

Assessment of the JADE
Component Management Framework

S I M Ó N A F F R O S T E R U S
L E O N I D A S P A N T Z O P O U L O S

Master of Science Thesis

Stockholm, Sweden 2007

ICT/ECS-2007-38

Assessment of the JADE component
management framework

Master's Thesis

Leonidas Pantzopoulos

Simón af Frosterus

September 2006 – April 2007

Supervisors: Mr. Konstantin Popov and Associate Professor Vladimir Vlassov
Examiner: Associate Professor Vladimir Vlassov

Abstract

Management of computing systems has always been an important issue that required effort, time

and money. Lately, there is a trend towards autonomic computing that is supposed to drastically

reduce the aforementioned burden and move management at higher levels. In both cluster based and

wide-area networks, the use of component models helps move software construction to higher

levels of abstraction and, hence, provide easier management of complex computer systems. There is

a plethora of component models available but also a notable number of frameworks that target at

providing autonomic management of computing systems. One of them is the JADE component

management framework, based on the Fractal component model.

This thesis document gives a deep overview of the JADE component management framework

analysing its architecture, its backbone component model, the management authority and the

underlying technologies that it is based on. Most importantly it provides an assessment of the

framework in terms of programmability, overhead and wide-area network capability. Through the

assessment, JADE's weaknesses and strengths are pointed out and a set of conclusions is drawn.

– i

Acknowledgements
We owe some gratitude to our academic advisor and examiner Professor Vladimir Vlassov and our

industrial advisor Mr. Konstantin Popov because of their constant support and help throughout the

project. We also would like to thank the Swedish Institute of Computer Science (SICS) for

providing us with the necessary facilities to conduct our thesis and the Gird4All project.

Leonidas would also like to explicitly thank the Greek State Scholarships Foundation (I.K.Y.) for

supporting financially his MSc studies throughout this period.

– ii

Separation of Concerns

This master's thesis was performed conjointly by two students and to fulfill KTH requirements
regarding this case, the following table will attempt to clarify which student did what. Any section
or part not attributed to anyone should be assumed to have been done by both students together.

Leonidas Pantzopoulos Simón af Frosterus
1.2; 1.4; 1.5.1; 1.5.1.2; 1.5.1.6-8; 1.5.2;
1.5.3.1; 1.5.3.2; 1.5.3.5; 1.5.4; 2 (intro); 2.2
(intro); 2.2.2; 2.2.3; 2.2.7; 2.3 (intro); 2.5;
3.2; 3.4.2; 3.5

1.1; 1.3; 1.5.1.1; 1.5.1.3; 1.5.1.4; 1.5.1.5;
1.5.3.3; 1.5.3.4; 1.5.5; 1.6; 1.7; 2.1; 2.2.1;
2.2.4-5; 2.3.1; 2.4; 2.6; 3 (intro); 3.1; 3.3;
3.4.1; 3.4.3

– iii

CONTENTS
 LIST OF FIGURES..VII

 LIST OF TABLES.. VIII

 LIST OF ABBREVIATIONS.. IX

 CHAPTER 1: INTRODUCTION.. 1
1.1 MANAGEMENT... 1
1.2 AUTONOMIC COMPUTING...2

1.2.1 Self-configuration.. 3
1.2.2 Self-optimization..4
1.2.3 Self-healing.. 4
1.2.4 Self-protection..4
1.2.5 A Summary on Self-properties.. 5

1.3 COMPONENT MODELS... 6
1.4 CLUSTERS & WIDE-AREA NETWORKS.. 7
1.5 RELATED WORK.. 8

1.5.1 Overview of Existing Component Models and Categorization... 9
1.5.1.1 Sun's Enterprise JavaBeans.. 9
1.5.1.2 OMG's CORBA Component Model.. 10
1.5.1.3 Microsoft's .NET.. 12
1.5.1.4 Common Component Architecture (CCA)...13
1.5.1.5 Fractal Component Model..15
1.5.1.6 SOFA Component Model...16
1.5.1.7 K-Component Model..16
1.5.1.8 CoreGRID's Grid Component Model...17

1.5.2 A Summary on Component Models...18
1.5.3 Management Frameworks..20

1.5.3.1 K-Components and Collaborative Reinforcement Learning....................................20
1.5.3.2 Autonomic Web Services...21
1.5.3.3 Multi-Agent Systems Approach to Autonomic Computing.....................................25
1.5.3.4 The JADE Component Management Framework.. 26
1.5.3.5 ProActive..27

1.5.4 A summary on Management Frameworks... 29
1.5.5 Literature Survey Conclusions...30

1.6 AIMS & OBJECTIVES.. 31
1.7 METHODOLOGY & EXPECTED RESULTS... 31
1.8 LIMITATIONS..32
1.9 EXPECTED READERS' BACKGROUND.. 32
1.10 ROADMAP... 33

 CHAPTER 2: THE JADE COMPONENT MANAGEMENT FRAMEWORK.. 34
2.1 JADE'S ARCHITECTURE... 35
2.2 FRACTAL COMPONENT MODEL...36

2.2.1 Interface Definition Language... 37
2.2.2 Introspection...38

– iv

2.2.3 Configuration... 40
2.2.3.1 Attribute Controller.. 41
2.2.3.2 Binding Controller..42
2.2.3.3 Content Controller..42
2.2.3.4 Life Cycle Controller..43

2.2.4 Instantiation..44
2.2.5 Deployment.. 45
2.2.6 Conformance Levels ... 46
2.2.7 Example... 47

2.3 MANAGEMENT AUTHORITY..48
2.3.1 Repair Management Loop..49

2.4 JADE'S UNDERLYING TECHNOLOGIES.. 53
2.4.1 Fractal...53
2.4.2 Java Message Service...53
2.4.3 Oscar.. 54
2.4.4 BeanShell... 55

2.5 DEVELOPING WITH JADE... 55
2.6 RUNNING APPLICATIONS UNDER JADE..56

 CHAPTER 3: ASSESSMENT OF THE JADE FRAMEWORK.. 58
3.1 WIDE-AREA CAPABILITY.. 58

3.1.1 The Mechanism..58
3.1.2 Evaluation.. 59

3.2 PROGRAMMABILITY...60
3.2.1 Developing an Application.. 60

3.2.1.1 Fractal ADL Description.. 61
3.2.1.2 Oscar Bundle.. 62
3.2.1.3 Jade Wrapper..63

3.2.2 Deploying an Application.. 63
3.2.3 Evaluation.. 64

3.3 ARCHITECTURE.. 65
3.3.1 Legacy Applications.. 65
3.3.2 JADE Designed Applications.. 67
3.3.3 Evaluation.. 70

3.4 OVERHEAD.. 71
3.4.1 Inherent Fractal Component Model Overhead...72
3.4.2 Memory Consumption... 72

3.4.2.1 Test Scenario.. 72
3.4.2.2 Test Results.. 73

3.4.3 Amount of Code...75
3.5 OTHER OBSERVATIONS...76

 CHAPTER 4: CONCLUSIONS... 77
4.1 CONCLUSIONS.. 77

4.1.1 Literature Study..77
4.1.2 The JADE Framework... 77

4.2 FUTURE WORK.. 79
 APPENDIX A: A FRACTAL HELLOWORLD APPLICATION...81

 APPENDIX B: THE CRAPPYHTTPSERVER APPLICATION (OSCAR BUNDLE).. 85

– v

 APPENDIX C: THE CRAPPYHTTPSERVER JADE APPLICATION (LEGACY)..89

 APPENDIX D: THE BANK JADE APPLICATION (LEGACY).. 94

 APPENDIX E: THE BANK JADE APPLICATION (JADE-DESIGNED)...106

 APPENDIX F: FLAWS & BUGS..134

 REFERENCES.. 135

– vi

LIST OF FIGURES
Figure 1.1. Total cost of operation for IT solutions [19]..1
Figure 1.2. The four self-management attributes [16]..3
Figure 1.3. EJB architecture [30]... 10
Figure 1.4. The CORBA component model (CCM) [45]...12
Figure 1.5. DCOM architecture..13
Figure 1.6. Relationships between the various CCA elements [31]...14
Figure 1.7. A sample component based application [6]... 15
Figure 1.8. Connected components through different K-Component runtimes [9]........................... 17
Figure 1.9. The Collaborative Reinforcement Learning (CRL) model [9].. 21
Figure 1.10. Autonomic Computing vision [1].. 22
Figure 1.11. Web Services roles and operations.. 23
Figure 1.12. The concept of Autonomic Web Services [11].. 23
Figure 1.13. The MAPE-cycle of Autonomic Web Services [11]... 24
Figure 1.14. The Jade management framework... 27
Figure 1.15. A typical object graph with active objects [70]... 28
Figure 2.1. Jade framework's architecture..35
Figure 2.2. Naming API [6]..38
Figure 2.3. Component Introspection API [6]..39
Figure 2.4. Interface Introspection API [6].. 40
Figure 2.5. A Fractal component [6].. 40
Figure 2.6. Attribute Controller API [6]...41
Figure 2.7. Binding Controller API [6].. 42
Figure 2.8. Content Controller API [6].. 43
Figure 2.9. LifeCycle Controller API [6]... 44
Figure 2.10. Instantiation API [6]...44
Figure 2.11. Sample template component (left) and component it generates (right)......................... 45
Figure 2.12. Fractal GUI tool... 46
Figure 2.13. Fractal components in the HelloWorld application... 48
Figure 2.14. Repair management loop [8]..49
Figure 2.15. Self-repair example - step 1... 50
Figure 2.16. Self-repair example - step 2... 51
Figure 2.17. Self-repair example - step 3... 51
Figure 2.18. Self-repair example - step 4... 52
Figure 2.19. JadeBoot running (screenshot)...56
Figure 2.20. JadeNode running (screenshot).. 57
Figure 2.21. Beanshell (screenshot)... 57
Figure 3.1. Chttpd Architecture..60
Figure 3.2. LegacyBank Architecture.. 66
Figure 3.3. JadeBank Architecture... 70

– vii

LIST OF TABLES
Table 1. The four attributes of self-management... 5
Table 2. A summary/comparison of component models according to their self-management
potentials...19
Table 3. A summary/comparison of the management frameworks..30
Table 4. Conformance levels of Fractal components... 47
Table 5. JadeBoot's memory consumption...73
Table 6. Applications' memory consumption under Jade...74
Table 7. Four sections of code regarding Jade applications... 75

– viii

LIST OF ABBREVIATIONS

ACDL Adaptation Contract Description Language
ADL Architecture Description Language
AMM Architecture Meta Model
API Application Programming Interface
CBE Common Base Event
CCA Common Component Architecture
CCM CORBA Component Model
CDL Component Definition Language
CM Component Model
COM Common Object Model
CORBA Common Object Request Broker Architecture
CRL Collaborative Reinforcement Learning
DCOM Distributed Common Object Model (COM)
DCUP Dynamic Component UPdating
DOP Discrete Optimization Problem
ECA Event-Condition-Action
EJB Enterprise Java Beans
GCM Grid Component Model
GUI Graphical User Interface
HTTP HyperText Transfer Protocol
IC2D Interactive Control and Debugging of Distribution
IDL Interface Definition Language
IOR Interoperable Object Reference
IT Information Technology
J2EE Java 2 platform Enterprise Edition
JAR Java ARchive
JDBC Java DataBase Connectivity
JMS Java Message Service
JNDI Java Naming & Directory Services
JVM Java Virtual Machine
KB Kilo Byte
KTH Kungliga Tekniska Högskolan
LAN Local-Area Network

– ix

MAS Multi-Agent System
OBR Oscar Bundle Repository
OMG Object Management Group
ORB Object Request Broker
OSGi Open Services Gateway initiative
P2P Peer To Peer
PDM Problem Determination Mechanism
RL Reinforcement Learning
RMI Remote Method Invocation
SICS Swedish Institute of Computer Science
SOAP Simple Object Transfer Protocol
SOFA SOFtware Appliances
TCO Total Cost of Ownership
TCP Transmission Control Protocol
WAN Wide-Area Network
WS Web Service
XML eXtensible Markup Language

– x

Chapter 1Chapter 1

IINTRODUCTIONNTRODUCTION

This first chapter will provide an introduction to the concepts of system's management, autonomic

computing and component models, which together form the foundations of management

frameworks.

1.1 MANAGEMENT

Systems' management is defined as the administration of information technology systems at any

level, from requirements' analysis to problem handling to optimizations and everything in between.

The cost of systems' management nowadays accounts for much more than the money spent in

computer hardware and software together over the life span of almost every large computer system

[15] [1]. The real cost of IT solutions is measured over time and includes the upfront investment as

well as maintenance, management, and updates, a figure known as total cost of ownership (TCO)

[18], that reflects in a more realistic way how much IT solutions cost. As it can be seen in Figure

1.1, the upfront cost of software and hardware, accounting for over 25% of the total cost of

ownership, is considerably smaller than the management cost, in this case, of managed and non-

managed systems. Current trends show this data to be fairly constant, with similar numbers across

different IT scenarios [20] [21].

– 1

Figure 1.1. Total cost of operation for IT solutions [19]

What started with a centralized and hierarchical approach has now evolved into a much more

complex issue spanning many different fields. As computer systems grow in size and spread

throughout the world, problems multiply accordingly, and no easy solutions exist. The “manual”

approach used in the early stages of systems' management, having physical managers dealing with

the problems as they appear, has been obsolete and inefficient for many years, having many flaws.

Lacking the ability to scale easily, extreme complexity and the need for inter-disciplinary

knowledge are three of the main reasons why the “manual” approach is no longer viable and

therefore new techniques are being developed to perform systems' management that meet the

requirements of today's systems.

In a world where IT solutions rely on multi-tiered applications distributed and replicated possibly

all over the planet, systems' management has become a challenge with no clear-cut solution. The

most common technique relies on designing systems that will have the ability to manage themselves

automatically, a technique known as autonomic computing or self-management.

1.2 AUTONOMIC COMPUTING

The term “autonomic” was not invented by computer scientists. There are earlier references in other

sciences, with Biology being a typical example. On the classic work of Henry Grey back in the 18th

century [14], the autonomic (or involuntary) nervous system of a living organism is defined as the

part of the nervous system responsible for maintaining the body's stable condition by regulating its

internal environment. Functions such as digestion, metabolism and blood pressure modulation are

not taking place voluntarily although they are inside our cognizance. As a result, our conscious

brain does not have to deal with all these low level activities.

In a similar way, autonomic computing targets at facilitating the management of computer systems

by moving management at higher levels. This goal is of major importance in order to cope with the

continuous increase in computer systems' complexity. Autonomic computing can not only alleviate

the administration burden, which consequently reduces the administrative cost of computer systems,

but also reduce erroneous installations/configurations/runs caused by human faults. Human

interference is limited to providing policies which are definitely more clear and understandable.

However, at that level, a human error on specifying a goal is magnified becoming more influencing

– 2

and crucial.

Jeffrey O. Kephart and David M. Chess (2003) [1] argue that “the essence of autonomic computing

systems is self-management” which aims at freeing system administrators from dealing with system

operation and maintenance details and to provide users with a system that runs uninterruptedly at

full performance. Self-management, according to IBM's autonomic computing initiative introduced

in 2001 [16], has four aspects: self-configuration, self-optimization, self-healing and self-protection

which are graphically presented in Figure 1.2. These four properties are discussed in the paragraphs

that follow and they are summarized in Table 1.

1.2.1 Self-configuration

In short, self-configuration is dealing with automated system configuration by dynamically adapting

to changes in its environment. This is achieved by applying high level policies that describe the

desired outcome but not the way it is carried out.

As complexity and scale of today's computer systems continuously increases, installation and

configuration of such systems becomes costlier with regard to time and effort. Another important

side effect is the raise of errors introduced by the human factor. On the other hand, a self-

configurable system can quickly adapt without requiring manual administrative actions, eliminating

at the same time human caused faults.

– 3

Figure 1.2. The four self-management attributes [16]

1.2.2 Self-optimization

Self-optimization (or self-tuning) is concerned with optimizing and fine tuning the system in order

to achieve peak performance at the minimum cost. A self-optimizing system will continuously be

seeking ways to improve its operation by maximizing utilization of resources.

Tuning a computer system to maximize performance was never an easy issue. Indeed, it is

becoming even more demanding when dealing with huge systems like databases and application

servers where a significant number of parameters has to be tuned and the system's resources should

be optimally utilized. In addition to that, in most cases, the cost factor is of major importance and

hence optimization decisions should be very well-grounded. Self-optimizing systems can put a bold

face on this issue by continuously monitoring, sometimes experimenting, and finally adjusting their

own parameters to achieve better operating conditions. A simple, yet typical, self-optimization

example is a system that automatically locates and installs updates.

1.2.3 Self-healing

One of the most important properties of autonomic computing is self-healing which aims at

improving resilience to failures. The goal of strengthening resiliency is fulfilled by identifying,

diagnosing and correcting problems caused by hardware or software failures. In its nicest form, self-

healing can be performed proactively, that is, before the failure happens by predicting it.

The importance of the self-healing properties is apparent. Failures of computing systems have a

negative business impact that is usually translated into money loss. Moreover, serious problems can

take significant amount of time and effort to be located and fixed by human administrators and

therefore increase the aforementioned impact. Self-healing computer systems can minimize the

downtime either by identifying the problems and automatically apply fixes or by informing

administrators to take action.

1.2.4 Self-protection

Last, self-protecting aims at providing correct information to authorized users when they need it

– 4

through actions based on user's privileges and predefined policies. In other words, self-protecting

refers to the ability of a computer system to fight against malicious or intrusive behaviour by first

detecting it when it occurs and second acting autonomously to tackle with it, that is to prevent

unauthorized access and use of resources and become immune to viruses or attacks such as a denial-

of-service.

1.2.5 A Summary on Self-properties

Table 1 intends to summarize the discussion made above.

Attribute Feature/Responsibility
Self-configuration Automated system configuration by dynamically adapting to

changes using high level policies

Self-optimization Automated fine tuning to achieve peak performance at the

minimum cost by maximizing utilization of resources

Self-healing Improved resiliency by identifying, diagnosing and

correcting problems caused by hardware or software failures

Self-protection Automated protection against malicious or intrusive

behaviour by detecting it and taking actions to ensure safe

running conditions

Table 1. The four attributes of self-management

In order to build a fully self-managed system one should implement these four attributes. The

typical approach is to differentiate between management and application functionality. Object

oriented programming, at it is basic form, does not provide any means for applying self-

management directly. A more advanced software entity is needed to facilitate the creation of

manageable software and the most appropriate entity seems to be a “software component”. An

introduction to software components and component models follows in section 1.3, whereas a

detailed overview of existing models is given in section 1.5.1.

Still, components on their own can not provide all the required managing functionality for building

complex systems. Typically, a “framework” is used which is responsible for the deployment,

– 5

configuration, bootstrapping and management of the components. Management frameworks are

discussed more thoroughly later in section 1.5.2.

1.3 COMPONENT MODELS

Software systems have existed for many years and continue to evolve at a very high pace,

increasing in size and complexity, spanning over many different fields (many systems are multi-

tiered and distributed) and requiring huge amounts of investments to manage them. As complexity

in software systems increases, it is necessary to include mechanisms and approaches to manage and

reduce cost. The concept of objects was introduced to fulfill this need. Objects provide a standard

way to encapsulate and abstract, creating an easier, more general view of a system, thus simplifying

it and breaking it into smaller pieces. The object oriented approach was a step forward in software

engineering, providing useful concepts like modularity, encapsulation, or unified functions and

data.

However, objects do not provide the levels of abstraction and simplification that modern complex

systems may require. Objects are compiler bound, not executable on a stand-alone basis, and are not

modifiable at run-time [22], representing a fixed entity directly mappable into code most of the

times. Objects, compared to software components, are more fine-grained, and tend to be linked to

one concept, while software components are more conceptual, possibly encapsulating many atomic

concepts together, thus providing higher abstraction. Actually, software components can be built of

objects, but do not have to. Components exist in basically all fields. In construction, when a house

is being built, not all the needed components are created from scratch; bricks, pipes or windows are

acquired from different sources and then put together. The same approach can be taken in software

engineering, albeit a little bit differently, using software components.

Software components greatly help to reduce complexity by separating implementation and interface

by making the software architecture explicit [6]. Doing this, programmers are isolated from the real

complexity level of the system, letting them focus on their areas of expertise, and later on

combining the different components together forming the complete systems from clearly

differentiated modules, individually generated, and possibly individually engineered. Component

engineered systems, with a clear separation between implementation and design, are used to

– 6

alleviate the burden of both management and implementation. Well designed components have the

ability of being highly reusable, a desirable characteristic when trying to improve performance and

cut costs and time. Systems built of many different components can be modified and updated in an

easier way by focusing on a component by itself, knowing that if the “front end” of the component

is respected, even if the core of the component is completely redesigned and rebuilt, the system

should still function properly once the new component is integrated.

From the autonomic computing perspective, a component model should enjoy a set of properties in

order to be applicable on a self-manageable system. These requirements are:

a) to support separation between interface and implementation

b) to be reflective

c) to support hierarchical component composition

Extensibility is also a desirable property but it is not considered as a prerequisite. In fact, a

reflective and hierarchical component model is expected to be extensible.

Components are defined by their component model, which describes with a set of well-defined

directives, how components are built and represented, as well as how they are combined together

(composite components), managed, deployed or any other information that may be relevant to the

component in question. There exist many different component models at many levels, from

component models that do not offer much difference from simpler object oriented paradigms, to

advanced models that include support for extension and adaptation like the Fractal Component

Model [6]. A deeper review and a categorization of the available component models is given later in

section 1.5.1.

1.4 CLUSTERS & WIDE-AREA NETWORKS

A cluster is a group of independent or loosely coupled computers combined together through

software and network to form a unified system. Typically, clusters are deployed to provide high

availability, scalability and computational power in a cost effective way [23] [24]. Therefore a usual

classification of clusters with regard to usage divides them into two basic categories: High

Availability clusters whose main purpose is to improve the availability of a system, and High

– 7

Performance Computing clusters which are mainly used in scientific computing and are closely

related to parallel computation [25]. Last, there is Grid computing which can be considered as an

extension of clustering. The key differences between grids and clusters are, first, that grids have a

more heterogeneous nature and, second, that grid computers do not fully trust each other. The latter

means that grids give the impression of a service utility and not of a unified computer.

As mentioned above clusters consist of interconnected computers. Usually, they rely on a Local

Area Connection (LAN) in order to achieve high speed communication. There are cases though that

LAN existence cannot be taken for granted because either the resources are geographically

dispersed by nature, or they are intentionally distributed to form a fault tolerant architecture [26].

Under these circumstances computers will be connected through a Wide-Area Network (WAN).

