
Master of Science Thesis
Stockholm, Sweden 2007

COS/CCS 2007-21

P E R - E R I K S V E N S S O N

Mobile Web 2.0 - a new application framework for interactive Mobile TV

Mobile TV as a Web Application

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Mobile TV as a Web Application

Mobile Web 2.0 - a new application framework for interactive Mobile TV

PER-ERIK SVENSSON

Master’s Thesis at KTH ICT/COS and Ericsson Research

Academic supervisor and examiner:
Professor Gerald Q. Maguire Jr.

Company supervisor:
Stefan Andersson, Ericsson Research

Abstract
The existing advanced web browsers in today’s mobile phones open
up the door for mobile web applications. By using standard web
technologies, a web page can be crafted to mimic the behavior of a
normal application. The purpose of this master’s thesis has been to
look at web application development for mobile phones in general and to
implement a web-based Mobile TV client to determine whether it would
be a viable alternative to existing clients based on other technologies.
The advantages are the same as for any other web application: 1) the
user avoids the hassle of installing an application and will always run
the latest version, 2) developers benefit from the browser’s ability to
render generic content, and 3) it is believed that the differences between
browser implementations are less than in other environments in which
an application would run, for example Java or operating system specific
environments.

ii

Sammanfattning
Mobil-TV som Webbapplikation

De avancerade webbläsare som redan idag finns tillgängliga på nyare
mobiltelefoner har gjort det möjligt att skapa mobila webbapplikationer.
Genom användandet av befintlig webbteknik kan en webbsida utformas
på ett sådant sätt att den uppträder som en vanlig applikation. Syftet
med det här examensarbetet har varit att titta på webbutveckling
för mobiltelefoner i allmänhet samt att implementera en webbaserad
MobilTV-klient för att avgöra hurivida en sådan lösning skulle kunna
utgöra ett alternativ till redan existerande klienter baserade på andra
teknologier. Fördelarna antas vara desamma som för andra webbapplika-
tioner: 1) användaren slipper installera ett program och kommer alltid
att köra den senaste versionen, 2) utvecklingen gynnas av webbläsarens
förmåga att rendera godtyckligt innehåll och 3) skillnaderna mellan
olika webbläsarimplementationer anses vara mindre i jämförelse med
andra miljöer i vilka en applikation körs, till exempel Java- eller
operativsystemspecifika.

iii

Acknowledgements

First of all, I would like to thank Professor Gerald Q. Maguire Jr. for agreeing
on being the examiner and academic supervisor of this thesis and for the valuable
comments and corrections, carried out with the broad knowledge and patience that
is to be expected from him.

Further, I would like to thank everyone at Ericsson giving me important
feedback, most notably Stefan Andersson, Clinton Priddle, and Torbjörn Einarsson.
Cristian Norlin provided me with the graphical user interface design and much of
the graphics, for which I am grateful.

iv

Contents

1 Introduction 1
1.1 Mobile TV . 1

1.1.1 Mobile TV in cellular networks 2
1.1.2 Broadcast Mobile TV . 3

2 Mobile web development 4
2.1 HTML . 4
2.2 Cascading Style Sheets . 4
2.3 JavaScript . 5
2.4 Data exchange formats . 6

2.4.1 XML . 6
2.4.2 JSON . 6

2.5 SVG . 7
2.6 Flash . 7
2.7 XHTML . 7
2.8 HTML5 . 8
2.9 WAP . 8

3 Mobile web browsers 9
3.1 Netfront . 9
3.2 Opera Mobile . 12
3.3 Nokia web browser . 13
3.4 Others . 13

3.4.1 Minimo . 13
3.4.2 Pocket Internet Explorer . 14

4 Implementation 15
4.1 Background . 15
4.2 Graphical User Interface . 16
4.3 User input control . 25
4.4 Client-server communication . 26
4.5 Interactivity . 28

5 Evaluation 30

v

5.1 Functionality . 30
5.2 Performance . 31

6 Conclusions and future work 33

Bibliography 35

vi

Chapter 1

Introduction

Today the Internet is synonymous with the Web for a lot of people. Applications
that were previously downloaded or bought as hard-copies and installed natively,
are being replaced with web-based alternatives with similar or better functionality.
One of the best examples of this is perhaps web-based email clients, where many
users depend solely on these services for their email and have been doing so for
years. Some of these users have never used any other interface to access, manage
and send email.

As web browsers have improved, the possibilities have vastly improved for
web developers to create services that look and behave much like their desktop
counterparts. A driving force for the service providers has been the advantage of
having advertising-financed applications, as advertisements on the web are generally
more accepted than intrusive adware programs.

Web browsers for mobile phones have just recently improved but are still
lagging in functionality in comparison with desktop browsers, in part because of
the limitations of the phones themselves. However, this is rapidly changing and
there are already retail phones available that are equipped with browsers suitable
for web application development.

This first part of this thesis examines the aspects of web development in
general, focusing specifically on mobile phone browsers, with the specific goal of
the implementation of a Mobile TV client in mind. The second part describes such
an implementation, followed by an evaluation and comparison to Mobile TV clients
based on other technologies.

1.1 Mobile TV
Mobile TV is believed to be the most successful 3G service with, as early as 2004,
a 50% adoption rate in South Korea and an expected adoption rate of 10% for
2007 in Western Europe [1]. But, as noted by Carlsson and Walden, the success of
Mobile TV will eventually depend on the content provided being attractive enough
to retain a large user base [2].

1

CHAPTER 1. INTRODUCTION

The term Mobile TV is used to describe almost anything that involves the
reception and playback of video content on a mobile device. The various technologies
used can be categorized into three different groups. The first is unicast streaming,
which is the only technology today that is commercially available on a large scale.
Unicast streaming Mobile TV involves streaming of video content over existing
cellular networks to handheld devices using a separate stream for each device.

Another approach to Mobile TV is that of using the existing radio network
to stream content to several devices at the same time in a multicast fashion,
maintaining a single stream for each channel. A technology for this is Multimedia
Broadcast Multicast Service (MBMS), which will be available to the general public
in 2008.

The third group consists of different, but similar, technologies for broadcasting
Mobile TV using a separate radio network specially designed for TV broadcasting
to portable devices. We will consider each of the technologies for Mobile TV used
in cellular networks and broadcast networks in a section of its own.

1.1.1 Mobile TV in cellular networks
Unicast streaming

Traditionally, Mobile TV has been delivered via unicast streaming to a Real Time
Streaming Protocol (RTSP) -capable player built in to the mobile phone. Usually,
the links to the content are provided by the operator on a web (or WAP) portal.
The next generation of Mobile TV for receiving unicast streaming consists of J2ME
applications specially designed for this purpose. They usually offer added value in
the form of Electronic Program Guides (EPGs) and interactivity such as voting,
chatting, etcetera. The downside of this approach is that users need to download
and install the program as well as any subsequent updates. Because of Java’s
security model the application also needs to be cryptographically signed and the
user has to give his approval of the certificate and grant or deny the application
access to the Internet.

MBMS

Multimedia Broadcast Multicast Service (MBMS) is an extension of existing third
generation (3G) radio networks to be able to broadcast from a single point to
multiple receivers via multicast. In contrast to technologies such as DVB-H and
T-DMB, an uplink channel will be readily available. There are currently ongoing
MBMS trials and the technology will be available to the general public as soon as
operators have upgraded their base stations and MBMS capable handsets have been
rolled out. This is expected to happen in 2008. MBMS is standardized within the
3rd Generation Partnership Project (3GPP).

2

CHAPTER 1. INTRODUCTION

1.1.2 Broadcast Mobile TV
DVB-H, T-DMB, and MediaFlo

There are three main competing methods of delivering Mobile TV by means of
broadcasting over a separate radio network [3], in a similar fashion that ordinary
digital TV is broadcast. In fact, the Digital Video Broadcasting, Handheld (DVB-H)
standard is based on the commonly used DVB-T (T for Terrestrial) standard used
to provide homes all over the world with digital television. DVB-H has been
standardized by the European Telecommunications Standards Institute (ETSI) and
it is being pushed by several companies, especially Nokia. Since it uses a separate
radio network, operators need to acquire new licenses to operate in that spectrum or
to partner with those who do have such licenses. In addition to telecom operators,
many others are interested in broadcasting Mobile TV, which could lead to a battle
for the few licenses that will be handed out. The regulations differ from country to
country. In some countries it may not be possible for a telecommunications operator
to acquire such a license.

