
Master’s thesis

Design of the Session Layer Gateway

Supporting Mobile, Delay and

Disconnection Tolerant Communication

Daniel Abramowicz
(dabr@kth.se)

March 27, 2007

1

Abstract

Today mobility within Internet is rather regarded as a problem instead
of as a fact. The term mobility is also somewhat dubious with no standard
definition. Mobility is, in our view, not just the physical mobility of a
laptop but even the move of a directory from one computer to another.
Mobility has evolved but Internet has not followed in the same pace.

To deal with the lack of mobility in Internet we introduce a gateway
supporting a new kind of entity, endpoints. An endpoint can be a user,
content, an application and they have their own naming system. With a
name server allowing real-time update of ip addresses of endpoints these
endpoints can be moved from one computer in one network to another
computer in another network. It is here that a session layer gateway is
needed. Not all networks are of the same address scheme, there are both
IPv4 networks and IPv6 networks today, and there are private IPv4 net-
works using Network Address Translation. The communication between
these networks need to be bridged in order to extend mobility beyond the
limitations of a specific network type.

The session layer gateway is in our design part of the network infras-
tructure. By this design we can ensure simultaneous mobility of endpoints,
two endpoints communicating can simultaneously move their current point
of attachment to other points of attachment and then resume their sus-
pended communication session.

A session layer gateway has been designed and implemented to show
that this is feasible. With our design it is not a problem changing network
during an ongoing communication session and later resume it on a network
of a different addressing scheme, it is a fact.

2

Contents

List of Tables 5

List of Figures 5

1 Introduction 6

2 Background 6
2.1 Networking concepts . 7

2.1.1 The OSI model . 7
2.1.2 The TCP/IP-stack . 9
2.1.3 Connecting networks . 11
2.1.4 Name Server . 12

2.2 Definitions . 13
2.2.1 Mobility . 13
2.2.2 Mobility Management . 13
2.2.3 Endpoint . 13

2.3 Motivation . 13
2.4 Problem statement . 15

2.4.1 Requirements . 16
2.5 Expected results . 16
2.6 Evaluation methods - how to evaluate 16
2.7 Approaches to mobility management 16

2.7.1 Mobile IP . 17
2.7.2 Host Identity Protocol (HIP) 17
2.7.3 Migrate . 17
2.7.4 Reliable Network Connections 18
2.7.5 Session Layer Mobility . 18
2.7.6 MOON . 19
2.7.7 MSOCKS . 19
2.7.8 The Session Layer . 19

2.8 Discussion on related work . 20
2.9 Development environment . 21

2.9.1 Hardware . 21
2.9.2 Software . 21

2.10 Conclusions . 22

3 Method - Design 23
3.1 Forwarding connections . 23

3.1.1 Forwarding connections on network level 24
3.1.2 Buffering . 25
3.1.3 Checkpointing . 25
3.1.4 Mapping client and server 25

3.2 SLG mechanisms . 26
3.2.1 Bridging heterogeneity . 26
3.2.2 Network Address Translation - “NAT” 26
3.2.3 Privacy . 26
3.2.4 Forwarding connections on transport layer 26
3.2.5 Caching . 27

3

3.2.6 Firewall . 27
3.2.7 AAA . 27
3.2.8 Endpoint resumption on different network address scheme 28
3.2.9 SLG discovery . 28
3.2.10 Moving Sessions . 28

3.3 Naming . 29
3.3.1 Endpoint naming . 29
3.3.2 Port number retrieval of services 29
3.3.3 Port number retrieval of control port 30
3.3.4 Name Server awareness of SLG 30

3.4 Gateway extension of
the Session Management Protocol 31

3.5 SLG states . 31
3.6 Session Layer Packets . 34

3.6.1 Control channel packets 34
3.6.2 Data channel packets . 35

4 Implementation 37
4.1 Scope . 37
4.2 Implementation decisions . 37

4.2.1 Alterations to the session layer at endpoints 37
4.2.2 Adding IPv6 . 37
4.2.3 Control channel threads - SLG daemons 38
4.2.4 Data channel threads . 38
4.2.5 SLG functions . 39
4.2.6 Socket approach . 39
4.2.7 SLG data structure . 39

4.3 Flow charts . 40
4.4 Phases of communication . 43

4.4.1 Setup procedure . 43
4.4.2 Suspend/Resume procedure 44
4.4.3 Disconnection procedure 47

4.5 Name Resolution . 48
4.5.1 Endpoint lookup . 48
4.5.2 Endpoint update . 48

5 Analysis 51
5.1 Testing . 51
5.2 Result . 52

6 Conclusions and future work 53
6.1 Future work . 53

References 55

A Dictionary 57

4

B Setting up the demo 58
B.1 Installation . 58
B.2 Setup . 58
B.3 Test . 59

List of Tables

1 Different cases of forwarding connections on networking level . . 24
2 Example of server-client session mapping 26

List of Figures

1 The OSI Layer Model . 7
2 The TCP/IP stack model . 10
3 Development environment . 21
4 Example of Server-Client setup 23
5 Schematical view of the communication process 23
6 Public to Private network through SLG in setup mode 24
7 Unpacking and re-packing a packet 27
8 SLG state diagram . 31
9 Control Packet with header and payload 35
10 Comparing IPv4 and IPv6 generic data structures 38
11 Comparing IPv4 and IPv6 data structures 38
12 Data sockets . 39
13 Endpoint Session Layer flow chart 41
14 SLG flow chart . 42
15 Setup procedure between Client and Server through SLG 43
16 Setup procedure between Client and Server 44
17 Suspend and resume procedure in SLG 45
18 Suspend and resume procedure between Client and Server 46
19 Disconnection procedure between Client and Server through SLG 47
20 Disconnection procedure between Client and Server 48
21 Endpoint lookup signaling . 49
22 Endpoint update signaling . 49
23 Demo Setup . 58

5

1 Introduction

Internet is well functioning for the purpose which it was built, for desktops
computers steadfast in one place. Today laptops are common and people do
not only bring them with themselves from one place to another but also move
around in the office with their laptops expecting full networking connectivity.
This kind of mobility has not been developed to the same extent for Internet
itself as for the physical mobility of laptops. Internet has since it started relied
on static mappings between all of its components. Users, computers, networks
and links were not expected to be mobile - nowadays they are.

The definition of mobility is not clear. Depending on what is concerned the
definition differs. The mobile phone implies that you can move around with
it, even travel with it in a car or on a train and still keep your call ongoing.
However, if you loose your connection there is no way to resume your phone
call, you simply need to re-dial.

With respect to computers the definition of mobility might also vary. It
used to be only the possibility to physically bring your laptop with you. You
shutdown your computer in one place and booted it at another place. If you
had any previous connections they were lost and the other end did not know
where to keep sending packets. Approaches to this problem have been proposed
such as Mobile IP.

Our definition of mobility concerns the change of network address and also
location while still keeping all connections. We also extend our definition of
mobile objects to not only refer to computers but also to users, content and
applications.

To achieve this level of mobility where the connection can be lost, willingly or
unwillingly, we need a way to suspend and resume connections, in [5] definitions
of suspend and resume are given. Which are used in this report.

With this concept of mobility, transparent Internetworking is an important
issue. To suspend in one place and then move and resume in another place
with a different protocol or addressing scheme requires some kind of translator
mechanism, before you can move freely between for example IPv4 and IPv6
networks.

The remainder of this thesis is structured as follows. Chapter 2 presents the
background including the problem statement and motivation and also explores
some related work. The design part, concepts and ideas put together, is given
in chapter 3. Chapter 4 starts with an overview of the implementation and is
followed by the implementation in depth. In chapter 5 the analysis with results
is presented. Finally, some conclusions and future work is given in chapter six.

2 Background

In this part of the thesis a background to networking and the problems the
Internet of today faces will be given. It will shortly describe some of the different
Internet mobility approaches, with their benefits and drawbacks, and argue for
why our approach is the best suited.

6

2.1 Networking concepts

2.1.1 The OSI model

The OSI model [16] is a seven layer model design of network systems allowing
communication between different computer systems. The model was introduced
in the late 1970s and is used to schematically display network communication.

The idea behind the layered model is that each layer only provides informa-
tion for the layer above it and only uses information from the layer below it, on
a single machine. When communicating between machines layers will only talk
to its corresponding layer on the other machine.

Figure 1: The OSI Layer Model displaying the end-to-end communication be-
tween layers on different machines. Picture under GNU Free Documentation Li-
cense from http://upload.wikimedia.org/wikipedia/en/f/ff/Osi model trad.jpg

Application Layer The top layer of the OSI model provides access to the
network resources through applications which are used by humans.

Presentation Layer The presentation layer provides translation, encryption
and compressing of data. The translation mechanism communicates with the
other peer to ensure that data transferred uses the same encoding system. For
example, bit streams can be either of big or little endian.

Session Layer The session layer provides the means to establish, manage and
terminate sessions. These are the services it is supposed to provide.

Session-connection establishment
This service enables two presentation entities to establish communication
through the session layer. The presentation entities are identified by their
session address.

Session-connection release
Allows the release of a connection without any loss of data.

7

Normal data transfer
Allows sending data between presentation-entities.

Expedited data transfer
Allows sending data with special priority to bypass the ordinary data
stream.

Token management
Gives the presentation entities the ability to control whose turn it is to
perform certain control functions.

Session-connection synchronisation
Identifies synchronisation points on where to resume a connection upon a
disconnection.

Checkpointing Checkpointing is a way to ensure that data is received
correctly by establishing mutually agreed checkpoints from where
to recover data if needed. The session layer is not responsible for
any checkpointing. However, the OSI Model recognises the need of
checkpointing and recovery control but leaves it for applications to
deal with, for example file transfer.

Exception reporting
Permits the presentation entities to be notified of exceptional situations.

Activity management
Allows users to identify logical pieces of work as activities. One activity
per session connection is allowed, but a session connection can have many
consecutive activities. Activities can be interrupted and then resumed on
the same connection or a subsequent one.

Typed data transfer
Allows a presentation entity to send a session-service-data-unit to another
presentation entity regardless of token management.

Resynchronisation
Resynchronisation allows two entities to re-setup a connection with new
tokens and the synchronisation point to a new value. A resynchronisation
may purge undelivered data.

Transport Layer The transport layer’s obligations are to provide reliable
end-to-end message delivery and error recovery on a process-to-process basis. It
makes sure that a message sent from one machine arrives safely at its destination.

Connection mode services

Transport-connection establishment
This service allows two session entities to establish a connection identified
by their session addresses.

Transport-connection release
When a session entity releases the transport connection the other session
entity is informed.

8

Data transfer
Allows sending data between session entities.

Expedited data transfer
Allows sending data with special priority to bypass the ordinary data
stream.

Suspend facility
The facility to suspend a connection between two session entities.

Connectionless services When sending over connectionless mode each packet
must contain all the information needed to send it to its destination, which
allows independent delivery of packets. It does not provide segmentation
and reassembly of packets, nor does it give guarantees for delivery or cor-
rect ordering of data.

Network Layer The network layer is responsible for the source-to-destination
delivery of packets, ie delivering data between transport entities. It is also
responsible for routing the data to its destination based on the network address.

Data Link Layer The data link layer is responsible for transferring data
between network entities. These network entities are identified by their data
link address. The layer also have an error detection and correction mechanism.
The data link layer divides the stream of bytes received by the network layer
into smaller data units called frames.

