

A scalable semantic-based resource
discovery service for Grids

Y E O U Y A N G

Master of Science Thesis

Stockholm, Sweden 2007

ICT/ ECS -2007-10

A scalable semantic-based resource
discovery service for Grids

 Master Thesis of

Software Engineering of Distributed System

KTH, ICT, ECS, Kista

2007

YEOU YANG
yeou@kth.se

Thesis Examiner: Vladimir Vlassov
Thesis Supervisor: Konstantin Popov

http://www.kth.se/
mailto:yeou@kth.se

Abstract

This thesis presents a design and a prototype implementation of a scalable semantic-
based resource discovery system for Grids. Our thesis work gives one possible solution
for semantic web service discovery in grid environment. In this paper we describe two
resource discovery architectures, two layers architecture and one layer architecture. One
layer architecture is the simplified model of two layers architecture. In our design, we use
OWL-S service description to describe semantic web service. Because using OWL-S
service ontology enables automatic web service discovery which can fulfill a specific
need within some quality constraints, without the need for human intervention. Distribute
K-ary system is used to construct a scalable overlay network in order to provide low level
transportation such as broadcast request message. We also use the Monitoring &
Discovery System (MDS) in Globus Toolkit to manage web service description resources.

This grid system provides six functionalities: 1. It provides registration function based on
MDS aggregator framework. It can register three kinds of customization resources to the
MDS Index Service, the content of OWL-S web service description, the URI of OWL-S
service description and DKS node reference. 2. It provides download function which
downloads registered information from MDS Index Service and Internet, and then save
this information to the local disk. 3. It also implements the matchmaking algorithm to
decide the matchmaking degree of two semantic web services description. 4. It uses DKS
broadcast feature to query the P2P overlay network in order to complete resource
discovery. 5. It implements subscription/notification mechanism based on WS-Topics
specification of GT4 WS-Notification. 6. It gives an automatic Index Service query
function which user doesn’t need to type command to communicate with MDS. User can
configure and run our system through our GUI. Before executing query over the network,
user generates his OWL-S web service description which defines what kind of web
service he wants to find and then submit it to our system. The system can search the
whole overlay network and run the matchmaking and return results to the requester.

Key words: Globus Toolkit 4, structured overlay network, Grid computing, broadcast,
MDS4, index service, matchmaking, OWL-S

Acknowledgements

I am very grateful for the opportunity given to me by Swedish Institute of Computer
Science in Kista, Stockholm to write my master thesis at their Distributed System Lab.
My gratitude goes to Researcher Mr. Konstantin Popov from Swedish Institute of
Computer Science (SICS), who was the supervisor, Professor Vladimir Vlassov from at
the Royal Institute of Technology who examiner for this Master Thesis. They guided me
and provided invaluable comments on my work. Thank you for your endless patience, for
your guidance, and advice along the way! I also thank for Systems Administrator Mikael
Nehlsen at SICS. He gave me a lot of help with using the facility at SICS.

Table of Content

1 Introduction..- 1 -
1.1 Thesis goal ..- 1 -
1.2 Structure of the Thesis ..- 1 -

2 Background ..- 2 -
2.1 Grid computing ...- 2 -
2.2 Peer-to-Peer Computing..- 2 -

2.2.1 Unstructured P2P and structured P2P..- 4 -
2.2.2 Distributed K-ary System (DKS)...- 6 -

2.3 OGSA, WSRF, and GT4...- 8 -
2.4 Globus Toolkit 4 ...- 11 -
2.5 Semantics ..- 13 -

2.5.1 RDF..- 13 -
2.5.2 RDF Schema (RDFS) ..- 14 -
2.5.3 OWL ..- 15 -
2.5.4 OWL-S...- 15 -
2.5.5 Reasoning...- 17 -

3 Related works in Semantic-Based Resource Discovery..- 19 -
3.1 Monitoring and Discovery System (MDS4) ...- 19 -

3.1.1 Three types of Aggregator ...- 19 -
3.1.2 MDS Aggregator Framework ..- 20 -
3.1.3 Information Providers ..- 22 -

3.2 The Java XPath API..- 23 -
3.3 Matchmaking ..- 24 -

3.3.1 Condor Matchmaker ..- 24 -
3.3.2 Semantic web service matchmaking algorithms..- 25 -

3.4 Grid security infrastructure ...- 33 -
4 Designs ..- 35 -

4.1 System Needs..- 35 -
4.2 Two layers architecture of resource discovery ...- 35 -
4.3 Terminology..- 36 -
4.4 One layer resource discovery model...- 39 -
4.5 Registration using Index Service ..- 42 -
4.6 DKSB design: Join DKS and DKS Broadcast..- 43 -
4.7 Download and update design ..- 45 -
4.8 Matchmaking Algorithm...- 46 -
4.9 Registration design..- 47 -

5 Prototype implementation...- 52 -
5.1 DKS_broadcast package ...- 52 -
5.2 MDS package..- 53 -
5.3 Registration package...- 55 -
5.4 Matcher package ...- 57 -
5.5 Download package..- 58 -
5.6 Notification package ...- 60 -

5.7 GUI package ...- 60 -
6 Profiling of Prototype ..- 63 -

6.1 Time anatomy of registration..- 63 -
6.2 Time anatomy of download ..- 63 -
6.3 Query service description URI..- 65 -
6.4 Time consumption distribution of different phases ..- 66 -

7 Conclusion and Future works...- 68 -
7.1 Summary ...- 68 -
7.2 Conclusions...- 68 -
7.3 Future works ...- 70 -

8 List of Abbreviations ...- 71 -
9 References...- 72 -
Appendix A. Registration file...- 75 -
Appendix B. Code of getAliveNodeList (String remoteIndexAddress)- 76 -
Appendix C. JoinDKS() source code in MyDKS.java ...- 77 -
Appendix D. WSDL file..- 78 -
Appendix E. Mapping for information provider ...- 80 -
Appendix F. User Guides ...- 84 -

Chapter 1 Introduction

1 Introduction

1.1 Thesis goal

The goal of the thesis is to carry research on scalable semantic-based resource discovery
for Grids and design and develop a grid resource discovery system built on top of overlay
peer-to-peer network. This thesis work should give a resource discovery architecture in
Grid environment and implement this architecture by using of Globus Toolkit 4.0.4, peer-
to-peer middleware Distributed K-ary (DKS). This system should be a scalable, fault
tolerant and can fulfill registration, downloading, matchmaking, index query and
notification functions. The resource discovery mechanism should be able to broadcast the
client’s request, compare the request with the advertised service descriptions and then
return a set of resources.

1.2 Structure of the Thesis

The second chapter gives a brief background of Grid computing, P2P computing, Globus
toolkit 4, semantics, and the relationship between OGSA, WSRF and GT4. The third
chapter summarized related works including tools and algorithm for semantic-based
resource discovery. The fourth chapter is mainly about a primary design to realize all
proposed features of scalable semantic based resource discovery. The fifth chapter
describes the prototype implemented. The sixth chapter focuses on time anatomy of
register, download, query and overview of different phases. The seventh chapter is about
conclusion of the thesis work and future work. In the end are list of abbreviations,
reference and appendix.

- 1 -

Chapter 2 Background

2 Background

2.1 Grid computing

”Grid computing enables the virtualization of distributed computing and data resources
such as processing, network bandwidth and storage capacity to create a single system
image, granting users and applications seamless access to vast IT capabilities. [1]” For
example, companies are using grid computing to accelerate the pace of drug development,
process complex financial models, and animate movies. Linking geographically dispersed
computer systems can lead to staggering gains in computing power, speed, and
productivity. Without Grid computing, an organization is stuck with using only the
resources it has direct control over. Using Grid computing, resources from several
different organizations are dynamically pooled into virtual organizations (or VO) [2] to
solve specific problems.

In order to assure interoperability on heterogeneous systems so that different types of
resources can communicate and share information, the Open Grid Services Architecture
(OGSA) describes architecture for a service-oriented grid computing environment for
business and scientific use. OGSA has been adopted as a grid architecture by a number of
grid projects including the Globus Alliance [3]. Globus Toolkit [4], a software toolkit
used for building grids, is being developed by the Globus Alliance and many others all
over the world. In our thesis work we use Globus Toolkit 4 as grid system development
kit.

Grid computing can be used in a variety of ways to address various kinds of application
requirements. Often, grids are categorized by the type of solutions that they best address.
The three primary types are Computational grid, Scavenging grid and Data grid [5]. A
computational grid is focused on setting aside resources specifically for computing
power. In this type of grid, most of the machines are high-performance servers. A
scavenging grid is most commonly used with large numbers of desktop machines.
Machines are scavenged for available CPU cycles and other resources. A data grid is
responsible for housing and providing access to data across multiple organizations. Users
are not concerned with where the data is located as long as they have access to the data.
There are no hard boundaries between these grid types and often grids may be a
combination of two or more of these. Another common distributed computing model that
is often associated with or confused with grid computing is peer-to-peer computing. We
will discuss peer-to-peer computing in the next section.

2.2 Peer-to-Peer Computing

So far, there is no agreement on a succinct definition of P2P. Because this new
computing model is rapidly evolving, it is healthy and desirable not to be locked down by
a rigid definition. In book [6], the Intel P2P working group defines definition of P2P
computing,”Peer-to-peer computing is a network-based computing model for applications
where computers share resources via direct exchanges between the participating

- 2 -

http://en.wikipedia.org/wiki/Service-oriented_architecture
http://en.wikipedia.org/wiki/Grid_computing

Chapter 2 Background

computers.” Alex Weytsel of Aberdeen defines P2P as “the use of devices on the internet
periphery in a succinct capacity” [7]. Clay Shirky of O’Reilly and Associate uses the
following definition: “P2P is a class of applications that takes advantage of resources –
storage, cycles, content, human presence – available at the edges of the Internet. Because
accessing these decentralized resources means operating in an environment of unstable
connectivity and unpredictable IP addresses, P2P nodes must operate outside the DNS
system and have significant or total autonomy from central servers” [8].

The P2P framework allows peers to interact with each other directly which makes
computing environment becomes decentralized. On the Internet, Napster [9] and Gnutella
[10] are examples of this kind of peer-to-peer software. These applications deal with
sharing different types of files and textual exchanges among the participants. Other
projects entail other type of P2P computing. Computer on the net can share more than
copies of file or space of message text. They can share their processing power by working
together to process data and solve computational tasks of great complexity and magnitude.
This is called “cycle sharing”. Cycle sharing is used to share
CPU resources across a network so that all machines function as one large supercomputer.
A good example of cycle sharing is SETI@HOME project
(http://setiathome.ssl.berkeley.edu/). 2.4 million users come from over 200 countries
contribute their time and internet connected computer to help scientific experiment in the
Search for Extraterrestrial Intelligence. This project involves a high degree of
collaboration without direct communication between participants. However SETI is not a
“true” P2P, the participants work towards a common goal, but have no communication
among them, and the computations are controlled by a central server.

P2P computing is different from P2P network. A P2P network allows every computer in
the network to act as a server to every other user on the network. But in P2P computing
the relationship between users is negotiated in some manner. The participating peers, the
computers that can be servers to others, may be a part of a P2P network, or may belong to
networks with different characteristics. P2P network implies P2P communication
between computers in the network. But P2P communication can also occur between two
computers in a network that is not P2P.

P2P and Grid computing are both concerned with enabling resource sharing within
distributed communities. In paper [11], the authors compare P2P computing and Grid
computing in different respects, target communities, resources, scale, applications, and
technologies. P2P systems have focused on resource sharing in environments
characterized by potentially millions of users, most with homogenous desktop systems
and low bandwidth, intermittent connections to the Internet. As such, the emphasis has
been on global fault-tolerance and massive scalability. Grid systems have arisen from
collaboration between generally smaller, better-connected groups of users with more
diverse resources to share. The hallmark of a P2P system is that it lacks a central point of
management; this makes it ideal for providing anonymity and offers some protection
from being traced. Grid environments, on the other hand, usually have some form of
centralized management and security (for instance, in resource management or workload
scheduling).

- 3 -

http://setiathome.ssl.berkeley.edu/

Chapter 2 Background

The state in [12] is said this lack of centralization in P2P environments carries two
important consequences: first, P2P systems are generally far more scalable than grid
computing systems. Grid computing systems are inherently not as scalable as P2P
systems. Second, P2P systems are generally more tolerant of single-point failures than
grid computing systems. Although grids are much more resilient than tightly coupled
distributed systems, a grid inevitably includes some key elements that can become single
points of failure. This means that the key to build grid computing systems is finding a
balance between decentralization and manageability.

Based on the mutual benefits that grid and P2P systems seem to offer to each other, the
authors of paper [11] expect that the two approaches will eventually converge, especially
when grids reach the "inter-grid" stage of development in which they essentially become
public utilities. In [13], the author points out considerable potential for a synthesis
between the two approaches. As depicted in Figure 2-1, a P2P Grid computer could
combine the varied resources, services, and power of Grid computing with the global-
scale, resilient, and self-organizing properties of P2P systems. A P2P substrate provides
lower-level services on which to build a globally distributed Grid services infrastructure.
The authors call this kind of system P2P GRID system. In P2P GRID system, every super
grid peer is a grid system. Our thesis work use Distributed K-ary System (DKS), a
structured P2P system in a Grid system to achieve this synthesis.

Figure 2-1 A P2P GRID system based on MDS-Index services [13]

2.2.1 Unstructured P2P and structured P2P

A pure peer-to-peer network does not have the notion of clients or servers, but only equal
peer nodes that simultaneously function as both "clients" and "servers" to the other nodes
on the network. This model of network arrangement differs from the client-server model
where communication is usually to and from a central server. A typical example for a non
peer-to-peer file transfer is an FTP server where the client and server programs are quite

- 4 -

Chapter 2 Background

distinct, and the clients initiate the download/uploads and the servers react to and satisfy
these requests.
A peer-to-peer computer network is a network that relies primarily on the computing
power and bandwidth of the participants in the network rather than concentrating it in a
relatively low number of servers. P2P networks are typically used for connecting nodes
via largely ad hoc connections. Such networks are useful for many purposes. Sharing
content files containing audio, video, data or anything in digital format is very common,
and real-time data, such as telephony traffic, is also passed using P2P technology.

Based on the difference of information stored in the peer and search method,
decentralized P2P systems are typically classified into two categories: unstructured P2P
systems and structured P2P systems.

Unstructured P2P

In an unstructured P2P network, if a peer wants to find a desired piece of data in the
network, the query is flooded through the network in order to find as many peers as
possible that share the data. Before starting the query, the peer doesn’t know where the
data stored. So the flooding in unstructured P2P is blind. Although people set Time To
Live (TTL) value to limit message life time, finding a appropriate TTL is not easy. Most
of the popular P2P networks such as Napster [9], Gnutella [10] and KaZaA [14] are
unstructured. Gnutella uses this kind of flooding search. Each node visited during a flood
evaluates the query locally on the data items that it stores. This approach supports
arbitrarily complex queries and it does not impose any constraints on the node graph or
on data placement. For example, each node chooses any other node as its neighbor in the
overlay and it can store the data it owns.

Flooding is a fundamental search method in unstructured P2P systems.However main
disadvantage with such networks is that the queries may not always be resolved. A
popular content is likely to be available at several peers and any peer searching for it is
likely to find the same, but, if a peer is looking for a rare or not-so-popular data shared by
only a few other peers, then it is highly unlikely that search be successful. Since there is
no correlation between a peer and the content managed by it, there is no guarantee that
flooding will find a peer that has the desired data. Flooding also causes a high amount of
signaling traffic in the network and hence such networks typically have a very poor
search efficiency.

Researchers have proposed some solutions to a problem mentioned above. The solutions
are Random walk [15] and Dynamic Query [16]. For example, for searching, random
walks achieve improvement over flooding in the case of clustered overlay topologies and
in the case of re-issuing the same request several times.

Although unstructured P2P systems have the shortcoming mentioned above, the
advantages of unstructured P2P networks are obvious: they incur almost no maintenance
traffic. Node leaves are treated optimistically and node joins are very cheap since it is

- 5 -

http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Bandwidth
http://en.wikipedia.org/wiki/Server_%28computing%29
http://en.wiktionary.org/wiki/ad_hoc
http://en.wikipedia.org/wiki/Voice_over_IP
http://en.wikipedia.org/wiki/Napster
http://en.wikipedia.org/wiki/Gnutella
http://en.wikipedia.org/wiki/KaZaA

Chapter 2 Background

sufficient to know only one other node of the system in order to participate within the
network.

Structured P2P

Structured P2P is developed to improve the performance of data discovery. It organizes
peers so that any node can be reached in a bounded number of hops, typically logarithmic
in the size of the network. In order to accomplish this, each node must hold additional
status information, called “finger tables” to other nodes of the network. Here, the size of
the status tables is O(log(n)). Each data item is identified by a key and nodes are
organized into a structured graph that maps each key to a responsible node. The data or a
pointer to the data is stored at the node responsible for its key. These constraints provide
efficient support for exact match queries. Some well known structured P2P networks are:
Chord [17], DKS [18], Pastry [19], Tapestry [20], CAN [21],Tulip [22]. Outside
academia, DHT technology has been adopted as a component of BitTorrent [23] and in
the Coral Content Distribution Network [24].

The first generation of peer-to-peer applications, including Napster and Gnutella, had
restricting limitations such as a central directory for Napster and scoped broadcast queries
for Gnutella limiting scalability. To address these problems a second generation of p2p
applications, which are structured P2P, were developed including Tapestry, Chord, Pastry,
DKS and CAN. These overlays implement a basic key-based routing mechanism. This
allows for deterministic routing of messages and adaptation to node failures in the
overlay network.

The advantage of Structured P2P networks is their ability to efficiently and reliably
lookup objects in the network (IF the object exists, it WILL be found). Their two
disadvantages are (1) only simple lookup queries are supported and (2) maintenance of
the network, i.e., nodes joining and leaving the network, is much more expensive than in
unstructured networks.

2.2.2 Distributed K-ary System (DKS)

DKS [25] is a peer-to-peer middleware developed at KTH/Royal Institute of Technology
and the Swedish Institute of Computer Science (SICS) in the context of the european
project PEPITO. It is entirely written in JAVA. Supports scalable Internet-scale Multicast,
Broadcast, Name-based Routing, and provides a simple Distributed Hash Table
abstraction.

Distributed hash table (DHT)

DHT[26] is a class of decentralized distributed systems that provide a lookup service
similar to a hash table. A hash table is a data structure that associates keys with values.

- 6 -

http://en.wikipedia.org/wiki/Chord_project
http://en.wikipedia.org/wiki/Pastry_%28DHT%29
http://en.wikipedia.org/wiki/Tapestry_%28DHT%29
http://en.wikipedia.org/wiki/Content_Addressable_Network
http://en.wikipedia.org/wiki/Tulip_Overlay
http://en.wikipedia.org/wiki/BitTorrent
http://en.wikipedia.org/wiki/Coral_Content_Distribution_Network
http://www.kth.se/eng/index.html
http://www.sics.se/
http://www.sics.se/pepito/

Chapter 2 Background

The primary operation it supports efficiently is a lookup: given a key (e.g. a person's
name), find the corresponding value (e.g. that person's telephone number). It works by
transforming the key using a hash function into a hash, a number that is used to index
into an array to locate the desired location ("bucket") where the values should be.

DHT has key features: decentralization, scalability, fault tolerance. Decentralization
means the nodes collectively form the system without any central coordination.
Scalability means the system should function efficiently even with thousands or millions
of nodes. Fault tolerance implies that lookups should be possible even if some nodes fail
and the system should be reliable even with nodes continuously joining, leaving, and
failing.

