
Credential Mapping in Grids

E S T E B A N T A L A V E R A

Master of Science Thesis
Stockholm, Sweden 2007

ICT/ECS-2007-33

Credential Mapping in Grids

Master of Science Thesis

ESTEBAN TALAVERA GONZÁLEZ

Supervisor: Mehran Ahsant (PDC/CSC/KTH)
Examiner: Assoc. Prof. Vladimir Vlassov (ECS/ICT/KTH)

Stockholm, Sweden – March 19, 2007

Center for Parallel Computers (PDC)
Royal Institute of Technology (KTH)

SE-100 44 Stockholm
SWEDEN

Copyright © 2007 Esteban Talavera González <robes83@gmail.com>
This work is licensed under the Creative Commons Attribution–Noncommercial–
Share Alike 3.0 License. To view a copy of this license, visit http://creativecommons.
org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 543 Howard
Street, 5th Floor, San Francisco, California, 94105, USA.

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

v

Abstract

Grids provide a way of utilizing a vast array of linked resources by sharing computing
powers, databases, and services on-line across Virtual Organizations (VOs) that are dynamic
and geographically distributed. In Grids, organizations participating in VOs might use
different security mechanisms, and they might deploy different security infrastructures.
Thus, the Grid security mechanism needs to interoperate with these mechanisms rather
than replacing them.

One challenging issue is how to prove the identity and authority of service requesters and
service providers when operations between these entities cross realms and VOs. Security
credentials proving the identity and the authority of the holder may not be syntactically or
semantically recognized inside remote domains. Furthermore, the dynamic and distributed
nature of VOs in most cases makes it difficult to pre-establish trust relationship among sites
before executing Grid applications. Therefore the security credentials may not be trusted
inside other domains. In fact the credential translation mostly deals with issuing the same
assertion in equivalent form of identity and trust.

The purpose of this project is defining a way of translating security credentials and
developing appropriate software components for addressing trust and identity issues when
converting these credentials coming from and to be used on different and heterogeneous
security realms in Grids.

Acknowledgments

First of all, I want to thank the person who guided me during the whole project,
from its very beginning to the end: Mehran Ahsant, my supervisor at PDC. He
made me interested in the topic, and helped me a lot with theoretical issues, as
well as with problems that arose during the implementation. He gave me important
suggestions when writing this report, too.

I am very grateful to my examiner at KTH, Dr. Vladimir Vlassov, who gave me
good advices when starting the project and really useful feedback about my report.

Special thanks to my parents and my sister, who always took care of me during
my stay in Sweden. Without their help these 20 months abroad would have been
impossible. They have always supported me on all situations.

Thanks to all people who lived through the “Erasmus experience” with me, those
at the beginning, those at the end, and specially those who were there the whole
period. I will never forget the dinners, trips, parties. . . that we enjoyed together. I
have made really good friends in Stockholm.

vii

Contents

Contents ix

List of Figures xiii

List of Tables xv

Listings xvii

1 Introduction 1
1.1 Overview . 1
1.2 Problem Statement . 2
1.3 Previous work . 2
1.4 Goals . 3
1.5 Approach . 3
1.6 Limitations . 4
1.7 Thesis Outline . 5

2 Background 7
2.1 Grids . 7

2.1.1 Grid Security . 8
2.2 Kerberos . 8

2.2.1 Cross-Realm Authentication 11
2.3 Public Key Infrastructure . 12

2.3.1 X.509 certificates . 13
2.4 Securing XML . 13

2.4.1 XML Signature . 14
2.4.2 XML Encryption . 15

2.5 Security Assertion Markup Language (SAML) 16
2.6 Web Services . 19
2.7 WS-Security . 20

2.7.1 Credential and Trust Issues not Addressed by WS-Security . 23
2.7.2 WS-Trust . 23
2.7.3 WS-Federation . 25

ix

x CONTENTS

3 Credential Mapping 29
3.1 Kerberos =⇒ X.509/SAML Translation 30
3.2 X.509 =⇒ Kerberos Translation . 34

3.2.1 First Approach: Issuing STs 34
3.2.2 Second Approach: Issuing TGTs 36
3.2.3 Comparison and Conclusion 39

3.3 Security Considerations . 40

4 Related Work 41
4.1 Shibboleth . 41

4.1.1 Interoperability between Shibboleth and STS 45
4.2 KX.509 Protocol . 47
4.3 Kerberized Credential Translation 48

5 Prototype Implementation 51
5.1 Implementation Environment and Tools 51
5.2 Main Implementation Tasks Performed 53
5.3 Main Problems Found . 54

6 Analysis of Results 57
6.1 Local Tests Performed . 57

6.1.1 Kerberos =⇒ X.509 Test . 57
6.1.2 Kerberos =⇒ SAML Test . 58
6.1.3 X.509 =⇒ Kerberos Test . 59

6.2 Real Scenario Test . 60
6.3 Analysis . 60

7 Conclusions 61
7.1 Summary of Contributions . 61
7.2 Future Work . 62

A Glossary 65

B Abbreviations 69

C Messages exchanged during Tests 71
C.1 Kerberos =⇒ X.509 Test . 71

C.1.1 RST Message . 71
C.1.2 RSTR Message . 73
C.1.3 Returned Certificate . 75

C.2 Kerberos =⇒ SAML Test . 75
C.2.1 RST Message . 75
C.2.2 RSTR Message . 77
C.2.3 Returned Assertion . 80

C.3 X.509 =⇒ Kerberos Test . 82

xi

C.3.1 RST Message . 82
C.3.2 RSTR Message . 84
C.3.3 Returned TGT . 86

Bibliography 87

List of Figures

2.1 Basic Kerberos operation . 9
2.2 Basic Kerberos Cross-Realm operation 11
2.3 Assertion within a SAML Response message and a WSS Message 19
2.4 Typical WS-Trust security token exchange scenario 25
2.5 Example of credential mapping with Pseudonym Service 27

3.1 Kerberos Ticket → SAML/X.509 conversion 31
3.2 X.509 → Kerberos conversion, first approach (issuing STs) 34
3.3 X.509 → Kerberos conversion, second approach (issuing TGTs) 37

4.1 Access to resources within a Shibboleth federation 43
4.2 STS – Shibboleth interoperability approach 46

xiii

List of Tables

3.1 Peculiarities of each authentication mechanism and their credentials . . 30
3.2 X.509 → Kerberos approaches comparison 39

xv

Listings

2.1 Structure of a Signature element . 15
2.2 Structure of a EncryptedData element 16
2.3 Example of a signed SAML Assertion 18
2.4 Example of signed WSS message with binary token [1] 22
C.1 RST Message in Kerberos → X.509 translation 71
C.2 RSTR Message in Kerberos → X.509 translation 73
C.3 Returned certificate in Kerberos → X.509 translation 75
C.4 RST Message in Kerberos → SAML translation 75
C.5 RSTR Message in Kerberos → SAML translation 77
C.6 Returned assertion in Kerberos → SAML translation 80
C.7 RST Message in X.509 → Kerberos translation 82
C.8 RSTR Message in X.509 → Kerberos translation 84
C.9 Returned TGT in X.509 → Kerberos translation 86

xvii

Chapter 1

Introduction

This chapter provides a general introduction to the area the Master’s Thesis is
located in. It is a summary of the whole report. It starts with a short overview
of the concept of Grids and Grid security problems related to our work. Then, we
give a detailed problem statement that motivates our work. Following this we note
the work already done on this project when this thesis got started, subsequently
examining the main goals of the thesis and our approach to achieve them. A
description of the limitations of our contribution is given, concluding with the
summary of the content of the rest of the report.

1.1 Overview

In a Grid environment, clients and resources from different security realms interact
with each other. When users submit jobs to the Grid, they might make use of many
different remote resources, perhaps crossing many realms while executing. Each
time these applications want to use a resource (e.g., they need to be executed for
some time in a certain processor, or read from a certain database), they have to be
first authenticated and then authorized by the access control mechanism of the target
resource. As different security domains usually implement different authentication
protocols, the credentials that clients use to be authenticated at certain local or
remote domains could be invalid. Moreover, the resources that the jobs need to
use are usually not known beforehand, since it depends on the execution path the
applications take given the input data and intermediate results they generate. Then,
it is very difficult for the users to “prepare” all credentials they will need before
launching their jobs. If during the execution a job intends to use one resource but
it does not have the needed credential (because the target domain uses a different
protocol, or even both parties use the same protocol but the credential is not trusted
by the resource), the job could be stopped before it finishes the desired tasks.

To prevent the above situation for occurring, we need a way of translating
credentials that clients already have into another ones valid for the resources inside
the Grid that they want to use.

1

2 CHAPTER 1. INTRODUCTION

1.2 Problem Statement

As exposed, in a Grid environment members participating in VOs, services, and
end-users need to interact with each other. The Grid service requests may
cross organizational boundaries where different security models are used. This
includes the authentication and authorization procedures the services and their
requesters of the administrative domains composing the Grid must perform in
order to successfully carry out a job. The administrator of every domain chooses
the security credential (or credentials) that will be valid to prove other parties’
identity depending on the security mechanisms implemented in that realm and the
administrator preferences for every resource. The main problems for the holder of
a security token trying to be authenticated are:

Security credentials in different formats: An organization may receive a security
credential from a remote domain that uses a different security mechanism. For
example it might happen for a recipient to receive a Kerberos ticket when it
doesn’t support Kerberos functionality. Thus one challenging issue is how to
convert the format of security credential from one standard or technology into
another. For example converting a security token in form of Kerberos ticket
into an X.509 certificate, or vice versa.

Trust issues: Each request asking to perform an operation has to provide a
collection of claims to prove the accuracy and authenticity of the request.
In order to verify such a request, any individual service provider must
rely on pre-established trust between requester and hosting domain. This
trust establishment helps participants to validate the security credentials
presented by the requesters, and the mechanisms involved are reasonably well
understood and developed. Therefore due to the lack of direct or brokered
trust relationships between the requester and the service provider domains
the security credentials may not be trusted. The implications that above
mentioned credential conversions may have in the trust establishment process
should be investigated.

Finding a way of managing these two points guarantees Grid organizations to
receive a security credential which is understandable and may be trusted. Otherwise,
if authentication cannot be performed at any point of the application execution,
the access to a needed resource might be prevented by the resource’s access control
mechanism. This could lead to the termination or the stoppage of that application
before performing the job it was intended to do.

1.3 Previous work

When this thesis started, PDC had already implemented a Web service able to
translate Kerberos credentials into X.509 certificates. Our contribution from that

1.4. GOALS 3

point has been adding new functionalities to that “basic” system. As we will
see during this paper, we have added Kerberos signature for the communication
translation service→client, and 2 more translations: Kerberos to SAML and X.509
to Kerberos. We have also investigated the interoperability of our system with a
new technology that is growing in importance, Shibboleth.

The functionalities that were already developed were tested in a real Grid
environment before I continued adding new features.

1.4 Goals

To address the exposed difficulties, an effort needs to be made for translating
security credentials from a format comprehensible in the requester domain into an
understandable format in the relying domain. This conversion should be applicable
for diverse formats of security credential supported by different security realms. The
approach needs also to cover the trustworthiness of translated security credentials
as described in Section 1.2.

This translation has to be made without any lack of security, or at least
minimizing the risks to the minimum. When converting a security credential into
a new one valid for the target resource, the client should not be able to perform
actions that she is not allowed to carry out according to her identity and the security
policy. The translation will just map the old security token to an equivalent one
understandable and trustable by the party that makes the authentication procedure,
without adding capabilities the client does not have.

1.5 Approach

The available standards, specifications, and tools will be investigated, choosing the
most suitable ones in terms of their importance, scalability, interoperability, and
level of security offered. In order to make the solution usable, it will try to follow
the most widely used standards in this field. The security credentials that will be
taken into account for mapping are Kerberos tickets, X.509 certificates, and
SAML assertions.

After choosing the technologies and designing the system’s architecture, a
prototype will be implemented. As a result, a translation service will be running,
waiting for credential conversion requests coming from clients. The service will get
the request, validate it, and map the received credential into another specified by
the client which is valid on the target resource. This new credential is sent to the
client, to be used for being authenticated by the resource.

This translation service will be tested to show that the designed model is valid.
Different tests covering the implemented conversions between different credentials
would be performed, showing how the results are valid in terms of format and
trust. These tests would consist in several client applications requesting a service
with different input parameters, showing then the obtained results. Having the

4 CHAPTER 1. INTRODUCTION

time constraints, the evaluation of the service will be focused on the validity of the
results rather than on measuring its performance.

1.6 Limitations

The problem statement described in Section 1.2 has many issues (dealing with
security or not) that need to be addressed in order to construct a system fully
functional in a real Grid environment. Solve all of those issues when designing and
implementing the system is too much to cover for this project, given the manpower
and time budget constraints at hand. These unsolved problems could be addressed
in the future through adding new functionalities to the prototype developed on this
project:

• Attributes/Name-space mapping: Security credentials might be seman-
tically different and incomprehensible for the recipients. Security credentials’
attributes might not be able to be mapped directly from an issuing domain to
a relying domain. In that case, the attributes associated with the security
credential must also be transformed into an understandable format and
semantics. Authorization servers need to understand the formats in order
to use authorization information such as groups and roles associated to an
identity. For instance how to translate a role attribute (“administrator”) to a
set of implicit or explicit privileges in another domain (“userid=root”, “write
access to database”, and so on).

• Attribute issuance: Presenting a token with the requester’s attributes to
the resource often makes more sense that presenting a credential stating her
identity. This is even more important for large and dynamic environments
such as Grids: As new subjects are continuously being added to and
removed from the system, it is usually easier to provide them with the
corresponding attributes understandable by resources they can access to
(“student”, “registered in the course 2G1004”, etc.), rather than giving them
credentials only including their identity (e.g. “Esteban Talavera”, that may
be understandable by the target resource or not). A desired quality of the
translator could be the issuance of attributes based on the client’s identity
(contained in the credential to be translated) and the translator’s policy.
For example, providing a credential including “Esteban Talavera” as identity
information the client could get another token stating that he is “registered
in the course 2G1004”.

• Dynamic trust relationships: As we will see during this report, certain
trust properties between client and token issuer and between token issuer
and target resource must exist beforehand. The establishment of those trust
relationships are out of the scope of this project. We will always suppose
that trust relationships are established before the credential translation takes
place.

1.7. THESIS OUTLINE 5

1.7 Thesis Outline

The rest of the report is organized as follows:

Chapter 2, Background: It gives a briefly explanation of the Grid technology.
Then, this chapter explains the important protocols and specifications needed
to understand our project.

Chapter 3, Credential Mapping: It provides the extension of our Approach,
introduced in Section 1.5. The knowledge acquired from the literature studied
is applied to meet our goals. The architecture and behaviour of the resulted
system is explained for each situation.

Chapter 4, Related Work: It describes some other important projects related
to credential translation, pointing out similarities and differences and possible
interoperability with our system.

Chapter 5, Prototype Implementation: First, it specifies the functionalities
implemented. Then, it introduces the environment used while implementing
the designed system, summarizes the code structure, and explains the main
problems found.

Chapter 6, Analysis of Results: It describes which tests were performed to
check the validity of our prototype, underlining the conclusions we can extract
from the obtained results.

Chapter 7, Conclusions: It contains the summary of the contributions that we
have made, and suggestions for the next steps of the project.

Some Appendices include abbreviations and definitions of concepts used on this
report, and the XML messages exchanged by the parties during the tests.

Chapter 2

Background

This chapter covers the “theory” the reader needs to be familiar with to understand
our work: what is Grids, Grid security issues, and which standards and protocols
have already been proposed in the area of our work.

2.1 Grids

A Grid (aka. Grid Computing) has today many different definitions. It could
be defined as “the ability, using a set of open standards and protocols, to gain
access to applications and data, processing power, storage capacity and a vast array
of other computing resources over the Internet. A Grid is a type of parallel and
distributed system that enables the sharing, selection, and aggregation of resources
distributed across multiple administrative domains” [2]. A Grid is composed of a
set of Virtual Organizations (VOs), which may be dynamically and geographically
distributed and are interconnected by a network (such as the Internet). Those VOs
are groups of resources (computing power, data storage, specific applications, etc.)
that may or may not be located in the same administrative domain. VOs may even
be overlapped.

Grids try to take advantage of this distributed scenario and large amount of
resources, providing services to different clients. Grids can abstract the client from
the complexity of its infrastructure, providing the same service as supercomputers
or computer clusters. This is performed balancing the amount of work between
different VOs. Scalability, performance and heterogeneity are desired characteristics
of a Grid. Three different types of Grids can be distinguished [2]: Computational
Grids (mainly used for applications demanding processing power), Data Grids
(focused on the management of large amounts of information), and Equipment
Grids, where the Grid is used to control some kind of equipment (e.g. a telescope).

In order to give Grid environments the external appearance of a single powerful
platform, where client’s applications that are executing there does not need to
care about where the resources are or their peculiarities, some open standards and
middlewares supporting large scale data and computation have been developed.

7

8 CHAPTER 2. BACKGROUND

These middlewares hide the heterogeneity of Grids, giving standardized interfaces
to applications regardless the specific resource they are using. The Open Grid
Forum1 is the largest community behind the standardization of Grids, being the
Globus Toolkit2 a widely used open source framework for building Grids.

2.1.1 Grid Security

As explained in Section 2.1, heterogeneity is a key characteristic of Grids:
Each administrative domain and resource may be based in different platforms
and architectures and can use different methods (e.g., for authentication and
authorization). This includes security mechanisms, resulting in many security
problems specific of Grids environments. Security maintenance when every realm
could have implemented a varied set of security mechanisms, policies, individuals,
group memberships, etc., is not a trivial issue. Another key quality of a Grid,
its dynamic nature, makes it difficult to establish previous trust relationships, and
policies and security mechanisms used in organizations and resources that compose
the Grid.

In order to allocate a job in a specific resource, the security processes
(authentication, authorization, etc.) have not only to be carried out at a global
level (the Grid), but also satisfy the local requirements stated in the local policies.
The access control is performed locally, at a resource level. Since it is usually not
possible to know all the resources the client’s job will need during execution time,
it is also not possible to generate the security information that will be needed in
advance. In the worst case, the security mechanisms in two VOs that have to
communicate at some step of the execution could be incompatible in some way.
Thus, these cases have to be managed to perform the job.

The Grid framework has to ensure that every client uses only the resources she
is entitled to access to, and with the needed restrictions. For example, the job
from a client could be authorized to execute up to a limit of time in the processor
P1, and read information from the database DB1, but writing on DB1, accessing
in any manner to another database DB2 and executing in the processor P2 could
be forbidden. This access will be given by the authentication and authorization
procedures of the user in the target resource’s domain. The problem is that, given
the heterogeneity and dynamic nature of the Grid, the identity of the client might
not be known in the resource’s local domain, or the credential presented by the
client for authentication might not be valid or trusted there.

2.2 Kerberos

Kerberos is a network authentication protocol, which uses symmetric cryptography
(the encryption is performed with a shared key that only the parties involved in

1http://www.ogf.org/
2http://www.globus.org/toolkit/

http://www.ogf.org/
http://www.globus.org/toolkit/

2.2. KERBEROS 9

the conversation know) for authenticating clients and servers. It was developed
at MIT, becoming the latest version Kerberos V5 an Internet Standard Track in
1993, revised later in 2005 [3]. It is a widely used standard in open (unprotected)
networks, designed to provide single sign-on for these networks. This means that
users do not need to authenticate themselves against every service they want to
use, but once per session (e.g. through a login at the beginning composed by her
username and password).

The actors of a Kerberos realm (an authentication administrative domain) are
clients that want to access services provided by one or more application servers
(hosts). These operations are supervised by the Authentication Server (AS) and
one Ticket Granting Server (TGS). Secret keys are shared between the AS and
the TGS, the AS and the clients, and between the TGS and every server in the
realm (in the latter case they are called master keys). The pair AS–TGS is known
as Key Distribution Center (KDC), and they may be executing in the same
machine or not.

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

TGS
KEYclient−tgs+ ST:[KEYclient−serv]

[KEYclient−serv, clientID, validity,...] KEYtgs−serv

[KEYclient−tgs, clientID, validity,...] KEYas−tgs

Client’s
Local
Cache

Service

1

(user+passwd)
Login

2

3

Application

(serv)
Server

KDC

AS

Request TGT

Response

User

Client
TGT

ST

[KEYclient−tgs]passwd+ TGT:

4

KEYtgs−serv

KEYas−tgs

KEYtgs−serv

KEYas−tgs

Figure 2.1. Basic Kerberos operation

As illustrated in Figure 2.1, a basic Kerberos operation has 4 steps:

1) The user inserts the Kerberos user name and password in the local computer.
This is not done again until the credentials expire.

10 CHAPTER 2. BACKGROUND

2) The client requests a credential to the AS. After authenticating the client, the
AS sends to the client the secret key for communicating with the TGS and the
Ticket Granting Ticket (TGT) for the current session. The TGT is encrypted
with the key shared by the AS and the TGS, and contains the secret key and
the client’s identity.

3) The client requests credentials for a specific service she wants to use to the TGS,
presenting the TGT for authentication. The communication is protected with
the secret key that the client already has and the TGS can obtain from the ticket.
If the client is authorized to use that resource, the TGS answers with a valid
credential valid for the desired service, the Service Ticket (ST). It is encrypted
with the key shared by the TGS and the application server, and includes a key
(the session key) to be used for communicating with the service, and the client’s
identity. That key is also given to the client. Simplifying, we could say that the
Ticket Granting Ticket is a special kind of Service Ticket, being the issuer the
Authentication Server instead of the Ticket Granting Server, and the application
server the client is intended to access to the TGS.

4) The client is now able to request the desired service to the application server.
It presents the ST recently obtained, and authentication information encrypted
with the session key received from the TGS. The application server will obtain
that session key from the ticket, and after validating the information will decide
whether it should serve the request or not, depending on the application server
policy.

The KDC’s database will store the name of all clients, services and hosts
(the so called principals). The principal for a user is usually following
name@REALM (e.g. “esteban@NADA.KTH.SE”), while for services is of the
form service/hostname@REALM (e.g. “imap/mailbox.kth.se@NADA.KTH.SE”)
[4]. The TGS of a specific realm has the principal krbtgt/REAML@REALM [3].

According to the standard [3, Section 5.3] a Kerberos ticket is composed of the
Realm that issued the ticket and the PrincipalName of the target service (either an
application server or the TGS), and a part called EncTicketPart that is encrypted
with the key shared by the issuer and the entity that will verify the ticket. The main
information of this part is the session key that will be used in the communication
between the parties, the identity of the holder (Realm and PrincipalName), the
authentication time (when the issuer authenticated the holder), and the validity of
the ticket (the start and end times that tell the verifier when the ticket is valid). It
is usually not a good idea to issue tickets with very long expiration time, since it
decreases the level of security (e.g., if an attacker is able to get the session key of
the communication, she could listen to it for a longer time). Typical durations of
TGTs are 12 or 24 hours from the start time.