Physical Layer The physical layer is the actual physical media which con-
nects machines. On this layer bits are transferred between machines.

2.1.2 The TCP/IP-stack

The OSI model is a theoretical description of the network environment. How-
ever, its usefulness is subject to debate among developers [13].

In practice the TCP/IP-stack is used. The TCP/IP-stack is similar to the
OSI-model as can be seen in the figure below.

Application Layer An example of a protocol in the application layer is the
Hypertext Transfer Protocol (HTTP) [22], a common text based protocol used
for webtransfer. The TCP/IP stack supports many protocols in this layer.

Transport Layer The protocols defined by the TCP/IP stack in the trans-
port layer are the Transmission Control Protocol (TCP) [15] and the User Data-
gram Protocol (UDP) [17]. Both UDP and TCP uses port numbers as address
identifiers of the services to connect to on a specific host.

UDP is a connectionless protocol which does not guarantee that the datagram
reaches its destination. An example of an application on top of UDP is
Voice over IP.

9

Figure 2: The TCP/IP stack model. A modified version
of the picture under GNU Free Documentation License from
http://upload.wikimedia.org/wikipedia/en/f/ff/Osi model trad.jpg

TCP is a connection oriented protocol which sets up a connection between
the hosts before sending TCP packets between them. An example of
an application on top of TCP is file transferring using the File Transfer
Protocol.

Additional protocols are Stream Control Transmission Protocol (SCTP) [27]
and Datagram Congestion Control Protocol (DCCP) [10]. SCTP provides
reliable and in-order data delivery like TCP but is message-oriented. It
also adds some features such as multi-streaming and graceful shutdown.
DCCP is similar to UDP, it is an unreliable packet stream protocol but
has the additional feature of congestion control. This is useful for Voice
over IP applications who otherwise would either use TCP or implement
their own congestion control in the application layer.

Network Layer The protocol supported by the TCP/IP stack in the network
layer is the Internet Protocol (IP). There are two versions of IP in use, IPv4
[14] and IPv6 [28].

IPv4 IP version 4 is the most widely used network protocol in the Internet
today. It is a best effort control protocol and does not guarantee delivery.

Address and address space IPv4 uses 32-bit addresses, logical ad-
dresses, to identify hosts uniquely in a network. With 32 bit addresses
the address space is 232 which is more than 4 billion addresses. This
can be extended with techniques such as Network Address Transla-
tion (NAT) where a router is assigned an address on the outer side
and on the inner side hands out addresses defined as private [32] to
its own hosts.

ARP and RARP Packets need to pass through physical networks to
reach its destination. In the physical layer hosts and routers are ad-

10

dressed with their physical address. There is need for a mapping
between physical and logical addresses as the delivery of packets re-
quires two levels of addresses. Two protocols are defined: the Address
Resolution Protocol (ARP) [8] and the Reverse Address Resolution
Protocol (RARP) [23].

ICMP The Internet Control Message Protocol (ICMP) [18] is not a
protocol on its own but is a part of IP. IP is not reliable and ICMP
does not provide reliability, it only adds the possibility to receive
feedback of problems in the communication. An example when ICMP
is used is when a datagram cannot reach its destination.

IGMP The Internet Group Management Protocol (IGMP) [30] is also
a part of IP. It is used to report multicast group memberships to
routers.

IPv6 IP version 6 is the successor to IPv4.

Address and address space One of the issues with IPv4 is that the ad-
dress space is too small. IPv6 uses 128-bit addresses which increases
the address space to 2128.

ARP and RARP The ARP protocol is incorporated into ICMPv6.
RARP was not used often in IPv4 and therefore there is no RARP
in IPv6.

ICMPv6 ICMPv6 [3] is as ICMP used to report errors such as destina-
tion unreachable but has also been given the functions of ARP and
IGMP.

IGMP In IPv6 this feature is incorporated into ICMPv6.

Data Link Layer A Media Access Control (MAC) protocol, for example the
IEEE 802.3 standards which defines the Carrier Sense Multiple Access with
Collision Detection (CSMA/CD) protocol and IEEE 802.11b which defines the
Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol.
The TCP/IP stack does not define any specific protocol in this layer.

Physical Layer Two examples are the IEEE 802.3 standards and the IEEE
802.11b standard which defines the physical layer of wired Ethernet and re-
spectively wireless Ethernet. The TCP/IP stack does not define any specific
protocol in this layer.

2.1.3 Connecting networks

Internet is a huge network connected with many different devices. Networks can
communicate on different layers in the TCP/IP stack.

Repeater A repeater is a device that works in the physical layer. It receives
a signal on one end, regenerates it and sends it out on all the other ends.

11

Switch The term switch can mean different things. A switch can work on
different layers, here when discussing the switch it will mean a layer-2 switch.

The switch connects multiple networks on the data link layer. It contains
a mapping between physical addresses and its interfaces which it uses when it
forwards packets. Unlike the repeater the switch only forwards a packet on the
interface where the receiver may be found, only when it does not know where
the receiver is it will broadcast the packet on all interfaces except from where
it came.

Router A router works on the network layer and has an IP address for each
interface. It can decide based on the IP address where to forward a packet.
When the router forwards a packet it changes the physical source address and
the physical destination address in it.

Proxy server A proxy is an agent given the authority to act on someone
else’s behalf. A proxy server is connected to two networks with one external
address and one internal address.

There are different kinds of proxies, application level proxies and circuit
level proxies. Application level proxies (or application level gateways) are for
example HTTP proxies or FTP proxies. Circuit level proxies support multiple
applications.

Forwarding When packets are relayed from one network to another they are
forwarded. A packet can be forwarded on different layers as described above. In
the network layer there are different forwarding mechanisms such as unicasting,
broadcasting, multicasting and anycasting.

Unicasting Forwarding packets from one host to another host.

Broadcasting Forwarding packets from one host to all hosts on a broadcast
domain.

Multicasting Forwarding packets from one host to a group of interested hosts.

Anycasting Forwarding packets from one host to hosts defined by each desti-
nation address, but only one of these hosts is chosen to receive the packet
at a time.

Port forwarding Port forwarding is also referred to as tunneling. With port
forwarding a network port is forwarded from one network node to another. This
technique makes it possible to allow remote computers connect to a specific host
on a LAN.

With the help of tunneling IPv6 over IPv4 [11] a smoother transition into
IPv6 is possible.

2.1.4 Name Server

A Name Server keeps a mapping between network dependant identifiers and
human readable identifiers.

12

DNS The major naming system of today is the Domain Name System (DNS)
which uses a hierarchical name space. The hierarchical name space, as opposed
to a flat name space, gives a more structured way of assigning names. With
a flat name space there are no connections between names. With a hierarchi-
cal name space there is a structured naming scheme to follow and the names
are interconnected. For example, www.imit.kth.se and www.it.kth.se are two
computers under the kth.se domain.

The objective is today merely to simplify the usage, a name is more easily
remembered than an ip address but using the ip address gives the same result
- www.it.kth.se or 130.237.203.50.

2.2 Definitions

In the context of this paper we will use our own definitions of mobility and
mobility management.

2.2.1 Mobility

We define mobility as a move of any kind, anywhere, at any time. From our
point of view mobility itself is not a problem, mobility will be accepted as a fact
and not something we should try to avoid.

Examples of mobility, with our definition, can be the move of a laptop from
one network to another, but also a move of a file from one folder to another.

2.2.2 Mobility Management

We define a mobility management system as a system responding on mobility
of the kind described above giving adequate reactions on any event taking place
in the system.

2.2.3 Endpoint

An endpoint is in our context a folder with a name according to our chosen
naming scheme, described in section 3.3.1. The endpoint, as it is a folder, is
possible to move from one computer to another. The endpoint can for example
be stored on an usb-stick.

2.3 Motivation

There are many scenarios that would motivate the use of a mobility management
scheme, below two different scenarios of different mobility types will be given
and explained.

Disconnection tolerant mobility

You come to work at eight o’clock in the morning and you sit
down in your office. You always start the work day by booting up
your laptop which by default always starts the applications you use,
ftp and ssh clients. You have a meeting at nine o’clock but you figure
out that you might have time to do a bit of work before going to the
meeting in the building across the street.

13

At ten to nine you close the lid on your laptop to bring it with
you to the meeting. In your building an old IPv4 network is still
used while in the other building a new IPv6-only network has just
been taken in use. When you cross the street your laptop looses con-
nection to the wireless access point. Your laptop recognizes the lost
connection and therefore suspend all ongoing sessions after saving
the state of each session.

A few minutes later when you are in the other building on your
way up to the conference room your laptop is given an IPv6 address.
The session layer recognises the resumed networking connectivity
and that the ip address is of a different type. The session layer
notifies the name server of its new network address and resumes the
connectivity of the ftp client and ssh client at the preserved state.

When at place in the conference room in the other building, you
open the lid of your laptop. Both the ftp client and ssh clients are up
and running from the state which they lost connection. You do not
need to restart the applications or login - it is all done automatically.

The example scenario above is supposed to give you a hint on how the world of
networking and mobility is progressing and even how the definition of mobility
is changing as described in section 1, ”Our definition of mobility concerns the
change of network address and also location while still keeping all connections.
We also extend our definition of mobile objects to not only refer to computers
but also to users, contents and applications.”.

Starting from the beginning of Internet, one could perhaps argue that the
mobility solution of yesterday was in fact Internet itself. With web servers, ftp
servers and e-mail the mobility problem with sending and spreading information
fast was solved.

The mobility solution of today which is widely accepted and standardised
is Mobile IP. The mobility solution of tomorrow is still work in progress and
with many things to consider. There is a great need for mobility; when using
your mobile phone today you do not expect it to disconnect when changing base
station, why should not the same demands be put on computer networks?

To support seamless mobility certain requirements must be fulfilled. Banal
requirements such as making sure computers supports the Internet Protocol
stacks in use and more difficult requirements to realise such as how to overcome
the built-in restrictions in sockets which prohibits rebinding. Other issues such
as disconnection and reconnection need to be handled smoother to achieve a
higher robustness and reliability of connections.

Reachability

You are hiking in a primeval forest watching rare birds, your
friends playfully call you the ornithologist. For you, however, this
is something you take very seriously. When walking around in the
forest you see something in the corner of your eye flapping by. The
bird you just caught a glimpse of, you need to get closer to see if
your suspicion is right. Silently you move to the tree where the bird
is resting at the moment. You take out your camera to zoom in
and you get the shivers, this is what you suspected - an ivory-billed

14

woodpecker1, a very rare bird only seen on a very few occasions
the last decades. You are thrilled with the sight of the bird and
need to share this moment with your friends at the local amateur
ornithologist association. You connect the camera’s usb-cable to
your mobile phone and the picture is now accessible from all browsers
on the Internet and your friends can now confirm your discovery.

This scenario was supposed to give a view of mobile content. When typing in
a website address in a browser it assumes that the website resides on a stationary
computer, on a specific mounted harddrive, in a specific folder, in a specific file.
But, as already said, content is not static anymore, harddrives are not static
anymore and computers are not synonymous with desktops. A laptop can easily
be moved from one network to another and will be given a new ip address. A
harddrive can be unmounted on one machine and mounted on another machine
with a different ip address. A file can be moved from one folder to another
and even though this is just in one machine on one harddrive the linkage might
still be broken and the content unaccessible. With a website address such as
“http://www.host.com/manual/index.html” the only part of it that is constant
is the name. “www.host.com” is linked to an ip address, “manual” is mounted
on a harddrive and “index.html” is in a folder and they can all change location.

