RewritingHealer: An approach for securing web service
communication

Faisal Abdul Kadir

Master of Science Thesis
Stockholm, Sweden, 2007
ICT/ECS — 2007 - 20






RewritingHealer: An approach for securing web service
communication

Faisal Abdul Kadir

Company Supervisor
Rits Erik Maarten
SAP Labs France

Examiner
Assoc. Prof. Vladimir Vlassov
KTH, Stockholm, Sweden

Master of Science Thesis
Stockholm, Sweden, 2007
ICT/ECS - 2007 - 20






Dedicated to
My mother Jahanara Begum






Abstract

Web Service is a distributed communication techgwlehat can implement Service Oriented
Architechture (SOA) to support the requirementsibess process integration. SOAP (Simple object
access protocol) is a lightweight protocol thatndeadized a framework for web service
communication. WS-Security is a security standand securing web service communication. WS
Security adopted XML Digital Signature technologyr fproviding authenticity and integrity
verification capability for the receiver of a SOARessage. XML Digital Signature provides a
mechanism for signing non-contiguous parts of a B@#essage. However, XML Digital signature
does not provides any information regarding thation of a signed object. This feature of XML
Digital Signature is used by an attacker to perfarolass of attack known as XML Rewriting Attack
where an attacker modifies the SOAP message inyathiat does not violate the signature of the
message.

Some works have already been done for the detecfiodML Rewriting Attack in web service
communication. However, none of the solutions psagpreviously could eliminate XML Rewriting
Attack totally from web service world. Our work tento propose a solution for the detection of XML
Rewriting Attack. We have analyzed different typafs XML Rewriting Attack, identified the
information that we can get after an attack takesgyto provide a countermeasure against XML
Rewriting Attack. We have demonstrated that ourppsed solution can detect XML Rewriting
Attack where all of the previous solutions fail. \Wave also demonstrated that our proposed approach
has polynomial bounded processing complexity buttibduces some overhead in the total size of a
SOAP message. We have proposed an optimizatiomdnagubstantially reduce this overhead.



Table of Contents

Chapter 1: Introduction
1.1 Background
1.2 Motivation
1.3 Thesis Objective
1.4 Thesis Structure
Chapter 2: Background
2.1 Security Protocols
2.1.1 Cryptography
2.1.2 Symmetric Key Cryptography
2.1.3 Public Key Cryptography
2.1.4 Digital Signater
2.1.5 Digital Envelope
2.1.6 Hashing
2.2 Overview of Web service
2.2.1 What is Web sare?
2.2.2 Web service Aitdgrture
2.3 SOAP
2.3.1 Introduction
2.3.2 SOAP Message Gwuct
2.3.3 SOAP Processing Model
2.3.4 SOAP ExtensibyliModel
2.3.5 SOAP Protocolriging
2.4 Motivation of Web services Security
Chapter 3: State of the Art
3.1 XML Digital Signature
3.2 WS Security
3.3 WS Policy
3.4 WS Security Policy
3.5 Formal methods and Web services Seityr
Chapter 4: XML Rewriting Attack Scenarios
4.1 First Attack Scenario
4.2 Second Attack Scenario
4.3 Third Attack Scenario
Chapter 5: Previous Solutions of XML Rewriting Attack
5.1 Using Xpath expression wit'S-Security policy
5.2 WSE Policy Advisor
5.3 SOAP-Account approach
Chapter 6: Proposed Method
6.1 Problem Analysis
6.2 RewritingHealer
6.3 Processing Rules for RewngHealer
6.4 Scenario with RewritingHeale
Chapter 7: Implementation
7.1 Axis Overview
7.2 Module Description
7.3 A Simple Application



7.4 Evaluation
Chapter 8: Conclusions and Future Works
Chapter 9: References

Table of Figures

Figure 1.1: The evolution of web services secigigcifications

Figure 2.1: Symmetric Key Cryptography

Figure 2.2: Public Key Cryptography

Figure 2.3: Digital Signature Process

Figure 2.4: Digital Envelope Creation Process

Figure 2.5: Digital Envelope Verification Process

Figure 2.6: Web service Roles

Figure 2.7: Protocol Stack for Web service

Figure 2.8: SOAP Message Structure

Figure 2.9: Soap Processing Model

Figure 2.10: Point to Point Security

Figure 2.11: End to End Security

Figure 3.1: Structure of XML Digital Signature

Figure 3.2: A Simple WS Policy

Figure 4.1: SOAP message before Replay Attack

Figure 4.2: SOAP message after Replay Attack

Figure 4.3: SOAP message before Redirection Attack

Figure 4.4: SOAP message after Redirection Attack

Figure 4.5: SOAP message before Multiple Securiqdier Exploitation Attack

Figure 4.6: SOAP message after Multiple Securitpdéz Exploitation Attack

Figure 5.1: SOAP message with a ReplyTo headeklsigmed and referenced using URI
Figure 5.2: Security Policy assertions for SOAP sage of Figure 5.1

Figure 5.3: SOAP message where the attacker wragpéte ReplyTo header block
Figure 5.4: SOAP message with a ReplyTo headeklsimned and referenced using XPath
Figure 5.5: Security Policy assertions for the SOAdé3sage of Figure 5.4

Figure 5.6: SOAP message with a Timestamp elenigmtd and referenced using XPath
Figure 5.7: Security Policy assertions for SOAP sags of Figure 5.6

Figure 5.8: SOAP message where the attacker cragdedurity Header block with role
attribute’s value none

Figure 5.9: WSE Policy Advisor

Figure 5.10: Structure of SOAP Account

Figure 5.11: SOAP message with SOAP Account helsidek

Figure 5.12: SOAP Account attack detection

Figure 5.13: SOAP message with a SOAP Account hidddek and before modification
by attacker

Figure 5.14: SOAP Account Vulnerability

Figure 6.1: Tree representation of the SOAP messbfgure 5.1

Figure 6.2: Rewriting attack without changing tlepth of an element

Figure 6.3: Relocation of an element without chaggis depth and parent Id

Figure 6.4: Pre-order traversal of a tree andtitsgrepresentation

Figure 6.5: Tree representation of a SOAP messagh, node is labelled with its
role’s integer value

Figure 6.6: Tree only representing nodes correspgrad elements targeted to the
intermediary



Figure 6.7: Structure of RewritingHealer

Figure 6.8: SOAP message with RewritingHealer hehlibek

Figure 6.9: SOAP message with RewritingHealer hebliek and signed elements
reordered by attacker

Figure 6.10: SOAP message with two RewritingHelhader blocks

Figure 6.11 : SOAP message with two RewritingHelaéader blocks and element
created by attacker

Figure 7.1: Message flow through an Axis engineeiver side

Figure 7.2: Message flow through the axis engin¢herclient side

Figure 7.3: Module Structure of RewritingHealer

Figure 7.4: The invoke method of the RewritingHed&ifier handler

Figure 7.5: The verify method of RewritingHealerlfier

Figure 7.6: The invoke method of RewritingHealeoe library

Figure 7.7: Interface of the Math Service

Figure 7.8: MathService Client Interface

Figure 7.9: The RewritingHealerVerifier interface

Figure 7.10: RewritingHealerVerifier detecting XMRewriting Attack

Figure 7.11: A simple tree representing a SOAP augss

Figure 7.12: Tree of Figure 7.11 after element&otis been changed

Figure 7.13: Tree of Figure 7.11 after element&oliés been changed

Table of Tables

Table 1: SOAP defined roles
Table 2: Overhead estimation of RewritingHealettlaiit optimization)
Table 3: Overhead estimation of RewritingHealetjvaiptimization)



Chapter 1: Introduction

1.1 Background

Web service is a distributed systems technologyrevttee network endpoints exchange specific form
of XML document called SOAP [1] envelope which @ins a mandatory Body element containing a
request, response, or fault element, together atloptional Header element containing routing or
security information. SOAP allows the existencanefwork intermediaries. An intermediary can be a
routers or a firewall. SOAP allows these intermgdi to process an envelope, by adding or
modifying headers. Examples of web services inclidernet-based services for ordering goods or
invoking search engines, and intranet-based serfixdinking enterprise [35]

Because of its simplicity, standardization and fplat independent nature a lot of business
organizations have embraced web services technologythe integration of data, system and
application inside and outside their organizationriary. Due to this growing adoption by different
organization, security of web services became\ashbissue.

One way for securing SOAP exchanges can be relyinthe traditional transport level security like
TLS/SSL. This might work well in many situationgwever is not suitable for every situation due to
its point-to-point security nature. TLS/SSL creagesecurity tunnel between the two communication
end points. The integrity and confidentiality ofmgssage is ensured as long the message exists insid
this tunnel but not subsequently in files or dassisa and they may not match the security
requirements of the application. For instance, rEliauthentication is often performed by the
application rather than by TLS/SSL. Besides, SSesdoot fit SOAP’s message-based architecture:
intermediaries cannot see the contents of the tuand so cannot route or filter messages. [35]

To overcome the above limitation of traditionalnsgort level security, Microsoft, along with IBM
and VeriSign came up with a new security framewbekt can be used to achieve end-to-end security
in web services communication. This security framedwis named as WS-Securty [6]. WS-Security
specifies how security elements like encrypted ,dsigned data and security tokens like username,
X.509 certificate etc. can be embedded in a SOABsage which is the vocabulary for web services
communication.

Figure 1.1: The evolution efeb services security specifications [36]



After the emergence of WS-Security a number ofddeats on top of this have been proposed to take
care of different security aspects of web servamamunication. WS-Security Policy [7] along with
WS Policy [42] attachment provide a standard wapecify the security requirements of a web
service, WS-Secure Conversation [29] specifies waysecuring not only a single SOAP message
but also a whole session between the client andséineer, WS-Trust [28] specifies how security
tokens can be requested, issued and verified. &igur shows the different security standards that
have evolved with the passage of time.

1.2 Motivation

Despite all of the proposed web services secupiggifications, web services are still vulnerablato
class of attacks, first described by Needham ahdo®der [38] and first formalized by Dolev and Yao
[37], where an attacker may intercept, compute, iajett messages, but without compromising the
underlying cryptographic algorithms. In the termogy of web services security, this sort of atteck
called XML rewriting attacks, as opposed to attacks on web service implementatsuch as buffer
overruns or SQL injection [21]. WS-Security adopt¥#IL Digital Signature [2] and XML
Encryption mechanism, designed for general XML Doent, to provide integrity and confidentiality
in SOAP communication. XML Digital Signature refeécsa signed object of an XML Document in a
way that does not take care of the location of thigiect. This is a weakness of XML Digital
Signature. SOAP extensibility model allows a SOA&ssage to contain a SOAP header element that
is not recognized by the receiver. WS-Securityveslonultiple security headers to exist in the same
SOAP message. All of these features along withatbakness of XML Digital Signature work as the
weapon for performing XML Rewriting attack on SOAfessages.

Some works have been done for the detection of Xdlwvriting Attack previously, but none of them
can detect XML Rewriting Attack properly. Therefonee have carried out our present work to
formulate a solution for the detection of XML Retinrg Attack.

1.3 Thesis Objective

WS-Security Policy [7] if used correctly can be dis® guard against XML Rewriting Attack.
However, most of the policy configuration files dr@nd written. Therefore they are very much error
prone. Moreover, due to the flexibility provided BAP extensibility model it is hardly possible to
prevent attack where the attacker moves a sigrgdegit under another unknown element.

A lot of research works have been done and aregggminfor the detection of XML Rewriting attack
like [9], [11], [12], [13]. All of these works pragsed solutions that can detect XML Rewriting attack
properly in some cases, however they fail to hasdlme other cases. The goal of our works are as
follows:

1. Analyze different web services security speatiian and find their weakness

2. Elicit the different form of XML Rewriting att&cthat can take place in a web service
communication

3. Investigate all the previous works that havenbdene for the detection of XML rewriting
attack and find their vulnerability

4. Investigate the reasons of these sorts of &tack

5. Find exiting features of XML, SOAP and WS-Setuthat can be used in a systematic way to
prevent XML Rewriting attack

6. Propose a method for the detection of XML Reéngitattack that can detect attacks in
situation where all of the previous solutions fail.