The closest competitor to DVB-H is Terrestrial Digital Multimedia Broadcast
(T-DMB) based on Digital Audio Broadcasting (DAB) radio and developed by a
group of South Korean companies. The spectrum license regulations may be even
harder for T-DMB, for example in the UK 80% of the DAB spectrum has to be
used for audio broadcasting [4].

MediaFlo is a proprietary Mobile TV solution by Qualcomm, similar to DVB-H,
but with a number of added features such as turbo coding and scalable video [3].

These technologies will of course require, besides a whole new broadcast
infrastructure, handsets equipped with suitable Mobile TV receivers. As noted
by Ollikainen and Peng, "Re-using existing DVB-T broadcast infrastructure for
DVB-H is not enough to achieve the same coverage level as for DVB-T services"
[5]. DVB-H handsets are already available from mobile phone manufacturers Nokia,
Samsung and LG, among others.

3

Chapter 2

Mobile web development

This section gives a brief introduction to web development as well as outlines the
prerequisites for mobile web application development.

2.1 HTML
When Tim Berners Lee created HTML (HyperText Markup Language), the main
focus was on the hypertext functionality. HTML was inspired by, not based on,
the Standardized Generalized Markup Language (SGML). The first application of
HTML was to present abstracts of research papers [13]. From the beginning, HTML
was intended to represent the logical structure of a text document. The physical
representation of headings, paragraphs, etcetera was determined by the browser [6].

Ultimately, there were demands for more control over the visual appearance of
web pages. Tags such as the font tag were introduced, allowing web developers
to specify the typeface, size, weight, and color of text in HTML documents. Using
table elements with zero-width borders, it was possible to do fairly advanced layout
and positioning of page contents. Of course, the markup became cluttered and hard
to comprehend. Today, HTML is once again written to represent the structure of
documents, leaving all presentation related formatting to CSS (see next section).

In modern browsers, a HTML document is accessible through the Document
Object Model (DOM) which is a World Wide Web Consortium (W3C) standard
API for accessing elements in a document as objects. This makes it possible to use
JavaScript to alter any element on the page. This is popularly known as dynamic
HTML. A dynamic web application will require a certain level of DOM support.

2.2 Cascading Style Sheets
Cascading Style Sheets (CSS) is a stylistic language complementing HTML to
provide styling and layout of page contents [7]. With CSS it is possible to define
different styling for different media types. There are media types for rendering for a
screen (assumed to be a screen of a desktop computer), handheld, printer, etcetera.

4

CHAPTER 2. MOBILE WEB DEVELOPMENT

If the browser supports it, the media type handheld can be used to signal that
a page has been specifically designed for a handheld device and thus preventing
the browser from trying itself to adapt the page to the smaller screen. These
techniques for adapting web pages to handheld devices, sometimes called Small-
Screen Rendering or Smart-Fit, are essentially based on the browser replacing the
stylesheet of a page with its own stylesheet with the intention of making a web page
readable on a mobile device, despite the fact that the web page was not initially
designed to be presented on a device with a small screen.

An essential feature of CSS when designing advanced user interfaces with a
lot of graphical components is absolute positioning. It is very desirable to have
full control of the placement of the various elements and also to be able to have
overlapping elements. The effect that the small-screen rendering techniques usually
have on pages that rely on absolute positioning is that the positioning is removed
and the elements are floated below each other in the order they appear in the HTML
document.

2.3 JavaScript
JavaScript was initially developed by Brendan Eich, of the Mozilla Foundation,
who at that time worked for Netscape. JavaScript has little to do with Java
besides some similarities in syntax, the name was just a marketing ploy by
Netscape and Sun Microsystems. The name was changed from LiveScript to
JavaScript at the last minute. Today JavaScript is standardized by ECMA
(European Computer Manufacturers Association) and so its official name is
ECMAScript. Technically, JavaScript refers to Mozilla’s (and Netscape’s) language
implementation of ECMAScript, although most people simply call the language
JavaScript [8].

JavaScript is most commonly used for client-side scripting, i.e., running code
inside the web browser. Once a web page is downloaded, JavaScript code can
dynamically alter the page and respond to events triggered by the user. By using
JavaScript to alter a web page loaded in the browser, mimicing a normal application,
the web page turns into a thin-client that is loaded from the server on request and
runs locally in the web browser.

To be able to provide a dynamic user interface that behaves just like an
application, we can utilize JavaScript. Additionally, JavaScript let us communicate
with the server without having to reload the page.

A web page can also invoke operations on the server, previously called Remote
Scripting, but now often called Ajax (Asynchronous JavaScript and XML), a broad
term covering the various techniques for asynchronous client-server communication
within web pages. The most common method used today is XMLHttpRequest,
an API for making such requests with JavaScript. Alternatively, one can use
HTML elements like iframe, script, and img and set their respective src (source)
properties to have them update dynamically, thus making a request to the server.

5

CHAPTER 2. MOBILE WEB DEVELOPMENT

See [9] for detailed descriptions of the various methods that can be used for remote
scripting.

Despite the name XMLHttpRequest it is not necessary to use XML as the data
exchange format. One can equally well use plain text, HTML, JSON (see section
2.4.2) or any other format of choice. (Binary data may have to be BASE64-encoded
though). In fact, there are several large Ajax sites that do not use XML at all.

2.4 Data exchange formats
When an asynchronous request for data is made, the server needs to represent
the data in a way that can easily be accessed from within JavaScript once it has
been transferred to the client. Besides proprietary text formats, there are two very
commonly used data exchange formats: XML and JSON.

2.4.1 XML
XML, short for eXtensible Markup Language, is a generic markup language for
data representation. XML was derived from SGML. Anyone can create their own
document with unique tags and attributes. XML supports namespaces, thus one
can mix different kinds of XML documents together into a single document. XML
is the most common data exchange format used in web applications today, hence
the ’x’ in Ajax.

If the browser has built-in support for XML, this format can be utilized for
the asynchronous client-server communication. When XMLHttpRequest receives an
XML response, a DOM tree is automatically built up from the XML and standard
DOM functions can be used to access the data. A DOM tree is the resulting data
structure when building up the hierarchical level of elements in an XML document
as objects. When the data to be transferred is already in XML, such as an SVG or
an XHTML document, it seems logical to keep this format rather than transform
the document to some other format.

2.4.2 JSON
JavaScript Object Notation (JSON) is a subset of JavaScript and described as "the
fat-free alternative to XML" [10]. JSON is heavily used in many Ajax applications on
the web today. Because JSON is essentially JavaScript, it is very easy to handle such
a response within the browser. Providing that one can trust the data not to contain
any malicious JavaScript code, one can simply run eval() on the string containing
the data to have it turned into an object. Alternatively, there are very compact
JavaScript libraries available for safely parsing JSON data. The simplicity makes
it attractive to use JSON in a web application, especially when targeting a browser
without XML support. There are numerous libraries and built-in JSON support for
many different programming languages. JSON is defined in RFC 4627[11].

6

CHAPTER 2. MOBILE WEB DEVELOPMENT

2.5 SVG
Scalable Vector Graphics (SVG) is a W3C recommendation for using XML to
describe graphics as lines, curves, and text [12]. SVG can also be used to create
animated graphics. What really makes SVG suitable for web applications is that it
can work in conjunction with (X)HTML and JavaScript [13]. The bad news is that
the current subset profile of SVG for mobile devices, SVG Tiny version 1.1, does
not support scripting. While the W3C candidate recommendation SVG Tiny 1.2
supports scripting there are currently no implementations available. Additionally,
SVG is often not implemented natively in the browser, but instead as a browser
plugin, which may complicate the integration with the rest of the web page.