2.2. KERBEROS 11

2.2.1 Cross-Realm Authentication

The scenario shown in Figure 2.1 is only valid when the client, the KDC, and the
application server belong to the same Kerberos realm. A user can be authenticated
and obtain certain services in her local Kerberos domain, where her user name and
password are registered (the user is a principal in that realm), but not outside. The
Cross-Realm Operation [4] is a mechanism that allows a Kerberos principal to be
authenticated in remote Kerberos realms. Then, a user could be able to request a
kerberized service from a remote domain.

If two Kerberos realms A and B want to “export” local services to users of the
remote realm, they will need to trust each other. This trust is given by shared
secrets between the two KDCs. The KDCs will share two secret keys: One will
be used by principals in A trying to access to resources in B, and the other for the
opposite direction. The principals in one realm will be able to get a remote TGT
valid in the remote KDC: The principals “krbtgt/A@B” and “krbtgt/B@A” will
be registered in both KDCs, representing the remote Ticket Granting Servers. The
shared keys will be associated with these two new principals.

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

TGS

KDC

AS

TGS

Client’s
Local
Cache

Client@ARemote TGT

4

ST
+ KEYclient−serv

1
TGT

Request TGT

Remote TGT

Remote TGT
TGT

REALM B

REALM A

Service
ResponseST 5

3

krbtgt/B@A
Request Remote TGT

2

Associated
with

krbtgt/B@A

Associated
with

krbtgt/B@A

KDC

AS

serv/host@B
Shared Key 3

Shared Key 1

Shared Key 3

Shared Key 1

Shared Key 2

Shared Key 2

Figure 2.2. Basic Kerberos Cross-Realm operation

When a user from A wants to get a service of B, the operation illustrated in
Figure 2.2 will take place3:

3Note that this diagram shows only one remote TGS principal and its corresponding key. For
users in B to be able to access services in A, another secret key associated with the principal

12 CHAPTER 2. BACKGROUND

1) The client gets a TGT from the KDC A.

2) As the client realizes that the service she is intended to use is located in a remote
realm, the TGT is used to request a remote TGT valid for that realm. Thus,
the principal specified by the client will be krbtgt/B@A (the name of the remote
TGT).

3) The local KDC now creates the remote TGT, encrypted with its associated key
(the one that is shared by A and B).

4) With the received TGT, the client asks the KDC in realm B for a service ticket
valid for the remote resource. The KDC in B is able to decrypt the TGT with
the Shared Key 1 and validate the information. If valid it issues the requested
ST.

5) The client requests the service presenting the ST.

To reduce the number of shared keys when a Kerberos realm has a trust
relationship with many others, Kerberos v5 introduced the transitivity of trust:
If realm A trusts B (they share two keys), and B trusts realm C, then automatically
A trusts C.

2.3 Public Key Infrastructure

The public key encryption is based on asymmetric key cryptography (see Ap-
pendix A). This means that there are a pair of keys, one private (that only the
owner possesses) and one public (accessible for everybody): the data encrypted by
one key can only be decrypted by the other one and vice versa. This technology is
maintained by the principle that it is computationally infeasible (with the computer
power and algorithms currently available) to derive the pair key of a given one [5].
The public key mechanism provides confidentiality (the data encrypted with the
public key can only be decrypted by the holder of the private key) and integrity
and authentication through digital signatures (only the owner of the key pair is able
to encrypt information with the private key, and it can be verified by the recipient
with the public key).

The Public Key Infrastructure (PKI) is “a system of CAs [Certification
Authorities] [. . .] that perform some set of certificate management, archive
management, key management, and token management functions for a community
of users in an application of asymmetric cryptography” [5]. A public key certificate
is a data object that binds the user’s identity with her public key [5]. In PKI, this
binding is done through a Trusted Third Party (the CA), which signs the certificate.

krbtgt/A@B must be shared between the KDCs.

2.4. SECURING XML 13

2.3.1 X.509 certificates

The most used variant of the Public Key Infrastructure is the X.509-based PKI. It
uses X.509 certificates as credentials for publishing the public keys. This model
works as follows:

1) When a user wants to create a certificate, it first creates a pair of keys. The
private key will not leave the user’s machine, but the public key is sent along with
the user’s identity in a Certification Request (CR) to a Certification Authority
(CA). A CA is a trusted party, which also holds its own pair of keys and certificate
(possibly generated by a higher level CA).

2) Given the certification request, the CA adds to its data a validity period, a
serial number, and the CA’s identity. This information is signed with the CA’s
private key. This includes computing the hash value of the data included in the
certificate so far and then to encrypt it with that key. The digital signature is
appended at the end of the certificate, and therefore it links the user’s identity
with the public key she generated. The result is the certificate, which is sent to
the user.

3) Now the user can use the certificate as a credential together with its private key
to prove its identity. For example, she could send the certificate and a value
encrypted with the private key to another entity. If the receiver trusts the CA
that signed the certificate (or the signer of the CA’s certificate and so on), then
that entity will match the certificate’s identity and that public key, being able
to verify any value signed with the private key.

The latest revision of the X.509 certificate format is version 3 [6]. The
most important fields of an X.509 v3 certificate [6, Section 4] for us are the
serialNumber, the publicKey, the validity (stating that the certificate is not
valid before and after two given times), and the issuer and subject fields
indicating the CA’s identity and certificate holder’s identity respectively. These
two fields must be Distinguished Names (DN). This standardized name consists
of several fields that give information about the subject they are referred to, like
country (C), organization (O), organization unit (OU), state or province name (ST),
locality (L), common name (CN), etc. An example of my DN, if I am working at
KTH/PDC, could be: “O=KTH, OU=PDC, L=Stockholm, ST=Stockholm, C=SE,
CN=Esteban”

2.4 Securing XML

One way of exchanging XML messages in a secure manner is the application of XML
Signature and XML Encryption to provide both integrity and confidentiality in the
communication.

14 CHAPTER 2. BACKGROUND

2.4.1 XML Signature

Digital signatures within XML messages [7] provide message integrity (has the
message been changed since it was computed in the origin?), origin authentication
(who sent the message?) and support for non-repudiation (i.e., the sender cannot
deny that she was the origin of the message) for the objects the signature it is
applied to. The standard [8] defines the Signature element, with the signature’s
information. It will have a child element SignedInfo which will contain the details
of the signature process performed to obtain the signature value:

CanonicalizationMethod: As XML files with the same ”meaning” could
have different digests values (because of blank spaces, end of lines, and
comments for instance), the file must be canonicalized before hashing it. The
canonicalization process ensures that any XML message part with the same
information (same elements containing the same data) will have the same
binary representation, and therefore the digest result will be the same for all
of them.

SignatureMethod. It tells us about the method used to compute the signature,
such as “RSAwithSHA1” which means that the hash function used was SHA-1
and the signature was computed with the RSA algorithm.

Reference (there should be at least one in a SignatureInfo element). It includes
the reference to the data that is being signed (i.e., which elements of the XML
message or which data objects), the transformations (e.g. canonicalization)
made to the data before hashing it (Transforms element), the algorithm used
to calculate the digest value (DigestMethod), and that value (DigestValue).

After the SignedInfo appears the SignatureValue, that is the calculated value
of the canonicalized SignatureInfo element (which includes hash value of the data
specified as we have seen).

Then the KeyInfo is shown, which tell us about the key used during the
signature. For instance, it could be a public key or the key contained in an attached
credential. Public keys are transported inside a KeyValue element. For example, if
the public key algorithm is RSA, then a RSAKeyValue with the information needed
to construct the public key will be a child of the element before. Nevertheless,
if the signature is performed with the public key associated with the sender’s
certificate, this certificate (or even only its serial number when the recipient already
has the certificate stored locally) can be included in a X509Data element within
the KeyValue element. It allows the receiver to retrieve the public key from the
certificate and validate the signature. The KeyInfo element is not mandatory.

Listing 2.1 illustrates the structure of a Signature element4 according to the
standard [8].

4Where “?” means zero or one occurrence, “+” denotes one or more occurrences, and “*”
denotes zero or more occurrences

2.4. SECURING XML 15

<Signature ID?>
<SignedInfo >

<CanonicalizationMethod />
<SignatureMethod />
(<Reference URI? >

(<Transforms >)?
<DigestMethod />
<DigestValue >

</ Reference >)+
</ SignedInfo >
<SignatureValue >
(<KeyInfo >)?
(<Object ID?>)*

</ Signature >

Listing 2.1. Structure of a Signature element

2.4.2 XML Encryption

Through XML Encryption [9], confidentiality is added to the XML content so
that only the holders of the key used for encryption are able to inspect the plain
text of the protected data. The element EncryptedData will encapsulate both all
information concerning the encryption procedure and the resulting cipher value
itself.

For the recipient to be able to decrypt the data, the EncryptedData includes the
EncryptionMethod used (for example AES or RSA) and the KeyInfo element with
the same meaning as in XML Signature (it has actually been taken from its name
space). The result of the original data encryption using the specified algorithm and
key is encapsulated inside the CipherValue child of the CipherData element.

If the recipient does not have the key used for the sender when encrypting,
it can be included inside the KeyInfo element as EncryptedKey. For example,
it can be encrypted with the recipient’s public key. In that case, when the
receiver gets the message, she uses her private key for decrypting the key inside
the EncryptedKey element, and then this key is used to decrypt the rest of the
cipher data. The EncryptedKey element will include the EncryptionMethod and
CipherData explained above to give the recipient enough information about how to
decrypt the key.

The encryption can be applied to:

• An entire XML file: The XML file will be composed just by an EncryptedData
element.

• An element of the XML file: The EncryptedData element will replace the
plain text element, and will have a Type attribute specifying that the content
encrypted was an element.

16 CHAPTER 2. BACKGROUND

• Contents of an element: The EncryptedData element will replace the plain
text of the protected content, and will have a Type attribute specifying that
the content encrypted was an element’s content.

• Non-XML data (e.g. any attached file).

The (simplified) structure of a EncryptedData element4 according to the
standard [9] is described in Listing 2.2.

<EncryptedData Id? Type? MimeType ? Encoding ?>
<EncryptionMethod />?
<ds:KeyInfo >

<EncryptedKey >?
<AgreementMethod >?
<ds:KeyName >?
<ds:RetrievalMethod >?
<ds:*>?

</ ds:KeyInfo >?
<CipherData >

<CipherValue >?
<CipherReference URI?>?

</ CipherData >
<EncryptionProperties >?

</ EncryptedData >

Listing 2.2. Structure of a EncryptedData element

2.5 Security Assertion Markup Language (SAML)

The Security Assertion Markup Language (SAML) v1.1 standard [10] defines an
XML based syntax to represent security credentials. Although there is a more recent
SAML specification v2.0 [11], when we talk about elements of the SAML assertions
in this section we will follow the version 1.1. The reason is that there is not open
implementation of the version 2.0 to be used in the project yet. Those two versions
follow the same principles, but there are some incompatibilities (mainly syntactical,
in names and attributes of the elements). The differences between SAML v1.1 and
SAML v2.0 are described in [12, Section 5].

SAML is used for exchanging authentication and authorization data between
different security domains (the one that provides the user’s identity and the domain
that provides the service). Its aim is to provide an standard technology to provide
SAML Web single sign-on.

According to the SAML standard [10], an entity (the requester) may request a
SAML assertion to a SAML authority. The Assertion XML element will wrap all
the information related to the assertion. The AssertionID, the Issuer name and
the IssueInstant (time when the assertion was issued) are important attributes
of that root element. One child element describes some Conditions that can be
specified for each assertion, for instance its validity period through the attributes

2.5. SECURITY ASSERTION MARKUP LANGUAGE (SAML) 17

NotBefore and NotOnOrAfter. There are three kinds of assertions the SAML
authorities may issue, which would be child elements of the root element Assertion.
All of them will include a Subject sub-element with information about the holder
of the assertion (the user that wants to be authenticated). This sub-element
contains (either or both) a NameIdentifier and a SubjectConfirmation that
gives a confirmation method for the holder to prove her identity. The confirmation
method could be for example the user’s public key, which can be included inside
a KeyInfo as described in Section 2.4.1. Then, if a user can prove that she has
the corresponding private key, she will prove that she has the identity specified in
the assertion. Each different kind of assertion will state different facts about this
subject:

The Authentication Assertion, given by an AuthenticationStatement. It
specifies the AuthenticationMethod used and the AuthenticationInstant
when the subject was authenticated.

The Attribute Assertion. It associates a set of attributes to a subject
through an AttributeStatement element. For this purpose, child elements
called Attribute are added. Each one associated pairs AttributeName–
AttributeValue. These attributes are not standard but defined by the
system designer of the system. One example of attribute could be “Role–
PhD. Student”.

The Authorization Decision Assertion. It is described in an element called
AuthorizationDecisionStatement. This kind of assertion states whether
the subject is entitled to use the service offered by the relying party (Resource)
or not, the Decision. The subject will be authorized to perform a set of
Action (e.g. read some data).

The standard [10] defines a number of request/response protocols. One of them
is used to request security credentials to a SAML authority. When an entity makes
a Request to ask for assertions it has to specify the assertions it is waiting for (i.e.,
if it needs authentication, attribute, or authorization decision statements).

In the Response the SAML authority will include the Status (e.g. success) of
the corresponding requested assertions, according to the policies. Any number
of Assertion elements (containing authentication, attribute, or authorization
statements) could be included. A diagram of a SAML Response message is
illustrated in Figure 2.3 (the message on the left). In this case, the Response
element is carried in the SOAP Body (see Section 2.6).

To add integrity and origin authentication to the assertion requests, responses,
and assertions themselves, they may be signed by the issuer adding a ds:Signature
element as described in Section 2.4.1. When a resource receives an assertion signed
by a SAML authority, it can be sure the assertion was issued by that authority and
it has not been modified by another party. If the receiver trusts that authority, then
it would accept the assertion as valid.

18 CHAPTER 2. BACKGROUND

An example of a signed SAML assertion containing an authentication statement
is shown in Listing 2.3. With it, the issuer “www.pdc.kth.se” assures that the
subject identified by “esteban@kth.se” was authenticated at a fixed time. This
assertion is valid 24 hours from the authentication time.

<Assertion
AssertionID ="..."
IssueInstant ="2006 -04 -27 T00:46:02Z "
Issuer ="www.pdc.kth.se"
MajorVersion ="1"
MinorVersion ="1"
xmlns=" urn:oasis:names:tc:SAML:1 .0 :assertion "
xmlns:xsd ="http: // www.w3.org /2001/ XMLSchema "
xmlns:xsi ="http: // www.w3.org /2001/ XMLSchema - instance ">
<Conditions

NotBefore ="2006 -04 -27 T00:46:02Z "
NotOnOrAfter ="2006 -04 -28 T00:46:02Z ">

<AuthenticationStatement
AuthenticationInstant ="2006 -04 -27 T00:46:00Z "
AuthenticationMethod ="...">
<Subject >

<NameIdentifier Format ="...">
esteban@kth .se

</ NameIdentifier >
<SubjectConfirmation >

<ConfirmationMethod >... </ ConfirmationMethod >
</ SubjectConfirmation >

</ Subject >
</ AuthenticationStatement >
<ds:Signature

...
</ ds:Signature >

</ Assertion >

Listing 2.3. Example of a signed SAML Assertion

The SAML Bindings specification, [13] for v1.1 and [14] for v2.0, defines several
manners of carrying assertion request and responses. For example, one of them
defines how to wrap assertions into SOAP messages. The requests and responses
will be included into the SOAP body.

The assertions can be included as security tokens (i.e. a set of claims) in Web
Services Security (WSS) messages (see Section 2.7). This case is illustrated on the
right message in Figure 2.3. Through attaching SAML in the WSS header, the
requester can prove something to the target of the message, e.g. its identity. It may
also be used to contain information about the key used for signing some other parts
of the SOAP message in these WSS messages. It is important to note the difference
between the bindings specification of the SAML standard and the introduction of
a SAML assertion into a WSS message: The assertion is placed in different parts
of the SOAP message, and it has different purpose (in one case the issuer is just

2.6. WEB SERVICES 19

delivering the assertion to its holder, and in the other one the assertion has an
authentication/authorization purpose).

SOAP Envelope

SOAP Header

SOAP Body

Statement

Assertion

wsse:Security
SOAP Header

SOAP Envelope

Statement

SOAP Body

Assertion

SAML Response

Figure 2.3. Assertion within a SAML Response message and a WSS Message

Both approaches may be used in the same session by a subject: For example,
the subject could first request a SAML assertion to a SAML authority using the
protocol explained above and the SOAP over HTTP binding specification, and after
wrap that assertion into a WSS SOAP message. She could also sign some data in the
message with the key referred in the assertion, if any, before sending it to the Web
service. The Web service would then verify the signature and use the information
included in the assertion to perform authentication and access control procedures.

2.6 Web Services

A Web Service (WS) is a general concept that has many definitions. The W3C,
in a attempt to provide a common description and architecture of the general
concept of Web service, defines a Web service in [15] as “a software system designed
to support interoperable machine-to-machine interaction over a network. It has
an interface described in a machine-processable format (specifically WSDL). Other
systems interact with the Web service in a manner prescribed by its description
using SOAP messages, typically conveyed using HTTP with an XML serialization
in conjunction with other Web-related standards”.

SOAP is an XML-based standard for exchanging messages over a network,
usually using HTTP. It defines a standard message format and guidelines for
processing these messages. The structure of a SOAP message is:

20 CHAPTER 2. BACKGROUND

• SOAP message (an XML document)

– SOAP part (only XML content)
∗ SOAP Envelope

· SOAP Header (optional, zero or more of them)
· SOAP Body, containing XML data or a SOAP Fault (response

showing that something went wrong with the request message)
– Zero or more Attachment Parts: content in XML or non-XML format

(e.g. a binary file)

The Web Services Description Language (WSDL) is a standardized XML-based
format for describing services. It includes the service interface, how to access
it, etc. The client requests and service responses will be made through SOAP
messages, following the information specified in the WSDL description (that could
be published on the Web).

A set of specifications, known as the WS-* family, are being developed to cover
different aspects of Web services, including security.

2.7 WS-Security

Emerging Web services security specifications are targeted to integrate currently
available security technologies in addition to considering security requirements
of future applications. These specifications provide a comprehensive model
of security functions and components for Web services. WS-Trust and WS-
Federation specifications are the extensions to WS-Security to provide a way of
establishing, assessing and brokering trust relationships. While WS-Security is
being standardized by OASIS5, WS-Trust and WS-Federation are specifications
defined by a group of several companies, like Microsoft, IBM, and VeriSign among
others.

The Web Services Security (WSS) standard provides a way of adding XML
Signature and XML Encryption for securing SOAP messages, and defines how to
add identity information to those messages, such as security tokens. Therefore,
it achieves message confidentiality (through XML Encryption), integrity (through
XML Signature), and authentication (through including a security token). The key
used for encryption/signature could be the one included in the attached credential,
e.g. a X.509 certificate or a Kerberos ticket.

To achieve confidentiality and integrity, we could use communication security :
applications send the information in clear, and other protocols located bellow
these applications in the protocol stack protect it at the packet level. Examples
of this behavior could be IPsec (network layer) and SSL/TLS (transport layer).
However, protocols like WSS give us protection at the document level: the sensitive
information is protected at the application level, and after it is passed through

5http://www.oasis-open.org/

http://www.oasis-open.org/

2.7. WS-SECURITY 21

the communication layers bellow, which will send the packets without the need
of adding more security features. The latter model provides end-to-end security
(the SOAP messages will be protected during the whole way between sender and
receiver), while in protocols like SSL/TLS the messages are encrypted hop-by-hop,
but they are vulnerable in these intermediate hosts. Since intermediate hops might
be untrusted, the use of WSS instead of other approaches is desirable in many cases.

The current version of the so called WS-Security 2004 standard is 1.1. This
version is a review of the first 1.0 specification, with more security token profiles,
errata revised, and a few new XML elements added to improve the standard. Given
the recent publication of the version 1.1, no implemented open APIs to be used
during the development of this project are available yet. For this reason, the 1.0
version will be studied more carefully.

The specification for each version is divided into several documents: one “core”
specification describing the SOAP Message Security that covers the XML signature
and encryption procedures to protect SOAP messages ([1] and [16]), and several
token profiles about how to include security tokens in combination with the core
specification (how to attach and use them in the SOAP security header defined
in that standard). Thus, each security token has its own profile specification
separated from the WS-Security core specification: Username token ([17] and [18]),
SAML assertions ([19] and [20]), X.509 certificates ([21] and [22]), Kerberos Tickets
(only supported by v1.1 [23]), and Rights Expression Language (REL). Figure 2.3
illustrates how a security token, a SAML assertion in this case, is included into a
WSS message.

According to the WSS syntax, the SOAP Header will have only one child element
wsse:Security containing all the security information:

• A security token can be included. As has been pointed, several kinds
of elements could be included in this part: a UsernameToken, prob-
ably with a Password, SAML assertions in Assertion elements, or a
BinarySecurityToken (an X.509 certificate or a Kerberos ticket). The type
of binary token is specified in the ValueType attribute. As a text-based file
like XML files is not suitable for including binary data, this data should be
encoded before adding it to the file. The encoding algorithm used appears in
the EncodingType attribute.

• A ds:Signature, the one explained in Section 2.4.1. The Reference member
could refer to a SOAP Body element, while the KeyInfo could point to a
secret key or a key contained in a security token. In the latter case, a
SecurityTokenReference element will reference the token. It can be a local
reference (referring the key of the attached token) or point to a token that is
not attached but the other party knows.

Listing 2.4 shows an example of a WSS message, with a signature providing
integrity to the SOAP Body part and a security token attached. The SOAP
S11:Header contains the wsse:Security element. This security element is

22 CHAPTER 2. BACKGROUND

composed of a wsse:BinarySecurityToken (lines 6–11), in this example an
X.509 v3 certificate as specified in line 7, and a ds:Signature element (lines
12–36). This signature is applied to the SOAP body (line 18) and the key that
the recipient will need for verifying it is the one contained in the security token,
as written in line 33 (it is a reference to “X509Token”, which is the ID of the
BinarySecurityToken element that wraps the certificate). The S11:Body, from
line 39, contains application-specific information to be processed by the recipient’s
application. For instance, it could be a client requesting the price of a product that
the service is selling, appearing in the body the name of the product.