1.4 Thesis Structure

The rest of this report is organized as follows:

In Chapter 2 we will review some literature relatedur work. We will see different encryption and
authentication mechanisms and their pros and ddren we will see what is SOAP and how is it used
for web service communication. We will also discties motivation for web services security.

Chapter 3 describes different existing frameworkat thave emerged to secure web service
communication and their limitations. Here we wallt in brief regarding the necessity of formal
methods in the field of web services security. Wikalso specify different works that have been elon
for introducing formal methods in formalizing wedrgices security standards.

Chapter 4 will demonstrate with scenarios differkimids of XML Rewriting Attack that can take
place.

Different proposed solutions for eliminating XML ®eting Attack will be described in Chapter 5.
We will analyze all of the solutions and will try tdentify their weakness and vulnerability.

In Chapter 6 we have proposed our approach fodétection of XML Rewriting Attack. We have
analyze the problem of XML Rewriting Attack in da@nd then we have tried to identify what sort of
information can we get after a rewriting attacketslplace to guard against this attack. At last awesh
proposed a method for exchanging the identifiedrimftion in a structured and standard way.

In Chapter 7, we will describe the implementatiéiowr proposed method. First we will discuss about
the environment for our implementation. Then wd digcuss our implementation and at last we will
use a simple application to demonstrate how ouragmh can successfully detect XML Rewriting
Attack. Finally, in this chapter we will evaluatargoroposed method based on different criteria. We
will try to formally specify the time complexity aur proposed method. Here we will also see some
limitations of our proposed method.

At last in Chapter 8, we will talk about the futwrerks that will be carried out to extend and ojitan
our proposed method and then we will conclude.

Chapter 9 will provide the references that we hased for our work.



Chapter 2: Background

2.1 Security Protocols:

2.1.1 Cryptography

The word cryptography means the art of secret mgitit is a procedure of transforming
information from its original format to a formatatis not easily understandable. To get back the
original information from the transformed one arséenethod has to be used. Cryptography is used
for communication between participants in a way gravents other from reading it.

In the terminology of cryptography timessage that is to be transformed is called thetpld
and the resulting message generated after tranafiommis called the ciphertext. The mechanism of
transforming a plaintext into ciphertext is calledcryption and the mechanism of getting back the
plaintext from the ciphertext is called the decrypt

Two types of cryptographic procedure@mmmonly used now a day:

) Symmetric key cryptography
ii) Public key cryptography

2.1.2 Symmetric key cryptography
To secure a communication using Symmetric Key agyaphy, parties involved in the
communication must share a secret key. This sHaagds used both for encryption and decryption of
the message exchanged among the communicatingegpartAs the same key is used for both

encryption and decryption this cryptographic prasedis called symmetric key cryptography. It is
also known as shared key cryptography.

Symmetric Key Symmetric Key

H

Encryption [ Internet Decryption

ﬂ&

m
Q
=3

Figure 2.1: Symmetric Key Cryptography

Figure 2.1 shows the concept of symmetric key aggphy in digital communication.
Suppose, Alice wants to send a message to Bob tbeepublic network which is not secured.
However he wants only Bob to read the message. mbahs he does want any eavesdropper to grab
the message and read it. How Alice can achievegites? Symmetric key cryptography is one of the
solutions of this problem. Lets assume that Alind 8ob know a common secret key. Furthermore,
no one except Alice and Bob have this secret keyv,Nvhat Alice can do is that, before sending the
message he will encrypt the message using thetdesyeto get the ciphertext and will send this
ciphertext to Bob. When Bob will receive the cigleat form Alice he will decrypt it using the same
secret key to get the original message back.



Symmetric key cryptography is very simple and éffi¢ mechanism for securing digital
communication. However it has some drawbacks. Tlostnaritical problem of symmetric key
cryptography is the key distribution problem. I thcenario above we have assumed that both Alice
and bob know a secret key. We further assumednih@ane else except them has any knowledge of
that key. But, how can Alice and Bob establish Heeret key. We can consider the following
solutions:

i) Alice can go to Bob personally and tell him teecret that he wants to use to
communicate with Bob. If Alice lives in the samgim as Bob then this solution
can be considered. However, if Alice and Bob liwgwo different countries then
obviously the above solution is out of question.rétver, Bob might not the only
person with whom bob wants a secure communicaliberefore, to communicate
with each person securely, Alice will have to gahem personally. Which is not
feasible.

i) Alice can send Bob a mail and in that mail la@ specify the secret. However, here
comes the question how Alice will secure the mAi?eavesdropper can intercept
the mail and can easily get the secret.

In fact there is no effective solution for the ldigtribution problem of Symmetric key cryptography.
For this reason despite of its simplicity and efficy, Symmetric key cryptography is not widely
used.

2.1.3 Public key cryptography

In last section we saw that the major problem ofm@etric key cryptography is key
distribution. To overcome this key distribution plem the idea of public key cryptography emerged.
The main idea of public key cryptography is th&eg will be composed of two parts. If a message is
encrypted using one part of a key then it can loeygiéed using only the other part. In the termigglo
of public key cryptography the two parts of a keg aalled public key and private key. The public
key, as its name implies, will be published in publ'hat means anyone can know it. However, the
private key, as its name implies, will be totallyvate. That is only the owner of the key will knaw

Suppose Alice wants to send a message to Bob $gchigure 2.2 how he can do this. He will first

get the public key of Bob. Then he will encrypt thhessage using this key and will send it to Bob.
When Bob will receive the ciphertext sent by Alibe,will use his private key to decrypt it.

v

Bob's %;s
Public /* / Private
Ke' Key

; S Encryption Decryption :

Figure 2.2: Public Key Cryptography

Alice's Alice's
Private Public
Key Key




As the message is encrypted using Bob’s public kegan only be decrypted using Bob’s
private key. However, Bob is the only one who kndws private key. Therefore, only Bob will be
able to decrypt the message. The idea of publicémywves the problem of key distribution. With this
mechanism no secure key distribution is neces3drg.owner of a private key does not have to tell
anyone about his private key. Everyone can gepiiic key. However, that public key will be of no
use without its associated private key.

Although we saw that public key cryptography eliates the problem of symmetric key
cryptography, it has some drawbacks. As we saidrbefo send a secure message one has to get the
receiver’s public key. But how can a sender autbate the receiver’s public key. For instance ia th
above example, another person Trudy can publisibhcgkey and can say that its Bob’s public key. If
Alice does not authenticate the public key, he wilcrypt the message using Trudy’s public key,
which will in turn be decrypted by Trudy.

To overcome the above problem a trusted ceat#i authority is defined whose job is to
certify the public key of a user. Despite of thead stated problem, public key cryptography is a
widely accepted and used cryptographic digital camication technique.

2.1.4 Digital signhature

Digital Signature is the mechanism for signing awoent electronically. It is used by the
recipient of a document to authenticate the idgmitthe sender of the document. It is also used to
check the integrity of the received document.

Sender Receiver
I- Message | Messlag:
; transmitted receve —
! | plaintext ———————p 1 : |Me_ssage
i ' - hash digest
. E ,—\\/—,\\ ! - —_—
plaintext | | ! /-/ Publi ! plaintext
ublic i i
hash ) i j Network D_  Compare ;
B — — | \ — : =
|Message | encrypf || Digital g : Digital | | decrypt [Message
digest | | signature 1 . signature digest J
A — H 3

Figure 2.3: Digital Signature Process

By verifying the integrity of the received documehe receiver can be assured that the
document has not been forged by an adversary oraitdrom the sender to the receiver.

Figure 2.3 shows how a digital signature is creétethe sender and verified by the receiver.

When a sender wants to send a digitally signed agess to a receiver, it goes through the

following steps:
i) It generates a message digest MD using an apptephash method H of the
plaintext message m. We will represent the messhiggest MD of a plaintext
message x as H (x). So the sender first generai2s=NH (m) for the plaintext

message m.

i) It then encrypts the message digest MD usisgoitvn private key and generates
MD™, where MD' represents the encrypted message digest.

iii) It appends the encrypted message digest'Miith the plaintext message m and
generates the message m[MD

iv) It sends m|MD to the receiver.



When a receiver receives a message M = mjf#6m a sender , it goes through the following

steps

i) It extracts the whole message M = m|MDto its sub-components. That is it divides
the whole message M into m and MD

i) It generates a message digest MD_1 of the vedeinessage m.

iii) It decrypts the received encrypted messagestiiD* and generates MD_2.

iv) It compares the two message digest MD_1 and MO _tReltwo message digests are
the same then the message has not been forged waytand the sender is the one
who it supposed to be. Otherwise either the medsagdeen forged or the identity of
the sender is not valid.

2.1.5 Digital envelope

The main problem in using secret key cryptograpiiyé distribution of the secret key among
the communicating parties. If Bob wants to send essage to Alice using symmetric key
cryptography then both Bob and Alice need to sls@aoemmon secret key. However this secret key
has to be exchanged between them in a secure fmhys.kecret key is intercepted by a middle-man
while exchanging, the communication between Bob Alick with this secret key will not remain
secret anymore. A middleman might intercept allrttessages exchanged between them and would be
able to decrypt and read it.

To overcome this key management problem the idgaublic key cryptography emerged. In
public key cryptography a key consists of two paftpublic part and a private part. The public part
of the key is known to all. However, the privatetda only known to the owner. Furthermore, if a
message is encrypted using a public or privatethkem it can only be decrypted using the respective
private or public key. This idea has immensely difiggl the key management problem. Now the
participants don’t have to exchange any any sé&gt However all they have to know is the public
key of the party to whom he/she wants to send @esatessage. And as this public key is known to all
the sender can just grab it and start the commtioica

Every cryptographic idea comes with its own limdat Public key cryptography is not an
exception. One of the limitations of the existingpfic key cryptographic procedure is that they are
computationally expensive. Digital Envelope isamework, which tries to combine the advantages
of the above mentioned cryptographic service.

A Digital envelope consists of a message encrypgdg a secret key cryptography and an
encrypted secret key . Normally Digital Envelope psiblic key cryptography to encrypt the secret
key.

Suppose a sender wants to send a message M teieeragsing Digital Envelope. Then he
will go through the following steps:

Figure 2.4: Digital Envelope Creation Process



i) The sender will choose a random secret key toygh the message M

1)) The sender will encrypt the message using dueet key chosen.

iii) The sender will take the receiver’s public keyencrypt the secret key

iv) The sender will encrypt the secret key with theeiver’'s public key

V) The sender will append the encrypted secretktlythe encrypted message and will
send it to the receiver.

When a Receiver will receive the message it wiltlgough the following steps:

Figure 2.5: Digital Envelope Verification Process

i) The receiver will extract the message into itb parts. That is, it will retrieve the
encrypted message and the encrypted secret key.

i) The receiver will decrypt the encrypted sedeey using its private key to get the
secret (symmetric) key.

iii) The receiver will use the decrypted symmetlady to decrypt the encrypted

message to get the message M.
The Digital envelope has the following advantages the Symmetric and Public key
cryptographic procedure:

i) It simplifies the key management procedure, Whgthe main limitation in using
symmetric key cryptography.
i) It increases the performance. Now the wholegsage, which can be of variable

length, need not be encrypted using Public keytogmaphy. However the message
itself is encrypted using secret key and the sd@gtwhich is usually much smaller
in size than the message, is encrypted using pkélicryptography.

2.1.6 Hashing

A Hash is also known as message digest. It is an@yefunction that takes as input a
variable length message and generates a fixedhdmagth value. We call this function one-way as it i
possible to generate output y for input x with thisction however it is not practically possibleget
back input x from output y.

Let us denote the hash of a message m 3s Tiflen h(m) should contain the following propestie

i) h(m) should be relatively easy to compute foy given message m . That means it should
not consume a lot of processing time to computéttsh h(m) for any message m .



i) Given h(m) , there is no way to find an m thetshes to h(m) in a way that is substantially
easier than going through all possible values afichcomputing h(m) for each one .[18]

iii) From the definition of hash it is obvious thabre than one message m will map to the same
hash value h(m) . However , it should be computatiy infeasible to find two messages
that map to the same hash value .