SVG has its own Document Object Model, the SVG DOM, compatible with the
original DOM, but with added features specific to SVG. SVG Tiny 1.2 uses a subset
of the SVG DOM called the SVG Micro DOM (uDOM). It is expected that mobile
browsers that will support SVG Tiny 1.2, also will support the SVG uDOM.

Even if SVG might not be used to render a user interface on a mobile device,
it may still be used for graphics content, since it allows scaling. There are
several drawing programs available, for example Inkscape 1, that can generate SVG
documents and libraries that can be used to rasterize the resulting graphics into
ordinary bitmap images.

2.6 Flash
Flash is a platform for creating rich multimedia applications. With the help of a
plugin, these applications can run inside the browser, seemingly integrated in a web
page. Flash is a proprietary format of Adobe Systems Inc.

Flash Lite is a mobile profile of Flash. Flash Lite 1.0 and 1.1 are based on Flash
4 that was released in 1999. Flash Lite 2.0 is based on Flash 7. The most common
version of Flash Lite shipped with mobile phones is 1.1 as of this writing. Flash
Lite 1.1 has quite a few limitations compared to Flash Lite 2.0, which in turn has
several limitations compared to the desktop version of Flash. Most notably, there is
no support for streaming video in Flash Lite 1.1. Flash Lite 2 can support streaming
video, given that the device inherently supports streaming video. For streaming to
work, some specific conditions have to be met. For example, it is known to work
on a Nokia 6620 with Flash Lite 2 installed, streaming a file encoded with Helix
Mobile Producer from a Helix Streaming Server over the T-Mobile carrier, with an
unlimited data plan [14].

2.7 XHTML
The eXtensible HyperText Markup Language (XHTML) is a W3C initiative to make
HTML more like XML, bringing a more strict syntax and parsing to HTML. As

1http://www.inkscape.org/

7

CHAPTER 2. MOBILE WEB DEVELOPMENT

mentioned earlier, one of the benefits of treating HTML as XML is that one can use
namespaces to mix XHTML with other XML-based documents. Specifically, one
can merge an SVG document into an XHTML document and have them both being
part of the same DOM tree, to build a true graphical web application. Provided
that the browser supports this, of course.

2.8 HTML5
HTML5 [15] is an initiative by the Web Hypertext Application Technology Working
Group (WHATWG), an unofficial group formed by Apple, Mozilla, and Opera with
the aim of making it easier to develop web applications. The most famous addition
to HTML in HTML5 is probably the canvas tag, implemented in Apple’s Safari
and Mozilla’s Firefox browsers. The canvas tag allows an arbitrary graphics canvas
to be placed on a web page. One can then draw on the canvas with JavaScript calls.

2.9 WAP
When writing about web development for mobile devices, it is hard not to mention
the Wireless Application Protocol (WAP). The first version of WAP uses its own
markup language, the Wireless Markup Language (WML), for pages especially
designed for mobile devices. WAP 2.0 uses a mobile profile version of XHTML,
XHTML-MP, as its markup language.

When WAP was first introduced, terminals had very limited screens (small, non-
color) and used circuit switched data links that were both slow and took a long time
to set up. People willing to embrace the new technology were often turned off by
the bad user experience resulting from this. The hype surrounding WAP nourished
the disappointment. The reputation of the mobile web still suffers from the early
failures of WAP.

8

Chapter 3

Mobile web browsers

This section describes the most common advanced mobile web browsers, as well
as some initial findings resulting from testing and experimenting with a couple of
mobile phones. We consider an advanced mobile web browser a browser with similar
capabilities as a standard desktop browser.

3.1 Netfront
Netfront is a browser targeted specifically towards mobile devices [17]. It is being
developed by a Japanese company called Access. Since this browser ships with
several Sony Ericsson phones, and also many Samsung handsets, it will be given a
lot of attention in this thesis. Netfront on Sony Ericsson phones is the only browser
tested that has a stable streaming video plug-in, which is a requirement for our
Mobile TV implementation.

Testing of the Netfront browser has been carried out mainly on a Sony Ericsson
K800i with the latest official software as of this writing, revision R1GB001. This
phone is running Netfront 3.3. Additionally, some tests were made on a HTC
Smartphone running Windows Mobile 5 and the Netfront 3.4 Technical Previews
1-3 of the upcoming version 3.4. Unless otherwise noted, conclusions refer to testing
on the K800i.

The adaptation of ordinary web pages to the small screen of mobile devices is
called Smart-Fit Rendering in Netfront. Unfortunately, there seems to be no way
of turning this off or even detecting that Smart-Fit is on. CSS media types screen
and handheld are both applied regardless of setting. In Netfront 3.4 TP2, only
the screen media type is applied, with or without Smart-Fit. It is up to the user
to change this setting in the options menu of the browser. With Smart-Fit turned
on, all CSS absolute positioning is removed and all elements are placed below each
other in the order they occur in the markup. Therefore, one should see to it that
the first rendered element will be a box, covering the visible area of the page before
scrolling, containing a notification to the user to turn the Smart-Fit setting off.
When Smart-Fit is turned off, this element is hidden beneath the elements of the

9

CHAPTER 3. MOBILE WEB BROWSERS

user interface and/or the video plugin. After a while, when the user supposedly has
read the notification and turned Smart-Fit off, the box can be removed completely
from the page with a JavaScript call.

The SVG support which has been implemented is sufficient enough that one
would consider using it for much of the graphics of the user interface. According to
the specifications of Netfront 3.3, the SVG level support is SVG Tiny 1.1. Although
it is not possible to have the entire UI as a single SVG, since scripting of SVGs is
not supported, the user interface could in theory be built up as a set of different
SVGs much in the same way as one would do with bitmaps. It has been verified
that one can assign a link to an SVG element and have it yield a JavaScript event
whenever it is focused or clicked on. There are at least two things that make this
solution less attractive. First, transparent areas of an SVG are not transparent
with respect to the entire page. For example, a non-rectangular shape will appear
in the page with its bounding box background as a white surface. Secondly, SVGs
are always rendered in front of other elements so one can not have an SVG as
background and then place HTML text on top of it, regardless of any z-position
attributes. To sum it up, you can’t use SVG as a foreground or as background.
Also, a gradient in a basic SVG image created with Inkscape was not rendered at
all, simply because SVG Tiny 1.1 does not support gradients [18]. Version 3.4 of
Netfront will supposedly support SVG Tiny 1.2 with uDOM, but 3.4 TP2 has no
support for SVG at all.

Three methods can be used for remote scripting in Netfront 3.3. The first and
perhaps the easiest to implement is to update the src (source) attribute of a script
element, in which the browser downloads the content from the specified location and,
since it’s a script tag, immediately tries to evaluate the new content as JavaScript.
Note that an onload event is not generated when the content has finished loading,
so if a variable is assigned a value, a callback function has to be executed at the end
to signal that the data is available. As an alternative, data can instead be passed
as an argument to the callback function, which will not be called until the data is
loaded.

Another method is to have a hidden iframe and set the location property
whenever an asynchronous request is to be made. A load event is triggered when
the iframe has finished loading, so that one knows when the content is ready to be
processed.

The third method for remote scripting in Netfront 3.3 is to set the src attribute
of an image and have the browser download a single pixel image and at the same time
have the server set a cookie. An onload event occurs when the image has loaded
(and the cookie is set), and then the cookie contents can be extracted. According
to RFC 2109 [16], browsers should allow cookies to be as large as 4096 bytes and
allow for at least 20 cookies per unique host or domain. Whether Netfront obeys
this has not been tested.

In both cases, an obtrusive and rather annoying progress bar is displayed
during the request. While this could perhaps be acceptable for user generated
events, such as changing channels, responding to interactivity events, etcetera, it is

10

CHAPTER 3. MOBILE WEB BROWSERS

highly undesirable to have the progress bar show up on timed events, for example.
Netfront 3.4 introduces XMLHttpRequest and such requests will probably not make
the progress bar appear, as it is designed for background loading and no known
browser uses a process indicator for these requests. When tested with the Windows
Mobile version of Netfront 3.4, the progress indicator did not indicate progress on
XMLHttpRequests.