1 <?xml version ="1.0" encoding ="utf -8"?>
2 <S11:Envelope xmlns:S11 ="..." xmlns:wsse ="..."
3 xmlns:wsu ="..." xmlns:ds ="...">
4 <S11:Header >
5 <wsse:Security >
6 <wsse:BinarySecurityToken
7 ValueType ="...# X509v3 "
8 EncodingType ="...# Base64Binary "
9 wsu:Id =" X509Token ">

10 MIIEZzCCA9CgAwIBAgIQEmtJZc0rqrKh5i ...
11 </ wsse:BinarySecurityToken >
12 <ds:Signature >
13 <ds:SignedInfo >
14 <ds:CanonicalizationMethod Algorithm =
15 "http: // www.w3.org /2001/10/ xml -exc -c14n#"/>
16 <ds:SignatureMethod Algorithm =
17 "http: // www.w3.org /2000/09/ xmldsig #rsa -sha1"/>
18 <ds:Reference URI="# myBody ">
19 <ds:Transforms >
20 <ds:Transform Algorithm =
21 "http: // www.w3.org /2001/10/ xml -exc -c14n#"/>
22 </ ds:Transforms >
23 <ds:DigestMethod Algorithm =
24 "http: // www.w3.org /2000/09/ xmldsig #sha1"/>
25 <ds:DigestValue >EULddytSo1 ... </ ds:DigestValue >
26 </ ds:Reference >
27 </ ds:SignedInfo >
28 <ds:SignatureValue >
29 BL8jdfToEb1l / vXcMZNNjPOV ...
30 </ ds:SignatureValue >
31 <ds:KeyInfo >
32 <wsse:SecurityTokenReference >
33 <wsse:Reference URI="# X509Token "/>
34 </ wsse:SecurityTokenReference >
35 </ ds:KeyInfo >
36 </ ds:Signature >
37 </ wsse:Security >
38 </ S11:Header >
39 <S11:Body wsu:Id =" myBody ">

2.7. WS-SECURITY 23

40 ...
41 </ S11:Body >
42 </ S11:Envelope >

Listing 2.4. Example of signed WSS message with binary token [1]

2.7.1 Credential and Trust Issues not Addressed by WS-Security

As we have seen, WS-Security covers confidentiality, integrity, and authentication at
the SOAP message level, and we can also include and refer to security tokens. Now
we deal with one question that is not addressed by the WS-Security specification:
What if the sender and the receiver of the message do not implement the same
security mechanism? For example, if the user cannot get a credential syntactically
understandable by the service, all security procedures we have seen will be useless.
As different security mechanisms as well as different name spaces are used in each
domain, the same security credential might not be valid in different ones. This
credential might be invalid in terms of [24]:

• Format: The syntax of the sent token should be understandable by the
receiver. For instance, the requestor of a service could have a Kerberos
ticket for authentication and message signature, but the service might only
understand X.509 certificates.

• Namespace: The user’s identity name and her attributes must be valid in
the service, in order to make a successful authentication. The same entity
could have different identity names in different domains (e.g., “Esteban” in
domain1, “Esteban Talavera” in domain2, “etg” in domain3. . .).

• Trust: In order for a credential to be trusted, the recipient must be able to
build a chain of trust from that credential to another entity the recipient trust
on (e.g. a certification authority when using X.509 certificates).

Two other Web services specifications, WS-Trust and WS-Federation, have been
developed to address those issues.

2.7.2 WS-Trust

WS-Trust [25] introduces appropriate security services and methods for exchanging
security tokens to form the basis of trust relationships between different and
heterogeneous trust domains. These services enable federation of entities to
translate or exchange security credentials into other formats of security tokens.
Those may also be used to exchange credentials to be trustable by the receiver
when there is a lack of trust between the ends of the communication. WS-Trust
is placed just over WS-Security in the protocol stack. Therefore, it makes use of
the security mechanisms provided by WS-Security during the messages exchange.

24 CHAPTER 2. BACKGROUND

WS-Trust just extends WS-Security for security token exchange and issuance, and
trust establishment.

The WS-Trust standard specifies a request/response protocol for exchanging,
issuing, renewing, and validating security credentials between the client requester
of some service and a trusted authority called Security Token Service (STS). These
functions may be requested not only by the holder of the assertion it is being
exchanged, but also by other entity (e.g. the service that does not understand a
received credential) on behalf of that user. Some extensions in form of message
exchange before the above functions, e.g. for negotiating parameters or exchange
challenge/response messages to prove the possession of a secret associated with the
token, are also covered by the standard.

Simplifying, a WS-Trust message exchange works as follows: If the credential
is not valid for the recipient of the request, the client (or the service that receives
the SOAP message with the invalid credential) sends a SOAP message to the STS
with a wst:RequestSecurityToken (RST) element containing that credential. This
message will have the same structure as the one in Listing 2.4, including in the SOAP
Body the RST element. It is mandatory to specify in the wst:RequestType element
the functionality that is being requested (e.g. security token issuance, renewal or
validation). The wst:TokenType (optional) will specify the kind of token requested
(e.g. an X.509 v3 certificate). If the client wants to specify the scope for which the
requested security token is desired to be valid, she can add this information (e.g. the
target service(s) or the service’s realm) to a wsp:AppliesTo element. A RST should
have either or both a wst:TokenType or/and a wsp:AppliesTo element, to tell the
STS the format of the requested token. A set of wst:Claims may be included in
the token issuance scenario. These claims could contain a certification request to
be examined and signed by the STS, or the credential the client wants to exchange.

When the STS receives the SOAP message, it extracts the credential and
maps it into a token valid in the requested domain (or just the one specified in
the wst:TokenType of the request, if included). That new token is sent back in
a wst:RequestSecurityTokenResponse (RSTR) element in the body of a WSS
SOAP message. It might have an optional wst:TokenType element with the type of
the returned token, which is included in the wst:RequestedSecurityToken part.
Sometimes, this new token has an associated key that is generated by the STS
at the same time: e.g., in Kerberos issuance the session key included inside the
ticket has to be given to the client for the latter to be able to communicate with
the target service, as explained in Section 2.2. This key can be delivered to the
client in a wst:RequestedProofToken. As the key must be encrypted during the
conversation to avoid another party intercepting it, it is sent in the EncryptedKey
structure introduced in Section 2.4.2.

As this token will be signed in some way by the STS, the STS and the service
should have a trust relationship (direct or indirect) for this token to be valid. The
new token will be the one that the client sends to the service if the client was the
origin of the token request.

A typical security token exchange scenario is described in Figure 2.4. First, the

2.7. WS-SECURITY 25

requestor obtains its credential (Kerberos ticket, SAML Assertion, X.509 certificate,
or any other) from an authority (1). This step is usually not performed every time,
since the credential is usually stored in the client’s local cache while it is valid. Then,
the requestor sends a RST message to the STS, receiving after the RSTR with the
new credential valid in the resource’s domain (2), which will be used to request the
service (3). It is important to note that the STS is located in the resource’s domain
in this example, but it could be placed in the requestor’s local domain as long as
the STS is trusted by the remote resource.

Provider
(e.g. TGS,
Cert Auth,

SAML Auth...)

Credential

Requestor Resource

its credentials
locally and gets

authenticates
The Requestor The credential

is not valid,
sec. token
exchange
requested

Service
requested

credential
using the new

1 2

3

STS

REALM 2REALM 1

TRUST

Figure 2.4. Typical WS-Trust security token exchange scenario

2.7.3 WS-Federation

Federation: “collection of realms that have established trust. The level
of trust may vary, but typically includes authentication and may
include authorization” [26].

WS-Trust has solved the first of the three credential issues commented in
Section 2.7.1 that are not covered by WS-Security: The issuance, renewal, and
validation of a credential in a different format understandable by the recipient of the
message, which can be trusted. However, WS-Trust does not specify any method for
identity mapping and authorization information federation between the requestor
and recipient domains.

WS-Trust only solves the third exposed point (trust) partially: Although
requestor and recipient of the message do not need to have a trust relationship
beforehand, there must be trust relationships requestor–STS and STS–recipient.

26 CHAPTER 2. BACKGROUND

The requestor and the STS must have an established trust relationship for the STS
to be able to trust the security token the client wants to exchange, for instance
through direct trust between the STS and the issuer of that credential. This issuer
could be an Identity Provider (IP): an special case of STS that is able to provide
identities (can make identity statements when issuing security credentials). If the
STS trusts the token to be exchanged, the security token issued by the STS will be
then trusted by the final recipient of the message if and only if the recipient trusts
the STS. Therefore, WS-Trust does not address the problem when the requestor
or the recipient and the STS do not trust each other, directly or indirectly. As
shown in Figure 2.4 the requestor’s realm and the recipient’s realm must have an
established trust relationship (direct in the illustrated example, although it could
be indirect trust through a third party trusted by both).

The WS-Federation specification [26]6 “defines mechanisms that are used to
enable identity, account, attribute, authentication, and authorization federation
across different trust realms”. Therefore, it is focused on the second of the security
token issues not covered by WS-Security (and neither by WS-Trust): Namespace
translation. For example, the identity federation could be used to associate several
pseudonyms with only one identity (e.g. when the same person has many email
addresses). Thus, it describes how to perform identity mapping when different
realms/resources accept different identities for the same subject.

The standard [26] defines two different kinds of requestors: Passive requestors,
a Web browser only able to use HTTP and that cannot issue security tokens, and
Active requestors, an application that is able to create Web services messages like
the described in WS-Security and WS-Trust. They both have their own WS-
Federation profile, separated from the “core” specification, to address how each
requestor implements the general framework.

In the same way that WS-Trust extends WS-Security with new functionalities,
WS-Federation is an extension of WS-Trust in order to address issues not covered
by the latter: add federated identity mapping mechanisms to the WS-Trust
exchange/issuance model. This is done through new services and standardized
messages to manage those services. One important service is the Pseudonym Service,
that stores information about alternative identities of the federated realms. This
service allows to the same entity to have different aliases in different realms that
host the resources. There are specific elements to place in WSS messages for getting,
setting and deleting pseudonyms from the service, and some extensions to WS-Trust
RST and RSTR messages for asking about how to process the pseudonyms of the
requested credentials. An example scenario of the use of a pseudonym service is
shown in Figure 2.5. When the IP/STS in the resource’s realm receives the RST
message (2), if the received identity is not valid locally, the IP/STS asks for the
local alias of the subject (3). The IP/STS could also set a new temporally alias for

6A more recent specification (WS-Federation v1.1) has been released in December 2006.
However, it was not available when studying the standards at the beginning of the thesis, so
during the report we will refer to the previous version, the one listed in the Bibliography.

2.7. WS-SECURITY 27

that identity. Then, the requestor gets the new credential with the mapped alias
(4) and requests the service (5). Now, the identity of the received credential will be
valid in the resource’s realm.

Pseudonym
Service

Requestor Resource

authenticates

The credential
is not valid,
sec. token
exchange
requested

Service
requested

credential
using the new

1

5

TRUST

The Requestor

its credentials

a new one
alias or setting

Getting the3

2

4

IP/STS IP/STS

locally and gets

Figure 2.5. Example of credential mapping with Pseudonym Service

WS-Federation is placed just over WS-Trust in the protocol stack, and therefore
it is also located above the WS-Security layer, being able to use its security services.

The definition of a protocol for dynamic establishment of trust relationships is
out of the scope of WS-Federation, as stated in the specification. Therefore, it does
not solve the trust issue described in Section 2.7.1.

Chapter 3

Credential Mapping

In this chapter, we provide an analysis of the Problem Statement described in
Section 1.2. We study the requirements of the system to be constructed in order to
solve the problem. We also include the identification of the actors and their basic
interaction with the needed requirements to achieve the goals listed in Section 1.4.

Following the WS-Trust model illustrated in Figure 2.4, the conversion scenario
will have 4 actors: The Identity Provider (the entity that issues credentials to
users after some sort of authentication), the Requestor of the conversion, the
Resource the Requestor wants to gain access to, and the STS (the entity that
receives conversion requests and issues new tokens valid on the resource). First, the
client will get a credential from its IP if she does not have a valid one yet. Then, the
requestor will try to access to the resource and she will realize that the credential
she owns is not valid to request that service. Therefore, the requestor will send
a WS-Trust RST message attaching her security token (and maybe more needed
information), and asking for a credential issuance of the format understandable by
the resource. If the request is valid, the STS will translate the received credential
into an equivalent one in the other format, returning it in the RSTR message.
Additional information, like a proof of possession (i.e., a secret that allows the
sender to prove that she is the holder of the credential) for the client, could be added
to the response message. This proof of possession must be encrypted to ensure that
only the credential requestor gets it. Both request and response messages must be
signed to authenticate the source and be sure it was not modified during the way.
Finally, the client requests the service with the new security token.

For this scenario to work, the credential generated by the IP must be trusted by
the STS, and the new credential must be trusted by the target resource. Therefore,
there must be previously established (direct or indirect) trust relationships between
the IP and the STS, and between the STS and the target resource.

Table 3.1 shows specific information (simplified) corresponding to this general
overview for Kerberos, PKI–X.509, and SAML. For each case, it includes the IP, the
security credential and the main information that it contains in terms of identity,
how the trust credential–authenticator is achieved, and which token the sender must

29

30 CHAPTER 3. CREDENTIAL MAPPING

have to proof to the receiver that she is the holder of the credential.

Kerberos PKI–X.509 Cert. SAML
Identity
provider KDC CA SAML Authority

Security
credential(s) TGT and ST X.509 Certificate Assertion

Typical validity
period 1 day 1 year 1 year

Holder’s
Identity
information

Principal and
Realm names DN Name Identifier

Trust

Ticket encrypted
with secret key the
holder does not
have (only KDC &
Service do)

Signed with CA’s
private key

Signed by the
SAML Authority

Proof of posses-
sion

Key inside the en-
crypted ticket is
given to the holder
by other means

The certificate in-
cludes the holder’s
public key

The assertion
may contain the
holder’s certificate
or public key
(SubjectConf.)

Table 3.1. Peculiarities of each authentication mechanism and their credentials

The following sections give details of each conversion.

3.1 Kerberos =⇒ X.509/SAML Translation

In this scenario, a user who has access to a Kerberos domain (she is able to get
a ticket from her local KDC) is requesting the exchange of her ticket for a X.509
certificate or a SAML assertion. Then, the client needs an STS acting as a Kerberos
service.

Figure 3.1 illustrates Kerberos token translation to either X.509 certificate or
SAML assertion. The actions that need to be performed for these conversions are
the following (steps 1, 2, and 3 are standard Kerberos message exchanges, and they
have to be performed only once until the expiration of the generated tickets):

1) The client performs login to her local machine, inserting her Kerberos username
and password.

2) With that information, a TGT is requested to the AS. The returned TGT is
encrypted with the key shared between the AS and the TGS. The corresponding
key included inside the ticket is sent to the client, and it will be used on the

3.1. KERBEROS =⇒ X.509/SAML TRANSLATION 31

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

TGS

Client’s
Local
Cache

TGT

TGT

Request TGT

2

3

STS

K
ey

 P
ai

r
G

en
er

at
e

Pu
bl

ic
 K

ey

4

KDC

5

AS

1
Client

(user+passwd)
Login

User

ST +
Session Key

Session Key
using the

Messages signed

6

wst:RST
(CR/PubKey

+ ST)
(SAML/X.509)
wst:RSTR

Shared Key 1

Shared Key 2

Shared Key 2

Shared Key 1

Figure 3.1. Kerberos Ticket → SAML/X.509 conversion

communication between the client and the TGS. The TGT is stored in the
client’s local cache for future use.

3) The TGT is used to request to the Ticket Granting Server a service ticket valid for
the STS. If the client is authorized, the TGS sends her the ST (which is encrypted
with the key shared between the TGS and the STS) and the corresponding
session key (which is also included inside the ST). Now, the user has a security
credential stating her identity, and a key to prove to the STS that she is the real
holder of that token.

4) A public and private key pair is generated and stored locally in the user’s
machine. The private key will never leave the user, while the public key will
be included in the request message. For the Kerberos → X.509 conversion,
it is obvious that the certificate needs to have the client’s public key. Let’s
see what happens with the Kerberos → SAML conversion: As mentioned in
Section 2.5, the Subject may include a SubjectConfirmation that gives a
ConfirmationMethod for the receiver to prove that the assertion came from the
entity with the specified NameIdentifier. The standard confirmation methods
are defined in [13, Section 5], of which three could be used when generating the
assertion:

• Sender Vouches: “Indicates that no other information is available about

32 CHAPTER 3. CREDENTIAL MAPPING

the context of use of the assertion. The relying party SHOULD utilize other
means to determine if it should process the assertion further” [13]. As the
final resource could have no other way to prove the client’s identity, this
method is not suitable for our system.

• Bearer: “The subject of the assertion is the bearer of the assertion” [13].
This method is commonly used, since many times the assertion is encrypted
by the issuer before sending it to the holder, and then encrypted again by
the latter when communicating with the resource. Then, no other party
could have access to the “plain text” assertion, and the sender is therefore
the subject that appears on it. In our case, this method is not useful since
the assertion will be sent unencrypted by the STS. If this method is used, a
third party that is listening to the translation message exchange could get
the assertion and present it to the resource claiming to be the holder.

• Holder of Key: The SubjectConfirmation must include a ds:KeyInfo
element, with information needed to obtain a key. Here, “The subject of the
statement(s) in the assertion is the party that can demonstrate that it is the
holder of the key” [13]. This method fits perfectly in our model: The client
will send a public key to the STS, which will be included in a ds:KeyInfo
element. Then, the client is able to prove to the target resource that she
has the corresponding private key, and therefore she is the entity specified
in the Subject.

5) The client now constructs the request message. The ST will be attached as
BinarySecurityToken in the WS-Security header, and the message will be
signed using the session key (which is inside the ticket) to add integrity and
authentication to the SOAP message. The SOAP body will contain a WS-Trust
RequestSecurityToken element. The RequestType will be set to token issuance,
to inform the STS which service is being requested. The RST element will be
different depending on the conversion:

• In the Kerberos → X.509 conversion, the client generates a certification
request to be included in the RST element as a Claim. The CR contains
the distinguished name of the client, and the previously generated public
key. The TokenType element is set to “X.509 v3 certificate”.

• In the Kerberos → SAML conversion, the client will just send the public
key inside a KeyInfo element as a Claim, so that the STS can include it
in the assertion allowing the client to prove that she is the holder of the
assertion. The TokenType element is set to “SAML assertion”.

6) The STS receives the message, decrypts the service ticket, gets the session key,
and verifies the signature. If the verification is successful and the client is allowed
for that credential translation according to the STS’ policy, the STS will inspect
the SOAP body and issue the token specified in the TokenType element. For this
translation, the STS basically has the client’s PrincipalName and RealmName

3.1. KERBEROS =⇒ X.509/SAML TRANSLATION 33

from the ticket to be included as her identity in the resulting token. The STS
must also check the start and end time when the ticket is valid, and it must
not issue a credential valid outside that time frame. For example, if the ticket
expires in four hours, the generated security token must not be valid after that
time, although the validity could be even less depending on the STS’ policy.
Depending on the token to be issued, the following actions will take place:

• In the Kerberos → X.509 conversion, the STS checks that the DN in the
certification request matches the identity of the client specified inside the
ticket. Then, it will add the remaining fields: serialNumber, the validity
of the certificate, and the issuer DN. This information is finally signed
with the STS’ private key.

• In the Kerberos → SAML conversion, the STS creates a SAML assertion
filling the AssertionID, the Issuer field with the STS’ name, the
IssueInstant, and the Conditions NotBefore and NotOnOrAfter. The
assertion will contain an AuthenticationStatement, stating which was the
AuthenticationMethod (Kerberos), the AuthenticationInstant, and the
subject’s NameIdentifier constructed from the client’s principal and realm
names which appear in the ticket (it will be principalName@realmName).
For the final recipient of the assertion to be able to check that the sender
is actually the entity identified in the assertion, the client’s public key is
included as SubjectConfirmation. Then, the holder of the assertion will
be the one that can prove to be in possession of the corresponding private
key (in the same way a X.509 certificate works). Finally, the assertion is
singed with the STS’ private key, so STS needs to own a certificate.

The generated credential will be packet in the RequestSecurityTokenResponse
message that is sent to the client. This SOAP message will be signed using the
Kerberos session key again. Therefore, the client will be sure about the origin
of the message, since the STS is the only one that can decrypt the ticket to get
the session key. The attachment of the ST is not needed for this message, since
the client already has the session key.

After this request/response exchange, the client has the needed credential that
can be used for authenticating to the target service until its expiration. When that
resource receives the assertion, it will verify the signature. Therefore, the security
token will only be accepted if the target resource trusts the STS. The resource
must either trust the STS certificate directly or be able to construct a chain of trust
from the STS’ certificate to a trusted certificate.

In most cases, the STS will be in the same local domain of the client: The
user will request a service ticket valid for the STS, the entity that will provide the
security token issuance service. This is the case described above. However, the
STS could be placed in a remote realm, and the client would be able to access
that service through the Kerberos cross-realm operation explained in Section 2.2.

34 CHAPTER 3. CREDENTIAL MAPPING

Of course, for the latter scenario client and STS domains should trust each other
beforehand for the user to be able to perform the cross-realm authentication in the
remote KDC of the STS domain. If the client uses cross-realm authentication, she
must first get a ticket from her local KDC to be used in the remote KDC, and then
use that ticket in step 2 instead of sending the username/password. Besides this
additional actions, the operation has the same steps.

3.2 X.509 =⇒ Kerberos Translation

This is the case when a user has a X.509 certificate, but she is not able to use it
for accessing to a target resource in a remote realm. Instead, that realm is using
Kerberos for authentication, and therefore the client needs to get a valid service
ticket for requesting the service.

3.2.1 First Approach: Issuing STs

In this solution, illustrated in Figure 3.2, the STS will issue temporal Kerberos
credentials (service tickets) to be used on a certain service given the client’s
certificate.

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

host2
(serv2)

Service
Response

Client

ST

STS

wst:RST
X.509 Cert 1

the sender’s private key
Messages signed using

wst:RSTRKDC

AS

Encrypted with the
client’s public key

+ serv2/host2@B

3

TGS

2 ST(Remote Service)
+ [Session Key]

REMOTE REALM "B"

host1
(serv1)

host3
(serv3)

ST

Client’s
Local
Cache

Policy

Should access to serv2
be allowed to Client?Shared Key 3

Shared Key 3

Shared Key 1

Shared Key 2

Shared Key 2Shared Key 1

Shared Key 1

Shared Key 2

Figure 3.2. X.509 → Kerberos conversion, first approach (issuing STs)

The steps needed for a client holding a certificate to access to serv2 are:

3.2. X.509 =⇒ KERBEROS TRANSLATION 35

1) The client generates the request message to be sent to the STS. The X.509
certificate’s information will be attached as BinarySecurityToken in the WS-
Security header, and the message will be signed with the client’s private key
(whose corresponding public key is inside the certificate). The SOAP body will
contain a WS-Trust RequestSecurityToken element. The RequestType will be
set to token issuance, to inform the STS which service is being requested. The
RST element will also specify which service of which realm the client wants to
access to (in our example, serv2/host2@B). This will allow the STS to know
which master key must be used when constructing the ticket. The TokenType
element is set to “Kerberos ticket”.

2) The STS receives the message and verifies the certificate itself. The client’s
certificate must be trusted by the STS. Then, the STS gets the client’s
public key from the certificate and verifies the signature. If the verification is
successful and the client is allowed for that credential translation according to
the STS policy, the STS will see that a ST for an specific kerberized service is
requested. Now, the STS can check in its local policy whether it should issue
a ticket given the client–service pair or not. The policy could allow a client
accessing to some services of a remote realm, and deny her accessing to other
services of the same realm. If access is granted, the STS starts generating the
ST:

• A random session key for the communication between the remote service
and the client is generated. The encryption algorithm of the key must be
supported by the remote service specified.

• The client’s principal name will be the CN of the DN in the certificate,
and the realm the STS’ local realm.

• The authentication and start times are set to the current time, and
the end will be short to limit the risk of malicious use of the ticket by the
client. At the same time, it should be long enough to allow the client making
multiple requests for the same service without a new interaction with the
STS. For example, the lifetime could be one hour, and never longer than
the certificate validity.