What is ingenious with the scenario is what the ornithologist actually is
publishing, it is not the machine or a complete website - it is just the picture.
We are lacking a word to describe what the picture is and therefore we define a
new term, cyber-object. The picture is the cyber-object here, but why limit us to
files. There is no reason to define the cyber-object of a special type, it could be
just about anything limited to the smallest element in the computerized world -
a bit. Even though a bit might be seen too far-fetched there are programs such
as bittorrent2 which divides files into smaller pieces.

2.4 Problem statement

Today when setting up a connection we choose which protocols to use and
cannot change it while the connection is still ongoing. The Session Layer [5]
rests on the belief in a protocol stack allowing rebinding in any level between
protocols while still staying connected.

The session layer is a layer between the transport layer and application layer
in the TCP/IP stack model. For applications to be supported by the session
layer they need to initiate their connections through the session layer, thereby
making the specific transport and network protocols transparent from an ap-
plications point of view. The session layer provides the features of suspending
and resuming connections, if an object looses its network connection the state
of all its sessions are saved and when it later regains its network connection all
sessions are resumed from the preserved states.

These features will be implemented in the Session Layer Gateway (SLG).
The SLG will forward connections between hosts on different networks but not
necessarily with equal addressing schemes. When forwarding between different
networks using different addressing schemes a translation mechanism is needed.

1http://www.birds.cornell.edu/ivory/
2http://www.bittorrent.org/protocol.html

15

Using the session layer all the way, from client through gateway to server, the
ability of switching underlying transport and networks protocol will be made
possible.

2.4.1 Requirements

The following functionality will be provided in the SLG:

- Forwarding mechanism in the Session Layer between:

• IPv4 - IPv6 nets

• IPv6 - IPv4 nets

• private - (IPv6/IPv4) public nets

- Non-functional requirements put on the SLG are:

• Should be able to handle 106 simultaneous sessions

• Packet forwarding latency should be the same as for a router

2.5 Expected results

The expected results of this thesis will be a SLG supporting the requirements
stated above with the expected results listed below:

• Survey on related technologies

• Understanding of the previous work - session layer design, implementation
and objectives driving this work

• Design of the SLG through use cases

• Prototype implementation of the SLG

• Commented code and explanatory documents about the SLG

• This thesis

2.6 Evaluation methods - how to evaluate

The SLG will be evaluated with respect to functionality including error handling.
It will be tested to take the appropriate action according to the state diagram
(see section 3.5) and flow charts (see section 4.3).

2.7 Approaches to mobility management

In the research community there are many suggestions on how to solve this
mobility issue. In these sections some of the approaches on different layers in
the TCP/IP-stack will be described. In [31] the “mobility layer” is discussed
and where it is best suited to be implemented. There are drawbacks and ben-
efits with all solutions but what is pretty clear is that the higher in the stack
mobility management is implemented the more functionality may be offered in
the complete solution. In the discussion of related work (section 2.8) this is
explained.

16

2.7.1 Mobile IP

Mobile IP [21] provides mobility at the network layer. Mobile IP introduces two
new entities: Mobile Node and Home Agent.

Mobile Node The host that changes point of attachment from one network to
another.

Home Agent Located on the home network to tunnel datagrams to the Mobile
Node when the Mobile Node is in a different network. When a Mobile
Node changes point of attachment it updates the Home Agent. The Home
Agent itself is given a static IP address and is always reachable.

When a mobile node changes point of attachment the home agent will relay
all packets to it. When a node on the home network sends a packet to the
home address of the mobile node the home agent intercepts and forwards all
the packets to the mobile node. When the mobile node wants to send packets
to its home network it will change the source address of it to the address of its
home agent. The node receiving these packets will not know that the mobile
node currently resides in another network.

2.7.2 Host Identity Protocol (HIP)

HIP [26] provides mobility management in between the network and transport
layer. HIP introduces a new name space where a host should no longer be
identified by its IP address but by a Host Identifier (HI). Within the Host
Identity Namespace every HI represents a globally unique name, by letting the
HI be the public key of a public key pair. With HI comes the Host Identifier
Tag (HIT) which is a 128-bit cryptographic SHA-1 hash over the HI.

With the new name space this also means that the transport layer will bind
to the HIT. This gives the possibility of process migration, IP addresses can
be changed by underlying protocols and HIP will send a re-address packet to
inform its peer of the new address. The reason for sending this packet is a
security measure to avoid DoS flooding attacks. HIP needs to check that a
mobile node actually is reachable before sending data.

2.7.3 Migrate

Migrate [2][1] provides mobility management at the transport layer. Migrate is
introduced as a new option in the TCP header. A TCP connection is identified
by <source address, source port, destination address, destination port>. When
setting up a new TCP connection the Migrate permitted option is set which
permits the TCP connection to migrate at any point time. As part of the
initiation of a TCP connection with the migrate permitted option a token will
be negotiated. After negotiating the token a TCP connection can be either
identified as above or by the <source address, source port, token>.

When migrating a TCP connection the mobile host will send a Migrate SYN
packet containing the token identifying the previous connection to the fixed host.
The fixed host will reply with an ACK/SYN packet acknowledging the last byte
it received and implicitly acknowledging the SYN packet, if the Migrate SYN
packet came from the right peer. The mobile host responds with an ACK and

17

the TCP connection is migrated and resumes from the last acknowledged byte
in the TCP window.

By only allowing the migrate permitted option being sent in a SYN packet
and by creating unguessable secure tokens the risk of TCP connections hijacking
are minimised.

An optional session layer is introduced, which will give the application an
abstraction of the lower layers. If the application is aware of the session layer
it can join together related transport-layer connections to create a session ID.
There is a session manager managing the events happening in lower layers such
as change of address.

2.7.4 Reliable Network Connections

Reliable Network Connections [29] are two approaches to mobility at the trans-
port layer. The two approaches both provides mobility in the user space.

Rocks Reliable sockets (rocks) is one of the approaches. Rocks provides a
Rocks expanded API (RE-API) of the ordinary sockets API.

To establish a communication session through rocks a test for interoperability
is done. If the corresponding peer does not support RE-API it will revert back
to ordinary sockets. If it supports the RE-API, a data connection is established
with TCP and an identifier for the connection is set between the peers. Finally,
a control socket is set up using UDP for sending control messages.

Rocks uses the control socket to send heartbeats, periodical messages to
check that a connection is still alive. If it is not alive rocks switches to a
suspended state and tries to reconnect to the other peer.

Racks Reliable packets (racks) is the second approach. Racks is a packet filter
between the local socket and the network layer and gives the same functionality
as rocks. Instead of intercepting and modifying the packet through RE-API it
intercepts and modifies the packet through a filter.

Instead of a user calling the RE-API for the initialisation procedure of a
connection, racks will insert a message in the send stream. This message will
appear to have come from the local socket. To preserve the consistency with the
local socket racks needs to rewrite the source address, source port and sequence
number for every packet to those expected by the receiving local socket.

2.7.5 Session Layer Mobility

Session Layer Mobility (SLM) [6][25], which is not to be mixed up with the
Session Layer, provides mobility at the session layer. SLM does not treat the
mobility between end hosts but the mobility of streams, an open data connection
is a session and can be moved.

The SLM uses a User Location Server (ULS) to keep track of its mobile
hosts, similar to the HA used in Mobile IP. To find the location of the Mobile
Host a client can query an extended DNS which will reply with the location of
the ULS. The location of the ULS can also be sent in the set-up phase between
the session layers.

Mobility is hidden from applications and instead of using a direct commu-
nication link it uses proxies.

18

2.7.6 MOON

MObile Overlay Network (MOON) [12] provides mobility at the session layer.
The architectural model that MOON proposes is close to the one used in

cellular networks. Two routing entities exists in MOON: the Enhanced Gateway
Router (EGR) and the Enhanced Access Router (EAR). EGR is the border
router of a domain and connects the domain to Internet. EAR is the router
to where computers connect and is enhanced with location and authentication
functionalities, this type of router functions within the domains. In the Mobile
Host (MH) a session layer is implemented which manages the traffic. Along with
the session layer also comes a session layer address space, handing out session
layer handlers. These handlers encapsulates all the traffic.

To deal with applications only supporting the legacy TCP/IP stack a vir-
tual interface is set up with a static IP address. All applications refer to this
virtual internal IP address and the external IP address can change without the
knowledge of the applications.

2.7.7 MSOCKS

Mobile SOCKS (MSOCKS) [9] is built upon SOCKS and provides mobility at
the session layer.

MSOCKS uses proxies to provide mobility to nodes hiding the mobility from
applications. MSOCKS uses a technique called TCP splice which allows an
endpoint to believe that it is an end-to-end conversation even though there is
a proxy in between. The TCP splice method forwards all packets received so
there is no need to alter applications.

Between the application and the kernel on the mobile node sits the MSOCKS
library. The MSOCKS library provides the applications with an interface iden-
tical to the Berkely Sockets API but it actually intercepts the connections and
all data sent. This allows the proxy to change connection point and accordingly
its ip address without the knowledge of the application. Upon reconnection the
MSOCKS library handles it by unsplicing the connection and replacing the old
outbound connection with the new one.

2.7.8 The Session Layer

Prior to this thesis an implementation of the Session Layer at endhosts were
done [5]. The session layer provides mobility management in the session layer.

The session layer requires modifications in the TCP/IP-stack to support
suspend and resume mechanisms for endpoints. Endpoints are no longer only
computers, as mentioned earlier, but can also be users, content and applications.
For an application to be able to take advantage of the session layer it must no
longer bind to an ip address but to an endpoint name. This requires that
applications are changed to be able to use the session layer.

If two endpoints have set up a communication session and one of the end-
points disconnects, the endpoint is shortly suspended and the state of the com-
munication is saved at both sides. During connection time endpoints synchronise
by sending checkpoint messages to check that data status is consistent on both
sides and to allow data recovery if not. When the endpoint later reconnects the
communication is resumed from where it stopped, the last checkpoint.

19

Implementation The session layer is implemented in the kernel of Linux
2.6.15 with a user space API defined.

Session Name Server With the session layer a new naming system is intro-
duced, the Session Name Server (SNS). The SNS gives any object (endpoint) a
name and allows it to update its ip address in real time.

When an endpoint register itself it first sends a message to the SNS. When
it has moved it updates the SNS with its new ip address. When a client wants
to reach an endpoint it sends a message to the SNS who replies with the ip
address.

2.8 Discussion on related work

In this section we will be comparing the different solutions from a functionality
point of view, not what is needed to be changed in order to make the solution
work.

Each of the approaches to mobility management described above provides
its own definition of mobility and accordingly its own specific solution. What
we are looking for is a mobility management solution which offers transparency
to applications and expands the concept of mobility to various objects.

The solution to mobility management at network layer which is standard-
ised is Mobile IP. With Mobile IP it is not possible to keep connections when
switching networks, this means that the state of the connection is lost.