Hashing has an important role in security worlatdh be used to check the integrity of a transahitte
message. It can also be used to verify the auttaditth of the sender.

There are a number of Hashing algorithms that asgl now a days. Like SHA-1,SHA-224,SHA-
256,SHA-512 etc. These hashing algorithms are ataflecure hash algorithm. The numbers
associated with the name of the hash algorithmisate the length of the output in bits. For ins&anc
SHA-256 means, this algorithm will take a varialdegth message as input and will produce a 256
bits message digest.

2.2 Overview of Web service

2.2.1 what is Web service?

Web service is a service that has the followingprtes:

The service can be accessed over the Internet

The service uses a standard XML messaging sySI®AP (Simple Object Access Protocol)

is a communication protocol used for XML messaging.

The service is not dependent on any particydarating system or programming language

Although not absolutely necessary, web servacel@ave the following two properties as well

A web service will have a description writtenXML. WSDL (Web service Description

Language) is used for this.

6. A web service can be located using a find meshanJDDI is a standard to locate web
service.

N

akrw

Web service provides a mechanism for machine-tohimacinteraction. It's a way for programmatic
access to web sites. Unlike traditional client/semodels, such as a Web Server/Web page system,
Web service do not provide the user with a GUI. Wetvice instead access business logic, data and
processes through a programmatic interface acroesasork.

2.2.2 Web service Architecture

Web service architecture can be analyzed in twierdiht ways. The first is to examine the
individual roles of each web service actor, theoseds to examine the web service protocol stack.



Figure 2.6: Web service Roles [5]

Web service Roles:

Figure 2.6 shows the different roles that existv@b service architecture. There are three majesrol
within the web service architecture:

1. Service provider
In web service architecture the responsibilityhaf tole Service Provider is to provide the servidee
service provider is the one who develops the seraiwd publish it on the Internet.

2. Service requestor
The responsibility of the role Service Requestdoisequest the service and to consume it. It
establishes a connection and sends a service tequddL format to the provider.

3. Service registry

The responsibility of the role Service Registryiab service is to provide a centralized directdry o
services. The provider of a service publishes thetivice using this registry. Consumer discovers
existing services from this registry and then bitadthe appropriate service provider to utilizettha
service.

A second option for viewing the web service arattitee is to examine the emerging web service

protocol stack. The stack is still evolving, butremtly has four main layers. Following is a brief
description of each layer.

Web service Protocol Stack:

Figure 2.7 shows the different layers of the Wetvise Protocol stack. The Web service protocol
stack consists of 4 layers:

1. Service transport:

10



This layer is responsible for transporting messagéaeen applications. Currently, this layer
includes hypertext transfer protocol (HTTP), Simiglail Transfer Protocol (SMTP), file transfer
protocol (FTP), and newer protocols, such as Bl&kensible Exchange Protocol (BEEP).[5]

UDhDI

WSDL

XML-RPC
SOAP
XML

HITP
FTP
SMTP

Figure 2.7: Protocol Stack for Web service

2. XML messaging
This layer is responsible for encoding messagaescommon XML format so that messages can be
understood at either end. Currently, this layelides XML-RPC and SOAP.[5]

3. Service description
This layer is responsible for describing the pubiterface to a specific web service. Currently,
service description is handled via the Web serldiescription Language (WSDL).[5]

4. Service discovery

This layer is responsible for centralizing servig@s a common registry, and providing easy
publish/find functionality. Currently, service Diseery is handled via Universal Description,
Discovery, and Integration (UDDI).[5]

2.4 SOAP

2.4.1 Introduction

SOAP (Simple Object Access Protocol) is a lightkeiprotocol for exchanging structured
data in decentralized and distributed environméght. SOAP provides an extensible messaging
framework using XML technologies. It defines a naggs construct that can be exchanged over a
variety of underlying protocols. The framework heen designed to be independent of any particular
programming model and other implementation spesiimantics. [1]

The SOAP messaging Framework ctssid the following, which will be described
subsequently in this section.

i) SOAP Message Construct

i) SOAP Processing Model

iii) SOAP Extensibility Model

11



iv)  SOAP Protocol Binding

2.4.2 SOAP Message Construct

In this section we will discuss the structure ofS®AP message. Figure 2.8 is a pictorial
representation of a SOAP Message.
A SOAP message is encoded as an XML documenh B&AP message will consist of one root

element, which is called <Envelope> element. Thevetope> element will contain the following sub
elements as its children.

Figure 2.8: SOAP Message Structure [1]

i) An optional <Header> Element
i) A mandatory <Body> Element

A <Header> element will contain data that is nat #pplication payload. This element is intended
to be processed by zero or more intermediariegyatmm path of the SOAP message from sender to the
receiver. <Header> element will contain zero or engHeaderBlock> as its child element. Each
HeaderBlock within the <Header> element may reate® or more features. For instance, to realize
the security feature, which is not specified by toee SOAP messaging framework, a <Security>
header block will be used as the sub element ofteader>.

The <Body> element is mandatory and containsatiy@ication payload. The <Body> element is
always intended to be processed by the UltimateRecof the SOAP message.

12



2.4.3 SOAP Processing Model

The SOAP [1] processing model specifies how a SQ@édeiver processes a SOAP
message. [1] SOAP specifies a distributed procgssiadel. The Initial Sender generates a SOAP
message, which is reached to the ultimate SOAPiverc@&ia zero or more SOAP nodes. The
distributed processing model of SOAP can be usesipport a number of different MEP (Message
Exchange Pattern) like One-Way Message, Peer-to-Reaversation or Request/Response
interaction.

When a SOAP message passes onytéroma the initial Sender to the Ultimate receivalt,
the SOAP nodes between the sender and the reedoreg with the receiver node process this SOAP
message conforming to the SOAP Processing modeifiagion.

&

\

Idessage

Figure 2.9: Soap Processing Model

After the reception of a SOAP Message a SOAP noele tb determine the parts of
that message that is targeted to it. This detertioimas done by the use of “role” attribute of SOAP
Header block.

If a SOAP node finds that the value of role attrébaf a header block is the role that it assumes th
this block is targeted to it. A role is specifiedthe header block using URI. SOAP defines 3 stahda
roles that can be assumed by a SOAP node. Thestastaroles are shown in Table 1.

Role Name Role URI

Next http://www.w3.0rg/2003/05/soap-envelope/role/next

Ultimate Receiver | http://www.w3.0rg/2003/05/soap-envelope/role/ultimateReceiver

None http://mww.w3.0rg/2003/05/soap-envelope/role/none

Table 1: SOAP defined roles

Beside these standard SOAP defined roles, an agipliccan also define its own application specific
role.

Once the SOAP node finds out all the paress BSOAP message targeted to it, it will try to
process them. SOAP nodes are not obliged to praressderstand all the message parts targeted to
it. SOAP specifies another attribute “misunderstéod the header block. If this attribute’s value i
true in a header block, the targeted SOAP nodéligexl to understand and process that block. This
sort of header block is called mandatory headeskblld a SOAP node finds a mandatory header block
targeted to it, however it cannot process it adogrdo the specification of the header block itlwil
generate a soap fault and will cease the relayfiinigi® message further.

13



After the successful processing of a headerkbloolloquially the SOAP node
removes the block from outgoing message. Howeheretare circumstances where the node might
have to retain the block in the outgoing message. @ the reasons for retaining a header blocken t
outgoing message is the semantics of the headek.blbat is if the specification of the header Bloc
mandates the presence of this header block inotfreafded message. Another reason is, if the header
block contains the “relay” attribute with a valuetoue. As it is said before, a SOAP node is not
obliged to process all the header blocks targeted However, even if it does not process a non-
mandatory header block targeted to it, it will remahe block from the outgoing message. If we want
a non-mandatory header block to be processed Wirshsoap node that assumes a particular role and
understands this block, we have to use this relaypate in that header block with a value of trire.
this case a soap node that assumes the role ggeitifthe header block, even though cannot process
the block, will retain it in the outgoing message.

2.4.4 SOAP Extensibility Model

SOAP Extensibility Model introduces a way of extewpthe core functionality of SOAP
messaging Framework through SOAP Feature. In a 8Q#P Feature is an extension of core SOAP
messaging Framework. SOAP does not specify anytr@antson the potential scope of SOAP Feature.
Using SOAP Feature a number of different featuikes kecurity, reliability, correlation, and rougin
can be introduced into the core SOAP Messaging &nanrk.

SOAP Features are expressed by two mechamEBOAP Extensibility Model.

i) SOAP Processing Model, which describes how alsiisOAP node should behave
regarding the processing of an individual mess&g§@AP features are expressed as
SOAP header block within a SOAP Envelope. The syatad semantics of one or
more SOAP header block is referred to as SOAP meodilat means, a SOAP module
describes the syntax and semantics of zero or BIO&P features.

i) SOAP Protocol Binding Framework, which descsbdew a SOAP node should send
and receive SOAP Message using the underlying pobt@Ve will describe the SOAP
Protocol Binding Framework in next section.

2.4.5 SOAP Protocol Binding

Soap message can be exchanged between two 8Q&R using a number of different underlying
protocols. For instance, it can be exchanged usiagwell-known HTTP, or using SMTP or even
using TCP or UDP. SOAP protocol binding specifiasvha SOAP message can be exchanged
between two adjacent SOAP nodes using underlyingopol and how the requirements of a web
service can be mapped to the capabilities of tlikeriying protocol. [45]

When a SOAP sender needs to send a SOAP messagether SOAP node, it first creates an
abstract representation of the message using SO&d¢3age elements and attributes. To send this
abstract SOAP message over the wire to another S@A&R, the message has to be serialized in a
specified way so that the recipient can deserializBOAP protocol binding describes how a SOAP
message will be serialized and deserialized fodisgnover the wire using an underlying protocol.

Besides providing a concrete realization of a SOAdssage for sending over the wire from one
SOAP node to another, SOAP protocol binding pravidemechanism for supporting features that
might be needed by an application. A feature spEci€ertain functionality provided by protocol
binding. For instance, HTTP supports request/respanessage exchange pattern. Therefore if an
application requires RPC (request/response) stylesSOAP message exchange and SOAP is

14



transported using HTTP it does not need any additionechanism for performing this RPC style
(request/response) of operation. However, if SOg\fPansported using TCP protocol, which supports
only one-way message exchange pattern, specialanisch must be provided by the SOAP protocol
binding framework to correlate a request messagfe nespective response message for a RPC style of
operation. A feature can be referenced by theiemn using URI.

2.4 Motivation of Web services Security

How can we secure web service communication? Tlaeee a lot of existing security
technologies that are used to secure Internet reseuOne of the most widely used and proven
security technologies is SSL. Most of the onlinemling sites use SSL to secure their resourcesx The
can't we use SSL to secure web service? As moshefweb service now a days use HTTP for
communication, it seems perfectly possible to uUSk ®r securing web service. Unfortunately In the
Web service world however, SSL does have somediiaits [15]:

1) SSL/TLS provides point-to-point security [15BSL establishes a secure pipe
between two adjacent communicating nodes and tfamsfers data using this
pipe. While the data is in the pipe it is secutddwever, once data came out of
that pipe, it is in clear. That means the secuwdgtext only exist between two
adjacent nodes. Figure 2.10 shows the conceptiof-BePoint security. Hence if
a message needs to pass one or more hops befahkingahe ultimate
destination, the message will be in clear at soaiet pf time in each of the hop.
Therefore, if an attacker can get access in orikesfe hops he can easily read or
modify the message.

| T
Sy Conext Seary Conest

Figure 2.10: Point to Point Security

According to SOAP specification, a message canetsg/ one or more
intermediaries before it is reached to its ultimdestination. Therefore, SSL is not suitable for
securing this communication. To secure web semvieaeed to secure the message not the link. That
means, the security context for web service muist end-to-end. End-to-end security is also called
message level security as the security informafitora message is embedded in the message itself.
Figure 2.11 shows the concept of end-to-end sgcurit

WS-Security is a specification that specifies hoessage level security can be achieved. We will
describe this specification in a later chapter.