However WAN usage introduces new issues that should be carefully considered. Firstly, regarding

communication, compared to LANs, the bandwidth is usually reduced, but most importantly, there

is an extra overhead due to latency. Obviously, communication becomes also less reliable, this fact

becoming the major disadvantage. One might also add security in the list as it is always a crucial

matter for consideration.

Wide-area networks, however, are increasingly attractive since they are closer to the nature of

today's computing systems. Even if it is feasible to centrally collect all the resources of a modern

computing system, the attempt to aggregate them will be extremely expensive and the result of

dubious success in terms of flexibility, scalability, and reliability. In fact, all the difficulties WAN

introduces and that were mentioned above make the goal of achieving clustering in a wide-area

network highly challenging.

1.5 RELATED WORK

A lot of work has been conducted lately on component models and management frameworks. In the

following section an analysis on the current state of the art is attempted in both component models

and management frameworks.

– 8

1.5.1 Overview of Existing Component Models and Categorization

In recent years, the component approach in software engineering has become extremely popular.

Initially, simple component models like Sun's JavaBeans and Microsoft's Component Object Model

(COM) were introduced targeting mostly code reuse. Later on, the evolution of computing systems

leading to the introduction of distributed programming forced the emergence of models such as

Sun's Enterprise JavaBeans (EJB), Microsoft's .NET and Object Management Group's (OMG)

CORBA Component Model (CCM). All the above models are usually referred to as standard or

business component models. These models despite their high penetration – especially inside the

industry – have significant shortcomings when the focus is put on high performance or autonomic

computing. Thus, targeting at high performance computing, the Common Component Architecture

(CCA) was introduced whereas for autonomic computing there are models like Fractal, Sofa and K-

Components. Last, there is an interesting work still in progress by CoreGRID: the Grid Component

Model (GCM), which is a component model designed specifically for Grids.

As already mentioned, component based development has met gross success inside the industry. It

is quite common nowadays for a company to create its own, proprietary component model as a base

for their software. Typical examples of this kind are Mozilla's XPCOM [46], Philips' Koala [47],

Gnome component model [48] and KParts (KDE's component model) [49]. However these models

are not in the scope of this thesis project and hence they are not discussed any further.

1.5.1.1 Sun's Enterprise JavaBeans
Enterprise JavaBeans (EJB) is a component model designed by Sun Microsystems aimed at

constructing server-side, enterprise-class applications [27]. Enterprise beans are server-side

components written exclusively in the Java programming language, which encapsulate the business

logic of an application and are deployed and run in an EJB container [28]. Each single bean is a

component, and as such, is reusable and shareable, and can be accessed by clients remotely.

Each EJB has to implement two interfaces and two classes. The “remote” interface represents the

methods that are accessible from the outside and thus provides access to the bean itself. This

interface represents the business methods. The second interface is the “home” interface, which is in

charge of defining the methods that represent the life cycle of the bean: how to create, delete and

– 9

find beans. The two classes that must be implemented are the Bean Class, which actually

implements the business methods defined in the “remote” interface with some of the methods

defined in the “home” interface, and the primary key, a simple class that provides access to the

persistent storage (database).

There are three types of beans that can be created. Session beans model a workflow and represent a

single task [29]. Sessions beans are characterized for not having any persistent state, opposite to the

second type of EJBs, called entity beans, which do have persistent state. Entity beans are normally

directly related to relational databases and are associated with a row in a database. The last type of

bean is the message-driven bean, which is stateless and resides on the server. This type of bean

basically acts as a simple message listener [28].

In Figure 1.3 a general overview of the EJB architecture can be seen; the container with the remote

and home interfaces and the contained beans.

1.5.1.2 OMG's CORBA Component Model
The CORBA Component Model (CCM) is a specification for building scalable, server-side,

multiple-language, transactional, and secure enterprise applications. It provides a consistent

component architecture framework for creating distributed n-tier middleware [3]. The CCM

specification dictates the complete software development process, starting with the specifications

– 10

Figure 1.3. EJB architecture [30]

and going all the way to deployment and configuration. CORBA Components in the CCM are

defined using an Interface Definition Language (IDL) based on the C++ language type system. This

type system used by CORBA has mappings to many existing different type systems, which enables

CORBA's ability to interoperate between different software and hardware environments.

The CCM uses an execution scheme based on the component-container pattern [33] which provides

the desirable separation between business (components) and non-functional concerns (containers).

CORBA's communication scheme is based on making requests to the Object Request Broker (ORB)

which potentially can communicate with other ORBs in order to forward the request to the correct

method in the server process. Communication between CORBA artifacts is done through four

different types of ports as specified in the CCM. These ports give the required interfaces that a

component exposes to clients and define the following capabilities of a component:

1. Facets: interfaces provided by a component. Can be called synchronously or

asynchronously.

2. Receptacles: components obviously can call other components to delegate some task and in

order to do this, components must obtain the object reference to an instance of the

component they want to delegate to. The CCM calls these references receptacles.

3. Event sinks and sources: components in the CCM can as well interact with other component

by monitoring events asynchronously. A component declares its interest to publish or

subscribe to events by specifying event sources and event sinks in its definition [33]

enabling it to interact with other components.

4. Attributes: can be used to configure the components.

The CCM standardizes component life cycle management by introducing the “home” IDL element

thus specifying a lifecycle management strategy to the Model.

In Figure 1.4, a general overview of the CCM and how two containers would look like with their

interfaces and the underlying Object Request Broker (ORB) can be seen.

– 11

1.5.1.3 Microsoft's .NET
The Common Object Model (COM) is a specification and implementation developed by Microsoft

to make interaction between components through a framework possible, having reusability and

interoperability between components as its main purpose. To address the lack of support for

distributed systems, DCOM (Distributed COM) was developed. DCOM allows for components to

interact through networked environments as long as DCOM is available in the given environment

(Windows based).

DCOM provides network transparency, enabling calls to methods possibly in other nodes of the

network without the calling process knowing if the method is local or, potentially, thousands of

kilometres away. DCOM acts as the intermediate layer between processes that are shielded from

each other for security reasons. DCOM intercepts the made call and forwards it to the correct node,

thus leaving the calling process completely unaware of the networked environment, making the call

– 12

Figure 1.4. The CORBA component model (CCM) [45]

look like an inter-process interaction. As it can be seen in Figure 1.5, the DCOM architecture allows

for complete network transparency as far as the calling process is concerned. The client just makes

the call and the DCOM platform transparently handles the call to the recipient, possibly over the

network.

DCOM is not a very flexible model, having problems with firewalls, only working under Windows

environments, and not using the latest, more webservices-oriented technologies like SOAP or TCP

[34]. To solve these issues, Microsoft introduced .NET, a platform that is designed with modern

distributed systems in mind and addresses their requirements.

1.5.1.4 Common Component Architecture (CCA)
Common Component Architecture (CCA) was introduced in the late 90's by the Common

Component Architecture Forum [31], a group of researchers from mainly U.S.-governed

laboratories and academic institutions. Their initiative targeted at defining a component architecture

for high performance computing, that is a system that sets the rules of linking components together

in order to create scientific – mostly parallel – applications. At the same time language

independence is promised by allowing components written in different languages to interoperate.

The basic elements of the model are the components, the port and the framework:

● Components are software entities that can be seen as black boxes exposing only well defined

– 13

Figure 1.5. DCOM architecture

interfaces.

● Ports are communication end points that determine the way components interact with each

other. By adapting the “provides/uses” interface exchange mechanism (like CORBA 3.0

specification) components may provide or use ports. “Provide” means implementing the

functionality described by the port, whereas “use” means making calls to a port offered by

another component [32].

● A Framework is required to serve as the container of the components.

A graphical view of CCA, as defined in [31], is given in Figure 1.6.

The components interact with each other and with the framework using CCA interfaces. Every

component of the system defines its ports using the Scientific Interface Definition Language

(Scientific-IDL) and all these definitions are stored in a repository using an API called CCA

Repository API. Component stubs, called GPorts, are also generated. The services provided by the

framework, known as CCA Framework Services, can be used by the components directly through

an interface. Lastly, the CCA Configuration API serves as the glue between the builder and the

possibly different framework implementations.

– 14

Figure 1.6. Relationships between the various CCA elements [31]

1.5.1.5 Fractal Component Model
“Fractal is a modular and extensible component model that can be used with various programming

languages to design, implement, deploy and reconfigure various systems and applications, from

operating systems to middleware platforms and to graphical user interfaces” [41]. The Fractal

component model was designed with extensibility and adaptability in mind, which allows effortless

and dynamic introduction of control mechanisms for components and eases the burden on

programmers when it comes to making trade-offs between configurability and performance [6].

This is done by allowing reflectivity to take place within Fractal components in a flexible way,

allowing the possibility to extend and adapt the reflective capabilities to meet a given set of

requirements and constraints. Fractal components are equipped with an unrestricted set of control

capabilities. The Fractal component model is designed in an attempt to meet any requirements by

being flexible and extensible, making it applicable to all types of software, from embedded to large-

scale information systems [6].

The objective of the Fractal model is to have a component model that not only implements large

systems, but that also deploys, monitors and dynamically reconfigures them, being involved in the

complete lifecycle of a system. In Figure 1.7 a basic component based application with the

corresponding controllers (binding controller, life cycle controller...) and interfaces can be seen.

The Fractal component model is a key part of this project and will be discussed in more detail in the

following chapter.

– 15

Figure 1.7. A sample component based application [6]

1.5.1.6 SOFA Component Model
SOFA stands for Software Appliances and its a project aiming at providing a platform for software

components [4]. The project started at Charles University in Prague by the Distributed Systems

Research Group [36] and it has later gained support by ObjectWeb. The motivation was to enable

development of applications that consist of a set of “dynamically hierarchical updatable

components”. Main features as presented in [4] are:

a) dynamic downloading of component

b) dynamic update of components at runtime (known as DCUP)

c) hierarchical top-down design

d) distributed deployment of components

e) support for versioning

From its perception, SOFA (version 1.0) was very similar to Fractal. In fact, after 2004 it is

considered as a Fractal implementation since it became Fractal compliant on level 2 [37].

According to [4], [5] & [38] SOFA applications are viewed as hierarchically nested components

with the notion of primitive and composite being present. A component is divided in two parts: the

frame and the architecture. The frame can be seen as a black box where “provides/requires”

interfaces are defined using the Component Definition Language (CDL), an OMG IDL based

language. The architecture is a gray box view of the (composite) component and it describes its

structure by providing information about subcomponents and how they are interconnected trough

interface ties (connectors).

Currently there is work in progress on SOFA 2.0 [39] which aims at purifying and extending the

existing version.

1.5.1.7 K-Component Model
The K-Component model was originally presented by Jim Dowling on his PhD thesis [34] as a

proposal to achieve self-adaptation for autonomic distributed systems in a decentralized fashion.

The basic idea behind the model is again Fractal which lends the notion of primitive and composite

components.

– 16

In more detail, according to [9], [10] & [34], components are defined using an interface definition

language called K-IDL (a subset of IDL-3). Dependencies between components are explicitly

described through the “provides/uses” interfaces, while base-level adaptation events are provided

thanks to “emits” and “consumes” interfaces. A K-Component can be perceived as a runtime with a

single address space containing components. Their dependencies inside or outside the runtime are

managed using connectors. Components and connectors are reified using architectural reflection as

an architecture meta model (AMM). It should be noted here that each K-Component runtime has a

partial knowledge of the system; it only knows about the internal components and their connections.

An analysis of the model's adaptation capabilities is given on section 1.5.3.1 where K-Components

are presented as a self-management framework. Figure 1.8 shows two interconnected components

in separate K-Component runtimes.

1.5.1.8 CoreGRID's Grid Component Model
Grid Component Model (GCM) is a specification of a component model for Grids as defined by the

Virtual Institute. There is no doubt that Grids have special characteristics, the most typical being

heterogeneity. While the goal of a Grid is to provide virtualization of resources, that is to guarantee

transparent access to resources hiding heterogeneity and possible dispersion, new challenges show

up that common component models cannot adequately face. The model proposed by the Virtual

– 17

Figure 1.8. Connected components through different K-Component runtimes [9]

Institute [43] is required to:

d) be reflective

e) have hierarchical structure

f) be extensible

g) provide support for adaptivity

h) be interoperable

i) allow lightweight implementations

j) have well defined semantics

In the GCM specification, Fractal is taken as a reference model. CoreGRID's [44] proposed model

is defined as an extension to Fractal with extra features added in order to target the Grid

infrastructure [7]. Fractal has been chosen because it is “well-defined, hierarchical and extensible”.

Moreover by adopting Fractal, language independence is achieved since there are implementations

for various programming languages.

1.5.2 A Summary on Component Models

The overview presented above has brought to light most of the motivations, features and limitations

of the popular component models. This section attempts to sum them up and to provide a

comparison according to their self-management potentials.

As stated in section 1.3, a component model, in order to be self-management friendly, should enjoy

basically three properties: separation between implementation and interface, reflection and

hierarchy.

Starting with the standard component models, Sun's Enterprise JavaBeans and Microsoft's DCOM

have a major disadvantage that is the lack of contracts between the components. There are no

“provides/requires” interfaces as for example in OMG's CCM or Microsoft's .NET. However all of

them suffer from the absence of a formal, explicit architecture description and therefore they are not

reflective. Reflection is one of the cornerstone properties for addressing autonomic computing.

– 18

The Common Component Architecture Forum realized that the usage of Architecture Description

Languages (ADL) can help building more reflective systems that can be easier maintained.

Nevertheless, despite the benefits of having an explicit software architecture, ADLs do not provide

all the necessary facilities to attain self-management. There is another important property a

component model should enjoy in order to facilitate self-management and this is the capability for

hierarchical component composition. Neither the business component models mentioned above or

CCA are hierarchical and therefore they can provide limited support for component introspection

and adaptation.

On the contrary, the Fractal component model enjoys all these properties. It is both reflective and

hierarchical preserving at the same time the beneficial characteristics of the basic models, e.g.

separation between interface and implementation, and explicit architecture description. Its

disadvantage is the overhead introduced due to its advanced features.

SOFA can be considered as a Fractal implementation whereas K-Components is a model that shares

Fractal's ideas. A drawback of K-Components is their concrete implementation in C++ which puts

an obvious constraint. Lastly, the Grid component model is a Grid specific solution based on the

Fractal model. Table 2 summarizes the component models and provides a comparison according to

their self-management potentials.

Desirable Properties for Autonomic Computing
Component Model Interface Separation Reflection Hierarchy
EJB

DCOM

CORBA

.NET

CCA

Fractal

SOFA

K-Components

Grid Component Model

Table 2. A summary/comparison of component models according to their self-management potentials

– 19

1.5.3 Management Frameworks

As the trend towards self-managing systems is emerging, there are lots of proposed frameworks

available promising to facilitate administrators' life. In the paragraphs that follow five different

approaches are presented. Firstly, four frameworks with self-management capabilities are covered:

A framework based on K-Components that uses Collaborative Reinforcement Learning (CRL) as a

decentralized coordination model [9] [10] [34], a Web Services approach to autonomic computing

[11], a Multi-Agent approach [12] and finally the JADE component management framework [8] [53]

with the Fractal component model being its backbone [8]. The last framework that is considered is

ProActive [69] [70]. ProActive also builds on the Fractal component model but it offers manual

management rather than self-management features; nevertheless it is an interesting approach with

high penetration in both market and research areas.

1.5.3.1 K-Components and Collaborative Reinforcement Learning
This framework presented in [9], [10] and [34] combines K-Components (described above in

1.5.1.7) with a decentralised coordination model called Collaborative Reinforcement Learning to

form a self-adaptive component model. K-Components enable individual components to adapt to

changing environment whereas CRL provides components with the mechanism to “collectively

adapt their behaviour to establish and maintain system-wide properties” in the changing

environment. The key feature that this framework promises is decentralised control.

It has been already discussed that in the K-Component model there is no explicit system wide

knowledge. Instead, system wide Architecture Meta Model (AMM) is partitioned among the K-

Component runtimes and each of them manages its local software architecture. Autonomous

behaviour is added to the system by associating reflective programs – known as “adaptation

contracts” – to the components which run on the runtime's AMM (Figure 1.8). Adaptation contracts

are written in a declarative language known as Adaptation Contract Description Language (ACDL).

Developers use ACDL to define actions to events or component's and connector's states using if-

then rules or the event-condition-action model (ECA). However, both if-then rules and the ECA

model are not satisfactory solutions for large, complex systems because there can be an enormous

number of events/actions making it extremely hard for developers to predict and program every

single detail. To deal with this issue K-Components are provided with self-learning capabilities.

Their self-adaptive behaviour is assisted by a mechanism called CRL.

– 20

CRL is a distributed version of Reinforcement Learning (RL). RL refers to the machine learning

problem where an agent attempts to gradually optimize its behaviour by perceiving the environment

and applying actions in a trial-error fashion. The result of the action is then reinforced which in turn

leads to the updating of the agent's action-value policy. Reinforcement learning algorithms target at

maximizing cumulative reward for the agent over the problem's lifecycle [51]. In CRL there is no

system wide knowledge as well. On the contrary, knowledge is distributed among agents that only

interact with their neighbours. Indeed agents are advertising their results to their neighbouring

agents so that each forms a table of discrete optimisation problem (DOP) solutions. Figure 1.9

graphically presents how the CRL model works.

In conclusion, the K-Components and CRL combination offers a flexible solution for self-

management. K-Components provide a self-adaptive component model while CRL models self-

management properties at the system level as system optimisation problems. The technique has a

long term objective sacrificing possible poor performance in the short run [9].

1.5.3.2 Autonomic Web Services
Sherif A. Gurguis and Amir Zeid propose a solution for achieving self-management using web

services [11]. Their approach currently considers only self-healing but they are planing to extend it

– 21

Figure 1.9. The Collaborative Reinforcement Learning (CRL) model [9]

in order to cover the remaining three self-properties as well. The following paragraphs attempt to

summarize the idea proposed in [11].

The four attributes of self-management which are covered also in 1.2 are self-configuration, self-

optimization, self-healing and self-protection. According to [1] every component is divided into two

parts: a “managed element” and an “autonomic manager” which features the self-management

functionality. Autonomic managers consist of four parts as shown in Figure 1.10. “Monitor” is

responsible for keeping an eye on the managed element and gathering information about its state.

“Analyser” is used to analyse the collected information to determine the elements' condition and to

suggest actions in case they are needed. “Planner” defines the actions that should be taken

according to predefined policies. “Executive” is responsible for “dispatching the proposed actions

to the elements”.

The classic triangle that describes the roles and operations in a web-service lifecycle is shown in

Figure 1.11. There are three discreet roles (requester, provider, registry) and four possible

operations (publish, find, bind and use).

– 22

Figure 1.10. Autonomic Computing vision [1]

The proposed solution distinguishes the functional aspects of the application from the self-

management functionality by defining two groups of web services. System's functionality is

provided by “Functional Web Services” whereas “Autonomic Web Services” are responsible for

realizing the autonomic behaviour. Therefore, the vision of the proposal is to have functional web

services that through the Internet, manage to locate and use autonomic web services (Figure 1.12).

– 23

Figure 1.11. Web Services roles and operations

Figure 1.12. The concept of Autonomic Web Services [11]

Putting it all together, an autonomic web service can be assigned to each self-property forming the

quartet: Self-Configuring web service, Self-Healing web service, Self-Optimizing web service and

Self-Protecting web service. Zooming into an autonomic web service there is a MAPE-cycle

consisting of four collaborating web services (Figure 1.13).

The initial phase is information collection through monitoring. Analysis is achieved by using a

Problem Determination Mechanism (PDM) to automate the procedure. However different

applications can produce different logs. To be able to use a common PDM, logs need to have

specific syntax and semantics. Thus, Common Base Events (CBE) are used to define log messages

in an XML based format. A CBE includes information about the component which reports the

event, the influenced component and the cause. CBE classifies the events into eleven predefined

and one custom causes, also known as situations.

On the self-healing web service paradigm analysis of logs by the Analyzing WS is done using a

Diagnosis Engine that searches for patterns inside the logs and suggests actions according to an

XML-based Symptom Database. The planning WS then uses a Rule Engine to determine the right

action that satisfies the predefined policy stored in a Policy Database. Finally, the Executing WS is

responsible for applying the directed action. Synchronization between the different web services of

the self-healing MAPE-cycle is achieved by implementing a Notification Web Service. Each web

service subscribes to the events that is interested in.

Concluding, the approach presented above claims to be highly adaptable targeting the fact that there

is still a high percentage of legacy systems. Under these circumstances, wrapping legacy code to

web services and providing self-management capabilities through Internet based protocols by using

– 24

Figure 1.13. The MAPE-cycle of Autonomic Web Services [11]

autonomic web services is a possibly feasible solution. However, usage of web services is not

always the most appropriate solution in terms of performance or security.

1.5.3.3 Multi-Agent Systems Approach to Autonomic Computing
A Multi-Agent System (MAS) approach to self-management is introduced by Tesauro et al. in “A

Multi-Agent Systems Approach to Autonomic Computing” [12]. Autonomous agents are self-

contained and capable of potentially making independent decisions and taking actions to predefined

goals based on the environment they perceive. This same approach can be transposed into large

distributed systems, breaking the systems into different modules that can be mapped into

autonomous, independent agents in charge of managing themselves and interacting with the other

agents composing the system. Using the autonomous agent paradigm, Tesauro et al. devised a

software architecture called Unity, which aims at achieving “self-management of a distributed

computing system via interactions amongst a population of autonomous agents called autonomic

elements”.

Unity is built of components implemented as autonomic elements or agents that are in charge of

resources and of providing services to other agents or humans. All components in Unity are

autonomous, from databases and servers to workload managers to sentinels and brokers. Each

autonomic element is, by definition, in charge of its own behaviour like managing its own resources

and actions, as well as forming and maintaining relationships with other agents in order to

accomplish its own set of goals. And since all the agents that compose the systems follow the same

behavioural patterns, dictated by its own goals, the whole system is autonomous by addition of its

parts.

Unity supports multiple application environments that provide their own service to the overall

system. Each of these environments is represented by an application manager, an element itself that

takes care of managing the environment, talking to other environment and making decisions to meet

the goals of the environment. Application managers are also responsible for predicting how changes

of its environment will affect the environment's ability to reach its predefined goals and act

accordingly. Resource arbiter elements are in charge of calculating optimal allocation of resources

to application environments; registry elements enable elements to find other elements; policy

repository elements allow humans to interact with the system manually through interfaces; and

– 25

sentinel elements support interfaces that allow an element to monitor another element's state.

Finally, Unity also provides a web administrator interface to observe and direct the system.