The structure of DHT can be decomposed into several main components [27] [28]. The
foundation is an abstract keyspace, such as the set of 160-bit strings. A keyspace
partitioning scheme splits ownership of this keyspace among the participating nodes.
Each node maintains a set of links to other nodes (its neighbors or routing table).
Together these links form the overlay network. A node picks its neighbors according to a
certain structure, called the network's topology. Guarantee that the maximum number of
hops in any route (route length) is low, so that requests complete quickly; and that the
maximum number of neighbors of any node is low, so that maintenance overhead is not
excessive are two key constrains on ontology.The overlay network then connects the
nodes, allowing them to find the owner of any given key in the keyspace.

DHT use consistent hashing [29] to map keys to nodes. Consistent hashing is a scheme
that provides hash table functionality in a way that removal or addition of one node
changes only the set of keys owned by the nodes with adjacent IDs, and leaves all other
nodes unaffected. This technique employs a function δ(k1,k2) which defines an abstract
notion of the distance from key k1 to key k2, which is unrelated to physical distance or
network latency. Each node is assigned a single key called its identifier (ID). A node with
ID i owns all the keys for which i is the closest ID, measured according to δ.

Once these components are in place, a typical use of the DHT for storage and retrieval
might proceed as follows. Suppose the keyspace is the set of 160-bit strings. To store a
file with given filename and data in the DHT, the SHA1 hash of filename is found,
producing a 160-bit key k, and a message put(k,data) is sent to any node participating in
the DHT. The message is forwarded from node to node through the overlay network until
it reaches the single node responsible for key k as specified by the keyspace partitioning,
where the pair (k,data) is stored. Any other client can then retrieve the contents of the file
by again hashing filename to produce k and asking any DHT node to find the data
associated with k with a message get(k). The message will again be routed through the
overlay to the node responsible for k, which will reply with the stored data.

DKS

- 7 -

Chapter 2 Background

Distributed K-ary System is scalable and fault-tolerance peer-to-peer middleware. It
supports scalable self-managing without unnecessary bandwidth consumption. It uses
symmetric replication [30] to enable information backup and concurrent requests. It also
supports multicast [31] and efficient broadcast [32] [33] [34] group communication and
guarantees consistent lookup results in the presence of nodes joining and leaving. Each
lookup request in DKS is resolved in at most logk(N) overlay hops under normal
operations. Each node maintains only (k − 1) logk(N) + 1 addresses of other nodes for
routing purposes. PhD paper [31] gives all the algorithms which are implemented by
DKS. For instance, it gives a simple broadcast algorithm, the time complexity of the
simple broadcast algorithm is logk(n) and the message complexity is n, because all
nodes receive the message and no node receives the message more than once. Every node
delegates non-overlapping intervals to all its children, so this algorithm is a no-
redundancy algorithm. In the same paper, authors also give an extension algorithm
called Simple Broadcast with Feedback which efficiently collects responses from all
nodes after broadcasting.

One challenge in peer-to-peer is to maintain routing information in the presence of nodes
joining, leaving, or failing. Most of the existing structured P2P systems use costly
periodic stabilization protocols to ensure that the routing information is up-to-date
[35][36][37]. The main disadvantage of this is that it includes a high bandwidth
consumption. Indeed, at steady periods when the dynamism in the system is low,
unnecessary bandwidth is consumed by periodic stabilization. In [38] the authors of the
paper proposed a technique called correction-on-use that embeds parameters in routing
messages such that incorrect routing information is corrected on-the-fly without the use
of periodic stabilization. The outdated routing entries are corrected only when they are
used. As long as the ratio of lookups to joins, leaves, and failures is high, the routing
information is eventually corrected. Though correction-on-use consumes less bandwidth
than periodic stabilization it assumes that the ratio between the number of routing
messages to the dynamism in the system is high enough such that there are enough
routing messages to correct the routing information that is invalidated as the result of
dynamism. Consequently, routing information will become outdated if this ratio is low.
In [18] the author proposed a novel technique called correction-on-change, which allows
the system to automatically adapt to the dynamism while avoiding unnecessary
bandwidth consumption. This technique achieves this goal without any assumptions on
the amount of routing message in the system. Instead of correcting outdated routing
information lazily, correction-on-change only updates outdated entries of all nodes
eagerly whenever a change is detected. Effective failure handling is simplified as the
detection of a failure triggers a correction-on-change which updates all the nodes that
have a pointer to the failed node. The resulting system has increased robustness as nodes
with stale routing information are immediately updated.

2.3 OGSA, WSRF, and GT4

The OGSA Grid Services Architecture (OGSA), developed by The Global Grid
Forum[39], of which Globus Alliance is a leading member, aims to define a common,

- 8 -

Chapter 2 Background

standard, and open architecture for grid-based applications. In OGSA, everything is
service. Therefore Grid is an aggregation of extendable grid services. The objectives of
OGSA are to:

• Manage resources across distributed heterogeneous platforms.
• Deliver seamless quality of service (QoS).
• Provide a common base for autonomic management solutions.
• Define open, published interfaces. For interoperability of diverse resources, grids

must be built on standard interfaces and protocols.
• Exploit industry standard integration technologies.

Four main layers comprise the OGSA architecture: See Figure 2-2. Starting from the
bottom, they are:

• Resources layer. Resources are physical resources and logical resources. Physical
resources include servers, storage, and network. Above the physical resources are
logical resources. They provide additional function by virtualizing and
aggregating the resources in the physical layer.

• Web services, plus the OGSI extensions that define grid services. All grid
resources, both logical and physical are modeled as services. OGSI exploits the
mechanisms of Web services like XML and WSDL to specify standard interfaces,
behaviors, and interaction for all grid resources. OGSI extends the definition of
Web services to provide capabilities for dynamic, stateful, and manageable Web
services that are required to model the resources of the grid. OGSA architected
services

• OGSA architected grid services layer. The Global Grid Forum is currently
working to define many of these architected grid services in areas like program
execution, data services, and core services. As more implementations of grid
services appear, OGSA will become a more useful Service-Oriented Architecture
(SOA).

• Grid applications. Grid applications that use one or more grid architected services.

- 9 -

Chapter 2 Background

Figure 2-2 OGSA main architecture [40]

The Web Service Resource Framework (WSRF) is a specification developed by OASIS
[41]. WSRF is only a small part of the whole GT4 Architecture. WSRF specifies how we
can make our Web Services stateful. WSRF provides the stateful services that OGSA
needs. Stateful service means that the Web service can “remember” information, or keep
state, from one invocation to another. Instead of putting the state in the Web service
WSRF keeps it in a separate entity called a resource, which will store all the state
information. In WSRF, there is a formula: Web service + Resource= Web Resource.
Endpoint reference is used to address the particular Web Resource. The following are the
WSRF specifications:

• WS-ResourceProperties. It describes an interface to associate a set of typed values
with a WS-Resource that may be read and manipulated in a standard way.
It specifies how resource properties are defined and accessed. These properties are
defined in the Web service’s WSDL interface description.

• WS-ResourceLifetime. It supplies some basic mechanisms to manage the
lifecycle of our resources.

• WS-ServiceGroup. It specifies how exactly we should go about grouping services
or WS-Resources together. It is the base of more powerful discovery services
(such as GT4’s IndexService[42]) which allow us to group different services
together and access them through a single point of entry (the service group).

• WS-BaseFaults. This specification aims to provide a standard way of reporting
faults when something goes wrong during a WS-Service invocation.

Related specifications:
• WS-Notification. It is not a part of WSRF, is closely related to it. This

specification allows a Web service to be configured as a notification producer,
and certain clients to be notification consumers (or subscribers).

- 10 -

Chapter 2 Background

• WS-Addressing. We can use WS-Addressing to address a Web service + resource
pair (a WS-Resource).

GT4 includes quite a few high-level services that we can use to build Grid applications.
The relationship between OGSA, GT4, WSRF, and Web Services is shown in Figure 2-3

Figure 2-3. The relationship between OGSA, GT4, WSRF, and Web Services. [43]

2.4 Globus Toolkit 4

The Globus Toolkit is a software toolkit, developed by The Globus Alliance [4], which
can be used to create Grid systems. The Globus Toolkit includes a resource monitoring
and discovery service, a job submission infrastructure, security infrastructure, and data
management service.

The Globus Toolkit’s Monitoring and Discovery System (MDS) implements a standard
Web Services interface to a variety of local monitoring tools and other information
sources. MDS4 builds on query, subscription and notification protocols and interfaces
defined by the WS Resource Framework (WSRF) and WS-Notification families of
specifications and implemented by the GT4 Web Services Core. It provides a range of
information providers which are used to collect information from specific sources. These
components often interface to other tools and systems, such as the Ganglia cluster
monitor and the PBS and Condor schedulers. MDS4 also provides two higher-level
services: an Index service, which collects and publishes aggregated information about

- 11 -

Chapter 2 Background

information sources, and a Trigger service, which collects resource information and
performs actions when certain conditions are triggered. These services are built upon a
common Aggregation Framework infrastructure that provides common interfaces and
mechanisms for working with data sources.

Grid Resource Allocation Manager (GRAM) component is a core set of services that help
perform the actual work of launching a job on a particular resource, checking status and
retrieving results. GRAM provides job and execution management services to submit,
monitor, and control jobs, but relies on supporting services for transferring files and
managing credentials. File services are provided by GridFTP to assist GRAM with
staging input and output files. Credential management handles delegation of credentials
to other services and to the required distributed grid resources.

Grid Security Infrastructure (GSI) which enables grid entities to use authentication,
authorization, and secure communication over open networks is the security component
in Globus Toolkit 4. GSI uses public key cryptography (also known as asymmetric
cryptography) as the basis for its functionality. GSI offers programmers five features:

• Transport-level and message-level security. The difference between these two
level is that Transport-level security encrypt all the information exchanged
between the client and the server, however the latter only encrypt the content of
the SOAP message. GSI offers two message-level protection schemes which are
GSI Secure Message and GSI Secure Conversation, and one transport-level
scheme, GSI Transport.

• Three authentication methods. The first method is X.509 certificates, all three
protection schemes are used along with X.509 certificated to provide strong
authentication. The second is Username and password and the third method is
anonymous authentication.

• Several authorization schemes. GSI supports authorization in both the server-side
and the client-side. The server will decide if it accepts or declines an incoming
request depending on the authorization it chooses. The client figure out when it
will allow a service to be invoked.

• Credential delegation, single sign-on and Proxy Certificates. GSI provides a
delegation capability: an extension of the standard SSL protocol which reduces
the number of times the user must enter his passphrase. If a Grid computation
requires that several Grid resources be used (each requiring mutual
authentication), or if there is a need to have agents (local or remote) requesting
services on behalf of a user, the need to re-enter the user's passphrase can be
avoided by creating a proxy. Using proxy Certificate, the user only has to sign in
once to create the proxy certificate which then is used for all subsequent
authentications.

• Different levels of security: container, service, and resource. We can configure
security and set different authorization mechanisms for each level.

The Globus Toolkit provides a number of components for doing data management. The
components available for data management fall into two basic categories: data movement
and data replication. There are two components related to data movement in the Globus

- 12 -

Chapter 2 Background

Toolkit: the Globus GridFTP tools and the Globus Reliable File Transfer (RFT) service.
The Replica Location Service (RLS) is one component of data management services for
Grid environments. RLS is a tool that provides the ability keep track of one or more
copies, or replicas, of files in a Grid environment.

2.5 Semantics

The Grid is frequently heralded as the next generation of the Internet. The Semantic Web
is proposed as the (or at least a) future of the Web [44]. The Semantic Web is a vision for
the future of the Web in which information is given explicit meaning, making it easier for
machines to automatically process and integrate information available on the Web. The
semantic web comprises the standards and tools of XML, XML Schema, RDF, RDF
Schema and OWL. XML provides an elemental syntax for content structure within
documents, yet associates no semantics with the meaning of the content contained within.
XML Schema is a language for providing and restricting the structure and content of
elements contained within XML documents. RDF is a simple language for expressing
data models, which refer to objects ("resources") and their relationships. RDF Schema is
a vocabulary for describing properties and classes of RDF-based resources, with
semantics for generalized-hierarchies of such properties and classes. In automatic Web
service discovery application the OWL-S service ontology [45] is used to provide the
vocabulary for service advertisements and users’ requirements and the OWL ontologies
[46] are used to describe domain knowledge. Based on these descriptions a prototype of
web service automatic discovery, where machines can flexibly and automatically search
for services according to users’ requirements, is implemented.

2.5.1 RDF

RDF is a general framework for describing a Web site's metadata, or the information
about the information on the site. It describes resources in terms of simple properties and
property values. The subject of an RDF statement is a resource, possibly as named by a
Uniform Resource Identifier (URI). It does not represent a tangible, network-accessible
resource. Such a URI could denote the abstract notion of world peace. RDF is intended
for situations where information should be processed by applications.

One RDF statement has only three parts:

• Subject – identifies the thing the statement is about
• Predicate – the part that identifies properties of the subject
• Object – the part that specifies the value of the property

Let's take RDF statement, “http://www.example.org/artical.html has a creator Yeou
Yang” as an example. “http://www.example.org/artical.html” is a subject,
“http://purl.org/dc/element/1.1/creator” is a predicate and
“http://www.example.org/staffname/YeouYang” is the object. The graph is presented
below, Figure 2-4:

- 13 -

http://www.webopedia.com/TERM/R/meta_data.html

Chapter 2 Background

Figure 2-4 An example of RDF model

We put RDF description in the XML file as following:

Figure 2-5 XML serialization of the RDF model

2.5.2 RDF Schema (RDFS)

RDF describes resources with classes, properties, and values. In addition, RDF also needs
a way to define application-specific classes and properties. Application-specific classes
and properties must be defined using extensions to RDF. One such extension is RDF
Schema. RDF Schema does not provide actual application-specific classes and properties.
Instead RDF Schema provides the framework to describe application-specific classes and
properties. Classes in RDF Schema are much like classes in object oriented programming
languages. This allows resources to be defined as instances of classes, and subclasses of
classes. Let’s take another example, “horse is a subclass of animal”. The RDF schema is
shown in Figure 2-6

http://www.example.org/artical.html

http://purl.org/dc/element/1.1/creator

http://www.example.org/staffid/YeouYang

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:exterms=" http://purl.org/dc/element/1.1/">
<rdf:Description rdf:about="http://www.example.org/index.html">

<exterms:creator
rdf:resource=”http://www.example.org/staffid/YeouYang” />

</rdf:Description>
 </rdf:RDF>

<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf= "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xml:base= "http://www.animals.fake/animals#">

 <rdfs:Class rdf:ID="animal" />
 <rdfs:Class rdf:ID="horse">
 <rdfs:subClassOf rdf:resource="#animal"/>
 </rdfs:Class>

 </rdf:RDF>
Figure 2-6 An example of RDF schema

- 14 -

http://www.example.org/staffid/YeouYang

Chapter 2 Background

2.5.3 OWL

This language is used as a standard by the W3C. OWL is a set of XML elements and
attributes, with standardized meaning, that are used to define terms and their relationships.
A logical reasoning can be applied to the ontology. The logic which is used is description
logic (some other is FLogic). Ontology can also be expressed as binary relations.

The OWL has the same features found in other languages used for ontology, such as:
DAML-OIL (DARPA Agent Markup Language - Ontology Inference Layer), RDF
(Resource Description Framework) and RDF-S (RDF Schema). OWL is designed for use
by applications that need to process the content of information instead of only presenting
information to humans. OWL facilitates greater machine interpretability of Web content
than that supported by XML, RDF, and RDF-S by providing additional vocabulary along
with a formal semantics. OWL has three increasingly-expressive sublanguages: OWL
Lite, OWL DL, and OWL Full [46].

OWL is Different from RDF. OWL and RDF are much of the same thing, but OWL is a
stronger language with greater machine interpretability than RDF. OWL extends RDF
Schema. OWL comes with a larger vocabulary and stronger syntax than RDF. OWL adds
more vocabulary for describing properties and classes: among others, relations between
classes (e.g. disjointness), cardinality (e.g. "exactly one“ instance), equality, richer typing
of properties, characteristics of properties (e.g. symmetry), and enumerated
classes.Different types of constraints can be expressed: equivalentProperty , inverseOf,
TransitiveProperty, SymmetricProperty etc [47].

We give an example of using OWL to define two terms, “Camera”, “SLR” and their
relationship. State that SLR(Single Lens Reflex) is a type of camera.

Figure 2-

2.5.4 OWL

OWL-S [45] s
constructs for
unambiguous, c
Ontology Web
automation of W
<owl:Class rdf:ID="Camera"/>

<owl:Class rdf:ID="SLR">
 <rdfs:subClassOf rdf:resource="#Camera"/>
</owl:Class>

7 An example of using OWL to define terms and their relationship

-S

upplies web service providers with a core set of markup language
describing the properties and capabilities of their Web services in
omputer-interpretable form. The current version of OWL-S builds on the
Language (OWL). OWL-S of Web services is intended to facilitate the
eb service tasks including automated Web service discovery, execution,

- 15 -

Chapter 2 Background

interoperation, composition and execution monitoring. In OWL-S, service descriptions
are structured into three essential types of knowledge, shown in Figure 2-8: a
ServiceProfile, a ServiceModel (which describes the ServiceProfile), and a
ServiceGrounding. Services can be matched by either their OWL-S profiles [48] or
OWL-S models [49]. Using semantic-based description to describe service, we can
retrieve and process service easily and improve the efficiency of using the network.

Figure 2-8 Top level of the service ontology [50]
• The service profile presents “what the service does” with necessary functional

information: input, output, preconditions, and the effect of the service. It is used for
advertising and discovering services. Figure 2-9 shows the Properties of the Profile.

Figure 2-9 Properties of the Profile [51]

Service Profile: The class ServiceProfile provides a superclass of every type of high-level
description of the service. ServiceProfile does not mandate any representation of services,
but it mandates the basic information to link any instance of profile with an instance of

- 16 -

Chapter 2 Background

service. There is a two-way relation between a service and a profile, so that a service can
be related to a profile and a profile to a service. These relations are expressed by the
properties presents and presentedBy.
Service Name, Contacts and Description: Some properties of the profile provide human-
readable information that is unlikely to be automatically processed. These properties
include serviceName, textDescription and contactInformation. A profile may hame at
most one service name, and text description, but many items of contact information as the
provider wants to offer.
Functionality Description: An essential component of the profile is the specification of
what functionality the service provides and the specification of the conditions that must
be satisfied for a successful result. In addition, the profile specifies what conditions result
from the service, including the expected and unexpected results of the service activity.
The OWL-S Profile represents two aspects of the functionality of the service: the
information transformation (represented by inputs and outputs) and the state change
produced by the execution of the service (represented by preconditions and effects).
Profile Attributes: Besides functional description of services, there are additional
attributes include the quality guarantees that are provided by the service, possible
classification of the service, and additional parameters that the service may want to
specify. serviceParameter is an expandable list of properties that may accompany a
profile description. The value of the property is an instance of the class ServiceParameter.
serviceCategory refers to an entry in some ontology or taxonomy of services. The value
of the property is an instance of the class ServiceCategory.
• The service model describes "how the service works”, that is all the processes the

service is composed of, how these processes are executed, and under which
conditions they are executed. It gives a detailed description of a service's operation.

• The service grounding describes “How is it used”. It provides details on how to
interoperate with a service, via messages.