15



2)

3)

Figure 2.11: End to End Security

SSL is bound to HTTP [15]. As we saw previousligt SOAP messages can be
exchanged using a wide variety of protocols likePFBMTP, TCP, and HTTP
etc. However SSL can only be used to secure HT TRhumication. Therefore,
SSL is not suitable for securing web service comgation.

SSL does not support partial visibility [15]. Pattvisibility means that part of a

message will be encrypted and the rest will beléarc SSL encrypts the whole
message. However, partial visibility is a vital aessity in Web service

communication. According to SOAP specification ader can direct different

parts of a message to different SOAP node. Andntthe discretion of the sender
which part of the message will be encrypted, wipah will be signed and which

part will be in clear. SSL does not provide thisyision therefore is not suitable
for web service communication security.

Due to the above mentioned limitations of traditibtransport level security, there was a need for a
different type of security mechanism for web sesvimcommunication. Therefore, in April 2002
Microsoft, IBM and VeriSign proposed a security dfieation for web service communication. In
April 2004 that standard was established as anoappdr OASIS open standard [14] for securing
SOAP exchange. This standard is known as WS-Sgawow a day.

16



Chapter 3: State of the Art

3.1: XML Digital Signature

3.1.1 Definition

XML Digital Signature [2] provides a mechanism feigning partial or chosen element of an
XML Document. This signature can be used by therewat of the message for verifying the integrity
of the message and the authenticity of the sender.

A number of different types of resources can baeegigusing XML Digital Signature. For Instance we
can sign character-encoded data like HTML, binaryeeled data like Image, XML-encoded data
using a single XML Signature.

At the time of XML Signature validation, the dafaject that has been signed needs to be accessible.
XML Signature indicates the location of the sigkada object in one of the following ways:

i) The signed data object is referenced usingereete URI within the XML Signature
element
i) The signed data object is a child of the XMIg&ature element. That means the Signed

Object is inside the XML Signature Element.
The Signed Data object contains the XML SigmatElement , that contains its signature ,
within it . That is the Signed data object is ffagent of its Signature element .

ii)

3.1.2 Structure

Figure 3.1 is the pictorial representation of tkeeral structure of XML Digital Signature
element

. Each resource to he signed has its own <Reference>
<Signature> Element, identified hy the URI atiribute
=SignedInfo=
{CanonicalizationMetho
{SignatureMethod) The <Transform> element specifies an ordered list of
{(=Reference {(URI=)7= processing sieps, that were applied to the referenced
(Transfnrms)'? ‘___—4——“_' resource’s content hefore it was digested
(DigestMethod)
(Dige stValueL_\-\ The <DigestValue> element carries the value ofthe
</Reference=)+ digest of the referenced resource
</SignedInfo=
(SignatureValue)1___________h
(KeyInfo)? The <Signature Value = ele ment carries the value of the
(Ohject)* encrypted digestof the <SignedInfo> ele ment
<{Signature=
The <KeyInfo> element indicates the key to be used io
validate the signature . Possible form for ide ntification
include certificates, key names and key agreeme nt
algorithm and information

Figure 3.1: Structure of XML Digital Signature [41]

3.1.3 Processing

3.1.3.1 Signature Generation

17



The Signature generation process for XML Digitajriture can be broadly divided into two
major steps.

i) Reference Generation

ii) Signature Generation

1) Reference Generation:

In this step, reference element is createcéeh data object that has to be signed. First
necessary transformation is performed on the dajact then the digest value of the
transformed data object is calculated and finallyeference element is created which
references the data objects to be signed and ieslinek following elements:

) Transformation elements to specify the applrth$formation on the data object
ii) Algorithm that is used to generate the digesdtie of the data object
iii) The digest value of the data object

2) Signature Generation

In this step a <Signedinfo> elemes created which includes the list of
<ReferenceEelement> (from the Reference Generatigp), a <SignatureMethod> element and a
<CanonicalizationMethod> Element. The whole <Sidgnfxd element is canonicalized* using the
method specified within the <CanonicalizationMethollement. After that a signature value is
generated over these canonicalized <Signedinfomezié using the algorithm specified under the
<SignatureMethod> element. Finally a <Signatureemgnt is created which includes the
<Signedinfo> element(s) , a <KeyInfo> element andSignatureValue> element . The <Keylnfo>
element represents the key used to generate thatgig value, which is placed under the <Signature>
element.

3.1.3.2 Signature Verification

We can categorize the signature wa#itith procedure in two steps:
i) Reference validation
i) Signature validation

1) Reference Validation:
In this step the digest eafar each referenced data object is checked fatitya First

the <Signedinfo> element is canonicalized using @amonicalization method specified under the
<Signedinfo> element. Then for each reference ettitiee referenced data object is retrieved and a
digest value is calculated on that data objectgugie digest method specified under the <Reference>
Element. The resulting digest value is comparetl wiée digest value specified under the <Reference>
element . If these two values are same then tliicadion proceeds for the second reference element
Otherwise it generates an error message.

2) Signature Validation:
If the Reference Validatimtep passed successfully then comes the Signature
Validation step. In this step the keying informaticspecified in the <Keylnfo> element of the
<Signature> element is retrieved possibly from atemal source. Then the Signature method is
determined from the <SignatureMethod> element of #Signedinfo> element. These two
information that is , Keying Information and Sigma Method , are used to validate the Signature
value specified under the <SignatureValue> eleroétite <Signature> Element .

18



3.1.4 Limitations

XML represents information using a tree stiwe. XML Digital Signature allows non-contiguous
objects of an XML dataset to be signed separafihe signed object may be referenced using an
indirection (URI) by the Reference element of thign&ture. This indirect referencing does not give
any information regarding the actual location of 8igned object. Therefore, the signed object can
easily be relocated and the Signature value willretmain valid. In cases where the location o th
data object is important in the interpretation loé semantics associated with the data, this can be
exploited by an adversary to gain unauthorized scd¢e protected resources [9]. This is the main
limitation of XML Digital Signature.

*The term canonicalization refers to the processaisforming something to a form that conforma siandard. Therefore, XML
canonicalization specifies the process of transiiogran XML document in a standard format. [43]

3.2 WS-Security

WS-Security [6] is an extension of SOAP [1] Messaggiframework. WS-Security
specification does not provide any new securitytqgool itself; instead it specifies how the prevalen
security technologies can be used to secure SOABsages. Authentication, Integrity and
confidentiality are three vital features of anylgeccommunication protocol. WS-Security specifies a
standard way of achieving these features for SOARsamges. It provides a mechanism for attaching
security tokens with SOAP messages. Security Tokéorsg with other mechanisms can be used to
authenticate a client. WS-Security does not rasaémplications to use a particular form of security
token. However a wide variety of security tokemfats including binary security tokens like X.509
certificate or Koreros Ticket can be attached VBMAP messages using WS-Security standard. WS-
Security provides a mechanism for encoding binaopsty tokens for attaching to a SOAP message.

Integrity of SOAP messages is provided using XPlgital Signature technology along with
the Security token. Security token represents theusing which a portion of the SOAP message is
signed. This key is referenced from the signatdsethe SOAP message has to go through a number
of intermediaries before it is reached to the recip it is perfectly valid for the intermediary to
produce its own signature. WS-Security providesay wo attach multiple signatures in the same
SOAP message. This Signature provides a way fordabipient and/or the intermediaries to ensure
that a SOAP message has not been tampered omvtd prath. WS-Security does not specify any
particular signature technology to be used foriaigia SOAP message. Instead a variety of signature
technology can be used to sign different portiothefsame SOAP message.

In the same way confidentiality of SOAP ssege is provided using XML Encryption
mechanism in conjunction with Security token. Tleewity token represents the key by which a
portion of the SOAP message has been encrypted. s€barity token is referenced from the
encryption element. As with XML Signature, WS-Setyuiprovides a way to encrypt different
portions of a SOAP message by different SOAP a@tecipient/intermediary) and they can use
different encryption technology to pursue this.

Limitations:

1) WS-Security uses XML Digital signature for sigginon-contiguous parts of a SOAP
message. Therefore, all the limitations of XML [agisignature are also applicable to
WS-Security.

2) WS-Security allows multiple Security header fwihe same name) to exist in the same
SOAP message. This creates a pit fall and can peieed by the attacker. We will see
later how this feature can be exploited.

3) WS-Security does not propose any new secugithirtology. However, it specifies how
the existing security technology can be used targeeg SOAP message exchange.

19



4) WS-Security encompasses many other standards IMé& Pigital Signature, XML
Encryption, X.509 certificates Kerberos ticket Etd]. For this reason, the specification
became quite complex.

3.3 WS-Policy

WS-Policy [42] is a generalized grammar for desoghthe capabilities, requirements, and
characteristics of a Web service. [14] WS-Policgas specific to any particular domain like Seayrit
Reliable Messaging, Privacy or Quality of servitean be used to express the requirements of a web
service for a broad range of domain. However, WhciPdoes not itself specify how the policy will
be associated with a particular web service. Figr disociation a separate specification WS-Policy
attachment has emerged.

Before using a Web service, the client needs tavkile requirements of that service. For Instance, a
particular Web service might require that all teguest coming to it must satisfy at least one ef th
following requirements

i) Each request must contain either a User Namentok a X.509 token or both

i) User Name token if present must be signed by Aliyorithm

iii) X.509 token if present must be signed by TeiRIES algorithm

The following figure shows how service requirensecean be expressed using WS-Policy

<Wsp: Policy Id="Policyl” Name="MyPolicy”>
<Wsp:OneOrMore>
<wsp:All wsp:Preference="100">
<wsse:SecurityToken TokenType="wsse:Usernarkef" />
<wsse:Algorithm Type="wsse:AlgSignature"
URI=" http://www.w3.0rg/2000/09/xmlenc#aes"/>
</wsp:All>
<wsp:All wsp:Preference="1">
<wsse:SecurityToken TokenType="wsse:X509%3" /
<wsse:Algorithm Type="wsse:AlgEncryption"
URI="http://www.w3.0rg/2001/04/xmle#3des-cbc"/>
</wsp:All>
</wsp:OneOrMore >
</wsp:Policy>

Figure 3.2: A Simple WS Policy

A policy is actually a collection of policy asseris. A policy assertion asserts some requiremérs o
service that a client request must meet in orderstothat service. The assertions are wrappediinto
policy element. As it can be seen from Figure 82, policy element contains one policy operator
<wsp:0OneOrMore>. The policy operator can be usedréate quite complex policy, for instance
nested policy. In Figure 3.2 only two policy operatis shown. There are other policy operators
specified in [42]. The operator <wsp:OneOrMore>anmgethat at least one of its child assertions must
be applicable. This operator contains two <wsp>Adperator. This operator means that all of its
assertions must be met by the request to be idhtifs valid. It is not mandatory to use policy
operator. We can specify all our assertions diyearsl the child element of the root policy elemémt.
this case all of the child assertions must be meajet a service. In the figure above, each of the
<wsp: All> operator contains two assertions wititinThe first group of assertions specify that a
request must contain a Username token and this toh&e to be signed by AES Signature algorithm.

20



The second group of assertions specifies that aestgnust contain a X.509 token and it has to be
encrypted using Triple DES Encryption algorithm. these groups of assertions are embedded within
an <wsp:OneOrMore> operator, this means at leastodithose groups of assertions must be met to
get a service protected by this policy file.

Limitations:

WS Policy standard lacks semantics. It provideseahanism for describing the syntactic aspects of
service propertied his introduces a limitation on the policy speation and policy intersectiofor
example, a provider may specify that its serviggpsuts a particular algorithm for the adjustment of
data retransmission timeout value and a consumegrdefine a policy requiring a different algorithm.

It might be possible to substitute the requiredoatm by the provided algorithm, if they are
compatible. However, the current standard doessnpport this kind of relationship identification.
Thus, although it is possible, the interaction hestv the provider and the consumer will not occur.
[16]

3.4 WS-Security Policy

As we mentioned before WS-Policy [42] provides aagal framework for representing
web service constraints and requirements. Howedods not specify any security assertion for any
particular problem domain like reliable messagimgsecurity. Each domain has its own specific
assertion profile. WS-Security Policy [7] specifigolicy assertions to represent the security
requirements of a web service.