As a self-management framework, Unity provides self-configuration by means of “goal-driven self-

assembly”. Each autonomic element is not aware of its environment when it begins to execute and

has only a defined target or goal. The self-assembly process consists of contacting the registry to

locate other elements of use to achieve the goal and start a relationship with them, and then the

element is registered in the registry so it can be contacted by other elements. Unity, for the moment,

only provides self-healing properties for the policy repository element. Self-healing, in this case, is

achieved by having the policy repository contact an existing cluster and replicate its data across the

repository, thus guaranteeing that in case of failure, its data is available somewhere else. Self-

optimization is also supported at some scale by Unity. The Unity framework uses the concept of

utility to achieve self-optimization, each application environment has a service-level utility function

(Ui), obtained from a policy repository, based on the service level provided (Si) and the current

demand of the service (Di). The goal of the system is to optimize ΣiUi(Si, Di) on a continuous basis

to accommodate changes on demand of the given service.

The Unity MAS framework is a work-in-progress (as of [6]) prototype that will be expanded and

improved, and possibly could provide real value to real world applications but much work will be

needed since it has only been tested on a small scale system.

1.5.3.4 The JADE Component Management Framework
JADE – as described in [8], [53] and [54] – is the implementation, in Java, of a prototype component

based architecture that describes autonomous repair management in distributed environments. JADE

is a management framework built on top of the Fractal component model providing dynamically

configurable environments resilient to failure through a repair management scheme, backed by

replication, that even manages the management subsystem itself, thus providing fault-tolerance and

self-healing in a completely transparent manner.

– 26

Figure 1.14 presents a simple view of the JADE framework, which basically consists of a JadeBoot

that acts as the centralised manager (possibly replicated) of the whole system, including

management of nodes (JadeNode), self-repair and other aspects of the framework. Connected to

JadeBoot there can be any number of nodes (JadeNode) in which the centralized manager

(JadeBoot) deploys and runs any type of JADE-enabled application architecturally described using

the Fractal Architecture Description Language (Fractal ADL). The JADE management framework is

discussed in detail in Chapter 2 of this document as it is the main focus of this thesis.

1.5.3.5 ProActive
ProActive itself is not a self-management framework like the other frameworks described in this

subsection (1.5.3), but a solution with manual management features. Its strong and modular

background, however, should make it easy to introduce autonomous behaviour if needed.

ProActive basically takes advantage of the hierarchical approach to component programming

offered by the Fractal component model. In fact, a component consists of one or more medium-

grained entities known as active objects, which form together an independent component (Figure

1.15). ProActive is written with parallel, distributed, and concurrent computing in mind and

implemented as a GRID Java library. The ProActive library, which permits to minimize the

complexity of programming applications that are fully distributed, either over LANs, clusters, P2P

networks or even the Internet, is based on the concept of active objects; which are a uniform way to

– 27

Figure 1.14. The JADE management framework

encapsulate [69]:

● a remotely accessible object

● a thread as an asynchronous activity

● an actor with its own script

● a server of incoming requests

● a mobile and secure agent

The ProActive libraries provide an architecture that permits full interoperability with the most

predominant technologies available, such as web services, HTTP based transport, Globus, Sun Grid

Engine and more. ProActive is composed exclusively of classic Java classes thus making it more

practical, and requires no changes to the Java Virtual Machine (JVM), as well as no preprocessing

or compiler modification. Writing code for ProActive is done by the programmer just as normal

Java code would be written. “Based on a simple Meta-Object Protocol, the library is itself

extensible, making the system open for adaptations and optimizations. ProActive currently uses the

RMI Java standard library as default portable transport layer” [69].

As regards configuration ProActive uses an Architecture Description Language (XML descriptor)

for defining “use/provide” ports, contents and bindings of components. ADL is also used to define

deployment details such as nodes and JVMs [70].

– 28

Figure 1.15. A typical object graph with active objects [70]

ProActive offers fault-tolerance through check-pointing and rollbacks, load-balancing, mobility and

security only on a manual manner, having an administrator managing the system using the

Interactive Control and Debugging of Distribution (IC2D) [69] GUI tool, but not autonomous

behaviour.

1.5.4 A summary on Management Frameworks

The first framework presented is the combination of K-Components with the agent based

Collaborative Reinforcement Learning (CRL). This framework features decentralised control since

there is no explicit system wide knowledge. On the other hand, as it is stated in [9], it “gives a poor

payoff in the short-term in the anticipation of higher payoff in the long term”. Therefore, it is not

suitable for a category of systems that cannot tolerate sub-optimal behaviour, such as real time

systems. Finally, K-Component's specific implementation in C++ can in some cases be considered

as a disadvantage.

Autonomic Web Services are based on the clear distinction between the functional aspects and the

self-management functionality of applications. The “Functional Web Services” use the Internet to

locate and use the “Autonomic Web Services”. This framework targets at wrapping legacy code to

Web Services. Apparently it is a Web Services dependent solution inheriting its pros (e.g. platform

independence) and cons (e.g. possible poor performance due to the “chatty” nature of Web

Services). Moreover, the proposed framework seems to be dealing only with independent Web

Services and not with complex systems that consist of multiple components.

The Multi-Agent Systems approach proposes the use of independent agents that manage themselves

and interact with other agents of the system, forming therefore a decentralised architecture. It

promises goal-driven self-assembly as an extension to self-configuration, where autonomic

elements begin to execute having only predefined targets or goals but no knowledge of their

environment. In addition to self-assembly, self-healing and self-optimization are provided; in

practice though only self-healing is implemented.

The JADE framework is built on top of the Fractal component model to benefit from its reflective and

hierarchical features. A system's architecture is described using the Fractal ADL and there is system

– 29

wide knowledge and centralised control. The framework is fully implemented in Java but offers the

option to wrap any legacy application. In theory it covers all the self-management properties but in

practice mainly focuses on self-repair.

The ProActive framework is a special case which mainly focuses on Grid computing. It is also

based on the Fractal component model but it does not include self-management capabilities.

Instead, it eases manual administration of the system by providing fault-tolerance through check-

pointing and rollbacks, load-balancing through migration and finally mobility.

Table 3 summarizes the most important characteristics of the management frameworks covered in

the sections above.

Characteristics
Framework Self-management

properties
CM/technology Control Target

K-Components &
CRL

all Fractal based decentralized multi-component
systems

Autonomic Web
Services

self-healing Web Services decentralized independent
services

Multi-Agent self-healing Software Agents decentralized multi-agent
systems

JADE self-healing, self-
configuration

Fractal centralized multi-component
systems

ProActive - Fractal based - multi-component
systems

Table 3. A summary/comparison of the management frameworks

1.5.5 Literature Survey Conclusions

The discussion above leads to the conclusion that the Fractal Component Model is the most suitable

component model for building self-manageable systems. Separation between interface and

implementation, reflection and hierarchy are the three most important properties a component

model should enjoy in order to be the base of a self-management framework, and Fractal offers

them both in an extensible and flexible model. The JADE framework fully adapts the Fractal model

– 30

whereas K-Components are quite close to it by borrowing its ideas. ProActive is a complete, highly

active and quite popular framework but it is focusing on Grid computing and provides no self-

management features.

The rest of this thesis focuses on the JADE component management framework.

1.6 AIMS & OBJECTIVES

The aim of this thesis is to perform a study of the JADE component management framework and

more specifically a study of its structure and architecture as well as of its capabilities and

weaknesses. The assessment of the JADE framework will be approached from four main angles:

JADE's design in terms of wide-area environment support; the programmability, or how and what is

necessary to enable application to run under JADE; how architectural decisions influence the

outcome; and the overhead imposed by using the platform.

1.7 METHODOLOGY & EXPECTED RESULTS

The objectives outlined in the previous section will be addressed using both literature study and

implementation experimentation. The strategy that will be followed is, at first, to study the JADE

component management framework and analyse its structure and architecture as well as how it

addresses self management. This phase is expected to help identify the wide-area capabilities of the

framework. At the second phase, sample applications will be implemented to evaluate the

framework in terms of programmability and overhead. These sample applications will be a simple

yet functional HTTP server and a more advanced and realistic Bank RMI application.

The programmability assessment will be divided in two parts: firstly the development and the

deployment processes will be evaluated, focusing on time and effort required to create a JADE

application as well as pointing out the knowledge and skills required to achieve it. Secondly, the

two different approaches in architectural design will be analysed – wrapping legacy software and

designing specifically for JADE – using the aforementioned Bank application.

– 31

Evaluating the overhead of the framework includes measuring the amount of code required to write

a JADE application and the memory usage during runtime. Finally, a theoretical approach on

overhead due to the underlying technologies used and the resources needed to run an application

under JADE will be attempted based on the study of the framework.

By performing these individual assessments, first a general overview of the current state of the JADE

platform is expected to be derived. The sample applications are expected to clarify the requirements

in terms of programmability as well as show the extra overhead introduced by using the platform.

Moreover, the two different versions of the Bank application are expected to show how the

architecture design can influence the resulting JADE application as regards flexibility and

extensibility. Finally, a coherent set of conclusions is expected to be drawn and possibly

suggestions for improvements will be included.

1.8 LIMITATIONS

As with most projects of considerable magnitude, some limitations apply that restrict both the

expected outcome of the project as well as the way it is carried out. There are two main limitations

that shape this thesis project: time and incompleteness of the provided framework. As a Master's

thesis project, time is limited, in this case to around six months, to complete all the necessary steps

of the project. The second considerable limitation is the fact that the JADE component management

framework is at a quite early stage and it does not yet provide all the desired functionality. More

precisely, the self-repair module of the framework is missing completely, which will prevent a

complete assessment of the framework's capabilities with respect to autonomic behaviour.

1.9 EXPECTED READERS' BACKGROUND

In order to be able to properly follow this document, it is recommended to have a basic knowledge

of some concepts and technologies. In general, a basic understanding of object orientation and

component based design would be helpful to assimilate the different component models and

management frameworks that are introduced. Also, specific to some of the management

frameworks, the concepts of web services and software agents could ease their understanding. In

– 32

order to be able to understand the snippets of code that will be introduced both in the main part of

the document and the appendices, knowledge of the Java programming language and some

understanding of XML would be desirable.

1.10 ROADMAP

The rest of this document is formed of three different sections mapped into chapters. Firstly

(Chapter 2), the JADE component management framework will be discussed in detail, including

explanations of the general architecture and concepts of the framework, the management

mechanisms, its underlying technologies and how it operates. Secondly (Chapter 3), an assessment

of the framework will be given focusing on JADE's dependency on a cluster topology, the

requirements and procedures to adapting and designing an application for JADE and the overhead the

framework introduces in terms of memory, amount of code and the underlying component model.

Lastly (Chapter 4), a short set of conclusions and some notes on future work that could be carried

on following the footsteps of this thesis are given.

– 33

Chapter 2Chapter 2

TTHEHE JADE C JADE COMPONENTOMPONENT M MANAGEMENTANAGEMENT F FRAMEWORKRAMEWORK

The JADE framework follows an architecture-based approach to realize self-manageable complex

systems. Architecture description is causally connected to the managed system, which means that

possible changes to system's configuration trigger an update of its description and vice versa.

JADE's purpose is to provide self-management in three aspects: self-repair, self-optimization, and

self-protection. Self-properties were discussed in section 1.2. However, there have been four

properties: self-configuration, self-healing, self-optimization and self-protection. In JADE's context

self-repair is supposed to combine both self-healing and self-configuration properties. In practice so

far, the main concern has been self-repair.

Therefore, in its abstract view the JADE framework can be seen as a composition of the following

parts [53]:

● Autonomic managers (e.g. repair manager, optimization manager, protection manager) used

to detect and react to events.

● Common services (e.g. node discovery, node allocation, deploying service, system

representation) that provide basic functionality.

● The monitored system which consists of various interconnected components.

In the sections that follow a detailed description of JADE is attempted, starting from its architecture

and wading into its two most important characteristics: the fractal component model and the

management authority.

– 34

2.1 JADE'S ARCHITECTURE

The JADE framework, seen in Figure 2.1, is composed of any number of JadeNodes and a JadeBoot

component that behaves as the core of the system, which is itself another JadeNode. Each JadeNode

(including JadeBoot) is a Fractal component containing three fundamental services [54]:

● An installer in charge of the installation of legacy software on the nodes. This installer is an

implementation of the Open Services Gateway initiative (OSGi) [55] – a deployment

framework specification – named Oscar [56].

● A Fractal factory taking care of the instantiation of Fractal components.

● A heartbeat service which is the main attribute of node failure detection. It acts by sending

status messages to the Discovery service.

– 35

Figure 2.1. JADE framework's architecture

Specific to the JadeBoot node, it is worth noticing the System Map, that keeps an updated view of

the whole managed system and enables the possibility of self-repair; the Node Discovery service,

which receives nodes added to the system and the Deployer service which communicates to the

right JadeNode what to install and where. Also specific to JadeBoot are the Fractal RMI registry

[60] that keeps track of registered services, a Java Message Service (JMS) [57] server to allow the

Java messaging system to be available, and a Java Naming and Directory Interface (JNDI) registry

[58] used by Joram [59], an open source implementation of the JMS specification. The most

important underlying technologies are briefly explained in the context of the JADE platform in

section 2.4.

2.2 FRACTAL COMPONENT MODEL

The Fractal component model, like other component models (CCM, EJB, etc.) enables the

abstraction between implementation and interface, but its strength resides in its ability to support

extension and adaptation, which provides the possibility to a) painlessly introduce in a dynamic

manner new control facilities to components, b) reduce the tradeoffs that need to be made between

space consumption, configurability and performance, and c) reduce the complexity of operating

frameworks in different environments. This is done by allowing components to have an open set of

control capabilities, also known as non-fixed reflectivity.

The Fractal component model does not have a limited scope and can be applied from embedded to

multi-tiered distributed systems. Clearly not all systems require the same functionality from a

component model, and Fractal addresses this by not having a fixed specification that all components

have to follow. The Fractal component model is “an extensible system of relations between well-

defined concepts and corresponding APIs that Fractal components may or may not implement” [6].

This set of specifications is defined as increasing “levels of control”:

1. Fractal components as runtime entities: no control capabilities to other components, object-

like behaviour.

2. External introspection: Fractal components provide a standard interface that permits

discovering their external interfaces.

3. Configuration level: at this level, Fractal components provide control interfaces to introspect

– 36

and modify their content. This inner content can be composed of subcomponents bound

together.

The Fractal component model is very flexible in all its aspects making it suitable for almost any

situation. This is achieved by making everything optional, from the control capabilities to the

instantiation framework or the type system.

This section of the document is purely based on “The Fractal Component Model Specification” [6]

and the “Developing with Fractal Tutorial” [52] and aims at giving an in depth introduction to the

Fractal component model, but not a complete overview. For a more complete coverage of the

model, see [6] and [52].

2.2.1 Interface Definition Language

At the lowest level, when there is no control capability, Fractal components are like simple objects.

This type of components are called “base components” and they can only be used for calling

methods on them almost like usual objects. The difference is that the operations are invoked on the

components' interfaces. Component interfaces can be seen as access points to components which

implement language interfaces [6].

The Fractal component model can achieve language independence and interoperability by adopting

Interface Definition Language (IDL) for defining component interfaces. IDL usage however,

according to the specification, is not mandatory although its advantages are obvious. The only

drawback is the slight overhead introduced when invoking operations through stubs and skeletons,

hence in cases where interoperability is not needed, interfaces can be written directly in the target

language. Throughout this overview a pseudo-IDL (very similar to the Java language) will be used

as defined in the Fractal Component Model specification [6]. Fractal implementations can use any

IDL to describe interfaces such as OMG IDL or Java.

Invoking operations on components' interfaces is achieved by first locating the interface and then

getting a reference to it. Figure 2.2 shows the IDL code used to realise the above functionality while

– 37

the text that follows explains the logic behind it.

Names can have many forms, from Java interfaces to Interoperable Object References (IORs) and

they always exist inside a specific naming context. The Name interface has two operations,

getNamingContext and encode. The former returns the naming context inside which the name is

meant to be, whereas the later provides encoding capability that is the ability to convert a name into

a byte array. The NamingContext interface provides the way to create names from component

interfaces using the export operation which takes as arguments a component interface and some

optional hints. It can also produce a name from an encoded form by using the decode operation and

passing to it the byte array of the encoded name. Lastly, there is a Binder interface which extends

the NamingContext and provides a bind operation that attempts to create a binding to the interface of

the given name and return a delegate (or proxy) to that interface (sometimes it can be the interface

itself, depending on the location and the underlying technology).

2.2.2 Introspection

Introspection is defined as self-examination, a concept that is part of the Fractal component model.

In particular, introspection refers to the capability of Fractal components to introspect their external

features (or boundary).

Fractal components, depending on how they are defined, can be seen as a black-box or a white-box.

– 38

Figure 2.2. Naming API [6]

package org.objectweb.naming;
interface Name {
 NamingContext getNamingContext();
 byte[] encode() throws NamingException;
}

interface NamingContext {
 Name export(any o, any hints) throws NamingException;
 Name decode(byte[] b) throws NamingException;
interface Binder extends NamingContext {
 any bind(Name n, any hints) throws NamingException;
}

In the black-box perspective the internals of the components are not known to the outside and they

only provide interaction through external interfaces (access points) of two kinds: client (required)

that emit operation invocations and server (provided) that receive the invocations.

Introspection can be performed on both types of interfaces (client and server) with the following

two language interfaces:

● Component introspection: this is provided to discover the external interfaces of a

component, and is done by having components implement the Component interface (a

component interface implementing Component must be named component). As it can be seen

in Figure 2.3, there are two operations named getFcInterfaces and getFcInterface that

return, respectively, a list of all available external interfaces and the interface for the given

name if exists. The getFcInterface throws a NoSuchInterfaceException in case the

requested component interface is not found. These two operations return references that can

be cast and accessed directly to invoke operations on the component's server interfaces. The

getFcType operation returns the type of the component.

● Interface introspection: the references provided by the above mentioned operations only

provide access to the requested interfaces, but not the names of these interfaces. To provide

interface introspection capabilities, Fractal components can ensure that the references

obtained through getFcInterfaces and getFcInterface return can be cast to the Interface

type. As it can be seen in Figure 2.4, there are four operations specified by this interface:

getFcItfName which returns the name of the interface, getFcItfType that returns the type,

getFcItfOwner to get the component interface of the component it belongs to and

isFcInternalItf, that tests if the interface is internal or external.

– 39

Figure 2.3. Component Introspection API [6]

package org.objectweb.fractal.api;
interface Component {
 any[] getFcInterfaces ();
 any getFcInterface (string itfName)

throws NoSuchInterfaceException;
 Type getFcType ();
}
interface Type {
 boolean isFcSubTypeOf (Type t);
}

2.2.3 Configuration

On a higher level of control capability Fractal components do not only provide the functionality to

discover their external interfaces but can also offer the ability to control (introspect and reconfigure)

their internal features through well defined interfaces. A Fractal component consists of two parts.

The outer part is called controller or membrane whereas the inner part is the content (Figure 2.5).

One of the key concepts of the Fractal model is recursion. Therefore, a component's content can be

composed of other components called sub-components. Sub-components are under the control of

their parents enforcing a form of hierarchy between components. The enclosing components that

expose their content are called composite components. The ones that “do not expose their content

but have at least one control interface” are called primitive components and the components that do

not implement any control functionality are called base components.

– 40

Figure 2.5. A Fractal component [6]

Figure 2.4. Interface Introspection API [6]

package org.objectweb.fractal.api;
interface Interface {
 string getFcItfName();
 Type getFcItfType();
 Component getFcItfOwner();
 boolean isFcInternalItf();
}

As it can also be noticed in Figure 2.5 there can be external and internal interfaces for each

controller. Internal interfaces can be accessed only from within the component that is its sub-

components. Interfaces can be also classified into functional and control interfaces where the former

are responsible for providing the required functional aspects and the later for implementing control

services (i.e. introspection, (re)configuration).

Another interesting feature of the Fractal model is component sharing (section 2.2.3.3) where a

component can be shared between components. In such a case, the parent components can manage

the shared one through the controller interfaces that it provides.

Components' interfaces are connected with each other through bindings. There are two general

categories of bindings: primitive bindings and composite bindings. Primitive are the bindings

between client and server interfaces inside a given address space. In Figure 2.5 there are three types

of primitive bindings namely normal, export and import bindings. The other category regards

bindings made between components residing in different address spaces using stubs, skeletons,

adapters and similar patterns. This kind of binding is known as composite binding and is a

combination of primitive bindings with binding components. Binding components in turn are

normal Fractal components responsible for taking care of communication.

2.2.3.1 Attribute Controller
An attribute can be seen as a “configurable property of a component”. Each component can

implement an AttributeController interface to handle access to this information.

The specification dictates having a sub interface of the aforementioned empty AttributeController

where, for every attribute will be a getter and optionally a setter method.

– 41

Figure 2.6. Attribute Controller API [6]

package org.objectweb.fractal.api.control;
interface AttributeController {
}

2.2.3.2 Binding Controller
The BindingController interface is used from components to bind or unbind their client interfaces

to other components. Primitive bindings can be achieved using the API shown in Figure 2.7.

By calling the listFc operation the names of the client interfaces of the component are returned.

These names are consumed by the lookupFc operation in order to provide the server interfaces that

are bound to the given client interfaces. The bindFc operation is used to bind two components

together by binding their interfaces, a component's client interface with another component's server

interface. Lastly, the unbindFc operation is used to unbind a component using the client interface of

it. Possible exceptions thrown from the aforementioned operations are the

NoSuchInterfaceException which means that the client interface passed does not exist, the

IllegalLifeCycleException which is thrown when the component's state prevents it from executing

the requested operation and the IllegalBindingException which is thrown when a failure in binding

occurs.

2.2.3.3 Content Controller
The ContentController interface is used to manage the contents of a controller. More specifically it

provides the functionality to add components to a component (e.g. subcomponents), to remove them

as well as to list the interfaces it contains (Figure 2.8).

– 42

Figure 2.7. Binding Controller API [6]

package org.objectweb.fractal.api.control;
interface BindingController {
 string[] listFc();
 any lookupFc(string clientItfName)

throws NoSuchInterfaceException;
 void bindFc(string clientItfName, any serverItf)

throws NoSuchInterfaceException,
IllegalBindingException,
IllegalLifeCycleException;

 void unbindFc(string clientItfName)
throws NoSuchInterfaceException,

IllegalBindingException,
IllegalLifeCycleException;

}

The getFcSubComponents operation gets the sub-components contained in the component as an array

of Components. The addFcSubComponent operation adds the passed Component to the component's

contents whereas the removeFcSubComponent removes it. The operations getFcInternalInterfaces

and getFcInternalInterface are used to get the component's internal interfaces.