2.5.5 Reasoning
• Jena[52]
Jena is a Java framework for building Semantic Web applications. It provides a
programmatic environment for RDF, RDFS and OWL, SPARQL and includes a rule-
based inference engine.
The Jena Framework includes:

• A RDF API
• Reading and writing RDF in RDF/XML, N3 and N-Triples
• An OWL API
• In-memory and persistent storage
• SPARQL query engine

Jena only supports OWL Lite. It has a number of predefined reasoners. They are
transitive reasoner, RDFS rule reasoner, OWL, OWL Mini, OWL micro reasoners,

- 17 -

http://www.w3.org/2001/SW/
http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/2001/sw/WebOnt/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

Chapter 2 Background

DAML micro reasoner, Generic rule reasoner. The default OWL reasoner included in
Jena is rather limited and incomplete hence the need for a fuller reasoner to be plugged
on Jena. The Jena2 inference subsystem is designed to allow a range of inference engines
or reasoners to be plugged into Jena. The primary use of this mechanism is to support the
use of languages such as RDFS and OWL which allow additional facts to be inferred
from instance data and class descriptions.

• Pellet [53]

Pellet is an open source, OWL DL reasoner in Java. It can be used in conjunction with
both Jena and OWL API libraries; it can also be downloaded and be included in other
applications. Based on the tableaux algorithms developed for expressive Description
Logics (DL). It has many features:

• Standard Reasoning Services
• Multiple Interfaces to the Reasoner [54]
• Datatype Reasoning
• Conjunctive Query Answering
• Rules Support
• Ontology Analysis and Repair
• Ontology Debugging
• Incremental Reasoning

Pellet provides all the standard inference services that are traditionally provided by DL
reasoners:

• Consistency checking, which ensure an ontology doesn’t contain any
contradictory facts.

• Concept satisfiability, which determines whether it’s possible for a class to have
any instances.

• Classification, which computes the subclass relations between every named class
to create the complete class hierarchy. The class hierarchy can be used to answer
queries such as getting all or only the direct subclasses of a class.

• Realization, which finds the most specific classes that an individual belongs to; or
in other words, computes the direct types for each of the individuals.

- 18 -

Chapter 3 Related Work in resource discovery service for Grids

3 Related works in Semantic-Based Resource Discovery

3.1 Monitoring and Discovery System (MDS4)
Monitoring and Discovery System (MDS4) [55] is a suite of web services to monitor and
discover resources and services on Grids. It is the Globus Toolkit's information services
component. MDS4 provides query and subscription interfaces to arbitrarily detailed
resource data and a trigger interface that can be configured to take action when pre-
configured trouble conditions are met.

Monitoring and discovery mechanisms can help us observing resources or services and
finding a suitable resource to perform a task. Take finding a compute host on which to
run a job for instance. This process may involve both finding which resources have the
correct CPU architecture and choosing a suitable member with the shortest submission
queue. The motivation for collecting information is to enable discovery of services or
resources and enable monitoring of system status.

In the following sections (3.1.1- 3.1.4), we’ll take a closer look at the MDS4 and know
more about how to use MDS4 in a grid system.

3.1.1 Three types of Aggregator

Before we introduce this section, we need to import an important concept that is
aggregator service. MDS4 provides aggregator services that collect recent state
information from registered information sources. It provides some user interfaces like
browser based interfaces, command line tools, and Web service interfaces that allow
users to query and access the collected information.

MDS4 provides three different aggregator services with different interfaces and behaviors:
MDS-Index, which supports Xpath queries on the latest values obtained from the
information sources; MDS-Trigger, which performs user-specified actions (such as send
email) whenever collected information matches user determined criteria; and MDS-
Archiver, which stores information source values in a persistent database that a client can
then query for historical information. It also implemented a range of information
providers used to collect information from specific sources. We will discuss information
providers in section 3.1.4.

The MDS-Index service makes data collected from information sources available as XML
documents. More specifically, the data is maintained as WSRF resource properties. There
are three ways to retrieve this data. The first one is write your own application which
collect information using standard Web service interface, WSRF get-property and WS-
Notification operations. The second method is using command line tool wsrf-get-property
to retrieve resource properties, with the desired resource property specified via an XPath
expression. The third method is using a tool WebMDS. Standard transformations
included in GT4 provide an interface that displays overview information, with hyperlinks
giving the ability to view more detailed information about each monitored resource.

- 19 -

Chapter 3 Related Work in resource discovery service for Grids

The MDS-Trigger service defines a Web service interface that allows a client to register
an Xpath query and a program to be executed whenever a new value matches a user-
supplied matching rule. It compares the data against a set of conditions defined in a
configuration file. When a condition is met, or triggered, an action takes place.

The MDS-Archive service stores all values received from information sources in
persistent storage. Client requests can then specify a time range for which data values are
required.

MDS4 makes heavy use of XML and Web service interfaces to simplify the tasks of
registering information sources and locating and accessing information of interest. In
particular, all information collected by aggregator services is maintained as XML, and
can be queried via Xpath queries. Therefore we decide to use Xpath language as client’s
query language to query the response XML from MDS-Index service.

3.1.2 MDS Aggregator Framework

MDS Aggregator Framework provides common VO-level functionality, such as
registration management, collection of information about Grid resource. It also allows
developer to plug in their specialized functionalities, for example Index Service and
Trigger Service. There are two important concepts Aggregator sources and Aggregator
sink in MDS Aggregator Framework. Aggregator sources collect information from WS-
Resources and feed that information to Aggregator sinks (such as the Index Service and
Trigger Service). The following graphic, Figure 3-1, describes the basic information flow
including the three standard aggregator sources: Query Aggregator Source, Subscription
Aggregator Source and Execution Source.

- 20 -

Chapter 3 Related Work in resource discovery service for Grids

Aggregator source

Aggregator sink

Figure 3-1 Information flow in MDS4 [56]

The basic ideas of aggregator-information source framework as follows:
• Information sources for which discovery or access is required are explicitly registered

with an aggregator service. These information sources could be a file, a program, a
Web service, or another network-enabled service.

• Registrations have a lifetime, if not renewed periodically, they expire. Information
sources must be registered periodically with any aggregator service that is to provide
access to its data values. In our thesis work, we use MDS-Index as aggregator service.
Registration is performed via a Web service (WS-ServiceGroup) Add operation.
Information resources are registered using tools like mds-servicegroup-add [57]. One
way of registration is to use an aggregator registration file defines service registrations.
Each registration specifies a grid resource, a service group the resource should register
with, and service configuration parameters. This file is used with the mds-
servicegroup-add command to maintain registrations between grid resources and the
Index Service. The file defines the location of the Index Service referred to as the
default service group end point reference.

• The aggregator periodically collects up-to-date state or status information from all
registered information sources.

• The aggregator then makes all information obtained from registered information
sources available via an aggregator-specific Web services interface.

- 21 -

Chapter 3 Related Work in resource discovery service for Grids

MDS4 aggregators are distinguished from a traditional static registry such as X.500,
LDAP and UDDI by their soft-state registration of information sources and periodic
refresh of the information source values that they store. The authors of paper [60]
explained that in the case of X.500 and LDAP, there is an assumption of a well-defined
hierarchical organization, and current implementations tend not to support dynamic data
well. This dynamic behavior provided by MDS4 enables scalable discovery, by allowing
users to access “recent” information without accessing the information sources directly.
However X.500, LDAP and UDDI do not address explicitly the dynamic addition and
deletion of information sources. So MDS4 aggregators are more flexible.

3.1.3 Information Providers

An Aggregator Source is used to collect XML-formatted data, this data is provided by
external software component, we call it Information Providers. These components often
interface to other tools and systems, such as the Ganglia cluster monitor and Condor
schedulers and WS GRAM (see Table 3-1 for a current list).

Table 3-1: Information Providers

Source Information
WS GRAM The job submission service component of GT4. This WSRF

service publishes information about the local scheduler,
including: query information, number of CPUs available and
free, job count information, some memory staticts.

Reliable File Transfer
Service (RFT)

The file transfer service component of GT4. This WSRF
service publishes: status data of the server, transfer status for a
file or set of files, number of active transfers, and some status
information about the resource running the service.

Community
Authorization Service
(CAS)

This WSRF service publishes information identifying the VO
that it serves. Such as ServerDN, VODescription.

Ganglia information
Provider

It gathers cluster data from resources running Ganglia using
the XML mapping of the GLUE schema [61] and reports it to
a WS GRAM service, which publishes it as resource
properties. This information includes: basic host data (name,
ID), memory size, OS name and version, file system data,
processor load data and other basic cluster data.

Hawkeye information
Provider

It gathers Hawkeye data about Condor pool resources using
the XML mapping of the GLUE schema and reports it to a
WS GRAM service, which publishes it as resource properties.
This information includes: basic host data (name, ID),
processor information, memory size, OS name and version,
file system data, processor load data and other basic Condor
host data.

Any other WSRF
service

Publish resource properties.

- 22 -

Chapter 3 Related Work in resource discovery service for Grids

The GLUE resource property (as used by GRAM) collects information from two sources:
the scheduler and the cluster information system (for example Ganglia or Hawkeye).
These are merged to form a single output resource property in the GLUE schema.

Because WS GRAM, RFT and CAS have already registered to DefaultIndexService by
default, if we want to collect data from two cluster monitoring systems Ganglia or
Hawkeye, we need to make sure that Ganglia or Hawkeye is configured and running
properly to view cluster information in the Index Service. Document [62] gives us more
information about configuration and how to write a new provider.

3.2 The Java XPath API

MDS4 has similar feature to previous versions MDS2 and MDS3. One important
difference is a more powerful query language (XPath instead of LDAP). Because the
query response returned from MDS4 Index Service is in form of XML file which
includes the look up result, we use XPath[63] in our thesis work.

“XPath 2.0 is an expression language that allows the processing of values conforming to
the data model defined in [XQuery/XPath Data Model (XDM)]. [63]” “XPath 2.0 is a
superset of XPath 1.0, with the added capability to support a richer set of data types, and
to take advantage of the type information that becomes available when documents are
validated using XML Schema. [63]” It is backwards compatible with XPath 1.0.

 In XPath, there are four kinds of data type: node-set, boolean, string, number. It has
seven kinds of nodes: element, attribute, text, namespace, processing-instruction,
comment, and document (root) nodes. XPath uses path expressions to select nodes or
node-sets in an XML document. The most useful path expressions are listed in the Table
3-2.

Table 3-2: useful path expressions

Expression Description
nodename Selects all child nodes of the node

/ Selects from the root node
// Selects nodes in the document from the current node that match the

selection no matter where they are
. Selects the current node
.. Selects the parent of the current node
@ Selects attributes

We can also use predicates to find a specific node or a node that contains a specific value.
Predicates are always embedded in square brackets. For example, we select all the title
elements that have an attribute named lang with a value of 'eng'. We use expression like
//title[@lang='eng']. Another example, /bookstore/book[@price>35.00]/title means that
selects all the title elements of the book elements of the bookstore element that have a

- 23 -

Chapter 3 Related Work in resource discovery service for Grids

price element with a value greater than 35.00. XPath wildcards can be used to select
unknown XML elements. For example, we use //title[@*] to select all title elements
which have any attribute.

XPath includes over 100 built-in functions. There are functions for string values, numeric
values, date and time comparison, node and QName manipulation, sequence
manipulation, Boolean values, and more.

3.3 Matchmaking

Discovering a service which satisfies a request sufficiently is a major issue in any
application process. As a result, the motivation to develop a powerful and customizable
matchmaking engine becomes a very important criterion. The Matchmaker serves as a
"yellow pages" of service capabilities. The Matchmaker allows users and/or software
agents to find each other by providing a mechanism for registering service capabilities.
Matchmaking agents would, upon receiving a request from a consumer of a web service,
search their database of advertisements to come up with a set of advertisements that best
meet the requested requirements. In section 3.4.1 we introduce a traditional resource
matchmaker Condor Matchmaker in Grid, section 3.4.2 we will see the profile and the
model can be used for matchmaking.

3.3.1 Condor Matchmaker

Existing resource description and resource selection in the Grid is highly constrained.
Traditional resource matching, as exemplified by the Condor Matchmaker, is done based
on symmetric, attribute-based matching. In these systems, the values of attributes
advertised by resources are compared with those required by jobs. For the comparison to
be meaningful and effective, the resource providers and consumers have to agree upon
attribute names and values. The exact matching and coordination between providers and
consumers make such systems inflexible and difficult to extend to new characteristics or
concepts. Moreover, in a heterogeneous multi-institutional environment such as the Grid,
it is difficult to enforce the syntax and semantics of resource descriptions.

Condor uses matchmaking to bridge the gap between planning and scheduling.
Matchmaking creates opportunities for planners and schedulers to work together while
still respecting their essential independence. The ClassAd mechanism in Condor provides
an extremely flexible and expressive framework for matching resource requests (e.g. jobs)
with resource offers (e.g. machines). ClassAds allow Condor to adopt to nearly any
desired resource utilization policy and to adopt a planning approach when incorporating
Grid resources.

- 24 -

Chapter 3 Related Work in resource discovery service for Grids

In book [64], authors describe the steps for matchmaking, shown in Figure 3-2. In the
first step, agents and resources advertise their characteristics and requirements in
classified advertisements (ClassAds). In the second step, a matchmaker scans the known
ClassAds and creates pairs that satisfy each other’s constraints and preferences. In the
third step, both parties of the match are informed by matchmaker. In the final step,
claiming, the matched agent and the resource establish contact, possibly negotiate further
terms, and then cooperate to execute a job.

 Figure 3-2 Condor matchmaking

3.3.2 Semantic web service matchmaking algorithms

Before we introduce semantic based web service matchmaking, let us see an online car
shop example. Figure 3-3 gives a simple example of web service matchmaking. In figure
3-3, a provider describes advertised services using semantic web service description. A
requester specifies what kind of service he wants to find. Given the automobile name, the
service should return the price of it. It means the service should have one input and one
out put. Repository matches the input and output of request and advertisements web
service separately and returns matched advertisements in relevance order. A provider
advertises automobile selling services, whereas a requester is looking for a service selling
sedan. We know that sedan is an automobile having two or four doors and a front and
rear seat. From figure 3-4 we find out the sedan is subsumed by Family car. The output of
the request and advertisement are exactly the same.

advertisement
request

hasInput: Familycar
hasInput: sedan hasOutput: price
hasOutput: price textDescription: used car

shop in Tokyo

query service

Figure 3-3 Semantic based web service matchmaking

repository &
matchmaker

provider
register

requester

- 25 -

Chapter 3 Related Work in resource discovery service for Grids

AutomobileCar-type
ontology

Car Truck

Sport car Family car

Figure 3-4 Car-type ontology

Based on the semantic description according to OWL-S, there are already some
approaches available for matching of service requirements with service advertisements
according to such ontology.

The idea beneath the matching methods in [65] is that two services do not necessarily
need to be exactly equal to match; the only thing we need is to let services “sufficiently”
similar. A match between an advertisement and a request consists of the match of (1) all
request outputs are matched by advertisement outputs and (2) all advertisement inputs are
matched by request inputs (Figure 3-5). Guarantees that the matched service provides all
outputs requested by the requester, and that the requester provides all input required for
correct operation to the matched service. In [65], the algorithm for output matching is
described in detail in Figure 3-6. The degree of success depends on the degree of match
detected. If one of the request’s output is not matched by any of the advertisement’s
output the match fails. The matching between inputs is computed following the same
algorithm, but with the order of the request and the advertisement reversed (Figure 3-7).

inR Sedan Minivan

Hatchback

inA

Two doors

inR: a request input
inA: an advertisement input

- 26 -

Chapter 3 Related Work in resource discovery service for Grids

 O
utput

Input

advertisement

 O
utput

Input

request

Figure 3-5 Basic principle of matching

Figure 3-6 Algorithm for output matching

inputMatch(inputsRequest, inputsAdvertisement){
 globalDegreeMatch=Exsact
 forall inA in inputsAdvertisement do{
 find inR in inputsRequest such that
 degreeMatch= degreeOfMatch(inR, inA)
 if(degreeMatch=fail) return fail
 if(degreeMatch<globalDegreeMatch)
 globalDgreeMatch=degreeMatch
 return sort(recordMatch);
 }
}

 Figure 3-7 Algorithm for input matchmaking

Degrees of match are organized along a discrete scale in which exact matches are of
course preferable to any another; plugIn matches are the next best level, because the
output returned can probably be used instead of what the requester expects. Subsumes is
the third best level since the requirements of the requester are only partially satisfied; the
advertised service can provide only some specific cases of what the requester desires. Fail
is the lower level and it represents an unacceptable result [65]. The
maxDegreeMatch(outR,outA) in output matching algorithm and the

- 27 -

Chapter 3 Related Work in resource discovery service for Grids

degreeOfMatch(inR,inA) in the input matchmaking can be the reuse the same algorithm
in Figure 3-8.

Figure 3-8 Rules for the degree of match assignment

• There is another extension of the algorithm [66] and [67].

Different matching degrees are achieved based on the matching degrees of the input and
output types for requested and advertised services. Furthermore, additional elements of
the service description, such as the service category, are either covered by reasoning
processes. “DAML-S is a DAML-based Web service ontology, which supplies Web
service providers with a core set of markup language constructs for describing the
properties and capabilities of their Web services in unambiguous, computer-intepretable
form. DAML-S markup of Web services will facilitate the automation of Web service
tasks, including automated Web service discovery, execution, composition and
interoperation.” “Everything said about a DAML-S file (or ontology element) is also true
of the equivalent OWL-S file (or ontology element). [68]” OWL-S is built upon OWL
and DAML-S is built upon DAML-OIL which is predecessor of OWL. So matchmaking
algorithm for daml-s description in [67] can be used for OWL-S service description
matchmaking.

The matching algorithm uses propertyMatch and conceptMatch to classify the different
relations between properties and concepts when comparing two concepts or two
properties. In Description Logics [69], nodes are mainly referred to as concepts. In
general, the elements of a network are nodes and links. Figure 3-9 describes a simple
network. Typically nodes are used to characterize sets of classes of individuals, such as
Mother in the network, and links are used to characterize relationships among them, such
as the link between the concepts Mother and Female states that a woman is a female.
Such a relationship is often termed a "IS-A" relationship. This relationship defines a
hierarchy over the concepts, i.e. Female is a more general concept than Mother. The more
general concept is termed the superconcept, whereas the more specific concept is called
the subconcept. The "IS-A" relationship also provides the basis for the inheritance of
properties; when a concept is more specific than another concept, it inherits the properties
of the more general one. For example, if the concept Person has the property age then the
concept Woman also has the property age.

- 28 -

Chapter 3 Related Work in resource discovery service for Grids

Figure 3-9 A simple example of network [69]

DAML-S service profiles are defined as subclass of the Profile class, but can also be
indirect subclasses of Profile, this way it is possible to build a service hierarchy [70] and
relationships between two profiles can be found with reasoning on subsumption.
Moreover, IOPEs (Inputs-Outputs-Preconditions-Effects) can also be classified the same
way, by defining an IOPE parameter as a subproperty of another IOPE parameter. Thanks
to these classifications, a distance between two profiles or two parameters can be
computed.

[67] defines a ranking for two parameters, shown in Table 3-3. The algorithm
distinguishes up to 9 different degrees for the matching of parameters. These 9 different
degrees are justified by the classification of parameters and service profiles. It gives two
types of matchmaking, propertyMatch and conceptMatch. The propertyMatch
determines Equivalent, Subproperty and Fail degrees for two given properties. The
conceptMatch determines the Equivalent, Subsumes, inverted subsumption and Fail
degrees for two given concepts. The priority of propertyMatch is higher than typeMatch,
as a classification of a parameter gives more insight to the purpose of the parameter than
its type definition. The types in the Table 3-3 can be concepts, so the degrees of a type-
match are the same as the degrees of the concpetMatch. The subsumption pattern is very
important for reasoning. It can be seen as the determination of subconcept and
superconcept relationships between concepts of a given terminology. The subproperty
relationship is similar to subsumption, the only difference is the relationship exists
between properties.