• All this information is encrypted using the master key shared between the
service of the remote realm and the STS. Then, the target application server
will be able to decrypt it and get the session key to communicate with the
client.

• The principal name of the service is filled with the service name sent by the
client (serv2/host2@B).

The generated credential will be packet in the RequestSecurityTokenResponse
as BinarySecurityToken. As the client needs to know the generated session
key, it is first encrypted with the client’s public key (to avoid any other party
accessing it) and then delivered as EncryptedKey in a RequestedProofToken

36 CHAPTER 3. CREDENTIAL MAPPING

element. The client receives the ST, which could be stored in her local cache for
a later use, and decrypts the session key with her private key.

3) Now, as in a usual Kerberos operation, the client presents to the remote service
the new ST, proving that she also possesses the session key included in it, and
if authorized the application server will execute the requested actions.

In this example, the Kerberos realm has 3 services (serv1, serv2, and serv3),
but the local administrator decided to give to the STS the keys of only two of them
(serv1 and serv2). Thus, the STS can issue tickets for those two services.

Note that no interaction between client and service’s local KDC is needed in
this model.

The required trust between STS and target service is given by the master key:
The STS will have the secret key shared between the service and its KDC. When a
KDC of a Kerberos realm wants to allow a STS (local or remote) issuing tickets for
certain services within that Kerberos realm (it could be all services or only a subset),
the KDC has to give the STS the corresponding master keys of those services. Now,
two problems arise:

• As the STS does not have direct access to the KDC’s database, but the KDC
sends it the keys, a method to keep the keys updated needs to be implemented.
This will be more complex if the STS has keys from many different realms: If
one realm changes the key of one service the STS can access to, the realm has
to send the new key to the STS. Otherwise, the tickets that the STS issues
from that time for that service would be invalid.

• The master keys are now vulnerable at the STS. Before, an administrator of a
Kerberos realm only needed to “care” about keeping the keys safe in the local
KDC’s database. Now, if the realm gives some keys to many different STS,
one attack to one of them compromises the keys. The security administrator
could not rely on the security level of the STS, especially if it is located in a
remote environment, and deny the key delivering.

3.2.2 Second Approach: Issuing TGTs

This model is similar to the Kerberos cross-realm operation described in Section 2.2.
In this approach, illustrated in Figure 3.3, the STS acts as local KDC for the client,
issuing a remote TGT to be used for authenticating to the remote TGS. To achieve
this, as explained in the cross-realm model, STS and remote TGS must share a
secret key and have a remote TGS principal (krbtgt/remote.realm@sts.realm).

A holder of a X.509 certificate requesting a service at a remote Kerberos domain
needs to perform the steps shown in Figure 3.3:

1) The client generates the request message to be sent to the STS. The X.509
certificate’s information will be attached as BinarySecurityToken in the WS-
Security header, and the message will be signed with the client’s private key

3.2. X.509 =⇒ KERBEROS TRANSLATION 37

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

TGS

Client’s
Local
Cache

Service

Application

(serv)
Server

Response

Client

3

ST

STS

wst:RST
X.509 Cert 1

2

TGT

the sender’s private key
Messages signed using

wst:RSTR
TGT(Remote Realm)

+ [Session Key]

KDC

AS

TGT

4

REMOTE REALM

Encrypted with the
client’s public key

+ Remote Realm

ST
+ KEYclient−serv

5
Shared Key 2

Shared Key 2

Shared Key 1

Shared Key 1

Figure 3.3. X.509 → Kerberos conversion, second approach (issuing TGTs)

(whose corresponding public key is inside the certificate). The SOAP body will
contain a WS-Trust RequestSecurityToken element. The RequestType will be
set to token issuance, to inform the STS which service is being requested. The
RST element will also specify the realm of the target service in an AppliesTo
element. This will allow the STS to know which shared key and remote TGS
principal must be used when constructing the ticket. The TokenType element is
set to “Kerberos ticket”.

2) The STS receives the message and verifies the certificate itself. The client’s
certificate must be trusted by the STS, so the STS should have the issuer’s
certificate (or the certificate of its issuer and so on) as trusted certificate, to
verify the certificate’s signature. Then, the STS gets client’s public key from
the certificate and verifies the signature. If the verification is successful and the
client is allowed for that credential translation according to the STS policy, the
STS will see that a ticket for a specific remote realm is requested. Now the STS
starts generating the TGT:

• A random session key for the communication between the remote TGS
and the client is generated. The encryption algorithm of the key must be
supported by the remote realm specified.

• The client’s principal name will be the CN of the DN in the certificate,

38 CHAPTER 3. CREDENTIAL MAPPING

and the realm the STS local realm.
• The authentication and start times are set to the current time, and

the end will be short to limit the risk of malicious use of the ticket by the
client. At the same time, it should be long enough to allow the client making
multiple requests to the remote realm without a new interaction with the
STS. For example, the lifetime could be one hour, and never longer than
the certificate validity.

• All this information is encrypted using the key shared between the TGS
of the specified remote realm and the STS. Then, the TGS will be able to
decrypt it and get the session key to communicate with the client.

• The principal name of the service is filled with the remote TGS principal
name (krbtgt/remote.realm@sts.realm)

The generated credential will be packet in the RequestSecurityTokenResponse
element as BinarySecurityToken. As the client needs to know the generated
session key, it is first encrypted with the client’s public key (to avoid
any other party accessing it) and then delivered as EncryptedKey in a
RequestedProofToken element.

3) The client receives the TGT and stores it in her local cache. The session key is
decrypted with her private key.

4) Now, as in a usual Kerberos cross-realm operation, the client presents to the
remote TGS the new TGT, proving that she also possesses the session key
included in it. The TGS will then issue a ST for the requested service with
a new key for the client-service communication (after checking the ticket validity
and so on, and that the client is allowed to use that certain service).

5) The client may now request the service with the ST, and if authorized the
application server will execute the requested actions.

Note that one shared key between the STS and the remote TGS is enough for us,
since the cross-realm authentication is performed only the direction STS→ TGS. If
we would want bi-directional cross-realm authentication, so that a Kerberos client
from the remote realm could get a ticket to be authenticated on the STS, we would
need another shared key and principal for that direction.

The trust between STS and remote KDC is given by the shared key. The remote
KDC administrator will create a secret key and the remote TGS principal for this
cross-realm authentication, and give a certain amount of rights to tickets issued by
the STS. This means that the STS will be able to access to some resources at the
remote realm, which might not be all services that it provides. Then, when issuing
the Kerberos ticket to a client, the STS will delegate the right of using all services
that it is entitled to use to the client. However, depending on the TGS and target
service’s policy, the access could be denied for certain clients by the service’s access
control mechanism.

3.2. X.509 =⇒ KERBEROS TRANSLATION 39

3.2.3 Comparison and Conclusion

Table 3.2 summarizes the advantages of each of the two approaches explained for
the X.509 Certificate → Kerberos ticket conversion.

First Approach (issuing STs) Second Approach (issuing TGTs)
•Policy decisions: The STS can
allow or deny access to certain
services in the same Kerberos realm,
according to its policy. In the other
approach, the STS can only allow or
deny access to “entire” realms: When
generating remote TGT the client
may request all services at the remote
realm the STS has access to
•The client does not need to interact
with the remote KDC, she goes
directly to the target service after
getting the ticket

•It follows the standard Cross-Realm
operation, no changes at the remote KDC
are needed. Although interaction between
client and KDC is needed, the KDC will
treat the client as a Kerberos principal
from another trusted Kerberos domain
•Easier to administrate, only one key is
being delivered to the STS and updated
when needed
•No master keys are compromised. If the
key shared by STS and KDC is stolen, it
is enough with changing that one
•The KDC can change master keys as
needed, without any changes on the STS
(the shared key will still work)

Table 3.2. X.509 → Kerberos approaches comparison

As we can see, the two main disadvantages of the first approach are that the
master keys are compromised since they leave the KDC, and the key administration
when many KDCs and STS are working together becomes arduous (a change of a
master key could involve many key “refreshments”, one for each STS in possession of
that key). Moreover, if the administrator of a Kerberos domain wants to revoke the
right of accessing a service by the STS, the key for that service must be changed
on the rest of STS using it. This becomes much more complex when the KDC
decides to finish the trust relationship with a STS: All master keys that were given
to the STS must be changed. In the second approach only one change on the KDC’s
database, stating that tickets issued by that STS are not allowed to use one service
(or any service) any more, is enough.

We want our solution to be as standard, scalable, and usable as possible.
These characteristics are only fulfilled by the second approach. The possibility of
being able to choose which clients are authorized to use which services of which
realms when a STS receives a request is an important advantage, but it is not
enough given the disadvantages. If Kerberos administrators does not want to rely
on the STS to keep services’ master keys secure, they will not let these keys be
stored on the STS. As clients speak with services without going first through the
KDC, administrators will lose control on those operations.

For those reasons, we have decided to implement the second model (in which
the STS issues TGTs instead of STs) of Section 3.2.2 in our system.

40 CHAPTER 3. CREDENTIAL MAPPING

3.3 Security Considerations

The main security issues (some of them were introduced in Section 1.4) which have
been taken into account and which the proposed solution should manage are the
following:

• The sender of every message exchanged between the parties while the
translation is being performed must be authenticated, and the integrity
of these messages must be preserved from sender to receiver (e.g. through
digital signatures). Then, the receiver of a message must check from where it
is coming and if the information has been changed during the communication.

• Confidentiality must be assured for sensitive information that other parties
not involved in the conversation must not know, such as secret keys.

• The credential translation should not involve loss of security, or at least the
loss must be limited to “acceptable” levels. The final receiver of the translated
security token should be as certain of its authenticity as she is when receiving
credentials generated by “usual” means instead of by conversion.

• Given the trust requirements that have to be fulfilled beforehand to be able
to make the conversion, the requested credential must be trusted by the final
resource.

Chapter 4

Related Work

This chapter introduces some projects that try to provide SSO for users requesting
remote services on a heterogeneous federation.

4.1 Shibboleth

Shibboleth1 [27] is a project that has created an architecture and an open source
implementation on it to provide federated identity and single sign-on (SSO) features
across different institutions. This means that members within the same federation
can share identity information, agree in a common set of policies, and create a trust
relationship. Shibboleth is designed to be used in Web browsers, and check if a
member who navigates with the browser is entitled to access a resource located in
another organization, based on the information the home institution has about that
user. Shibboleth is standard-based, built over SAML (currently in the version 1.1).
It is a project of Internet2/MACE 2, being developed mainly in some universities in
the USA, such as The Ohio State University. Shibboleth is being used in several
high education institutions through identity federation initiatives, like Haka3 in
Finland and InCommon4 in USA.

When a member wants to access to a resource inside the same federation in
a remote realm, she first authenticates to its home Identity Provider (IP). Then
her home IP sends to the Service Provider (SP) of the resource domain a SAML
assertion containing the attributes of the specific user. Based on these attributes,
the SP will allow or deny the user to execute the action with the remote resource.
For example, the user could have two attributes: one could say that she is a student
of the institution I, and another one that she is registered in the course C. If the
security policy of the SP states that the students belonging to the institution I or

1http://shibboleth.internet2.edu/
2http://middleware.internet2.edu/MACE/
3http://www.csc.fi/suomi/funet/middleware/english/index.phtml
4http://www.incommonfederation.org/

41

http://shibboleth.internet2.edu/
http://middleware.internet2.edu/MACE/
http://www.csc.fi/suomi/funet/middleware/english/index.phtml
http://www.incommonfederation.org/

42 CHAPTER 4. RELATED WORK

people following the course C (or people that have both conditions at the same time)
can use the resource, it will grant access.

As shown in Figure 4.1, the Shibboleth system’s most relevant components are
[28] (Shibboleth releases provide two implementations, one to be included in the
identity provider and the other in the service provider side):

• Identity Provider: It authenticates principals and gives them attributes,
which are represented as SAML assertions. Each principal of a federation
must be registered in a IP of that federation. Three main entities can be
distinguished at the IP side:

– Authentication Authority: It issues authentication assertions to princi-
pals. When a principal is authenticated, the IP gives her a temporal
“random” identity, which will be the content of the field NameIdentifier
in the assertion. This temporal ID is called a Shibboleth handle. The
reason of filling this temporal ID name instead of the user’s “real” ID (e.g.
“esteban@nada.kth.se”) is to keep privacy: The IP will map internally
the random ID with the real one, but the SP will not be able to know the
user’s ID unless it is authorized by the user. Then, the SP will be able to
ask the IP for attributes of the temporal ID, and the IP will answer with
attributes of the corresponding user. Alternatively, the Authentication
Authority may include attributes when sending the user the response
message after authentication, in addition to the authentication statement
(this method is called “attribute push” [28]).
Shibboleth does not specify which method should be used to authenticate
users. It will be the protocol implemented in the IP’s local realm (e.g.,
it could be Kerberos, PKI, etc.).

– Attribute Authority: Issues attribute assertions for a specific user under
SP requests (giving the handle). The attributes of each user will be
stored internally in the IP, for example in a data base.

– Single Sign-On Service: Processes authentication requests received
from SPs through the Web browser. It is the entity that begins the
authentication process.

• Service Provider: The side where resources are located. Provides a
security context for service requesters, which gives the resource’s access control
mechanism the information to allow or deny access to the resource. The three
main parts at the SP side are:

– Assertion Consumer Service: It receives the authentication assertions
generated by the IP’s Authentication Authority, and after requesting the
user’s attributes if needed, creates a security context for the user at the
SP side.

4.1. SHIBBOLETH 43

– Attribute Requester: When the user contacts the Assertion Consumer
Service sending the authentication assertion, the latter could decide
that it needs more information in order to create a valid security
context (when the SAML assertion that the user received from her IP
when authenticating does not contain “pushed” attributes, or additional
attributes to those ones are needed). The Attribute Requester will then
exchange messages directly with the IP’s Attribute Authority, requesting
attributes that the SP needs to decide whether the user should have
access to the resource or not.

Authentication
Authority

Identity Provider

Authority

User DB
(Attributes)

SSO
Service

Attribute
Requester

Assertion
Consumer

Service

Target
Resource

A
cc

es
s

C
on

tr
ol

A
ttr

ib
ut

e
re

qu
es

t

A
ttributes

(I
F

N
E

E
D

E
D

)
Attribute

C
lie

nt

Redirection to SSO serv2
1

3

4

Authentication Request

with temporal NameID
<saml:Response>

(possibly including attributes)

Request with received assertion
5

target resource
Redirection to the8

Service Request

Resource10

Service Request 9

6

7

Service Provider

Figure 4.1. Access to resources within a Shibboleth federation

Figure 4.1 shows the actions executed when a user requests a resource running
inside the same federation [27]. The following steps will be carried out:

44 CHAPTER 4. RELATED WORK

1) A user requests a resource located at a Service Provider inside a federation that
user is member of. The SP checks whether the user has a valid security context
(which has been established before in a previous access of the same client to
the SP). If there is one, the client just gets the resource if she has the needed
attributes.

2) The client is redirected to her local IP by the SP.

3) The client makes a request to the SSO Service, specifying the target resource.
If the principal does no have security context at the IP side yet, authentication
is performed and the security context is created5. Then, the Authentication
Authority generates the AuthenticationStatement for that client (with a
temporal handle as Name ID).

4) The SSO gives a signed Assertion to the client, which contains her authentication
statement and might include pushed attributes.

5) The client requests to the Assertion Consumer the establishment of a security
context at the SP6, attaching the assertion received from the IP. The Assertion
Consumer checks the statements in the assertion. If all needed information are
included, it jumps to step 8. Otherwise, the Attribute Requester is used to get
the missing attributes.

6) The Attribute Requester asks the IP’s Attribute Authority for certain attributes
of the user (the ones required to access the resource). The handle is sent, to
show the IP who the user is.

7) The Attribute Authority gets the requested attributes for the specific user, and
returns them to the SP.

8) The Assertion Consumer creates a security context for the user at the SP and
redirects her to the resource.

9) The client requests the service again (in the same way she did in step 1).

10) As the client has now a valid security context, the service is executed.

All these steps are done keeping user’s privacy: The home IP and the user are
able to control the information sent to the remote SP.

5As Shibboleth is designed to provide Single Sign-On, the user will need to insert her credentials
(e.g. Kerberos username/password) only once per session. After that, the user will be able to access
resources without the need of login again to the system, since a security context is created at the
IP on the first access, and it will be used on the following accesses from the same client.

6Note that a security context is created separately at both IP and SP. If the user has a valid
security context at SP at the beginning, she does not need to go to her local IP to get credentials.
On the other hand, if the user has a valid security context at the IP, authentication is not needed
to get an assertion for that recipient.

4.1. SHIBBOLETH 45

Without a SSO mechanism like the proposed by Shibboleth, the user would need
to maintain an account in every realm where she has access to a resource, and do
login every time she wants to access a resource in a different domain by other means,
like username and password. This makes the administration job of realms easier (the
administrators only need to care about attributes, like “PhD. student”, rather than
individual identities). The access to resources by users becomes more “comfortable”,
as it is not needed to remember many different usernames and passwords and do
login in every access.

The Shibboleth protocol defines the explained mechanisms to exchange SAML
attributes between Identity and Service Providers, allowing SSO within a federation.
However, it does not specify standard attribute names, but lets each federation
define the attributes to be used. This is, Shibboleth does not say which attributes
an entity inside a federation may have (e.g., IDNumber, FirstName, BirthDate. . .).
Instead, each federation chooses the set of attributes that can be given to their
subjects.

The main advantage of our solution in comparison with the Shibboleth model is
that in Shibboleth federations are static. New realms can join an existing federation,
and some realms inside that federation could leave it, but these processes need some
time to be performed. With STS, federations can change in a more dynamic way:
just one key exchange between client’s or resource’s domain and the STS allows it
to issue credentials for existing clients or to existing resources in the new domain.

4.1.1 Interoperability between Shibboleth and STS

Suppose a STS being part of a Shibboleth federation with certain attributes giving
access to certain services within that federation. Suppose a client that is registered
outside the federation, but which has a credential (e.g. a Kerberos ticket, a X.509
certificate, or a SAML assertion) trusted by the STS. Then, a new conversion would
be desirable to allow that client accessing to the resources inside federation which
the STS can use.

Today, Shibboleth only supports protocols for requesting and delivering short-
term SAML Assertions (using bearer as ConfirmationMethod) for SSO. The
introduction of more actors and roles requires new profiles, and even WS-Trust
is not supported yet. Anyhow, new specifications they are working on for the next
version (Shibboleth 2.0, which will be based on SAML v2.0) would be absolutely
required to do some of the actions we are proposing since right now is not possible
to talk to the IP with anything but a browser.

Figure 4.2 shows a possible scenario where a STS works within Shibboleth.
The STS must already be a member of the same Shibboleth federation where the
resource that the client wants to access to is located.

The needed steps are:

1) The client wants to access to a certain resource located in a certain Shibboleth
federation. Then, she asks the STS inside that federation for valid credentials
for that resource. The STS authenticates the client through a credential that she

46 CHAPTER 4. RELATED WORK

Authentication
Authority

STS

Client
(outside

Federation)

Attribute

Identity Provider

Authority

User DB
(Attributes)

SSO
Service

Attribute
Requester

Assertion
Consumer

Service

Target
Resource

A
cc

es
s

C
on

tr
ol

Service Provider

Authentication

possibly including attributes
saml:Response

A
ut

he
nt

ic
at

io
n

+
T

ar
ge

t R
es

ou
rc

e

Resource

Service Request

A
ttr

ib
ut

e
re

qu
es

t

A
ttributes

(I
F

N
E

E
D

E
D

)

Redirection to the
target resource

2

31

A
uthentication A

ssertion
(+

 A
ttribute A

ssertions)?

Authentication Assertion
(+ Attribute Assertions)? 4

7

6

5

Figure 4.2. STS – Shibboleth interoperability approach

already has and that is trusted by the STS (e.g., a Kerberos ticket or a X.509
certificate).

2) The STS is authenticated by its local Identity Provider (if it does not have a
security context yet), and asks for assertions to use on the specific service that
the client is requesting. Here, the STS could just get an Authentication Assertion
with the temporal handle, or even pushed attributes.

3) The received assertions are delivered to the client.

4) The client uses the assertions to start a security context at the Service Provider.

5) If the attributes were not included in the response message of step 2 (and
therefore neither in step 3), or more attributes are needed, the Service Provider
could ask for attributes of the identity contained in the authentication assertion
received from the client.

6) After creating a security context for the client, she is redirected to the resource.

4.2. KX.509 PROTOCOL 47

7) The client requests the service.

Given the information we have been able to gather, the following issues need to
be solved for this proposal to work:

• Can the STS ask for an authentication assertion and/or pushed attribute
assertions in step 2? As we have said, the only way to speak with the IP
on the current version is through a browser, which will give you an assertion
and redirect you to the SP. An alternative interface to make possible attribute
requests by their owner would be desirable. Then, the STS could get directly
its attributes from the IP.

• Could the Client use the STS’ Authentication Statement with the temporal
random NameID for starting a security context in step 4? Could the Client
directly use the STS’ Attribute Statements to do that? As they are bearer
assertions, it should not be a problem for another party to use those assertions
on the SP. The STS would get the assertion in a secure way from its IP, and
then it could give them (also in a secure way) to third parties. In this case,
the STS would delegate all its attributes, or certain number of them, to
another client outside the federation by delivering the corresponding attribute
assertion received form the STS’ local IP to that client.

In short, we need the STS having access to its attributes (Shibboleth has to
provide an interface for allowing members to ask their IP directly for attribute
assertions), and being able to delegate them to external clients for a short time
period (just the needed for the client to access to the resource). Shibboleth is
a “young” project that is continuously being extended with new functionalities.
When these actions are possible, the STS will be able to work with Shibboleth
following the proposed approach.

4.2 KX.509 Protocol

The KX.509 Protocol7 [29] is a protocol that allows a user to obtain a short-
term X.509 certificate based on her Kerberos ticket. It has been designed and
implemented in the University of Michigan. This protocol works as follows:

1) The user performs the usual Kerberos login to get the Ticket Granting Ticket
from the Kerberos Distribution Center. KX.509 is not involved in this action.
The TGT is received and stored on the user’s workstation.

2) The KX.509 protocol introduces a new kerberized service in the network, the
Kerberized Certificate Authority (KCA), which will be the entity that issues
certificates based on the user’s Kerberos identity. The KX.509 mechanism first
creates a public/private key pair on the user’s machine and uses the issued TGT
to request a ST for the KCA.
7http://www.kx509.org/

http://www.kx509.org/

48 CHAPTER 4. RELATED WORK

3) Once the local workstation has the ST and the key pair, it sends a certificate
issuance request message to the KCA. This message contains the ST and the
generated public key (the private key never leaves the user’s machine). As every
communication between a client and a kerberized service, it will be protected by
the session key included in the ST.

4) The KCA determines the identity of the user, creates a temporally (usually
with the same lifetime than the Kerberos credentials) certificate for that user
containing her public key, and signs it with the KCA’s private key (the KCA
owns a certificate). This certificate is finally sent to the user and stored on the
local cache.

