec Encapsulating

Security Payload (ESP). IETF, January 2004. RFC 3686.

[48] MITRE Corporation. CVE - Common Vulnerabilities and Exposures. [Online] [Cited: 12 11, 2007.]

http://cve.mitre.org/.

[49] VP�shield: Protecting CP� Services from Denial-of-Service (DoS) Attacks. M. Kaddoura, K.
Millikin, R. Ramanujan, C. Sanders and J. Wu. 2003. DARPA Information Survivabiltiy Conference and

Exposition. Vol. II, p. 138.

[50] Architecture Technology Corporation. VP�shield: Protecting VP�s from DoS Attacks. [Online] [Cited:

11 1, 2007.] http://www.atcorp.com/securesystems/vpnshield.html.

[51] Mika Müller. Analysis Tool for Studying IP security Denial of Service Resistance . Department of

Computer Science, Helsinki University of Technology. March 2002. Master's Thesis.

[52] Ari Muittari. Internet Key Exchange (IKE) Protocol vulnerability risks. Networking Laboratory,

Electrical and Communication Engineering, Helsinki University of Technology.

http://www.netlab.hut.fi/opetus/s38310/03-04/kalvot03-04/muittari_180504.ppt, 18 May 2004. Slides from a

Master Thesis presentation.

Not the official thesis.

82

[53] Matti Järvinen. PKI Requirements for IPsec. Helsinki University of Technology. 2003.

[54] Jean Paul Degabriele and Kenneth G. Paterson. Attacking the IPsec Standards in Encryption-only

Configurations. IEEE Symposium on Security and Privacy. SP'07, 2007, 20-23 May 2007, pp. 335-349.

[55] Arnold K. L. Yau. [Online] [Cited: March 3, 2008.] http://ay2.org/ipsec/.

[56] Henrik Dikvall. IPsec in Hardware. Computer Science and Engineering, Luleå University of

Technology. 2002.

[57] -. Ferguson and B. Schneier. A Cryptographic Evaluation of IPsec. February 1999.

[58] Microsoft. Step-by-step guide to Internet Protocol Security (IPsec). Microsoft Tech�et. [Online] [Cited:

March 3, 2008.] http://technet.microsoft.com/en-us/library/bb742429.aspx#EGAA.

[59] Probable Plaintext Cryptanalysis of the IP Security Protocols. S. M. Bellovin. IEEE Computer

Society, 1997, Proceedings of the 1997 Symposium on Network and Distributed System Security, p. 52. 0-

8186-7767-8.

[60] G. Minshal. Byte size distribution data. [Online] 1995. [Cited: november 1, 2007.]

http://www.nlanr.net/NA/Learn/Gm/pktsizes.html.

[61] K. Claffy. WAN packet size distribution. [Online] 1996. [Cited: November 1, 2007.]

http://www.nlanr.net/NA/Learn/packetsizes.html.

[62] S. M. Bellovin. A Look Back at “Security Problems in the TCP/IP Protocol Suite". 2004.

[63] J.D. Touch and Y.E. Yang. Reducing the Impact of DoS Attacks on Endpoint IP Security. IEEE,

November 2006. 1424407745.

[64] K. G. Paterson and Arnold K. L. Yau. Cryptography in Theory and Practice: The Case of Encryption

in IPsec. [ed.] Vaudenay, S. Springer-Verlag, 2006. Vol. Lecture Notes in Computer Science Vol. 4004.

9783540345466.

[65] B. Liang and K. Muradyan. A Theoretical and Practical Overview of IPsec. Department of Computer

Science and Engineering, Chalmers University of Technology. Göteborg , 2006. Master's Thesis.

[66] S. M. Bellovin. Problem Areas for the IP Security Protocols. San Jose, CA , July 1996.

[67] Vulnerability Advisory 004033/NISCC/IPSEC. UK, �ational Infrastructure Security Co-ordination

Centre. [Online] May 16, 2005. [Cited: 10 15, 2007.]