- 29 -

Chapter 3 Related Work in resource discovery service for Grids

Table 3-3 Rankings for the matching of two parameters

The final matching result for two considered services is composed of four types of
matching, input, output, profile, user-defined matching. In addition to specifying the
requested service and the advertised service, the user of the matching algorithm specifies
lower bounds on the matching degrees for the input parameter, output parameter and
profile matching see Table 3-4. Each partial matching result has to satisfy its minimal
requirement for the matching algorithm to succeed. In addition, if the user-defined
matchmaking returns FAIL, the final matching result will also return FAIL, regardless of
the results of the other three partial matching results. If it returns MATCH, the matching
result is only based on the other three partial matching results.

Input

Output

Profile

FAIL FAIL FAIL
UNCLASSIFIED PARTIAL_ FAIL CLASSIFIED
SUBPROPERTY UNCLASSIFIED SUBSUMS
TYPE_INVERT SUBPROPERTY MATCH
TYPE_SUBSUMS TYPE_INVERT
MATCH TYPE_SUBSUMS
 MATCH

Table 3-4 Matching degree for input, output and profile matching

The following (from Figure 3-10 and Figure 3-12) are the matching algorithms [67]
based on DAML-S description. Each output, input matching algorithm provides a
function called rankForParameters which determines the rank of two parameters
according to Table 3-3 and which calls the functions propertyMatch and conceptMatch.

- 30 -

Chapter 3 Related Work in resource discovery service for Grids

Figure 3-10 DAML-S output parameter matching algorithm

- 31 -

Chapter 3 Related Work in resource discovery service for Grids

Figure 3-11 DAML-S input matching algorithm

- 32 -

Chapter 3 Related Work in resource discovery service for Grids

Figure 3-12 DAML-S profile matching algorithm

3.4 Grid security infrastructure

In this section we introduce the Grid Security Infrastructure (GSI), the security
component in Globus Toolkit 4 (GT4). The basic design and architecture of GSI enables
grid entities to use authentication, authorization, and secure communication over open
networks.

In any networked environment, security is a paramount concern. The system must protect
itself from outside threats. Because this requirement is especially true for a grid
environment where clients can be geographically and organizationally diverse, GT4
meets this need. Basic requirements and motivations for security in any grid environment
include, but are not restricted to:

• Secure and tamper-proof communication between grid entities such as users,
resources, and programs

• The ability for grid users to use single sign-on capabilities across multiple
resources

• Privilege delegation from one entity to another for proxy-like operations
• Interoperability with security mechanisms in place at the participating

organizations

GSI is the GT4 component that addresses all these requirements and allows for privacy,
integrity, and replay protection for grid communication (to eliminate sniffing and man-in-
the-middle attacks), as well as single sign-on and delegation abilities for grid users. It
also includes facilities for verifying the identity of a grid entity (authentication) and,
based on that, determining the actions the entity is allowed to perform (authorization).

- 33 -

Chapter 3 Related Work in resource discovery service for Grids

In our system we take advantage of simpleCA [58] in the Globus toolkit 4 (GT4) [4] to
set up Globus Grid Security Infrastructure (GSI) [59].

- 34 -

Chapter 4 Design

4 Designs

This section gives an overview of the design of our resource discovery service for Grids
system. We discuss the main components of our system and identify the functionalities
and interdependencies of the components. Here the “component” refers to a function unit,
such as matchmaking component.

4.1 System Needs

With more and more development of semantics-based web services on the Internet, the
resource discovery system should support semantic description and discovery of grid
resources. The functions of “managing” could be registering the service description,
monitoring those registered service descriptions, getting service description by given the
URI or name of the semantic web service description. “Discovery of grid resources”
means by given the search requirement the system has the ability to find the suitable
semantics-based web service automatically over the overlay network.

The grid system we design and develop should be a scalable semantic-based resource
discovery system. It should have ability to construct a scalable P2P overlay network.
Each P2P node holds its own resources and should be able to accept registration of the
semantic based resource, monitor these resources. In addition, it can accept user’s request
and search the suitable resource over the overlay network, in the end notify the request
user automatically.

4.2 Two layers architecture of resource discovery

In our thesis work, the automatic resource discovery is divided into querying,
matchmaking, broadcasting and downloading in our thesis work. Querying in our thesis
work means to find out what registered descriptions the local node has. After local
querying and matchmaking, if there is no suitable result found, the system should
broadcast the request and extend resource discovering on whole overlay network.
Downloading function used in our thesis work is used to update local repository for
matchmaking function. Local repository is a local file directory which stores all the
semantic descriptions registered on that node. These descriptions are dynamically
registered resources, so we use downloading to reload these resources. When node
receives the broadcast message which includes the request message, node compares
request and its registered description in local repository and sends back the result to the
client. Besides above functions, the system also uses some secure communication, such
as only the certain user can use the registration function not all the users. In our thesis
work, we use DKS middleware to construct overlay network and provide low level
communication.

- 35 -

Chapter 4 Design

Based on the system needs, we design two-layer architecture for resource discovery
system. Figure 4-1 illustrates the two layers architecture. The super nodes are on upper
level and the local nodes are on lower level. Each local node holds its own resources
which are semantic descriptions, OWL-Ss and it doesn’t know other resources held by
other local node. In order to let local node’s resources found by other local node, we need
to make these resources become public. So we introduce super node. The super node is
very important, in that it implements many functions, such as communicating with other
super nodes, accepting registrations which come from local node, discovery the resource
and monitoring the registered resources. One super node can manage one or more local
nodes. Each local node can only registered its resource to one super node. When number
of local nodes is one, we can simplify two layers architecture. Removing the local node
layer, resource still can be registered to super node directly. By introducing super node,
we construct the connection between super nodes and enable resource discovery.

Super node

Figure 4-1 Two layers architecture of our resource discovery system

4.3 Terminology

Here are presented the most recurring terms used in this thesis, along with their
signification.

Table 4-1 Terminology of Super node

Term Signification

SIS
(Super Index

Service)

This service runs in the super node’s GT4 container by default, called
“Default Index Service”. We use this service to monitoring our
registered resources. The entire content of the SIS can be seen by
executing command “wsrf-query –a –z none –s
http://127.0.0.1:8080/wsrf/services/DefaultIndexService” or by
executing program. In our thesis work, we integrate this query
function into program.

DKSB
(DKS broadcast)

This Super node’s component is used to construct overlay network
which is DKS ring and uses broadcast function of DKS to spread the
client’s request to the network. It is also responsible for sending the

Local node Local node Local node

Super nodeSuper node

Super node Super node

DKS Ring

- 36 -

http://127.0.0.1:8080/wsrf/services/DefaultIndexService

Chapter 4 Design

matchmaking result to the requester, which is end user.

Repository

A file directory stores the downloaded semantic descriptions which
originally registered in SIS. In our program, we name it
“downloaded_files”. In addition, “downloaded_files” has another
directory named “request file” which is used to store the downloaded
request file from SIS or LIS, see Table 4-2 “Register”.

Download
Download semantic description from SIS or Internet to the
Repository. We specify description’s name or URI when we
download semantic description.

Matchmaker

Given the client’s requirement which is a semantic description,
Matchmaker look up Repository and compute the matchmaking
degree between client’s requirement and Repository’s semantic
description.

NSS
(Notification

Service for Super
node)

This only exists in our simplify resource discovery model, please see
section 4.4. It used to locate in local node see also NSL in Table 4-2.

SVL
(Super node

Value Listener)

This only exists in our simplify resource discovery model, please see
section 4.4. SVL is used to listen the notification sent by NSS.

Table 4-2 Terminology of Local node

Term Signification

LIS
(Local Index Service)

LIS is a Default Index Service running in GT4 Container on
local node’s side. It is responsible for local resources
registration. LIS and SIS can construct an index service
hierarchy.

NSL
(Notification Service for

Local node)

This is a web service we deployed in the GT4 Container. It
provides notification service for user. When its status
changes, it will contact LVL. It is always running and
waiting for matchmaking results from DKSBs.

LVL
(Local Value Listener)

End user who starts the request runs LVL to receive the
return result from NSL.

Register

Register the local resource to the LIS. Resource is the
semantics-based description which wants to be shared on
the network. It can also register the end user’s request file to
LIS.

Requester

It encapsulates address of NSL, name of the semantic
description of client’s requirement and addresses of LIS
(optional) which has the registration information of end
user’s request file in a message and sends it to its Super
node’s DKSB. Address of LIS is optional because if LIS
and SIS construct index service hierarchy, super node’s
DKSB can get end user’s request file from SIS directly, so it
doesn’t need to know the address of LIS.

- 37 -

Chapter 4 Design

Figure 4-2 Data flow between super node and local node.

Now we give an example to describe how the system works. In the Figure 4-2, we give
two super nodes 1 and 2. Each super node has its own local node 1.1 and 2.1 respectively.
Local node 1.1 registers local resource to super node 1 and local node 2.1 registers its
resource to super node 2. The system will help end user to find semantic descriptions
which match end user’s requirement on the overlay network. End user now uses Local
node 1.1 to start his query. His requirement is registered to LIS1.1 by Requester1.1.
Local node 1.1 runs a NSL1.1 in order to receive the matchmaking results from the
overlay network and notify LVL1.1 which displays the result to end user. Local node 1.1
starts a query procedure. Its requester encapsulates name of the requirement, address of
NSL1.1 and address of LIS1.1 (this is optional) in a message1.1 and sends it to DKSB1.
Here we use address of LIS1.1. We say LIS1.1 is optional because SIS and LIS can
construct a hierarchy index service. So address of SIS1 can be used instead of LIS in the
broadcast message parameters. After parsing out message1.1, DKSB1 knows where to

Output results

Request1.1

Index hierarchy Data flow
Optional

Resources1.1 Resources2.1

Super node 2

Repository

GT4 Container

SIS

Download

Matchmake

DKSB

Internet

Local node 1.1

GT4 Container

LIS

LVL

Requester

NLS

Register

Super node 1
 GT4 Container

SIS

Download

Matchmake Repository

DKSB

Local node 2.1

GT4 Container

LIS

LVL

Requester

NLS

Register

Internet

- 38 -

Chapter 4 Design

get the end user’s request file in order to fulfill matchmaking. DKSB1 goes to address
LIS1.1 and downloads the request file to “request file” directory in Repository1 and
download registered semantic description from SIS to Repository1. And then Super
node1 starts matchmaking and asks DKSB1 to send the matchmaking result of Super
node1 to Local node1.1’s NLS1.1. In the mean time DKSB1 broadcast this message1.1 to
Super nodes in the overlay network. In this example, there are two super nodes, so Super
node2 gets the broadcast message by DKSB2. And then DKSB2 does the same things as
DKSB1 did before in the end send the matchmaking result to NLS1.1. On local node1.1,
its NLS1.1 keeps running and receiving return message from Super node. Here the
message is from Super node 1 and 2. NLS1.1 notifies the end user’s application LVL1.1
to display all the return results. Through LVL1.1, end user of local node1.1 gets the query
result.

4.4 One layer resource discovery model

In section 4.2, we defined that if number of local node is one, two layer architecture
becomes one layer. All the functions of local node move to super node. These functions
are register, requester, LIS, NSL and LVL. The complete model which is described in
section 4.3 LIS and SIS can construct index service hierarchy. So in our simplification
model we only use SIS instead of LIS and SIS hierarchy. So all the functions based on
LIS move to super node, like register and requester. To simplify the implementation, we
move the NSL in local node GT4 container to super node’s container and name it NSS
(Notification Service for Super node) and the LVL based on NSL becomes SVL (Super
node Value Listener). In Figure 4-3, we give an example of query process using simplify
model.

Super node 2 Super node 1

GT4 Container

SIS

NSS

Download

Matchmaker

DKSB

SVL

Register

Requester

Repository

Internet

GT4 Container

SIS

NSS

Download

Matchmaker

DKSB

SVL

Register

Requester

Repository

Internet
Resources2Resources1

Output results

Request1

- 39 -

Chapter 4 Design

Figure 4-3 Data flow of simplify model

In this example, the blue squares are the new components we add to super node. We
remove local node in our new model. Super node takes more responsibilities which used
to be the ones taken by local node. End user of Super node1 can register resources to
SIS1 and submit query requirement to DKSB1 to super node1. End user1 waits for the
query result by running SVL. Super node1 register the end user’s requirement to SIS1 in
order to let other super node, for example super node2, download it to Repository2’s
“request file” directory and complete matchmaking on super node2. Request1 has three
parameters address of SIS, name of request file and address of NSS. After receiving
broadcast message Reques1, DKSB2 in super node2 parse out this Request1 message,
and then goes to address of SIS1 to download the request file to its local repository’s
“request file” directory, start matchmaking and send the result to the address of NSS1.
Because SVL1 is the client end of NSS1, so SVL1 receive the change of status in NSS1.
End user1 then can see the query results by running SVL1.

Actually we found that when we remove local node, and move the function to super node,
we only need to run one GT4 container and the whole system becomes one-layer
architecture, see Figure 4-4.

Figure 4-4 One-layer architecture of simple resource discovery model

The system which runs on each super node can be divided in three logistic layers, shown
in Figure 4-5. The transportation layer, DKSB belongs to this layer; the service layer
which includes NSS, SIS and Register service; application layer include Download,
Requester, and Matchmaker. In service layer, Register can be divided into DKS Nodes
Register (DKSNR), Request Register (RR), File Provider (FP) and URI Provider (URIP).
Services in service layer not only can accept the registration, it can also provide Index
Query (IQ) function. Requester of application layer is an abstract notation. It actually
integrate many functions together, such as register the end user’s semantic description
requirement file to SIS, see Figure 4-3, encapsulate address of NSS, address of SIS and
name of end user’s requirement file in the message and send it to DKSB. We use a
graphical user interface (GUI) to manage these functions, and simplify the usage of our
system.

- 40 -

Chapter 4 Design

Super node SIS

IQ NSS

GUI SVL RR FP

Matchmaker Download DKSNR URIP DKSB

Service
layer

Application
layer

Transportation
layer

Figure 4-5 Logistic layer of simplify resource discovery model

Here we only give brief explanations the purpose of each component.

1 DKSB on Transportation layer uses DKS middleware to construct overlay
network and broadcast request message to the network. This layer receives the
message from application layer and then broadcast it, it also receives message
from P2P network and sends it to NSS in service layer.

2 Application layer is an application layer. It accepts users input and system
configuration, such as the address of the NSS and SIS, the local path of the
request file. It also receives the message sent by transportation layer, and then
invokes the service layer, for example, after receiving the request message the
matchmaker will invoke IQ to know what are the resources registered in SIS.
After contacting SIS, matchmaker starts Download procedure. SVL is the end
user’s client end to get the notification message from NSS. Application layer also
provides an easy use user graphical interface which can simplify the usage of our
system.

3 Service layer is GT4 Web Services Container. It provides registry, IQ and NSS to
the upper layer. This layer is used to monitor all the local registered resources
and give an interface to query the status or the value of those resources.
Registered resource could be local resources or end user’s requirement file, in our
work is semantic description. IQ is used to contact with SIS, query the registered
resource in SIS. RR (Request Register) can help end user register his requirement
semantic description to SIS. FP (File Provider) means if the resource that we
want to share stores on local file system, we need such service to make this file
searchable. FP registers these local files which is semantic descriptions to SIS.
URIP (URI Provider) register the resource which in the form of URI to SIS.
DKSNR (DKS Node Register) registers DKS node’s reference parameter to one
SIS and then if a new super node wants to join overlay network, it lookups one
live super node from the SIS, which is running on only one super node. We
define the index service which registered all live DKS nodes’ reference DKSSIS.
DKSSIS can provide live nodes lookup service for other super nodes when they
want to join the DKS overlay network. Note that this super node must run before

- 41 -

Chapter 4 Design

any other super node in order to receive the registration and lookup join point to
join the overlay network.

4.5 Registration using Index Service

In our system the resource which we are looking for is semantic based service description,
not the workstation server, high performance computing cluster, OS, CPU, memory or
LAN. That means we can use this resource discovery system to register our own semantic
description, which can exist in different form like file or the URI. Here in the system we
have a function for DKSNRP (DKS Node Reference Provider), because we need to
provide a node location service which other super nodes can find the join point to join to
the P2P network, here is DKS overlay network.

The default GT4 Information Service (MDS) only provide Hawkeye Information
provider, Ganglia Information provider, WS GRAM, Reliable File Transfer Service
(RFT), Community Authorization Service (CAS) and any other WSRF service that
publishes resource properties. These MDS information providers can only provide us
system information. However our system embodies a new feature that is the user not only
can register the URI of semantic description, but also the content of the semantic
description. Figure 4-6 shows the sequence diagram for this registration.

 DKSNRP, FP and URIP will cooperate with SIS to provide resource registration
function. The diagram for the service removing action is not presented but is the trivial
symmetric of the previous diagram.

Fortunately, we do not need to implement an index service ourselves, as GT4 already
includes an index service implementation. In Grid deployments a local index service is
often used to maintain a registry of interesting services and/or resources running in that
container. In our scenario, a user’s local resources of interest include the content files,
URIs and reference of DKS node.

Furthermore, GT4 Index services can also be configured to register with an upstream
index which automatically aggregates the data of all downstream indexes. From figure 4-
2, we can see that the super node manages some local nodes. Each local node has some
resources which want to be discovered. All the nodes, no matter super or local, they all
run their own GT4 Index service. Therefore we can construct an index service hierarchy,
figure 4-7, which the super node runs SIS, and local node runs LIS. This hierarchy is not
included in our simplify resource model.

- 42 -

Chapter 4 Design

Figure 4-6 Registering DKS node, file, URI to the index service

Upstream
SIS

Figure 4-7 Index service hierarchy

4.6 DKSB design: Join DKS and DKS Broadcast

If end user wants to find the semantic description over the network, the precondition is
we should construct an overlay network before client sends the query message to the
system. This overlay network is implemented by DKS middleware.

These resources are managed by different super node. If the end user wants to find some
web services which semantically match his requirement, it not possible to let end user
asks the super nodes one by one to find out the matched service if there are so many
super nodes over the network. In fact, DKS middleware will take care of all these
searching on the network. The only thing the client needs to do is generating a request
file which describes what kind of web service he wants to find, sending the request to
super node and waiting for the results coming from the entire network. Our solution is
using the DKS which is a structured P2P middleware to organize all the super nodes.
Super nodes which are DKS’s peers can communicate with each other. In our system we
use DKS broadcast function, because we can use these function to broadcast the client’s
requirement to the entire P2P network.

Figure 4-8 shows the progress of joining the DKS ring. As an example, in our sequence
diagram, we only create two super nodes in the DKS ring. One super node runs DKSSIS

LIS LIS

Downstream … LIS

- 43 -

Chapter 4 Design

before any other super node is created. The rest nodes look up this DKSSIS to find out
the join point of DKS ring.

Figure 4-8 Join DKS ring sequence diagram

After joining the DKS, the system is ready to broadcast end user’s query message. The
discovering function can take care of the searching semantic descriptions over the
network and return the results to the client. Figure 4-9 shows the progress of discovering.
When query start, the system first registers the semantic description, which presents the
end user’s query requirement to the SIS. The reason we register end user’s semantic
description to SIS is the system doesn’t send the content of end user’s semantic
description. It only sends the reference parameters of this description. The link means the
name of the description, and the location of SIS which holds the content of end user’s
semantic description. SIS can make the local end user created semantic description
become public, and can be found by another super node’s DKSB in order to fulfill
matchmaking. This progress doesn’t show in Figure 4-9.