When dealing with user generated JavaScript events in Netfront on the K800i,
it is very unfortunate that the joystick does not yield keypress events when moved,
only a click on the joystick generates a keypress event. The only option is to let the
user navigate between links and use the focus event on the links to determine in
what direction the user is moving, which will be discussed further in section 4.3. On
the HTC Smartphone running Windows Mobile and Netfront 3.4 TP2, key events
are generated when moving the joystick as well as when toggling the scroll button
on the side of the device. However, keydown events are incorrectly repeated when
pressing and holding a button on that handset.

One of the most annoying bugs in Netfront 3.3 it that when the overflow
property of a div element is set, the text overflowing the div box is correctly
hidden, but if the hidden text stretches outside the visible screen area to the right,
then scrollbars appear. Note that this only applies to the right side of the screen,
when overflowing at the bottom of the screen everything works as intended and
expected.

It would be nice to have the clear key ’C’ generating an event, so that it could
be used as backspace if one would like to handle user input with JavaScript instead
of the browser’s built-in textual input. Unfortunately, keyup events do not work as
intended. A keyup event is always issued within half a second, even if the user holds
the button for a longer period of time. If one would like to emulate the built-in
textual input, pressing and holding a button should yield the corresponding digit.

There are different view settings for normal, full screen, and horizontal that
can be set by the user. When the view changes the innerWidth and innerHeight
properties of the window object are properly updated, but a resize event is not
generated to let the application know that the visible screen area has been updated,
so that it can update the user interface accordingly. This was reported to Access in
early March 2007, a couple of weeks before the release off TP3, but it was not fixed
in that technical preview version. The most recent technical preview version, as of
this writing, (TP4) fails to start on the HTC MTeoR handset.

Access is currently working on a new version of Netfront, version 3.5. Highlights
in this version will be something they call "Embedded Ajax", non-standard
JavaScript APIs for improving web applications for mobile devices. For example,
there will be a call for doing explicit garbage collection. The release date for Netfront
3.5 is unknown.

11

CHAPTER 3. MOBILE WEB BROWSERS

3.2 Opera Mobile
The Norwegian software company Opera has been in the web browser market
for many years. The mobile version of their desktop browser, simply called
"Opera Mobile", comes pre-installed on Sony Ericsson’s Symbian models, Nokia’s
Communicator series, and many Motorola handsets. Moreover, the browser can be
downloaded and installed on a wide range of handsets [19].

Opera uses their Small-Screen Rendering to adapt web pages to the small screen
of the mobile device. Fortunately, by setting the CSS media type to handheld,
one can prevent unwanted rearranging of pages specifically designed for a mobile
browser.

The Opera Mobile browser version 8.60 pre-installed on a Sony Ericsson W950
with Symbian UIQ was used for testing. The latest version of Opera Mobile is 8.65
as of this writing. Highlights in the newest version include, besides a slimmer title
bar freeing up valuable screen area, two-button browser shortcuts. Shortcut keys
are functions in the web browser mapped to certain keypad keys to provide easy
access. To use a shortcut key in version 8.65, the user needs to press # before the
shortcut key. Thus, ordinary key presses can be used by web applications without
the user having to change the brower’s settings as in previous versions and in the
Netfront browser.

SVG support is implemented as a plugin and although it can render some com-
plex SVG images, it suffers from the same problems as the Netfront implementation
with regards to transparency and z-positioning. Also, it had the exact same problem
with the gradient as with Netfront, indicating that the level of SVG support is SVG
Tiny 1.1.

The version of Opera Mobile on Sony Ericsson W950 is said to include
XMLHttpRequest and this has been verified to be true. Other methods of
doing remote scripting have not been tested. It is generally preferred to use
XMLHttpRequest when available, since it is a defined API specifically for making
asynchronous requests to the server and other methods are just tweaks to achieve the
same thing. In Mozilla Firefox on the desktop, XMLHttpRequest was significantly
faster compared to the hidden iframe technique.

Key related events work as they should, even the power button on top of the
phone as well as the play/stop and volume buttons on the side, yields a keypress
event. However, scrolling the scroll wheel up and down gives a key code of zero in
both directions so it is difficult to know in which direction the wheel was turned.
Unlike Netfront, Opera Mobile supports the resize event when the user changes the
view settings.

Opera is about to release version 9 of its mobile browser. New in this version
is, among other things, improved SVG support. The release date for Opera Mobile
9 is yet to be announced.

12

CHAPTER 3. MOBILE WEB BROWSERS

3.3 Nokia web browser
A couple of years ago, Nokia decided to develop their own mobile web browser based
on Apple’s WebKit [20] upon which Apple’s Safari [21] browser is based. WebKit,
which is open source, was originally derived from the open source components used
in the Konqueror browser that ships with the desktop environment KDE [22].

This browser was tested on a Nokia N73, software version 2.0628.0.0.1 and on a
Nokia N95 with an unknown software version, most likely the version shipped with
the first of these phones ever sold.

The initial tests show that on the Nokia N73, there is no support for SVG in the
browser. SVG documents are opened in a separate viewer. Unfortunately, the level
of SVG support on the N95 was not checked during the limited time the phone was
available for testing. Surprisingly, there seems to be no support for PNG images on
the N73, which one would consider basic functionality. Nokia N95 has support for
PNG images, even with transparency.

The tested Nokia web browser on the N73 and N95 includes XMLHttpRequest.
Other techniques for remote scripting have not been tested, but are presumably
available. When the browser supports XMLHttpRequest, support for other tech-
niques becomes irrelevant.

Key events are generated for most keys and since browser shortcuts are always on
and cannot be turned off by the user, one has to call the preventDefault() method of
the event object to override the shortcuts and prevent them from being activated.
Some default actions can not be prevented though. The joystick steers a mouse
pointer, so it does not trigger key events. Instead it generates mouse events, at
least on the N95 where it was tested for. It is likely that the joystick generates
mouse events on the N73 as well.

The Nokia web browser supports the resize event when the user changes the
view settings.

3.4 Others

3.4.1 Minimo
Minimo [23], short for Mini Mozilla, is a project of the Mozilla Foundation to create
a mobile browser based on the Gecko rendering engine [24]. A single developer has
been assigned to the task during the last couple of years, but the project is now
currently on hold. Minimo does not come pre-installed with any known device so
it has to be downloaded and installed separately. When tested on the Windows
Mobile HTC MTeoR, Minimo runs very slow, but the rendering is excellent, as
expected from the Gecko engine. Minimo comes with a smallscreen.css file that is
used by default. It can be disabled by user settings. The hefty CPU and RAM
requirements and the uncertain future of the project, makes Minimo less attractive
than the browsers previously described.

13

CHAPTER 3. MOBILE WEB BROWSERS

3.4.2 Pocket Internet Explorer
Pocket Internet Explorer (PIE) is Microsoft’s browser for mobile devices. It is not
based on the desktop browser Internet Explorer. The version of PIE installed on the
Windows Mobile HTC MTeoR smartphone seems to have only limited support for
JavaScript. CSS support is also limited, specifically there seems to be no support
for inline styles. By adding a proprietary meta tag MobileOptimized to a page, the
fit-to-screen rendering of Pocket Internet Explorer can be turned off. It is apparent
that the PIE implementors are aiming for IE compliance rather than standards
compliance; hence if one were to target the PIE browser one would have to make
all the special exceptions in the code to handle the Internet Explorer specifics. As
a side note, when the phone is delivered, one of the Favorites (the IE name for
Bookmark) links to the download page of Netfront for Windows Mobile.

14

Chapter 4

Implementation

4.1 Background
The goal has been to develop a Mobile TV client based on web technologies that
includes all the important features in existing clients based on other technologies.
The work was carried out at Ericsson Research, where the client specification was
set, including all the features that were to be implemented. While watching live
TV at full screen width one can browse a list of available channels with channel
icons, and names and titles of the currently running programs. Additionally, if
Electronic Program Guide (EPG) data is available for the current channel, one can
read additional information about the program being watched and the upcoming
programs on that channel.

If the keypad key hash (#) is pressed when watching a TV channel, the EPG
enters full-screen mode with the video element as a thumbnail in the upper left
corner along with information about the program being watched. In full-screen
EPG mode, the user can browse program information for all channels that have
this information available and also be able to read it without having to scroll.