This process is transparent to the user. The user just type his Kerberos password
(the “login” to get the TGT), and the KX.509 module will do the rest on behalf
of her. As a result, after the login the user will have stored both a TGT and
the corresponding X.509 certificate ready to be used (e.g. in a Web browser SSL
session). It is important to note that the KCA’s certificate must be trusted by the
party the user presents her certificate to in order to be valid.

In comparison with our STS, we could say that this solution is only suitable
for Kerberos to X.509 translation, while the STS can make many other conversions
between different formats. Moreover, the STS is following specifications like WS-
Trust, and no changes at the resource’s KDC are needed. On the other hand, the
KX.509 protocol needs to add modules to the KDC’s host which implement the
functionality of creating short-term certificates when the user requests a TGT.

4.3 Kerberized Credential Translation

The Kerberized Credential Translation [30] is a system designed and implemented in
the University of Michigan. The purpose of this mechanism is to provide access to
remote Kerberized services through a Web browser using the user’s certificate. This
is a common scenario, since client authentication with browsers is usually performed
through SSL/TLS using X.509 credentials, and Kerberos is used on many realms to
control the access to local resources. If the user does not have a X.509 certificate
but uses Kerberos as local system, the protocol described in Section 4.2 can be
used to get that credential, rather than sending the Kerberos identity and password
through a SSL browser session. If the password is sent, then the remote Web server
could impersonate the client using that password to perform actions the client is
not requesting. The typical actions carried out to enable a user accessing a remote
resource in this model are:

1) The remote Web server that is being accessed with the browser authenticates
the user by means of her certificate.

2) Here the so called Kerberized Credential Translator (KCT) comes on stage. It
performs the opposite action carried out by the KCA explained in Section 4.2:

4.3. KERBERIZED CREDENTIAL TRANSLATION 49

It is a service extending the TGS that translates X.509 credentials into
Kerberos tickets. First, the Web server needs to get a service ticket for this
service from its local KDC. This ticket is then presented to the KCT, to request
access to the service the user is asking for. The message will contain the client’s
certificate.

3) The KCT validates the request and creates a temporal ST for the user valid on
the target service. This ticket and the session key protected with the key shared
between the KCT and the Web server is sent to the Web server.

4) Now the Web server acts on behalf of the user, accessing to the requested service
using the received ST. This ticket should be cached by the Web server, so that it
can be used in another request from the same user without the need of another
ticket generation (until it expires). However, the service ticket’s lifetime should
not be long to avoid misuse on the user’s behalf.

This model provides single sign-on. The user does “login” once locally (e.g. to
the local Kerberos system, getting a certificate through the KX.509 protocol), and
after she is able to access remote resources without additional user interaction.

The comparison between the STS and this protocol results in the same conclu-
sions as when comparing STS and KX.509: The Kerberized Credential Translation
protocol only makes one conversion, and the remote KDC’s implementation has to
be changed to add the translation functionality.

Our first approach for X.509 → Kerberos translation explained in Section 3.2.1
is similar to this protocol. There are two main differences:

• In our approach, the client requests the conversion and after that the service
with the new ST by herself. There is not another entity (the Web server in the
Kerberized Credential Translation protocol) acting on her behalf in principle.

• In the Kerberized Credential Translation protocol, the KCT has access to
the KDC database to retrieve the master key of the service which is used to
encrypt the generated ST. Therefore the KCT needs the physical security as
the KDC, since if one key is stolen, the security of the corresponding resource
is compromised (the thief could generate a valid ST for that service). For
this reason, in this model the KCT runs in the same machine as the KDC.
In our approach, it is not feasible for the STS to run in the KDC, because
the STS service should give access to different KDCs, and provide different
conversions. Moreover, the STS could even be remote to the Kerberos realm
it is generating tickets to.

Chapter 5

Prototype Implementation

This chapter covers important details of the performed implementation, including
the available tools used and the description of the most important classes, interfaces,
modules, and so on.

As we described in Section 1.3, almost the whole Kerberos → X.509 conversion
was already implemented when this thesis began. The rest of the functionality has
been added to that available framework, both writing new code on existing classes
and creating new ones.

The implemented functionalities were the Kerberos → SAML conversion
described in Section 3.1, and the X.509 → Kerberos translation following the
approach explained in Section 3.2.2. This includes messages signature for all
conversions (the prototype already implemented allowed Kerberos signature for the
client → STS direction, but not for the opposite one).

5.1 Implementation Environment and Tools

The entire source code for this project has been written in Java (Java 2 Platform
Standard Edition Development Kit 5.0 provided by SUN Microsystems1) on
GNU/Linux, using Eclipse2 as development environment.

To enhance and extend the functionalities of a “simple” Web server (like Apache
Web Server) in a Java framework, Sun is developing two technologies: the Java
Servlet3 and JavaServer Pages (JSP)4. The Java Servlet provides a server- and
platform-independent way of building Web based applications, giving a standard
to be implemented in a Web server framework, which extends its functionality.
Servlets have access to the Java API and HTTP calls. JSP is an extension of
this servlet technology to easily and quickly develop and maintain Web based
applications. Together, Java Servlet and JSP provide a platform-independent

1http://java.sun.com/javase/downloads/index_jdk5.jsp
2http://www.eclipse.org/
3http://java.sun.com/products/servlets
4http://java.sun.com/products/jsp

51

http://java.sun.com/javase/downloads/index_jdk5.jsp
http://www.eclipse.org/
http://java.sun.com/products/servlets
http://java.sun.com/products/jsp

52 CHAPTER 5. PROTOTYPE IMPLEMENTATION

and easy alternative for building interactive Web applications. There are several
alternative implementations of this technology available in the market. We chose
the open implementation Apache Tomcat5 (version 5.5.20) for our project since,
as we will see, many other tools coming from the Apache foundation will be used.

Apache Axis6 on its latest final version 1.4 is another Apache open source
implementation, available in Java and C++, of the SOAP mechanism introduced
in Section 2.6. It is a important tool for us, since the request/response messages
exchanged with Web services, and therefore in the communication between client
and STS, are SOAP messages. It will be installed inside Apache Tomcat. Both
Axis and Tomcat can be installed on Windows and different UNIX “flavors”.

Apache Tomcat and Apache Axis give us a platform and an API to build Web
services, allowing the exchange of SOAP messages with clients. Still, we need
to include the OASIS WS-Security specification in our project. This is given by
Apache Web Services Security of Java (WSS4J)7. It is a library that basically
enables signature, signature verification, and security token attachment to be used
on SOAP messages. The latest version (1.5.0) implements the WSS SOAP message
security 1.0 [1], Username Token profile 1.0 [17], and X.509 Token Profile 1.0 [21]
specifications described in Section 2.7. It also includes support for sending and
receiving WS-Trust RST and RSTR messages.

WSS4J will be used by Axis to process messages. With WSS4J and Axis,
the signature/signature verification processes, and credential attachment into the
SOAP header, will be made automatically for incoming and outgoing messages in a
“transparent” way for the application. The Axis deployment descriptor files (.wsdd)
in client and server side will provide all the information that Axis and WSS4J need
to know about how to process messages. For example, it specifies which actions
should be made with incoming and outgoing messages, e.g. signature, and which
credentials and keys will be used to do so. Then, the Web service developer just
needs to include the desired information in the deployment descriptor, and those
actions will take place without the need of adding more code to the application.

WSS4J in turn uses Apache XML Security8 for XML Signature and
Encryption.

When dealing with SAML assertions, in the Kerberos→ SAML implementation
part, OpenSAML9 v1.1 was the chosen library for creating and parsing SAML
assertions. It is an open source implementation of the SAML v1.1 specification [10].

In short, we could say that our solution is a Java implementation which works
over Tomcat+Axis+WSS4J running on GNU/Linux, with the help of other libraries
like XML Security and OpenSAML among others.

As many libraries are used in the project, which in turn have other dependencies,
it is difficult to build the project using only the Java compiler. Instead, we have

5http://tomcat.apache.org/
6http://ws.apache.org/axis/
7http://ws.apache.org/wss4j/
8http://xml.apache.org/security/
9http://www.opensaml.org/

http://tomcat.apache.org/
http://ws.apache.org/axis/
http://ws.apache.org/wss4j/
http://xml.apache.org/security/
http://www.opensaml.org/

5.2. MAIN IMPLEMENTATION TASKS PERFORMED 53

used Apache Maven10 v1.0.2 as project management tool. It provides different
commands for automatically download the desired dependencies of our code, storing
all libraries in a local repository. These libraries will be used when building the
system. Maven will also be run to “install” the Web service inside Axis (copy the
compiled code and configuration files, change the Axis descriptor .wsdd, etc).

Given the multi-platform nature of Java (there should be no problem in
executing Java compiled code in two different platforms which have the same virtual
machine version installed), and given that the servlet container is available for
different platforms, our solution should be multi-platform, or at least not that many
changes should be needed for that purpose. The principal problems of compatibility
are given by the way we use to get the local Kerberos credentials. In GNU/Linux,
the Kerberos credentials cache is a file in a temporal directory (typically something
like /tmp/krb5cc_1000). How and where this information is stored could change in
different systems. Besides this, our implementation should work on any platform if
the same versions of the Java libraries and tools are used without any problem.

5.2 Main Implementation Tasks Performed

The implementation itself consists in two different projects: kth-sts containing
the client and service parts of our framework, and wss4j-sts with the WSS4J 1.5
implementation with some changes.

As WSS4J is implementing the 1.0 version of WS-Security specification, it does
not have support for Kerberos tokens (The Kerberos Token profile was introduced
in version 1.1 [23]). The only binary security tokens that can be attached are X.509
certificates. Therefore, the main changes were added to support Kerberos binary
token attachment in the SOAP Security header, and to perform Kerberos session
key signature and signature verification for request and response messages. This is
needed for the Kerberos → X.509/SAML conversions described in Section 3.1, as
the RST and RSTR messages are signed with the key contained in the service ticket
attached by the client (see Figure 3.1).

For the Client → STS direction, a Kerberos ticket must be attached, and the
message signed with the corresponding session key. Then, the STS should be able
to extract the ticket, decrypt it, get the session key, and verify the signature. In
the opposite direction, the STS will just sign the message with the received session
key, and the client will use that key for signature verification.

Other minor changes were made to WSS4J, to add some needed functionalities.
The kth-sts project contains STS and client functionalities themselves. In short:

• The client will have the code for getting his credential from the IP, generating
the needed data for the request, sending the signed RST with the attached
information, waiting for the response message, getting the RSTR containing
the new converted credential and additional information, verifying the
signature, and storing the received data somewhere for future use.

10http://maven.apache.org/

http://maven.apache.org/

54 CHAPTER 5. PROTOTYPE IMPLEMENTATION

• The STS will be waiting for client requests. When one message arrives, the
signature is first verified by the WSS4J code. If valid, the STS will then
look the kind of request (e.g. RST issuance). Then, for a issue security
token message, it will distinct the kind of token requested (SAML, X.509,
or Kerberos ticket). Each conversion will make the same steps: Get the
mandatory information the client must have sent (credential to be translated,
CR, additional keys, etc.), make the verifications in each case, extract the
identity and extra information needed for generating the new credential, and
build the new security token. Then, that token and perhaps more information
(like the session key when generating a Kerberos ticket) is packet inside a
RSTR message, which is signed with the key of each case.

• Both parts share some modules, for example utility modules to handle
certificates, Kerberos tickets, extract and add info to SOAP messages, message
handlers (which inspect the received message to see whether it is a RST or
RSTR message, the kind of token, and so on), etc.

5.3 Main Problems Found

A problem which we had to face since the beginning of the thesis was the recent
publication of many of the specifications used: Most of them are currently being
developed, and new versions are continuously being released. Moreover, WS-
Trust and WS-Federation are still not standards but drafts released for review and
evaluation only. Sometimes, this made difficult to find information and tools for
these specifications.

Focusing on implementation issues, we came up against a “simple” problem,
which took a long time to be solved. It was caused by how Axis serializes
and deserializes SOAP messages. When we create an assertion, it has the form:
“<saml:Assertion [...] <saml:Subject [...] </saml:Subject> [...]
</saml:Assertion>”. Then, we sign that assertion with the STS’ private key.
However, before Axis signed and sent the RSTR message containing that assertion,
it performed a namespace optimization which resulted in changing the assertion into:
“<Assertion [...] <Subject [...] </Subject> [...] </Assertion>”.
That is, the saml: prefixes were removed. Then, when the client received the
assertion and tried to verify its signature with the STS’ public key, it failed since
the digest of the assertion’s text is different when removing the saml: parts (the
text of the assertion has actually changed). It was a bit difficult to find out the
origin the problem, which was solved by changing a parameter on the client and
service descriptors to forbid this namespace optimization when serializing.

Another difficulty we found were in the generation of a Kerberos ticket on the
X.509→ Kerberos conversion. The standard Java API does not provide the needed
functionality for creating ticket fields and encrypt them. It only gives classes to treat
tickets on the client’s point of view: The client receives a TGT or ST encrypted with
a key she does not have, and a session key which is also inside. Then, we had to use

5.3. MAIN PROBLEMS FOUND 55

internal Java libraries (sun.security.krb5.*), which had no API specification.
The only information available were the classes’ variables and methods’ headers,
as the source code was also not available. With this information and the Kerberos
standard [3], the process of creating a valid ticket was quite difficult and slow at
the beginning. It was a kind of “trial and error” implementation, trying different
values when calling the methods until we got the desired result.

Chapter 6

Analysis of Results

This chapter enumerates the main tests we have executed on the prototype, with
a short description of each one containing the functionalities that were intended to
be tested in each case. The tests are based on the description of the implemented
translations given in Chapter 3.

6.1 Local Tests Performed

The execution of these tests follows step-by-step the illustration and description
given for the specific case in Chapter 3, depending on the conversion. Client and
service are running on the same machine, so the messages are sent to and received
from Apache Tomcat through the standard IP address used for a loopback network
connection (typically 127.0.0.1 or localhost). However, the behaviour would be
exactly the same as if we had client and STS running on separate machines. The
only difference is that on the latter case the messages would travel through the
network.

6.1.1 Kerberos =⇒ X.509 Test

1) We suppose that the client has already obtained a TGT valid for the STS’ realm
directly or through a cross-realm operation

2) The client application extracts the ticket from the local cache, and uses it for
getting a ST valid in the STS.

3) With the Principal and Realm names specified when getting the ticket (in our
case etg and NADA.KTH.SE), and some other information (organization=Grid
and country=SE) available on client’s configuration file, the application will
create a CR. A key pair is generated, inserting the public part in the CR.

4) The client generates an issue RST message (Listing C.1), including the CR and
the ST in the body. Lines 9–21 contain the ST in the header for signature
verification. The signature element (Lines 22–45) indicates that the key used for

57

58 CHAPTER 6. ANALYSIS OF RESULTS

signing was the one inside the security token (“KrbID=6885751” in Line 41 is
actually pointing to the ticket, which has that ID). The requested token is X.509
as appears in Line 54, and finally comes the CR (Lines 57–72) and the ST to be
converted (Lines 73–84).

5) The STS receives the message and makes the corresponding verifications. If
everything goes right, it creates the certificate from the certification request,
inserting its Issuer DN (C=SE ,ST= Stockholm ,O=KTH ,OU=PDC ,CN=STS) and
12h. validity period from the current time, signing it with its private key.

6) The RSTR message is created (Listing C.2). Note that the message is signed
with the session key again, but the ticket is not attached. Instead, the recipient
will know that this key was used since the message is the response to the request
message sent, as the SignatureConfirmation value on Line 33 is the signature
value of the RST message (Line 35 of Listing C.1). The generated certificate is
encapsulated inside a RequestedSecurityToken message (Lines 47–66).

7) The client receives the certificate (Listing C.3) and stores it in a local Key Store.

6.1.2 Kerberos =⇒ SAML Test

1) We suppose that the client has already obtained a TGT valid for the STS’ realm
directly or through a cross-realm operation.

2) The client application extracts the ticket from the local cache, and uses it for
getting a ST valid in the STS.

3) The client generates an issue RST message (Listing C.4), including the ST in the
body. A key pair is generated. Instead of the CR, a KeyInfo element with the
needed information to construct the public key is inserted in the RST element
(Lines 70–84). The rest of the message (signature, ticket attached, and so on) is
the same as in the test explained in Section 6.1.1, changing the requested token
from X.509 to SAML (Line 54).

4) The STS receives the message and makes the corresponding verifications. If
everything goes right, it creates the assertion (Listing C.6) from the identity
information inside the ticket (etg and NADA.KTH.SE, Line 18). The validity is
set to 12h. from the current time (Lines 10 and 11), and the received public
key is inserted as SubjectConfirmation (Lines 20–37), stating that the method
is holder of key on Line 22. The assertion is signed with the STS’ private key,
including the certificate for signature verification (Lines 40–79). The STS inserts
its NameID in the Issuer field (Line 4).

5) The RSTR message is created (Listing C.5), including the Assertion in the
RequestedSecurityToken element (Lines 47–128). The message is signed as in
the Kerberos → X.509 translation.

6.1. LOCAL TESTS PERFORMED 59

6) The client receives the assertion and stores it in a local plain text file, allowing
any other application accessing it.

6.1.3 X.509 =⇒ Kerberos Test

1) We suppose that the client has a valid X.509 v3 certificate from a CA trusted
by the STS, with the corresponding private key.

2) The client application extracts the certificate and private key from the local Key
Store.

3) The client generates an issue RST message (Listing C.7). The signature element
(Lines 9–38) indicates that the key used for the signature is one corresponding
to the certificate with Issuer DN ‘‘CN=Esteban, OU=NADA, O=KTH, C=SE’’ and
serial number 1171582785 (Lines 30–35). It supposes that the STS already has
the client’s certificate stored locally, or it is able to get it by other means. Then,
the STS just needs to access its Key Store, and look for that certificate to verify
the signature. If the STS would not have the certificate, the client had to attach
it as security token. The requested token is Kerberos ticket as appear in Line 48.
The certificate to be converted is included as a Claim (Lines 58–73). In order
for the STS to know which realm the client wants to access to, the RST message
includes the target domain mehrana.nada.kth.se in the AppliesTo element
(Lines 50–55).

4) The STS receives the message and makes the corresponding verifications. If
everything goes right, it creates the ticket (Listing C.9) for the specified realm
with the client’s information from the certificate and a randomly generated
session key. The Principal name will be the CN from the ticket (Esteban), and
the realm the STS’ one (PDC.SE). The remote TGS principal is extracted from
the STS’ local database (in our example sts/mehrana.nada.kth.se instead of
the usual krbtgt/mehrana.nada.kth.se), and the ticket is encrypted with the
shared key between STS and remote TGS. The validity is 1 hour from the current
time.

5) The RSTR message is created (Listing C.8). The message is signed with the
STS’ private key. Again, it only contains the Issuer name and Serial Number
of the certificate (Lines 37–42), as the client has it stored locally as trusted.
The ticket is returned as binary token inside the RSTR element (Lines 62–73),
and the session key is included in a RequestedProofToken, encrypted with the
client’s public key (Lines 75–86).

6) The client receives the remote TGT, which can be used to be authenticated in
the remote TGS in combination with the session key (decrypted with its private
key).

60 CHAPTER 6. ANALYSIS OF RESULTS

6.2 Real Scenario Test

As stated in Section 1.3, most of the Kerberos ticket→ X.509 certificate conversion
was implemented before this thesis started. After that implementation part was
finished, it was tested in a real Grid environment. The details of the test performed
can be found in [31].

In short, the test scenario is as follows: An animator of a producer of high-
quality video content is working on a high-definition video rendering job, which
needs a large amount of calculations, for a customer. Given that the deadline to
finish the work is too close, and the producer does not have the needed amount of
computer power to meet it, the animator realizes that they need to get access to
an existing Grid infrastructure that provides services for rendering high-definition
video (the service provider). The problem is that this service provider requires users
being authenticated via X.509 certificates. However, the operator uses Kerberos for
local authentication, and does not have a relationship with a third party CA. The
steps needed to get a certificate from a CA trusted by the service (e.g. Verisign)
would take too long, and the deadline could not be met.

To solve this problem, the animator makes use of a STS which can be accessed
by end users of the producer’s Kerberos domain. The certificates issued by this STS
are trusted by the Grid service. During the test, the system worked as expected,
and the animator was able to get a certificate from the STS, and use it for requesting
to the Grid the execution of the rendering job.

6.3 Analysis

As a conclusion of the performed tests, it is shown that the prototype met the goals
listed in Section 1.4, given the limitations described in Section 1.6:

• Different conversions between the three formats we have used have been
performed successfully.

• The generated credential is signed/encrypted by the STS to provide trust to
the token (if there is a previous trust relationship between final resource and
STS), assuring it was created by the STS. The validity of the new credential
is short to limit security risks.

• The solution follows WS-Security, WS-Trust, and Kerberos standards as much
as possible.

• The request and response messages are authenticated and their integrity is
checked in each one.

• The sensitive information, like the session key, is encrypted during the
communication.

Chapter 7

Conclusions

In this part we summarize our contribution, pointing the most important results
obtained. It also proposes the next steps that should be performed in the project.

7.1 Summary of Contributions

As we have seen in the introductory part of this report, the heterogeneous nature
of the Grid makes it very difficult for a client to know which security credentials
would be needed beforehand. Even if that client knows which realms she will need
to be authenticated in, she might not have a valid token to be used in some remote
domains (e.g., a Kerberos ticket for a certain realm).

We have studied the emerging standards to perform credential translation in
a platform-independent way. The client and the translator applications could be
written in different programming languages and could run on different architectures
in a Grid environment. The study was focused on three commonly used security
credentials: Kerberos tickets, SAML Assertions, and X.509 Certificates.

The study concluded that the most suitable technologies for our case were Web
services. Following WS-Security and WS-Trust we designed and implemented a STS
able to make credential translation when some trust properties are kept beforehand.
Some alternatives were compared during the design, trying to reach a solution with
the highest level of security and with the least changes needed on other components
involved in the system (IP, SP, and resource itself). As the request and response
messages are XML formatted, client and service just need to agree on the included
information needed in each case, but the internal architecture or implementation of
each side is not fixed.

The implemented prototype was tested against the goals and design specification
made, obtaining the expected results: A client was able to get a credential valid in
another realm she could not access to before.

61

62 CHAPTER 7. CONCLUSIONS

7.2 Future Work

There are a few aspects of the system which we have not studied in depth and which
can be interesting to address on the next steps of our project:

• Design and implementation of the SAML assertion → Kerberos ticket
conversion. It should be similar to the X.509 → Kerberos translation. The
most difficult issue could be the establishment of trust between STS and client,
since the client does not have a certificate on this case.

• SAML assertion ↔ X.509 certificate conversions. Design of the
translation for each direction. The mapping of credentials seems to be easy,
but the trust relationship between client and STS should be investigated to
find the most flexible way.

• Further investigation of the integration with Shibboleth should be performed
when more information and new versions of the Shibboleth system are
available. The feasibility of the model proposed on this report should be
studied, modifying it or proposing alternative ways after carefully read the
new information.

• Now, the parameters of client and service (e.g., path to the key stores and
certificates, Kerberos parameters, etc.) are specified in properties files on
each side. A more intuitive way of doing it, adding a GUI for the service
installation, could be interesting.