[68] Vulnerability Note VU#302220. US-CERT. [Online] September 5, 2005. [Cited: October 18, 2007.]

http://www.kb.cert.org/vuls/id/302220.

[69] Michael Barr. CRC Mathematics and Theory. �etrino. [Online] http://www.netrino.com/Embedded-

Systems/How-To/CRC-Math-Theory.

[70] Peter Wratil. Transmitting safety-critical data over Industrial Ethernets. The Industrial Ethernet Book.

[Online] http://ethernet.industrial-networking.com/articles/articledisplay.asp?id=137.

[71] Agere Systems, Inc. Simulator User's Guide. November 2003.

Not the official thesis.

83

[72] —. Security Protocol Processor Application �ote.

[73] —. APP300 Compute Engine Programming Guide. December 2004.

[74] J. Postel. User Datagram Protocol. IETF, August 1980. RFC 768.

[75] Switch Reference. Wireshark. [Online] http://wiki.wireshark.org/SwitchReference.

[76] Datacom Systems, Inc. [Online] http://www.datacomsystems.com/solutions/choosing-network-

taps.asp.

[77] Tim O’-eill. SPAN Port or TAP? CSO Beware. LoveMyTool. [Online]

http://www.lovemytool.com/blog/2007/08/span-ports-or-t.html.

[78] The Tcpdump group. Tcpdump/Libpcap. [Online] www.tcpdump.org/sniffex.c.

[79] —. Pcap. Tcpdump/Libpcap. [Online] http://www.tcpdump.org/pcap3_man.html.

[80] Fast IPSec: A High-Performance IPsec Implementation. Samuel J. Leffler. San Mateo, CA, USA :

USENIX Association, September 8–12, 2003, Proceedings of BSDCon ’03.

[81] The KAME project. [Online] http://www.kame.net/.

[82] The official IPsec Howto for Linux. [Online] http://www.ipsec-howto.org/.

[83] Christian Kreibich. �etdude the Hacker's choice. [Online] http://netdude.sourceforge.net/.

[84] Tcpreplay. [Online] http://tcpreplay.synfin.net/trac/.

[85] Wolfgang Stukenbrock. NetBSD-Bugs. [Online] [Cited: March 2, 2008.] http://mail-

index.netbsd.org/netbsd-bugs/2007/08/14/0000.html.

[86] LSI Corporation. Product Brief - APP100 - AAL2 SAR Co-Processor . [Online] June 2004.

http://www.lsi.com/documentation/networking/network_processors/LSI_PB_4pg_APP.pdf. PB03-152NP.

Not the official thesis.

84

APPENDIX A

SPA simulation traffic dump

np5.txt

Agere Dump APP300 Packets AG_NP-3.9.0.56(Wed
Aug 22 15:23:28 CDT 2007)

ASI Counters ...
512: 2
520: 2
524: 2
532: 2
540: 4
592: 1
608: 1
672: 1
676: 1

FPP Packets ...

 [Packet #1]
(DestId:1022 Length:0 Offset:4 Params:0
TM Params:0 BeginTimestamp:391
EndTimestamp:2398)
[Segment #1]
Priority 0
Bytes Transmitted 64
Data FF 03 00 21 45 00 00 40
 00 01 00 00 08 06 A1 A7
 07 07 07 07 01 01 02 02
 66 66 66 66 66 66 66 66
 66 66 66 66 66 66 66 66
 66 66 66 66 66 66 66 66
 66 66 66 66 66 66 66 66
 66 66 66 66 66 66 66 66
[Segment #2]
Priority 0
Bytes Transmitted 4
Data 66 66 66 66