WS-Security policy specifies a numberseturity assertions like Security Token assertion,
Integrity assertion, Confidentiality assertion, Wity assertion, Message Age assertion and a lot
more.

Security Token Assertion: Security Token Asserspecifies what sort of security token is required
and accepted by a web service or Web service clidhis assertion is applicable to both the request
and response messages. [14] Security token ags@dio be of much type like UserName Token
assertion, X.509 Token assertion etc.

Integrity Assertion: Integrity Assertion specifiedether a SOAP message needs to be signed or not.
It also specifies which parts of SOAP message etsigned and also which algorithm should be used
to sign it. This assertion is applicable to bot& tequest and response SOAP messages.

Confidentiality Assertion: This assertion can beduby a Web service or its client to specify tratp

of a request or response SOAP message must beptttryrhis assertion can also specify how the
encryption should be done, that means which eniorytilgorithm should be used for the encryption.
Visibility Assertion: The Visibility assertion ales an intermediary to require that a certain partd
the SOAP message be visible to it. Visible meatigeeiin the clear or encrypted in a way that the
intermediary is able to decrypt it. [14]

Message Age Assertion: The Message Age assertiosers to specify the time period, after which a
message will be considered stale.

Limitations:

Securing a web service using WS-Security Policpdspanacea. It is essentially a domain specific
language, which selects cryptographic communicatiprotocols, uses low-level mechanisms that

21



build and check individual security headers. Itegifreedom to invent new cryptographic protocols,
which are hard to get right, in whatever guise] [17

3.5 Formal Methods and Web services Security

The specifications for web services security arehawg day by day with an immense speed.
Although none of these specifications offer any rs@eurity protocol, they provide a framework that
integrates existing security protocols to securb s&rvice communication. Therefore, it is necessary
to identify whether these web services securitgipations have achieved their security goalsait n
This can be done by simulating different attacknac®s and verifying whether a security framework
can guard against this attack. However, most ofithe this brute force approach cannot reason about
the security characteristics of a particular ségdramework. Because, the absence of a secuaity fl

in a particular attack scenario does not speci@ the security framework is not vulnerable in any
other attack scenario. This type of reasoning i#ggrthe security characteristics of a security
framework can be achieved using format method. gfbeg, formal methods are now applied to verify
the security goals of web services security spetions. One of the earliest project that applied
formal methods to verify the security goals of abwsmrvices security specification is Microsoft's
SAMOA [20] project.

In one of the work of SAMOA project they have prepd TulaFale [22]. TulaFale is a scripting
language that formally specifies web services scuprotocols and analyze their security
vulnerability. TulaFale uses pi calculus to spedifie interaction among concurrent processes.
TulaFale extended pi calculus to include XML syntnd symbolic cryptographic operations for
specifying the SOAP message exchange. For spegityi@ construction and verification of SOAP
message, TulaFale uses Prolog-style predicate. different security goals of a SOAP security
specification are specified using assertions. Tloeee TulaFale can be summarized as follows:

TulaFale = Pi Calculus + XML Syntax + predicatessertion [22]

In another work of SAMOA project they have proposedanguage and two new tools [21]. The
language they have proposed is a high level linkciigation language for specifying intended
security goals for SOAP message exchange among $@x&RRssors. Then one of their tools compiles
this link specification to generate WS-Security apeations. Then their other tool analyzes the
generated WS-Security specifications using a thegyeover to verify whether the intended security
goals can be achieved by the generated WS-Semétyification. This analyzer uses TulaFale [22]
script to specify a formal model for a set of SOgBcessors and their security checks and to verify
the security goals. According to them the policixein web service implementations are susceptible to
the usual subtle vulnerabilities of traditional giggraphic protocols; their tools can help prevemnti
such vulnerabilities by verifying the policy wherig being compiled from link specifications, ared r
verifying the policy at the time of deployment agditheir original goals after any modifications []

Another tool proposed by Microsoft's SAMOA projastWS Policy Advisor [9]. In this work they

have identified the gap that exist between the &rmodel and its implementation. According to
them, formal models are most of the time hand emittTherefore they might lack critical details.
Consequently, proofs showing the absence of attack model do not directly reflect to its

implementation. [9] For this reason they have psggbWS Policy Advisor, which will automatically
extract TulaFale, model from WSE [32] configuratiand policy files and will try to find security

vulnerability in this model. We will discuss abdhis tool later in more detail.

Two recent specification of web services securiy WS-Trust [28] and WS-Secure Conversation

[29]. WS-Security provides essentially a standand decuring a single SOAP message. While in
practice, a series of SOAP messages are exchamegeddn a client and a server. Therefore, using

22



WS-Security to secure the whole series of SOAP agessis not an efficient way. As for each SOAP
message a security token needs to be generateslssnderified. WS-Secure Conversation and WS-
Trust specifies a way for securing a session beaivaeglient and a server instead of each single SOAP
message. They have defined a security context tukestablish trust between a client and a server.
Another entity, WS Token Service, is introducednsn the client and the server for the generation
of security context token and to establish trustisTtoken service is essentially a web service. WS-
Trust specifies how security context tokens areuested by client and generated by WS Token
Service and WS-Secure Conversation specifies haavabrthis security context token can be used
with SOAP message to secure a conversation. Irhanatork of SAMOA project they have formally
specified WS-Secure Conversations and WS-Trust ifsgetons and verified their security
characteristics using TulaFale scripting languf2@.

All of the above formalizations indeed make somsuagtions. One of the assumptions, which is
indeed a limitation of these formalizations, istthamessage can be read, written or modified by an
attacker if the attacker knows the right key. Otlise the attacker cannot perform the attack. Laer
will see that this is not true for all sort of afta Moreover, a major limitation of the above
formalizations is that they do not model insid¢acks.

23



Chapter 4. Attack Scenarios in Web service

Web service is nothing but programmatic accessdb sites. Therefore it is vulnerable to the same
kind of attack applicable to traditional web simgh as, DOS (Denial of Service), SQL Injection
attack etc. Moreover as web service uses XML dataekchanging messages, it is vulnerable to
another class of attack known as XML Rewriting @favhich occurs due to the structural weakness
of XML data. XML Rewriting attack is a common naffee a range of attacks such as, replay, man-in-
the-middle, redirection, dictionary attack. Theaakier exploits the flexibility of the SOAP security
extensibility to capture, manipulate and replay $ORAessages without violating the integrity of the
message. In [9], [11], [12] and [13] different tygpef attack scenarios have been demonstratedisin th
section we will present some attack scenarios endbntext of SOAP message exchange to better
understand XML Rewriting Attack. All of our exampBOAP messages will be represented using a
style adopted from [8]. Only the beginning tag @@AP element will be represented using the tag’'s
full name. The full name of a element will be omittfrom the end tag. For instance, an element A
will be represented as <A>...</> instead of <A>.....x/A
We will consider a simple SOAP-based server thgpoads to requests for a list of available airline
tickets. The server charges a subscriber’'s acdaurgach request and does not wish to respond to
non-subscribers. Therefore, it requires that a aggssignature generated using an X.509 certificate
belonging to one of its subscriber authenticathe@aquest. Moreover, it requires that each request
include a unique message identifier to be cachelbtect message replay. The scenarios that we have
demonstrated in this section are adapted fromr@][&1]

4.1 First Attack Scenario (Replay Attack):

<Envelope> <Envelope>
<Header> <Header>
<MessagelD ld="Id-1">123</MessagelD> <Irrelevant>
<Security mustUnderstand="1"> <MessagelD ld="1d-1">123</ ></ >
<BinarySecurityToken Id="ld-2">abcdefg... >/ <MessagelD>324</ >
<Signature> <Security mustUnderstand="1">
<SignedInfo> <BinarySecurityToken |d="Id-2"> abcdefg</.>
<CanonicalizationMethod Algorith"....."/> <Signature>
<SignatureMethod Algorithm="." /> <SignedInfo>
<Reference URI="#Id-1"> <CanonicalizationMethod Algorith"...... ">
<DigestMethod Algorithm=Hgl" /> <SignatureMethod Algorithm=#rsa-shal" />
<DigestValue>4AFDEG7...</ > <Reference URI="#Id-1">
</> <DigestMethod Algorithm=Hl" />
<Reference URI="#Id-3"> <DigestValue>4AFDEG7...</ ></
<DigestMethod Algorithm="../* <Reference URI="#Id-3">
<DigestValue>EF346A....</ ></ > <DigestMethod Algorithm=Ffshal" />
<SignatureValue>34EADB98...</ > <DigestValue>EF346A....</ ></ >
<KeylInfo> <SignatureValue>34EADB98...</ >
<SecurityTokenReference> <KeylInfo>
<Reference URI="#Id-2" /> <SecurityTokenReference>
</ ></ ></></ ></ > <Reference URI="#Id-2" />
<Body Id="Id-3"> </ ></ ></ ></ ></ >
<AirlineTicketRequest>...</ ></ > <Body Id="Id-3">
</> <AirlineTicketRequest>...</ >
</ ></>
Figure 4.1: SOAP message before Replay Attack
Figure 4.2: SOAP message after Replay Attack

24



Suppose a client wants to see the list of airlinkets. As the client is charged for each request i
makes, the request contains a Message ID, whigbed by the server to keep track of client requests
Furthermore, MessagelD of the request along withesother parts of the message are signed by the
client using a X.509 certificate belonging to thiemt, which will help the server to authenticate t
client and to check for the message integrity.

Figure 4.1 shows the SOAP message that is serttebglient to the server. An attacker, sitting in
between the client and the server intercepts thesage. He then put the <MessagelD> header
element into another header element <Irrelevanttaleates its own <MessagelD> header element
with a new value. He then sends the message teetiver. Figure 4.2 shows the message the attacker
sends to the server after interception and modifina

The Server on the other side, after receiving tlessage will try to validate the integrity of the
message. It can be seen from Figure 4.2, althduglattacker has tampered on the message, he did it
in a way so that the integrity of the message remealid.

4.2. Second Attack Scenario (Redirection Attack):

This scenario depicts how XML Rewriting attack denused to redirect a SOAP request. Suppose a
client wants to see the list of airline tickets. \W8dressing [44] specifies a way for embedding the
URI of the ultimate recipient through the use ofb=Theader element. Figure 4.3 shows a request that
the client sends to the airline ticket server Wit URI of the server embedded into the requestund
the <To> element. The X.509 certificate of themlisigns this <To> header element. The request also
uses a <From> element, Specified in WS-Address#id [ to indicate the sender of the request.
However, this element is not signed.

<Envelope>
<Header>
<Envelope> <From>http://www.client.com</ >
<Header> <To>http://www.stockquote.com</ >
<From>http://www.client.com</ > <Attack>
<To id="id4">http://www.airlineticket.com</ > <To id="id4">http://www.airlineticket.com</ >
<Security mustUnderstand="1"> </>
<BinarySecurityToken ld="Id-2">abcdefg./.x <Security mustUnderstand="1">
<Signature> <BinarySecurityToken 1d="Id-2">abcdefg....</ >
<SignedInfo> <Signature>
<Reference URI="#ld-4"> <SignedInfo>
<DigestMethod Algorithm=%l" /> <Reference URI="#Id-4">
<DigestValue>4AFDEG7...</ ></ <DigestMethod Algorithm=H#l" />
<Reference URI="#1d-3"> <DigestValue>4AFDE67...</ >x</
<DigestMethod Algorithm=t#gl" /> <Reference URI="#Id-3">
<DigestValue>4AFDEG67...</ ></ <DigestMethod Algorithm=tl" />
</> <DigestValue>4AFDEG7...</ ></
<SignatureValue>34EADB98...</ > </>
<KeylInfo> <SignatureValue>34EADB98...</ >
<SecurityTokenReference> <KeylInfo>
<Reference URI="#Id-2" [>>/ <SecurityTokenReference>
</> <Reference URI="#ld-2" /></
</> </ >
</> </>
</> </>
<Body Id="|d-3"> </ >
<AirlineTicketRequest>...</ > <Body Id="1d-3">
</> <AirlineTicketRequest>...</ >
</ > </>
</ >
Figure 4.3: SOAP message before Redirection Figure 4.4: SOAP message after Redirection
Attack Attack

25




Figure 4.4 shows the request modified and relayetthd attacker. The attacker simply puts the signed
<To> element under an <Attack> element and intreduds own <To> element with a different URI.
As we saw in the previous example, with this madifion the integrity of the message will remain
unchanged but the application logic will considez € To> element introduced by the attacker instead
of the <To> element that was wrapped by the <Attaelement and the message will be redirected to
a different location instead of the location it veesit for.