The client has support for fully dynamic interactivity events that can appear on a
per channel basis at a specified time. Typical such events can be for example voting,
or banners with or without the possibility to purchase goods directly. Interactivity
will be discussed further in section 4.5.

Whenever the star key (*) is pressed the client poses a service selection where
the user can currently choose either the live TV service or Video on Demand (VoD).
When entering VoD the user is given a list of video clips to select from. The list
consists of a thumbnail icon and the title of the clip. By clicking on an entry the
video clip starts playing with the video shown in full screen width. Along with
the thumbnail icon and the title of the current clip, a number of stars are shown,
indicating the rating of the clip as determined by a poll. When the clip has finished
playing the client returns to the list of available clips. The VoD functionality is very
basic because it has been implemented just as a proof-of-concept.

The server that provides the streaming TV channels along with the EPG data, is

15

CHAPTER 4. IMPLEMENTATION

an existing in-house implementation in Python using the event-driven networking
engine Twisted [25]. Channel switching is achieved by switching the Real-time
Transport Protocol (RTP) stream inside an established RTSP session. The client
requests a change of channel by sending a command over HTTP. Only minor
adjustments were required on the server side as described in section 4.4; where
we go into details about the client-server communication.

One of the requested features of the Mobile TV web application has been to allow
for easy customization of the graphical user interface (GUI). This has resulted in a
solution where a user interface designer can essentially draw the GUI as a whole and
have it compiled and merged with the program logic to produce a client with the
mere press of a button. Combined with the thin-client nature of a web application
as previously discussed in section 2.3, this adds the possibility to have skins or
themes that could be updated on a day-to-day basis.

The web-based Mobile TV client was developed based on the Model-View-
Controller (MVC) software architectural paradigm [26]. MVC involves splitting the
logical and the presentational, as well as the user interactive parts, into separate
layers. The reason for doing this is that one layer can updated without affecting
the others, which will ease development in the long run. In this implementation,
the View represents the HTML document (with images) comprising the GUI, the
Controller represents the JavaScript object handling user input, and the Model
represents the actual content retrieved from the server.

4.2 Graphical User Interface
As previously noted, SVG is a suitable format for representing vector graphics and it
would therefore be attractive to use it for the GUI. However, it has been concluded,
based on the observations in the previous chapter, that SVG support on mobile
phones is not yet sufficient enough. Could there perhaps be a way for us to still use
SVG when creating and storing the graphical user interface, but not as a part of
the actual client? The answer: yes, there is.

There are important reasons for wanting to use SVG initially. First of all it is
much easier to draw and update vector graphics than when working with bitmap
images. Secondly, since it is assumed that we will be dealing with different screen
sizes, we can easily scale the GUI to any size, preferably keeping the same aspect
ratio. Another important fact is that if we choose to use SVG from the very
beginning, the same graphics could be reused once SVG is commonly available
in the mobile web browsers.

With this as the starting point, how can we begin by defining a set of SVGs
representing the GUI, in order to produce graphics to be used in a browser with
little or no SVG support. For this specific purpose, a program for transforming
SVGs has been written in Java, using the Batik SVG Toolkit [27]. Batik is an open
source library mainly for manipulating SVG documents, although it includes general
XML parsers and functions for working with DOM trees as well. It is licensed under

16

CHAPTER 4. IMPLEMENTATION

the Apache license version 2.0, which is an Open Source Initiative (OSI) approved
license.

When working with SVG documents, an element or a group of elements can have
an identification (id) attribute assigned to it/them. The reason for having this is
usually that one wants to be able to address a specific element in the SVG from
a script. After identifying it, we can operate on that element, move it, change its
color, make it visible/invisible, or do any other operation that is supported by the
element. This is an essential part of the Document Object Model (DOM) discussed
earlier. Since HTML is also represented as a DOM structure, we could do the same
with an element of an HTML document. Naturally, HTML has less features than
SVG, so some operations would not be available, for example, if we were to alter
the attributes of a bitmap image element containing a circle, rather than altering
the attributes of a circle element in SVG.

Figure 4.1. A filled blue circle at a specific position and the SVG and HTML
markup to render it.

We start by considering an SVG definition of a part of a graphical user interface,
then think about how it could be represented as a web page. What happens when
we interact with a GUI is typically that various objects appear or disappear, they
move around, and sometimes they may even change color or shape. In order to
achieve this on a web page, each object that is dynamic has to be contained in an
element of its own. For graphics, this means that every dynamic object has to be
a separate bitmap image. Every piece of dynamic text will need its own container
too.

The SVG transformer program mentioned above has been developed for the
sole purpose of turning SVGs defining a GUI into a web page capable of expressing
all the states of the same GUI, using HTML with bitmap images and text. For
every element in the SVG that will be a dynamic component of the user interface, a
specific id is set, e.g. selector or icon. The relevant ids are specified in a separate

17

CHAPTER 4. IMPLEMENTATION

XML file with additional information used in the transformation. The transformer
program renders the SVGs internally. The bounding box of an element defines the
area that will be rasterized into the corresponding bitmap image and the top left
corner of that bounding box determines where that image will positioned in the
resulting web page. When an image is extracted, all other elements in the SVG are
hidden so that they will not appear in the image if there are overlapping elements.
All objects, text and images, are then put in an HTML document and wrapped
into div elements that are absolutely positioned with CSS. The ids are carried over
from the SVG elements to the corresponding HTML div with a specific view name
(see below) prepended to make sure that the id will be unique within the HTML
document.

What about shaping or changing the color of an object then? We can not
reshape a bitmap image or change its color by means of scripting. What if the user
is pressing a green button and it is supposed to turn red? The good news is that
we do not have to change the color, instead we create one image for each color and
select which one is visible at a given time. The same technique is used to create
the appearance of an object changing shape. This approach is not novel, it is the
same basic principle used in early animation to create the notion of motion. When
implementing the client it was only once necessary to use this method and that was
when making the appearance of unlightened stars when indicating how many stars
that were given to a specific video on demand clip as a result of voting.

The graphical user interface was designed by usability researcher Cristian
Norlin, with Ericsson Research, who also made the graphics for all the components
comprising the GUI. The design is based on views, where a view is a distinct part
of the GUI in which the user is interacting at a given point in time and from
where he can navigate to other views. A typical view is shown in figure 4.2 (See
appendix A for the complete set of views). Each view is defined in its own SVG
document, but when compiled into HTML, all views reside in the same document
with a separate div element holding each view. The concept of views has been
adopted in the client logic as well, where each view is represented by its own object.
Thus, switching between views can be accomplished visually by hiding the current
view and unhiding the new view and logically by updating a reference variable to
point to the now current view. This is similar to the concept of cards in WML,
where a single markup document holds several cards, but only one card is visible
at a time [28]. The benefits of using this approach will be made clear in the next
section when we look at how to handle input control.

18

CHAPTER 4. IMPLEMENTATION

Figure 4.2. View A1. This is the main view of the Live TV service. It shows some
information about the channel being watched. Navigate right to the A2 view for a
list of programs on the current channel. By navigating up or down, you will be taken
to the B1 view, which is a list of available channels.

Figure 4.3. View A2. This view shows a list with the current and the nine upcoming
programs on the channel currently being watched. Browse the list by navigating up
or down, and navigate right to go to the A3 view, which will show you all information
about the selected program. Navigating left will take you back to the A1 view.

19

CHAPTER 4. IMPLEMENTATION

Figure 4.4. View A3. This view shows information about a program on the currently
watched channel. Navigate left to go back to the A2 view or right to go back the A1
view. The program description text is scrolled by navigating up or down.

Figure 4.5. View B1. This view shows a list of all available channels. Browse the
list by navigating up or down. By clicking on an item, a channel change is initiated
and you will be taken to the A1 view. Navigate left to go back to the A1 view without
changing channel. Being idle for ten seconds will also bring you back to the A1 view.