 [Packet #2]
(DestId:3002 Length:0 Offset:8 Params:0
TM Params:0 BeginTimestamp:4968
EndTimestamp:6971)
[Segment #1]
Priority 0
Bytes Transmitted 64
Data 00 00 00 88 00 45 67 89
 45 00 00 88 00 00 00 00
 0A 32 A1 36 06 06 06 06
 01 01 02 02 00 00 00 02
 00 00 00 01 DC 30 DF 6F
 00 00 00 00 DF 6B 7D 6F
 00 00 00 00 BA FF FF BF
 FF FE FF FF F7 F9 5E 58
[Segment #2]
Priority 0
Bytes Transmitted 64
Data F8 F8 F8 F8 FE FE FD FD
 99 99 99 99 99 99 99 99
 99 99 99 99 99 99 99 99
 99 99 99 99 99 99 99 99
 99 99 99 99 99 99 99 99

 99 99 99 99 99 99 99 99
 99 99 99 99 FE FD FC FB
 FA F9 F8 F7 F6 F5 F4 F3
[Segment #3]
Priority 0
Bytes Transmitted 16
Data F2 F1 F1 FB 00 00 00 00
 00 00 00 00 00 00 00 00

 [Packet #3]
(DestId:1122 Length:0 Offset:14 Params:0
TM Params:0 BeginTimestamp:8513
EndTimestamp:10568)
[Segment #1]
Priority 0
Bytes Transmitted 64
Data 05 05 05 05 05 05 09 09
 09 09 09 09 08 00 45 00
 00 88 00 00 00 00 0A 32
 A1 36 06 06 06 06 01 01
 02 02 00 00 00 02 00 00
 00 01 DC 30 DF 6F 00 00
 00 00 DF 6B 7D 6F 00 00
 00 00 BA FF FF BF FF FE
[Segment #2]
Priority 0
Bytes Transmitted 64
Data FF FF F7 F9 5E 58 F8 F8
 F8 F8 FE FE FD FD 99 99
 99 99 99 99 99 99 99 99
 99 99 99 99 99 99 99 99
 99 99 99 99 99 99 99 99
 99 99 99 99 99 99 99 99
 99 99 99 99 99 99 99 99
 99 99 FE FD FC FB FA F9
[Segment #3]
Priority 0
Bytes Transmitted 22
Data F8 F7 F6 F5 F4 F3 F2 F1
 F1 FB 00 00 00 00 00 00
 00 00 00 00 00 00

 [Packet #4]
(DestId:3022 Length:0 Offset:0 Params:0
TM Params:0 BeginTimestamp:13091
EndTimestamp:14942)
[Segment #1]
Priority 0
Bytes Transmitted 64
Data 00 00 00 54 80 45 67 89
 45 00 00 54 00 00 00 00
 0A 04 A1 98 06 06 06 06
 01 01 02 02 45 00 00 40
 00 01 00 00 08 06 A1 A7
 07 07 07 07 01 01 02 02
 66 66 66 66 66 66 66 66
 66 66 66 66 66 66 66 66
[Segment #2]
Priority 0
Bytes Transmitted 28
Data 66 66 66 66 66 66 66 66
 66 66 66 66 66 66 66 66
 66 66 66 66 66 66 66 66

Not the official thesis.

85

 66 66 66 66

RSP Packets ...

 [Packet #1]
Destination ID 1022
Queue ID 1
Scheduler ID 0
Enqueue PDU ID 1
Packet Dropped? No
Dropped Entity
Reason Dropped
Logical Port ID 4
Port Manager ID 4
Output Port ID 4
Traffic Manager Time 3 cycles
Traffic Shaper Time 1 cycles
Entry Timestamp 498
Exit Timestamp 3597
[Segment #1]
MPHY Port 0
Stream Editor Time 18 cycles
Timestamp 3567
Bytes Transmitted 64
Data 19 40 00 58 00 08 00 54
 00 45 67 89 14 00 10 00
 40 00 08 10 11 00 00 00
 45 00 00 88 00 00 00 00
 0A 32 A1 36 06 06 06 06
 01 01 02 02 45 00 00 40
 00 01 00 00 08 06 A1 A7
 07 07 07 07 01 01 02 02
[Segment #2]
MPHY Port 0
Stream Editor Time 18 cycles
Timestamp 3597
Bytes Transmitted 44
Data 66 66 66 66 66 66 66 66
 66 66 66 66 66 66 66 66
 66 66 66 66 66 66 66 66
 66 66 66 66 66 66 66 66
 66 66 66 66 66 66 66 66
 66 66 66 66