On the SuperController interface the getFcSuperComponents operation returns the component's

“parents”, that is the components that contain this component - known as its super-components.

Apparently a component can be added to more than one components as a subcomponent, becoming

that way a shared component.

2.2.3.4 Life Cycle Controller
Dynamic (re)configuration, as described above, such as bindings between components, additions or

removals of sub-components can not be safely provided without a minimal Life Cycle controller. At

its minimum this controller should provide a start and a stop operation to properly start and stop a

component. The API suggested for the LifeCycleController is shown in Figure 2.9.

– 43

Figure 2.8. Content Controller API [6]

package org.objectweb.fractal.api.control;
interface ContentController {
 any[] getFcInternalInterfaces();
 any getFcInternalInterface(string itfName)

throws NoSuchInterfaceException;
 Component[] getFcSubComponents();
 void addFcSubComponent(Component c)

throws IllegalContentException, IllegalLifeCycleException;
 void removeFcSubComponents(Component c)

throws IllegalContentException, IllegalLifeCycleException;
}

interface SuperController {
 Component[] getFcSuperComponents();
}

Apart from the startFc and stopFc operations there is a getFcState operation which provides the

state of the component. Two possible states are available: STARTED and STOPPED whose

meaning is obvious.

2.2.4 Instantiation

The creation of new components is done through a framework based on component factories, which

are themselves components. These factories can be categorized into generic factories and standard

factories, and both can provide the GenericFactory and Factory interfaces. Generic factories can

provide different types of components while the standard factory only creates one type of specific

component, always of the same type.

In Figure 2.10 the two above mentioned interfaces and the operations they provide can be seen. It is

worth noticing that the Factory interface does not take any parameters for the newFcInterface

operation due to the fact that it only generates one type of component, whereas the GenericFactory

needs to have specified all the necessary parameters to create a component.

– 44

Figure 2.10. Instantiation API [6]

package org.objectweb.fractal.api.factory;
interface GenericFactory {
 Component newFcInstance(

Type t, any controllerDesc, any contentDesc)
 throws InstantiationException;
}

interface Factory {
 Type getFcInstanceType();
 any getFcControllerDesc();
 any getFcContentDesc();
 Component newFcInstance() throws InstantiationException;
}

Figure 2.9. LifeCycle Controller API [6]

package org.objectweb.fractal.api.control;
interface LifeCycleController {
 string getFcState();
 void startFc() throws IllegalLifeCycleException;
 void stopFc() throws IllegalLifeCycleException;
}

Templates are a special type of standard factory component that generate Fractal components with

the same functional client and server interfaces as the template, as well as the same attributes, but

can have different control interfaces. Templates also allow for subcomponent templates as seen in

Figure 2.11. Template components, normally, are useful only when several identical components

need to be created, and instead than generating each component by parsing the ADL file as many

times as the needed components, it is only parsed once to create the template from which the needed

components will be generated. Obviously, this technique is more efficient.

It has been shown that components (factories) can generate other components. However, an

“initiator” component should exist. This is achieved through a bootstrap component factory, which

is created automatically and is well known and accessible, and which provides the GenericFactory

interface.

2.2.5 Deployment

There are three main approaches to assemble and deploy Fractal components. All can be used

independently or they can be combined forming a hybrid approach. The first approach is the

programmatic approach. This is the most direct way and consists of writing a program to create,

bind, deploy and start the application.

The second approach is the ADL based configuration. This approach is better in the sense that it

results in fewer errors, separates the architecture description from the deployment and abstracts

away the component architecture. This is mainly done using Fractal ADL, an Architecture

Description Language based in XML for which parsers and verifiers exist, but can be also done

– 45

Figure 2.11. Sample template component (left) and component it generates (right)

with any ADL (even specifically created ones) since ADLs are not part of the Fractal component

model. Once the architecture describing the application is complete (using Fractal ADL or any other

ADL) it can be compiled into a Java class or directly interpreted.

The last approach is to use a GUI based configuration. This approach helps to generate a visual

representation of the architecture, for example using the Fractal GUI tool, from which a screenshot

can be seen in Figure 2.12.

2.2.6 Conformance Levels

Based on the fact that in the Fractal component model everything is optional, any two given

components will most likely not work with each other because they will probably use very different

and maybe even incompatible options or extensions of the Fractal model. To approach this problem,

– 46

Figure 2.12. Fractal GUI tool

a set of conformance levels has been created. Two components with the same conformance level are

certified to properly work together, thus making it trivial to find out which components are

compatible. In Table 4, a summary of the Fractal model conformance levels is presented.

Level Number Description
level 0 Nothing is mandatory, components are just like objects.
level 0.1 Same as level 0 but all components with configurable attributes must provide

AttributeController interface; with client interfaces must provide
BindingController; components that expose their contents must provide the
ContentController interface; and components that expose their lifecycle must
provide the LifeCycleController interface.

level 1 Same as level 0. All components must provide Component interface.
level 1.1 Same as level 1 plus requirements for level 0.1
level 2 Same as level 1. All component interface references must cast to Interface
level 2.1 Same as level 2 plus requirements for level 1.1
level 3 Same as level 2. All components must use the type systems defined in the Fractal

component model specification.
level 3.1 Same as level 3 plus the requirements of levels 0.1
level 3.2 Same as level 3.1 plus the requirement of the accessible bootstrap component.
level 3.3 Same as level 3.2 plus the requirement that the GenericFactory interface of the

bootstrap component must be able to create primitive and composite components

Table 4. Conformance levels of Fractal components

The conformance levels explained in Table 4 are not sufficient to compare two Fractal systems

because compatibility issues may appear, for example, with Fractal systems dedicated for a specific

language, in which case a new conformance level can be created.

2.2.7 Example

A simple HelloWorld application based on Fractal components is included in Appendix A. Initially,

the application's architecture was designed using the Fractal GUI tool. Given the interfaces of the

components and the bindings between them, the tool attempted to produce the necessary Fractal

files, the Java interfaces and skeleton classes.

– 47

The application consists of two primitive components inside a composite component (Figure 2.13).

The server component provides an interface to print messages passed to it. The client component

just uses the server's service to print a “hello world” message. The application is accessible from

outside through an interface bound to the client component.

2.3 MANAGEMENT AUTHORITY

One of the strong points of the JADE management framework is its emphasis on repair management,

having the whole managed system under the scrutiny of the repair manager (the repair manager

node(s) being also managed). The repair management architecture conforms to the Fractal

component model, as everything in JADE does, enabling all JADE components to reside under the

repair management domain. This domain is composed of a set of nodes (usually mapped to physical

machines) and their subcomponents (typically software components on the nodes), a set that can

dynamically change due to node failures and new node introductions.

Nodes can be automatically managed by JADE; for example on a node failure, an identical node to

the crushed one can be introduced in the system, to replace the failed one. They can also be

manually managed by an administrator using the provided interfaces.

– 48

Figure 2.13. Fractal components in the HelloWorld application

2.3.1 Repair Management Loop

The repair management loop basically consists of a system feedback loop that can be seen in

Figure 2.14.

This feedback loop has four main elements:

1. Sensors: in charge of the detection of component state changes, resource change/use and

component failure (node failure).

2. Transport subsystem: consists of the bindings between sensors, actuators and the manager

component.

3. Manager component: the component in charge of analysing the received data and making

decisions based on the system representation, the existing policies and the data received.

4. Actuators: execute the decisions made by the manager component on the managed

components. These decisions can be of two types:

a) Lifecycle actions: stop and resume execution of components in a node and of their

bound components.

b) Configuration actions: to add or remove components from a node and their bindings or

to change the code of running components.

– 49

Figure 2.14. Repair management loop [8]

The repair policy is established by a set of rules specified by a system policy. In the following

figures, a basic failure-repair cycle is described:

● In Figure 2.15 the system before failing is presented. The JadeNode with the managed

component periodically sends a heartbeat informing JadeBoot of its current state.

● Figure 2.16 represents the failure of the JadeNode where the managed component resides.

The Node Discovery module (Manager) is set to wait a period of time (timeout) without

receiving a heartbeat to classify a node as failed.

– 50

Figure 2.15. Self-repair example - step 1

● Upon realization of the failure of JadeNode 1, the system repair manager, based on the

system's policy and the current state of the system, allocates a new empty node, as it can be

shown in Figure 2.17.

– 51

Figure 2.16. Self-repair example - step 2
Figure 2.17. Self-repair example - step 3

● Once the new node is allocated, the repair manager deploys and starts the lost component

(previously on JadeNode 1) on the new node and restores the system back to normal,

everything achieved in an automatic and transparent fashion.

It is important to mention at this point that this is an example of a very simple repair management

scenario, and that more complete and sophisticated policies would be needed in more complex

cases, mostly due to the stateless properties of the above mentioned failure scenario.

The repair manager, a Fractal component itself, is also vulnerable to failures, so this centralized

approach to repair management is not safe as it is. To deal with this, the notion on replication is

considered to deal with failures that affect the management component, having several manager

components, one of them being the leader and the others acting basically as up-to-date backups. In

case of failure of the leader, a leader election algorithm would pick a new leader and continue

functioning, achieving failure repair transparency.

– 52

Figure 2.18. Self-repair example - step 4

2.4 JADE'S UNDERLYING TECHNOLOGIES

The JADE management framework is a fairly large project built on top of many different

technologies that provide necessary functionality. This section aims at explaining, to some detail,

how these technologies are used in the context of JADE.

2.4.1 Fractal

The Fractal Component Model [62] is basically a specification of a component model [63]. There is

a variety of implementations (Julia, AOKell, FractNet, FractTalk, Plasma, ProActive) on various

different programming languages (Java, .NET, SmallTalk, C++). In JADE the Julia implementation is

used. Julia [64] is the reference implementation of Fractal written in Java and it fully complies with

the specification. Julia provides JADE with the necessary framework for creating Fractal

components.

In order to make remote method calls on Fractal components JADE uses Fractal RMI [65]. Fractal

RMI supplies JADE with “a set of components to create distributed bindings between Fractal

components”. In practice it “provides protocol, binder, and stub factory components for remote

method calls between Fractal components”.

Lastly, Fractal ADL [66] is the architecture description language for the Fractal component model.

It is an XML based descriptive language, used to define component types, implementations,

hierarchies and bindings. In JADE everything is a Fractal component described in Fractal ADL.

2.4.2 Java Message Service

The Java Message Service (JMS) API “is a messaging standard that allows application

components based on the Java 2 Platform, Enterprise Edition (J2EE) to create, send, receive, and

read messages. It enables distributed communication that is loosely coupled, reliable, and

asynchronous” [57]. In the context of the JADE framework, JMS is used to asynchronously

communicate between different (Java implemented) modules. The clearest example of JMS usage

in JADE is in the “heartbeat” mechanism used to detect new nodes and node failures.

– 53

2.4.3 Oscar

Oscar is an open source implementation of the Open Services Gateway Initiative (OSGi) [55]. The

OSGi Alliance is an open standards organization that specifies service platform. This Framework

specifies a complete and dynamic component model where applications (as components) can be

remotely installed, started, stopped, updated and uninstalled.

Applications are accessible to Oscar in what is known as “bundles”, a JAR file containing all the

necessary parts to completely configure and install the application (component). Each JAR bundle

contains a minimum of a manifest describing the bundle and any other files or archives such as Java

classes, legacy application (possibly as binaries), native code and other resources. Actually,

anything relative to the application can be included in a bundle.

These bundles are usually placed on Oscar Bundle Repositories (OBR) [67] stored locally, or more

commonly, on shared resources, such as network drives or in online-accessible servers, so they can

be quickly and uniformly accessed and downloaded to perform a transparent and direct installation

of the bundle.

The JADE management framework uses Oscar's functionality in two main ways. Firstly, Oscar is

used to start the JADE platform itself. More specifically, and by specifying certain parameters in

configuration files, Oscar provides an easy and straightforward way of starting the JADE platform

using a technology that is used by JADE anyway. With one single command, and the right

configuration files, Oscar starts a JadeBoot or a JadeNode. The second way Oscar is used is the

most important one, since it handles all the fetching and installing of bundles on local machines.

When a JadeNode has been allocated to the JADE framework and a component is to be installed on it,

this is where Oscar comes into play. Oscar accesses the OBRs specified in the configuration files

and locates the desired bundle containing the correct application, fetches it from the repository and

saves a local copy of the bundle on the proper JadeNode, extracting the JAR file to the specified

local folder. The JADE management framework uses Oscar to install and uninstall bundles, but it

does not use Oscar's functionality to start and stop resources, this is managed by the JADE Wrappers

(section 2.5).

– 54

2.4.4 BeanShell

BeanShell is a “Java source interpreter with object scripting language features, written in Java”

[61]. In the context of the JADE framework, BeanShell provides a command line interface that

provides interaction between a JADE user (administrator) and the JADE platform. Even though one of

the main goals of the JADE framework is to achieve self-management, an administrator interface is

required in order to be able to do any type of manual change to the system, as well as to perform

some monitoring.

The interaction between BeanShell and the JADE framework is established by importing a series of

commands specific to the JADE platform. These commands are Java-like classes that implement

some desired functionality and are usually bundled in JAR files that are referenced through the

classpath. A typical example is the “deploy” Beanshell command that takes as an argument the

name of the application to be deployed.

2.5 DEVELOPING WITH JADE
The JADE component management framework is completely based on the Fractal component model

and as such, any application that is to be either designed to be executed and managed by JADE or

adapted for JADE has first to be architecturally described using an architecture description language.

Fractal ADL [66] is the one JADE uses. Details of this procedure can be found by reading the Fractal

component model specification [63] and the Fractal ADL project site [66].

Once the application's architecture has been described, the next step is to generate an Oscar bundle

[56] [67]. Oscar bundles present a uniform way used by JADE to, exclusively, deploy and undeploy

the application itself; more specifically to fetch or download it, extract it to some local folder and

install it if required, a process that can vary considerably depending on the type of application.

Oscar bundles are most likely to be used under the JADE framework to encapsulate legacy software

(binaries or executables) although they can also be used to encapsulate application directly designed

and implemented for JADE thus achieving a degree of separation between the application and the

way it interacts with the JADE platform. Oscar bundles written specifically for the JADE framework

must implement the “start” and “stop” methods of the BundleActivator interface, methods that

actually take care of the deploy and undeploy procedures for the given application.

– 55

Once the Oscar bundle is complete, the next step consists of “linking” it to the JADE platform itself,

which is done through a JADE wrapper. Written in Java and implementing the necessary controllers

(AttributeController, BindingController, ContentController, etc.) JADE wrappers provide the

interfaces that JADE needs to manage the application. It is also worth mentioning, that the Oscar

bundle step can be avoided by including all the source code of the application in the Wrapper itself,

but this approach is not recommended because it limits the desired abstraction between the

application and the JADE framework.

2.6 RUNNING APPLICATIONS UNDER JADE
Running an application in JADE consists of three steps. One needs first to start the JadeBoot node.

This is done through Oscar. By pointing to the OBR repository and to the JadeBoot bundle in

configuration files the appropriate JAR file is downloaded, deployed and started. The second step is

to start the available nodes known as JadeNodes. This is also achieved through Oscar by editing

properly the configuration files to point to the JadeNode bundle. JadeBoot discovers the new nodes

and adds them to the list of available nodes. Figures 2.19 and 2.20 show the output produced by

starting a JadeBoot and a JadeNode that connects to that JadeBoot.

– 56

Figure 2.19. JadeBoot running (screenshot)

Once JadeBoot and JadeNodes are started a shell interface is used to interact with the JADE platform.

Beanshell is used for this purpose as described above in 2.4.4. Through Beanshell one can deploy

and run applications, as well as monitor the installed components.

– 57

Figure 2.20. JadeNode running (screenshot)

Figure 2.21. Beanshell (screenshot)

Chapter 3Chapter 3

AASSESSMENTSSESSMENT OFOF THETHE JADE F JADE FRAMEWORKRAMEWORK

In this chapter of the thesis report, an assessment of the JADE management framework will be made

considering several different aspects. First, the capability of the framework to operate under a wide-

area environment will be discussed. Then an assessment of the process to create and deploy a basic

application for the JADE framework. This will be followed by an evaluation of the process necessary

to enable a legacy application to be run under the JADE framework as well as the process of

designing an application with JADE in mind from the beginning. The fourth point considered will be

the overhead generated by using the JADE framework. To evaluate this, some data will be presented

regarding memory usage of the framework and the minimum amount of code necessary to make a

legacy application run under JADE. To finalize, some general comments and suggestions regarding

the JADE framework will be made.

All the conclusions, comments and remarks made regarding the JADE management framework are

based on revision 762 and may not apply to later or earlier versions. Generic concepts and ideas

should apply if no changes in design have been made.

3.1 WIDE-AREA CAPABILITY

In this subsection, the shortcomings of the JADE framework with respect to its possible adaptation to

a wide-area network will be discussed.

3.1.1 The Mechanism

The JADE management framework uses a fairly simple failure detection mechanism based on a

timeout. When JadeNodes register with a JadeBoot, they start sending what is named a “heartbeat”,

which is a periodic message sent using the Java Message Service (JMS) protocol integrated into

JADE. This heartbeat is expected for all registered JadeNodes every predetermined amount of

– 58

seconds, a value specified as a property (named “jadenode.heartbeat.pulse”) when starting each

JadeNode. If the heartbeat is not received for a fixed amount of time (the timeout), then JadeBoot

assumes that the JadeNode from which the heartbeat was not received is dead and proper measures

are to be taken. It is important to notice that, as of the current version of JADE, the timeout is a hard-

coded value.

3.1.2 Evaluation

The JADE framework was designed and implemented with a cluster topology in mind, which makes

things easier by making some strong assumptions; the most important is that there are no failures or

communication problems. These assumptions, while intended to make the design and

implementation process easier, also put strong limitations on several aspects of the JADE platform;

limitations that show up when trying to port the platform to a wide-area network where

communication is not reliable. Based on the limited amount of insight we have on the platform

itself regarding implementation details, one of the main problems that the JADE platform may face

when trying to adapt to a wide-area environment is its naïve failure detection mechanism based on a

simplistic timeout. This mechanism will assume a node as dead if a heartbeat message is lost or

corrupted and it will immediately take action by attempting to allocate a new node to replace the

assumed dead and redeploying the components of the dead node on the new node, when in fact, the

node assumed dead might be still alive and running. This approach might cause many problems

such as delay, loss of service, possible loss of data if the node assumed dead was a stateful node,

waste of resources (alive nodes) and many more problems depending on the application being

managed.

In order to alleviate this problem it would be recommendable to look into more advanced failure

detection mechanisms available that take into consideration the possible communication problems

that wide-area networks present. We will not discuss which failure detection mechanism would fit

better since it is not in the scope of this project, but we think it is crucial for the JADE framework to

drastically improve it. The side effect of a more sophisticated failure detection mechanism might be

an increase in overhead and repair time but it will make the framework much more robust.

– 59

3.2 PROGRAMMABILITY

The programmability assessment will be done through studying the creation and deployment

process of a simple application. The application is a trivial HTTP server and is considered as a

legacy software ready to be used out of the box in a non JADE environment. In such a case, the

creation process includes describing the application's components using Fractal ADL, creating a

bundle which will be used by the platform to install the legacy software and finally writing the

wrapper that implements the interfaces provided by the application. Deployment is almost the same

for every application. In short, it consists of updating the repository by uploading Fractal files,

bundles and wrappers.

3.2.1 Developing an Application

A JADE application is typically a composite component. Moreover, a common approach is to include

inside every composite component a primitive one called “start” that handles starting and stopping

of resources. Finally, components are bound to each other using Fractal bindings which provide

signature contracts between components' interfaces.

The JADE application, that is used in this section, consists of a composite component that includes

two primitive components: the typical “start” component and the “chttpd” component that provides

the server's functionality. Figure 3.1 portrays the application's component architecture.

– 60

Figure 3.1. Chttpd Architecture

3.2.1.1 Fractal ADL Description
The first step is to convert the architectural representation shown above to a machine readable

format. Fractal ADL is used for that purpose and the output is a file that describes the whole

architecture in XML. A full version of the Fractal ADL file can be found on Appendix C.

<definition name="Chttpd">
 <interface name="service" role="server" signature="fr.jade.service.Service" />

 <component name="start" definition="fr.jade.resource.start.StartType">
 <virtual-node name="node0" />
 </component>

 <component name="chttpd"
definition="sics.jade.resource.chttpd.ChttpdResourceType">

 <attributes
signature="fr.jade.fractal.api.control.GenericAttributeController">

 <attribute name="resourceName" value="chttpd" />
 <attribute name="port" value="8080" />

...
 </attributes>
 <virtual-node name="node1" />
 <packages>
 <package name="Crappy HTTP Server">
 <property name="dir.local" value="/tmp/chttpd/" />
 <property name="dir.install" value="chttpd/" />
 </package>
 </packages>
 </component>

 <binding client="this.service" server="start.service" />
 <binding client="start.rsrc_chttpd" server="chttpd.resource" />
 <virtual-node name="node0" />
</definition>

The composite component is called “Chttpd”. It provides a server interface called “service” that

makes the component reachable from the outside by providing two methods “start” and “stop” as

defined in the fr.jade.service.Service Java interface. This interface is bound to the primitive

component “start” which, as mentioned above, is used mainly for controlling the bootstrapping

process. The other primitive component is “chttpd” which is responsible for offering the

application's service. Note that this component makes use of the AttributeController so that the

application can be configurable. The “package” element is used to define what bundles should be

installed as dependencies of this component. This functionality is provided by Oscar - the OSGi

implementation - and in this specific scenario the bundle named “Crappy HTTP Server” will be

downloaded and installed from the Oscar bundle repository. Finally the “virtual-node” element

defines the node that will host each component. If there is more than one physical node available,

then the application can be distributed among nodes by distributing its components.

– 61

The definitions of the two primitive components, “start” and “chttpd” can be found in the Fractal

ADL code that follows. Full versions of the files are also in Appendix C.

<definition name="fr.jade.resource.start.StartType">
 <interface name="service" role="server" signature="fr.jade.service.Service" />

 <interface name="rsrc" role="client" signature="fr.jade.resource.Resource"
 cardinality="collection" contingency="optional" />

 <content class="fr.jade.resource.start.Start" />
</definition>

<definition name="sics.jade.resource.chttpd.ChttpdResourceType">
 <interface name="resource" signature="fr.jade.resource.Resource"
 role="server" cardinality="collection" contingency="optional" />

 <content class="sics.jade.osgi.chttpd.wrapper.CrappyHttpServerWrapper" />
 <controller desc="parametricprimitive" />
</definition>

The content class of each primitive component is supposed to implement the server interfaces of the

component. As regards the “start” component the implementation class is provided by JADE and

specifically by the Java class fr.jade.resource.start.Start. Therefore, this class should

implement the “start” and “stop” methods defined in the fr.jade.service.Service interface. The

client interface “rsrc”, as it can be noticed on the main Fractal file, is bound to the server interface

of the other primitive component “chttpd”. The content class of the “chttpd” component should

implement the fr.jade.resource.Resource interface in the

sics.jade.osgi.chttpd.wrapper.CrappyHttpServerWrapper class.