In MSOCKS, SLM and Mobile IP proxies are used. It is always the proxy
acting on the endhosts behalf and it introduces an unnecessary complexity of
networking and also makes it less flexible. For SLM and MSOCKS it is possible
to suspend and later resume a connection, a feature transparent for applications.

Racks and Rocks are implemented in user space and supports suspend and
resume as well as the change of ip address.

Migrate’s approach relies on one host being fixed and therefore does not offer
mobility for two parts in a conversation.

The HIP approach is under standardisation by the IETF.

If comparing all of these with respect to functionality we find that mobility in
our sense is not fully covered. Mobile IP does not support suspend and resume
of applications. MSOCKS and MOON both rely on a proxy setup which makes
the real underlying interface’s ip address exchangable. HIP and SLM identify
their devices by respectively a HI and an ULS. All of these solutions are using
static names when setting up a connection which allows them to move their
devices while the devices’ sessions are ongoing.

A topic of debate is also whether an introduction of a mobility management
solution should be complemented by applications, should they or should they
not be aware of mobility. Applications specifically made to support mobility can
provide features such as suspend and resume to users and not just be dealing
with a worst case scenario of the cable being unplugged. We see the mobility
awareness of applications as an important feature. For SLM, applications are
not aware of mobility and can therefore not provide such features to users.

Migrate does so far seem to be the approach most similar to ours as it
allows process migration of individual sessions. But Migrate is also a TCP

20

specific implementation and relies on one host being fixed. As stated in the
introduction to this chapter, the higher in the stack that mobility management
is implemented the more functionality may be offered in the complete solution.

2.9 Development environment

2.9.1 Hardware

As for hardware I am using three networked computers, one acting as a gateway
with one computer on each side, but they need not necessarily all be physical
computers. The hardware computers will be running User Mode Linux (UML)
as it is faster to boot and edit. The UML machines will all be networked through
Ethernet bridging. In figure 3 the setup is displayed.

Figure 3: Development environment

2.9.2 Software

The computers run Gentoo Linux 2.6.15 and the compiler used is the GNU C
Compiler.

As part of this work will be to forward connections from IPv4 to IPv6 net-
works and vice versa, a requirement is that all machines must run a dual TCP/IP
stack.

21

2.10 Conclusions

In this section some important mobility approaches have been explained. To-
day, a vast number of approaches are proposed with their specific benefits and
drawbacks. It is clearly possible to conclude that mobility is an important issue
of the Internetworking of today.

With our approach mobility and mobility management takes a leap for-
ward. Our approch expands the mobility concept and introduces new objects
such as endpoints. Sessions between endpoints can be suspended and resumed,
endpoints can be moved from one network to another. The TCP/IP stack is ex-
tended to support the session layer and applications need to be changed to bind
to endpoint names instead of ip addresses to take advantage of the extended
mobility features. Internet is old and has with regard to mobility outgrown
itself a long time ago. With the fantastic and fast development of Internet and
applications during the years it is now time to update it for the present and the
future use of it.

22

3 Method - Design

This part of the thesis focuses on the design of the SLG. With design we mean
the schematical view of the SLG, design choices made and rejected as well as
reasoning.

The reason why two endpoints want to connect is that one of the endpoints
is running a service that the other endpoint wants to use, for example a web
server. From here on we will refer to the two endpoints as client and server.

Figure 4: Example of Server-Client setup

3.1 Forwarding connections

The main idea of the SLG is to forward connections between endpoints on
different networks. It is up to the endpoint to decide when to use the SLG to
forward its connection. There are a couple of different cases to consider when an
endpoint need to forward a connection and when it does not need to forward a
connection. An overview of the different cases can be seen in figure 5. The SLG
decides based on what kind of network the client and the server resides on which
of the different protocols it should use to the respective recipient. Important
to point out is that, as today, the applications will still see the communication
between themselves as point to point.

Figure 5: Schematical view of the communication process between two peers
through the SLG

23

Table 1: Different cases of forwarding connections on networking level
Case Host 1 ↔ Host 2
#1 IPv4Pub ↔ IPv4Pub
#2 IPv4Pub ↔ IPv4Pri
#3 IPv4Pri ↔ IPv4Pri
#4 IPv6 ↔ IPv6
#5 IPv6 ↔ IPv4Pub
#6 IPv6 ↔ IPv4Pri

3.1.1 Forwarding connections on network level

The different cases of forwarding that the SLG should be able to handle on net-
working level are listed in table 1. IPv4Pub refers to a public IPv4 address while
IPv4Pri refers to a private IPv4 address. The private addresses are defined by
IANA [32] as these three blocks of addresses: 10/8, 172.16/12 and 192.168/16.

Case #1 and #4, IPv4Pub - IPv4Pub and IPv6 - IPv6
These cases are trivial because forwarding through SLG is not necessary.

With public IPv4 addresses and IPv6 addresses, which only exists as public,
it is not possible to make a mistake on the identity of an endpoint. However,
an endpoint may still wish to communicate through the SLG due to different
reasons, a reason e.g. could be to hide its ip address from the other peer

Figure 6: Public to Private network through SLG in setup mode

Case #2, IPv4Pub - IPv4Pri
With one endpoint residing on a private network no direct connection to

this endpoint from another private network or a public network can be made.
The standard solution in the legacy Internet would be to use Network Address
Translation but this will instead be handled by the SLG. In figure 6 the step by
step communication process when an endpoint with public ip address connects
to an endpoint in a private network can be seen:

step 1 Public endpoint connects to the SLG

24

step 2 SLG asks the name server for address of private endpoint

step 3 Name server replies SLG

step 4 SLG connects to private endpoint

step 5 Private endpoint replies SLG

step 6 SLG replies public endpoint

Case #3, IPv4Pri - IPv4Pri
With two endpoints residing on two different private networks no direct con-

nection between these two endpoints can be made. This will make both end-
points communicate through their respective SLG and make the SLGs com-
municate with each other. For the session layers at the endpoints this will be
completely transparent.

Case #5, IPv6 - IPv4Pub
Communicating between two public addresses of different address schemes

requires a translation mechanism. There should be no difference when map-
ping an IPv6 address to a public IPv4 address than between two public IPv4
addresses or two IPv6 addresses.

Case #6, IPv6 - IPv4Pri
The case when an endpoint with an IPv6 address tries to connect to an

endpoint in a private network it is no different than when an endpoint with a
public IPv4 address tries to connect.

3.1.2 Buffering

Forwarding packets between networks with different speed might cause an un-
balance with respect to in and out ratio. This can be helped by using buffers,
but as the session layer uses the TCP protocol there are already buffers in the
transport layer. TCP also controls the amount of data allowed to be sent with
its window size. If the window is full no more packets are to be sent.

3.1.3 Checkpointing

Checkpointing is made to check that data is consistent on both sides and to be
able to recover data if data was lost during transmission, see section 3.4 in [5]
and section 2.1.1.

The checkpointing is done between the endpoints and does not concern the
SLG directly, though with the checkpointing somewhat expanded the SLG could
be a part of it. The advantages would be an extra entity controlling the execu-
tion state of the transfer. The disadvantage would be that SLG would require
more buffers.

3.1.4 Mapping client and server

The SLG needs to keep track of communicating clients and servers. From the
session layer every session receives an unique session id. This session id is passed
between client and server when communicating, letting the session layer know
which session this packet is intended for.

25

When the SLG intercepts and re-packet packets it also need to know which
session the packets are intended for. With the help of the session id the SLG
maps clients to servers in a session list where entries based on the session id are
unique.

Table 2: Example of server-client session mapping
Session ID Server Client

45810 server@example.com client@example.com
21643 bob@example.com alice@example.com

3.2 SLG mechanisms

The SLG’s main objective is to forward traffic between endpoints. But, there
are additional mechanisms that the SLG by definition provides and others that
can be added.

3.2.1 Bridging heterogeneity

Bridging heterogeneity refers to bridging different types of address schemes.
This is a default functionality in SLG, as described above with the different
cases on networking level. This could also be extended to support bridging on
the transport layer, see section 3.2.4.

3.2.2 Network Address Translation - “NAT”

NAT is widely used today to allow hosts on private networks to communicate
with the outside networking world. When using the session layer the idea is
that traffic from private networks by default will go through the SLG. If the
SLG will handle all session forwarding between endpoints there is no need for
an extra NAT service.

3.2.3 Privacy

Privacy is one built in mechanism that the SLG provides, by unpacking and re-
packing the packet before forwarding it, see figure 7. Endpoints do not know its
peer endpoint’s ip address and is therefore only directly communicating with the
SLG. This is also valid for endpoints with the same type of addressing schemes,
even if it is certainly possible for them to communicate directly it will increase
the privacy if they choose to communicate through the SLG instead.

3.2.4 Forwarding connections on transport layer

The different cases of network level forwarding are explained but in the SLG
there is also room for using different transport layer protocols. Seeing that the
SLG works on top of the transport layer it can use a different transport protocol
on the client side than on the server side, as seen in figure 5. There are many
different transport protocols and the two presented in that figure are only an
example.

26

Figure 7: Unpacking and re-packing a packet

TCP [15], UDP [17], DCCP [10] and SCTP [27] are all different transport
protocols with different advantages and disadvantages. DCCP and SCTP are
relatively new protocols that probably will come in more use further on, DCCP
was recently implemented in the linux kernel 2.6.143. There is also the chance
that new transport protocols might be developed and therefore the design of
the SLG must be left open to be extended with support for additional transport
protocols.

3.2.5 Caching

Caching is used to store data temporarily, in this case the session. The idea
is to keep ongoing sessions between clients and servers through SLG separate.
If a file is being transferred from server to client and the client of some reason
suspends it does not necessarily need to stop the server to SLG communication.
The server could keep sending the file and the SLG would store the data in
a file on its harddrive. When the client in a later stage decides to resume its
connection the SLG will send the rest of the file to the client without the server
being involved.

3.2.6 Firewall

Firewall support is an extra mechanism that can be built in. Making SLG the
gateway to Internet will not only be something possible to provide but something
that will be taken for granted. Malicious users, viruses, masks and other threats
should be blocked already by the SLG.

3.2.7 AAA

Authentication, Authorization and Accounting (AAA) [7] are additional services
the SLG could run to enhance the access policy restrictions. The authentication
part checks to see that an user is allowed to access the services requested. The
authorization part checks to see which services an user is eligible for and acts
upon that. The accounting part keeps track on the network resources used by
an user.

3http://lwn.net/Articles/149756/

27

3.2.8 Endpoint resumption on different network address scheme

If two endpoints on homogeneous networks starts a session they do not need a
SLG in between. If later one of the endpoints suspend its communication and
moves to a different network there is now need for a SLG. In that case, the
endpoint faces two problems. The first problem is how to find the SLG (see
3.2.9) and the second problem is how to resume a session through the SLG that
never existed there.

The other way round is supposedly an easier task. The use of the SLG is
transparent for endpoints which should make the move from communication
through the SLG to direct communication possible straight off.

3.2.9 SLG discovery

When an endpoint discovers that the peer it would like to connect to resides on
a network with different address scheme it needs to communicate through the
SLG. The problem is how to find the SLG and there are different approaches.

static IP Statically assigning the IP for the SLG is not an approach fitting
the session layer concept. Internet is, in our view, supposed to be dynamic in
all ways possible and therefore static assigning is never good.

static endpoint name This is the equivalence of a static IP in the session
layer world and is not fitting either, the same rule apply here as for static IP.