 [Packet #2]
Destination ID 3002
Queue ID 3
Scheduler ID 0
Enqueue PDU ID 2
Packet Dropped? No
Dropped Entity
Reason Dropped
Logical Port ID 3
Port Manager ID 3
Output Port ID 3
Traffic Manager Time 3 cycles
Traffic Shaper Time 1 cycles
Entry Timestamp 5077
Exit Timestamp 8185
[Segment #1]
MPHY Port 0
Stream Editor Time 1 cycles
Timestamp 8125
Bytes Transmitted 64
Data 05 05 05 05 05 05 09 09
 09 09 09 09 08 00 45 00
 00 88 00 00 00 00 0A 32
 A1 36 06 06 06 06 01 01
 02 02 00 00 00 02 00 00
 00 01 DC 30 DF 6F 00 00
 00 00 DF 6B 7D 6F 00 00
 00 00 BA FF FF BF FF FE
[Segment #2]
MPHY Port 0

Stream Editor Time 1 cycles
Timestamp 8168
Bytes Transmitted 64
Data FF FF F7 F9 5E 58 F8 F8
 F8 F8 FE FE FD FD 99 99
 99 99 99 99 99 99 99 99
 99 99 99 99 99 99 99 99
 99 99 99 99 99 99 99 99
 99 99 99 99 99 99 99 99
 99 99 99 99 99 99 99 99
 99 99 FE FD FC FB FA F9
[Segment #3]
MPHY Port 0
Stream Editor Time 1 cycles
Timestamp 8185
Bytes Transmitted 22
Data F8 F7 F6 F5 F4 F3 F2 F1
 F1 FB 00 00 00 00 00 00
 00 00 00 00 00 00

 [Packet #3]
Destination ID 1122
Queue ID 1
Scheduler ID 0
Enqueue PDU ID 3
Packet Dropped? No
Dropped Entity
Reason Dropped
Logical Port ID 4
Port Manager ID 4
Output Port ID 4
Traffic Manager Time 3 cycles
Traffic Shaper Time 1 cycles
Entry Timestamp 8620
Exit Timestamp 11805
[Segment #1]
MPHY Port 0
Stream Editor Time 16 cycles
Timestamp 11737
Bytes Transmitted 64
Data 1D 40 01 E8 00 98 00 88
 80 45 67 89 20 04 00 08
 42 00 10 00 50 00 00 08
 03 11 00 00 45 00 00 88
 00 00 00 00 0A 32 A1 36
 06 06 06 06 01 01 02 02
 00 00 00 02 00 00 00 01
 DC 30 DF 6F 00 00 00 00
[Segment #2]
MPHY Port 0
Stream Editor Time 16 cycles
Timestamp 11780
Bytes Transmitted 64
Data DF 6B 7D 6F 00 00 00 00
 BA FF FF BF FF FE FF FF
 F7 F9 5E 58 F8 F8 F8 F8
 FE FE FD FD 99 99 99 99
 99 99 99 99 99 99 99 99
 99 99 99 99 99 99 99 99
 99 99 99 99 99 99 99 99
 99 99 99 99 99 99 99 99
[Segment #3]
MPHY Port 0
Stream Editor Time 16 cycles
Timestamp 11805
Bytes Transmitted 36
Data 99 99 99 99 99 99 99 99
 FE FD FC FB FA F9 F8 F7
 F6 F5 F4 F3 F2 F1 F1 FB
 00 00 00 00 00 00 00 00
 00 00 00 00

 [Packet #4]
Destination ID 3022
Queue ID 4

Not the official thesis.