• We have only addressed identity issues. The STS should be able to issue
attribute assertions about a client given her identity. For example, a client
could present her Kerberos ticket or X.509 certificate and the STS, after
checking the client’s identity and its policy, could issue certain attributes
depending on some roles or groups the client is into (e.g. “student”).

• Our solution is not using functionalities given by WS-Federation. The
application of that standard for Attributes/Name-space mapping would
be necessary in a real environment. The recent WS-Federation v1.1 released
in December 2006 should be studied.

• It would be good to be able to establish dynamic trust relationships
between STS/Client and STS/Resource. This would make our solution more
flexible.

• The solution should be able to execute on different platforms with the
same Java virtual machine and libraries. A study of the needed changes, and
a set of tests to prove that it can be executed in other operating systems and
architectures should be carried out.

7.2. FUTURE WORK 63

In summary, the final goal of our project is to construct a complete system
based on WS-Trust and WS-Federation specifications. In that system, illustrated
in Figure 2.5, the client will have a local IP/STS, that gives him a credential valid
for another IP/STS in the resource’s realm (both STS trust each other). The latter
IP/STS will provide the requestor with a temporal credential valid for the resource.
This would solve the trust issues between the STS and the other two parties. As
there is one local STS at each realm (so trust can be easily established by the local
administrator), just one trust relationship between both STS is needed.

Appendix A

Glossary

These are some terms which appear during the whole document. It is necessary for
the audience to be familiar with them when reading the paper. Most of them are
specific to the security area, quoted from the security literature.

Access Control: “Protection of system resources against unauthorized access; a
process by which use of system resources is regulated according to a security
policy and is permitted by only authorized entities (users, programs, processes,
or other systems) according to that policy” [5].

Asymmetric cryptography is a “branch of cryptography (popularly known as
"public key cryptography") in which the algorithms employ a pair of keys
(a public key and a private key) and use a different component of the pair
for different steps of the algorithm [such as encryption and decryption, or
signature creation and signature verification]” [5]. Common asymmetric key
cryptography algorithms are RSA and Diffie-Hellman.

Authentication is a way to prove that an entity is who it says. Formally, it “is the
process by which a subject proves its identity to a requestor, typically through
the use of a credential. Authentication in which both parties (i.e., the requestor
and the requestee) authenticate themselves to one another simultaneously is
referred to as mutual authentication” [32].

Authorization “is the process by which we determine whether a subject is allowed
to access or use an object” [32]. It states what the entity is allowed to do. It
may be specified in a security policy.

A Claim “is a declaration made by an entity (e.g. name, identity, key, group,
privilege, capability, attribute, etc.)” [26].

A Client is “a system entity that requests and uses a service provided by another
system entity, called a server” [5].

Confidentiality is “the property that information is not made available or
disclosed to unauthorized individuals, entities, or processes” [5].

65

66 APPENDIX A. GLOSSARY

A Credential “is a piece of information that is used to prove the identity of a
subject” [32]. It is a token that gives the entity a set of claims (its identity,
some attributes, . . .) and a way to check that it and only it (ideally) could
be the holder (e.g., a private secret). The credential must be trusted by the
party the entity is authenticating to. Examples of credentials are passwords,
Kerberos tickets and X.509 certificates. In this document, I will use the terms
Security Token and credential referring the same concept.

Cryptography is “the mathematical science that deals with transforming data to
render its meaning unintelligible (i.e., to hide its semantic content), prevent its
undetected alteration, or prevent its unauthorized use. If the transformation is
reversible, cryptography also deals with restoring encrypted data to intelligible
form” [5].

A Digital Signature is “a value computed with a cryptographic algorithm and
appended to a data object in such a way that any recipient of the data can use
the signature to verify the data’s origin and integrity” [5]. A typical usage
of the digital signature is encrypting with a private key the hash value (see
below) of a message, so that it can be verified with the public key.

Encryption is the “cryptographic transformation of data (called “plaintext”)
into a form (called “ciphertext”) that conceals the data’s original meaning to
prevent it from being known or used. If the transformation is reversible, the
corresponding reversal process is called decryption, which is a transformation
that restores encrypted data to its original state” [5]. Common encryption
algorithms include DES, Triple DES, AES, and RSA.

A Hash Function is “an algorithm that computes a value based on a data object
(such as a message or file; usually variable-length; possibly very large), thereby
mapping the data object to a smaller data object (the “hash result”) which is
usually a fixed-size value” [5]. The term Digest Function will be used having
the same meaning. A secure hash function must have two properties: It is
not computationally feasible to find the original data object given its hash
result, neither to find two data objects with the same hash result (finding
“collisions”). Hash result, Hash Value, and Digest Value will also be
treated as synonyms during the rest of the thesis. The two most-commonly
used hash functions are MD5 and SHA-1.

Identification is “an act or process that presents an identifier to a system so
that the system can recognize a system entity and distinguish it from other
entities”. Do not confuse with authentication. Here, the entity just presents
its identity. The authentication process proves that this identity corresponds
to the entity.

Identity: Who an entity is.

67

Integrity is “the property that data has not been changed, destroyed, or lost in an
unauthorized or accidental manner” [5].

A Key is “an input parameter that varies the transformation performed by a
cryptographic algorithm” [5].

An Object “is a resource that is being protected by the security policy” [32].

Privacy is “the right of individuals to control or influence what information
related to them may be collected and stored and by whom and to whom that
information may be disclosed” [5].

Repudiation: “Denial by a system entity that was involved in an association
(especially an association that transfers information) of having participated in
the relationship” [5].

A Security Policy is “a set of rules and practices that specify or regulate how
a system or organization provides security services to protect sensitive and
critical system resources” [5]. The term Policy will be used as an abbreviation
for this concept.

Single Sign-On (SSO) is “A system that enables a user to access multiple
computer platforms (usually a set of hosts on the same network) or application
systems after being authenticated just one time” [5].

A Subject “is a participant in a security operation. In grid systems, a subject is
generally a user, a process operating on behalf of a user, a resource (such as
a computer or a file), or a process acting on behalf of a resource” [32].

Symmetric cryptography is “A branch of cryptography involving algorithms
that use the same key for two different steps of the algorithm (such as
encryption and decryption, or signature creation and signature verification)”
[5]. Common symmetric key cryptography algorithms are DES, Triple DES,
AES.

Trust “is the characteristic that one entity is willing to rely upon a second entity
to execute a set of actions and/or to make set of assertions about a set of
subjects and/or scopes” [25].

A Trust Domain/Realm “is a logical, administrative structure within which a
single, consistent local security policy holds. Put another way, a trust domain
is a collection of both subjects and objects governed by single administration
and a single security policy” [32].

Appendix B

Abbreviations

AS Authentication Server, see Section 2.2
CA Certification Authority, see Section 2.3
CN Common Name, a field of a Distinguished Name
CR Certification Request, see Section 2.3
DN Distinguished Name
HTTP Hypertext Transfer Protocol
IP Internet Protocol or Identity Provider
IPsec Internet Protocol Security
KCA Kerberized Certificate Authority, see Section 4.2
KCT Kerberized Credential Translator, see Section 4.3
KDC Key Distribution Center, see Section 2.2
PKI Public Key Infrastructure, see Section 2.3
REL Rights Expression Language
RST Request Security Token, see Section 2.7.2
RSTR Request Security Token Response, see Section 2.7.2
SAML Security Assertion Markup Language, see Section 2.5
SOAP originally Simple Object Access Protocol, now it is not used as an

acronym, although it is still capitalized
SP Service Provider
SSL Secure Sockets Layer
SSO Single Sign-On
ST Service Ticket, see Section 2.2
STS Security Token Service
TGS Ticket Granting Server, see Section 2.2
TGT Ticket Granting Ticket, see Section 2.2
TLS Transport Layer Security
URI Uniform Resource Identifier
VO Virtual Organization
WS Web Service, see Section 2.6
WSDL Web Services Description Language, see Section 2.6

69

70 APPENDIX B. ABBREVIATIONS

WSS Web Services Security 2.7
XML Extensible Markup Language

Appendix C

Messages exchanged during Tests

C.1 Kerberos =⇒ X.509 Test

C.1.1 RST Message

1 <soapenv:Envelope
2 xmlns:soapenv ="http: // schemas . xmlsoap .org/soap/ envelope /"
3 xmlns:xsd ="http: // www.w3.org /2001/ XMLSchema "
4 xmlns:xsi ="http: // www.w3.org /2001/ XMLSchema - instance ">
5 <soapenv:Header >
6 <wsse:Security
7 soapenv:mustUnderstand ="1"
8 xmlns:wsse ="http: // docs.oasis -open.org/wss /2004/01/ oasis -200401 -

wss -wssecurity -secext -1.0. xsd">
9 <wsse:BinarySecurityToken

10 EncodingType ="http: // docs.oasis -open.org/wss /2004/01/ oasis
-200401 - wss -soap -message -security -1.0# Base64Binary "

11 ValueType ="http: // docs.oasis -open.org/wss/oasis -wss -kerberos -
token -profile -1.1# GSS_Kerberosv5_AP_REQ "

12 wsu:Id ="KrbID -6885751 "
13 xmlns:wsu ="http: // docs.oasis -open.org/wss /2004/01/ oasis -200401 -

wss -wssecurity -utility -1.0. xsd">
14 YYH8MIH5oAMCAQWhDRsLTkFEQS5LVEguU0WiJTAjoAMCAQGhHDAaGwNz
15 dHMbE21laHJhbmEubmFkYS5rdGguc2WjgbswgbigAwIBA6EDAgEBooGr
16 BIGoTx0GlQrRrMKro / S9KSWlBmsiIhK3dhaw0xf2 +QM+ AOFRgW0hWY5g
17 WIXHoqZHIdN1OK9hApYYMcTdnlNsnPZTiT0YOnGtAYvYFsKaSOewQLh5
18 Lj0altKmM9QYPl + miNyAkbUrLOeuOqtXM8uzVCGzC7P4D1TlAeCzkGbH
19 pOpcAe + rxKMcDPJuZ4XaeTH / RwYHLqcsLH9gm3VLQZ4yUYmcWl0r /8Ws
20 cttn
21 </ wsse:BinarySecurityToken >
22 <ds:Signature Id="Signature -5076660 "
23 xmlns:ds ="http: // www.w3.org /2000/09/ xmldsig #">
24 <ds:SignedInfo >
25 <ds:CanonicalizationMethod Algorithm ="http: // www.w3.org

/2001/10/ xml -exc -c14n#"/>
26 <ds:SignatureMethod Algorithm ="http: // www.w3.org /2000/09/

xmldsig #hmac -sha1"/>
27 <ds:Reference URI="#id -28623319 ">

71

72 APPENDIX C. MESSAGES EXCHANGED DURING TESTS

28 <ds:Transforms >
29 <ds:Transform Algorithm ="http: // www.w3.org /2001/10/ xml -exc -

c14n#"/>
30 </ ds:Transforms >
31 <ds:DigestMethod Algorithm ="http: // www.w3.org /2000/09/ xmldsig

#sha1"/>
32 <ds:DigestValue >qy+ xc3zmJXg / uD5W4Yu8x /xKL0w=</ ds:DigestValue >
33 </ ds:Reference >
34 </ ds:SignedInfo >
35 <ds:SignatureValue >P7cg0LmLDb85oBdflf9dRZEFxUs =</

ds:SignatureValue >
36 <ds:KeyInfo Id="KeyId -9144903 ">
37 <wsse:SecurityTokenReference
38 wsu:Id ="STRId -12470752 "
39 xmlns:wsu ="http: // docs.oasis -open.org/wss /2004/01/ oasis

-200401 - wss -wssecurity -utility -1.0. xsd">
40 <wsse:Reference
41 URI="#KrbID -6885751 "
42 ValueType ="http: // docs.oasis -open.org/wss/oasis -wss -kerberos

-token -profile -1.1# GSS_Kerberosv5_AP_REQ "/>
43 </ wsse:SecurityTokenReference >
44 </ ds:KeyInfo >
45 </ ds:Signature >
46 </ wsse:Security >
47 </ soapenv:Header >
48 <soapenv:Body
49 wsu:Id ="id -28623319 "
50 xmlns:wsu ="http: // docs.oasis -open.org/wss /2004/01/ oasis -200401 -

wss -wssecurity -utility -1.0. xsd">
51 <wst:RequestSecurityToken xmlns:wst ="http: // schemas . xmlsoap .org/

ws /2005/02/ trust">
52 <wst:RequestType >http: // schemas . xmlsoap .org/ws /2005/02/ trust/

Issue </ wst:RequestType >
53 <wst:TokenType >
54 http: // docs.oasis -open.org/wss /2004/01/ oasis -200401 - wss -x509 -

token -profile -1.0
55 </ wst:TokenType >
56 <wst:Claims Dialect ="http: // DialectNameSpace ">
57 <wsse:BinarySecurityToken
58 EncodingType ="http: // docs.oasis -open.org/wss /2004/01/ oasis

-200401 - wss -soap -message -security -1.0# Base64Binary "
59 ValueType ="http: // www.pdc.kth.se/oasis -200401 - wss -x509 -token -

profile -1.0# PKCS10 "
60 xmlns:wsse ="http: // docs.oasis -open.org/wss /2004/01/ oasis

-200401 - wss -wssecurity -secext -1.0. xsd">
61 MIIBpDCCAQ0CAQAwZDENMAsGA1UEChMER3JpZDEeMBwGCSqGSIb3DQE
62 JARYPZXRnQE5BREEuS1RILlNFMQ8wDQYDVQQGEwZTd2VkZW4xDDAKBg
63 NVBAMTA2V0ZzEUMBIGA1UECxMLTkFEQS5LVEguU0UwgZ8wDQYJKoZIh
64 vcNAQEBBQADgY0AMIGJAoGBAKxPwuWoa3XueBurAntwFPeZiUcJ52FY
65 akNIIXSRIwepFLt184Zc4VFgj7tnmX8DercVZCX1LaQ0RpoKGhbi0o0
66 SA7HCLpM52VpBzDE / TAyqlj5L0PXz0wnTH7OWgd70TcGWXUoRZamW9t
67 OBbC0oeZqqQ / VUvvli + Z7NoMdD0R8VAgMBAAGgADANBgkqhkiG9w0BA
68 QUFAAOBgQBRh75gfvYcRd47YJnfPFUOYb2jVWUjzHnmDBvXMJEF3GMD
69 lV+ KKrx5orzVNUROQd0EW + b0bSFtCIBOFUbcMFpCnZxiC5KCe688wWz

C.1. KERBEROS =⇒ X.509 TEST 73

70 XxJzEKxKfVGfezc0V5x22seXQybd /Yw/ SOBpXw / yGx3Z9OrCCFJ +Qsq
71 KFVKxzV8zQdny3Rg ==
72 </ wsse:BinarySecurityToken >
73 <wsse:BinarySecurityToken
74 EncodingType ="http: // docs.oasis -open.org/wss /2004/01/ oasis

-200401 - wss -soap -message -security -1.0# Base64Binary "
75 ValueType ="http: // docs.oasis -open.org/wss/oasis -wss -kerberos -

token -profile -1.1# GSS_Kerberosv5_AP_REQ "
76 xmlns:wsse ="http: // docs.oasis -open.org/wss /2004/01/ oasis

-200401 - wss -wssecurity -secext -1.0. xsd">
77 YYH8MIH5oAMCAQWhDRsLTkFEQS5LVEguU0WiJTAjoAMCAQGhHDAaGwN
78 zdHMbE21laHJhbmEubmFkYS5rdGguc2WjgbswgbigAwIBA6EDAgEBoo
79 GrBIGopDm7M0rW4NckB +5 ulnWfSEplXRB2ZX9ekODoXeJPnaT2TWcW9
80 6hSC0s+ WOy65sz / IIFSez / FqjaSEkMEQQ4lzxudC5s9nkvIAJU2SFf5
81 Di6OItctO97idRDSdDXEi / tcqZoKW66yhE4aM2yqbSC0fcMXeTC2dCh
82 iGH55a38 + g4xw9y9jxQnRFJYjPs7hGpK2ryNSAehpGuEaSqRrl0RYFX
83 9tD1 /5 vA57
84 </ wsse:BinarySecurityToken >
85 </ wst:Claims >
86 </ wst:RequestSecurityToken >
87 </ soapenv:Body >
88 </ soapenv:Envelope >

Listing C.1. RST Message in Kerberos → X.509 translation

C.1.2 RSTR Message

1 <soapenv:Envelope
2 xmlns:soapenv ="http: // schemas . xmlsoap .org/soap/ envelope /"
3 xmlns:xsd ="http: // www.w3.org /2001/ XMLSchema "
4 xmlns:xsi ="http: // www.w3.org /2001/ XMLSchema - instance ">
5 <soapenv:Header >
6 <wsse:Security
7 soapenv:mustUnderstand ="1"
8 xmlns:wsse ="http: // docs.oasis -open.org/wss /2004/01/ oasis -200401 -

wss -wssecurity -secext -1.0. xsd">
9 <ds:Signature

10 Id="Signature -6059828 "
11 xmlns:ds ="http: // www.w3.org /2000/09/ xmldsig #">
12 <ds:SignedInfo >
13 <ds:CanonicalizationMethod Algorithm ="http: // www.w3.org

/2001/10/ xml -exc -c14n#"/>
14 <ds:SignatureMethod Algorithm ="http: // www.w3.org /2000/09/

xmldsig #hmac -sha1"/>
15 <ds:Reference URI="#id -16765237 ">
16 <ds:Transforms >
17 <ds:Transform Algorithm ="http: // www.w3.org /2001/10/ xml -exc -

c14n#"/>
18 </ ds:Transforms >
19 <ds:DigestMethod Algorithm ="http: // www.w3.org /2000/09/ xmldsig

#sha1"/>
20 <ds:DigestValue >M5+ nbOa1ZkVlFr3P1CLB5 /NlJGw=</ ds:DigestValue >
21 </ ds:Reference >
22 <ds:Reference URI="#SigConf -27785692 ">

74 APPENDIX C. MESSAGES EXCHANGED DURING TESTS

23 <ds:Transforms >
24 <ds:Transform Algorithm ="http: // www.w3.org /2001/10/ xml -exc -

c14n#"/>
25 </ ds:Transforms >
26 <ds:DigestMethod Algorithm ="http: // www.w3.org /2000/09/ xmldsig

#sha1"/>
27 <ds:DigestValue >lpP2608mk4yNTw8AnydxvYpTXAc =</ ds:DigestValue >
28 </ ds:Reference >
29 </ ds:SignedInfo >
30 <ds:SignatureValue >m8/ h0LEoGwyHsZ6G + ZpmJMv8TPk =</

ds:SignatureValue >
31 </ ds:Signature >
32 <wsse11:SignatureConfirmation
33 Value=" P7cg0LmLDb85oBdflf9dRZEFxUs ="
34 wsu:Id ="SigConf -27785692 "
35 xmlns:wsse11 ="http: // docs.oasis -open.org/wss /2005/ xx/oasis -2005

xx -wss -wssecurity -secext -1.1. xsd"
36 xmlns:wsu ="http: // docs.oasis -open.org/wss /2004/01/ oasis -200401 -

wss -wssecurity -utility -1.0. xsd"/>
37 </ wsse:Security >
38 </ soapenv:Header >
39 <soapenv:Body
40 wsu:Id ="id -16765237 "
41 xmlns:wsu ="http: // docs.oasis -open.org/wss /2004/01/ oasis -200401 -

wss -wssecurity -utility -1.0. xsd">
42 <wst:RequestSecurityTokenResponse
43 xmlns:wst ="http: // schemas . xmlsoap .org/ws /2005/02/ trust">
44 <wst:TokenType >
45 http: // docs.oasis -open.org/wss /2004/01/ oasis -200401 - wss -x509 -

token -profile -1.0
46 </ wst:TokenType >
47 <wst:RequestedSecurityToken >
48 <wsse:BinarySecurityToken
49 EncodingType ="http: // docs.oasis -open.org/wss /2004/01/ oasis

-200401 - wss -soap -message -security -1.0# Base64Binary "
50 ValueType ="http: // docs.oasis -open.org/wss /2004/01/ oasis

-200401 - wss -x509 -token -profile -1.0# X509v3 "
51 xmlns:wsse ="http: // docs.oasis -open.org/wss /2004/01/ oasis

-200401 - wss -wssecurity -secext -1.0. xsd">
52 MIIB6DCCAZKgAwIBAgIDEAABMA0GCSqGSIb3DQEBBAUAME8xCzAJBg
53 NVBAYTAlNFMRIwEAYDVQQIEwlTdG9ja2hvbG0xDDAKBgNVBAoTA0tU
54 SDEMMAoGA1UECxMDUERDMRAwDgYDVQQDEwdFc3RlYmFuMB4XDTA3MD
55 IxNTE5MDAxMloXDTA3MDIxNjA3MDUxMlowZDENMAsGA1UEChMER3Jp
56 ZDEeMBwGCSqGSIb3DQEJARYPZXRnQE5BREEuS1RILlNFMQ8wDQYDVQ
57 QGEwZTd2VkZW4xDDAKBgNVBAMTA2V0ZzEUMBIGA1UECxMLTkFEQS5L
58 VEguU0UwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAKxPwuWoa3
59 XueBurAntwFPeZiUcJ52FYakNIIXSRIwepFLt184Zc4VFgj7tnmX8D
60 ercVZCX1LaQ0RpoKGhbi0o0SA7HCLpM52VpBzDE / TAyqlj5L0PXz0w
61 nTH7OWgd70TcGWXUoRZamW9tOBbC0oeZqqQ / VUvvli + Z7NoMdD0R8V
62 AgMBAAEwDQYJKoZIhvcNAQEEBQADQQBdmH2m ++ bmWEQGLEuyGBQmtv
63 DPfNFCeyQumq + plW0a7 /7 ggv3dMAP66Fm6inSrJHZbSXkJQqlZiq7U
64 MB7shK7b
65 </ wsse:BinarySecurityToken >
66 </ wst:RequestedSecurityToken >

C.2. KERBEROS =⇒ SAML TEST 75

67 </ wst:RequestSecurityTokenResponse >
68 </ soapenv:Body >
69 </ soapenv:Envelope >

Listing C.2. RSTR Message in Kerberos → X.509 translation

C.1.3 Returned Certificate

1 Version: 3
2 SerialNumber: 1048577
3 IssuerDN: C=SE ,ST=Stockholm ,O=KTH ,OU=PDC ,CN=STS
4 Start Date: Thu Feb 15 20 :00:12 CET 2007
5 Final Date: Fri Feb 16 08 :05:12 CET 2007
6 SubjectDN: O=Grid ,E= etg@NADA .KTH.SE ,C=SE ,CN=etg ,OU=NADA.KTH.SE
7 Public Key: RSA Public Key
8 modulus: ac4fc2e5a86b75ee781bab027b7014f799894709e761586a4
9 3482174912307 a914bb75f3865ce151608fbb67997f037ab7

10 156425 f52da434469a0a1a16e2d28d1203b1c22e9339d95a4
11 1 cc313f4c0caa963e4bd0f5f3d309d31fb39681def44dc196
12 5 d4a1165a996f6d3816c2d28799aaa43f554bef962f99ecda
13 0 c743d11f15
14 public exponent: 10001
15 Signature Algorithm: MD5WithRSAEncryption
16 Signature: 5 d987da6fbe6e65844062c4bb2181426b6f0cf7c
17 d1427b242e9aafa9956d1aeffee082fddd3003fa
18 e859ba8a74ab24765b49790942a9598aaed4301e
19 ec84aedb