3.2.1.2 Oscar Bundle
The second step is to create the bundle that will enclose the legacy software. According to OSGi

specification [55] a bundle must implement the org.osgi.framework.BundleActivator interface

which defines two methods: “start” and “stop”. Their name inside the JADE context can be

misleading because they are used for different purpose than one would guess. In fact, these two

methods play the role of install and uninstall since the JADE wrapper is the one that will take care of

starting and stopping components and applications. Usually, the legacy software is included in a

compressed archive inside the JAR file of the bundle so it can be easily extracted and installed.

The Java documentation (javadoc) of the bundle can be found on Appendix C.

– 62

3.2.1.3 JADE Wrapper
The JADE wrapper that needs to be written by the developer should implement the server interfaces

defined by the “chttpd” component. In this particular case, the CrappyHttpServerWrapper class of

the sics.jade.osgi.chttpd.wrapper package must implement the fr.jade.resource.Resource

interface but also the GenericAttributeController and the BindingController. The Resource

interface defines four methods: configure, loadApp, start and stop. As already mentioned this server

interface inside “chttpd” is bound to the “start” component's “rsrc” client interface and is used to

activate and deactivate the component. The GenericAttributeController (section 2.2.3.1) defines

methods to set, get and list the component's attributes whereas the BindingController (section

2.2.3.2) defines the necessary methods to bind and unbind components, to list the component's

client interfaces and to reach bounded components by using lookups.

It is important to state that a JADE wrapper is an Oscar bundle per se and hence has to implement the

BundleActivator interface. However, the two methods “start” and “stop” of the implementor class

can be empty.

In this specific HTTP server example, the wrapper's start method is trying to run the server installed

by the bundle after it updates its configuration file with the parameters read from the Fractal ADL

file. It also saves the process ID of the server in order to be able to shut it down later using the stop

method. The stop method stops the server by killing its process.

The Java documentation (javadoc) of the wrapper can be also found on Appendix C.

3.2.2 Deploying an Application

The deployment process consists mostly of updating the Oscar Bundle Repository (OBR). OBR is

an XML based repository and JADE has adapted it to serve as its main repository for every kind of

resource. Even the JADE platform itself is stored in this repository. In such a case Oscar is used first

to install the JADE platform (JadeBoot and JadeNode are also Oscar bundles) before one can interact

with it.

– 63

The necessary deployment steps can be summarized as follows: first, the repository's XML file is

edited to include the newly created bundles. The bundles should then be uploaded to the address set

on the XML file. The application's Fractal ADL file should also be uploaded into the repository and

the JadeBoot's configuration file – the file that is read when starting JadeBoot through Oscar –

should be edited to point to the address that contains this ADL description. Normally other Fractal

ADL files used to describe primitive components would be uploaded into the same folder, keeping

the package names, but revision 762 does not support this feature. Unfortunately they have to be

embedded into the platform by editing the JadeBoot bundle.

3.2.3 Evaluation

Both the development and the deployment process have proved to be time consuming and, most

importantly, error prone. There are no satisfactory tools to automate any process at all and

developers need to spend much time and effort in tasks that could be easily become automated.

First of all, it sounds as a necessity to have a tool that can produce Fractal ADL files and Java

skeleton classes from a graphical representation of the application. This would relieve developers

from having to manually write XML files and Java methods with repeated content. It would also

certainly reduce errors and help produce uniform applications. The only tool available that is

supposed to serve partially that purpose is FractalGUI, but it is extremely buggy, inflexible, hard to

use and produces wrong output. In addition it does not support automatic implementation of well

known interfaces like the ones for attribute and binding controllers.

Another important aspect is the complete lack of a basis to write and build bundles. Starting from

scratch was in most of the cases the only option. Having some template bundles and wrappers

would at least alleviate some of the problems that one is facing when it comes to making a JADE

enabled application. In addition, due to the dynamism and modular nature of the JADE platform,

there are a lot of difficulties in referencing the required libraries (Fractal, OSGi and JADE based)

since most of the times they are supposed to be exported by the JADE platform itself using manifest

files and the OBR repository. The main problem then is the debugging process which is certainly

one of the basic drawbacks of JADE. Indeed, taking into account that a single change requires a fully

manual deployment makes debugging discouraging.

– 64

Obviously, the way JADE's revision 762 handles primitive components' descriptor files is another

factor that complicates the deployment process. However a dynamic load of these Fractal ADL files

from the repository should be available in later versions.

In conclusion, we believe that, as of now, the creation and deployment process poses a big

disadvantage for the JADE framework. It requires extensive knowledge of the platform itself and

good debugging skills.

3.3 ARCHITECTURE

The JADE framework is designed to be able to manage any type of application, and since it is written

purely in Java, it should be able to run under any environment where Java is supported. For an

application to be managed and run under the JADE framework, it has to be adapted for it, following a

series of steps, some generic and some specific to the application itself. There are two different

approaches to this, either take a complete application and bundle and wrap it so JADE can manage it

or design it with JADE in mind, taking into consideration a software component-based architecture

and some utilities JADE provides.

In the next two subsections the necessary process for the two above-mentioned approaches will be

described using a rather simple client-server application, in this case a BankServer to which

BankClients connect via Java Remote Method Invocation (RMI). For the two approaches described

(legacy bundling and design with JADE in mind), the interface for the clients to connect to the server

will be identical. Actually, the code for the clients is never modified.

3.3.1 Legacy Applications

As mentioned before, any application can be “bundlelized” and wrapped to be manageable by the

JADE framework. This is achieved in two steps, first an OSGi compliant [55] bundle has to be

generated and then this bundle is wrapped according to the wrapping procedure for JADE, thus

obtaining an application that can be deployed and managed under the JADE platform. This process is

fairly straight forward and lets any off-the-shelf application to be run under JADE.

– 65

As it can be seen in Figure 3.2, the LegacyBank application is composed of three components:

● The “Start” component which is just a boot-strapping mechanism to start the application and

actually has nothing to do with the application itself.

● The “DataBase” component which is external to the actual BankServer (any database would

be acceptable and does not have to be under the same composite component).

● The “BankServer” component which is the one with all the functionality of the application:

RMI server, database interaction and the logic of the application.

Actually, it would be possible to have the LegacyBank application be just one component but for

the sake of completeness, and to make it easier to compare with the version designed with JADE in

mind we have included the two external components (Start and DataBase).

It is important to see that the communication between the server and the database is achieved using

Java DataBase Connectivity (JDBC) (named “application level communication”). Communication

at this level is completely transparent to the JADE framework, so in order to let the JADE framework

– 66

Figure 3.2. LegacyBank Architecture

know that there is some communication between the server component and the database

component, an “empty” binding is specified between the two as we can see in the snippet of Fractal

code provided below. This binding makes JADE aware of dependencies between components even

though in reality nothing is ever communicated through the binding itself, and all communication

happens at the application level.

<definition name="LegacyBank">
 <!-- START -->
 <component name="start" definition="StartType">
 ...
 </component>

 <!-- BANK SERVER -->
 <component name="bankserver" definition="BankServerResourceType">
 <attributes signature="GenericAttributeController">
 <attribute name="resourceName" value="bankserver" />
 ...
 </attributes>
 </component>

 <!-- MySQL -->
 <component name="mysql" definition="MySqlResourceType">
 <attributes signature="GenericAttributeController">
 ...
 </attributes>
 </component>

 <!-- BINDINGS -->
 <binding client="this.service" server="start.service" />
 <binding client="start.rsrc_bankserver" server="bankserver.resource" />
 <binding client="start.rsrc_mysql" server="mysql.resource" />
</definition>

The Java documentation (javadoc) for the LegacyBank application together with the Fractal ADL

files is included in Appendix D.

3.3.2 JADE Designed Applications

The second approach is to design, or redesign, an application specifically for JADE. This approach

would take advantage of the modularity and extensibility that programming with a component-

based approach supplies, as well as provide the option to use Fractal Remote Method Invocation

(Fractal RMI), similar to Java RMI but already inserted into the JADE platform through the Fractal

specification. Fractal RMI provides a transparent and simple way to connect Fractal components

without having to worry about application (low level) communication.

– 67

Figure 3.3 shows the architecture of the JadeBank application, an example of a JADE-designed

application, which is conceptually identical to the one presented in the previous subsection but

designed and implemented having JADE into consideration. In this case, the functionality is the same

as the LegacyBank (except for the Logger component used to further show the use Fractal RMI) but

it is achieved using technologies provided by JADE itself (component and Fractal RMI) rather than

legacy mechanisms. The JadeBank application consists of the following components:

● The “Start” component which is just a boot-strapping mechanism to start the application and

actually has nothing to do with the application itself.

● The “DataBase” component which is external to the actual BankServer (any database would

be acceptable and does not have to be under the same composite component).

● The “BankServer” component which holds the Java RMI server aspect of the application as

well as its logic.

● The “DataManager” component, which is the “gateway” to access the database itself. The

interesting part is that any number of BankServers could communicate with the

DataManager through remote objects via Fractal RMI in a completely transparent fashion.

● The “Logger” component also uses Fractal RMI to “talk” to the DataManager in a

transparent way; no effort has to be put to implement this.

All of these components are bound together using Fractal bindings between server and client

interfaces, thus indicating to the JADE platform dependencies between them. This approach enables

to quickly and effortlessly add a new Logger or a new BankServer just by editing the Fractal file

describing the JadeBank composite component, which provides an easy way to control an

application's granularity and architecture. Each of the components described above can be placed in

any physical node without worrying about ports or addresses since all inter-component

communication is handled by Fractal RMI and the Fractal Registry. Therefore, if a node dies and its

components are relocated to a new node, other components in different nodes will not notice this

and will not have to adapt to it.

The partial Fractal file included below shows the ADL definition, including “real” bindings through

which Fractal RMI object references are obtained. This Fractal ADL represents the same

architecture that can be seen on Figure 3.3.

– 68

<definition name="JadeBank">
 ...
 <!-- START -->
 <component name="start">
 ...
 </component>

 <!-- JADE BANK SERVER -->
 <component name="jadebankserver">
 <attributes> ... </attributes>
 <virtual-node name="node0" />
 <packages> ... </packages>
 </component>

 <!-- DATA MANAGER -->
 <component name="datamanager">
 <attributes> ... </attributes>
 <virtual-node name="node1" />
 <packages> ... </packages>
 </component>

 <!-- JADE BANK LOGGER -->
 <component name="jadebanklogger">
 <attributes> ... </attributes>
 <virtual-node name="node0" />
 <packages> ... </packages>
 </component>

 <!-- MYSQL -->
 <component>
 <attributes> ... </attributes>
 <virtual-node name="node0" />
 <packages> ... </packages>
 </component>

 <!-- BINDINGS -->
 <binding client="this.service" server="start.service" />
 <binding client="start.rsrc_jadebankserver" server="jadebankserver.resource" />
 <binding client="start.rsrc_datamanager" server="datamanager.resource" />
 <binding client="start.rsrc_jadebanklogger" server="jadebanklogger.resource" />
 <binding client="start.rsrc_mysql" server="mysql.resource" />

 <!-- bind the jadebankserver to the datamanager -->
 <binding client="jadebankserver.dataservice" server="datamanager.dataservice" />
 <!-- bind the datamanager to the jadebanklogger -->
 <binding client="datamanager.datalogger" server="jadebanklogger.datalogger" />

 <virtual-node name="node0" />
</definition>

– 69

The Java documentation (javadoc) for the JadeBank application together with the Fractal ADL files

is included in Appendix E.

3.3.3 Evaluation

The two approaches described in the previous subsection are quite different in many aspects, and

both approaches are not suitable for all situations. The “legacy approach” is best suited when trying

to run under JADE a closed-source application or one that is monolithic by definition, that can not be

split into different components or would not benefit from it. The “legacy approach” can be

considered easier than designing an application with JADE in mind since the application itself is

– 70

Figure 3.3. JadeBank Architecture

already there and will not need to be modified. The process to bundle and wrap a legacy application

so it is manageable by JADE is fairly systematic. But it has some drawbacks, like the lack of control

over the granularity and modularity of the application, if the application originally is one single

piece it will stay like this under JADE, deployed in one node and managed as such.

The “JADE approach” (designing with JADE in mind) makes the application much more flexible,

allowing an application to be distributed over many nodes, making it modular and taking advantage

of the benefits of modular design (component-based in the case of JADE) like extensibility and

flexibility. But the “JADE approach” presents some serious inconveniences; it is in general more

demanding and requires more time to create an application that runs under the JADE framework. This

approach is also more difficult since it requires a better understanding of the JADE framework itself,

but probably, its main drawback is the fact that the application's “entry point” has to be placed

directly in the wrapper so it can access the benefits of the framework (i.e. Fractal RMI), and this is

better suited to be done in Java.

In a real world example, we would take several legacy applications, write bundles and wrappers for

them and bind them together; However, access to the benefits of Fractal RMI would then be

restricted to inter-wrapper communications and the applications themselves would have to rely on

application-level communications. Only if we were to write an application from scratch, to be

managed by JADE, we could take full advantage of it, but it seems that if we were wrapping legacy

application, communication between them would have to be done by different means using other

networking protocols.

3.4 OVERHEAD

The JADE management framework adds an extra layer of significant magnitude to any application it

manages, an overhead that will be analyzed in this section from three different perspectives: the

overhead inherent to the Fractal model on which JADE is based, the amount of physical memory that

the framework consumes and needs to manage applications as well as the amount of code that is

necessary to enable an application so it can be managed under JADE.

– 71

3.4.1 Inherent Fractal Component Model Overhead

The Fractal component model is totally based on XML, a standardized way of transmitting and

storing data, but at the same time a format that adds a considerable amount of bytes to any network

transaction. XML files need to be parsed in order to become “machine ready”, a process that is

known to be time consuming and inefficient [68]. The Fractal component model offers a wide range

of possibilities, ranging from introspection to reconfiguration and management, but this comes at

the price of performance and overhead. For example, a new component has to be created using a

component factory, which is a component itself, that has to exist at all times so new components

can be created; a process inherited from the Fractal component model that, as can be clearly seen, is

intensive in resources.

The Fractal component model was described in section 2.2.

3.4.2 Memory Consumption

Another important aspect regarding overhead is the resources needed for running a JADE application.

Nodes are typically mapped to real machines and hence the requirement is as simple as occupying

machines in a cluster or wide-area network. A more interesting aspect is the amount of memory

consumed by each node to run a JADE application, that is the memory used by JadeBoot and the

running JadeNodes.

3.4.2.1 Test Scenario
The testing scenario includes running the JADE applications (or parts of them) described in the

previous sections. Three of them – the CrappyHttpServer, the LegacyBank edited to use a remote

database and the isolated MySQL – belong to the “wrapping legacy software” category. The last

test is an edited version of JadeBank that uses a remote database. The choice to use a remote

database is made in order to provide uniform test cases so that the results can be comparable.

Two kinds of tests are performed for each application: on the first one the whole JADE application is

deployed and run on one node, whereas on the second, two nodes are used and the application is

distributed among them. In the “wrapping legacy software” category, the first node is chosen as the

– 72

one that always hosts the main application's component. The second node then, when present, will

host the composite component and the helping ones such as the start component. In the “JADE-

designed” category the JadeBank application is more distributed since there are more components

involved.

3.4.2.2 Test Results
The first table (Table 5) presents the fairly constant memory consumption of the root node of the

platform, the JadeBoot. Our tests showed that addition of nodes has a slight impact on JadeBoot as

the memory increases for only 60KB on average per node addition.

Memory Consumption in KB
no nodes 1 node 2 nodes 4 nodes 8 nodes 12 nodes 16 nodes

JadeBoot 37,600 37,700 37,800 37,900 38,100 38,400 38,600

Table 5. JadeBoot's memory consumption

Table 6 presents the amount of memory occupied by JadeNodes and the applications themselves.

Initially, before deployment, a JadeNode uses on average 29,000 KB of memory.

The table shows that regarding legacy applications a node addition occupies approximately

30,000KB of memory. The amount of memory that each node uses depends on the size of the

component, that is the size of the application associated with it. This is more obvious on the

MySQL example where due to the size of the MySQL bundle the node reaches the significant

amount of 117,700KB. We expected this amount to decrease by the garbage collector once the

deployment process was completed and the binaries were removed but this did not happen.

– 73

Memory Consumption in KB
Application JadeNode 1 JadeNode 2

CrappyHttpServer
(1 node) 12,300 30,100 -

CrappyHttpServer
(2 nodes) 12,300 30,200 29,800

LegacyBank with remote DB
including RMI Registry
(1 node)

36,200 31,000 -

LegacyBank with remote DB
including RMI Registry
(2 nodes)

36,200 31,000 29,800

MySQL
(1 node) 14,600 117,700 -

MySQL
(2 nodes) 14,600 117,700 29,600

JadeBank with remote DB
including RMI Registry
(1 node)

16,400 33,000 -

JadeBank with remote DB
including RMI Registry
(2 nodes)

16,400 31,800 30,600

Table 6. Applications' memory consumption under JADE

JadeBank falls into the second category; it was specifically designed with JADE in mind and there is

no bundled software with it. The application is thus more distributed and this is also depicted by the

memory consumption measurements. Since the application is run under the JADE container (from

inside the wrapper) it was expected that the memory usage would be decreased despite the fact that

the application's functionality has been expanded by introducing the DataManager and Logger

components (see section 3.3.2).

Generally we believe that the JADE framework, as a typical Java application, requires a significant

amount of memory even for trivial applications. A big portion of course is occupied by the

framework itself and therefore we expect that more complex applications will not linearly increase

the memory requirements. However it should be noted that JADE (revision 762) still lacks most of

the self-management features (for instance self repair functionality needs to be integrated) that will

definitely increase its memory requirements once they will be added.

– 74

3.4.3 Amount of Code

The bundles and wrappers that are necessary to make an application (either legacy or JADE-

designed), be deployable and runnable under JADE require an amount of code that can not be easily

estimated or measured since it is directly related to the application in consideration. If the

application is what is considered as a “legacy application”, the amount of code necessary to make it

enabled for JADE is fairly constant and is basically divided into four sections of code briefly

explained in Table 7 below.

Code Location Description
Bundle's start method.
Implements BundleActivator
interface.

This portion of code is the one in charge of installing the code in
the host machine. Installation usually consists of downloading the
bundle from an Oscar Bundle Repository (OBR) and extracting the
application's binaries to some accessible folder in the local
machine.

Bundle's stop method.
Implements BundleActivator
interface.

Opposite to start, this part of code is the one that takes care
uninstalling the binaries installed by the bundle's start method. This
process usually includes removing the files and folders created by
the start procedure.

Wrapper's start method.
Implements Resource
interface (optional).

This portion of the wrapper is the one in charge of executing the
application when the start command is issued from BeanShell. The
process consists of running some executable file, class or script that
will start the application.

Wrapper's stop method.
Implements Resource
interface (optional).

Opposite to the start method, this portion of code stops the running
process by killing it or taking some other action available.

Table 7. Four sections of code regarding JADE applications

The four methods described above are very much related to each other and are highly dependent on

the type of the application under consideration. A generic approach does not exist for all cases as

the type of application as well as what environment it is designed for, will influence the way it is

installed/uninstalled and run/stopped. This procedure is very dependent on the type of application in

case.

Applications designed directly with JADE in consideration will potentially include large amounts of

code directly both in the bundle and wrapper methods, so, depending on the type of application

(legacy or not), the amount of code will vary significantly and, thus, the amount of work will also

– 75

change drastically. Therefore, it is not possible to give an acceptable estimate. It is true, however,

that the amount of code required to adapt an application for JADE is not excessive and can be

handled, and could be improved with some sort of tool that would generate code skeletons of all the

necessary classes and interfaces since a big part of the adaptation process is fairly systematic.

3.5 OTHER OBSERVATIONS

Besides the aspects specifically discussed above, several other issues should be taken into

consideration for future versions of the framework. The first and probably most important flaw is

the complete lack of documentation. Although there are guides for running the platform and writing

wrapper for it, these guides are of no real value. The only useful document regarding JADE is [8],

which introduces the framework and its basics, but focuses more on repair management than in the

framework itself.

Another issue that seems to not have been considered is security, so we want to mention at this

point that, even though more functional aspects of the framework should have higher priority, some

security mechanisms should be implemented into the framework if it is ever to be used for any

“real” purpose.

On another note, a minimal list of some discovered bugs and flaws is given in Appendix F.

– 76

Chapter 4Chapter 4

CCONCLUSIONSONCLUSIONS

4.1 CONCLUSIONS

In this section, some conclusions covering the whole document will be drawn attempting to point

out the most relevant aspects of the work done throughout the thesis project.

4.1.1 Literature Study

The problem of systems' management has grown with the complexity of modern systems and to

cope with it, autonomous behavior of systems is the most widely accepted technique. In order to

gain abstraction and reduce the newly introduced complexity of today's distributed solutions,

component models are used. Component models, in order to be suitable for autonomous computing,

should separate interfaces from implementation, be reflective and hierarchical, properties shared by

the Fractal component model, the SOFA model and K-components but not fully by other models

such as EJBs, .NET, CCM and CCA. Component models that support the three aforementioned

desirable properties do set strong grounds for autonomic management frameworks to build on top

of, and thus achieve some levels of autonomic management (self-configuration, self-healing, self-

optimization and self-protection) like the JADE management framework or K-Components with

Collaborative Reinforcement Learning.

4.1.2 The JADE Framework

The decision to use the Fractal component model seems to be a well based choice since the Fractal

model is a stable and sufficiently supported model that enjoys important properties. It is both

reflective and hierarchical preserving at the same time the beneficial characteristics of the basic

component models, such as separation between interface and implementation and explicit

architecture description. It seems therefore that Fractal is the most appropriate component model for

creating self-manageable software. Also, the choice of Java as the programming language gives a

– 77

strong advantage due to the characteristic of the language itself as platform-independent.

One of the most important parts of the framework itself is the failure detection mechanism. Our

study showed that the mechanism used is trivial as it clearly depends on a reliable and robust

network, implying a cluster solution. The failure detection mechanism should therefore be

drastically improved in order to make JADE wide-area enabled. It is also important to notice that the

JADE platform follows a very centralized design, with all nodes being managed by a single manager

(JadeBoot); an architectural decision that can create communication bottlenecks at the central node

and implies catastrophic consequences may the central manager fail. This negative scenario is

considered in theory using replication mechanisms but not implemented in practice.