86

Scheduler ID 0
Enqueue PDU ID 4
Packet Dropped? No
Dropped Entity
Reason Dropped
Logical Port ID 2
Port Manager ID 2
Output Port ID 2
Traffic Manager Time 3 cycles
Traffic Shaper Time 1 cycles
Entry Timestamp 13198
Exit Timestamp 16228
[Segment #1]
MPHY Port 0
Stream Editor Time 16 cycles
Timestamp 16210
Bytes Transmitted 64
Data 05 05 05 05 05 05 09 09
 09 09 09 09 08 00 45 00
 00 40 00 01 00 00 08 06
 A1 A7 07 07 07 07 01 01
 02 02 66 66 66 66 66 66
 66 66 66 66 66 66 66 66
 66 66 66 66 66 66 66 66
 66 66 66 66 66 66 66 66
[Segment #2]
MPHY Port 0
Stream Editor Time 16 cycles
Timestamp 16228
Bytes Transmitted 18
Data 66 66 66 66 66 66 66 66
 66 66 66 66 66 66 9B DC
 3C D9

testAPP155.txt

Agere Dump APP150 Packets AG_NP-3.9.0.56(Wed
Aug 22 15:23:28 CDT 2007)

SE Packets ...

 [Packet #1]
PDU Type IPSec
Security Association ID 22
Token Template ID esp4o
Direction outbound
Encryption Algorithm AES128_CBC
Authentication Algorithm HMAC_SHA1
Begin Timestamp 1086
End Timestamp 1394

 [Packet #2]
PDU Type IPSec
Security Association ID 122
Token Template ID esp4i
Direction inbound
Encryption Algorithm AES128_CBC
Authentication Algorithm HMAC_SHA1
Begin Timestamp 3537
End Timestamp 3832

Not the official thesis.

87

APPENDIX B

Configurations to generate some errors

File "np5.txt" is the dump file of the simulation with the configuration file

"app3_ipsec_ipv4_lb.xml" (see Appendix A). From this dump file, we can extract

the encrypted data from Packet #2 or #3, and insert it in the payload of a new

IP packet as input of the simulation to run some tests and generate some errors.

TEST 1: right encrypted packet, no errors

In the Traffic Generator, Traffic Flow(1):

• Protocols -> IP: Source -> Value(0) = 7.7.7.7

• Destination -> Value(1) = 1.1.2.2 (delete all the others) // the

selection of security protocol (AH or ESP) is based on destination address

• Protocol -> Value(0) = 0x32 // indicates Next Header = 50 (ESP), therefore

inbound processing

• SizeDistribution -> Explicit(0) -> PayloadSize(0) = 116 bytes // SPI +

Sequence number + Initializator Vector + inner IP header + inner IP

payload + padding + authentication data (only zero) = (8 + 8 + 16 + 20 +

44 + 16 + 12) bytes = 116 bytes

• Right click on TrafficFlow(1) -> Edit all TrafficFlow elements -> disable

TrafficFlow(2) and enable TrafficFlow(1)

Packet 1) Payload pattern -> PatternGenerator(0) -> right click on

Patterns -> Add new, Pattern -> Pattern(0) -> pattern =

0x0000000200000001DC30DF6F00000000DF6B7D6F00000000BAFFFFBFFFFE

FFFFF7F95E58F8F8F8F8FEFEFDFD9999999999999999999999999999999999

99FEFDFCFB

FAF9F8F7F6F5F4F3F2F1F1FB000000000000000000000000

TEST 2: error code E11 SPI check failed

In the Traffic Generator, Traffic Flow(1):

Packet 2) SPI = 1 and Sequence number = 2

 TrafficModels -> ConstantBitRate(0) -> duration = 2 packets

Payload pattern -> PatternGenerator(0) -> right click on

Patterns -> Add new, Pattern -> Pattern(1) -> pattern =

0x0000000100000002(the rest as in test 1)

Not the official thesis.