4.3 Third Attack Scenario (Multiple Security Header
Exploitation Attack):

According to WS-Security specification a SOAP Megsaan include more that one Security header.
However, according to this specification no two B8ég headers can have the same role attribute
value. As we saw before, client includes a signbtkssagelD> in the request message to help the
server to keep track of the client request. Theesecaches the <MessagelD> value. Whenever the
server receives a request from the client, it tiaefind the <MessagelD> value in the cache. flinids

one then it infers that someone, other than thenoed client has replayed the message and will
generate a SOAP fault. However, it is obvious ttethe has a limited capacity. The server has to
delete cache entries after a certain amount of. tiffe-Security also specifies a <Timestamp> header
to indicate the server the time limit after whitie tserver can delete the cache entries associated w

the current request. Figure 4.5 shows a clientasigwith a signed <Timestamp> header.

<Envelope>
<Header>
<Security >
<BinarySecurityToken
<Signature>
<SignedInfo>

Id="Id-2">abcdefg...>x/

<Reference URI="#ld-3">...... </>
<Reference URI="#ld-4">...... </ >
</ >
<SignatureValue>34EADB98...</ >
<Keylnfo>.....</ >
</ >
<TimeStamp id = “id-4">
<Created>T1</ >
<Expires>T2</ >
</ >
</ >
</ >
<Body Id="Id-3">
<AirlineTicketRequest>...</ >
</ >
</ >

Figure 4.5: SOAP message before Multiple Securi
Header Exploitation Attack

<Envelope>
<Header>
<Security >
<BinarySecurityToken
<Signature>
<SignedInfo>
<Reference URI="#1d-3">...... </>
<Reference URI="#Id-4">...... </>
</ >
<SignatureValue>34EADB98...</ >
<Keylnfo>...... </>
</ >
<TimeStamp>
<Created>T1</ >
<Expires>T2</ >
</ >
</ >
<Security role="none” mustUnderstand="0">
<TimeStamp id = “id-4">
<Created>T1</ >
<Expires>T2</ >
</ >
</ >
</ >
<Body Id="|d-3">
<AirlineTicketRequest>...</ >
</ >
</ >

Figure 4.6: SOAP message after Multiple Securi

Header Exploitation Attack

26

Id="Id-2">abcdefg...>x/




Figure 4.6 depicts how an attacker can exploitfignability of WS Security specification. When the
client sends the message to the server, the attaotercepts the message and wait until the
<TimeStamp> value is expired. Then he creates a $egurity header with role attribute’s value
“None” and “mustUnderstand” attribute’s value “FalsThen he cut the <TimeStamp> element from
the original security header and put it in the neereated security header. He then creates his own
<Timestamp> header element and put it under thygnadi security header. Then he sends this message
to the server. The Soap processor on the servemsibtry to process the message and will ignbes t
Security header created by the adversary sileBibynature validation will also pass successfully as
the Signature element references the <Timestampedneclement using XPointer, which does not
take care of the location of the referenced elemEnérefore, even though the attacker moved the
<Timestamp> header element under a different <$igeureader element it will resolve it as if it was
not moved. Consequently The SOAP Processor wik thle <Timestamp> element created by the
attacker into account. As the server has deleteddéiche of the client request due to the Timestamp
expiration, it will not be able to find the <Mess#ig> of the attacker's message in its cache and wil
consider the request as a fresh request from tdet.cTherefore the server will process the reqasst

if it was sent from the intended client.

27



Chapter 5: Previous Solutions of XML Rewriting
Attack

The attack scenarios presented in the last sedties not cover all of the vulnerabilities that eaise

in web service communication. A lot of work is ggion to detect and remove this sort of attack.
Although simple at a first glance, XML Rewritingatk is not something that can be easily detected
and removed. In this section we will describe sovoeks that have been done previously in order to
detect XML Rewriting Attack. We will discuss our@pach for the detection of this attack in next

chapter.

5.1 XPath referencing with WS-Security policy:

If used correctly WS-Security policy can act a®artermeasure against XML-Rewriting attack.
We have seen previously what is WS-Security PdligyAs we saw before, web service operations
are published using a WSDL file. This file contathe name of the operations the server offers and
the input and output parameters required and pextlby those operations. Security policy can be
associated with these operations and/or with thatiand output messages. These policies specify the
security requirements of a web service. Howeveis fuite difficult to specify all possible secyrit
requirements in WS-Security policy file. The authad the implementer of the security policy need to
be very careful while writing and implementing tpelicy. In [11] the author have shown different
sort of rewriting attacks and the associated pdiieg for the detection of these attacks. Theyehav
also shown how the attacker can take advantagssoofrity policy hole in order to get unauthorized
access to system resources. According to [11]acte the semantics of XML elements depends on
its location. However, XML Signature provides ftietreferencing of an element independent of its
location. They further showed that the flexibilityat SOAP header provides can be exploited by an
attacker in a naive way. Lets consider the follgnexample, which is taken from [11].

< Envelope>
< Header>
< Security>
< Signature>

< Signedinfo>
< Reference URI="#theBody"></ >
< Reference URI="#theReplyTo">
</ ><[ ></ ></ >

<ReplyTo Id ="theReplyTo>

< ><7 5 ddress>http://good.com/</> ¢) the signature “S” verification key must be

<Bodv Id = "theBody"> provided by an X.509v§ certificate iggued by orle
<c§);e)tlQuote S;mgoli”lBM”/></ ></ > of a set of trusted Certificate Authorities (CAS).

a) The element specified by /Evelope/ Body must
be referenced from a signature “S” using WSS
with XML Signature, and

b) if present, any element matching
/ Envelope/ Header/ReplyTo must be referenced
from a signature “S” using WSS with XML
Signature, and

Figure 5.2: Security Policy assertions for

Figure 5.1: SOAP message with a ReplyTo ,
SOAP message of Figure 5.1

header block signed and referenced using UR

Figure 5.1 shows a client request to a stock gapfdication. This application takes a client reques
and returns the quote for the symbol specified get@uote @Symbol>. The request also includes a
ReplyTo header element, which is specified in WSl#kdsing. This element specifies where the

28



response should be sent. Moreover, this ReplyTmei is optional. If it is not specified in the
request the response will be sent to location fidrare the request has come.

Figure 5.2 shows a sample security policy requirgmef the stock quote application. It says that th
request must contain a body element. This body et¢rhas to be referenced from the signature
element that means the body element must be sidiedrequest may contain a Reply To element
and if it contains a Reply To element then this IR element must be signed. Finally, it says that
the signature must be verified using a X.509 desié generated by a Certificate Authority (CA).

<Envelope>
< Header>
< Security>
< Signature>
< SignedInfo>
< Reference URI="#theBody"></ >
< Reference URI="#theReplyTo"></ >
<[ ></></ >
<wrapper>
< ReplyTo Id = "theReplyTo>
<Address>http://good.com/</ >
</ ></ ><f >
<Body Id = "theBody">
<getQuote Symbol="IBM"/>
</ ></>

Figure 5.3: SOAP message where the
attacker wrapped up the ReplyTo header
block

At first sight, it might seem that the security ipglin Figure 5.2 is sufficient for the stock quote
application. But ironically it is not. Figure 5shows how the attacker can bypass the security
requirements specified in Figure 5.2 to redireetrésponse.

As we said before the <ReplyTo> header elemenpti®mal. Therefore the attacker can intercept the
client request shown in Figure 5.1 and wrap up <ReplyTo> header element by a <wrapper>
element. This modification does not violate theusiég requirements of the application. The modified
message of Figure 5.3 contains a <Body> elemenichwis signed. It does not contain any
<ReplyTo> element as it is now wrapped under a ppea> element and according to SOAP
specification if a SOAP processor does not undedsta header element it will ignore it silently.
Therefore, when the stock quote application willeige the request of Figure 5.3 it will discard the
<wrapper> element. Moreover, a X.509 certificateggated by a CA can verify the signature. As all
the security requirements are fulfilled the applma will process the message as if it was not
tampered by an attacker and will send the respfsosewhere it got the request, in the above case to
the attacker.

A deep investigation of the above scenario revibadollowing reasons for this sort of vulnerald:

1) SOAP Extensibility model and its processing rallews optional header elements to be added to
the header of a SOAP message. This feature profaddbe better interoperability. Application can
use their own header element without any negotiatidn the other hand this flexibility can be
exploited by the attacker.

2) The reference from the signature element isguXiRointer to reference the signed element, which
does not take care of the location of the signetheht.

In [11] they have proposed the use of Xpath expradser the removal of this attack. This Xpath uses

absolute path of an element to reference it. Fiuteand 5.5 shows the request presented in 5 usi
Xpath for the reference and the new security regouants.

29



<Envelope>
< Header>
< Security>
< Signature>
< SignedInfo>
< Reference URI="#theBody"></ >
< Reference URI="">
< Transforms>
< Transform Algorithm="...">
<XPath>
/Envelope/ Header/ReplyTo
<[ ><[ &l ><[| ><[ ><[ ><[ >
<ReplyTo Id = "theReplyTo>
<Address>http://good.com/</ >
</ <[>
< Body Id = "theBody">
<getQuote Symbol="IBM"/>
</ ></>

a) the element specified by /Evelope/Body must
be referenced from a signature “S” using WSS with
XML Signature, and

b) if present, any element matching
/Envelope/Header/ ReplyTo must be

referenced via an absolute path XPath expressio
from a signature “S” using WSS with XML
Signature, and

-

¢) the signature “S” verification key must be
provided by an X.509v3 certificate issued by one |of
a set of trusted Certificate Authorities (QAs

Figure 5.5: Security Policy assertiongor the
SOAP message of Figure 5.4

Figure 5.4: SOAP message with a ReplyTo
header block signed and referenced using
XPath

In [11] they have named the problem specified alkaweptional Element context problem as it is
exploiting the optional header element feature &AB. Although using Xpath expression for
referencing signed element can detect the aboveoE@roblem it is not a panacea. SOAP supports
multiple security headers in a SOAP message. Atlatt can exploit this SOAP feature to violate the
above solution. Lets consider the following exaraple

<Envelope >
<Header>
<Security>
<Signature>
<Signedinfo>
<Reference URI="#theBody"></>
<Reference URI="">
< Transforms>
< Transform Algorithm="...">
< XPath >
/Envelope/Header/ Security/Timestamp
</ ><[ ></ ></ ></ >
< Timestamp ld="theTimestamp">
< Created>2005-05-29T08:45:002</ >
< Expires>2005-05-29T09:00:00Z</ >
</ x| ></ >
<Body Id="theBody">
<getQuote Symbol="IBM"/></ ></ >

Figure 5.6: SOAP message with a Timestamp
element signed and referenced using XPath

30

a) the element specified by /Evelope/Body must H
referenced from a signature “S” using WSS with
XML Signature, and

b) if present, any element matching
/Envelope/Header/ReplyTo must be

referenced via an absolute path XPath expressio
from a signature “S” using WSS with XML
Signature, and

c) if present, any element matching
/Envelope/Header/ Security/Timestamp must be
referenced via an absolute path Xpath expressior
from a signature “S” using WSS with
XMLSignature, and

d) the signature “S” verification key must be
provided by an X.509v3 certificate issued by one
a set of trustedCertificate Authorities (CAS).