Listing C.3. Returned certificate in Kerberos → X.509 translation

C.2 Kerberos =⇒ SAML Test

C.2.1 RST Message

1 <soapenv:Envelope
2 xmlns:soapenv ="http: // schemas . xmlsoap .org/soap/ envelope /"
3 xmlns:xsd ="http: // www.w3.org /2001/ XMLSchema "
4 xmlns:xsi ="http: // www.w3.org /2001/ XMLSchema - instance ">
5 <soapenv:Header >
6 <wsse:Security
7 soapenv:mustUnderstand ="1"
8 xmlns:wsse ="http: // docs.oasis -open.org/wss /2004/01/ oasis -200401 -

wss -wssecurity -secext -1.0. xsd">
9 <wsse:BinarySecurityToken

10 EncodingType ="http: // docs.oasis -open.org/wss /2004/01/ oasis
-200401 - wss -soap -message -security -1.0# Base64Binary "

11 ValueType ="http: // docs.oasis -open.org/wss/oasis -wss -kerberos -
token -profile -1.1# GSS_Kerberosv5_AP_REQ "

12 wsu:Id ="KrbID -20348456 "
13 xmlns:wsu ="http: // docs.oasis -open.org/wss /2004/01/ oasis -200401 -

wss -wssecurity -utility -1.0. xsd">
14 YYH8MIH5oAMCAQWhDRsLTkFEQS5LVEguU0WiJTAjoAMCAQGhHDAaGwNz
15 dHMbE21laHJhbmEubmFkYS5rdGguc2WjgbswgbigAwIBA6EDAgEBooGr
16 BIGoNbPZAFDRqTu6qXcUTkM48Ln1OFCqlXEutE8GxjR7 + JLq7Vmd0hgE

76 APPENDIX C. MESSAGES EXCHANGED DURING TESTS

17 RMPDH1oIvDb5dqQ3kmCMtLXd2gq4f8gElw2ubSnTKvM8UwrSQTht6esF
18 ZPDwtTyEyVT7pI +srm+ lG5alpJhsl4Pn2JjZfji + jMcYvds1U3kEmjOl
19 DxYIHvtRXy45adGGhNWZ2hSDf42055OPYna4kFetsTzRmSgXv0HQU03p
20 eRmv
21 </ wsse:BinarySecurityToken >
22 <ds:Signature Id="Signature -25865024 " xmlns:ds ="http: // www.w3.

org /2000/09/ xmldsig #">
23 <ds:SignedInfo >
24 <ds:CanonicalizationMethod Algorithm ="http: // www.w3.org

/2001/10/ xml -exc -c14n#"/>
25 <ds:SignatureMethod Algorithm ="http: // www.w3.org /2000/09/

xmldsig #hmac -sha1"/>
26 <ds:Reference URI="#id -26870275 ">
27 <ds:Transforms >
28 <ds:Transform Algorithm ="http: // www.w3.org /2001/10/ xml -exc -

c14n#"/>
29 </ ds:Transforms >
30 <ds:DigestMethod Algorithm ="http: // www.w3.org /2000/09/ xmldsig

#sha1"/>
31 <ds:DigestValue >g+ RyF4xHeQXcC1Gw0c445 +eZP0s=</ ds:DigestValue >
32 </ ds:Reference >
33 </ ds:SignedInfo >
34 <ds:SignatureValue >x7A // wuYkyzLKVsK7DK / XrjpQMg =</

ds:SignatureValue >
35 <ds:KeyInfo Id="KeyId -18135083 ">
36 <wsse:SecurityTokenReference
37 wsu:Id ="STRId -876215 "
38 xmlns:wsu ="http: // docs.oasis -open.org/wss /2004/01/ oasis

-200401 - wss -wssecurity -utility -1.0. xsd">
39 <wsse:Reference
40 URI="#KrbID -20348456 "
41 ValueType ="http: // docs.oasis -open.org/wss/oasis -wss -kerberos

-token -profile -1.1# GSS_Kerberosv5_AP_REQ "/>
42 </ wsse:SecurityTokenReference >
43 </ ds:KeyInfo >
44 </ ds:Signature >
45 </ wsse:Security >
46 </ soapenv:Header >
47 <soapenv:Body
48 wsu:Id ="id -26870275 "
49 xmlns:wsu ="http: // docs.oasis -open.org/wss /2004/01/ oasis -200401 -

wss -wssecurity -utility -1.0. xsd">
50 <wst:RequestSecurityToken
51 xmlns:wst ="http: // schemas . xmlsoap .org/ws /2005/02/ trust">
52 <wst:RequestType >http: // schemas . xmlsoap .org/ws /2005/02/ trust/

Issue </ wst:RequestType >
53 <wst:TokenType >
54 http: // docs.oasis -open.org/wss /2004/ XX/oasis -2004XX -wss -saml -

token -profile -1.0
55 </ wst:TokenType >
56 <wst:Claims
57 Dialect ="http: // docs.oasis -open.org/wss/oasis -wss -kerberos -

token -profile -1.1# GSS_Kerberosv5_AP_REQ ">
58 <wsse:BinarySecurityToken

C.2. KERBEROS =⇒ SAML TEST 77

59 EncodingType ="http: // docs.oasis -open.org/wss /2004/01/ oasis
-200401 - wss -soap -message -security -1.0# Base64Binary "

60 ValueType ="http: // docs.oasis -open.org/wss/oasis -wss -kerberos -
token -profile -1.1# GSS_Kerberosv5_AP_REQ "

61 xmlns:wsse ="http: // docs.oasis -open.org/wss /2004/01/ oasis
-200401 - wss -wssecurity -secext -1.0. xsd">

62 YYH8MIH5oAMCAQWhDRsLTkFEQS5LVEguU0WiJTAjoAMCAQGhHDAaGwN
63 zdHMbE21laHJhbmEubmFkYS5rdGguc2WjgbswgbigAwIBA6EDAgEBoo
64 GrBIGon5eLOthbiKkvNJdXHAkdV9u6H5nIwQ / eJL4AzhZMcpstbcA +z
65 4 sL5yh4DuW1I5WMcgPloGMZsehlW1XARNh8NKB8T5yg8BGkpkbXZmau
66 QkjJSVzd37WQ + v1wJ9s7g /ruXw/ plRVFO3SJBe4vJZ2OHq + UDgwKz1k
67 ogL/ f2RmO1nCNPOmHmhzBuacRQl6jmldSyoJaOw7eACAZEOu6upn9ze
68 mVYjA3Ofpk
69 </ wsse:BinarySecurityToken >
70 <ns1:KeyInfo
71 xmlns="http: // www.w3.org /2000/09/ xmldsig #"
72 xmlns:ns1 ="http: // www.w3.org /2000/09/ xmldsig #">
73 <ns1:KeyValue >
74 <ns1:RSAKeyValue >
75 <ns1:Modulus >
76 ofkJg9hyozd04bgKQiKW0 / VbioNXEfgdewPNJAjsOLf / k6K8Ux +J
77 25 JgOeuxUD2W3gbrDvg8itPzE0 / eTiUK17FLzIQ9zGW3D4FInB03
78 8 JxmD4qJJULgM7M61XN9Tw7TYJchMws44C9oZIgsuEgUyW1YQlxT
79 ALZAW4SroM6D /WU=
80 </ ns1:Modulus >
81 <ns1:Exponent >AQAB </ ns1:Exponent >
82 </ ns1:RSAKeyValue >
83 </ ns1:KeyValue >
84 </ ns1:KeyInfo >
85 </ wst:Claims >
86 </ wst:RequestSecurityToken >
87 </ soapenv:Body >
88 </ soapenv:Envelope >

Listing C.4. RST Message in Kerberos → SAML translation

C.2.2 RSTR Message

1 <soapenv:Envelope
2 xmlns:soapenv ="http: // schemas . xmlsoap .org/soap/ envelope /"
3 xmlns:xsd ="http: // www.w3.org /2001/ XMLSchema "
4 xmlns:xsi ="http: // www.w3.org /2001/ XMLSchema - instance ">
5 <soapenv:Header >
6 <wsse:Security
7 soapenv:mustUnderstand ="1"
8 xmlns:wsse ="http: // docs.oasis -open.org/wss /2004/01/ oasis -200401 -

wss -wssecurity -secext -1.0. xsd">
9 <ds:Signature

10 Id="Signature -10923886 "
11 xmlns:ds ="http: // www.w3.org /2000/09/ xmldsig #">
12 <ds:SignedInfo >
13 <ds:CanonicalizationMethod Algorithm ="http: // www.w3.org

/2001/10/ xml -exc -c14n#"/>

78 APPENDIX C. MESSAGES EXCHANGED DURING TESTS

14 <ds:SignatureMethod Algorithm ="http: // www.w3.org /2000/09/
xmldsig #hmac -sha1"/>

15 <ds:Reference URI="#id -21465645 ">
16 <ds:Transforms >
17 <ds:Transform Algorithm ="http: // www.w3.org /2001/10/ xml -exc -

c14n#"/>
18 </ ds:Transforms >
19 <ds:DigestMethod Algorithm ="http: // www.w3.org /2000/09/ xmldsig

#sha1"/>
20 <ds:DigestValue >ipBF5sk / PlQCBH2vRmfVqbdNKZU =</ ds:DigestValue >
21 </ ds:Reference >
22 <ds:Reference URI="#SigConf -8585506 ">
23 <ds:Transforms >
24 <ds:Transform Algorithm ="http: // www.w3.org /2001/10/ xml -exc -

c14n#"/>
25 </ ds:Transforms >
26 <ds:DigestMethod Algorithm ="http: // www.w3.org /2000/09/ xmldsig

#sha1"/>
27 <ds:DigestValue >zEW4UK1tJ17m0pM58f7FVuorhRk =</ ds:DigestValue >
28 </ ds:Reference >
29 </ ds:SignedInfo >
30 <ds:SignatureValue >i2hKnuOvH0FxNWt6bI2x29dm9Kk =</

ds:SignatureValue >
31 </ ds:Signature >
32 <wsse11:SignatureConfirmation
33 Value="x7A // wuYkyzLKVsK7DK / XrjpQMg ="
34 wsu:Id ="SigConf -8585506 "
35 xmlns:wsse11 ="http: // docs.oasis -open.org/wss /2005/ xx/oasis -2005

xx -wss -wssecurity -secext -1.1. xsd"
36 xmlns:wsu ="http: // docs.oasis -open.org/wss /2004/01/ oasis -200401 -

wss -wssecurity -utility -1.0. xsd"/>
37 </ wsse:Security >
38 </ soapenv:Header >
39 <soapenv:Body
40 wsu:Id ="id -21465645 "
41 xmlns:wsu ="http: // docs.oasis -open.org/wss /2004/01/ oasis -200401 -

wss -wssecurity -utility -1.0. xsd">
42 <wst:RequestSecurityTokenResponse
43 xmlns:wst ="http: // schemas . xmlsoap .org/ws /2005/02/ trust">
44 <wst:TokenType >
45 http: // docs.oasis -open.org/wss /2004/ XX/oasis -2004XX -wss -saml -

token -profile -1.0
46 </ wst:TokenType >
47 <wst:RequestedSecurityToken >
48 <saml:Assertion
49 AssertionID =" _bac2462fd101f41567cabda33dbda1f6 "
50 IssueInstant ="2007 -02 -15 T19:08:00 .255Z"
51 Issuer ="http: // localhost:8080 /axis/ services /sts"
52 MajorVersion ="1"
53 MinorVersion ="1"
54 xmlns:saml =" urn:oasis:names:tc:SAML:1 .0 :assertion "
55 xmlns:samlp =" urn:oasis:names:tc:SAML:1 .0 :protocol ">
56 <saml:Conditions
57 NotBefore ="2007 -02 -15 T19:08:00 .255Z"

C.2. KERBEROS =⇒ SAML TEST 79

58 NotOnOrAfter ="2007 -02 -16 T07:13:00 .255Z"/>
59 <saml:AuthenticationStatement
60 AuthenticationInstant ="2007 -02 -15 T19:08:00 .255Z"
61 AuthenticationMethod =" urn:ietf:rfc:1510 ">
62 <saml:Subject >
63 <saml:NameIdentifier
64 Format =" urn:oasis:names:tc:SAML:1 .1 :nameid -

format:unspecified ">
65 etg@NADA .KTH.SE
66 </ saml:NameIdentifier >
67 <saml:SubjectConfirmation >
68 <saml:ConfirmationMethod >
69 urn:oasis:names:tc:SAML:1 .0 :cm:holder -of -key
70 </ saml:ConfirmationMethod >
71 <ds:KeyInfo xmlns:ds ="http: // www.w3.org /2000/09/ xmldsig #">
72 <ds:KeyValue >
73 <ds:RSAKeyValue >
74 <ds:Modulus >
75 ofkJg9hyozd04bgKQiKW0 / VbioNXEfgdewPNJAjsOLf /k6K8
76 Ux+ J25JgOeuxUD2W3gbrDvg8itPzE0 / eTiUK17FLzIQ9zGW3
77 D4FInB038JxmD4qJJULgM7M61XN9Tw7TYJchMws44C9oZIgs
78 uEgUyW1YQlxTALZAW4SroM6D /WU=
79 </ ds:Modulus >
80 <ds:Exponent >AQAB </ ds:Exponent >
81 </ ds:RSAKeyValue >
82 </ ds:KeyValue >
83 </ ds:KeyInfo >
84 </ saml:SubjectConfirmation >
85 </ saml:Subject >
86 </ saml:AuthenticationStatement >
87 <ds:Signature xmlns:ds ="http: // www.w3.org /2000/09/ xmldsig #">
88 <ds:SignedInfo >
89 <ds:CanonicalizationMethod Algorithm ="http: // www.w3.org

/2001/10/ xml -exc -c14n#"/>
90 <ds:SignatureMethod Algorithm ="http: // www.w3.org /2000/09/

xmldsig #rsa -sha1"/>
91 <ds:Reference URI="# _bac2462fd101f41567cabda33dbda1f6 ">
92 <ds:Transforms >
93 <ds:Transform Algorithm ="http: // www.w3.org /2000/09/ xmldsig

#enveloped - signature "/>
94 <ds:Transform Algorithm ="http: // www.w3.org /2001/10/ xml -exc

-c14n#">
95 <ec:InclusiveNamespaces
96 PrefixList ="code ds kind rw saml samlp typens # default

xsd xsi"
97 xmlns:ec ="http: // www.w3.org /2001/10/ xml -exc -c14n#"/>
98 </ ds:Transform >
99 </ ds:Transforms >

100 <ds:DigestMethod Algorithm ="http: // www.w3.org /2000/09/
xmldsig #sha1"/>

101 <ds:DigestValue >mGlM/ PFNp5y4CsnF5Sn8vvTKy /I=</
ds:DigestValue >

102 </ ds:Reference >
103 </ ds:SignedInfo >

80 APPENDIX C. MESSAGES EXCHANGED DURING TESTS

104 <ds:SignatureValue >
105 xcUhn/ vBUuzvNkLjEIWd9ZRurll3rFGcvGlgR1O31cyFtst1XlZLX
106 Oebm4bHBHfDkVJrUAk + L7JPf9cxbOhnYQ ==
107 </ ds:SignatureValue >
108 <ds:KeyInfo >
109 <ds:X509Data >
110 <ds:X509Certificate >
111 MIIBrTCCAVcCAxAAATANBgkqhkiG9w0BAQQFADByMQwwCgYDVQQ
112 KEwNLVEgxDDAKBgNVBAsTA1BEQzESMBAGA1UEBxMJU3RvY2tob2
113 xtMRIwEAYDVQQIEwlTdG9ja2hvbG0xCzAJBgNVBAYTAlNFMR8wH
114 QYDVQQDExZDZXJ0aWZpY2F0aW9uQXV0aG9yaXR5MB4XDTA2MTAw
115 NTEzMzgxM1oXDTA3MTAwNTEzMzgxM1owTzELMAkGA1UEBhMCU0U
116 xEjAQBgNVBAgTCVN0b2NraG9sbTEMMAoGA1UEChMDS1RIMQwwCg
117 YDVQQLEwNQREMxEDAOBgNVBAMTB0VzdGViYW4wXDANBgkqhkiG9
118 w0BAQEFAANLADBIAkEA0iheU3hQcaYHq4YrtVIYfyJnoNJKNBmb
119 TAkfV6CVOq7g10WBmxLzPjLwLuR7oF8vw9e9dv9QV1La + ubd6o5
120 llwIDAQABMA0GCSqGSIb3DQEBBAUAA0EAEaWtYqjankvren2DmA
121 QuOmB/ fsc71T84FbgcoATFvVYB9SHfy2A1u9cMT7zCOEXkTg6RL
122 Tt2yac6SB / QaqXkWw ==
123 </ ds:X509Certificate >
124 </ ds:X509Data >
125 </ ds:KeyInfo >
126 </ ds:Signature >
127 </ saml:Assertion >
128 </ wst:RequestedSecurityToken >
129 </ wst:RequestSecurityTokenResponse >
130 </ soapenv:Body >
131 </ soapenv:Envelope >

Listing C.5. RSTR Message in Kerberos → SAML translation

C.2.3 Returned Assertion

1 <saml:Assertion
2 AssertionID =" _bac2462fd101f41567cabda33dbda1f6 "
3 IssueInstant ="2007 -02 -15 T19:08:00 .255Z"
4 Issuer ="http: // localhost:8080 /axis/ services /sts"
5 MajorVersion ="1"
6 MinorVersion ="1"
7 xmlns:saml =" urn:oasis:names:tc:SAML:1 .0 :assertion "
8 xmlns:samlp =" urn:oasis:names:tc:SAML:1 .0 :protocol ">
9 <saml:Conditions

10 NotBefore ="2007 -02 -15 T19:08:00 .255Z"
11 NotOnOrAfter ="2007 -02 -16 T07:13:00 .255Z"/>
12 <saml:AuthenticationStatement
13 AuthenticationInstant ="2007 -02 -15 T19:08:00 .255Z"
14 AuthenticationMethod =" urn:ietf:rfc:1510 ">
15 <saml:Subject >
16 <saml:NameIdentifier
17 Format =" urn:oasis:names:tc:SAML:1 .1 :nameid - format:unspecified ">
18 etg@NADA .KTH.SE
19 </ saml:NameIdentifier >
20 <saml:SubjectConfirmation >
21 <saml:ConfirmationMethod >

C.2. KERBEROS =⇒ SAML TEST 81

22 urn:oasis:names:tc:SAML:1 .0 :cm:holder -of -key
23 </ saml:ConfirmationMethod >
24 <ds:KeyInfo xmlns:ds ="http: // www.w3.org /2000/09/ xmldsig #">
25 <ds:KeyValue >
26 <ds:RSAKeyValue >
27 <ds:Modulus >
28 ofkJg9hyozd04bgKQiKW0 / VbioNXEfgdewPNJAjsOLf /k6K8
29 Ux+ J25JgOeuxUD2W3gbrDvg8itPzE0 / eTiUK17FLzIQ9zGW3
30 D4FInB038JxmD4qJJULgM7M61XN9Tw7TYJchMws44C9oZIgs
31 uEgUyW1YQlxTALZAW4SroM6D /WU=
32 </ ds:Modulus >
33 <ds:Exponent >AQAB </ ds:Exponent >
34 </ ds:RSAKeyValue >
35 </ ds:KeyValue >
36 </ ds:KeyInfo >
37 </ saml:SubjectConfirmation >
38 </ saml:Subject >
39 </ saml:AuthenticationStatement >
40 <ds:Signature xmlns:ds ="http: // www.w3.org /2000/09/ xmldsig #">
41 <ds:SignedInfo >
42 <ds:CanonicalizationMethod Algorithm ="http: // www.w3.org /2001/10/

xml -exc -c14n#"/>
43 <ds:SignatureMethod Algorithm ="http: // www.w3.org /2000/09/ xmldsig

#rsa -sha1"/>
44 <ds:Reference URI="# _bac2462fd101f41567cabda33dbda1f6 ">
45 <ds:Transforms >
46 <ds:Transform Algorithm ="http: // www.w3.org /2000/09/ xmldsig #

enveloped - signature "/>
47 <ds:Transform Algorithm ="http: // www.w3.org /2001/10/ xml -exc -

c14n#">
48 <ec:InclusiveNamespaces
49 PrefixList ="code ds kind rw saml samlp typens # default xsd

xsi"
50 xmlns:ec ="http: // www.w3.org /2001/10/ xml -exc -c14n#"/>
51 </ ds:Transform >
52 </ ds:Transforms >
53 <ds:DigestMethod Algorithm ="http: // www.w3.org /2000/09/ xmldsig #

sha1"/>
54 <ds:DigestValue >mGlM/ PFNp5y4CsnF5Sn8vvTKy /I=</ ds:DigestValue >
55 </ ds:Reference >
56 </ ds:SignedInfo >
57 <ds:SignatureValue >
58 xcUhn/ vBUuzvNkLjEIWd9ZRurll3rFGcvGlgR1O31cyFtst1XlZLX
59 Oebm4bHBHfDkVJrUAk + L7JPf9cxbOhnYQ ==
60 </ ds:SignatureValue >
61 <ds:KeyInfo >
62 <ds:X509Data >
63 <ds:X509Certificate >
64 MIIBrTCCAVcCAxAAATANBgkqhkiG9w0BAQQFADByMQwwCgYDVQQ
65 KEwNLVEgxDDAKBgNVBAsTA1BEQzESMBAGA1UEBxMJU3RvY2tob2
66 xtMRIwEAYDVQQIEwlTdG9ja2hvbG0xCzAJBgNVBAYTAlNFMR8wH
67 QYDVQQDExZDZXJ0aWZpY2F0aW9uQXV0aG9yaXR5MB4XDTA2MTAw
68 NTEzMzgxM1oXDTA3MTAwNTEzMzgxM1owTzELMAkGA1UEBhMCU0U
69 xEjAQBgNVBAgTCVN0b2NraG9sbTEMMAoGA1UEChMDS1RIMQwwCg

82 APPENDIX C. MESSAGES EXCHANGED DURING TESTS

70 YDVQQLEwNQREMxEDAOBgNVBAMTB0VzdGViYW4wXDANBgkqhkiG9
71 w0BAQEFAANLADBIAkEA0iheU3hQcaYHq4YrtVIYfyJnoNJKNBmb
72 TAkfV6CVOq7g10WBmxLzPjLwLuR7oF8vw9e9dv9QV1La + ubd6o5
73 llwIDAQABMA0GCSqGSIb3DQEBBAUAA0EAEaWtYqjankvren2DmA
74 QuOmB/ fsc71T84FbgcoATFvVYB9SHfy2A1u9cMT7zCOEXkTg6RL
75 Tt2yac6SB / QaqXkWw ==
76 </ ds:X509Certificate >
77 </ ds:X509Data >
78 </ ds:KeyInfo >
79 </ ds:Signature >
80 </ saml:Assertion >