20

CHAPTER 4. IMPLEMENTATION

Figure 4.6. View D1. This is the full screen equivalent of the B1 view. You enter
this view by pressing the hash key in the A1 or B1 view or by navigating here from
the D2 view. Browse the list by navigating up or down. By clicking on an item, a
channel change is initiated and you will be taken to the A1 view. Navigate left or
press the hash key to go back to the A1 view without changing channel.

Figure 4.7. View D2. This is the full screen equivalent of the A2 view. You enter
this view by pressing the hash key in the A2 view or by navigating here from the D1
or D3 view. Browse the list by navigating up or down, and navigate right to go to the
D3 view, which will show you all information about the selected program. Navigating
left will take you back to the D1 view. Press the hash key to go back to the A1 view.

21

CHAPTER 4. IMPLEMENTATION

Figure 4.8. View D3. This is the full screen equivalent of the A3 view. You enter
this view by pressing the hash key in the A3 view or by navigating here from the D2
view. If the program description text is too long, a scrollbar will appear, which you
can scroll by navigating up or down. Navigate left to go back to the D2 view or press
the hash key to go to the A1 view.

Figure 4.9. View C1. This is the service selection view. Pressing the star key at
any time brings up this view. Select an item by navigating left or right and click on
it to start the service. If you select the Live TV service you will be taken to the A1
view, and the V1 view for the Video on Demand service. Press the star key again to
discard this view without taking action.

22

CHAPTER 4. IMPLEMENTATION

Figure 4.10. View V1. This view shows a list of video on demand clips. You enter
this view by selecting "VoD" in the C1 view or if you are returning from the V2 view.
Browse the list by navigating up or down. By clicking on an item, you will be taken
to the V2 view where the clip will start playing, if it is not already playing. All clips
that have been previously viewed will show up with a thumbnail, if a thumbnail is
available.

Figure 4.11. View V2. This is the video on demand equivalent to the A1 view.
It shows some information about the clip being watched, for example the clip title
and the rating in number of stars. Navigate left to go back to the V1 view (without
stopping the clip). When the clip has finished playing, you will be automatically
transfered back to the V1 view.

23

CHAPTER 4. IMPLEMENTATION

Figure 4.12. Navigating between the views in the graphical user interface. The
position in the matrix corresponds to the respective view name.

24

CHAPTER 4. IMPLEMENTATION

4.3 User input control
How well the user will be able to interact with the application and thus how well the
application is perceived, is directly related to how well we can handle user input.
For example, if the user expects to use the joystick in order to navigate, but the
application is unable to handle this, the result will be a bad user experience. A
keypad on a mobile phone usually has twelve keys, digits 0-9 plus the star and the
hash key. In addition, there are typically a number of keys that are referred to
as the soft keys. The soft keys are used to navigate and interact within the user
interface of the phone and often include a joystick or a set of directional keys. As we
have shown before, what we typically have control over via key events in JavaScript
are the keypad keys, but not the soft keys.

Figure 4.13. The keys on the Sony Ericsson K810i.

To provide the best user experience it is essential for the user to navigate within
a web application using the phone’s navigator, for example the joystick. We here
present a solution based upon emulating key events from the navigator; in order to
use it as though it had built-in support for triggering such events.

The navigator is typically designated to navigate within links in a web page.
When a link is highlighted as a result of the user moving to that link, an onfocus
event is triggered. Focus is set by the user navigating to a particular link, but can
also be set manually from within the application. By creating a 3x3 matrix of links
and setting focus on the link in the center, an onfocus event will be triggered by
adjacent links when the user navigates in any direction. As soon as any such event is
caught, focus is immediately returned to the center link and the application is once
again ready to handle user navigation. Note that the matrix of links will probably
be invisible to the user.

Our navigation handler is preferably placed within a wrapper object so that we

25

CHAPTER 4. IMPLEMENTATION

Figure 4.14. The 3x3 matrix used to simulate navigation events. An example page
viewed in Firefox.

can register a single key handler that will use key events if available or else fall back
on this method of emulating events. An argument to the function registering the key
handler will be a callback function to be called whenever an event is triggered, just
as when event listeners are normally registered in JavaScript. When a key event is
triggered, whether real or simulated, the registered callback function is called with
a key code as its argument. From within the callback there is no way of determining
if the event originated from a real or simulated key event. The way the key handler
object handles key events is transparent, not only to the user, but to the rest of the
application as well.

The Mobile TV client relies on the described technique for almost all navigation.
However, the keypad digits also provide short-hand keys for switching to channels 1
to 9, while as described in section 4.1, the star and the hash key have been assigned
to special functions also essential to navigation.

When previously discussing the graphical user interface it was noted that the
concept of views plays an important role in relation to user input control. The
callback from the key handler consists of a single switch clause used to map keycodes
onto methods within the current view. For example, if a keycode is received as a
result of the user pressing the navigator up, the method View.current.move_up()
is invoked, thus passing the action to the current view for further processing.
Thereby, user input control will be handled by each view individually whenever
a view is current and thus visible on the screen.

4.4 Client-server communication
When the web page constituting the whole client is requested as a result of the
user navigating to that page, the client’s logic and all the graphical components

26

CHAPTER 4. IMPLEMENTATION

(images) are downloaded as well. After this, all subsequent requests are made from
within the client in order to send commands and fetch content from the server. This
subsequent communication we denote client-server communication.

Figure 4.15. The web application is loaded in the browser as a normal web page.
All subsequent requests are made by the web application itself.

The first request made by the client is for the server to allocate resources for a
new user. If successful, the server will then reply with a full channel list, an RTSP
link, and other useful data such as the server time and which channel is currently
being shown. Further requests could be, for example, to change channel or poll
for interactivity events. The client will also perform a periodic update every other
minute to indicate to the server that it is still active.

The server has been extended to be able to reply with JSON-encoded messages
instead of with XML as it was originally designed. The reason for using JSON is
not only because of the lack of XML support in the Netfront 3.3 browser, but also
because of the ease of turning JSON-encoded data into JavaScript objects.

To simplify the calls to the server from within the client, a utility function called
HTTP.getJSON() has been created. This function takes two arguments, the URL
to be retrieved and a callback function. The callback is the function to be called
with the loaded data once it has been received and turned into an object as a result
of decoding from JSON. Decoding is done using the built-in eval() function as we
assume that we have secure communication with the server and that this server only
provides "safe" data. Thus we save the overhead of using a separate JSON decoder.
HTTP.getJSON() will use XMLHttpRequest if the browser supports it and reads the
responseText property to get the loaded JSON data. Otherwise, it falls back on
the iframe technique where a URL is loaded into an invisible iframe by setting
the location property and the data is read as the iframe’s contents. Multiple
simultaneous requests are supported by using as many hidden iframes as needed.

27

CHAPTER 4. IMPLEMENTATION

It is important to be aware of how the browser caches content. If we request
data using the same URL all the time, we have to make sure that the data is not
cached by the browser. Since the browser caches data based on the URL, only the
first request would be made to the server. The subsequent requests would simply
be supplied by the cache, if care has not been taken in order to disable caching. A
naïve approach may be to alter the URL somewhat between requests, for example to
add a counter parameter that would be increased for every request. However, using
this method, pages would still be cached, filling up the browser cache and causing
items in the cache to be evicted. Since we in principle have no control over how
items in the cache are evicted, we may loose items that we would like to have in the
cache, for example images or other elements comprising the GUI. Instead, caching is
disabled by setting the HTTP headers Cache-control and Expires appropriately
[29].

4.5 Interactivity
One of the great advantages when doing web development is the browsers’ ability
to render generic content. This has been especially useful when implementing
interactivity events in the web-based Mobile TV client. Interactivity events could
in principle be everything from a simple textual advertisement banner to a social
networking site with team watching and channel chatrooms. By using a visible
iframe of varying size, placed on top of the graphical user interface, we can load
interactivity events as separate web pages inside the iframe. Thus, anything that
can be rendered by the browser can be an interactivity event. We can even load
web pages with scripts and have another web application inside the web application,
although deeply nesting of iframes may lead to unexpected behavior.

Figure 4.16. An example interactivity event on top of the graphical user interface.