DNS SRV DNS SRV [4] is a DNS Resource Record for specifying the location
of services. A client will ask for the service for a domain and will receive a reply
with the name of the available server.

3.2.10 Moving Sessions

The SLG is not mobile itself, its position in the network is static and it is
considered to be a part of the network infrastructure. By being a part of the
infrastructure it ensures that both endpoints in a communication session can be
mobile at the same time.

If endpoints move from one SLG to another there need to a be a way for the
SLGs to communicate session states between themselves. However, these session
states need to be sent in a secure way to authenticated as well as authorized
SLGs to ensure that sessions are not hijacked by malicious users.

There are other challenges involved in the scenario of moving sessions be-
tween SLGs. The SLG needs to be told that an endpoint has moved to another
SLG, otherwise it assumes that the endpoint after a time will return and resume
its connections. If an endpoint move to another SLG it needs to retrieve the
session states from the old SLG. This might incur some problems on how to
get the previous SLG’s name - the idea of the SLG is that it is supposed to be
imperceptible to the session layers at the respective endpoints.

28

3.3 Naming

The naming convention as well as the name resolution decides what is meant
by an endpoint name. To allow the level of mobility we set as a goal we require
a good naming convention with an equally good name resolution

3.3.1 Endpoint naming

The design of the naming system is not straightforward because of the complex
network structure that the endpoints entail. There are different types of end-
points: users, applications, services, computers and perhaps even more. Should
all endpoints use the same type of naming convention - the question is whether
one endpoint need to know what type of other endpoint it is communicating
with.

There are some requirements that should be put on the naming convention.
Names need to be unique, names should be easy to remember and easy to
construct. An endpoint name should not easily be mistaken for being something
else.

endpoint@domain
To name endpoints such as bob@example.com is one solution but the meaning

of it is ambiguous. In this context bob@example.com is the name of an endpoint
but in other contexts it could be an e-mail address or the syntax when bob tries
to copy, download or remotely login with scp, ftp or ssh respectively.

3.3.2 Port number retrieval of services

There are different solutions on how to retrieve the port number of an endpoint.
An endpoint is identified by its endpoint name for an application programmer
but for the underlying structure an endpoint is identified by the combination of
an ip address together with a port number.

Keeping port number at Name Server
The original port number communication is done with the Name Server.

When a service is setup at an endpoint, it will inform the Name Server of
its port number. When a client wants to connect to the service it will first
retrieve the ip address of the server and then the port number of the service
at the server. With both ip address and port number, the client can start a
communication session directly with the service at the server.

Listen on pre-determined/standard port numbers
A different approach on how to communicate port numbers would be to lis-

ten on pre-determined ports or standard port numbers. If an endpoint runs a
webserver, the standard port number is port 80. There would be no need to
communicate this to the client. However, if the server would be running an
application without a standard port number it would still somehow need to tell
the server which port the service is running on.

29

Use the control port of the Session Layer
The third approach would be to use the pre-defined control port of the session

layer to setup the session. A client that wants to use a service at a server would
first connect to the control port to ask for the port number. The server would
send a reply with the port number where the service is running. The client
would connect to the server on the received port number.

The first and third approach will always work and will always work in the
same way, no matter if the service is a web server on a standard port number or
a user written application on a non-standard port number. The advantage with
the third approach compared to the first approach is that the communication
with the name server is halved, which leads us to the conclusion that the third
approach will be the one to use.

3.3.3 Port number retrieval of control port

There are two different solutions how to get in contact with the control channel
of an endpoint. Either a predetermined control port number can be used or
an ICMP like procedure might be used. The different types of session packets
using the control channel are described in more detail in section 3.6.1.

Predetermined control port number When one endpoint connects to any
other endpoint the procedure is straight forward, it will always connect to the
other endpoint on the predetermined port number. But to use a predetermined
control port number we need to be certain that the number is not used by any
other application, we would require an ICANN4 standard.

ICMP The ICMP [18] server does not listen on any specific port which is a
desirable ability. If the control channel was using the ICMP server there would
be no need for a predetermined port number and there would never be an issue
that the port might be taken. An endpoint would send the message to the
endpoint without defining any port number and would receive a reply in the
same way, an echo request/echo reply procedure.

Other benefits are that if the session layer was listening on a specific port
number this might be transport protocol dependent. There are many different
transport protocols and the session layer should be free to use whichever it finds
the best in every situation.

In the prolongation the ICMP protocol might even be extended with headers
supporting connect, suspend and resume.

3.3.4 Name Server awareness of SLG

With respect to name resolution the SLG is as any other endpoint and the
name server will not be able to tell whether it is a regular endpoint or a SLG
communicating with it.

If an endpoint decides to communicate through the SLG, the endpoint’s ip
address will be unknown by everone except the SLG. When a peer wants to
communicate with the endpoint it will receive the ip address of the SLG to
start the communication.

4http://www.icann.org

30

3.4 Gateway extension of
the Session Management Protocol

The SLG and session layers on endpoints need to communicate at different
stages in the communication process. Even though the SLG is supposed to be
transparent to session layers at endpoints, the SLG itself needs to have defined
what it should do in the different stages, that is how to respond to different
types of messages. Communication between SLGs is also something that will
be necessary, for example moving session states.

Setup When a client realises that the server it wants to connect to is on
a different addressing scheme it needs to set up the communication process
through the SLG.

Synchronisation When an endpoint moves from one network to another the
state is saved by both endpoints. When the endpoint connect to a network and
the connection resumes, a synchronisation message between the session layer on
the endpoint and the SLG is sent. The synchronisation message informs the
SLG the state of every connection.

Moving If endpoints have disconnected from one SLG, the SLG keeps the
state of the sessions. If the endpoints later re-connect with the same SLG
then it can just resume from where the session was suspended. However, if an
endpoint resumes its network connection at another SLG that SLG needs to
know the resume parameters. Therefore a mechanism for retrieving information
from the old SLG is needed.

3.5 SLG states

The states in the state diagram (figure 8) are defined in the SLG as in the
endpoints. The transitions in the state diagram are defined and explained below.

Figure 8: SLG state diagram

31

Transition 1

State ACTIVE
Event One of the communicating endpoints wants to suspend the session
Action SLG receives SUSPEND message and forwards it. Enters the

READY RESUME state
Description An endpoint wants to suspend and sends a SUSPEND mes-

sage to the SLG. SLG passes the message on and goes into the
READY RESUME state. That is, just after forwarding the message
the SLG is ready to RESUME the session.

Transition 2

State READY RESUME
Event Received RESUME message from one of the endpoints.
Action SLG receives the RESUME message, it rebinds to the (possibly)

new address and forwards the packet. Enters intermediate state RE-
CEIVED RESUME.

Description The RESUME procedure is commenced.

Transition 3

State RECEIVED RESUME
Event Successfully forwarded RESUME
Action Enters SENT RESUME state.
Description The message was successfully forwarded which also means

that the SLG successfully bound to the (possibly) new address of
the resume-initiating endpoint. Endpoint should now be informed
that its peer wants to resume the session. SLG will wait for a RE-
SUME OK in state SENT RESUME.

Transition 4

State SENT RESUME
Event Received RESUME OK message from endpoint.
Action Enters the intermediate state RECEIVED RESUME OK. SLG

receives the RESUME OK message, rebinds to the (possibly) new
address and forwards the packet.

Description The RESUME procedure is almost completed, remains to
successfully rebind and forward the RESUME OK message.

Transition 5

State RECEIVED RESUME OK
Event Successfully forwarded RESUME OK
Action Enters ACTIVE state
Description The RESUME procedure is completed, endpoints are in-

formed and the session is now resumed. SLG will enter state AC-
TIVE and be ready for regular transfer of data.

Transition 6

State RECEIVED RESUME
Event Failed to rebind
Action Enters the READY RESUME state

32

Description If SLG could not rebind this is a network problem. SLG
will enter READY RESUME state for endpoints to try again.

Transition 7

State RECEIVED RESUME
Event Failed to forward RESUME message.
Action SLG replies with a RESUME DENIED message. Enters the

READY RESUME state.
Description SLG failed to forward the packet because of a network prob-

lem. It will inform the first endpoint that there is a communication
problem with the other endpoint by sending a RESUME DENIED
message back. SLG enters READY RESUME state and the end-
points can try again.

Transition 8

State SENT RESUME
Event Received RESUME message
Action SLG receives RESUME message, will rebind and forward RE-

SUME message. Enters RECEIVED RESUME intermediate state.
Description SLG receives RESUME message in state SENT RESUME,

endpoints do not agree on who should resume the session. SLG does
not want to interfere and forwards the packet.

Transition 9

State SENT RESUME
Event Received RESUME DENIED message
Action Forward RESUME DENIED on and enter READY RESUME

state.
Description Endpoint will not allow session to be resumed and replies

with RESUME DENIED. SLG is made aware of this and enters the
READY RESUME state.

Transition 10

State RECEIVED RESUME OK
Event Failed to forward RESUME OK
Action Enters the SENT RESUME state
Description SLG could not forward the RESUME OK message and en-

ters the SENT RESUME state waiting for the endpoint to try again.

Transition 11

State RECEIVED RESUME OK
Event Failed to rebind
Action Enter READY RESUME
Description If SLG could not rebind this is a network problem. SLG

will enter READY RESUME state for endpoints to try again.

Transition 12

State ACTIVE
Event Lost connection with Endpoint
Action Enter READY RESUME state

33

Description Endpoint disappeared without informing SLG. After TCP
timeout SLG will enter READY RESUME state.

Transition 13

State ACTIVE
Event Received RESUME message
Action SLG will rebind and forward the RESUME message
Description If SLG receives a RESUME message in this state, it should

be treated as if the SLG was in READY RESUME state. Proba-
bly the endpoint wants to inform of a new address and the session
will not be able to RESUME until the whole RESUME procedure is
completed.

3.6 Session Layer Packets

There are thirteen different types of session layer packets. All packets contain
the session header and a possible payload. The session layer is communicating
on two channels, a control channel and a data channel. The control channel is
used for control messages and the data channel for data transfer. Some of the
session layer packets are sent on the control channel and some are sent directly
on the data channel.

3.6.1 Control channel packets

The packets sent on the control channel are packets that will either setup a new
communication, suspend a communication that is already in action or resume
a previously suspended communication session.

The SLG will always need the endpoint names of the receiving endpoint and
of the sending endpoint. If the communication session was only peer to peer,
the peer endpoint name would not be needed, but to support the SLG also the
peer endpoint name is added in the payload of a control packet.

SESSION CONNECT This packet is used to initiate a session.
In addition to figure 9 it will contain the name of the service
requested.

SESSION CONNECT OK This packet will confirm the startup
of a new session. In addition to figure 9 it will contain the port
number on which the service is running.

SESSION CONNECT DENIED This packet is sent if there is
no such service running on the server or if the server does not
wish to communicate with the connecting client.

SESSION SUSPEND This packet will ask for suspension of a
session by interrupting the sending and receiving sockets.

SESSION SUSPEND OK This packet will approve the suspen-
sion of a session.

SESSION SUSPEND DENIED This packet will deny the sus-
pension of a session.

34

SESSION RESUME This packet will initiate a resume of a pre-
viously suspended session. In addition to figure 9 it will contain
the port number which the socket previously was using for the
communication session.