From the developer's perspective writing a JADE application is a relatively simple procedure as long

as there is documentation and a programming guide or enough experience and familiarization with

the framework. However, currently, there is no documentation at all and the available programmer's

guide is incomplete if not misleading. We have also seen that the deployment process is arduous,

time consuming, error prone and lacks dynamism. To facilitate development, an automated

deployment process should be created since the procedure is quite systematic.

As regards application architecture, the capability of JADE to bundle and wrap legacy software is

useful and gives the opportunity to use non open source software. However, JADE is better utilized

when software is built specifically for the framework. In that case the major benefits are transparent

communication between components through Fractal RMI, better flexibility and extensibility.

Finally, being a Java based project imposes a significant overhead in terms of memory consumption

and performance. As our measurements showed the platform itself is not such a memory hog taking

into account today's systems but there are obviously memory leaks after the deployment process

starts.

In conclusion we believe that JADE is a sound attempt at a management framework based on strong

principals, but as with anything in an immature state, it needs a lot of work to be considered a

reliable solution. There are many flaws that need to be addressed and some fundamental decisions

to be revised.

– 78

4.2 FUTURE WORK

In order to complete the assessment of the JADE framework, a study of the management capabilities

of the framework must be performed. Under normal circumstances, this should have been part of

the performed individual assessments. However, the self-management (self-repair) capabilities of

the studied version of the JADE framework were not integrated, hence they could not be evaluated in

practice. We expect the self-repair functionality to become available at some point, and in order to

complete our assessment of the framework as a management framework, an evaluation following

these basic guidelines could be performed:

● Build a test scenario comprised of multiple distributed JadeNodes interconnected (non-

trivial environment).

● Manually fail a controlled set of JadeNodes and observe the failure detection mechanism

realize these failures. Once the failure detections have happened, the central manager should

take the appropriate actions in order to restore the system to a working, valid state.

● Discover the self-repair actions taken by the self-management module and verify that the

new (automatically regenerated) environment is compatible with the original one.

● Report the actions taken by the self-management module and discuss their validity regarding

self-repair.

Once this assessment is complete, it can be stated that the the general assessment of the JADE

framework is complete. As a side note, it is worth mentioning that the JADE framework, so far, only

considers node failures and not application failures on the managed nodes, so the assessment of

self-management capabilities would only cover node failures.

Furthermore, the work discussed in this thesis document could be expanded and enhanced by

looking into the limitations imposed by the cluster topology assumptions, and more specifically the

failure detection mechanism. Time could be spent researching the available failure detection

mechanisms for wide-area environments and, certainly, propose a better suited algorithm for failure

detection than the basic “heartbeat” approach used now by JADE.

Once the framework is refined by improving its failure detection mechanism, the repair manager is

fully integrated and the platform becomes more stable, a battery of tests could be carried out with a

– 79

relevant number of real nodes (physically distributed) to truly examine the framework's ability to

perform under a wide-area network.

– 80

AAPPENDIXPPENDIX A: A: A FA FRACTALRACTAL H HELLOELLOWWORLDORLD A APPLICATIONPPLICATION

The design of the application is done using the Fractal GUI tool which produces the necessary
Fractal files, the Java interfaces and skeleton classes.

As already mentioned there is a composite component which includes two primitive ones. The
external interface binds to the client's server interface. This is how the application is accessed.
Furthermore, the client (ClientImpl) has a client interface that binds to the server's (ServerImpl)
server interface.

The produced Fractal files are attached below. A common approach is to separate the interface
definitions from the rest information such as bindings by putting them into different files. The
Fractal GUI tool follows this approach.

<!-- HelloWorld.fractal. The composite component (extends HelloWorldType.fractal) -->
<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"
 "classpath://org/objectweb/fractal/adl/xml/standard.dtd">

<definition extends="HelloWorldType" name="HelloWorld">

-- 81

 <component definition="ServerImpl" name="ServerImpl"/>
 <component definition="ClientImpl" name="ClientImpl"/>
 <binding client="this.r" server="ClientImpl.r"/>
 <binding client="ClientImpl.s" server="ServerImpl.s"/>
 <controller desc="composite"/>
 <coordinates color="-73" y0="0.14539894321348862"

x1="0.891350832842055" y1="0.47045537662206655"
name="ServerImpl" x0="0.6135862668491892"/>

 <coordinates color="-73" y0="0.4168030906370116"
x1="0.3661714962074936" y1="0.7364419168221132"
name="ClientImpl" x0="0.11123689454280883"/>

</definition>

<!-- HelloWorldType.fractal. Interface definition -->
<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"
 "classpath://org/objectweb/fractal/adl/xml/standard.dtd">

<definition name="HelloWorldType">
<interface signature="java.lang.Runnable" role="server" name="r"/>
</definition>

<!-- ClientImpl.fractal. The client primitive component (extends ClientImplType)-->
<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"
 "classpath://org/objectweb/fractal/adl/xml/standard.dtd">

<definition extends="ClientImplType" name="ClientImpl">
<content class="ClientImpl"/>
<controller desc="primitive"/>
</definition>

<!-- ClientImplType.fractal. Interface definitions -->
<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"
 "classpath://org/objectweb/fractal/adl/xml/standard.dtd">

<definition name="ClientImplType">
<interface signature="java.lang.Runnable" role="server" name="r"/>
<interface signature="Service" role="client" name="s"/>
</definition>

<!-- ServerImpl.fractal. The server primitive component (extends ServerImplType) -->
<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"
 "classpath://org/objectweb/fractal/adl/xml/standard.dtd">

<definition extends="ServerImplType" name="ServerImpl">
<content class="ServerImpl"/>
<attributes signature="ServiceAttributes">
 <attribute value=">>" name="header"/>
</attributes>
<controller desc="primitive"/>
</definition>

<!-- ServerImplType.fractal. Interface definition -->
<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"
 "classpath://org/objectweb/fractal/adl/xml/standard.dtd">

<definition name="ServerImplType">
 <interface signature="Service" role="server" name="s"/>
</definition>

– 82

The Java classes are included below combining the automatically produced skeletons with the
implementation code. Some parts are censored in order to emphasize the important ones.

/**
 * Main.java. The starting point of the application (manually created class)
 */
public class Main {

 public static void main(String[] args) {
 ClientImpl client = new ClientImpl();
 client.start();
 }
}

/**
 * CilentImpl.java: The client's implementation class
 */
import org.objectweb.fractal.api.control.BindingController;
import java.lang.Runnable;

public class ClientImpl implements Runnable, BindingController {

 public final static String SERVICE_BINDING = "service";
 private Service service;

 public ClientImpl () {}

 // ---
 // Implementation of the BindingController interface
 // ---
 public String[] listFc () {
 return new String[] { SERVICE_BINDING };
 }
 public Object lookupFc (final String clientItfName) {
 if (SERVICE_BINDING.equals(clientItfName)) {
 return service;
 }
 return null;
 }
 public void bindFc (final String clientItfName, final Object serverItf) {
 if (SERVICE_BINDING.equals(clientItfName)) {
 service = (Service)serverItf;
 }
 }
 public void unbindFc (final String clientItfName) {
 if (SERVICE_BINDING.equals(clientItfName)) {
 service = null;
 }
 }

 // ---
 // Implementation of the Runnable interface
 // ---
 public void run () {
 service.print("hello world");
 }
}

/**
 * ServerImpl.java: The server's implementation class
 * (implements the Service and indirectly the AttributeController)
 */
public class ServerImpl implements Service, ServiceAttributes {

– 83

 private String header = "";
 private int count = 0;

 public ServerImpl () {
 System.out.println("ServerImpl started");
 }

 public void print(String msg) {
 for(int i=0; i<count; i++) {
 System.err.println(header + msg);
 }
 }

 public String getHeader() { return(this.header); }

 public void setHeader(final String msg) { this.header = msg; }
}

/*
 * ServiceAttributes.java: The server's AttributeController interface
 */
import org.objectweb.fractal.api.control.AttributeController;

public interface ServiceAttributes extends AttributeController {
 String getHeader();
 void setHeader(String header);
}

/**
 * Service.java: The server's service interface
 */
public interface Service {
 void print(String msg);
}

– 84

AAPPENDIXPPENDIX B: B: TTHEHE C CRAPPYRAPPYHHTTPTTPSSERVERERVER A APPLICATIONPPLICATION (O (OSCARSCAR B BUNDLEUNDLE))

The Oscar bundle described in this section is a simple HTTP Server. However, instead of
implementing all the functionality inside the bundle, a different approach has been chosen. The
HTTP server is implemented as a legacy software that will be included in a binary form (zipped)
inside the Oscar bundle.

Developing an Oscar bundle actually means implementing the BundleActivator interface of the
org.osgi.framework package. The interface has two methods: start() and stop(). Start will be
used to run the application and stop to stop it. In this specific case start will also include the code
for unpacking the legacy software (included in the bundle as a TGZ archive) and installing it to the
appropriate folder.

The source code and the Java documentation produced from the two projects (the HTTP Server and
the Oscar bundle) is shown in the pages that follow.

-- 85

Package Summary
sics.jade.osgi.chttpd

Package sics.jade.osgi.chttpd

Class Summary
Activator The bundle activator that installs and runs the Crappy HTTP Server.

Class Activator
sics.jade.osgi.chttpd

java.lang.Object
 sics.jade.osgi.chttpd.Activator

public class Activator
extends Object

The bundle activator that installs the Crappy HTTP Server. The precompiled CrappyHttpServer is
included in a TGZ file. This bundle is intended to be used in OSCAR, not JADE.

Author:
Simón af Frosterus & Leonidas Pantzopoulos @ SICS

Version:
1.0

Constructor Summary
Activator()

Method Summary
void start(BundleContext context)

Implements BundleActivator.start().
void stop(BundleContext context)

Implements BundleActivator.stop().

– 86

Package Summary
seds.thesis.chttpd

Package seds.thesis.chttpd

Class Summary
CHttpd A simple HTTP server that handles GET and POST requests.

CHttpdConf A crappy HTTP server conf parser.

Test A class for testing the application's functionality (mostly used for debugging).

Class CHttpd
seds.thesis.chttpd

java.lang.Object
 seds.thesis.chttpd.CHttpd

public class CHttpd
extends Object

A simple HTTP server that handles GET and POST requests.

Author:
Simón af Frosterus & Leonidas Pantzopoulos @ SICS

Version:
1.0

Constructor Summary
CHttpd()

Method Summary
static

void main(String[] args)
Main method of the application.

Class CHttpdConf
seds.thesis.chttpd

java.lang.Object
 seds.thesis.chttpd.CHttpdConf

public class CHttpdConf
extends Object

– 87

A crappy HTTP server conf parser.

Author:
Simón af Frosterus & Leonidas Pantzopoulos @ SICS

Version:
1.0

Constructor Summary
CHttpdConf()

Initializes a CHttpdConf object and tries to locate the default configuration file.

CHttpdConf(String conf_file)
Initializes a CHttpdConf object with the given configuration file.

Method Summary
String getAbsolutDocumentRoot()

Gets the path of the folder the document root points to (absolut path)
String[] getDefaultFiles()

Gets default files that the server will try to serve if no input is given.
String getDocumentRoot()

Gets the path of the folder the document root points to (relative to SERVER_ROOT).
int getPort()

Gets the port the server is currently listening on.
void setDefaultFiles(String[] files)

Sets default files in proporties file that the server will try to serve if no input is given (e.g.
index.html, index.htm)

void setDocumentRoot(String root)
Sets document_root value in properties file

void setPort(int port)
Sets the port value in properties file.

– 88

AAPPENDIXPPENDIX C: C: TTHEHE C CRAPPYRAPPYHHTTPTTPSSERVERERVER J JADEADE A APPLICATIONPPLICATION ((LEGACYLEGACY))

<!-- Chttpd.fractal -->
<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"
"classpath://fr/jade/service/deployer/adl/xml/jade.dtd">

<definition name="Chttpd">
 <interface name="service" role="server" signature="fr.jade.service.Service" />

 <!-- ================================== -->
 <!-- START -->
 <!-- ================================== -->
 <component name="start" definition="fr.jade.resource.start.StartType">
 <virtual-node name="node0" />
 </component>

 <!-- ================================== -->
 <!-- CHTTPD -->
 <!-- ================================== -->
 <component name="chttpd" definition="sics.jade.resource.chttpd.ChttpdResourceType">
 <attributes signature="fr.jade.fractal.api.control.GenericAttributeController">
 <attribute name="resourceName" value="chttpd" />
 <attribute name="dirLocal" value="/tmp/chttpd/" />
 <attribute name="dirInstall" value="chttpd/" />
 <attribute name="port" value="8080" />
 <attribute name="document_root" value="htdocs" />
 <attribute name="default_files" value="index.html" />
 </attributes>
 <virtual-node name="node1" />
 <packages>
 <package name="Crappy HTTP Server">
 <property name="dir.local" value="/tmp/chttpd/" />
 <property name="dir.install" value="chttpd/" />
 </package>
 </packages>
 </component>

 <!-- ================================== -->
 <!-- BINDING -->
 <!-- ================================== -->
 <binding client="this.service" server="start.service" />
 <binding client="start.rsrc_chttpd" server="chttpd.resource" />
 <!-- start.rsrc_* is equal to start.rsrc. The part after "rsrc" is just ignored. -->

 <virtual-node name="node0" />

</definition>

<!-- sics.jade.resource.chttpd.ChttpdResourceType.fractal -->
<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"
"classpath://fr/jade/service/deployer/adl/xml/jade.dtd">

<definition name="sics.jade.resource.chttpd.ChttpdResourceType">

 <interface name="resource" signature="fr.jade.resource.Resource" role="server"
cardinality="collection" contingency="optional" />

 <content class="sics.jade.osgi.chttpd.wrapper.CrappyHttpServerWrapper" />
 <controller desc="parametricprimitive" />

</definition>

-- 89

<!-- fr.jade.resource.start.StartType.fractal -->
<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"
"classpath://fr/jade/service/deployer/adl/xml/jade.dtd">

<definition name="fr.jade.resource.start.StartType">
 <interface name="service" role="server" signature="fr.jade.service.Service" />
 <interface name="rsrc" role="client"signature="fr.jade.resource.Resource"
 cardinality="collection" contingency="optional" />

 <content class="fr.jade.resource.start.Start" />

</definition>

– 90

Package Summary
sics.jade.osgi.chttpd.wrapper

Package sics.jade.osgi.chttpd.wrapper

Class Summary
Activator
CrappyHttpServerWrapper

Class Activator
sics.jade.osgi.chttpd.wrapper

java.lang.Object
 sics.jade.osgi.chttpd.wrapper.Activator

public class Activator
extends Object

Constructor Summary
Activator()

Method Summary
void start(BundleContext context)
void stop(BundleContext context)

Class CrappyHttpServerWrapper
sics.jade.osgi.chttpd.wrapper

java.lang.Object
 sics.jade.osgi.chttpd.wrapper.CrappyHttpServerWrapper

public class CrappyHttpServerWrapper
extends Object

Constructor Summary
CrappyHttpServerWrapper()

Constructor

Method Summary
void bindFc(String itfName, Object itfValue)

-- 91

void configure()
Configure a Chttpd resource on the local machine.

String fixDir(String dir)
String getAttribute(String name)

String[] listFc()
String[] listFcAtt()

void loadApp()
Load an application on that Chttpd resource.

Object lookupFc(String itfName)
void setAttribute(String name, String value)
void start()

Start the resource. (=> run)
void stop()
void unbindFc(String itfName)

– 92

Package Summary
sics.jade.osgi.chttpd

Package sics.jade.osgi.chttpd

Class Summary
Activator

Class Activator
sics.jade.osgi.chttpd

java.lang.Object
 sics.jade.osgi.chttpd.Activator

public class Activator
extends Object

Author:
Leo & Smn @ SICS The bundle activator that installs the Crappy HTTP Server. The
precompiled CrappyHttpServer is included in a TGZ file.

Constructor Summary
Activator()

Method Summary
void start(BundleContext context)

Implements BundleActivator.start().
void stop(BundleContext context)

Implements BundleActivator.stop().

-- 93

AAPPENDIXPPENDIX D: D: TTHEHE B BANKANK J JADEADE A APPLICATIONPPLICATION (L (LEGACYEGACY))

<!-- BankServer -->
<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"
"classpath://fr/jade/service/deployer/adl/xml/jade.dtd">

<definition name="BankServer">

 <interface name="service" role="server" signature="fr.jade.service.Service" />

 <!-- ================================== -->
 <!-- START -->
 <!-- ================================== -->
 <component name="start" definition="fr.jade.resource.start.StartType">
 <virtual-node name="node0" />
 </component>

 <!-- ================================== -->
 <!-- BANK SERVER -->
 <!-- ================================== -->
 <component name="bankserver"
definition="sics.jade.resource.bankserver.BankServerResourceType">
 <attributes signature="fr.jade.fractal.api.control.GenericAttributeController">
 <attribute name="resourceName" value="bankserver" />
 <attribute name="dirLocal" value="/tmp/bankserver/" />
 <attribute name="dirInstall" value="bankserver/" />
 <attribute name="rmiport" value="1099" />
 <attribute name="rmihost" value="deus.sics.se" />

 <attribute name="bankname" value="6Bank" />
 <attribute name="dbhost" value="tenerife.sics.se" />
 <attribute name="dbport" value="3306" />
 <attribute name="dbname" value="banks" />
 <attribute name="dbusername" value="root" />
 <attribute name="dbpassword" value="12345" />

 </attributes>
 <virtual-node name="node0" />
 <packages>
 <package name="Bank Server">
 <property name="dir.local" value="/tmp/bankserver/" />
 <property name="dir.install" value="bankserver/" />
 </package>
 </packages>
 </component>

 <!-- ================================== -->
 <!-- BINDING -->
 <!-- ================================== -->
 <binding client="this.service" server="start.service" />
 <binding client="start.rsrc_bankserver" server="bankserver.resource" />

 <virtual-node name="node0" />

</definition>

<!-- sics.jade.resource.bankserver.BankServerResourceType -->
<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"
"classpath://fr/jade/service/deployer/adl/xml/jade.dtd">

-- 94

<definition name="sics.jade.resource.bankserver.BankServerResourceType">

 <interface name="resource" signature="fr.jade.resource.Resource" role="server"
cardinality="collection"
 contingency="optional" />

 <content class="sics.jade.osgi.bankserver.wrapper.BankServerWrapper" />
 <controller desc="parametricprimitive" />

</definition>

– 95

Package Summary
sics.jade.osgi.bankserver.wrapper

Package sics.jade.osgi.bankserver.wrapper

Class Summary
Activator
BankServerWrapper

Class Activator
sics.jade.osgi.bankserver.wrapper

java.lang.Object
 sics.jade.osgi.bankserver.wrapper.Activator

public class Activator
extends Object

Constructor Summary
Activator()

Method Summary
void start(BundleContext context)
void stop(BundleContext context)

Class BankServerWrapper
sics.jade.osgi.bankserver.wrapper

java.lang.Object
 sics.jade.osgi.bankserver.wrapper.BankServerWrapper

public class BankServerWrapper
extends Object

Constructor Summary
BankServerWrapper()

Constructor

Method Summary

– 96

void bindFc(String itfName, Object itfValue)
void configure()

Configure a Bank Server resource on the local machine.
String fixDir(String dir)
String getAttribute(String name)

String[] listFc()
String[] listFcAtt()

void loadApp()
Load an application on that Bank Server resource.

Object lookupFc(String itfName)
void setAttribute(String name, String value)
void start()

Start the resource. (=> run)
void stop()
void unbindFc(String itfName)

– 97

Package Summary
sics.jade.osgi.bankserver

Package sics.jade.osgi.bankserver

Class Summary
Activator The bundle activator that installs the Bank Server.

Class Activator
sics.jade.osgi.bankserver

java.lang.Object
 sics.jade.osgi.bankserver.Activator

public class Activator
extends Object

The bundle activator that installs the Bank Server. The precompiled BankServer is included in a
TGZ file.

Author:
Simón af Frosterus & Leonidas Pantzopoulos

Constructor Summary
Activator()

Method Summary
void start(BundleContext context)

Implements BundleActivator.start().
void stop(BundleContext context)

Implements BundleActivator.stop().

– 98

Package Summary
<unnamed>

Package <unnamed>

Interface Summary
Bank The Bank interface.

Class Summary
AccountImpl The Account servant (that implements the Account remote interface).

BankImpl The Bank servant (that implements the Bank remote interface).

BankServerConf A bank server conf parser.

Client The Client.

Server The Server.

Exception Summary
Rejected The Exception thrown when an action is rejected.

Class AccountImpl
<unnamed>

java.lang.Object
 java.rmi.server.RemoteObject
 java.rmi.server.RemoteServer
 java.rmi.server.UnicastRemoteObject
 AccountImpl

All Implemented Interfaces:
Remote, Serializable

public class AccountImpl
extends UnicastRemoteObject

The Account servant (that implements the Account remote interface).

Title: Bank Manager Application

Description: Bank Manager Application

Author:
Simón af Frosterus & Leonidas Pantzopoulos (based on code written by Vlad Vlassov and
Thom Birkeland)

Version:
1.1

– 99

Constructor Summary
AccountImpl(String bankname, String name, float balance,
Connection connection)

Constructs an Account object.

AccountImpl(String bankname, String name, Connection connection)
Constructs an Account object with zero balance.

Method Summary
float balance()

Interface implementation.
synchroniz

ed void deposit(float value)
Interface implementation.

String getName()
Interface implementation.

String getString()
Interface implementation.

synchroniz
ed void withdraw(float value)

Interface implementation.

Interface Bank
<unnamed>

All Superinterfaces:
Remote

All Known Implementing Classes:
BankImpl

public interface Bank
extends Remote

The Bank interface.

Title: Bank Manager Application

Description: Bank Manager Application

Author:
Simón af Frosterus & Leonidas Pantzopoulos (based on code written by Vlad Vlassov and
Thom Birkeland)

Version:
1.1

– 100

Method Summary
boolean deleteAccount(Account acc)

Deletes the specified Account.
Account getAccount(String name)

Gets the Account with the given name.
Account newAccount(String name)

Creates a new Account.

Class BankImpl
<unnamed>

java.lang.Object
 java.rmi.server.RemoteObject
 java.rmi.server.RemoteServer
 java.rmi.server.UnicastRemoteObject
 BankImpl

All Implemented Interfaces:
Bank, Remote, Serializable

public class BankImpl
extends UnicastRemoteObject
implements Bank

The Bank servant (that implements the Bank remote interface).