Figure 4-9 shows the broadcast progress of our resource discovery system. End user first
start a SVL1 on Super node1. Then he invoke query function, the broadcast message send
to DKSB1, DKSB2 and to until DKSB n. Every super node then starts a matchmaking to
compute the degree between the end user’s requirement semantic description and
descriptions in its local repository. After computing the degree, DKSBi sends back the
result to NSS1. NSS1 then notify the SVL1 to display all the returned result from all the
DKSBs.

- 44 -

Chapter 4 Design

Figure 4-9 DKS broadcast sequence diagram

4.7 Download and update design

In section 4.6, DKSB invokes matchmaking function. Matchmaking function computes
the match degree of request resource and advertised resources. The request resource is
semantic description generated end user’s who uses this description to describe what kind
of web service he wants to find. Advertised resources are semantic descriptions registered
on super node. Each super node holds its own resource. Super node’s SIS is used to
monitoring and discovery these semantic descriptions. So if the system wants to complete
matchmaking, the first thing that needs to be done is getting these descriptions. In this
section we describe the download mechanism.

Figure 4-10 shows how to use download to fulfill matchmaking for DKSB. Number 1 in
the figure means the components are running on super node 1. Number 2 means this
component is running on super node 2. In this example, end user of super node 2 already
registered request resource in SIS2. Super node1 wants to complete matchmaking. So
super node 1 use its IQ 1 to get request resource from SIS2 and save it in its Repository
“request_file” and downloads advertised resources from SIS1 and Internet and save then
in its Repository “downloaded_files”. Because in the progress of register advertised
resources, end user can choose the resources which already exists in his local disk or
choose the resource which is directed by URI from the Internet.

- 45 -

Chapter 4 Design

Figure 4-10 Downloading Sequence diagram for matchmaking

SIS is use to monitoring the registered resources dynamically. All the resource can be
registered or deregistered in the SIS. End user can execute Update function manually to
update its local “downloaded_files” directory.

4.8 Matchmaking Algorithm

The matchmaking algorithm use profile matchmaking described in section 3.3.2. After
computing matching degree of input, output and profile of request service and advertised
service, we can get scores separately. In order to compute the global final score of
matching between request and advertised service, we assign different weight value to the
different matching method (Figure 4-11). The final matchmaking result for two
considered services is composed of three types of matching, input, output, profile
matching. Then compute the final score. If this final matchmaking score is bigger than
the MIN_SCORE, which means the result is better than the worst expectation of the end
user we save this advertised service and return this service.

- 46 -

Chapter 4 Design

 List match(requestedService, provideServices){
 List matching_Services:={}

 for each providedService in providedServices do
 int currScore:=0;

 currScore:+=weightInput*
 matchInput(requestedService,providedService)
 currScore:+=weithtOutput*

 matchOutput(requestedService,providedService)
currScore:+=weightProfile*

matchProfile(requestedService,providedService)

 if currScore>MIN_SCORE then
 matching_Services:=
 matching_Services.providedServices
 end if
 end for

 return matching_Services
}

Figure 4-11 Service matching algorithm

4.9 Registration design

From Information flow in MDS4 in Figure 3-1, there are an execution source in the
Aggregator source and an Index Service in the Aggregator sink. In Figure 4-4, DKSNR,
RR, FP and URIP need registration to register certain information to SIS. In this section,
we introduce a registration method provided by GT 4.0 [62]. GT 4.0 use external
software component execution source to provide us information [62]. There is a current
method in GT 4.0 combines execution source and Index Service together to provide us a
non web-service based information service. Using this method we can generate our own
information provider to provide resource in order to let Index Service monitor and
discovery.

The registration method for DKS Node Reference and URIP are the almost the same.
Here URIP provides the link of semantic description that the end user wants to be shared.
Registration method can use current GT 4.0 [62] method to register it in SIS. However
the way we register the whole content of semantic description to SIS is a little bit
different. We will introduce this very useful registration method provided by GT 4.0 in
the following.

All the information that we want to register in SIS is not the certain type of the
information, such as CPU load, free space. We register DKS node’s reference or URI of
the semantic description to the SIS. The URI of the service description is as following:

http://www.mindswap.org/2004/owl-s/1.1/GetWeather.owl

- 47 -

http://www.mindswap.org/2004/owl-s/1.1/GetWeather.owl

Chapter 4 Design

In our work, we use Execution Aggregator Source as our Aggregator source. This
aggregator source is used for gathering arbitrary XML information about a registered
resource by execution an external script. This is mostly useful for scenarios where the
user would like to publish information into the MDS4 from a non web-service based
information source.

Now we give an example to show how to register a URI of the semantic description,
OWL-S document to the SIS. The registration for URIP (URI Provider) is described
below:

1. Decide which information you would like to have published. In registration method of
[62], this information should be in XML format. Figure 4-12.

<OWLURIs>
http://www.mindswap.org/2004/owl-s/1.1/GetWeather.owl

</OWLURIs>

Figure 4-12 Simple schema for publishing

The information between the <OWLURIs> and </OWLURIs> is URI which we want to
publish. The tag <OWLURIs> and tag </OWLURIs> is defined by developer and it will
become useful when it comes to retrieve.

2. Write a script that gathers and formats the resource that we want to register to SIS.
This can be C code, shell script, perl code, etc, and it doesn’t matter what kind of
methods it uses behind the scenes, so long as it produces well formatted XML data. If we
wanted to publish a list of URIs into the SIS, we could write a simple shell script (Figure
4-13) to retrieve it and format it into our chosen XML schema.

#!/bin/bash
#OWL-Provider.sh

TMPFILE="/tmp/myowls/ServiceList.txt"

echo "<OWLURIs>"
if test -f $TMPFILE; then
 URIs_DATA=`cat $TMPFILE`
 echo $URIs_DATA
fi
echo "</OWLURIs>"

Figure 4-13 Simple shell script

TMPFILE variable defined by developer points to a file which records list of URIs that
we want to publish. The code between the “if” and ”fi” is used to read the content of file
and print it out. The content is the information we want to publish. For example, we write

- 48 -

http://www.mindswap.org/2004/owl-s/1.1/GetWeather.owl

Chapter 4 Design

the URIs into file directed by TMPFILE in advance, and then when the shell script is
executed it can read out URIs and register it into SIS. If the content of file under
TMPFILE is the content of semantic description, we can also register it into SIS. So we
can put any information into this part except the XML format information. If we want to
publish XML format information, we need to change the format before we register it into
Index Service. We will introduce this method later.

3. Establish mapping of your information provider in jndi-config.xml. To establish the
mapping of our provider, we need to edit the
$GLOBUS_LOCATION/etc/globus_wsrf_mds_index/jndi-configure.xml file. To add our
OWL-Provider.sh file, we call it owlPorvider as the mapped name. Our entry would then
look like this:

 owlProvider=OWL-Provider.sh

We need to add above sentence into the executable Mappings section that looks like this,
shown in Figure 4-14:

<parameter>
 <name> executableMappings</name>
 <value>
 aggr-test=aggregator-exec-test.sh,

pingexec=example-ping-exec,
owlProvider=OWL_Provider.sh

 </value>
</parameter>

Figure 4-14 Partial code of Executable mapping section in jndi-config.xml

4. Copy information provider to $GLOBUS_LOCATION/libexec/aggrexec directory.
Make sure the shell file in this directory has proper executable permissions, for example,
the permission of this shell file should look like this “-rwxr-xr-x”.

5. Configure the registration file. This step tells us how to make the registration to the SIS.
To do this, we’ll need a registration file. Registration file is in the appendix A. In this file,
we define the location of the index service that we want to make the registration to, the
time interval that refresh the registration, the time interval that we execute the specified
provider and probe name that is where the executable mapping is put to use. In
registration file, time interval for refreshing the registration means how long the SIS runs
the registration. If using “mds-servicegourp-add” utility, the system refreshes the
registration automatically. In this example probe name is ”owlProvider”. Time interval
that refresh the registration, the time interval that execute the specified provider and
probe name are specified in registration file, we can use the default setting to set our own
value.

- 49 -

Chapter 4 Design

6. Register with SIS: run mds-servicegrout-add. To make the registration of our
Execution Aggregator provider URIP to the SIS, we should run the mds-servicegroup-
add program in a similar manner:

 $GLOBUS_LOCATION/bin/mds-servicegroup-add –s \

https://127.0.0.1:8443/wsrf/services/DefaultIndexService \
/home/yeou/workspace/YangYeou_SourceCode/registration-schemas/owls-provider-
registration.xml

7. Query. There are two ways of query. One is using the command line like:

yeou@yeou:~$./wsrf-query –s https://127.0.0.1:8443/wsrf/services/DefaultIndexService \
“//*[local-name()=’OWLURIs’]”

The other method is using the program. For example, the Appendix B shows the code of
getAliveNodeList method. The following code is one method of QueryIndexService.java.
It is used to get the all the alive nodes reference from Index Service. The getting
information is stored in the list allREFs.

Now we already use above 7 steps to register the URI of service description and the
reference of the DKS node. Now we explain how we register the content of semantic
description into SIS and download it into the local disk. The procedure of publishing the
file to the Index Service is almost the same as the previous steps. The only difference is
the format of the content in the file pointed by TMPFILE variable. Before the format is
plain text “http://www.mindswap.org/2004/owl-s/1.1/GetWeather.owl”, now we want to
change it into the content of OWL-S semantic description. Here there is one thing we
should notice. We can not write the whole OWL-S file into the TMPFILE, because
format conflict. Every time the system use IQ to query the SIS, the query result is in
XML format. The IQ will get a XML file which includes the registered resources’
information. So we can not make our own information be in XML format. Because both
of the OWL-S and the returned xml file have the root elements which are <?xml
version="1.0">, this can cause registration fail. “mds-servicegroup-add” can return an
error, in other words the content of OWL-S can not be registered into SIS. So we must do
some preparation for our registration. We need to change the format of the file. The way
we do is like this, we remove the root element of the OWL-S file that we are going to
register, and write this changed file into TMPFILE, then use the previous steps to register.
And then we run step 6, the content of file in TMPFILE can be registered to SIS. The
content is the OWL-S content without root element. When we need to download that, we
can get this content which without the root element, and then add the root element in
front of the content. We use file name to tag our OWL-S content. By doing so, we can
retrieve the file by name. So we add a FileUnite class into our Registration package to let
it modify all these files.

Depending on our need, we design four registrations. They are registration for the content
of local advertised semantic descriptions (FP), registration for URI links of advertised
semantic description (URIP), registration for end user’s requirement semantic description
(RR) and registration for DKS node reference (DKSNR). Each of four registration needs

 - 50 -

https://127.0.0.1:8443/wsrf/services/DefaultIndexService /
https://127.0.0.1:8443/wsrf/services/DefaultIndexService /
http://www.mindswap.org/2004/owl-s/1.1/GetWeather.owl

Chapter 4 Design

to use the above seven steps to fulfill registration. As long as we start these registrations,
here we mean running the “mds-servicegroup-add” four times, the only difference is the
parameter after this command, the SIS can monitoring these content automatically.

We can see that if end user has many semantic descriptions of web services which want
to be registered and we create a TMPFILE to store the content of one description for
every description and then run the whole seven steps to register the content into SIS that
will reduce the running efficiency. For example if we have ten local semantic description
resources wants to be registered, we have to create a TMPFILE for each resource, write
new shell script, move the script to certain GT4 directory…. We have to do these ten
times. All the end user can not accept this. It’s too complicated and will waste our time.
So we introduce File uniting function to help us turn many times of repeated operation
into one. We do like this: put all the content of semantic descriptions into one TMPFILE.
Here we use a little trick, we have described before. Now TMPFILE has all the content of
semantic descriptions. The content in the TMPFILE is divided by a name tags which
specify which content belongs to which file. Now we are ready to start our seven steps
registration procedure. We only need to do one time registration; in addition, it’s very
easy to fulfill the dynamic resource registration. The only thing we need to do is rewrite
the content of TMPFILE after we starting our registration. All these are done by
Registration class and FileUnite class. We will describe the methods of these two classes
in section 5.3.

 - 51 -

http://www.iciba.com/search?s=waste
http://www.iciba.com/search?s=time

Chapter 5 Prototype Implementation

5 Prototype implementation

Our goal in this chapter is to explain some details of the implementation. We will
organize our implementation around the various Java packages:

- DKS_broadcast: It includes a class which is used to construct a P2P overlay
network, send and listen to the broadcast message. This class can also invoke the
matchmaking function and send the result to the client by the notification.

- MDS: This package includes one class called QueryIndexService which is used to
contact with GT4 Index Service and query the registered information.

- Registration: It includes two classes FileUnite and Register, which are used to
register URI, service description, DKS node reference and request file to Index
Service

- Matcher: The classes in this package work together to provide matchmaking
function.

- Download: It includes one user defined class which is used for downloading the
specified service description from Index Service or Internet.

- Notification: This is a custom GT4 implementation of WS-Notification. On the
server side, a notification service can be run in the GT4 container. On the client
side, a client runs a value listener and subscribe to a notification service topic.
When a certain resource property is modified, a notification is triggered.

- GUI: The class in this package creates a GUI platform with Swing.

In matcher package, for reasoning purposes, have been used: Pellet 1.2, Jena 2.2; for read
and write service, have been used: OWL-S1.1 API which is given by Maryland
Information and Network Dynamics Lab Semantic Web Agents Project , for xml parsing
purposes: jdom 1.0. For DKS broadcast purpose, have been used DKS, a peer-to-peer
middleware developed at KTH/Royal Institute of Technology and the Swedish Institute
of Computer Science (SICS). MDS, Registration and Download packages are based on
the GT4 Information service MDS4. GT4 also provides us a set of standard interface to
use the notification design pattern with Web Service.

5.1 DKS_broadcast package

The DKS_broadcast package holds the modules in charge of broadcast service. In order
to broadcast client’s requirement to the P2P network, we need to construct the P2P
network, send the message to all the nodes in the network and every node should listen to
the network in order to receive the broadcast message. Thanks to the DKS middleware, it
provides us a DKS API which has implemented all these functions. The My_DKS
provides the following functionalities:

● joinDKS. DKSB uses this method creates and registers a DKS node, and then joins this
super node to the DKS ring automatically. After joining the network, DKSB can listen to
the broadcast message coming from the client and parsing the request message. It calls
other methods in order to complete matching and notification function. For example,

 - 52 -

http://www.kth.se/eng/index.html
http://www.sics.se/
http://www.sics.se/

Chapter 5 Prototype Implementation

DKSB receive the query message which includes name of the end user’s requirement
semantic description’s name and address of the SIS which holds the content of
requirement semantic description, then goes to that SIS to download the requester’s
semantic description in order to fulfill the local matchmaking. After completing
matchmaking, it will contact the notification service to notify the matchmaking result.
Appendix C shows the part of the source code of joinDKS(). Please Class Register and
ClientAdd in the code will be described later.

● my_broadcast. DKSB use this method to broadcast query message. This method has
tree parameters. The first one is the name of the request file. This request file is created
by end user and it describes the desired semantic web service he wants to find. The
second address of SIS which DKSB wants end user’s request file to be registered to. The
last parameter is the address of the notification service (NSS) that the super node which
the end user is using. The format of the broadcast message is as following:

String queryMsg=filename+"&"+AddressOfSIS+"@"+NotificationService

Later after receiving the query message the DKS node can parse this message in order to
complete download request file and notify the client.

5.2 MDS package

This component is responsible for getting the information which has been registered in
the SIS. Based on the information it gets, it can fulfill download and matchmaking. This
information includes the super nodes list, get the list of URI of service description and
file names. This package also invokes other package to implement download and
matchmaking functions. It can not only query SIS in order to get the name or URI of the
registered resource from SIS, but also can download the content of registered resource. It
can download the content of registered semantic description, such as the content of
advertised semantic description and the end user’s requirement semantic description. It
also provides us a file transfer function for transferring from the URI of semantic
description to object OWLOntology.

Table 5.1 QueryIndexService class

QueryIndexService class
Constructor
QueryIndexService(String service, String xPathForURI, String
xPathForFileList)
Methods
public void contactIndex()
public List<String> getAliveNodeList(String remoteIndexAddress)
public List getAllRegServices()
public Vector <OWLOntology> toOWLS(List<String> allURIs)
public OWLOntology toOWL(String URI)

 - 53 -

Chapter 5 Prototype Implementation

public void downloadAllOntologies(String remoteIndexSite)
public void downloadFile(String remoteIndexSite,String fileName)
public OWLOntology downloadRequestFile(String remoteIndexSite,String fileName)
public Vector update(String remoteIndexSite)
public Vector match(OWLOntology request)
public Vector match(String request)
public Vector matchDownloadedRequest()

Constructor:
• QueryIndexService(String service, String xPathForURI, String xPathForFileList).

The first parameter service specifies the address of the SIS. XPathForURI and
xPathForFileList are the XPath statements used to query the returned XML file from
Default Index. XPathForURI is used to retrieve the registered URIs of the service
description from the Index Service. xPathForFileList is used to get the list of
registered file in the Index Service.

Methods:
• contactIndex(). Get the list of URI of service descriptions and file name list of the

service descriptions.
• getAliveNodeList(String remoteIndexAddress). Download the alive DKS nodes’

references from DKSSIS.
• getAllRegServices(). Get all the URIs of registered services.
• toOWLS(List<String> allURIs). Given a list of URIs of the service descriptions, the

function can transfer them to corresponding service descriptions. This method
transfers the URIs to reader created by OWL-S API OWLFactory.createReader and
generages OWLOntology.

• toOWL(String URI). Given the service URI, the function can return a corresponding
OWLS-S description.

• downloadAllOntologies(String remoteIndexSite). Download all the content of
semantic description from SIS and Internet, save them on the local Repository and
transform these description to OWLOntology type objects. remoteIndexSite means
the address of SIS. In our work we define Ontology is the semantic description.

• downloadFile(String remoteIndexSite,String fileName). Download the specified file
by giving the name of the file. This method downloads the file which registered in
SIS. The file could be the end user’s requirement semantic description or the
advertised semantic description registered in SIS. This function will use Download
class’s getFile method.

• downloadRequestFile(String remoteIndexSite,String fileName). Download the
specified request file by giving the name of the file. This function will call Download
class’s getRequestFile method. remoteIndexSite is the address of the requester’s SIS.
End user has already registered his request file into this SIS. So if we want to
complete the matchmaking, we need to download the requested service description.

• update(String remoteIndexSite). The registered resources held by Super node are
dynamically changing. Update method contact the SIS to get the fresh registered
resources; here resources are semantic descriptions of the web services. Clear the
local Repository “downloaded_files” directory and then download the registered
service description again. It invokes some methods of download class.

 - 54 -

Chapter 5 Prototype Implementation

• match (OWLOntology request). The end user’s requirement semantic description has
been transformed into OWLOntology object before we invoke this method. It will
invoke the ProfileMatcher class’s match (request, allOWLS) method and return
match result. Given the requested service description, super node can compare it with
the local registered service.

• match (String request). End user publishes his requirement on the Internet and give
this resource a URI link. Given the URI of the request service description, it can also
complete matchmaking and return match result.

• matchDownloadedRequest(). If we have already gotten the request file by invoking
downloadRequestFile method, we can call this matchDownloadedRequest() method
and then return match result.