SESSION RESUME OK This packet will confirm the resume of
a previously suspended session. In addition to figure 9 it will
contain a new port number which the service is ready to accept
connections on.

SESSION RESUME DENIED This packet is sent if there is no
such service suspended. Except from the obvious reason that
there never was such a service this is handled differently in
session layers on endpoints than in the SLG. If the SLG sends
this packet the reason could be that it was in suspended state
too long and the session timed out, it was assumed to have been
moved to a different SLG. Sessions in the session layer on an
endpoint do not time out.

Figure 9: Control Packet with header and payload

When communicating through the SLG, the SLG will alter the contents in
some of the packets. In the setup procedure it is vital that the SLG replaces
the local port number of a server with its own port number, see figures 15 and
16 and the explanatory texts.

3.6.2 Data channel packets

The packets that are sent on the data channel are mainly transfering data and
making sure that the data is consistent with the help of checkpoint packets.
The packet that ends a communication session is also sent on the data channel.

SESSION HEADER This packet will complete the session start-
up. SESSION CONNECT and SESSION CONNECT OK has
already been handled on the control socket and then a SES-
SION HEADER will be sent by the client on the data socket.
It only contains the session header and confirms for the service
that the client is ready to receive.

SESSION DATA This packet is the most common packet. A
packet of this type contains the session header and data pay-
load.

35

SESSION CHECKPOINT This packet checks data consistency
between client and server. A SESSION CHECKPOINT packet
can be sent either by the client or the server and is confirmed
by a another SESSION CHECKPOINT packet sent back. The
packet contains the session header and a payload with the cur-
rent position of the data stream on this specific endpoint.

SESSION CLOSE This packet closes a session. When client or
server is ready to close the session, a SESSION CLOSE packet
is sent. The packet is confirmed by sending a SESSION CLOSE
packet back. The packet only contains the session header.

36

4 Implementation

In this part of the thesis the implementation of the SLG is described as well as
the alterations to the session layer at endpoints [5].

4.1 Scope

The scope of the project was to design and implement a SLG:

• The SLG should handle connections on both IPv4 and IPv6.

• The name resolution should be integrated with the session layer.

• The session layer on endpoints only supported IPv4 and had to be ex-
tended for IPv6 support.

Due to time constraints the SLG was implemented with basic functionality,
as stated above. Other mechanisms described in section 3.2 are left for future
work.

4.2 Implementation decisions

4.2.1 Alterations to the session layer at endpoints

When introducing the SLG in the session layer system some changes had to be
made in the original session layer at endpoints to enable SLG support. Below the
changes made are listed and in following sections more elaborate explanations
are given.

Control packet payload Local endpoint name and peer endpoint name are
always sent in the payload, see figure 9.

Service port number retrieval The service port number is sent back in the
SESSION RESUME OK packet.

IPv6 support added

Name server itself Name server only saves the endpoint name, no service
port number.

Name server communication Name server communication is done through
user space.

These alterations have not changed the usage of the session layers which
still, of course, function peer to peer.

4.2.2 Adding IPv6

The implementation of IPv6 in Linux has been based on IPv4 and therefore the
use of IPv4 sockets and IPv6 sockets are similar [24]. However, IPv6 addresses
are four times the size of an IPv4 addresses and therefore all data structures
used need to be large enough to hold an IPv6 address. This was accomodated in
Linux by adding extra data structures that supported IPv6. For IPv4 addresses
we have struct sockaddr in and struct sockaddr. For IPv6 addresses we have
struct sockaddr in6 and struct sockaddr storage.

37

The struct sockaddr and struct sockaddr storage are generic data structures
and must be used when calling bind5 to bind a network address. In figure 10
and 11 the host type field (family) is a field that exist in all data structures. The
host type is mapped from the real data structure into the castee data structure
and is always accessible. By checking the host type the SLG can tell whether
this is an IPv4 or an IPv6 address and therefore how to act.

One of the parameters passed to bind is the size of the data structure and as
long as the passed size is not too small it will work. Therefore the passed size
is always the size of the struct sockaddr storage, because struct sockaddr will fit
into it but not the other way round.

Figure 10: Comparing IPv4 and IPv6 generic data structures

Figure 11: Comparing IPv4 and IPv6 data structures

4.2.3 Control channel threads - SLG daemons

The control channel are running on two threads, one for IPv4 and one for
IPv6. They are both listening on the predetermined control port number, this
is achieved by setting two parameters in the socket structure. The first is a
parameter which allows a socket to bind an already bound port and the second
parameter IPV6 V6ONLY sets the IPv6 socket to only react on IPv6 connec-
tions.

There is a possibility to let an IPv6 socket also respond on IPv4 connec-
tions by letting an IPv4 address be represented as an IPv6 address, that is the
IPv4-mapped IPv6 addresses. An IPv4-mapped IPv6 address are written as
:: FFFF :< IPv4−address >. We have made a deliberate choice to keep IPv4
and IPv6 separate to avoid any conflicts and not incur any extra complexity.

4.2.4 Data channel threads

Similar to the control channel the data channel listens on two threads but
whether they listen on IPv4 or IPv6 or not is decided when setting up the

5http://linuxreviews.org/man/bind/#toc1

38

data sockets. The reason that SLG listens on two threads is that communica-
tion between client and server is bi-directional, one thread listens on the server
and one thread listens on the client. Both threads use the server and the client
sockets, the server thread receives on the client socket and sends on the server
socket while the client thread receives on the server socket and sends on the
client socket, see figure 12.

Figure 12: Data socket usage

4.2.5 SLG functions

All of the SLG functions are implemented in the kernel and there is no need for
a user space API. The functions below are the three main functions that keep
track on the traffic going in and out of the SLG.

session forward setup This function is called from one of the SLG daemons
(IPv4 daemon or IPv6 daemon) when receiving a SESSION CONNECT
packet. Though, this function itself calls the function session pass on
and when session pass on has terminated it returns here. Given that it
returned successfully it will continue the setup procedure by passing on the
received SESSION CONNECT OK message to the client. If everything
goes well it will spoon a thread that will keep track and act upon the client-
to-server traffic while this thread will keep track and act upon server-to-
client traffic.

session pass on This function will receive the SESSION CONNECT packet
and set up a control socket to the server and pass on the packet. It will
wait for a SESSION CONNECT OK packet to come back and if so set up
the cs conn structure (see 4.2.7).

forward to server This function will be listening on the client thread and act
upon received messages.

4.2.6 Socket approach

For every call to the control channel two new sockets are started, the incoming
socket and the outgoing socket. New sockets are always created to ensure com-
plete mobility of endpoints since it is possible that an endpoint has changed ip
address during control message exchange.

4.2.7 SLG data structure

There is need for a data structure to keep track of all important data that
belongs to a thread, it is the struct cs conn and consists the following variables.

39

struct endpoint *client ep The endpoint that initiates a session.

struct endpoint *server ep The endpoint that hosts a service
which client ep connects to.

struct session *session The session.

unsigned int server port The remote port which SLG connects
to on the server ep.

unsigned int client port The local port which the client ep con-
nects to on the SLG.

struct socket *out socket The socket between the SLG and the
server ep.

struct socket *in socket The socket between the client ep and
the SLG.

struct socket *tmp socket When suspending/resuming we need
to hold a temporary socket.

unsigned int session close client If true, SLG has closed the ses-
sion with the client ep.

unsigned int session close server If true, SLG has closed the
session with the server ep.

unsigned int session close client recvd If true, SLG received a
SESSION CLOSE message from the client ep.

unsigned int session close server recvd If true, SLG received
a SESSION CLOSE message from the server ep.

unsigned int resume init client If true, client is the initiator of
the resume procedure.

unsigned int resume init server If true, server is the initiator of
the resume procedure.

struct sockaddr storage *out daddr Belongs to the out socket
(above). The corresponding sockaddr storage structure that
belongs to in socket is kept in the session struct.

4.3 Flow charts

The flow charts, figure 13 and figure 14, gives an overview how the session layer
at an endpoint and at the gateway will react on a given event. In the following
section 4.4 the different procedures will be explained in more detail.

When the session layer in the endpoint is receiving or sending data it is
considered to be in the normal state. If an event occurs the different procedures
will take place. The same is valid for the gateway.

Between a SUSPEND packet and a RESUME packet, an endpoint might
have switched point of attachment. In the case of a cable unplugged in figure 13
or an endpoint connection lost in figure 14 the session layer will be waiting until
the cable is plugged in or the endpoint is alive again. The only event where an
ongoing session is closed is when a CLOSE packet is received, in the setup phase
when a CONNECT DENIED packet is received the session is never started.

40

event?

DATA
received

CHECKPOINT
received

SUSPEND
received
CLOSE

Cable
unplugged

No!Yes!

Reply with
CHECKPOINT

wait for
RESUME

received
RESUME

reply

reply with
RESUME_
DENIED

reply with
RESUME_

OK

reply with
CLOSE

everything stopped,
wait for cable

Cable
plugged in

CONNECT

reply

CONNECT_
DENIED

CONNECT_
OK

HEADER

Figure 13: Endpoint Session Layer flow chart

41

event?

forward
DATA

received
CHECKPOINT

received
CLOSE

EP connection
lost

No!Yes!

forward
CHECKPOINT

wait for
RESUME

received
RESUME

received
reply

received
RESUME_
DENIED

received
RESUME_

OK

reply
CLOSE

wait for EP to
come alive again

forward
CLOSE

received
CLOSE

forward
SUSPEND

forward
RESUME

forward
RESUME_
DENIED

forward
RESUME_

OK

received
CHECKPOINT

forward
CHECKPOINT

EP alive

received
CONNECT

forward
CONNECT

received
reply

received
CONNECT_

DENIED

forward
CONNECT_

DENIED

forward
CONNECT_

OK

received
CONNECT_

OK

received
HEADER

forward
HEADER

received
SUSPEND

received
DATA

Figure 14: SLG flow chart

42

4.4 Phases of communication

There is one main rule that apply to the session layer, it states that a SLG
must be transparent for an endpoint’s session layer. Regardless of whether it
communicates with its peer through the SLG or not, all types of communication
is done exactly the same. Applying this rule for the SLG itself gives that the
SLG should handle communication as smoothly as if it was not there. While it is
important to point that out, it is still important to see what level of complexity
the SLG brings which can be seen when comparing the figures below.

4.4.1 Setup procedure

The setup procedure is started when a client wants to connect to a service run
by a server.

Figure 15: Setup procedure between Client and Server through SLG

with SLG The setup procedure between client (C) and server (S) through
SLG is displayed in figure 15.

It is started when a C wants to use a service run by S, it needs to establish
a communication session. First C will ask the Name Server (NS) for the ip
address of S. If the ip address of S is of a different type than C uses itself it
will involve the SLG in the setup procedure. After receiving the ip address
of S it will establish a connection with the control port of SLG and send a
SESSION CONNECT message.

SLG will ask NS of the ip address of S and establish a new connection to
the control port of S and pass on the SESSION CONNECT message. If S
has the service running it will reply with a SESSION CONNECT OK message
containing the port number that the service is running on. SLG will receive the
packet and start up a listening port of its own. SLG will then replace the port

43

number in the packet with its own. Then SLG will ask NS of the ip address of
C and pass the packet on.