Listing C.6. Returned assertion in Kerberos → SAML translation

C.3 X.509 =⇒ Kerberos Test

C.3.1 RST Message

1 <soapenv:Envelope
2 xmlns:soapenv ="http: // schemas . xmlsoap .org/soap/ envelope /"
3 xmlns:xsd ="http: // www.w3.org /2001/ XMLSchema "
4 xmlns:xsi ="http: // www.w3.org /2001/ XMLSchema - instance ">
5 <soapenv:Header >
6 <wsse:Security
7 soapenv:mustUnderstand ="1"
8 xmlns:wsse ="http: // docs.oasis -open.org/wss /2004/01/ oasis -200401 -

wss -wssecurity -secext -1.0. xsd">
9 <ds:Signature

10 Id="Signature -8140933 "
11 xmlns:ds ="http: // www.w3.org /2000/09/ xmldsig #">
12 <ds:SignedInfo >
13 <ds:CanonicalizationMethod Algorithm ="http: // www.w3.org

/2001/10/ xml -exc -c14n#"/>
14 <ds:SignatureMethod Algorithm ="http: // www.w3.org /2000/09/

xmldsig #dsa -sha1"/>
15 <ds:Reference URI="#id -78219 ">
16 <ds:Transforms >
17 <ds:Transform Algorithm ="http: // www.w3.org /2001/10/ xml -exc -

c14n#"/>
18 </ ds:Transforms >
19 <ds:DigestMethod Algorithm ="http: // www.w3.org /2000/09/ xmldsig

#sha1"/>
20 <ds:DigestValue >IfCArIoKxBfWWWONm + kRNLgW770 =</ ds:DigestValue >
21 </ ds:Reference >
22 </ ds:SignedInfo >
23 <ds:SignatureValue >
24 Wfs6HbSx0LuOr + lhf2WAnHmLnjOWhKXYO2QeceRO5sx + hlS7JhjB /w==
25 </ ds:SignatureValue >
26 <ds:KeyInfo Id="KeyId -17423963 ">
27 <wsse:SecurityTokenReference
28 wsu:Id ="STRId -20843194 "
29 xmlns:wsu ="http: // docs.oasis -open.org/wss /2004/01/ oasis

-200401 - wss -wssecurity -utility -1.0. xsd">
30 <ds:X509Data >

C.3. X.509 =⇒ KERBEROS TEST 83

31 <ds:X509IssuerSerial >
32 <ds:X509IssuerName >CN=Esteban ,OU=NADA ,O=KTH ,C=SE</

ds:X509IssuerName >
33 <ds:X509SerialNumber >1171582785 </ ds:X509SerialNumber >
34 </ ds:X509IssuerSerial >
35 </ ds:X509Data >
36 </ wsse:SecurityTokenReference >
37 </ ds:KeyInfo >
38 </ ds:Signature >
39 </ wsse:Security >
40 </ soapenv:Header >
41 <soapenv:Body
42 wsu:Id ="id -78219 "
43 xmlns:wsu ="http: // docs.oasis -open.org/wss /2004/01/ oasis -200401 -

wss -wssecurity -utility -1.0. xsd">
44 <wst:RequestSecurityToken
45 xmlns:wst ="http: // schemas . xmlsoap .org/ws /2005/02/ trust">
46 <wst:RequestType >http: // schemas . xmlsoap .org/ws /2005/02/ trust/

Issue </ wst:RequestType >
47 <wst:TokenType >
48 http: // docs.oasis -open.org/wss/oasis -wss -kerberos -token -profile

-1.1
49 </ wst:TokenType >
50 <wst:AppliesTo xmlns:wst ="http: // schemas . xmlsoap .org/ws /2004/09/

policy ">
51 <wsa:EndpointReference
52 xmlns:wsa ="http: // schemas . xmlsoap .org/ws /2004/08/ addressing ">
53 <wsa:Address >mehrana .nada.kth.se</ wsa:Address >
54 </ wsa:EndpointReference >
55 </ wst:AppliesTo >
56 <wst:Claims
57 Dialect ="http: // docs.oasis -open.org/wss /2004/01/ oasis -200401 -

wss -x509 -token -profile -1.0# X509v3 ">
58 <wsse:BinarySecurityToken
59 EncodingType ="http: // docs.oasis -open.org/wss /2004/01/ oasis

-200401 - wss -soap -message -security -1.0# Base64Binary "
60 ValueType ="http: // docs.oasis -open.org/wss /2004/01/ oasis

-200401 - wss -x509 -token -profile -1.0# X509v3 "
61 xmlns:wsse ="http: // docs.oasis -open.org/wss /2004/01/ oasis

-200401 - wss -wssecurity -secext -1.0. xsd">
62 MIIBrTCCAVcCAxAAATANBgkqhkiG9w0BAQQFADByMQwwCgYDVQQKEwN
63 LVEgxDDAKBgNVBAsTA1BEQzESMBAGA1UEBxMJU3RvY2tob2xtMRIwEA
64 YDVQQIEwlTdG9ja2hvbG0xCzAJBgNVBAYTAlNFMR8wHQYDVQQDExZDZ
65 XJ0aWZpY2F0aW9uQXV0aG9yaXR5MB4XDTA2MTAwNTEzMzgxM1oXDTA3
66 MTAwNTEzMzgxM1owTzELMAkGA1UEBhMCU0UxEjAQBgNVBAgTCVN0b2N
67 raG9sbTEMMAoGA1UEChMDS1RIMQwwCgYDVQQLEwNQREMxEDAOBgNVBA
68 MTB0VzdGViYW4wXDANBgkqhkiG9w0BAQEFAANLADBIAkEA0iheU3hQc
69 aYHq4YrtVIYfyJnoNJKNBmbTAkfV6CVOq7g10WBmxLzPjLwLuR7oF8v
70 w9e9dv9QV1La + ubd6o5llwIDAQABMA0GCSqGSIb3DQEBBAUAA0EAEaW
71 tYqjankvren2DmAQuOmB / fsc71T84FbgcoATFvVYB9SHfy2A1u9cMT7
72 zCOEXkTg6RLTt2yac6SB / QaqXkWw ==
73 </ wsse:BinarySecurityToken >
74 </ wst:Claims >
75 </ wst:RequestSecurityToken >

84 APPENDIX C. MESSAGES EXCHANGED DURING TESTS

76 </ soapenv:Body >
77 </ soapenv:Envelope >

Listing C.7. RST Message in X.509 → Kerberos translation

C.3.2 RSTR Message

1 <soapenv:Envelope
2 xmlns:soapenv ="http: // schemas . xmlsoap .org/soap/ envelope /"
3 xmlns:xsd ="http: // www.w3.org /2001/ XMLSchema "
4 xmlns:xsi ="http: // www.w3.org /2001/ XMLSchema - instance ">
5 <soapenv:Header >
6 <wsse:Security
7 soapenv:mustUnderstand ="1"
8 xmlns:wsse ="http: // docs.oasis -open.org/wss /2004/01/ oasis -200401 -

wss -wssecurity -secext -1.0. xsd">
9 <ds:Signature

10 Id="Signature -3373197 "
11 xmlns:ds ="http: // www.w3.org /2000/09/ xmldsig #">
12 <ds:SignedInfo >
13 <ds:CanonicalizationMethod Algorithm ="http: // www.w3.org

/2001/10/ xml -exc -c14n#"/>
14 <ds:SignatureMethod Algorithm ="http: // www.w3.org /2000/09/

xmldsig #dsa -sha1"/>
15 <ds:Reference URI="#id -12608429 ">
16 <ds:Transforms >
17 <ds:Transform Algorithm ="http: // www.w3.org /2001/10/ xml -exc -

c14n#"/>
18 </ ds:Transforms >
19 <ds:DigestMethod Algorithm ="http: // www.w3.org /2000/09/

xmldsig #sha1"/>
20 <ds:DigestValue >fxPQLRFEjT13odhj4PkQ2Ja5dJ0 =</ ds:DigestValue

>
21 </ ds:Reference >
22 <ds:Reference URI="#SigConf -176713 ">
23 <ds:Transforms >
24 <ds:Transform Algorithm ="http: // www.w3.org /2001/10/ xml -exc -

c14n#"/>
25 </ ds:Transforms >
26 <ds:DigestMethod Algorithm ="http: // www.w3.org /2000/09/

xmldsig #sha1"/>
27 <ds:DigestValue >SZI63lNXlSLJqgtpNfAjMfK9KLU =</ ds:DigestValue

>
28 </ ds:Reference >
29 </ ds:SignedInfo >
30 <ds:SignatureValue >
31 ZWKwh1ykPpGCkUEgq8gQsm5V6J9ZSLVCw7qh2sUNIItk6i59lh4QwQ ==
32 </ ds:SignatureValue >
33 <ds:KeyInfo Id="KeyId -33078541 ">
34 <wsse:SecurityTokenReference
35 wsu:Id ="STRId -21217085 "
36 xmlns:wsu ="http: // docs.oasis -open.org/wss /2004/01/ oasis

-200401 - wss -wssecurity -utility -1.0. xsd">
37 <ds:X509Data >

C.3. X.509 =⇒ KERBEROS TEST 85

38 <ds:X509IssuerSerial >
39 <ds:X509IssuerName >CN=STS ,OU=PDC ,O=KTH ,C=SE</

ds:X509IssuerName >
40 <ds:X509SerialNumber >1171583176 </ ds:X509SerialNumber >
41 </ ds:X509IssuerSerial >
42 </ ds:X509Data >
43 </ wsse:SecurityTokenReference >
44 </ ds:KeyInfo >
45 </ ds:Signature >
46 <wsse11:SignatureConfirmation
47 Value=" Wfs6HbSx0LuOr + lhf2WAnHmLnjOWhKXYO2QeceRO5sx + hlS7JhjB /w==

"
48 wsu:Id ="SigConf -176713 "
49 xmlns:wsse11 ="http: // docs.oasis -open.org/wss /2005/ xx/oasis -2005

xx -wss -wssecurity -secext -1.1. xsd"
50 xmlns:wsu ="http: // docs.oasis -open.org/wss /2004/01/ oasis -200401 -

wss -wssecurity -utility -1.0. xsd"/>
51 </ wsse:Security >
52 </ soapenv:Header >
53 <soapenv:Body
54 wsu:Id ="id -12608429 "
55 xmlns:wsu ="http: // docs.oasis -open.org/wss /2004/01/ oasis -200401 -

wss -wssecurity -utility -1.0. xsd">
56 <wst:RequestSecurityTokenResponse
57 xmlns:wst ="http: // schemas . xmlsoap .org/ws /2005/02/ trust">
58 <wst:TokenType >
59 http: // docs.oasis -open.org/wss/oasis -wss -kerberos -token -profile

-1.1
60 </ wst:TokenType >
61 <wst:RequestedSecurityToken >
62 <wsse:BinarySecurityToken
63 EncodingType ="http: // docs.oasis -open.org/wss /2004/01/ oasis

-200401 - wss -soap -message -security -1.0# Base64Binary "
64 ValueType ="http: // docs.oasis -open.org/wss/oasis -wss -kerberos -

token -profile -1.1# GSS_Kerberosv5_AP_REQ "
65 xmlns:wsse ="http: // docs.oasis -open.org/wss /2004/01/ oasis

-200401 - wss -wssecurity -secext -1.0. xsd">
66 YYIBBDCCAQCgAwIBBaEIGwZQREMuU0WiJTAjoAMCAQKhHDAaGwNzdHM
67 bE21laHJhbmEubmFkYS5rdGguc2WjgccwgcSgAwIBEKEDAgEBooG3BI
68 G0DSl4xARZj59t7OH62A3u1Sin5PenBUV90nuYLI7cCJqzi1gYw6BDM
69 iABVfBmz5L6KAmSM5DT / wata8XJ427ljNWd0A /0 eqt1GNjVDiPLLEPj
70 HBl9FvSvTBrCva4tGxC / IIDZQqjieAIhVN7nMYzG84t0e271Oqsn3XW
71 czH7fH6ecZuoPBOSC7lJqyiFygdRRHC / Qx0vJjy23mgWQRPfUPhI7IT
72 rM83UheTyd8X9186ifufSe
73 </ wsse:BinarySecurityToken >
74 </ wst:RequestedSecurityToken >
75 <wst:RequestedProofToken >
76 <xenc:EncryptedKey
77 xmlns:xenc ="http: // www.w3.org /2001/04/ xmlenc #">
78 <xenc:EncryptionMethod Algorithm ="http: // www.w3.org /2001/04/

xmlenc #rsa -1_5"/>
79 <xenc:CipherData >
80 <xenc:CipherValue >
81 IKBvXHK1pihpPyke6k3aWveMNUEszsj /9 t6Gu6XwzhvFIwHPcEPis

86 APPENDIX C. MESSAGES EXCHANGED DURING TESTS

82 00 sKsdGheBPCMSs2eGk6UHmmiTTX72FmA ==
83 </ xenc:CipherValue >
84 </ xenc:CipherData >
85 </ xenc:EncryptedKey >
86 </ wst:RequestedProofToken >
87 </ wst:RequestSecurityTokenResponse >
88 </ soapenv:Body >
89 </ soapenv:Envelope >

Listing C.8. RSTR Message in X.509 → Kerberos translation

C.3.3 Returned TGT

1 Target Service ’s name: sts/ mehrana .nada.kth.se
2 Issuer ’s Realm: PDC.SE
3
4 Encrypted part of the ticket:
5 Flags: INITIAL ;PRE - AUTHENT
6 Session Key:
7 EncryptionKey: keyType =16 kvno=null keyValue (hex dump)=
8 0000: C8 F8 A1 B5 92 F4 DA E3 0B A2 02 FE 26 AD F2 E0
9 0010: 51 97 BF 7C B6 EA 34 20

10 Client ’s Realm: PDC.SE
11 Client ’s Principal Name: Esteban
12 Authentication Time: Fri Feb 16 00 :54:41 CET 2007
13 Start Time: Fri Feb 16 00 :54:41 CET 2007
14 End Time: Fri Feb 16 01 :59:41 CET 2007

Listing C.9. Returned TGT in X.509 → Kerberos translation

Bibliography

[1] Anthony Nadalin et al. Web Services Security: SOAP Message Security 1.0
(WS-Security 2004). OASIS Standard, OASIS, Mar 2004.

[2] Wikipedia. Grid computing. http://en.wikipedia.org/wiki/
Computational_Grid (last accessed Nov 28, 2006).

[3] C. Newman et al. The Kerberos Network Authentication Service (V5). RFC
4120, Internet Engineering Task Force, Jul 2005.

[4] Fulvio Ricciardi. The Kerberos protocol and its implementations. Version
1.0.3, INFN – the National Institute of Nuclear Physics (Italy), Nov 2006.
http://www.zeroshell.net/eng/kerberos/ (last accessed Feb 28, 2007).

[5] R. Shirey. Internet Security Glossary. RFC 2828, Internet Engineering Task
Force, May 2000.

[6] R. Housley et al. Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile. RFC 3280, Internet Engineering
Task Force, Apr 2002.

[7] Tim Bray et al. Extensible Markup Language (XML) 1.0 (Fourth Edition).
W3C Recommendation, World Wide Web Consortium (W3C), Aug 2006.
http://www.w3.org/TR/xml/ (last accessed Feb 28, 2007).

[8] Donald Eastlake et al. XML-Signature Syntax and Processing. W3C
Recommendation, World Wide Web Consortium (W3C), Feb 2002. http:
//www.w3.org/TR/xmldsig-core/ (last accessed Feb 21, 2007).

[9] Donald Eastlake et al. XML Encryption Syntax and Processing. W3C
Recommendation, World Wide Web Consortium (W3C), Dec 2002. http:
//www.w3.org/TR/xmlenc-core/ (last accessed Feb 21, 2007).

[10] Eve Maler et al. Assertions and Protocols for the OASIS Security Assertion
Markup Language (SAML) V1.1. OASIS Standard, OASIS, Sep 2003.

[11] Scott Cantor et al. Assertions and Protocols for the OASIS Security Assertion
Markup Language (SAML) V2.0. OASIS Standard, OASIS, Mar 2005.

87

http://en.wikipedia.org/wiki/Computational_Grid
http://en.wikipedia.org/wiki/Computational_Grid
http://www.zeroshell.net/eng/kerberos/
http://www.w3.org/TR/xml/
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xmlenc-core/

88 BIBLIOGRAPHY

[12] Nick Ragouzis et al. Security Assertion Markup Language (SAML) V2.0
Technical Overview. Working Draft 09, OASIS, Jul 2006.

[13] Eve Maler et al. Bindings and Profiles for the OASIS Security Assertion Markup
Language (SAML) V1.1. OASIS Standard, OASIS, Sep 2003.

[14] Scott Cantor et al. Bindings for the OASIS Security Assertion Markup
Language (SAML) V2.0. OASIS Standard, OASIS, Mar 2005.

[15] David Booth et al. Web Services Architecture. W3C Working Group Note,
World Wide Web Consortium (W3C), Feb 2004. http://www.w3.org/TR/
ws-arch/ (last accessed Feb 21, 2007).

[16] Kelvin Lawrence et al. Web Services Security: SOAP Message Security 1.1
(WS-Security 2004). OASIS Standard Specification, OASIS, Feb 2006.

[17] Anthony Nadalin et al. Web Services Security UsernameToken Profile 1.0.
OASIS Standard, OASIS, Mar 2004.

[18] Kelvin Lawrence et al. Web Services Security UsernameToken Profile 1.1.
OASIS Standard Specification, OASIS, Feb 2006.

[19] Phillip Hallam-Baker et al. Web Services Security SAML Token Profile 1.0.
OASIS Standard, OASIS, Dec 2004.

[20] Kelvin Lawrence et al. Web Services Security SAML Token Profile 1.1. OASIS
Standard Specification, OASIS, Feb 2006.

[21] Phillip Hallam-Baker et al. Web Services Security X.509 Certificate Token
Profile 1.0. OASIS Standard, OASIS, Mar 2004.

[22] Kelvin Lawrence et al. Web Services Security X.509 Certificate Token Profile
1.1. OASIS Standard Specification, OASIS, Feb 2006.

[23] Kelvin Lawrence et al. Web Services Security Kerberos Token Profile 1.1.
OASIS Standard Specification, OASIS, Feb 2006.

[24] Paul Madsen. WS-Trust: Interoperate Security for Web Services. XML.com,
Jun 2003. http://www.xml.com/pub/a/ws/2003/06/24/ws-trust.html (last
accessed Feb 21, 2007).

[25] Steve Anderson et al. Web Services Trust Language (WS-Trust). Technical
report, BEA, IBM, Microsoft, RSA Security, VeriSign and others, Feb 2005.

[26] Siddharth Bajaj et al. Web Services Federation Language (WS-Federation)
1.0. Technical report, BEA, IBM, Microsoft, RSA Security and VeriSign, Jul
2003.

[27] Tom Scavo et al. Shibboleth Architecture Technical Overview. Working
Draft 02, Jun 2005.

http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/ws-arch/
http://www.xml.com/pub/a/ws/2003/06/24/ws-trust.html

89

[28] Scott Cantor et al. Shibboleth Architecture Protocols and Profiles. Technical
report, Sep 2005.

[29] William Doster, Marcus Watts, and Dan Hyde. The KX.509 Protocol.
Technical report, Center for Information Technology Integration (CITI), Feb
2001.

[30] Olga Kornievskaia et al. Kerberized Credential Translation: A Solution to
Web Access Control. Technical report, Center for Information Technology
Integration (CITI), Feb 2001.

[31] Mehran Ahsant et al. Dynamic Trust Federation in Grids. In Proceedings of
The 4th International Conference on Trust Management, Pisa, Tuscany, Italy.

[32] Ian Foster et al. A Security Architecture for Computational Grids. Proceedings
of the 5th ACM conference on Computer and communications security, Nov
1998.

[33] Bilal Siddiqui. Web Services Security, Part 1. XML.com, Mar 2003. http://
webservices.xml.com/pub/a/ws/2003/03/04/security.html (last accessed
Feb 21, 2007).

[34] Bilal Siddiqui. Web Services Security, Part 2. XML.com, Apr 2003. http:
//www.xml.com/pub/a/ws/2003/04/01/security.html (last accessed Feb 21,
2007).

[35] Bilal Siddiqui. Web Services Security, Part 3. XML.com, May 2003. http:
//www.xml.com/pub/a/ws/2003/05/13/security.html (last accessed Feb 21,
2007).

[36] Bilal Siddiqui. Web Services Security, Part 4. XML.com, Jul 2003. http:
//www.xml.com/pub/a/ws/2003/07/22/security.html (last accessed Feb 21,
2007).

[37] Paul Madsen et al. SAML V2.0 Executive Overview. Committee Draft 01,
OASIS, April 2005.

[38] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. Technical report, 2001.

[39] V. Welch et al. Security for Grid Services. Twelfth International Symposium
on High Performance Distributed Computing (HPDC-12), Jun 2003.

[40] Matt Bishop. Computer Security: Art and Science. Addison Wesley, Nov 2002.

http://webservices.xml.com/pub/a/ws/2003/03/04/security.html
http://webservices.xml.com/pub/a/ws/2003/03/04/security.html
http://www.xml.com/pub/a/ws/2003/04/01/security.html
http://www.xml.com/pub/a/ws/2003/04/01/security.html
http://www.xml.com/pub/a/ws/2003/05/13/security.html
http://www.xml.com/pub/a/ws/2003/05/13/security.html
http://www.xml.com/pub/a/ws/2003/07/22/security.html
http://www.xml.com/pub/a/ws/2003/07/22/security.html

	Contents
	List of Figures
	List of Tables
	Listings
	to1Introduction
	Overview
	Problem Statement
	Previous work
	Goals
	Approach
	Limitations
	Thesis Outline

	to2Background
	Grids
	Grid Security

	Kerberos
	Cross-Realm Authentication

	Public Key Infrastructure
	X.509 certificates

	Securing XML
	XML Signature
	XML Encryption

	Security Assertion Markup Language (SAML)
	Web Services
	WS-Security
	Credential and Trust Issues not Addressed by WS-Security
	WS-Trust
	WS-Federation

	to3Credential Mapping
	Kerberos =-3mu X.509/SAML Translation
	X.509 =-3mu Kerberos Translation
	First Approach: Issuing STs
	Second Approach: Issuing TGTs
	Comparison and Conclusion

	Security Considerations

	to4Related Work
	Shibboleth
	Interoperability between Shibboleth and STS

	KX.509 Protocol
	Kerberized Credential Translation

	to5Prototype Implementation
	Implementation Environment and Tools
	Main Implementation Tasks Performed
	Main Problems Found

	to6Analysis of Results
	Local Tests Performed
	Kerberos =-3mu X.509 Test
	Kerberos =-3mu SAML Test
	X.509 =-3mu Kerberos Test

	Real Scenario Test
	Analysis

	to7Conclusions
	Summary of Contributions
	Future Work

	toAGlossary
	toBAbbreviations
	toCMessages exchanged during Tests
	Kerberos =-3mu X.509 Test
	RST Message
	RSTR Message
	Returned Certificate

	Kerberos =-3mu SAML Test
	RST Message
	RSTR Message
	Returned Assertion

	X.509 =-3mu Kerberos Test
	RST Message
	RSTR Message
	Returned TGT

	Bibliography