5.3 Registration package

Registration package is used to prepare the TMPFILE which is described in Section 4.7.
The content of file pointed by TMPFILE will be registered to SIS. Each information
provider, DKSNR, RR, URIP and FP has their own TMPFILE. Registration package also
has a Storage directory which is used to store the local semantic description files. All the
files in this Storage directory will be first modified and unite in one TMPFILE, and then
the content of TMPFILE is registered to the SIS. Registration means we can register the
URI, advertised semantic description and client’s requirement semantic description file to
the SIS.

Table 5-2 Registration class

Registration class
Constructor
Register()
Methods
public void register(Collection services) private void writeFile()
public void register(String service) public static void copyFile(String srcFile)
public void regDKS(String ref) public boolean isItInStorage(String service)
public void regRequest(String localPath) public Vector<String> getServices()
public void unregister(Collection services)
public void unregister(String service)

private Collection
removeServiceFromVector(Collection
regServices,String service)

• register(Collection services). Register the java collection of advertised services. The

element of the services collection is in String type. This String of service can present
two meaning URI and local path of the advertised service description. It calls two
other methods register (String service) and writeFile().

• register(String service). It is called by register(Collection services) method.
• regDKS(String ref). This method writes the reference of DKS node to the file

MY_DKS_REF. This file is directed by variable TMPFILE. This file is the local file

 - 55 -

Chapter 5 Prototype Implementation

which records all the live nodes’ references. Then DKSB can use this file to register
the reference of its super node to SIS.

• regRequest(String localPath). Register the local request file to end user’s SIS.
• unregister(Collection services). Deregister the collection of the semantic descriptions.

It invoke unregister(String service) method. It rewrite file directed by TMPFILE.
• unregister(String service). This method removes the content of the semantic

description from TMPFILE. The parameter service is the local file path of semantic
description.

• wrieFile(). This method is used to rewrite the content of file which specified by
TMPFILE. It invokes copyFile(String path) and unite() of class FileUnite.

• copyFile(String srcFile). Copy the file from path srcFile to the Storage directory.
• isItInStorage(String service). Return true if file is belonged to Storage. Otherwise

return false.
• getServices(). Returns a list of registered service description links, such as URI and

local path of the file.
• Collection removeServiceFromVector(Collection regServices,String service).

Collection stores all the registered semantic description’s file path and URI. Remove
the service from the collection of services.

Table 5-3 FileUnite class

FileUnite class

Constructor
FileUnite(String fileName,String filterName)
Methods
public void unite()
public void FileUniteModify(Vector<String> absoluteFiles)
public void requestFileModify(String reqFile)

Constructor:
• FileUnite(String fileName,String filterName). The first parameter is the destination

file which unites all the local advertised files stored in Storage directory. The second
parameter filterName is the file type. It specifies the certain type of files can be united,
for example “.owl”. The files are stored in Storage directory by default.

Methods:
• unite(). Unite all the files in the Storage directory into one file. This file will be used

by FileUniteModify(Vector<String> absoluteFiles). After invoking this method, it
generates a new output file which includes the whole content of the files, here we call
it FILE_UNITE. The file in the Storage is written to the FILE_UNITE one by one.

• FileUniteModify(Vector<String> absoluteFiles). Modifies the format of the file
FILE_UNITE and generate a new file named owlModify.txt in order to register this
file into SIS. We add some tags and remove the XML declaration of each file in the
FILE_UNITE. So we can retrieve each file when we query the Default Index Service.

• requestFileModify(String reqFile). Modifies the format of the end user’s requirement
semantic description. reqFile is the file path of the request file. In this method, we

 - 56 -

Chapter 5 Prototype Implementation

generate a new file called RequestOWL.txt. It is directed by TMPFILE which is used
for registering the request file to the SIS. All the content will be registered into that
service. The way we change our request file is the same as the way we use in
FileUniteModify method.

5.4 Matcher package

The matcher package holds the modules in charge of matchmaking service. It also
includes some other classes which are used by the service matcher. The matching method
uses Profile matcher method. The implementation of the profile matcher follows carefully
the algorithms specified in section 3.3.2 and section 4.6.

Table 5-4 ProfileMatcher class

ProfileMatcher class
Constructor
ProfileMatcher()
Methods
public void addServices(Collection services)
public void clearKb()
public Vector match(OWLOntology request, Collection advertisements)
public Vector match(OWLOntology request, Collection advertisements,int minScore)
public int match(Profile request, Profile advertisement)
public Vector matchCategory(OWLOntology request, Collection advertisements)
public int inputMatch(Profile request, Profile advertisement)
public int outputMatch(Profile request, Profile advertisement)
public int profileMatch(Profile request, Profile advertisement)

• public void addServices(Collection services). Add a collection of services to the

knowledge base
• public void clearKb(). Clears the knowledge base
• public Vector match(OWLOntology request, Collection advertisements). Returns a

collection of OWLOntology type objects contained in advertisements, which these
objects match request with a score greater or equal than a default score specified in
the configuration file.

• public Vector match(OWLOntology request, Collection advertisements,int minScore).
Returns a collection of OWLOntology type objects contained in advertisements,
which match request with a score greater or equal than minScore.

• public int match(Profile request, Profile advertisement). Match request against
advertisement, and return the score obtained.

• public Vector matchCategory(OWLOntology request, Collection advertisements).
Returns a collection of services contained in advertisements, which category match
request’s category.

 - 57 -

Chapter 5 Prototype Implementation

• public int inputMatch(Profile request, Profile advertisement). It compares the request
profile’s input with the input of the advertisement’s profile, and the returns the score
of input matching.

• public int outputMatch(Profile request, Profile advertisement). It compares the
request profile’s output with the output of the advertisement’s profile, and the returns
the score of output matching.

• public int profileMatch(Profile request, Profile advertisement). It compares the
request profile with the advertisement profile, and the returns the score of profile
matching.

Table 5-5 Machmaking class

Matchmaking class

Constructor
Matching()
Methods
public void addService(URI service)
public void addService(OWLOntology service)
public void clearKb()
public int conceptMatch(URI conceptA, URI conceptB)
public int propertyMatch(URI propertyA, URI propertyB)
public int scoreMatch(Parameter req, Parameter adv)

Constructor

• Matching(). Create a new reasoner.

Methods

• public void addService(URI service). Add a service to the knowledgebase.
• public void addService(OWLOntology service). Add a service to the knowledge base.
• clearKb().Clears the knowledgebase.
• public int conceptMatch(URI conceptA, URI conceptB). Returns the score of a

concept match between the two concepts.
• public int propertyMatch(URI propertyA, URI propertyB). Returns the score of a

property match between the two properties.
• public int scoreMatch(Parameter req, Parameter adv). Computes the score obtained

when matching the two parameters.

The matcher package also contains static functions used to read and write OWL-S files.
The reading functions return OWLOntology object from an input URI where a service is
located or from a String containing an OWL Service. The writing functions write
OWLOntology objects (OWL Services in the OWL-S API) into Strings (basically so that
the service can be sent on the wire).

5.5 Download package

 - 58 -

Chapter 5 Prototype Implementation

Download package includes a Download class and “downloaded_files” directory.
“downloaded_files” stores the complete OWL-S files which have been downloaded from
SIS and has two subdirectories called request_file and temp. request_file stores the
request file downloaded from the service Default Index Service which saves the client's
request file. temp directory stores the downloaded files. Here all the files in the temp are
files without XML declaration, we will modify these files to the final OWL-S files and
save them in the downloaded_files directory.

Table 5-6 Download class

Download class
Constructor
public Download(String remoteIndexSite,Vector<String> list)
public Download(String remoteIndexSite,String fileName)
Methods
public void getFile(String file_name)
public OWLOntology getRequestFile(String remoteSite, String file_name)
public void getAllOntologies(Vector<String> serviceList)
public Vector<OWLOntology> getOntologyStorage()
public void update(Vector<String> serviceList)

Constructor

 public Download(String remoteIndexSite,Vector<String> list). The parameter list
stores the names of the files that we want to download. remoteIndexSite is from
where we want to download the list of files.

 public Download(String remoteIndexSite,String fileName). Initialize the file name
and address of the SIS.

Methods

 public void getFile(String file_name). Download the file from the Default Index
Service to the local disk. Save the file in the donwloaded_files directory.

 public OWLOntology getRequestFile(String remoteSite, String file_name). Download
the end user’s request service description from the end user’s SIS which its address is
specified by remoteSite parameter and then returns the object of that request file. This
object is an OWLOntology type of OWL-S document.

 public void getAllOntologies(Vector<String> serviceList). Download the list of the
files to the “donwloaded_files” directory.

 public Vector<OWLOntology> getOntologyStorage(). Return the list of the
downloaded OWLOntology.

 public void update(Vector<String> serviceList). Clear the
DOWNLOAD_DIRECTORY and FINAL_DOWNLOAD directory, and then
download the service description. The serviceList has the links of the service
descriptions. This method will download them again from the Default Index Service.
This method is called when the client starts matchmaking or press the update button.

 - 59 -

Chapter 5 Prototype Implementation

5.6 Notification package

This package provides us a notification service and value listener application. The
notification service is deployed in the GT4 container, and on the value listener subscribes
a topic and start listing to the change of this topic. The WSDL file for notification service
is in the appendix D. If on the server side the value of this topic changes, the server will
notify the client automatically. The WS-Notification interaction is shown in the Figure 5-
1.

Topic:
RP RESULT

①subscribe

Figure 5-1 A typical WS-Notification interaction

We need two clients to fulfill notification. The first client is in charge of listening for
notifications. The second client is used to add the result to the Notification Service. The
second client is integrated in the DKS_broadcast package. It uses this client to notify the
NSS running on the end user’s super node.

The listener client is composed of two important parts:

1. Subscription: This block of code is in charge of setting up the subscription with
the Result RP. Once the subscription is set up, this block of code simply loops
indefinitely until we press a key.

2. Delivery: Once the subscription has been set up, and the main thread of the
program is looping infinitely, the delivery code gets invoked any time a
notification arrives at the client.

5.7 GUI package

Our resource discovery grid system is a P2P application, and runs under Linux operating
system. Each node is both server and client. Figure 5-2, is the snapshot of our system.
The client end for notification service uses command line interface.

Consumer Producer

Topic:
RP RESULT

② A notification is
triggered by a
change in the

producer’s state
Consumer Producer

③notify Producer

Topic:
RP RESULT

Consumer

 - 60 -

Chapter 5 Prototype Implementation

Explained snapshot of resource discovery system GUI:

① Path of the advertised service description. This path can be the local file path or the

URI of the service description on the Internet.

② Open a file explorer to select the advertised service description file.

 ①

②

③

④

Figure 5-2 GUI

③ Functions of buttons:

 - 61 -
⑤

⑥

⑦

⑧

⑨

⑩

Chapter 5 Prototype Implementation

Add button. Add ① to the ⑨. It generates a registered service descriptions list which

rvice descriptions stored in ⑨ to the Default

istered service descriptions which are chosen in ⑨ by

istered service

pdate the local OWL-S files directory which is used to store the

button. Register client’s request file to the Default Index Service, and then

④ s of the remote DKS server. This server stores all the living nodes’

⑤ Each node in the DKS ring should have a unique port number; otherwise the node

⑥
quest file.

rvice is used to notify the client the
e

⑨
e of our system.

will be registered to the Index Service.
Register button. Register the list of se
Index Service. The address of this service is specified in the registration file. So we
didn’t specify in our interface.
Remove button. Remove the reg
mouse and then reregister the left service to the Default Index Service.
Connect button. When it is clicked, the application downloads the reg
descriptions from Default Index Service to the local disk first. Then it creates a DKS
node and joins itself to the DKS ring and waits for the broadcast message sending
from other node.
Update button. U
downloaded file from the Default Index Service or from Internet. It first clears the
local download file directory, and then downloads the registered service description
again.
Search
broadcast the request message to all the nodes in the DKS ring. Here the request file
is specified in ⑥.
 Specify the addres
references.

cannot be registered into the DKS ring.
Path of the request owl document.

⑦ Open a file explorer to select the re
⑧ The address of the notification service. This se

result after client sending the request. Each node in the DKS ring will send back th
matching result by contacting this notification service. So the client can receive all
returned messages from the DKS ring.
List of the provided service.

⑩ This window displays the stat

 - 62 -

Chapter 6 Profiling of Prototype

6 Profiling of Prototype

 this chapter we will evaluate the performances of the application. We divide our test

 our evaluation, the Grid site runs a GT4 container as well as a notification service,

 our work, we write our own execution aggregator information provider. Each

.2 Time anatomy of download

Download file from Default Index Service

e divide our download into three phases, which are query, modify and generate

Table 6-1.

In
into different phase, registration, joining DKS, download, matchmaking, notification. We
will do the performance evaluation through each phase, and in the end we will give a
time consumption distribution of different phases.

In
matchmaking, DKS middleware and Default Index Service. The grid site is Intel Centrino
Duo T2300@1.66GHz, 512 MB of RAM, Intel PRO/1000 PL Network Connection.

6.1 Time anatomy of registration

In
information provider has a registration file which records address of default service group
EPR and default registrant EPR, refresh interval seconds for renew registration, poll
interval millisecond for running our script. We set both of these intervals 10 seconds.
After we run command mds-servicegroup-add, as figure 6-1, the registration complete
immediately. Then the registration renew each 10 seconds.

Figure 6-1 Register with Index Service

yeou@yeou:~$ mds-servicegroup-add –s \
ndexService \http://127.0.0.1:8080/wsrf/services/DefaultI

/home/yeou/workspace/YangYeou_SourceCode/registratio
registration.xml
Processing confi

n-schemas/owls-provider- \

guration file...

.0.0.1:8080/wsrf/services/owlsProvider to
Processed 1 registration entries
Successfully registered http://127
servicegroup at http://127.0.0.1:8080/wsrf/services/DefaultIndexService

6

W
ontology. The test case for downloading is that we have already registered some files to
the Default Index Service. All the test files have been download form
http://www.mindswap.org/2004/owl-s/1.1. We test time consuming in three phase for
each file downloading from Default Index Service. The times obtained are presented in

 - 63 -

http://127.0.0.1:8080/wsrf/services/DefaultIndexService / /home/yeou/workspace/YangYeou_SourceCode/registration-schemas/owls-provider- / registration.xml
http://127.0.0.1:8080/wsrf/services/DefaultIndexService / /home/yeou/workspace/YangYeou_SourceCode/registration-schemas/owls-provider- / registration.xml
http://127.0.0.1:8080/wsrf/services/DefaultIndexService / /home/yeou/workspace/YangYeou_SourceCode/registration-schemas/owls-provider- / registration.xml

Chapter 6 Profiling of Prototype

Table 6-1 Time consuming of downloading file from Default Index Service

Size(Kb) File name Query(ms) Modify(ms) toOntology(ms) Total(ms)

4.2 getCurrentStorms.owl 118 14 2233 2363

4.7 getTemp.owl 113 15 2347 2475

5.5 GetWeather.owl 115 29 2366 2510

7.9 NDFDgenByDay.owl 127 19 2231 2377

8.5 NDFDgen.owl 127 25 2488 2640

8.7 FrenchDictionary.owl 130 27 9639 9736

As we can see that generate Ontology from a file takes the most of the time. It takes more

an 93% of the time. And query the file by giving the name of the file and return the

l

ice description and save it to the local disk

hat by giving the URI of
e description compute the time that downloads that file from the internet to the local

Figure 6-2 Downloading service description from Internet and Index Service time hart

th
content of that file takes about 4.6% of the total time, except the time for querying
FrenchDictionary.owl file, it takes 1.3% of the total time. Modify the downloaded file
takes the least of the time. In general, there is an upward trend in the number of tota
downloading time.

 Download serv

We test two types of download, shown in Figure 6-2. The one is t
th
disk. The other is by giving the name of the description compute the time that downloads
that file from Default Index Service to the local disk.

Download service descriptions to the local disk

500
600

4,7 5.5 7.9 8.5
Service Size(Kb)

Time(ms)

 c

0
100
200
300
400

Given file name Given URI

 - 64 -

Chapter 6 Profiling of Prototype

As can be seen from the graph, the two curves show the fluctuation of different download

 Reading services at a given URI (i.e. Reader.read(uri)) compares with reading

he times obtained are represented in the chart in Figure 6-3 below

methods. Given the URI of the service description, download this description to local
disk needs more time compare with download the same description from Default Index
Service.

services at a given InputStream (i.e. Reader.read(InputStream, FileURI))

T

0

1000

2000

3000

4000

5000

3.1 4.2 4.7 5.5 6.5 7.9 8.5 8.7 9.3 12.7 15.7

Service Size(Kb)

Ti
m

e(
m

s)

Reader.read(InputStream,FileURI) Reader.read(uri)

Figure 6-3 Services parsing time chart

s we can see, the time needed to parse services increases exponentially with the

e register some URI to the Default Index Service in advance, then we compute the time

A
ontologies size. When the size is small, from 3.1kb to 8.5kb, the Reader.read(uri) needs
slightly more time compares with transform a file to an Ontology. When the size
increases, parsing the file needs much more time than parsing the URI to generate
Ontology. For example, when the file size is 15.7kb, the blue point reach 4487ms,
however parsing URI only needs 1260ms.

6.3 Query service description URI

W
spending on the getting the list of the URIs. The time of getting the file list is the same as
the time of getting the URIs list. We set the number of registered URIs from 0-2000; we
obtained the times shown in Figure 6-4 below:

 - 65 -

Chapter 6 Profiling of Prototype

0

1000

2000

3000

4000

5000

6000

7000

8000

0 100 200 300 400 500 600 700 800 900 1000 2000

Number of registered URI

Ti
m

e(
m

s)

Figure 6-4 Query list of URIs time chart

As we can see from Figure5-7, even though the number of registered URI is 2000, the
query time is still the same as registered URI is 0. The query time remains steady from
the number of registration information is 0 to 2000.

6.4 Time consumption distribution of different phases

In this section we will see the time consumption distribution of different phases. In order
to test this, we registered two services description into Default Index Service in advance,
file getTemp.owl and URI http://www.mindswap.org/2004/owl-
s/1.1/FrenchDictionary.owl. Here we only create one DKS node, and using broadcast in
this DKS network. The Figure 6-5 shows the time consumption distribution of different
phrases.

 - 66 -

Notification
26%

Broadcast
message

0%

Matchmaking
10%

Parse
broadcast
message

0%

Download all
ontologies

56%

Create first
DKS node

1%

Register node
0%

Get living node
list
7%

http://www.mindswap.org/2004/owl-s/1.1/FrenchDictionary.owl
http://www.mindswap.org/2004/owl-s/1.1/FrenchDictionary.owl

Chapter 6 Profiling of Prototype

Figure 6-5 Time consumption distribution of different phrases

With no surprise, the Download phase takes the most of the time. Because download
need to cooperate with other sites quite often to get information, which is time-
consuming. The site might be Default Index Service or the URI on the Internet. If the
number of Ontoloties increases, there is usually an increase in time consumption.
Matchmaking phase also play important roles in time consumption. If the number of local
registered service descriptions increase, matchmaking will take more time. So Download
and Matchmaking phases consume more than 60% of the time. Get living node phase is
related to query Default Index Service, so it also takes a lot of time. A notification phase
is related to the operation on the web service resources, which may account for the large
time consumption.

 - 67 -

Chapter 7 Conclusion and Future works

7 Conclusion and Future works

In this chapter a conclusion of the thesis work will be given first, which includes a
contribution of our semantic based resource discovery service system. In addition, future
work is pointed out and expected to be carried on later.