28

CHAPTER 4. IMPLEMENTATION

The events are specified on the server with a set of parameters. A simple web
page has been created that is used to define a new event and upload its parameters
to the server. In fact, it is even possible to enter the contents of the event as HTML
code and have it uploaded to the server as well. However, the most common way
to specify an interactivity event is to enter a URL from where its markup (and
possibly JavaScript code) should be loaded. Other important parameters are: the
time and duration when it should be shown on the client; the width, height, and
position; and for which channels it is valid.

The client polls the server every minute for the list of interactivity events. Every
event has a sequence number and the client always calls the server with the last
number seen to prevent the same event from being sent multiple times. The list
is actually an array encoded as JSON. Each element in the array is in turn an
associative array containing the parameters defining each event. The client has
been constructed so that for each event an instance of an interactivity handler
object is created with the parameter object passed as argument. The handler
objects are independent from the rest of the client and do their own scheduling
of events, although the handler reads a global variable to check which channel the
user is watching and interfaces with the video object to see if the video has to
be repositioned in order to fit the interactivity event. An interactivity handler
checks the channel twice, just before an event is about to be loaded and again just
before it is shown. This is done to determine if an event is to be displayed on the
current channel; the reason it is done twice is because the user could possibly change
channels after the event has started loading, but before it has been displayed.

A time parameter start denotes the time (on the server) when an event should
start loading. Loading of an event is typically done in at most a couple of seconds. If
the timing needs to be more exact, one could easily modify the interactivity handler
to prefetch the event a short period before it is scheduled, thereby using the start
parameter to indicate the time when an interactivity event is to be shown. The
parameter stop could be given either as absolute time when the event is removed
or as a duration in seconds from the start time using the prefix "+". If stop is left
out or set to 0 or +0, the interactivity event will not time out, then the event will
have to handle its own removal.

Two parameters have been defined to be passed with URLs inside an interactivity
event, but are used on the client side only. When a URL containing STOP-TIMEOUT
is loaded inside the iframe, a timeout set from the stop parameter is removed.
This is useful for events that we would like to disappear after a while if the user
has not interacted with the user interface, but we want to make sure that it is not
timing out once the user has started interacting. If the interactivity handler sees
the STOP-INTERACT parameter inside a URL, it immediately makes the event iframe
invisible. The request for that URL will still be made by the browser, making it
possible to send data to the server along with it. This could for example be the
user’s vote in a poll.

29

Chapter 5

Evaluation

When the concept of a web-based Mobile TV client is presented to someone who has
an idea of the technologies involved, there are typically two concerns raised about
the feasibility of such implementation. First of all, how good will it be feature-wise,
that is, can the client be implemented so that all of the requested functionality is
present. Secondly, what will the performance be like, mostly with regards to the
end-user experience. It is inevitable that a new client implementation is compared
to the already existing ones. In this case, the comparisons have mainly been with
the Ericsson Research prototype J2ME client and the commercial Ericsson J2ME
client. This chapter evaluates the implemented Mobile TV client based on web
technologies, as described in the previous chapter.

5.1 Functionality
What will ultimately limit the functionality of a web application is the fact that
there is a web browser in between the application and the user. The browser has
its own set of functions that should be available, for example, and as previously
discussed, it may have some shortcut keys, which invoke browser functions mapped
onto the keypad keys. Luckily, these shortcut keys can in most cases be turned off
by the user. However, there are other keys controlling the browser that are hard or
impossible to override.

A typical example of this is the back button, used to navigate backwards to
previously visited pages. The motive behind disallowing control over the back
button from within a web application is that the back button is supposed to always
work as the user expects it to work. The only problem is that these expectations
vary depending on the context and also vary from user to user. In some cases when
a user is navigating through the various views, it would be intuitive to use the
back button to "go back". Especially since it works that way in existing Mobile TV
clients. For the web client this could have the effect of navigating away from the
current page, thus leaving the application. A non-standard compromise between
disabling the back button and having the user unintentionaly leave a page was

30

CHAPTER 5. EVALUATION

introduced in Internet Explorer 4.0 for Windows and later adapted by other by
other browsers. The beforeunload event, when registered, triggers immediately
after the back button is pressed, presenting the user with a dialog, where he has to
confirm leaving the current page. If the beforeunload event were implemented in
mobile browsers, it could used to lessen the effect of unexpected behavior.

Sometimes the back button will make no sense, for example when we are using
the hidden iframe technique to load data for the application, those requests will be
added to the page history and when the user presses the back button, these requests
will be made again. If such a request was for a channel change, the resulting behavior
is probably not what the user expected, as suddenly the channel is changed, but the
graphical user interface is not updated accordingly. This particular problem can be
prevented by making requests be valid only once, using a sequence number.

There are typically other keys that are assigned to function menus in the browser
that would be nice to be able to use in a web application, although they are of less
importance. The same keys are used in the other Mobile TV clients based on J2ME,
where a developer has complete control over all keys and can assign any functionality
to them. The limited control over keys in a mobile web application is usually one of
the first drawbacks mentioned when compared to a standard application. However,
as our prototype shows, it is possible to overcome most of these limitations so that
the web application can co-exist with the web browser.

A true advantage of the web-based Mobile TV client is, as mentioned before,
that the application is loaded into the browser as a web page without the user
having to install an application. With this thin-client type of functionality it is
possible to have themes or skins that are updated weekly or even daily. Different
skins or themes can have their own URLs for their own look and feel, but rely on
the same JavaScript code for the logic. Updates are hassle free because we know
for sure that everyone is always running the latest version (or at least the version
that was most recent when they started their session).

The way interactivity events can be handled in the browser environment is really
excellent. By relying on the browser’s rendering capabilities, interactivity events are
defined as independent web pages. This should be compared with the other clients,
which use proprietary mark-up based on XML to describe interactivity events and
these have to be handled by the application directly. The commercial J2ME client
uses an SVG-like format to describe graphics and texts for its interactivity.

5.2 Performance
Because JavaScript is interpreted by the browser directly from the source code,
performance could become an issue for a mobile web application. A mobile phone
typically has limited computational power, and in this case we also have a streaming
player running alongside the client logic. This will of course affect performance even
further.

It is necessary to write code that works within the constrains of its operation, but

31

CHAPTER 5. EVALUATION

delivers the performance that is expected. This often means that you have to write
efficient code. Different design choices may have a great impact on performance.

The Mobile TV web application has an acceptable performance when navigating
in the user interface and switching between views, but not be compared to a J2ME
client, which is superior in this area. The prototype J2ME client has animated
menus (when the video is not playing), something that is currently not possible in
the web client. However, improved SVG support in the web browser may enable
the use of animations, since SVG animations perform much better than animations
using JavaScript and CSS. (Animations using JavaScript and CSS is common on
the desktop, but they require too much performance for the mobile phones currently
available.)

It is difficult to do good quantitative time measurements of a web application
running in the browser of a mobile phone, since there is no interface available
for doing this kind of timings. Any attempt to add JavaScript code for doing
time measurements would add overhead to the application, thus invalidating any
measured times. An alternative would be to film the mobile phone screen using
a high-speed camera with a constant frame rate and then counting the number of
frames between two occurrences that one wish to measure. However, it has not been
prioritized in this project.

There are some areas in which the web application performs better than the
J2ME clients. For example, the web client is significantly faster when switching
channels. In the J2ME prototype client, switching between two channels is typically
about 4 seconds compared to the web client where the same operation takes on
average slightly less than 3 seconds (and sometimes as little as 2 seconds). This is
due to the browser being more efficient in setting up HTTP connections than the
code in the Java environment. Most of the time being spent switching channels is
for the new content to propagate.

Additionally, when playing video-on-demand clips by changing the RTSP source,
the web client has the best performance. While watching a clip in the web client,
starting a new clip by having the player initiate a new RTSP session takes about 7
seconds until the new clip is playing (of which 4 seconds are for buffering). Doing
the same thing in the J2ME prototype client takes between 10 and 11 seconds.

There is one area in which the web client vastly outperforms the J2ME prototype
client. In the web client, the user can instantly (in less than a second) switch between
full screen video and full width video, instead of having to wait approximately 7
seconds as in the J2ME prototype client.