Figure 5.7: Security Policy assertions for
SOAP message of Figure 5.6




Figure 5.6 shows a sample SOAP message that ircladgecurity header. This Security header
among other information contains a Signed Timestahement. Figure 5.7 shows a WS Security
policy for the application server. In this polidyis specified that the Timestamp element is ojation
However if it is present then it must be signedrdbwer, it also specifies that the Timestamp elémen
if present must be located under /Envelope/Headeut®y. Now if an attacker wrap up the
Timestamp element under another Fake elementpadli®y of the application server will easily detect
it. Nevertheless, it is still possible for an akicto fool these policies. Figure 5.8 shows hois tdan

be accomplished.

In Figure 5.8 the attacker created a new Secumitgder, which conforms to the WS Security
specification. However, according to WS Securiteafication although a SOAP Message may
contain multiple security header, no two securigader can have the same role attribute value.
Therefore, the new Security header created bytthekar has a role attribute’s value “none”. It mea
no SOAP node should process this header. Thentthekar cut and pastes the Timestamp element
from the existing Security header to the newly twd&ecurity header. After that he/she createda ne
Timestamp element under the existing security hreade

<Envelope >
<Header>
<Security role="none” mustUnderstand="false">
<Timestamp Id="theTimestamp">
<Created>2005-05-29T08:45:00Z</ >
<Expires>2005-05-29T09:00:00Z</ >
</ >
</>
<Security>
<Signature>
<SignedInfo>
<Reference URI="#theBody"></>
<Reference URI="">
<Transforms>
<Transform Algorithm="">
< XPath>
/Envelope/ Header/ Security/Timestgm
<[ ></ ></ ></ ><[ >
<Timestamp >
<Created>2006-05-29T08:45:00Z</ >
<Expires>2006-05-29T09:00:00Z</ >
</ x| ></ >
< Body Id="theBody">
<getQuote Symbol="IBM"/></ ></ >

Figure 5.8: SOAP message where the attacker
created a Security Header block with role
attribute’s value none

When the SOAP Processor on the receiver side &dive the message it does not have any reason to
make any complain as the request fully conformgh&osecurity policy. The Signature validator as
well will find everything valid as the Xpath expsésn

"[Envelope/Header/Security/Timestamp”

will resolve to a set that will contain the sign€dnestamp element. In [11] they have proposed to
include not only the name of the parent elemetiténXpath expression but also some attribute values
that will uniquely identify the parent of the sighelement. For instance, instead of the XPath
expression specified above, they proposed to estotlowing expression:

31



“/Envelope/ Header/ Security[@role=".../ultimateRa@r’)/Timestamp”

However, the above solution is not enough to detBaewriting attack that can take place using the
above weakness of XML Digital Signature. They tafs problem as a future work.

Besides they have mentioned other two sorts ofestrgroblems namely, Simple ancestory context
and Sibling value context problem. The former tgp@roblem occurs when the attacker changes the
parent of a signed element. This problem is alsilyedetectable with Xpath referencing and WS
Security policy. The sibling value context probleaturs if the application logic is dependent on the
order of the signed element. Then the attackestaply change the order of signed elements and this
tampering will not get detected, as Xpath doespnotide any information for the sibling of a signed
element.

5.2 WSE Policy Advisor

Microsoft's WSE [32] or Web service Enhancement as implementation of many WS-*
specification. It provides a library to create gimdcess SOAP messages and headers. Most of the
web service and their client are written and coetpilsing strongly typed language.[9] For the e&se o
parameter adjustment after the deployment of a sesliice , configuration files are used. These
configuration files are loaded by the web servind their clients for the enforcement of the newly
created or changed parameters without the reconapil®@f their code. In the case of WSE, WS-
Security policy is part of this configuration filgVe already showed that WS-Security policies are
vulnerable to XML Rewriting attack if not writteroaectly.

—

WEE Policy
Ldviger
Plugin

Figure 5.9: WSE Policy Advisor [9]

WSE Policy Advisor is a rule-based tool for detegttypical errors in WSE configuration and policy
files. Figure 5.9 shows how this tool works. Itéakthe policy and configuration files of WSE, runs
some static queries on them and generates seceptyts and remedial actions for security flaws.
This tool has more than 30 queries. These quehieskcfor some syntactic conditions of those policy
files.

32



These syntactic conditions are determined by sigcraviews of the policy and configuration files of
WSE. If these security conditions are not met kegy/fblicy files the tool generate a report statimg t
threat that might occur due to this missing symtaminditions. It also generates a remedial adtian
can be used by the author of the policy files xotffie flaw. For instance, if the policy configurti
file specifies that the MessagelD element is ogtidor a request message or it is not necessatihéor
MessagelD element to be signed, the policy adwsbrthrow a warning (after running its query on
this policy configuration file) stating the pos&l#xistence of replay attack and will suggest tkema
MessagelD element mandatory and signed for a requesssage.

Although WSE Policy Advisor can detect errors thiditerwise might be overlooked, it has the
following drawbacks:

i) WSE Policy Advisor does not provide any formalagantees. It only provides a
suggestion regarding possible flaws in policy cgufation files found by running some
gueries.

ii) WSE Policy advisor shows very poor performaifdbe policy configuration file becomes
complex.

iii) The queries that are run by WSE Policy advisannot detect possible existence of signed
element reordering attack.

5.3 SOAP Account

In [12] and [13] the author has proposed an appréacthe detection of XML Rewriting attack. They
have introduced a new header element SOAP Accdunit header element will keep different
information of the SOAP message. The structurdeifr tproposed SOAP Account is given in Figure
5.10.

Figure 5.10: Structure of SOAP Account [13]

33



The SOAP Account contains the following informatimithe SOAP message:

i) How many elements does the envelope of the S@A&sage contain

i) How many Header elements are there in the Heafdihe SOAP message.
iii) How many Signed elements are their in the SOA¢ssage

iv) The immediate parent of each Signed element

V) The successor of each signed element

Vi) The siblings of each Signed element

In conjunction with these elements they have kdpld for future extensions in the SOAP account.
They have created a module that before sendin§@&P message calculates the information
necessary for the SOAP account and appends a SEdRr# header element in the Header or in the
Body of the SOAP message. As the SOAP messageasartirough one or more intermediaries on its
way to the ultimate recipient, the intermediaries @lowed to append its own SOAP account after the
processing of the SOAP message. The author hasaedporestriction

that the SOAP account must be signed by the creatog its X.509 certificate or by some other
method. Each successive SOAP node must sign itsSéWkP account concatenated with the

Signature of the previous node.

<Envelope>
<Header>
<MessagelD ld="Id-1">123</MessagelD>
<Security mustUnderstand="1">
<BinarySecurityToken |d="Id-2">
abcdefg....</ >
<Signature>
<SignedInfo>
<Reference URI="#Id-1">....</ >
<Reference URI="#Id-3">....</ >
<Reference URI="#Id-4">....</ >
<SignatureValue>34EADB98...</ >
<Keylnfo>
<SecurityTokenReference>
<Reference URI="#Id-2" />
<[ ></ ></ ></ >
<SoapAccount>
<NoChildOfEnvelope>2</>
<NoChildOfHeader>3</>
<NoOfSigned>3</>
<ParentOfld1>Header</>
<ParentOfld3>Envelope</>
<ParentOfld4>Header</>
<[>
</ >
<Body ld="Id-3">
<AirlineTicketRequest>...</ ></ >
</ >

Figure 5.11: SOAP message with SOAP Account
header block

34

<Envelope>
<Header>
<Attack>
<MessagelD ld="Id-1">123</MessagelD>
</Attack>
<MessagelD ld="Id-1">234</MessagelD>
<Security mustUnderstand="1">
<BinarySecurityToken 1d="Id-2">
abcdefg....</ >
<Signature>
<SignedInfo>
<Reference URI="#Id-1">....</ >
<Reference URI="#1d-3">....</ >
<Reference URI="#Id-4">....</ >
<SignatureValue>34EADB98...</ >
<KeylInfo>
<SecurityTokenReference>
<Reference URI="#Id-2" />
</ ><[ ></ ></ >
<SoapAccount>
<NoChildOfEnvelope>2</>
<NoChildOfHeader>3</>
<NoOfSigned>3</>
<ParentOfld1>Header</>
<ParentOfld3>Envelope</>
<ParentOfld4>Header</>
<[>
</ >
<Body Id="|d-3">
<AirlineTicketRequest>...</ ></ >
</ >

Figure 5.12: SOAP Account attack detection




Figure 5.11 and 5.12 demonstrates how this SOABuatccan be used to detect XML rewriting
attack on the SOAP message of Figure 4.1. As itbeaseen from figure 5.11, whenever the attacker
relocates the MessagelD element of the SOAP mesgdgean Attack element, the structural
information of the changed SOAP message does ntthnthe information present in the SOAP
account header element. Moreover, It is requiratitte SOAP account must be signed. Therefore the
attacker cannot modify this SOAP account. Neveesg| there is a possibility that the attacker can
delete the SOAP Account completely. To prevent ploissibility the WS-Security policy can be used.
This policy will check for the presence of SOAP Aaat header element. If it does not find one it wil
generate error. That means, on the receiver sidecuarity policy must be present, which will check
for the following:

i) SOAP account element is present under eitheBtity element or the Header element of
the SOAP message

i) SOAP account element is signed which can béiedrby a certificate issued by a trusted
authority

The approach presented here can successfully @getade range of XML rewriting attack. However,
it is not the cure for all types of rewriting atkachat can take place. We can summarize our dsalys
on this SOAP account approach by the following f®in

i) It does not include any mechanism to detectrdpday attack. Although Message ID or
Timestamp proposed by the WS Security can be ugetiis detection, we should
consider the fact that these elements are optitinalperfectly valid for a SOAP message
to not include a Message ID or Timestamp. In tlagec even though the SOAP message
contains a SOAP Account element, it is prone to XRHwriting attack.

i) The approach does not include any mechanisinctra uniquely identify the parent of the
Signed element. Therefore, the attacker to gaintinoaized access to protected resources
can use this unawareness of SOAP account. We evilothstrate this problem later.

iii) The SOAP account itself is prone to XML Revimiy attack. It is specified that the
receiver should check for the presence of the S@#d@unt element after receiving the
SOAP message. However, as we said before, theneatkaries can append its own SOAP
Account element in the SOAP message. Thereforauhwer of SOAP account element
in a SOAP message is not fixed. For this reasmnot possible to specify in security
policy, how many SOAP account element must be pteasaea SOAP message. The
attacker can exploit this problem. He can justang of the several SOAP account
elements of the SOAP message and paste it intadehelement that is not signed and
make the role attribute of the header element amgemustUnderstand attribute to false.
Then this header element will not be processedhéylitimate recipient or by any of the
intermediaries. However during the signature vaiagathe reference of the relocated will
be found as it is not removed but relocated.

iv) In SOAP account one of the field is used togk&rack of the siblings of the Signed
element. However, according to SOAP specificatiamintermediary can append its own
element in any place of a SOAP message. Therdiwaibling information might change
from node to node. It is not specified how thisragcan be detected by the ultimate
receiver at the time of validation of the message.

V) In SOAP account, there is a field that keepskiiaf the successor of a signed element.
According to us this information does not have eolg in the process of validation of a
SOAP message. XML Digital signature actually sitivesDigest value of an XML
element. The digest value is calculated on theimgbrooted at the element that is to be
signed. Therefore, if an element is signed altothildren are signed implicitly.