Title: Bank Manager Application

Description: Bank Manager Application

Author:
Simón af Frosterus & Leonidas Pantzopoulos (based on code written by Vlad Vlassov and
Thom Birkeland)

Version:
1.1

Constructor Summary
BankImpl(String dbhost, int dbport, String dbname, String
bankname, String dbuser, String dbpassword)

Initializes a Bank object.

Method Summary
boolean deleteAccount(Account acc)

Interface implementation.
Account getAccount(String name)

Interface implementation.

– 101

Account newAccount(String name)
Interface implementation.

Methods inherited from interface Bank

deleteAccount, getAccount, newAccount

Class BankServerConf
<unnamed>

java.lang.Object
 BankServerConf

public class BankServerConf
extends Object

A bank server conf parser.

Title: Bank Manager Application

Description: Bank Manager Application

Author:
Simón af Frosterus & Leonidas Pantzopoulos

Version:
1.1

Constructor Summary
BankServerConf()

Initializes a BankServerConf object and tries to locate the default configuration file.

BankServerConf(String conf_file)
Initializes a BankServerConf object with the given configuration file.

Method Summary
String getBankName()

Return the Bank name (also used in the RMI URL).
String getDataBaseHost()

Return the DataBase host
String getDataBaseName()

Return the DataBase name
String getDataBasePassword()

Return the DataBase Password
int getDataBasePort()

Return the DataBase port

– 102

String getDataBaseUserName()
Return the DataBase username

String getRMIHost()
Return the RMI host

int getRMIPort()
Return the RMI port the RMI Registry is currently listening on

static
void main(String[] args)

TEST MAIN - No purpose at all
void setBankName(String name)
void setDataBaseHost(String host)

Set DataBase host name value in properties file
void setDataBaseName(String name)

Set DataBase name value in properties file
void setDataBasePassword(String password)

Set DataBase password value in properties file
void setDataBasePort(int port)

Set DataBase port name value in properties file
void setDataBaseUserName(String username)

Set DataBase user name value in properties file
void setRMIHost(String host)

Set RMI host name value in properties file
void setRMIPort(int port)

Set the RMI port value in properties file

Class Client
<unnamed>

java.lang.Object
 Client

public class Client
extends Object

The Client.

Title: Bank Manager Application

Description: Bank Manager Application

Author:
Simón af Frosterus & Leonidas Pantzopoulos (based on code written by Vlad Vlassov and
Thom Birkeland)

Version:
1.1

– 103

Constructor Summary
Client(String[] args)

Creates a Clent object and connects to the Bank.

Method Summary
protected

void execute(Command command)
Executes a given Command.

static
void main(String[] args)

Main method.
protected

Command parse(String str)
Parses input commands.

void run()
Run method.

Class Rejected
<unnamed>

java.lang.Object
 java.lang.Throwable
 java.lang.Exception
 java.io.IOException
 java.rmi.RemoteException
 Rejected

All Implemented Interfaces:
Serializable

public class Rejected
extends RemoteException

The Exception thrown when an action is rejected.

Title: Bank Manager Application

Description: Bank Manager Application

Author:
Simón af Frosterus & Leonidas Pantzopoulos (based on code written by Vlad Vlassov and
Thom Birkeland)

Version:
1.1

Constructor Summary

– 104

Rejected()
Rejected(String reason)

Class Server
<unnamed>

java.lang.Object
 Server

public class Server
extends Object

The Server.

Title: Bank Manager Application

Description: Bank Manager Application

Author:
Simón af Frosterus & Leonidas Pantzopoulos (based on code written by Vlad Vlassov and
Thom Birkeland)

Version:
1.1

Constructor Summary
Server(String[] args)

Creates a Server object and registers a Bank with the given name.

Method Summary
static

void main(String[] args)
Main method.

– 105

AAPPENDIXPPENDIX E: E: TTHEHE B BANKANK J JADEADE A APPLICATIONPPLICATION (J (JADEADE--DESIGNEDDESIGNED))

<!-- JadeBank -->
<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"
"classpath://fr/jade/service/deployer/adl/xml/jade.dtd">

<definition name="JadeBank">

 <interface name="service" role="server" signature="fr.jade.service.Service" />

 <!-- ================================== -->
 <!-- START -->
 <!-- ================================== -->
 <component name="start" definition="fr.jade.resource.start.StartType">
 <virtual-node name="node0" />
 <!--

Host is relative to jadeboot's naming.
For instance with host="localhost" and number="1" it will try to deploy
to the node registered in jadeboot as "localhost_1".

 -->
 </component>

 <!-- ================================== -->
 <!-- JADE BANK SERVER -->
 <!-- ================================== -->
 <component name="jadebankserver"
definition="sics.jade.resource.jadebankserver.JadeBankServerResourceType">
 <attributes signature="fr.jade.fractal.api.control.GenericAttributeController">
 <attribute name="resourceName" value="jadebankserver" />
 <attribute name="dirLocal" value="/tmp/jadebank/" />
 <attribute name="dirInstall" value="jadebankserver/" />

<attribute name="rmihost" value="localhost" />
 <attribute name="rmiport" value="1099" />

 <attribute name="bankname" value="6Bank" />
 <attribute name="dbhost" value="tenerife.sics.se" />
 <attribute name="dbport" value="3306" />
 <attribute name="dbname" value="banks" />
 <attribute name="dbusername" value="root" />
 <attribute name="dbpassword" value="" />

<!-- max number of retries to attempt to connect to the datasource -->
<attribute name="dbConAttempts" value="10" />
<!-- sleep time in msec between each retry -->

 <attribute name="dbConSleepTime" value="500" />
<!-- increase factor to apply to sleeptime between each attempt
(sleeptime of 1000 and factor of 1 will retry every 1 sec) -->

 <attribute name="dbConSleepFactor" value="1.5" />
 </attributes>
 <virtual-node name="node0" />
 <packages>
 <package name="Jade Bank Server">
 <property name="dir.local" value="/tmp/jadebank/" />
 <property name="dir.install" value="jadebankserver/" />
 </package>
 </packages>
 </component>

 <!-- ================================== -->
 <!-- DATA MANAGER -->
 <!-- ================================== -->
 <component name="datamanager"
definition="sics.jade.resource.datamanager.DataManagerResourceType">

-- 106

 <attributes signature="fr.jade.fractal.api.control.GenericAttributeController">
 <attribute name="resourceName" value="datamanager" />
 <attribute name="dirLocal" value="/tmp/jadebank/" />
 <attribute name="dirInstall" value="datamanager/" />
 </attributes>
 <virtual-node name="node0" />
 <packages>
 <package name="Data Manager">
 <property name="dir.local" value="/tmp/jadebank/" />
 <property name="dir.install" value="datamanager/" />
 </package>
 </packages>
 </component>

 <!-- ================================== -->
 <!-- JADE BANK LOGGER -->
 <!-- ================================== -->
 <component name="jadebanklogger"
definition="sics.jade.resource.jadebanklogger.JadeBankLoggerResourceType">
 <attributes signature="fr.jade.fractal.api.control.GenericAttributeController">
 <attribute name="resourceName" value="jadebanklogger" />
 <attribute name="dirLocal" value="/tmp/jadebank/" />
 <attribute name="fileName" value="JadeBank.log" />
 </attributes>
 <virtual-node name="node0" />
 <packages>
 <package name="Jade Bank Logger">
 <property name="dir.local" value="/tmp/jadebank/" />
 </package>
 </packages>
 </component>

 <!-- ================================== -->
 <!-- MYSQL -->
 <!-- ================================== -->
 <component name="mysql" definition="sics.jade.resource.mysql.MySqlResourceType">
 <attributes signature="fr.jade.fractal.api.control.GenericAttributeController">
 <attribute name="resourceName" value="mysql" />
 <attribute name="dirLocal" value="/tmp/jadebank/" />
 <attribute name="dirInstall" value="mysql/" />
 <attribute name="user" value="root" />
 <attribute name="password" value="" />
 </attributes>
 <virtual-node name="node1" />
 <packages>
 <package name="MySql Server">
 <property name="dir.local" value="/tmp/jadebank/" />
 <property name="dir.install" value="mysql/" />
 </package>
 </packages>
 </component>

 <!-- ================================== -->
 <!-- BINDINGS -->
 <!-- ================================== -->
 <binding client="this.service" server="start.service" />
 <binding client="start.rsrc_jadebankserver" server="jadebankserver.resource" />
 <binding client="start.rsrc_datamanager" server="datamanager.resource" />
 <binding client="start.rsrc_jadebanklogger" server="jadebanklogger.resource" />
 <binding client="start.rsrc_mysql" server="mysql.resource" />

 <!-- bind the jadebankserver to the datamanager -->
 <binding client="jadebankserver.dataservice" server="datamanager.dataservice" />
 <!-- bind the datamanager to the jadebanklogger -->
 <binding client="datamanager.datalogger" server="jadebanklogger.datalogger" />

 <virtual-node name="node0" />

</definition>

– 107

<!-- sics.jade.resource.jadebankserver.JadeBankServerResourceType -->
<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"
"classpath://fr/jade/service/deployer/adl/xml/jade.dtd">

<definition name="sics.jade.resource.jadebankserver.JadeBankServerResourceType">
 <interface name="resource" signature="fr.jade.resource.Resource" role="server"
cardinality="collection" contingency="optional" />
 <interface name="dataservice" role="client"
signature="sics.jade.resource.data.DataService" contingency="optional" />

 <content class="sics.jade.osgi.jadebankserver.wrapper.JadeBankServerWrapper" />
 <controller desc="parametricprimitive" />
</definition>

<!-- sics.jade.resource.jadebanklogger.JadeBankLoggerResourceType -->
<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"
"classpath://fr/jade/service/deployer/adl/xml/jade.dtd">

<definition name="sics.jade.resource.jadebanklogger.JadeBankLoggerResourceType">
 <interface name="resource" signature="fr.jade.resource.Resource" role="server"
cardinality="collection" contingency="optional" />
 <interface name="datalogger" role="server"
signature="sics.jade.resource.data.DataLogger" contingency="optional" />

 <content class="sics.jade.osgi.jadebanklogger.wrapper.JadeBankLoggerWrapper" />
 <controller desc="parametricprimitive" />

</definition>

<!-- sics.jade.resource.datamanager.DataManagerResourceType -->
<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"
"classpath://fr/jade/service/deployer/adl/xml/jade.dtd">

<definition name="sics.jade.resource.datamanager.DataManagerResourceType">
 <interface name="resource" signature="fr.jade.resource.Resource" role="server"
cardinality="collection" contingency="optional" />
 <interface name="dataservice" role="server"
signature="sics.jade.resource.data.DataService" contingency="optional" />
 <interface name="datalogger" role="client"
signature="sics.jade.resource.data.DataLogger" contingency="optional" />

 <content class="sics.jade.osgi.datamanager.wrapper.DataManagerWrapper" />
 <controller desc="parametricprimitive" />
</definition>

<!-- sics.jade.resource.mysql.MySqlResourceType -->
<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"
"classpath://fr/jade/service/deployer/adl/xml/jade.dtd">

<definition name="sics.jade.resource.mysql.MySqlResourceType">
 <interface name="resource" signature="fr.jade.resource.Resource" role="server"
cardinality="collection"
 contingency="optional" />

 <content class="sics.jade.osgi.mysql.wrapper.MySqlWrapper" />
 <controller desc="parametricprimitive" />
</definition>

– 108

Package Summary
sics.jade.osgi.jadebankserver.wrapper

Package sics.jade.osgi.jadebankserver.wrapper

Class Summary
Activator
JadeBankServerWrapper

Class Activator
sics.jade.osgi.jadebankserver.wrapper

java.lang.Object
 sics.jade.osgi.jadebankserver.wrapper.Activator

public class Activator
extends Object

Constructor Summary
Activator()

Method Summary
void start(BundleContext context)
void stop(BundleContext context)

Class JadeBankServerWrapper
sics.jade.osgi.jadebankserver.wrapper

java.lang.Object
 sics.jade.osgi.jadebankserver.wrapper.JadeBankServerWrapper

public class JadeBankServerWrapper
extends Object

Constructor Summary
JadeBankServerWrapper()

Constructor

Method Summary

– 109

void bindFc(String itfName, Object itfValue)
void configure()

Configure a Jade Bank Server resource on the local machine.
String fixDir(String dir)
String getAttribute(String name)

String[] listFc()
String[] listFcAtt()

void loadApp()
Load additional applications on that Jade Bank Server resource.

Object lookupFc(String itfName)
void setAttribute(String name, String value)
void start()

Start the resource. (=> run)
void stop()

Stop the resource.
void unbindFc(String itfName)

– 110

Package Summary
sics.jade.jadebank
sics.jade.osgi.jadebankserver

Package sics.jade.jadebank

Interface Summary
Account The Account interface.

Bank The Bank interface.

Class Summary
AccountImpl The Account servant (that implements the Account remote interface).

BankImpl The Bank servant (that implements the Bank remote interface).

Client The Client.

Exception Summary
Rejected The Exception thrown when an action is rejected.

Interface Account
sics.jade.jadebank

All Superinterfaces:
Remote

All Known Implementing Classes:
AccountImpl

public interface Account
extends Remote

The Account interface.

Title: Jade Bank Manager Application

Description: Jade Bank Manager Application

Author:
Simón af Frosterus & Leonidas Pantzopoulos (based on code written by Vlad Vlassov and
Thom Birkeland)

Version:
1.2

Method Summary

– 111

float balance()
Gets the balance of the account.

void deposit(float value)
Deposits the selected amount into the account.

String getName()
Gets the name associated with the Account.

String getSummary()
Gets a text summary of the Account (name, balance, etc).

void withdraw(float value)
Withdraws the selected amount from the account.

Class AccountImpl
sics.jade.jadebank

java.lang.Object
 java.rmi.server.RemoteObject
 java.rmi.server.RemoteServer
 java.rmi.server.UnicastRemoteObject
 sics.jade.jadebank.AccountImpl

All Implemented Interfaces:
Account, Remote, Serializable

public class AccountImpl
extends UnicastRemoteObject
implements Account

The Account servant (that implements the Account remote interface).

Title: Jade Bank Manager Application

Description: Jade Bank Manager Application

Author:
Simón af Frosterus & Leonidas Pantzopoulos (based on code written by Vlad Vlassov and
Thom Birkeland)

Version:
1.2

Constructor Summary
AccountImpl(String name, DataService ds)

Constructs an Account object.

Method Summary

– 112

float balance()
Interface implementation.

synchroniz
ed void deposit(float value)

Interface implementation.
String getName()

Interface implementation.
String getSummary()

Interface implementation.
synchroniz

ed void withdraw(float value)
Interface implementation.

Methods inherited from interface sics.jade.jadebank.Account

balance, deposit, getName, getSummary, withdraw

Interface Bank
sics.jade.jadebank

All Superinterfaces:
Remote

All Known Implementing Classes:
BankImpl

public interface Bank
extends Remote

The Bank interface.

Title: Jade Bank Manager Application

Description: Jade Bank Manager Application

Author:
Simón af Frosterus & Leonidas Pantzopoulos (based on code written by Vlad Vlassov and
Thom Birkeland)

Version:
1.2

Method Summary
boolean deleteAccount(Account acc)

Deletes the specified Account.
Account getAccount(String name)

Gets the Account with the given name.

– 113

Account newAccount(String name)
Creates a new Account.

Class BankImpl
sics.jade.jadebank

java.lang.Object
 java.rmi.server.RemoteObject
 java.rmi.server.RemoteServer
 java.rmi.server.UnicastRemoteObject
 sics.jade.jadebank.BankImpl

All Implemented Interfaces:
Bank, Remote, Serializable

public class BankImpl
extends UnicastRemoteObject
implements Bank

The Bank servant (that implements the Bank remote interface).

Title: Jade Bank Manager Application

Description: Jade Bank Manager Application

Author:
Simón af Frosterus & Leonidas Pantzopoulos (based on code written by Vlad Vlassov and
Thom Birkeland)

Version:
1.2

Constructor Summary
BankImpl(DataService ds, String bankname)

Initializes a Bank object.

Method Summary
boolean deleteAccount(Account acc)

Interface implementation.
Account getAccount(String name)

Interface implementation.
Account newAccount(String name)

Interface implementation.

Methods inherited from interface sics.jade.jadebank.Bank

deleteAccount, getAccount, newAccount

– 114

Class Client
sics.jade.jadebank

java.lang.Object
 sics.jade.jadebank.Client

public class Client
extends Object

The Client.

Title: Jade Bank Manager Application

Description: Jade Bank Manager Application

Author:
Simón af Frosterus & Leonidas Pantzopoulos (based on code written by Vlad Vlassov and
Thom Birkeland)

Version:
1.2

Constructor Summary
Client(String[] args)

Creates a Clent object and connects to the Bank.

Method Summary
protected

void execute(sics.jade.jadebank.Command command)
Executes a given Command.

static
void main(String[] args)

Main method.
protected
sics.jade.
jadebank.C

ommand

parse(String str)
Parses input commands.

void run()
Run method.

Class Rejected
sics.jade.jadebank

java.lang.Object
 java.lang.Throwable
 java.lang.Exception
 java.io.IOException
 java.rmi.RemoteException
 sics.jade.jadebank.Rejected

– 115

All Implemented Interfaces:
Serializable

public class Rejected
extends RemoteException

The Exception thrown when an action is rejected.

Title: Jade Bank Manager Application

Description: Jade Bank Manager Application

Author:
Simón af Frosterus & Leonidas Pantzopoulos (based on code written by Vlad Vlassov and
Thom Birkeland)

Version:
1.2

Constructor Summary
Rejected()
Rejected(String reason)

– 116

Package sics.jade.osgi.jadebankserver

Class Summary
Activator The bundle activator that installs the Jade Bank Server.

Class Activator
sics.jade.osgi.jadebankserver

java.lang.Object
 sics.jade.osgi.jadebankserver.Activator

public class Activator
extends Object

The bundle activator that installs the Jade Bank Server. The precompiled JadeJadeBankServer is
included in a TGZ file.

Author:
Simón af Frosterus & Leonidas Pantzopoulos

Constructor Summary
Activator()

Method Summary
void start(BundleContext context)

Implements BundleActivator.start().
void stop(BundleContext context)

Implements BundleActivator.stop().

-- 117

Package Summary
sics.jade.resource.data

Package sics.jade.resource.data

Interface Summary
DataLogger
DataService

Class Summary
DataLogger.Transaction

Exception Summary

AccountExistsException

AccountExistsException

Title: AccountExistsException

Description: AccountExistsException

AccountNotFoundException

AccountNotFoundException

Title: AccountNotFoundException

Description: AccountNotFoundException

LoggerException

LoggerException

Title: LoggerException

Description: LoggerException

NegativeBalanceException

NegativeBalanceException

Title: NegativeBalanceException

Description: NegativeBalanceException

SQLConnectionException

SQLConnectionException

Title: SQLConnectionException

Description: SQLConnectionException

Class AccountExistsException
sics.jade.resource.data

java.lang.Object
 java.lang.Throwable
 java.lang.Exception
 sics.jade.resource.data.AccountExistsException

– 118

All Implemented Interfaces:
Serializable

public class AccountExistsException
extends Exception

AccountExistsException

Title: AccountExistsException

Description: AccountExistsException

Author:
Simón af Frosterus & Leonidas Pantzopoulos

Version:
1.0

Constructor Summary
AccountExistsException()
AccountExistsException(String reason)

Class AccountNotFoundException
sics.jade.resource.data

java.lang.Object
 java.lang.Throwable
 java.lang.Exception
 sics.jade.resource.data.AccountNotFoundException

All Implemented Interfaces:
Serializable

public class AccountNotFoundException
extends Exception

AccountNotFoundException

Title: AccountNotFoundException

Description: AccountNotFoundException

Author:
Simón af Frosterus & Leonidas Pantzopoulos

Version:
1.0

– 119

Constructor Summary
AccountNotFoundException()
AccountNotFoundException(String reason)

Interface DataLogger
sics.jade.resource.data

public interface DataLogger

Author:
Simón af Frosterus & Leonidas Pantzopoulos

Version:
1.0

Inner Class Summary
final
static
class

DataLogger.Transaction

Method Summary
void log(String message)
void log(DataLogger.Transaction transaction, float amount,

String accountName)
Log a transation with amount

void log(DataLogger.Transaction transaction, String accountName)
Log a simple transation (without amount)

Class DataLogger.Transaction
sics.jade.resource.data

java.lang.Object
 java.lang.Enum
 sics.jade.resource.data.DataLogger.Transaction

All Implemented Interfaces:
Comparable, Serializable

Enclosing class:
DataLogger

final public static class DataLogger.Transaction
extends Enum

– 120

Field Summary
static
final

DataLogger
.Transacti

on

BALANCE

static
final

DataLogger
.Transacti

on

DELETE_ACCOUNT

static
final

DataLogger
.Transacti

on

DELETE_ACCOUNT_ERROR

static
final

DataLogger
.Transacti

on

DEPOSIT

static
final

DataLogger
.Transacti

on

DEPOSIT_ERROR

static
final

DataLogger
.Transacti

on

ERROR

static
final

DataLogger
.Transacti

on

EXIT

static
final

DataLogger
.Transacti

on

GET_ACCOUNT

static
final

DataLogger
.Transacti

on

GET_ACCOUNT_ERROR

static
final

DataLogger
.Transacti

on

NEW_ACCOUNT

static
final

DataLogger
.Transacti

on

NEW_ACCOUNT_ERROR

static
final

DataLogger
.Transacti

on

WITHDRAW

static
final

DataLogger
.Transacti

on

WITHDRAW_ERROR

Method Summary
static

DataLogger
.Transacti

on

valueOf(String name)

– 121

static
final

DataLogger
.Transacti

on[]

values()

Interface DataService
sics.jade.resource.data

public interface DataService

Author:
Simón af Frosterus & Leonidas Pantzopoulos

Version:
1.0

Method Summary
float balance(String name)

Gets the balance of the account.
void connect(String dbhost, int dbport, String dbname, String

dbuser, String dbpassword, String bankName)
Connect to the database

void deleteAccount(String name)
Deletes the specified account.

void deposit(float value, String name)
Deposits the selected amount into the account.

void getAccount(String name)
Gets the Account with the given name.

String getSummary(String name)
Gets a text summary of the Account (name, balance, etc).

void newAccount(String name)
Creates a new Account.

String test()
Tests without throwing any exceptions.

void withdraw(float value, String name)
Withdraws the selected amount from the account.