7.1 Summary

In this thesis we have studied the problem of resource discovery in Grids by means of
P2P technology. We considered system where super nodes hold a set of resource. System
user can use our grid system to register and deregister their resources. Users can locate
resource by performing a desired web service query. Our system can help user to search
the web services which match user’s requirement and then notify that user. We have
given the design and implementation of our system and performance evaluation.

We described architecture for resource discovery that adopts a Distributed K-ary System
which is a P2P approach to extend the model of the GT4 information service (MDS4). In
our work we defined resource as OWL-S1.1, which is a description of semantic based
web service. OWL-S markup of Web services can facilitate the automation of Web
service tasks, including automated Web service discovery, execution, composition and
interoperation. We publish these OWL-Ss on the GT4 Default Index Service, in order to
let other user find it. The matchmaker then use Profile matchmaking algorithm to decide
the degree of matching of two OWL-Ss. After matching on each super node, the grid
system uses WS-Notification mechanism to notify the request sender about the matching
result.

7.2 Conclusions

As a result of the work carried out on this thesis project, the following conclusions could
be highlighted:

• MDS4 Services
Index Service, which is one of the WSRF-based services in MDS4, collects data from
various sources and provides a query/subscription interface to that data. Each Globus
container that has MDS4 has a Default Index Service by default. If we want to collect
our own data by querying the Default Index Service, we need to register that service,
which is used to collect information, into Default Index Service. By default,
information providers in MDS4 can only provide information, such as host data,
memory size, OS name and version, number of CPUs available and free, status data
of the server. In our thesis work, we extend the usage of MDS4. We use execution
aggregator source which executes an administrator-supplied program to collect
information and make it available to the Index Service. In our system, we use
execution aggregator source to register living DKS node reference, content of

 - 68 -

Chapter 7 Conclusion and Future works

advertised service description and request service description, URI links of advertised
service description to the Default Index Service.

• Download service description from Index Service
Our grid system provides a download function which can download the registered
service descriptions to the local disk, and transform this file into Ontology type, in
order to complete matching. We have developed an API of download function. We
only need to specify the name or the URI of that service description and if it is the file
name, we also need to specify the address of the Index Service which stores that file,
and then the system can download that file or list of file from Internet or Index
Service.

• Matchmaking

 When a search request is received at a Super Node, it extracts all its advertised
services from its local storage and matches them against the requested one, using a
matching algorithm. We use profile matching algorithm described in [66] [67]. The
best matching services (i.e. obtaining a score greater or equal than the score specified
by the requester) are returned to the requester.

• Grid system and Distributed K-ary System
We implement resource discovery using techniques from P2P systems and achieve
full distribution, high-performance, scalability, resilience to failures, robustness and
adaptivity. Notice that MDS4 implementations are centralized or hierarchical and will
never achieve the performance and scalability typically associated with P2P networks.
In our thesis work we use DKS middleware to construct P2P overlay network, and
then use DKS broadcast function [27] to broadcast request message.

• Notification
Globus Toolkit 4 provides us a very useful notification pattern. We use notification to
notify the requester the matchmaking results. In our thesis work, we deployed a
notification web service in GT4 container. This service is used to receive the
subscription and its state can be changed, and then the notification is triggered to
notify the subscription sender, which is the web service query requester. Each web
service query requester has one notification service and one value listener which is
used to receive the result notification. Each notification service can be invoked by
many clients. These clients are actually super nodes. After complete matchmaking,
each of these super nodes will contact the requester’s notification service to tell it
matchmaking result.

• Security configuration
In any networked environment, security is a paramount concern. We must protect
ourselves from outside threats. Because this requirement is especially true for a grid
environment where clients can be geographically and organizationally diverse, GT4
meets this need. After installation of GT4, we take advantage of simpleCA [58] in
order to obtain certificates and perform the certificate setup for Globus Grid Security
Infrastructure (GSI). Only we have installed a trusted CA, we are allowed to use the

 - 69 -

Chapter 7 Conclusion and Future works

GT4 system. Another security configuration we use is that we used a security
descriptor to configure our notification service’s security and we use a secure client to
invoke the notification. The client uses GSI Secure Conversation which is message
level security with encryption and no client-side authorization.

• GUI
Our system is an integrator of GT4, DKS, OWL Reasoner Jena and Pellet, OWL-S1.1
and some other technologies. The system is running under Linux. Generally, most of
the operations under Grid environment are using command line, like query Index
Service, we use wsrf-query command. Our grid system performs background
processing and hides all these complexities operation. User can use our GUI to set all
configurations and connect to the network, register and deregister advertised service
descriptions, update and search.

7.3 Future works

We can extend our matchmaking algorithm. There is another algorithm for matchmaking
that is used to match service models. The authors of the method in [60] present their
algorithm as an extension to profile matchmaking as they take into account the detailed
process description of services, the service model.

We hope that the system presented, still very effective in favorable conditions, will be
useful for resource discovery in Grid environment and it also extends the usage of MDS4,
such as register the whole file to Index Service and query and download the file to the
local disk.

 - 70 -

Chapter 8 List of Abbreviations

8 List of Abbreviations

GT4 Globus Toolkit 4
DKS Distributed K-ary System
MDS4 Monitoring and Discovery System 4
RDF The Resource Description Framework
OWL-S Ontology Web Language
P2P Peer-to-Peer
SIS Super node’s Index Service
LIS Local node’s Index Service
NSS Notification service for super node
DKSB DKS broadcast
SVL Super node’s value listener
LVL Local node’s value listener
IQ Index service Query
RR Request register
FP File provider
URIP URI provider
DKSNR DKS Node Register

 - 71 -

http://www.w3.org/TR/owl-ref/

Chapter 9 References

9 References

[1]. IBM Grid computing http://www-03.ibm.com/grid/about_grid/what_is.shtml.
[2]. Ian Foster, Carl Kesselman. The Grid: Blueprint for a New Computing Infrastructure,

Second Edition. Page 40
[3]. http://www.globus.org/alliance/
[4]. Globus Toolkit 4. URL: http://www.globus.org/toolkit/
[5]. http://www-128.ibm.com/developerworks/library/gr-overview/index.html
[6]. David Barkai, “Peer-to-Peer Computing Technologies for Sharing and Collaborating

on the Net” Page 13, Intel Press; 1st edition (March 18, 2002), ISBN-10:
0970284675

[7]. VEYTSEL, A. 2001. There is no P-to-P Market... But There is a Market for P-to-P.
Aberdeen Group Presentation at the P2PWG, May 2001.

[8]. SHIRKY, C. 2001.What is P2P... and what Isn’t. An article published on O’Reilly
Network. www.openp2p.com/lpt/a//p2p/2000/11/24/shirky1-whatisp2p.html.

[9]. Napster. Napster media sharing system. http://www.napster.com/.
[10]. Gnutella. http://rfc-gnutella.sourceforge.net
[11].Foster, I., and Iamnitchi, A., On death, taxes, and the convergence of peer-to-peer and

Grid computing, in 2nd International Workshop on Peer-to-Peer Systems, Berkeley, CA.
LNCS, Springer-Verlag, Heidelberg, 2003

[12]. http://www.ibm.com/developerworks/grid/library/gr-heritage/
[13]. Ian Foster, Carl Kesselman ”The Grid: Blueprint for a New Computing Infrastructure,

Second Edition” Page 622. ISBN 7-111-16054-1
[14]. KaZaA URL: http://www.kazaa.com/us/index.htm
[15]. Random work C. Gkantsidis, et.al,Random Walks in Peer-to-Peer

Networks, INFOCOM 2004
[16]. Dynamic Query URL: http://www.the-gdf.org/index.php?title=Dynamic_Querying
[17]. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A

scalable peer-to-peer lookup service for internet applications. In Proceedings of the
ACM SIGCOMM’ 01 Conference, San Diego, California, August 2001.

[18]. Ali Ghodsi, Luc Onana Alima, Seif Haridi. Low-Bandwidth Topology Maintenance for
Robustness in Structured Overlay Networks, In the 38th International HICSS
Conference, Springer-Verlag, January, 2005, Best Paper Award in the Software Track.

[19]. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing
for large-scale peer-to-peer systems. In International Conference on Distributed
Systems Platforms (Middleware), Nov. 2001.

[20]. [20]. B.Y.Zhao, J.D. Kubiatowicz, and A.D. Joseph. Tapestry: An infrastructure for
fault-resilient wide-area location and routing. Technical Report UCB//CSD-01-1141,
University of California-Berkeley, April 2001.

[21]. Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, Scott Shenker. A
Scalable Content-Addressable Network. In Proceedings of the ACM SIGCOMM, 2001.

[22]. URL: http://en.wikipedia.org/wiki/Tulip_Overlay
[23]. URL: http://www.bittorrent.com/
[24]. URL: http://en.wikipedia.org/wiki/Coral_Content_Distribution_Network
[25]. L. O. Alima, S. El-Ansary, P. Brand, and S. Haridi. DKS(N, k, f): A Family of Low

Communication, Scalable and Fault-Tolerant Infrastructures for P2P Applications.

 - 72 -

http://www.globus.org/toolkit/
http://www-128.ibm.com/developerworks/library/gr-overview/index.html
http://www.napster.com/
http://www.kazaa.com/us/index.htm
http://www.stanford.edu/~saberi/rwp2p.pdf
http://www.stanford.edu/~saberi/rwp2p.pdf
http://www.the-gdf.org/index.php?title=Dynamic_Querying
http://en.wikipedia.org/wiki/Tulip_Overlay
http://www.bittorrent.com/
http://en.wikipedia.org/wiki/Coral_Content_Distribution_Network

Chapter 9 References

In Proceedings of the 3rd International Workshop on Global and Peer-To-Peer
Computing on Large Scale Distributed Systems (CCGRID’03), pages 344–350,
Tokyo, Japan, May 2003. IEEE Computer Society.

[26]. http://en.wikipedia.org/wiki/Distributed_hash_table
[27]. Moni Naor and Udi Wieder. Novel Architectures for P2P Applications: the Continuous-

Discrete Approach. Proc. SPAA, 2003.
[28].Gurmeet Singh Manku. Dipsea: A Modular Distributed Hash Table. Ph. D. Thesis

(Stanford University), August 2004
[29]. David Karger, Eric Lehman, Tom Leighton, Matthew Levine, Daniel Lewin, and Rina

Panigrahy. Consistent Hashing and Random Trees: Tools for Relieving Hot Spots on
the World Wide Web. STOC 1997.

[30]. Ali Ghodsi, Luc Onana Alima, Seif Haridi. Symmetric Replication for Structured Peer-
to-Peer Systems. In The 3rd International Workshop on Databases, Information
Systems and Peer-to-Peer Computing, August 28-29, 2005, Trondheim, Norway

[31]. Ali Ghodsi. Distributed k-ary System: Algorithms for Distributed Hash Tables, PhD
dissertation, KTH-Royal Institute of Technology, October 2006

[32]. Luc Onana Alima, Ali Ghodsi, Per Brand, Seif Haridi. Multicast in DKS(N, k, f)
Overlay Networks, In Proceedings of the 7th International Conference on
Principles of Distributed Systems, Springer-Verlag, Berlin, 2004

[33]. Ali Ghodsi, Luc Onana Alima, Sameh el-Ansary, Per Brand, Seif Haridi. Self-
Correcting Broadcast in Distributed Hash Tables. In Series on Parallel and
Distributed Computing and Systems , ACTA Press, Calgary, 2003

[34]. Sameh El-Ansary, Luc Onana Alima, Per Brand and Seif Haridi, Efficient
Broadcast in Structured P2P Networks. In the 2nd International Workshop On
Peer-To-Peer Systems, (Berkeley, CA, USA), February 2003

[35]. F. Kaashoek and D. R. Karger. Koorde: A simple degree-optimal distributed hash table.
In Proceedings of the Second International Workshop on Peer-to-Peer Systems, IPTPS,
2003.

[36]. B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An Infrastructure for Fault-
tolerant Wide-area Location and Routing. U. C. Berkeley Technical Report
UCB//CSD-01-1141, April 2000.

[37]. A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems. Lecture Notes in Computer Science,
2218, 2001.

[38]. L. O. Alima, S. El-Ansary, P. Brand, and S. Haridi. DKS(N, k, f): A Family of Low
Communication, Scalable and Fault-Tolerant Infrastructures for P2P Applications. In
The 3rd International workshop on Global and Peer-To-Peer Computing on large scale
distributed systems - CCGRID2003, Tokyo, Japan, May 2003.

[39]. Global Grid Forum URL: http://www.ggf.org
[40]. http://www.ibm.com/developerworks/grid/library/gr-visual/
[41]. OASIS URL: http://www.oasis-open.org
[42]. Globus Index services http://www.globus.org/toolkit/docs/4.0/info/index/
[43]. http://gdp.globus.org/gt4-tutorial/multiplehtml/ch01s01.html
[44]. Berners-Lee,T., Hendler,J. and Lassila ,O.. "The Semantic Web",Scientific American,

May 2001.
[45].OWL Services Coalition,OWL-S:Semantic Markup for Web Services,

http://www.daml.org/services/owl-s/1.1/overview/

 - 73 -

http://www.ggf.org/
http://www.oasis-open.org/
http://www.globus.org/toolkit/docs/4.0/info/index/
http://www.daml.org/services/owl-s/1.1/overview/

Chapter 9 References

[46]. Deborah L. McGuinness, Frank van Harmelen. OWL Web Ontology Language
Overview, http://www.w3.org/TR/owl-features/

[47]. http://www.w3.org/TR/owl-features/
[48]. M. Paolucci, T. Kawamura, T.R. Payne, and K.P. Sycara. Semantic matching of web

services capabilities. In ISWC ’02: Proceedings of the First International Semantic
Web Conference on The Semantic Web, pages 333.347, London, UK, 2002.
Springer-Verlag.

[49]. T. Payne, M. Paolucci, and K. Sycara. Advertising and matching DAML-S service
descriptions. In Position papers of the first Semantic Web Working Symposium
(SWWS’2001), pages 76.78, Stanford, USA, July 2001.

[50]. http://www.w3.org/Submission/OWL-S/
[51]. Wang Xin, Zhang Xiao lin, Realizing Semantic Web Services Description With

OWL-S Ontology, Library of Chinese Academy of Sciences，Beijing1 00080，
China

[52]. http://jena.sourceforge.net/
[53]. http://pellet.owldl.com/
[54]. http://www.mindswap.org/2003/pellet/faq#jena-1
[55]. MDS http://www.globus.org/toolkit/mds/
[56].http://globus.org/toolkit/docs/development/4.1.1/info/aggregator/developer/index.html#a

ggregator-developer-archdes
[57].mds-servicegroup-add

URL:http://www.globus.org/toolkit/docs/4.0/info/aggregator/rn01re02.html
[58]. SimpleCA. http://www.globus.org/toolkit/docs/4.0/security/simpleca/
[59]. I. Fonster, C. Kessleman, G. Tsudik and S. Tuecke. A security architecture for

computational grids. In ACM Conference on Computer and Communications
Security Conference, 1998.

[60]. Sharad Bansal, Jose M. Vidal “Matchmaking of web services based on the DAML-S
service model” AAMAS 2003: 926-927

[61]. GLUE resource property URL:
http://www.globus.org/toolkit/docs/4.0/info/key/gluerp.html

[62].http://www.globus.org/toolkit/docs/4.0/info/index/WS_MDS_Index_HOWTO_Executio
n_Aggregator.html

[63]. Xpath 2.0. URL: http://www.w3.org/TR/xpath20/
[64]. Douglas Thain, Todd Tannenbaum, Miron Livny, Grid Computing: Making the Global

Infrastructure a Reality Chapter 11, ISBN: 9780470853191
[65]. Paolucci, Kawamura, Paine, Sycara,”Semantic matching of Web-Services capabilities”,

Int. Semantic Web Conference 2001.
[66]. Jaeger,Rojec-Goldmann, Liebetruth, Kurt Geihs ”Ranked Matching for Service

Descriptions using OWL-S” KiVS 2005:91-102
[67]. Stefan Tang,”Matching of web service specifications using daml-s descriptions” Thesis,

19 Mar-2004
[68].http://www.daml.org/services/daml-s/0.9/
[69]. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter

Patel-Schneider. The Description Logic Handbook: Theory, Implementation and
Applications. Cambridge University Press, January 2003.

[70].http://www.daml.org/services/owl-s/1.1/ProfileHierarchy.html. Profile-based Class
Hierarchies

 - 74 -

http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/
http://www.w3.org/Submission/OWL-S/
http://jena.sourceforge.net/
http://www.globus.org/toolkit/mds/
http://www.globus.org/toolkit/docs/4.0/info/aggregator/rn01re02.html
http://www.globus.org/toolkit/docs/4.0/security/simpleca/
http://portal.acm.org/results.cfm?query=author%3ASharad%20Bansal&querydisp=author%3ASharad%20Bansal&coll=GUIDE&dl=GUIDE&CFID=19350599&CFTOKEN=65574945
http://portal.acm.org/results.cfm?query=author%3AJose%20M%2E%20Vidal&querydisp=author%3AJose%20M%2E%20Vidal&coll=GUIDE&dl=GUIDE&CFID=19350599&CFTOKEN=65574945
http://www.globus.org/toolkit/docs/4.0/info/key/gluerp.html
http://www.w3.org/TR/xpath20/

Appendix A. Registration file

Appendix A. Registration file

An example of registration files for register URI of the service description.

owls-provider-registration.xml

<?xml version="1.0" encoding="UTF-8"?>
<ServiceGroupRegistrations
xmlns="http://mds.globus.org/servicegroup/client"
xmlns:sgc="http://mds.globus.org/servicegroup/client"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/03/addressing"
xmlns:agg="http://mds.globus.org/aggregator/types">

 <defaultServiceGroupEPR>
 <wsa:Address>
http://127.0.0.1:8080/wsrf/services/DefaultIndexService</wsa:Address>
 </defaultServiceGroupEPR>

 <!-- The defaultRegistrantEPR defines the grid resource that will be
 registered, unless overridden in the
ServiceGroupRegistrationParameters
 -->
 <defaultRegistrantEPR>

<wsa:Address>http://127.0.0.1:8080/wsrf/services/owlsProvider</wsa:Addr
ess>
 </defaultRegistrantEPR>
<defaultSecurityDecriptorFile>some/other/sec/file.xml</defaultSecurityD
ecriptorFile>
 <ServiceGroupRegistrationParameters
xmlns="http://mds.globus.org/servicegroup/client">

 <!-- Renew this registration every 15 seconds (15) -->
 <RefreshIntervalSecs>15</RefreshIntervalSecs>
 <Content xsi:type="agg:AggregatorContent"
xmlns:agg="http://mds.globus.org/aggregator/types">
 <agg:AggregatorConfig xsi:type="agg:AggregatorConfig">
 <agg:ExecutionPollType>
 <!-- Run our script every 15000 milliseconds (15 seconds) -->
 <agg:PollIntervalMillis>15000</agg:PollIntervalMillis>
 <!-- Specify our mapped ProbeName registered in the
 $GLOBUS_LOCATION/etc/globus_wsrf_mds_index/jndi-
config.xml
 file -->
 <agg:ProbeName>owlsProvider</agg:ProbeName>
 </agg:ExecutionPollType>
 </agg:AggregatorConfig>
 <agg:AggregatorData/>
 </Content>
 </ServiceGroupRegistrationParameters>

</ServiceGroupRegistrations>

 - 75 -

Appendix B. Code of getAliveNodeList (String remoteIndexAddress)