C will receive the packet and establish a new connection on the port and
send a SESSION HEADER message as a confirmation of the newly established
connection. SLG will receive the packet and pass it on to S. S receives the packet
and will directly start sending SESSION DATA packets to C through SLG.

Figure 16: Setup procedure between Client and Server

P2P The setup procedure without the SLG is displayed in figure 16.
It is started when a client (C) wants to use a service run by server (S), it needs

to establish a communication session. First C will ask the Name Server (NS)
for the ip address of S. After receiving the ip address of S it will establish a con-
nection with the control port of S and send a SESSION CONNECT message.
S will, if it has the service running, reply with a SESSION CONNECT OK
message containing the port number that the service is running on. C will
establish a new connection to S on the received port number and send a SES-
SION HEADER message. The SESSION HEADER message will confirm the
new communication session and S will directly start sending SESSION DATA
packets.

4.4.2 Suspend/Resume procedure

When either a client or a server in an ongoing session wants to suspend the ses-
sion it sends a SESSION SUSPEND message. Later when the client or server
wants to resume the suspended session it sends a SESSION RESUME message.
The figures explains what would happen if the server initiates a suspend mes-
sage, but it would have been the same scenario if the client had initiated it
instead.

with SLG In figure 17 the suspend and resume procedure with SLG is dis-
played.

It is started when the user application of some reason decides to suspend
a session by sending a SESSION SUSPEND message. This message is sent on

44

Figure 17: Suspend and resume procedure in SLG

45

the control channel and an acknowledgement (ACK) packet is sent back as a
confirmation that the packet was received and that the session exists. When
the server receives the ACK packet it suspends its threads. The SLG passes the
received suspend packet on to the client. The client sends an ACK packet back
and suspends its threads. The SLG receives the ACK packet and suspends its
threads.

During the time of suspension it is possible for endpoints to move, to change
point of attachment. When they later register themselves at another location
the name server will be informed. Therefore the SLG will always ask the name
server for the ip address of the endpoint that it will forward packets to when a
session is resumed.

An amount of time has passed and the server decides to resume the ses-
sion, therefore it sends a SESSION RESUME message. The SLG receives the
message and sends an ACK packet back. The server is now waiting for a SES-
SION RESUME OK message. The SLG passes the packet on to the client,
after retrieving the possibly new ip address of the endpoint, and receives an
ACK packet. The client has received the packet and sets up a new data socket
on a new port C. It sends a SESSION RESUME OK packet back with the new
data socket port number attached and receives an ACK packet. SLG connects
to the new data socket on the client and passes on the SESSION RESUME OK
packet after changing the attached port number. SLG receives an ACK packet
from the server and the server connects to the new data socket on the SLG.
After connection the threads are awoken and the session is resumed.

Figure 18: Suspend and resume procedure between Client and Server

46

P2P In figure 18 the suspend and resume procedure is displayed peer to peer,
ie without the SLG.

The server’s user application decides to suspend and sends a SESSION SUSPEND
message. It receives an ACK packet back whereafter both client and server
suspends their threads. After an amount of time has passed when the server
decides to resume the session it sends a SESSION RESUME message and re-
ceives an ACK packet. The client sets up a new data socket and sends a SES-
SION RESUME OK to the server with the port number of the new data socket
attached. The server sends the ACK packet back and connects to the client on
the new data socket. The threads are awoken and the session is resumed.

4.4.3 Disconnection procedure

The disconnection procedure is commenced either by the server or the client. If
the application is a file transfer program the server will initiate the disconnection
procedure when all data is transferred. If the server, for some reason, would
not initiate the disconnection procedure the client will initiate it when it has
received all data. The figures shows the message passing with server as initiator.

Figure 19: Disconnection procedure between Client and Server through SLG

with SLG In figure 19 the disconnection procedure between client and server
through SLG is shown.

When the last SESSION DATA packet is sent by the server it will send a
SESSION CLOSE packet and will receive a SESSION CLOSE packet back as
confirmation. After receiving the confirmation it will close the session. This
is handled between the SLG and the server. Later when the TCP buffers are
empty and all packets are passed on by the SLG it will send a SESSION CLOSE
packet to the client and expect one back until the session finally is closed.

It is a deliberate choice to close the session with one peer first and then with
the other peer in order to simplify the procedure.

47

Figure 20: Disconnection procedure between Client and Server

P2P In figure 20 the disconnection procedure is shown peer to peer.
If it is done peer to peer, one peer sends a SESSION CLOSE packet and the

other one sends a SESSION CLOSE packet back. The session is closed.

4.5 Name Resolution

The session layer uses a user space name resolution client while the rest of the
session layer is written in kernel space. There need to be a way for the kernel
to communicate to the user space client that it should lookup the ip address of
a specific endpoint.

There were two suggestions how to achieve this where the first was to call
user space functions from kernel space and the second to use signals. When
researching whether it would be possible to call user space functions from kernel
space we found out that this approach would not be possible and therefore chose
to use signals from kernel space to user space.

4.5.1 Endpoint lookup

The name lookup sequence (figure 21) is initiated when the kernel function
session sns get endpoint() is called. It will first open a file /proc/session sns
where it will write the endpoint name to lookup and thereafter send a signal to
a waiting user space function. The kernel function will need to wait for a reply,
because execution must be synchronous.

The user space function wakes up on the signal from kernel space. It will
read the endpoint name from /proc/session sns and call the name lookup func-
tion and wait for a reply. When it receives a reply it will call the system call
sns callback with a pointer to the data structure. The user space function will
pause until it receives the next signal.

The system call sns callback will receive the pointer and pass this to ses-
sion sns get endpoint() which now can terminate.

4.5.2 Endpoint update

The endpoint update sequence works in the same way as the endpoint lookup
apart from how it is initiated. It is started by a user space application which

48

Figure 21: Endpoint lookup signaling

Figure 22: Endpoint update signaling

calls a kernel function passing the endpoint name and ip address. The ip address
passed up to kernel space is used to create a socket for the endpoint to bind
to. An endpoint is only allowed to accept connections on one ip type, ie either
IPv4 or IPv6, although it might have both a public IPv4 address and an IPv6
address. Therefore the user signal() needs to retrieve the ip addresses on its
own.

There are different ways to retrieve a local ip address but not all of them
will work unanimous together with the user space system.

First approach The first approach and the easiest way to retrieve the ad-
dresses was to use getifaddrs()6 which unfortunately seemed to collide with the
use of ioctl and socket in the name resolution client. This is a known bug with
this function and as this did not work out a different approach was needed.

Second approach The second approach was to parse out the ip addresses as
was done in [5]. This was proved to work but was complex as well as some-
what unreliable in regard to what actually came out of the function, an IPv4
address can be of different lengths eg 192.168.0.10 or 192.168.0.100. It is of vital
importance that the end-of-line mark is set at the right place.

6http://www.hmug.org/man/3/getifaddrs.php

49

Chosen approach Both of the approaches above would have worked for both
IPv4 and IPv6. The approach chosen are actually two different, one for IPv4
and one for IPv6.

The IPv4 address is retrieved from an ioctl call with SIOCGIFADDR as
device request code. It returns the IPv4 address in a data structure. However,
the data structure returned is not big enough to hold an IPv6 address which
explains why this approach only works for IPv4.

The IPv6 address is retrieved from the proc filesystem. In the proc filesystem
there is a file /proc/net/if inet6 which contains the IPv6 addresses in a system:
the localhost, link local addresses and the global address. The function reads
from this file, parses out the global address and arranges it on the right form.

50

5 Analysis

In this part of the thesis the testing phase of the SLG is described. Many dif-
ferent tests have been performed and all of them a number of times to ensure
that the SLG does what it is supposed to and can withstand for example mal-
formed packets, attempts to resume non-existant sessions and attempts to setup
sessions to non-existant endpoints.

5.1 Testing

Hardware The hardware used when testing was three machines and two usb
sticks. The SLG was running on a desktop P3 machine, one host was running
on a desktop P4 machine and the second host running on a P3 laptop. The
name server was running on a fourth machine.

The SLG had two 100 MBit Ethernet cards, one connected to an IPv4 net-
work and one connected to an IPv6 network. The desktop host also had two
100 MBit Ethernet cards connected to IPv4 and IPv6 while the laptop host had
one 100 MBit Ethernet card connected to IPv4.

Software All of the machines were running Gentoo Linux with different ver-
sions of gcc. The session layer is implemented in the Linux kernel version 2.6.15
for both the hosts and for the SLG.

Testing These tests that have been performed cover both error handling and
actual functionality. The SLG has been tested in parallell with the implemen-
tation of it and when it supposedly was fully implemented.

Packet support The packet support tests is to ensure that the SLG recognises
all valid session packets and acts correct upon receiving one.

• Setup procedure (see section 4.4.1)

• Suspend procedure (see section 4.4.2)

• Resume procedure (see section 4.4.2)

• Disconnection procedure (see section 4.4.3)

Network support The network support test is to ensure that the SLG works
on both IPv4 and IPv6. It should be able to forward packets from IPv4
to IPv4, from IPv6 to IPv6 and also between IPv4 and IPv6.

• IPv4 to IPv4

• IPv6 to IPv6

• IPv4 to IPv6

• IPv6 to IPv4

Network and Packet support together These tests ensures that it is pos-
sible to change ip address scheme and then resume using it.

• start on IPv4 and suspend, resume on IPv6

• start on IPv6 and suspend, resume on IPv4

51

Error tolerance at SLG It is important that the SLG does not crash when
something goes wrong. It should be stable and be able to accept new
connections after an error been dealt with.

• Endpoint unreachable

• Endpoint terminates prematurely without informing the SLG

• Endpoint tries to resume unrecognised session

• Malformed packets

5.2 Result

The test has been performed and shows that the SLG works and can handle
all the different types of packets in the different scenarios. It is also fully func-
tional on both IPv4 and IPv6 and can handle a switch of address scheme when
resuming a previously suspended session. The error tolerance, as seen above, is
also satisfactorily handled.

We conclude that the SLG has passed all tests.

52

6 Conclusions and future work

In this thesis I have described our approach to mobility. We do not see mobility
as a problem but as a fact. Mobility is something we need to deal with, not
something we should try to avoid. Our mobility management system provides
mobility of individual communication sessions, sessions are no longer connected
to a specific device and may be moved anywhere and at any time. The SLG
provides mobility of address scheme for communication sessions setup through
the SLG, it makes it possible to start a session in one ip network and then move
it to another type of ip network.

Our concept of mobility is proved with the background material with refer-
ences to todays research, through the design chapter explaining design choices
and the implementation chapter and the analysis chapter together into a SLG
prototype.

Bridging addressing schemes
With the SLG it is possible to communicate over different addressing schemes.

IPv6 networks, public IPv4 networks and private IPv4 networks can all com-
municate with each other through a SLG.

Addressing scheme mobility
The SLG proves that it is possible to give addressing scheme mobility. An

endpoint can start a connection in one type of addressing scheme and during a
suspend and resume procedure change point of attachment to a different type
of addressing scheme.

Peer-to-peer communication
While adding addressing scheme mobility and with an enhanced name server

it is still possible to communicate peer-to-peer for session layers, if they wishes
to do so.

6.1 Future work

For future work we state a couple of different ideas to continue the development
of the SLG in particular and the session layer in general.