Class LoggerException
sics.jade.resource.data

java.lang.Object
 java.lang.Throwable
 java.lang.Exception
 sics.jade.resource.data.LoggerException

– 122

All Implemented Interfaces:
Serializable

public class LoggerException
extends Exception

LoggerException

Title: LoggerException

Description: LoggerException

Author:
Simón af Frosterus & Leonidas Pantzopoulos

Version:
1.0

Constructor Summary
LoggerException()
LoggerException(String reason)

Class NegativeBalanceException
sics.jade.resource.data

java.lang.Object
 java.lang.Throwable
 java.lang.Exception
 sics.jade.resource.data.NegativeBalanceException

All Implemented Interfaces:
Serializable

public class NegativeBalanceException
extends Exception

NegativeBalanceException

Title: NegativeBalanceException

Description: NegativeBalanceException

Author:
Simón af Frosterus & Leonidas Pantzopoulos

Version:
1.0

– 123

Constructor Summary
NegativeBalanceException()
NegativeBalanceException(String reason)

Class SQLConnectionException
sics.jade.resource.data

java.lang.Object
 java.lang.Throwable
 java.lang.Exception
 sics.jade.resource.data.SQLConnectionException

All Implemented Interfaces:
Serializable

public class SQLConnectionException
extends Exception

SQLConnectionException

Title: SQLConnectionException

Description: SQLConnectionException

Author:
Simón af Frosterus & Leonidas Pantzopoulos

Version:
1.0

Constructor Summary
SQLConnectionException()
SQLConnectionException(String reason)

– 124

Package Summary
sics.jade.osgi.jadebanklogger.wrapper

Package sics.jade.osgi.jadebanklogger.wrapper

Class Summary
Activator
JadeBankLoggerWrapper

Class Activator
sics.jade.osgi.jadebanklogger.wrapper

java.lang.Object
 sics.jade.osgi.jadebanklogger.wrapper.Activator

public class Activator
extends Object

Constructor Summary
Activator()

Method Summary
void start(BundleContext context)
void stop(BundleContext context)

Class JadeBankLoggerWrapper
sics.jade.osgi.jadebanklogger.wrapper

java.lang.Object
 sics.jade.osgi.jadebanklogger.wrapper.JadeBankLoggerWrapper

public class JadeBankLoggerWrapper
extends Object

Constructor Summary
JadeBankLoggerWrapper()

Constructor

Method Summary

– 125

void bindFc(String itfName, Object itfValue)
void configure()

Configure a Bank Server resource on the local machine.
String fixDir(String dir)
String getAttribute(String name)

String[] listFc()
String[] listFcAtt()

void loadApp()
Load an application on that Bank Server resource.

void log(String message)
void log(Transaction transaction, float amount, String

accountName)
void log(Transaction transaction, String accountName)

Object lookupFc(String itfName)
void setAttribute(String name, String value)
void start()

Start the resource. (=> run)
void stop()
void unbindFc(String itfName)

– 126

Package Summary
sics.jade.osgi.jadebanklogger

Package sics.jade.osgi.jadebanklogger

Class Summary
Activator Empty Bundle of the JadeBankLogger

Class Activator
sics.jade.osgi.jadebanklogger

java.lang.Object
 sics.jade.osgi.jadebanklogger.Activator

public class Activator
extends Object

Empty Bundle of the JadeBankLogger

Author:
Simón af Frosterus & Leonidas Pantzopoulos

Constructor Summary
Activator()

Method Summary
void start(BundleContext context)

Implements BundleActivator.start().
void stop(BundleContext context)

Implements BundleActivator.stop().

– 127

Package Summary
sics.jade.osgi.datamanager.wrapper

Package sics.jade.osgi.datamanager.wrapper

Class Summary
Activator
DataManagerWrapper

Class Activator
sics.jade.osgi.datamanager.wrapper

java.lang.Object
 sics.jade.osgi.datamanager.wrapper.Activator

public class Activator
extends Object

Constructor Summary
Activator()

Method Summary
void start(BundleContext context)
void stop(BundleContext context)

Class DataManagerWrapper
sics.jade.osgi.datamanager.wrapper

java.lang.Object
 sics.jade.osgi.datamanager.wrapper.DataManagerWrapper

public class DataManagerWrapper
extends Object

Constructor Summary
DataManagerWrapper()

Constructor

Method Summary

-- 128

float balance(String name)
void bindFc(String itfName, Object itfValue)
void configure()

Configure a Bank Server resource on the local machine.
void connect(String dbhost, int dbport, String dbname, String

dbuser, String dbpassword, String bankname)
Connect to the database.

void deleteAccount(String name)
void deposit(float value, String name)

String fixDir(String dir)
void getAccount(String name)

String getAttribute(String name)
String getSummary(String name)

String[] listFc()
String[] listFcAtt()

List the Fractal Component Attributes
void loadApp()

Load an application on that Bank Server resource.
Object lookupFc(String itfName)
void newAccount(String name)
void setAttribute(String name, String value)
void start()

Start the resource. (=> run)
void stop()

String test()
void unbindFc(String itfName)
void withdraw(float withdrawAmount, String name)

– 129

Package Summary
sics.jade.osgi.datamanager

Package sics.jade.osgi.datamanager

Class Summary
Activator The bundle activator that installs the Jade Bank Server.

Class Activator
sics.jade.osgi.datamanager

java.lang.Object
 sics.jade.osgi.datamanager.Activator

public class Activator
extends Object

The bundle activator that installs the Jade Bank Server. The precompiled JadeJadeBankServer is
included in a TGZ file.

Author:
Simón af Frosterus & Leonidas Pantzopoulos

Constructor Summary
Activator()

Method Summary
void start(BundleContext context)

Implements BundleActivator.start().
void stop(BundleContext context)

Implements BundleActivator.stop().

– 130

Package Summary
sics.jade.osgi.mysql.wrapper

Package sics.jade.osgi.mysql.wrapper

Class Summary
Activator
MySqlWrapper

Class Activator
sics.jade.osgi.mysql.wrapper

java.lang.Object
 sics.jade.osgi.mysql.wrapper.Activator

public class Activator
extends Object

Author:
Simón af Frosterus & Leonidas Pantzopoulos

Constructor Summary
Activator()

Method Summary
void start(BundleContext arg0)
void stop(BundleContext arg0)

Class MySqlWrapper
sics.jade.osgi.mysql.wrapper

java.lang.Object
 sics.jade.osgi.mysql.wrapper.MySqlWrapper

public class MySqlWrapper
extends Object

Constructor Summary
MySqlWrapper()

-- 131

Method Summary
void bindFc(String itfName, Object itfValue)
void configure()

Configure an Mysql Resource on the local machine.
String fixDir(String dir)
String getAttribute(String name)

String[] listFc()
String[] listFcAtt()

void loadApp()
Load an application on that Mysql Resource.

Object lookupFc(String itfName)
void setAttribute(String name, String value)
void start()

Start the execution of the resource
void stop()

Stop the execution of the resource
void unbindFc(String itfName)

– 132

Package Summary
sics.jade.osgi.mysql

Package sics.jade.osgi.mysql

Class Summary
Activator This bundle activator installs on the local machine resources needed by MySQL.

Class Activator
sics.jade.osgi.mysql

java.lang.Object
 sics.jade.osgi.mysql.Activator

public class Activator
extends Object

This bundle activator installs on the local machine resources needed by MySQL. This bundle is
specific for Linux machines. It contains the MySQL resources compressed in a TGZ file.

Author:
Simón af Frosterus & Leonidas Pantzopoulos

Constructor Summary
Activator()

Method Summary
void start(BundleContext context)

This method unzips and installs the databse in the local dir
void stop(BundleContext context)

This method uninstalls the database from the local directory

– 133

AAPPENDIXPPENDIX F: F: FFLAWSLAWS & B & BUGSUGS

In this appendix, a list of some of the flaws and bugs that have been discovered throughout the

realization of this Master's thesis are included.

● No parallel deployment: when deploying an application built of multiple components each

deployed on different physical node, this is done on a sequential manner even when there

are no dependencies that would justify the sequential deployment. Deploying different

components on different nodes simultaneously would improve JADE's performance, mostly

when large bundles are involved.

● Node's names in Fractal files are not real host names but machine names. For example, a

machine with host name “alice.sics.se” but a machine name of “bob” will be referenced by

JadeNode as “bob_0” (for the first node detected from this machine), so the virtual-node

attribute in the Fractal file has to be set to “bob” rather than the actual host name.

● It seems that JADE requires the presence of a bundle even if the wrapper contains all the

desired functionality.

● Lack of dynamism when adding components, even with only client interfaces, requires a full

restart of the whole application. When the system map is integrated this will probably be

handled.

● JADE lacks the ability to find classes and Fractal files that are inside packages (subfolders)

located in Oscar bundle repositories. For example, if a Fractal file has a definition

somewhere else (inside a package), this definition will not be dynamically loaded and has to

be included in a JAR file embedded into the JadeBoot prior to starting JADE.

-- 134

RREFERENCESEFERENCES

[1] Jeffrey O. Kephart, David M. Chess (January 2003)
The Vision of Autonomic Computing
IEEE Computer 36 (1):41-52

[2] David Barlett. (2001) [On-line]
CORBA Component Model (CCM)
Accessed on December 2, 2006
URL: http://www-128.ibm.com/developerworks/webservices/library/co-cjct6/

[3] Diego Sevilla Ruiz (2006) [On-line]
The CORBA & CORBA Component Model (CCM) Page
Accessed on November 6, 2006
URL: http://ditec.um.es/~dsevilla/ccm/

[4] SOFA: Software Appliances [On-line]
Accessed on November 21, 2006
URL: http://sofa.objectweb.org or http://nenya.ms.mff.cuni.cz/projects.phtml?p=sofa&q=0

[5] SOFA component model [On-line]

Accessed on November 21, 2006
URL: http://nenya.ms.mff.cuni.cz/projects/sofa/tools/doc/compmodel.html

[6] E. Bruneton, T. Coupaye, J.B. Stefani. (2004).

The Fractal Component Model Specification.

[7] CoreGRID (2006).
Proposals for a Grid Component Model
Deliverable D.PM.02

[8] Sara Bouchenak et al. (2005).
Architecture-Based Autonomous Repair Management: An Application to J2EE Clusters.

[9] Jim Dowling, Vinny Cahill. (2004).
Self-Managed Decentralised Systems using K-Components and Collaborative
Reinforcement Learning.

[10] Jim Dowling, Vinny Cahill. (2001).

The K-Component Architecture Meta-Model for Self-Adaptive Software.
In Proceedings of Reflection 2001, LNCS 2192.

[11] Sheriff A. Gurguis, Amir Zeid. (2005).
Towards Autonomic Web-Services: Achieving Self-Healing Using Web Services.

[12] Gerrald Tesauro et al. (2004).
A Multi-Agent Systems Approach to Autonomic Computing.

-- 135

[13] Peter Van Roy, Ali Ghodsi et al. (2005).
Self Management of Large-Scale Distributed Systems by Combining Structured Overlay
Networks and Components.
CoreGRID Technical Report Number TR-0018

[14] Henry Gray (author), Warren H. Lewis (editor) (1918) [On-line]
Anatomy of the Human Body (20th edition)
Philadelphia, US: Lea & Febiger.
Accessed on November 8, 2006
URL: http://www.bartleby.com/107/

[15] IBM [On-line]
Autonomic Computing: IBM's Perpective on the State of Information Technology
Accessed on November 9, 2006
URL: http://www.ibm.com/industries/government/doc/contest/

[16] IBM Research | Autonomic Computing [On-line].
Accessed on November 9, 2006
URL: http://www.research.ibm.com/autonomic/index.html

[17] Paterson D. et al. (2002).
Recovery-Oriented Computing: Motivation, Definition, Techniques, and Case Studies.
Technical Report CSD-02-1175, CS Dept., UC Berkeley

[18] Total Cost of Ownership (TCO) [On-line].
Accessed on November 9, 2006
URL: http://searchdatacenter.techtarget.com/sDefinition/0,,sid80_gci342316,00.html

[19] Ronni Colville, Patricia Adams and Kris Brittain (2005.)
Optimize Change and Configuration Management With People, Process and Tools.
Gartner Research

[20] P. Lowber (2001)
Thin-Client vs. Fat-Client TCO
Decision Framework, DF-14-2800 Research Note

[21] Brian Killian (2006)
How Much Does Your Network Cost? Calculating TCO
Brintech, INC.

[22] Colin Atkinson et al. (2002)
Component based product line engineering with UML.
Addison-Wesley Longman Publishing Co., Inc.

[23] Gregory F. Pfister. (1997).
In Search of Clusters (2nd ed.).
Prentice Hall

– 136

[24] The UNIX Operating System: A Robust, Standardized Foundation for Cluster Architectures
[On-line].
Accessed on November 14, 2006
URL: http://www.unix.org/whitepapers/cluster.htm

[25] Beowulf.org: Overview [On-line].

Accessed on November 15, 2006
URL: http://www.beowulf.org/overview/index.html

[26] Hewlett-Packard Company. (1998).
Designing Disaster Tolerant MC/ServiceGuard Clusters
Tech. Rep. No. B6264-90002

[27] D. Blevins (2001)
Overview of the Enterprise JavaBeans Component Model
In Heineman and Councill's Component-based Software Engineering: Putting the Pieces
Together.
Addison-Wesley.

[28] Yi Liu and H. Conrad Cunningham. (2004)
Mapping Component Specifications to Enterprise JavaBeans Implementations.

[29] R. Monson-Haefel (1999)
Enterprise JavaBeans.
O'Reilly and Associates, Inc., first edition

[30] Shin Nakajima and Tetsuo Tamai. (2001).
Behavioural Analysis of the Enterprise JavaBeans Component Architecture.
NEC Corporation, Kawasaki, Japan

[31] The Common Component Architecture Forum [On-line].
Accessed on November 17, 2006
URL: http://www.cca-forum.org/

[32] Rob Armstrong, Dennis Gannon, Al Geist, Katarzyna Keahey, Scott Kohn, Lois McInnes,

Steve Parker, and Brent Smolinski. (1999).
Toward a Common Component Architecture for High-Performance Scientific Computing.
Eighth IEEE International Symposium on High Performance Distributed Computing
HPDC-8 '99 page 13.

[33] Sylvain Robert, Ansgar Radermacher and Vincent Seignole. (2005).
The CORBA Connector Model.

[34] Jim Dowling's PhD Thesis (2004).
The Decentralised Coordination of Self-Adaptive Components for Autonomic Distributed
Systems.
University of Dublin, Trinity College

– 137

[35] Rehman Adil [On-line]
Comparison of DCOM and Dot Net Remoting.
Accessed on Thursday, June 17, 2004
URL: http://www.ericsson.com/mobilityworld/sub/articles/other_articles/nl04jun12

[36] Distributed Systems Research Group [On-line].
Accessed on November 21, 2006
URL: http://nenya.ms.mff.cuni.cz/
Charles University, Prague

[37] ObjectWeb Forge: Project Info- SOFA [On-line].
Accessed on November 21, 2006
URL: http://forge.objectweb.org/projects/sofa

[38] SOFA implementation [On-line].
Accessed on November 21, 2006
URL: http://sofa.objectweb.org/userdoc/doc.html

[39] SOFA 2.0 - Projects - Distributed Systems Research Group[On-line].
Accessed on November 21, 2006
URL: http://nenya.ms.mff.cuni.cz/projects.phtml?p=sofa20&q=0

[40] Microsoft Corporation (1996)
Windows NT Server DCOM Technical Overview White Paper

[41] The Fractal Homepage
Accessed on November 21, 2006
URL: http://fractal.objectweb.org

[43] The Grid Component Model: an Overview (2006)
GCM D.PM.02 (in the Programming Model Institute plenary meeting)
URL: http://www.coregrid.net/mambo/content/view/210/292/
London, Jan 2006

[44] CoreGRID Network of Excellence - European Grid Research - Home [On-line]
Accessed on November 21, 2006
URL: http://www.coregrid.net/

[45] OMG (2006)
CORBA Component Model Specification
Version 4.0
Accessed on November 21, 2006
URL: http://www.omg.org/cgi-bin/doc?formal/06-04-01

[46] Mozilla.org: XPCOM [On-line].
Accessed on November 22, 2006
URL: http://www.mozilla.org/projects/xpcom/

– 138

[47] Rob C. van Ommering. (1998).
Koala, a Component Model for Consumer Electronics Product Software.
Proceedings of the Second International ESPRIT ARES Workshop on Development and
Evolution of Software Architectures for Product Families (pages: 76-86).

[48] The GNOME Component Model [On-line].

Accessed on November 22, 2006
URL: http://developer.gnome.org/arch/gnome/componentmodel/

[49] K Desktop Environment - KDE Feature Overview [On-line].

Accessed on November 22, 2006
URL: http://www.kde.org/info/

[51] Richard S. Sutton, Andrew G. Barto. (1998) [On-line]
Reinforcement Learning: An Introduction.
Accessed on November 23, 2006
URL: http://www.cs.ualberta.ca/%7Esutton/book/ebook/the-book.html
London, England: The MIT Press (Cambridge, Massachusetts)

[52] E. Bruneton (2004)
Developing With Fractal (Tutorial).
France Telecom R&D
Version 1.0.3

[53] Sardes Project - Jade: a framework for autonomic management [On-line].
Accessed on February 09, 2007
URL: http://sardes.inrialpes.fr/jade/jade/jade-a-framework-for-autonomic-management.html

[54] Julien Legrand (2006) [On-line]
Jade - User guide
SADRES - INRIA Rhones-Alpes.
Accessed on November 15, 2006
URL: http://sardes.inrialpes.fr/research/jade

[55] OSGi - The Dynamic Module System for Java [On-line].

Accessed on February 09, 2007
URL: http://www.osgi.org/

[56] ObjectWeb: Oscar - An OSGi framework implementation [On-line].
Accessed on February 09, 2007
URL: http://oscar.objectweb.org/

[57] Sun Microsystems, Inc [On-line].
Java Message Service (JMS)
Accessed on February 09, 2007
URL: http://java.sun.com/products/jms/

[58] Sun Microsystems, Inc [On-line].
Java Naming and Directory Interface (JNDI)
Accessed on February 09, 2007
URL: http://java.sun.com/products/jndi/

– 139

[59] ObjectWeb: JORAM: Java (TM) Open Reliable Asynchronous Messaging [On-line].
Accessed on February 09, 2007
URL: http://joram.objectweb.org/

[60] ObjectWeb: Fractal RMI [On-line].
Accessed on February 09, 2007
URL: http://fractal.objectweb.org/fractalrmi/index.html

[61] Pat Niemeyer [On-line]
BeanShell. Lightweight Scripting for Java
Accessed on February 15, 2007
URL: http://www.beanshell.org/

[62] ObjectWeb: Fractal [On-line]
Accessed on February 15, 2007
URL: http://fractal.objectweb.org/index.html

[63] ObjectWeb: Fractal Specification [On-line]
Accessed on February 15, 2007
URL: http://fractal.objectweb.org/specification/index.html

[64] ObjectWeb: Julia [On-line]
Accessed on February 15, 2007
URL: http://fractal.objectweb.org/julia/index.html

[65] ObjectWeb: Fractal RMI [On-line]
Accessed on February 15, 2007
URL: http://fractal.objectweb.org/fractalrmi/index.html

[66] ObjectWeb: Fractal ADL [On-line]
Accessed on February 15, 2007
URL: http://fractal.objectweb.org/fractaladl/index.html

[67] OBR - Oscar Bundle Repository [On-line]
Accessed on February 16, 2007
URL: http://oscar-osgi.sourceforge.net/

[68] Matthias Nicola, Jasmi John (2003)
XML Parsing: A Threat to Database Performance
12th Intl. Conference on Information and Knowledge Management, New Orleans
CIKM'2003

[69] ProActive - Programming, Composing, Deploying on the Grid [On-line]
Accessed on March 29, 2007
URL: http://www-sop.inria.fr/oasis/proactive/

[70] Laurent Baduel, Francoise Baude et al. (2006).
Programming, Composing, Deploying for the Grid.
GRID COMPUTING: Software Environments and Tools", Jose C. Cunha and Omer F. Rana
(Eds), Springer Verlag.

– 140

	1.1Management
	1.2Autonomic Computing
	1.2.1Self-configuration
	1.2.2Self-optimization
	1.2.3Self-healing
	1.2.4Self-protection
	1.2.5A Summary on Self-properties

	1.3Component Models
	1.4Clusters & Wide-Area Networks
	1.5Related Work
	1.5.1Overview of Existing Component Models and Categorization
	1.5.1.1Sun's Enterprise JavaBeans
	1.5.1.2OMG's CORBA Component Model
	1.5.1.3Microsoft's .NET
	1.5.1.4Common Component Architecture (CCA)
	1.5.1.5Fractal Component Model
	1.5.1.6SOFA Component Model
	1.5.1.7K-Component Model
	1.5.1.8CoreGRID's Grid Component Model

	1.5.2A Summary on Component Models
	1.5.3Management Frameworks
	1.5.3.1K-Components and Collaborative Reinforcement Learning
	1.5.3.2Autonomic Web Services
	1.5.3.3Multi-Agent Systems Approach to Autonomic Computing
	1.5.3.4The JADE Component Management Framework
	1.5.3.5ProActive

	1.5.4A summary on Management Frameworks
	1.5.5Literature Survey Conclusions

	1.6Aims & Objectives
	1.7Methodology & Expected Results
	1.8Limitations
	1.9Expected Readers' Background
	1.10Roadmap
	2.1JADE's Architecture
	2.2Fractal Component Model
	2.2.1Interface Definition Language
	2.2.2Introspection
	2.2.3Configuration
	2.2.3.1Attribute Controller
	2.2.3.2Binding Controller
	2.2.3.3Content Controller
	2.2.3.4Life Cycle Controller

	2.2.4Instantiation
	2.2.5Deployment
	2.2.6Conformance Levels
	2.2.7Example

	2.3Management Authority
	2.3.1Repair Management Loop

	2.4JADE's underlying technologies
	2.4.1Fractal
	2.4.2Java Message Service
	2.4.3Oscar
	2.4.4BeanShell

	2.5Developing with JADE
	2.6Running applications under JADE
	3.1Wide-area capability
	3.1.1The Mechanism
	3.1.2Evaluation

	3.2Programmability
	3.2.1Developing an Application
	3.2.1.1Fractal ADL Description
	3.2.1.2Oscar Bundle
	3.2.1.3Jade Wrapper

	3.2.2Deploying an Application
	3.2.3Evaluation

	3.3Architecture
	3.3.1Legacy Applications
	3.3.2JADE Designed Applications
	3.3.3Evaluation

	3.4Overhead
	3.4.1Inherent Fractal Component Model Overhead
	3.4.2Memory Consumption
	3.4.2.1Test Scenario
	3.4.2.2Test Results

	3.4.3Amount of Code

	3.5Other observations
	4.1Conclusions
	4.1.1Literature Study
	4.1.2The JADE Framework

	4.2Future Work