88

This generate an E11 error (SPI check failed) because the SPI 1 is not

associated with Security Association 122.

Packet 3) SPI = 3 and Sequence number = 3

 TrafficModels -> ConstantBitRate(0) -> duration = 3 packets

Payload pattern -> PatternGenerator(0) -> right click on

Patterns -> Add new, Pattern -> Pattern(2) -> pattern =

0x0000000300000003(the rest as in test 1)

This generate an E11 error (SPI check failed) because the SPI number 3 is not

defined in the SPA configuration file.

Not the official thesis.

89

APPENDIX C

Setkey.conf scripts

Setkey.conf on Elan:

#!sbin/setkey -f

Key configuration script for Elan

Flush the SAD and SPD
flush;
spdflush;

ESP SAs doing encryption using 192 bit long keys (168 + 24 parity)
and authentication using 128 bit long keys
add 192.168.66.1 192.168.66.3 esp 0x100 -m tunnel -E 3des-cbc
0x7aeaca3f87d060a12f4a4487d5a5c3355920fae69a96c831 -A hmac-md5
0xc0291ff014dccdd03874d9e8e4cdf3e6;
add 192.168.66.3 192.168.66.1 esp 0x200 -m tunnel -E 3des-cbc
0xf6ddb555acfd9d77b03ea3843f2653255afe8eb5573965df -A hmac-md5
0x96358c90783bbfa3d7b196ceabe0536b;

Security policies
spdadd 192.168.66.3 192.168.66.1 icmp -P out discard;

Setkey.conf on Belkar:

#!sbin/setkey -f

Key configuration script for Belkar

Flush the SAD and SPD
flush;
spdflush;

ESP SAs doing encryption using 192 bit long keys (168 + 24 parity)
and authentication using 128 bit long keys
add 192.168.66.1 192.168.66.3 esp 0x100 -m tunnel -E 3des-cbc
0x7aeaca3f87d060a12f4a4487d5a5c3355920fae69a96c831 -A hmac-md5
0xc0291ff014dccdd03874d9e8e4cdf3e6;
#add 192.168.66.3 192.168.66.1 esp 0x200 -m tunnel -E 3des-cbc
0xf6ddb555acfd9d77b03ea3843f2653255afe8eb5573965df -A hmac-md5
0x96358c90783bbfa3d7b196ceabe0536b;

Security policies
spdadd 192.168.66.1 192.168.66.3 udp -P out ipsec esp/tunnel/192.168.66.1-
192.168.66.3/require;

Not the official thesis.

90

APPENDIX D

SED Register File Map, Figure 2-11 from [73] (This figure appears here with the permission of LSI

Corporation)

Not the official thesis.

91

APPENDIX E

Analyzer_case script

#!/bin/awk -f

/ ANALYZER_E1 / {
 # cut the first 28 byte; 1 byte = 2 characters -> first 56 char
 payload = substr($7, 0, 56)
 printf("Sending Analyzer E1 packet\n")
 printf("generator/tg -d 192.168.66.1 -p 1700 -P 0x01%s\n", payload) | "sh"
}

/ ANALYZER_E2 / {
 # cut the first 28 byte; 1 byte = 2 characters -> first 56 char
 payload = substr($7, 0, 56)
 # specify SPP header for authentication error
 printf("Sending Analyzer E2 packet\n")
 printf("generator/tg -d 192.168.66.1 -P 0x024020005480456789%s\n", payload)
| "sh"
}

/ ANALYZER_E3 / {
 # cut the first 20 byte; 1 byte = 2 characters -> first 40 char
 payload = substr($7, 0, 40)
 printf("Sending Analyzer E3 packet\n")
 printf("generator/tg -d 192.168.66.1 -P 0x03%s\n", payload) | "sh"
}