Transport Layer mobility
Addressing scheme mobility is performed at networking layer but there should

be no reason to not being able to provide transport layer mobility as well. If
changing the network layer protocol is possible, changing the transport layer
protocol to an user preferred or an application preferred transport protocol
should be no problem. See figure 5.

Session mobility
If an endpoint moves to a different network where another SLG is in use, the

session state kept in the previous SLG should be possible to transfer to the new
SLG. See section 3.2.10.

53

Naming scheme
A better naming scheme of endpoints. Now the meaning of an endpoint

name is dubious and a naming scheme which makes an endpoint possible to
differentiate from an e-mail address is needed. See section 3.3.1.

SLG discovery
When moving to another network you need to somehow get in contact with the

SLG. Instead of using a static endpoint name of the SLG it could be managed
through the use of DNS SRV [4]. See section 3.2.9.

SLG control port
We suggest a better way to contact a SLG than with a static port number.

This should be possible to achieve with ICMP echo request/reply messages. See
section 3.3.3.

54

References

[1] A. C. Snoeren, H. Balakrishnan. An End-to-End Approach to Host Mobil-
ity, MobiCom ’00, 2000.

[2] A. C. Snoeren, H. Balakrishnan, M. F. Kasshoek. Reconsidering Internet
Mobility, Workshop HotOS-VIII, may 2001.

[3] A. Conta, S. Deering. RFC 2463: Internet Control Message Protocol
(ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification, Dec.
1998.

[4] A. Gulbrandsen, P. Vixie, L. Esibov. RFC 2782: A DNS for specifying the
location of services (DNS SRV), Feb. 2000.

[5] P. Arvidsson and M. Widell. Design of a session layer based system for end-
point mobility. Master’s thesis, KTH, 2006. ftp://ftp.it.kth.se/Reports/
DEGREE-PROJECT-REPORTS/061005-Petter-Arvidsson-and-Micael-Widell.

pdf.

[6] B. Landfeldt, T. Larsson, Y. Ismailov, A. Seneviratne. SLM, A Framwork
for Session Layer Mobility, Proceedings Eight International Conferene on
Computer Communications and Networks, Oct. 1999.

[7] C. de Laat, G. Gross, L. Gommans, J. Vollbrecht, D. Spence. RFC 2903:
Generic AAA Architecture, Aug. 2000. Updated by RFC3261 [19]. Status:
PROPOSED STANDARD.

[8] D. C. Plummer. RFC 826: Converting Network Protocol Addresses to
48.bit Ethernet Address for Transmission on Ethernet Hardware, Nov.
1982.

[9] D Maltz, P. Bhagwat. MSOCKS: an architecture for transport layer mo-
bility, IEEE - INFOCOM ’98, Apr. 1998.

[10] S. F. E. Kohler, M. Handley. RFC 4340: Datagram Congestion Control
Protocol, Mar. 2006.

[11] E. Nordmark, R. Gilligan. RFC 4213: Basic transition mechanisms for ipv6
hosts and routers, Oct. 2005.

[12] G. T. G. Albertengo, C. Pastrone. Moon: a new overlay network archi-
tecture for mobility and qossupport. Next Generation Internet Networks,
2005, pages 492–497, Apr. 2005.

[13] i-Technology News Desk. Linus Torvalds Outburst Sparks Fierce Debate:
Does Open Source Software Need Specs?, Oct. 3, 2005. http://fr.sys-con.
com/read/136960.htm.

[14] Information Sciences Institute. RFC 791: Internet Protocol, DARPA In-
ternet Program, Protocol Specification, Sept. 1981.

[15] Information Sciences Institute. RFC 793: Transmission Control Protocol,
DARPA Internet Program, Protocol Specification, Sept. 1981.

55

[16] International Organisation for Standardization. ISO standard 7498-1,
”Information Processing Systems - OSI Reference Model. The Basic
Model”. http://www.acm.org/sigcomm/standards/iso_stds/\\OSI_MODEL/

ISO_IEC_7%498-1.TXT.

[17] J. Postel. RFC 768: User Datagram Protocol, Aug. 1980.

[18] J. Postel. RFC 792: Internet Control Message Protocol, DARPA Internet
Program, Protocol Specification, Sept. 1981.

[19] J. Solomon, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R.
Sparks, M. Handley, E. Schooler. RFC 3261: SIP: Session Initiation Proto-
col, June 2002. Updates RFC2543 [20]. Status: PROPOSED STANDARD.

[20] M. Handley, H. Schulzrinne, E. Schooler, J. Rosenberg. RFC 2543: SIP:
Session Initiation Protocol, Mar. 1999. Updated by RFC3261 [19]. Status:
PROPOSED STANDARD.

[21] C. Perkins. RFC 3344: IP Mobility Support for IPv4, Aug. 2002.

[22] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T.
Berners-Lee. RFC 2616: Hypertext Transfer Protocol – HTTP/1.1, June
1999.

[23] R. Finlayson, T. Mann, J. Mogul, M. Theimer. RFC 903: A Reverse
Address Resolution Protocol, June 1984.

[24] R. Gilligan, S. Thomson, J. Bound, J. McCann, W. Stevens. RFC 3493:
Basic Socket Interface Extension for IPv6, Feb. 2003.

[25] R. Hsieh, A. Seneviratne. Performance Analysis of Mobile IP and SLM,
Proceedings Ninth IEEE International Conference on Networks, Oct. 2001.

[26] R. Moskowitz, P. Nikander. RFC 4423: Host Identity Protocol (HIP) Ar-
chitecture, May 2006.

[27] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor,
I. Rytina, M. Kalla, L. Zhang, V. Paxson. RFC 2960: Stream Control
Transmission Protocol, Oct. 2000.

[28] S. Deering, R. Hinden. RFC 2460: Internet Protocol, Version 6 (IPv6)
Specification, Dec. 1998.

[29] V. C. Zandy, B. P. Miller. Reliable Network Connections, MobiCom ’02,
2002.

[30] W. Fenner. RFC 2236: Internet Group Management Protocol, Version 2,
Nov. 1997.

[31] Wesly M. Eddy. At What Layer Does Mobility Belong?, IEEE Communi-
cations Magazine, Oct. 2004.

[32] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, E. Lear. RFC
1918: Address Allocation for Private Internets, Feb. 1996.

56

A Dictionary

ACK Acknowledgement

Contents User defined object, for example a file.

Cyber-object A wider definition of contents than what fits in the endpoint
concept

Endpoint An endpoint is in our context a directory with a name according to
our naming scheme, eg bob@example.com can be the name of an endpoint.

ICMP Internet Control Message Protocol, used with ping.

IP Internet Protocol

IPv4 Internet Protocol version 4, the most widely used IP packet.

IPv6 Internet Protocol version 6, a relatively new IP packet type that
slowly is being implemented and taken in use.

Mobility In our context: a move of any kind, anywhere, at any time. From our
point of view mobility itself is not a problem, mobility will be accepted as
a fact and not something we should try to avoid.

Mobility Management A system responding on mobility giving adequate re-
actions on any event taking place in the system.

NAT Network Address Translation

NS Name Server

Private IP address An ip address that is used in a private network. A private
ip address is only unique within the private network and the ip addresses
that are supposed to be used in private networks are defined by IANA
[32].

Public IP address An ip address that is unique in the whole wide world.

Resume When an endpoint re-establishes its communication it resumes.

Service For example: a file server, web server etc

Session Communication session between two endpoints

Session Layer Our mobility management solution is implemented at Session
Layer. It manages sessions including mobility of sessions, see [5].

Suspend When an endpoint pauses communication it suspends.

SLG Session Layer Gateway

TCP Transmission Control Protocol

UDP User Datagram Protocol

57

B Setting up the demo

The SLG is a gateway and as a gateway it has no function on its own. When
setting up the demonstration three machines with the Gentoo Linux base sys-
tem installed are required.

Precondition Name Server is running.

Figure 23: Demo Setup

B.1 Installation

Instead of downloading the source from the gentoo repositories the session layer
enabled sources are kept in the local cvs. The module “kernel-gw-cs” must be
installed on the hosts and the module “kernel-gw” must be installed on the SLG.
With the sources there are two “.config” files, one for use with user-mode-linux
and one for use on a real machine.

After compiling the kernel and rebooting the machines the user-space ap-
plications must also be installed. For hosts the module “user-gw-cs” is used
and for the SLG the module “user-gw”. They both come with README-files
and install scripts. When they are installed the installation part of the setup is
completed.

B.2 Setup

The program that is used to display the capabilities of the session layer is a file
transfer program. It sends a file from one endpoint to another endpoint.

An endpoint is the name of a folder, for example “test@example.com”. In
this folder there must be a file “.endpoint”. An endpoint can reside on a
machine but also on a usb stick. If the endpoint resides on the machine it
must be added in the “/etc/conf.d/local.start” file. The password which is
used in communication with the name server must be added in the “/etc/ses-
sion layer/endpoints/local endpoints.txt” file, there is an example file called
“local endpoints.txt.example”. If the endpoints resides on a usb stick it must
not be added in “/etc/conf.d/local.start”.

58

Installation should have installed fluxbox with a session layer menu. In the
menu there are shortcuts to start server and client, make sure that the shortcuts
links to the correct endpoints.

It is also important to be certain that the name server is updated with
correct address information, type “source /etc/conf.d/local.start”.

B.3 Test

Installation and setup should now be completed and it should soon be possible
to test the session layer capabilites.

Important to notice is that in the server program the file is called “testfile”,
this file should be in the endpoint directory of the server. The client program
needs to now in advance how big the file being transferred is. After changing
the filesize in the client program, type “make install” in the test directory.

This test is for use with endpoints on usb sticks. Start the server on one
machine by clicking “start storage” and then start the client on the other ma-
chine by clicking “start client”. The transfer should have started. If you want to
suspend the communication click on “saveep” for client or server in the fluxbox
menu. Then the transfer is suspended and the usb stick is unmounted, it is now
possible to remove the usb stick. When you later plug it in it will automatically
after a few seconds resume the previously suspended transfer.

The demo setup in short

SLG Installation

• cvs checkout “kernel-gw”

• cp config-070301 .config

• make && make modules install

• reboot

• cvs checkout “user-gw”

• .\install.sh

Setup

• create endpoint - mkdir slg@verkstad.net

• cd slg@verkstad.net

• touch .endpoint

• Add it in “/etc/conf.d/local.start”

• Add endpoint name and password in
“/etc/session layer/endpoints/local endpoints.txt”

• source “/etc/conf.d/local.start”

Hosts Installation

• cvs checkout “kernel-gw-cs”

• cp config-070301 .config

• make && make modules install

• reboot

• cvs checkout “user-gw-cs”

• .\install.sh

59

Setup

• create endpoint on usb stick - mkdir test@example.com

• cd test@example.com

• touch .endpoint

• Add endpoint name and password in
“/etc/session layer/endpoints/local endpoints.txt”

• Make sure fluxbox shortcuts links to correct endpoints

• source “/etc/conf.d/local.start”

• Repeat this procedure on the other machine (with a different
endpoint name of course)

Test

• Add the file, testfile, to be transferred in the server endpoint
directory

• Set the size of the file to be transferred in the client program
“user-gw-cs/session-lib/test/client.c”

• In the test directory - make install

• Start server on one machine

• Start client on the other machine

60