32

Chapter 6

Conclusions and future work

The foremost conclusion to be drawn from this thesis project is that the web-based
client implementation came out very well, better than most people expected. The
greatest cause of excitement seems to be how well one can mimic the look and feel
of, for example, a J2ME application. A contributing factor to this has probably
been that the web application was based on an existing user interface design. It is
possible that the user interface would be designed differently if targeted specifically
for a web application that would run inside a browser. Because the GUI is nearly
identical to that of the comerical J2ME client, the problems related to the back
button are made worse because of users being used to navigating with that button.
A future enhancement is to make requests for channel change valid only once, by
maintaining state on the server. This would at least prevent an obviously incorrect
behavior of the client, if a user happens to press the back button.

There are some other issues that need to be resolved before we could recommend
deployment of a commercial Mobile TV web application. The most problematic
aspect is probably that Smart-Fit on Netfront 3.3 is unconditionally applied when
it is enabled, considering that the default setting is On. The default setting for
browser shortcuts is also On in that browser, which means that there are two default
settings that the user has to change before the application will work correctly. The
fact that there are few terminals yet supporting a streaming video plugin has to be
considered as well.

Another major issue with the Sony Ericsson phones running Netfront concerns
the video plugin. The screen is abruptly turned off when the user is "idle", even
though the video is playing. When the screen is turned off, all execution of
JavaScript code is halted, effectively disabling interactivity events and maintenance
routines running in the background. JavaScript is also disabled when the video
plugin is in full screen mode. The limited JavaScript API towards the video plugin,
with playSource() as the only callable method, should be extended to allow for
more control. For example, there is no way for a web application to know if the
video has stopped playing (besides asking the server, of course).

Despite the minor issues, this project has really shown that a web application

33

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

can replace a local application in the case of Mobile TV. The web application
can support the required functionality and the performance is comparable and
sometimes even better than a J2ME application.

Possible future work includes extending the video-on-demand functionality with
more client features, but perhaps more interesting, build a server-side solution where
RTSP links with associated meta data are harvested from the Internet and put into
a database, later to be used by the client. This could include having an RTSP proxy
with live transcoding and caching of video content.

The web-based Mobile TV client should be extended to support more terminals.
The client should be tested on the phones that we know have a streaming plugin
(i.e. recent Samsung phones with Netfront). Future work could examine phones
with an advanced web browser (such as Opera), without a streaming video plugin,
but with a streaming video player, to see if they could still make use of the client.
In this case video content would have to be opened externally by the video player
by passing it RTSP links from the web browser.

34

Bibliography

[1] Christoffer Andersson, Daniel Freeman et al., Mobile Media and Applications
- From Concept to Cash, John Wiley & Sons, January 2006, pp 166-167

[2] C. Carlsson, P. Walden, Mobile TV - To Live or Die by Content, HICSS 2007,
January 2007, p. 51

[3] C. Forrester, Standards war looms [Mobile TV], IEE Communications
Enigneer, Volume 3 Issue 5, Oct./Nov. 2005

[4] D. Sandham, What next for Mobile TV?, IEE Review Volume 52 Issue 3, March
2006

[5] V. Ollikainen, C. Peng, Integration of DVB-T into
DVB-H transmission systems, VTT Technical Research Centre of Finland,
http://users.tkk.fi/ pcy/IBC_5289_final.pdf, Last modified: 2006-11-01

[6] Ian S. Graham, The HTML Sourcebook, John Wiley & Sons, March 1995

[7] Eric A. Meyer, CSS: The Definitive Guide Third Edition, O’Reilly Media,
November 2006

[8] David Flanagan, JavaScript: The Definitive Guide Fifth Edition, O’Reilly
Media, August 2006

[9] M. Mahemoff, Ajax Design Patterns, O’Reilly Media, June 2006

[10] David Crockford, JSON: The Fat Free Alternative to XML,
http://www.json.org/fatfree.html, Last modified: 2006-12-18

[11] David Crockford, RFC 4627: The application/json Media Type for JavaScript
Object Notation (JSON), IETF Network Working Group, July 2006

[12] David Eisenberg, SVG Essentials, O’Reilly Media, February 2002

[13] Kurt Cagle, SVG Programming: The Graphical Web, Apress, 2002

[14] Richard Leggett, et al., Flash Applications for Mobile Devices, Apress,
December 2006

35

BIBLIOGRAPHY

[15] Ian Hickson (Editor), Web Applications 1.0 Working Draft, WHATWG,
http://www.whatwg.org/specs/web-apps/current-work/, Last accessed: 2007-
03-01

[16] D. Kristol and L. Montulli, RFC 2109: HTTP State Management Mechanism,
IETF Network Working Group, February 1997

[17] ACCESS Co., Ltd., NetFront Browser for Mobile,
http://www.access-company.com/products/netfrontmobile/index.html,
Last accessed: 2007-07-03

[18] Tolga Capin (Editor), Mobile SVG Profiles: SVG Tiny and SVG Basic, W3C
Recommendation, 14 January 2003, http://www.w3.org/TR/SVGMobile/

[19] Opera Software, Products featuring the Opera Mobile Browser,
http://www.opera.com/products/mobile/products/,
Last accessed: 2007-02-19

[20] The WebKit Open Source Project, http://webkit.org/, Last accessed: 2007-
07-03

[21] Apple Inc., Safari, http://developer.apple.com/internet/safari/, Last accessed:
2007-07-03

[22] KDE e.V., Konqueror - Web Browser, File Manager and more!,
http://www.konqueror.org/, Last accessed: 2007-07-03

[23] The Minimo Project, Minimo - A small, simple, powerful, innovative, web
browser for mobile devices, http://www.mozilla.org/projects/minimo/, Last
accessed: 2007-07-03

[24] Mozilla Foundation, Mozilla Layout Engine,
http://www.mozilla.org/newlayout/, Last accessed: 2007-07-03

[25] Abe Fettig, Twisted Network Programming Essentials, O’Reilly Media, Inc.,
October 20, 2005

[26] Trygve Reenskaug, Models - Views - Controllers, Xerox PARC, 10 December
1979

[27] The Apache Software Foundation, Batik SVG Toolkit,
http://xmlgraphics.apache.org/batik/, Last published: 2007-03-30

[28] Wireless Application Protocol Forum, Ltd., WAP WML Specification,
19 February 2000,
http://www.openmobilealliance.org/release_program/docs/Browsing/V2_1-
20050614-C/WAP-191-WML-20000219-a.pdf

36

BIBLIOGRAPHY

[29] R. Fielding, et al., RFC 2616 section 13: Caching in HTTP, The Internet
Society, June 1999, http://www.w3.org/Protocols/rfc2616/rfc2616.html,
Last accessed: 2007-07-03

37

List of Abbreviations

3GPP 3rd Generation Partnership Project
Ajax Asynchronous JavaScript and XML
API Application Programming Interface
CSS Cascading Style Sheets
DAB Digital Audio Broadcasting
DOM Document Object Model
DVB-H Digital Video Broadcasting - Handheld
DVB-T Digital Video Broadcasting - Terrestrial
ECMA European Computer Manufacturers Association
EPG Electronic Program Guide
ETSI European Telecommunications Standards Institute
GUI Graphical User Interface
HTML HyperText Markup Language
HTTP HyperText Transport Protocol
J2ME Java 2 Platform, Micro Edition
JSON JavaScript Object Notation
MBMS Multimedia Broadcast Multicast Service
MVC Model-View-Controller
OSI Open Source Initiative
RTP Real-time Transport Protocol
RTSP Real Time Streaming Protocol
SGML Standardized Generalized Markup Language
SVG Scalable Vector Graphics
T-DMB Terrestrial Digital Multimedia Broadcasting
uDOM Micro Document Object Model
URL Uniform Resource Locator
VoD Video on Demand
W3C World Wide Web Consortium
WAP Wireless Application Protocol
WHATWG Web Hypertext Application Technology Working Group
WML Wireless Markup Language

38

List of Abbreviations

XHTML eXtensible HyperText Markup Language
XML eXtensible Markup Language

39

www.kth.se

COS/CCS 2007-21