Appendix B. Code of getAliveNodeList (String
remoteIndexAddress)

public List<String> getAliveNodeList(String remoteIndexAddress) throws Exception{
 EndpointReferenceType endpointRT = new EndpointReferenceType();
 endpointRT.setAddress(new AttributedURI(remoteIndexAddress));
 WSResourcePropertiesServiceAddressingLocator locator =
 new WSResourcePropertiesServiceAddressingLocator();
 QueryResourceProperties_PortType port;
 try {
 port = locator.getQueryResourcePropertiesPort(endpointRT);
 ((Stub)port)._setProperty(Constants.GSI_ANONYMOUS, Boolean.TRUE);
 String queryString ="//*[local-name()='JOIN_DKS_POSITION']";
 QueryExpressionType query = new QueryExpressionType();
 try {
 query.setDialect(WSRFConstants.XPATH_1_DIALECT);
 } catch (MalformedURIException e) {// Do something.}
 try {
 query.setValue(queryString);
 QueryResourceProperties_Element request = new QueryResourceProperties_Element();
 request.setQueryExpression(query);
 QueryResourcePropertiesResponse response;
 response = port.queryResourceProperties(request);
 MessageElement[] entries = response.get_any();
 if(response == null ||response.get_any() == null||response.get_any().length ==0) {
 System.out.println("Query did not return any results.");
 allREFs.clear();
 allREFs.add("none");
 for(int i=0;i<allREFs.size();i++)
 System.out.println("all ref ===="+allREFs.get(i));
 } else {
 for (int i = 0; entries != null && i < entries.length; i++) {
 String resultStr=AnyHelper.toSingleString(response);
 int startpoint = resultStr.indexOf(">") + 1;
 int endpoint = resultStr.indexOf("<", startpoint);
 String ref = resultStr.substring(startpoint, endpoint);
 if(ref.length()==2){
 allREFs.add("none");
 }
 // Parse out the uris
 else{
 StringTokenizer st = new StringTokenizer(ref);
 while (st.hasMoreTokens()) {
 String ref_temp=st.nextToken();
 if(!ref_temp.equals(""))
 allREFs.add(ref_temp);
 }
 }
 }//for
 }//else

} catch (RemoteException e) {// Do something.}
} catch (ServiceException e) {// Do something.}
 return allREFs;
}

- 76 -

Appendix C. JoinDKS() source code in MyDKS.java

Appendix C. JoinDKS() source code in MyDKS.java

public void joinDKS(){
…
if(aliveList.get(i).equals("none")){

 ConnectionManager cm ConnectionManager.getInstance(this.dks_port);
 DKSImpl node;
 DKSOverlayAddress oa = new DKSOverlayAddress("dksoverlay://0/"+0+"/0");
 node = new DKSImpl(cm, oa);
 Register reg_client=new Register();
 reg_client.regDKS(node.getDKSRef().toString());
 node.create();
 mynode=node;
 setStatus("First node created with DKSURL " +node.getDKSURL());

 DefaultAppHandler ah = new DefaultAppHandler() {

 // broadcastCallback : This callback routine is called when //the
r ves a broadcast message. node ecie

 public void broadcastCallback(DKSObject payload){
 Vector matchResult=new Vector();
 String queryMsg="";
 String senderIP=""; //sender’s notification service address
 DKSNode n = (DKSNode) dks;

 if (payload.getData().length!=0){
 byte[] recMsg=payload.getData();
 String recStr=new String(recMsg);
 setStatus("receive queryMsg = "+recStr);
 //Parse the request message
 //Download the request file, local registered files
 //…
 //Matchmaking
 //…

 // Contact requester

ClientAdd client_noti=new
ClientAdd(senderIP,matchResult.toString());

 client_noti.contactNotificationService();
 }else{
 setStatus("WRONG DATA "+n.getDKSRef());
 }
 } //broadcastCallback
 };
 DKSCallbackInterface c = node.setCallbackHandler(ah);
 ah.setDKSCallbackInterface(c);
 node.logLevel(2);
}
//…
// if the node is not the first node in the DKS, join the DKS and //start
listening
}
- 77 -

Appendix D. WSDL file

Appendix D. WSDL file

Notification.wsdl

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="NotificationService"

targetNamespace="http://www.globus.org/namespaces/thesis/Notification"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://www.globus.org/namespaces/thesis/Notification"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsrp="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-
ResourceProperties-1.2-draft-01.xsd"
 xmlns:wsrpw="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-
ResourceProperties-1.2-draft-01.wsdl"
 xmlns:wsntw="http://docs.oasis-open.org/wsn/2004/06/wsn-WS-
BaseNotification-1.2-draft-01.wsdl"
 xmlns:wsrlw="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-
ResourceLifetime-1.2-draft-01.wsdl"

xmlns:wsdlpp="http://www.globus.org/namespaces/2004/10/WSDLPreprocessor
"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl:import
 namespace=
 "http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-
ResourceProperties-1.2-draft-01.wsdl"
 location="../../wsrf/properties/WS-ResourceProperties.wsdl" />

<wsdl:import
 namespace=
 "http://docs.oasis-open.org/wsn/2004/06/wsn-WS-BaseNotification-
1.2-draft-01.wsdl"
 location="../../wsrf/notification/WS-BaseN.wsdl"/>

<wsdl:import
 namespace=
 "http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceLifetime-
1.2-draft-01.wsdl"
 location="../../wsrf/lifetime/WS-ResourceLifetime.wsdl" />

<types>
<xsd:schema
targetNamespace="http://www.globus.org/namespaces/thesis/Notification"
 xmlns:tns="http://www.globus.org/namespaces/thesis/Notification"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <!-- Requests and responses -->

 <xsd:element name="addResult" type="xsd:string"/>
 <xsd:element name="addResultResponse">
 <xsd:complexType/>

- 78 -

Appendix D. WSDL file

 </xsd:element>
 <!-- Resource properties -->
 <xsd:element name="Result" type="xsd:string"/>

 <xsd:element name="ResDisResourceProperties">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="tns:Result" minOccurs="1"
maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <!-- Custom Notification Messages -->
 <xsd:element name="BigValueChangeNotificationMessage"
type="tns:BigValueChangeNotificationMessageType"/>

 <xsd:element name="Result" type="xsd:string"/>

 <xsd:complexType name="BigValueChangeNotificationMessageType">
 <xsd:sequence>
 <xsd:element ref="tns:Result" minOccurs="1"
maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType
name="BigValueChangeNotificationMessageWrapperType">
 <xsd:sequence>
 <xsd:element
ref="tns:BigValueChangeNotificationMessage"/>
 </xsd:sequence>
 </xsd:complexType>

</xsd:schema>
</types>

<message name="AddResultInputMessage">
 <part name="parameters" element="tns:addResult"/>
</message>
<message name="AddResultOutputMessage">
 <part name="parameters" element="tns:addResultResponse"/>
</message>

<portType name="NotificationPortType"
 wsdlpp:extends="wsntw:NotificationProducer
wsntw:SubscriptionManager"
 wsrp:ResourceProperties="tns:ResDisResourceProperties">

 <operation name="addResult">
 <input message="tns:AddResultInputMessage"/>
 <output message="tns:AddResultOutputMessage"/>
 </operation>
</portType>

- 79 -

Appendix E. Mapping for information provider

</definitions>

Appendix E. Mapping for information provider

$GLOBUS_LOCATION/etc/globus_wsrf_mds_index/jndi-config.xml

<?xml version="1.0" encoding="UTF-8"?>
<jndiConfig xmlns="http://wsrf.globus.org/jndi/config">
 <service name="IndexService">

 <resource
 name="home"
 type="org.globus.mds.index.impl.IndexHome">
 <resourceParams>
 <parameter>
 <name>
 factory
 </name>
 <value>
 org.globus.wsrf.jndi.BeanFactory
 </value>
 </parameter>
 <parameter>
 <name>resourceClass</name>

<value>org.globus.mds.index.impl.IndexResource</value>
 </parameter>
 <parameter>
 <name>resourceKeyName</name>

<value>{http://mds.globus.org/inmemoryservicegroup}ServiceGroupKey</val
ue>
 </parameter>

 </resourceParams>
 </resource>

 <resource name="configuration"

type="org.globus.mds.aggregator.impl.AggregatorConfiguration">
 <resourceParams>
 <parameter>
 <name>
 factory
 </name>
 <value>
 org.globus.wsrf.jndi.BeanFactory
 </value>
</parameter>
 <parameter>
 <name>aggregatorSources</name>

<value>org.globus.mds.aggregator.impl.QueryAggregatorSource

- 80 -

Appendix E. Mapping for information provider

org.globus.mds.aggregator.impl.SubscriptionAggregatorSource
org.globus.mds.aggregator.impl.ExecutionAggregatorSource</value>
 </parameter>
 <!--<parameter>
 <name>executableMappings</name>
 <value>aggr-test=aggregator-exec-test.sh,
pingexec=example-ping-exec,owlsProvider=OWL-Provider.sh</value>
 </parameter>-->
 <parameter>
 <name>executableMappings</name>
 <value>aggr-test=aggregator-exec-test.sh,
pingexec=example-ping-exec,owlsProvider=OWL-
Provider.sh,owlFileProvider=OWLFileProvider.sh,joinDKSPosition=JoinDKSP
osition.sh,requestDeploy=RequestDeploy.sh</value>
 </parameter>
 </resourceParams>
 </resource>

 <resourceLink name="groupHome"
target="java:comp/env/services/IndexService/home"/>
 <resourceLink name="entryHome"
target="java:comp/env/services/IndexServiceEntry/home"/>
 </service>

 <service name="IndexServiceEntry">
 <resource name="home"
 type="org.globus.mds.index.impl.IndexEntryHome">
 <resourceParams>
 <parameter>
 <name>
 factory
 </name>
 <value>
 org.globus.wsrf.jndi.BeanFactory
 </value>
 </parameter>
 </resourceParams>
</resource>

 <resourceLink name="groupHome"
target="java:comp/env/services/IndexService/home"/>
 <resourceLink name="entryHome"
target="java:comp/env/services/IndexServiceEntry/home"/>
 <resourceLink name="configuration"
target="java:comp/env/services/IndexService/configuration"/>
 </service>

 <service name="IndexFactoryService">
 <resourceLink name="entryHome"
target="java:comp/env/services/IndexServiceEntry/home"/>
 <resourceLink name="groupHome"
target="java:comp/env/services/IndexService/home"/>
 <resourceLink name="configuration"
target="java:comp/env/services/IndexService/configuration"/>

 <resource
 name="home"

- 81 -

Appendix E. Mapping for information provider

 type="org.globus.wsrf.impl.ServiceResourceHome">
 <resourceParams>
 <parameter>
 <name>
 factory
 </name>
 <value>
 org.globus.wsrf.jndi.BeanFactory
 </value>
 </parameter>
 </resourceParams>
 </resource>
 </service>

 <service name="DefaultIndexService">
 <resource
 name="home"

type="org.globus.mds.aggregator.impl.SingletonAggregatorHome">
 <resourceParams>
 <parameter>
 <name>
 factory
 </name>
 <value>
 org.globus.wsrf.jndi.BeanFactory
 </value>
 </parameter>
 <parameter>
 <name>resourceClass</name>

<value>org.globus.mds.index.impl.IndexResource</value>
 </parameter>
 </resourceParams>
 </resource>

 <resourceLink name="groupHome"
target="java:comp/env/services/DefaultIndexService/home"/>
 <resourceLink name="entryHome"
target="java:comp/env/services/DefaultIndexServiceEntry/home"/>
 <resourceLink name="configuration"
target="java:comp/env/services/IndexService/configuration"/>
 </service>

 <service name="DefaultIndexServiceEntry">

 <resource
 name="home"
 type="org.globus.mds.index.impl.IndexEntryHome">
 <resourceParams>
 <parameter>
 <name>
 factory
 </name>
 <value>
 org.globus.wsrf.jndi.BeanFactory
 </value>

- 82 -

Appendix E. Mapping for information provider

 </parameter>
 </resourceParams>
 </resource>

 <resourceLink name="groupHome"
target="java:comp/env/services/DefaultIndexService/home"/>
 <resourceLink name="entryHome"
target="java:comp/env/services/DefaultIndexServiceEntry/home"/>
 <resourceLink name="configuration"
target="java:comp/env/services/IndexService/configuration"/>
 </service>
</jndiConfig>

- 83 -

Appendix F. User Guides

Appendix F. User Guides

There are four steps of running our system. The precondition of running our program is
having Globus Toolkit 4 environment, Java environment.

1. Re-build the notification service.
We have to re-build the notification service instead of using the Gar file in the
source code directory. Our notification service java files are in
/org/globus/thesis/services/core/notifications/impl directory.
As a normal user, the corresponding command is:
yeou@yeou:~$./globus-build-service.sh notifications
After that the program will generate a
org_globus_thesis_services_core_notifications.gar file in the current directory

2. Deploy the service
This deployment command must be run with a user that has write permissions in
$GLOBUS_LOCATION. For example, we use user “globus” as our GT4 runner.
So open another terminal, change the user to globus, and then run:

 globus-deploy-gar \
$GAR_Directory/org_globus_thesis_services_core_notifications.gar

3. Run globus container as a globus user:
globus-start-container –nosec

 4. Run shell scrip to create document for registration
 Open another terminal, go to the shell script directory and run command:

. ~/create.sh
1. Move the shells in the Shells_for_registration directory to the

$GLOBUS_LOCATION/libexec/aggrexec/. Make sure your file resides in this
directory with proper executable permissions.

2. Establish mapping of our information provider.
To establish the mapping of your provider, you need to edit the
$GLOBUS_LOCATION/etc/globus_wsrf_mds_index/jndi-config.xml. There is
an example of jndi-config.xm in the Appendix E.
The only place we need to modified is in executableMappings section:

<parameter>
 <name>executableMappings</name>
 <value>aggr-test=aggregator-exec-test.sh, pingexec=example-

ping-exec,owlsProvider=OWL-
Provider.sh,owlFileProvider=OWLFileProvider.sh,joinDKSPositio
n=JoinDKSPosition.sh,requestDeploy=RequestDeploy.sh</value>

</parameter>
3. Run mds-servicegroup-add

Each of the following should be run under different terminal.

 yeou@yeou:~$ mds-servicegroup-add –s
http://127.0.0.1:8080/wsrf/services/DefaultIndexService
/home/yeou/workspace/YangYeou_SourceCode/registration-schemas/owls-
provider-registration.xml

- 84 -

mailto:yeou@yeou:~$./globus-build-service.sh%20�Cd%20
http://127.0.0.1:8080/wsrf/services/DefaultIndexService /home/yeou/workspace/YangYeou_SourceCode/registration-schemas/owls-provider-registration.xml
http://127.0.0.1:8080/wsrf/services/DefaultIndexService /home/yeou/workspace/YangYeou_SourceCode/registration-schemas/owls-provider-registration.xml
http://127.0.0.1:8080/wsrf/services/DefaultIndexService /home/yeou/workspace/YangYeou_SourceCode/registration-schemas/owls-provider-registration.xml

Appendix F. User Guides

yeou@yeou:~$ mds-servicegroup-add -s
http://127.0.0.1:8080/wsrf/services/DefaultIndexService
/home/yeou/workspace/YangYeou_SourceCode/registration-
schemas/owlFile-provider-registration.xml

yeou@yeou:~$ mds-servicegroup-add -s
http://127.0.0.1:8080/wsrf/services/DefaultIndexService
/home/yeou/workspace/YangYeou_SourceCode/registration-
schemas/joinDKSPosition-registration.xml

yeou@yeou:~$ mds-servicegroup-add -s
http://127.0.0.1:8080/wsrf/services/DefaultIndexService
/home/yeou/workspace/YangYeou_SourceCode/registration-
schemas/requestDeploy-registration.xml

4. Start client value listener

1) Start a new terminal and run:
 javac -classpath $CLASSPATH:build/stubs/classes/

org/globus/thesis/clients/Notification/ValueListener.java
2) source $GLOBUS_LOCATION/etc/globus-user-env.sh
3) grid-proxy-init

Here the system will ask you to enter your passphrase. This
is the passphrase which you specified when you created your
CA certificate in set up certificates progress for GT4.

4) java -DGLOBUS_LOCATION=$GLOBUS_LOCATION -classpath
$CLASSPATH:build/stubs/classes/
org/globus/thesis/clients/Notification/ValueListener
http://127.0.0.1:8080/wsrf/services/thesis/core/notificatio
ns/NotificationService

9. Start GUI.

Start a new terminal and run the shell script in the shell directory. You need to
modify the location of the jar files in this set.sh file. Change the path to the
pellet-1.4-RC1/lib/, jdom-1.0/lib, owl-s-1.1.0-beta/lib/ and
dks.jar to your own library. The command is:

yeou@yeou:~$. ~/set.sh
 10. Set the port number and then press connect button.
 11. Choose the local OWL-S file or type in the URI of the OWL-S which you want to

register. You can add more than one file or URI, just press add button after
each.

 12. Press register button.
 13. If this client wants to start query, he can specify the request link such as URI or

choose the prepared request file from local disk.
 14. Press query button. Wait for a couple of seconds, the client can see the state in the

status window, and receive the result from the value listener.

- 85 -

http://127.0.0.1:8080/wsrf/services/DefaultIndexService /home/yeou/workspace/YangYeou_SourceCode/registration-schemas/owlFile-provider-registration.xml
http://127.0.0.1:8080/wsrf/services/DefaultIndexService /home/yeou/workspace/YangYeou_SourceCode/registration-schemas/owlFile-provider-registration.xml
http://127.0.0.1:8080/wsrf/services/DefaultIndexService /home/yeou/workspace/YangYeou_SourceCode/registration-schemas/owlFile-provider-registration.xml
http://127.0.0.1:8080/wsrf/services/DefaultIndexService /home/yeou/workspace/YangYeou_SourceCode/registration-schemas/joinDKSPosition-registration.xml
http://127.0.0.1:8080/wsrf/services/DefaultIndexService /home/yeou/workspace/YangYeou_SourceCode/registration-schemas/joinDKSPosition-registration.xml
http://127.0.0.1:8080/wsrf/services/DefaultIndexService /home/yeou/workspace/YangYeou_SourceCode/registration-schemas/joinDKSPosition-registration.xml
http://127.0.0.1:8080/wsrf/services/DefaultIndexService /home/yeou/workspace/YangYeou_SourceCode/registration-schemas/requestDeploy-registration.xml
http://127.0.0.1:8080/wsrf/services/DefaultIndexService /home/yeou/workspace/YangYeou_SourceCode/registration-schemas/requestDeploy-registration.xml
http://127.0.0.1:8080/wsrf/services/DefaultIndexService /home/yeou/workspace/YangYeou_SourceCode/registration-schemas/requestDeploy-registration.xml

	1 Introduction
	2 Background
	2.2.1 Unstructured P2P and structured P2P
	2.2.2 Distributed K-ary System (DKS)
	2.5.1 RDF
	2.5.2 RDF Schema (RDFS)
	2.5.3 OWL
	2.5.4 OWL-S
	2.5.5 Reasoning

	3 Related works in Semantic-Based Resource Discovery
	3.1.1 Three types of Aggregator
	3.1.2 MDS Aggregator Framework
	3.1.3 Information Providers
	3.3.1 Condor Matchmaker
	3.3.2 Semantic web service matchmaking algorithms

	4 Designs
	5 Prototype implementation
	6 Profiling of Prototype
	7 Conclusion and Future works
	8 List of Abbreviations
	9 References
	Appendix A. Registration file
	Appendix B. Code of getAliveNodeList (String remoteIndexAddr
	Appendix C. JoinDKS() source code in MyDKS.java
	Appendix D. WSDL file
	Appendix E. Mapping for information provider
	Appendix F. User Guides