Figure 5.13 and 5.14 are showing how SOAP accopptoach can become vulnerable to XML
Rewriting attack. Figure 5.13 shows a request S@®Bsage. This request contains the following:

35



i) A Timestamp element under the Security headeis €ement is signed
i) An Option element which is an Optional headiengent specific to some application

iii) A Body element which is signed

iv) A SOAP Account header element. This header elepmntins information regarding the

SOAP message. Moreover, this header element isaign

< Envelope>
< Header>
< Security>
< BinarySecurityToken ld="4"></ >
<Signature>
< SignedInfo>
< Reference URI="#1">...</ >
< Reference URI="#2"></ >
<Reference URI="# 3 "></ >
</ >
<SignatureValue>abcfd....</ >
< KeylInfo>...</ >
</ >
< Timestamp |d="3">
< Created>tl</ >
< Expires>t2</ >
</ ></ >
<Option>abdbdbd</ >
<SOAPAccount ID =“2">
<NoChildOfEnvelope>2</>
<NoOfHeader>3</>
<NoOfReferences>3</>
<ParentOfID1>Envelope</>
<ParentOflID2>Header</>
<ParentOfID3>Security</>
<SiblingOfID1>Header</>
< SiblingOfiD2> Security,Option</>
< SiblingOfID3>Signature,BST</>
</ ></ >
< Body Id="1">..<getQuote Symbol="IBM"/>
</ ></ >

Figure 5.13: SOAP message with a SOAP
Account header block and before modification by
attacker

< Envelope>
< Header>
< Security>
< BinarySecurityToken 1d="4"></ >
< Signature>
< SignedInfo>
< Reference URI="#1">...</ >
< Reference URI="#2"></ >
< Reference URI="# 3 "></ >
</ >
< SignatureValue> abcfd....</ >
< Keylnfo></ >
</ >
< Timestamp>
< Created>t3</wsu:Created>
< Expires>t4</wsu:Expires>
</ ></ >
<Option role="none” mustUnderstantD">
< Security >
< BinarySecurityToken/>
< Signature/>
< Timestamp 1d="3">
< Created>tl</ >
<wsu:Expires>t2</ >
</ ></ >
<[>
<SOAPAccount ID = “2">
<NoChildOfEnvelope>2</>
<NoOfHeader>3</>
<NoOfReferences>3</>
<ParentOfID1>Envelope</>
<ParentOfID2>Header</>
<ParentOfID3>Security</>
<SiblingOfiID1>Header</>
< SiblingOfiD2> Security,Option</>
< SiblingOfiD3>Signature,BST</>
</ ></ >
< Body Id="1">..<getQuote Symbol="IBM"/>
</ ></ >

Figure 5.14: SOAP Account Vulnerability

Figure 5.14 shows how the attacker can modify DA message and still keep the SOAP account
information unchanged. He does this in the follaywvay:

)] He creates a role attribute for the Option headement and sets its value as none. He
also creates a “mustUnderstand” attribute for #traesheader element and sets its value to
false.

i) Under this Option header element he createg@sty Element. He cut and pastes the

Timestamp element from the original Security headiement to the newly created
Security element.

i) He then creates a BinarySecurityToken and &igre element under the newly created
Security header.

36



iv) He creates his own Timestamp element undeotiggnal Security header element.

When the above SOAP message will be received bys#reice provider, the SOAP Account
validation module will try to verify the messagewill not be able to detect any Tampering as noine
the information that it contains has been chan@adit will pass the message to the next step for
Signature validation. This step will also pass ssstully as the signed Timestamp element has not
been removed instead it has been relocated. ThePIAcessor will not process the Option header
element as it has a role attribute value of norak tae processor is not obliged to understand this
header element as this element has a “mustUnddrsastnibute value of false. Therefore the request
will be processed normally and the attacker’s tawgh be fulfilled.

We should note here that the above attack is mobtity one that can be done to jeopardize the SOAP
account security. As we said before the SOAP adciteglf is vulnerable to XML Rewriting attack.
How it happens can easily be understood from Fi§ut8 and 5.14. However, it should be noted that
the SOAP account itself could be vulnerable to XKewriting attack whenever a SOAP message
contains multiple SOAP Account header element.

37



Chapter 6: Proposed Method

In the last chapter we saw different solutions psgal for the detection of XML Rewriting attack. We
saw how they work. However, we also saw that ndrthesolutions could properly remove the XML
Rewriting attack. While they are handling one sdtKML Rewriting attack properly at the same time
they fail to take care of some other type of XMLwRiging attack. The first solution, using XPath
expression with WS Security policy, can remove sofi Rewriting attack, but it fails when there
are multiple header elements with the same nameruth@ Header of the SOAP message. It also
could not remove the sibling value-reordering peolnl when the order of the signed elements is
changed to perform an attack. The second solui$ Policy advisor is quite efficient in dealing it
XML rewriting attack. However, they also have skorhings. The third solution SOAP account
approach can deal with a wide range of XML Rewgtaitack, but as we saw it is also vulnerable in
some cases.

Therefore, taking the shortcomings of all the désad solutions into consideration in this sectien w
will propose a solution for the detection and reaiaf XML Rewriting attack. We will show that our
proposed solution can detect XML rewriting attaagksases where all the discussed solutions are
failed to do so.

Each SOAP message header element can contain attrdbeite according to the SOAP specification.
There are three roles defined in SOAP specificatidimateReciever, Next and None. In our
discussion of SOAP before we saw what do theses nmlean. We also saw that each SOAP node
assumes a role while processing a SOAP messagdeBhsse three roles each application can define
its application specific roles. However, in disdngsour method we will only consider the roles,
specified in SOAP.

6.1 Problem Analysis

In XML Rewriting attack it is implicitly assumed dh the attacker does not have the capability of
signing an element. Therefore, he cannot edittereadelete a signed element. However, he modifies
the SOAP message in a way that does not violaterderlying signature. The question then arises,
why don’t we just sign the whole header and bodthefSOAP message. It is obvious that if we could
have done this, it would have solved the XML Rewgtattack problem. The attacker would not be
able to modify any header element or body eleménhe SOAP message, as he cannot sign them.
However, signing the whole header element is netite due to the existence of intermediaries in
SOAP message path. According to SOAP specificdtierintermediaries must be allowed to add its
header block under the SOAP header. However, iige the whole header, the intermediaries will
not be able to add its data in the SOAP messagehaie tried to summarize the type modifications
that can be done by the attacker to perform a tigrattack in the following points:

i) Wrapping an element into another new Fake elémdare the attacker creates a new
Fake element taking the flexibility of the SOAP engibility model, which allows for any
header elements to be added in the SOAP Headen Adeut a signed element and
pastes it under this newly created Fake element

i) Moving an element under another existing Heaglement. Here the attacker takes the
benefit of SOAP extensibility model which specifibst multiple header element might
have the same name

iii) Reorder the signed elements among them. Asnfmrmation is available regarding the
relative position of a SOAP element the attacker eary easily do this. This change
might create problem for application that dependshe order of the Signed elements.

iv) The attacker can copy a message and thenitdkter. This is the replay attack.

38



V) The attacker can create his/her own header elemeder the SOAP Header. If the
application does not have proper security protectios can give him/her unauthorized
access to system resources.

vi) The attacker can delete or edit an unsignedérealement

Hence, we see that all of the attacks except theHane, are some kind of modification. Now we
need to find out, after an attack has been doné sdra of information we can get from the SOAP
message to detect the attack. As we already said dedresents its data in a tree like structure. BOA
is nothing but an XML document. Therefore we casoakpresent SOAP messages using a tree like
structure.

Figure 6.1 shows the tree representation of the S@Assage previously presented in Figure 5.1. The
tree representation of a SOAP message will always lan envelope as its root. The root can have one
or two children. A Body and a Header. In this figuhe Header has two children a Security and a
ReplyTo and the Body has one child getQuote. Thru@g has one child; the ReplyTo also has one
child and so on.

Now lets try to analyze what happens to this traemthe attacker performs the attack. Lets defire t
following term:

Depth: The depth of an element in a tree is thgtlef the path from the root of the tree to the
element.

Figure 6.1: Tree representation of the SOAP messagé Figure 5.1

For instance the depth of the Reference elemefigure 6.1 is 5. The depth of the Envelope element
is O etc.

Now it is obvious that, if an attacker wraps upgned element using a Fake element then the dépth o
the signed element will be changed. For instariceFigure 6.1 , if the attacker moves the element

39



ReplyTo under a Fake header then the depth of #myRo element will be changed from 2 to 3.
Therefore, this sort of attack can be detecteduby keeping track of the depth information of dll o
the signed elements. Now does every attack chémegedpth of an element? Unfortunately not.

Figure 6.2 shows how an element can be relocatiémbuti changing its depth. As we discussed before
a SOAP message can have multiple header elemetidhgi same name. An example of this sort of
header element is Security header, which is sgekifi WS-Security [6]. However, WS-Security
imposes a restriction regarding the role of Seguré@ader elements. According to this Specification
no two Security header elements can have the safne Yor their role attribute. The default role
attribute’s value for a header element is “Ultinfi¢eiever”. Moreover, one can explicitly specify the
role attribute value for a header element as “UteReciever”. Therefore, there can have two
Security header elements targeted for the ultimatgpient. Beside this Security header, an appdinat

Security
Head er with
role attribute
value of none

\Cut this Timestamp

and paste it under
the other security
header. This will not
change the depth of
this Timestamp
element

Figure 6.2: Rewriting attack without changing the aepth of
an element

candefine its own header element and allow multiptance of this header element to exist in one
SOAP message. Now lets get back to Figure 6.2.9DAP message contains two Security header
elements. One of the Security header elements iosngaTimestamp element, which is signed. The

depth of this signed Timestamp element is 3. Nothef attacker cut this element and pastes it under
other Security header element, the depth of tmseStamp element will still remain 3. We saw before

how this modification can break the security prétecof the receiver.

So, how can we detect this sort of modificationz@alution that quickly comes into our mind is by
keeping information regarding the parent of a sijakement. But as we saw before there can have
multiple header elements with the same name. Scamweot just keep the name of the parent. What if
we also keep track of the attribute values? Howeves application specific header elements might
have same attribute values as well. Then how caanigguely identify the parent? Is there any way at
all for identifying an element uniquely in SOAP XML message? The answer is yes. We know that

40



XML Digital Signature makes an indirect referenoghe element that is to be signed. In fact, this i
the weakness of the XML Digital signature thatipleited by the attacker. For this indirect refeze

to work properly it has to be able to uniquely itignan element. Otherwise, it would sign a wrong
element and definitely it is not desirable. Foistbnique referencing XML Digital Signature makes
use of the Id attribute of an element. WS-Secudigfines an optional Id attribute for uniquely
identifying an element. This Id attribute is usedalows:

<anyElement wsu:ld="...">...</anyElement>

wsu:ld is of type xsd:ID. WS-Security also spedfihat two elements within a document cannot have
the same wsu:ld value. Therefore, we can use thidwte for uniquely referencing the parent of a
signed element. In our discussion we will represe:ld as Id . That means we will omit the prefix.

We have managed to get the depth of signed eleraedtalso we have managed to uniquely identify
the parent of signed elements. Now if we keep taddke depth and the parent id of a signed element
will it solve our problem? Actually no. Because fherent may have its own parent, that parent may
have its own parent and so on. Moreover, as thenp@s not signed, the attacker can also change its
Id. Figure 6.3 shows how a signed element can loeated without changing its depth and parent Id.
This Figure actually represents the SOAP messagégafe 6.2. However here we have represented
the elements by their Ids instead of their name Bhof the Envelope is “E”, the Header is “H” and
the Body is “B”. These three Ids are fixed for &DAP messages. All other Ids are chosen randomly
so that they don't collide. From now on we will repent all SOAP messages using this mechanism.

=)

N,

P N,

Figure 6.3: Relocation of an element without changg
its deptimé parent Id

As it can be seen from Figure 6.3 the signed eléras Id 4 and its depth is 3. The parent of this
element has Id 1. The attacker cut the Signedesiermnd pastes it under the element with Id 2. It
does not change the depth of the signed elemewngver it changes it's parent’s Id. Therefore the
attacker swaps the Id of the Signed element’s paveh the signed element’s parent’s sibling. Now
the Signed element’'s depth and parent |d becambefwe. So keeping depth and parent Id
information is not helping us a lot. What if wealgeep the Ids of the siblings of the Signed elds#n

It will also not restrain the attacker from relaogt the signed element as the attacker can also

41



manipulate the siblings Ids if they are not sigriegdhould be noted here that the attacker cowdd al
create a new element with a unique Id or deletersigned element from the SOAP message.

Till now nothing could help us in restraining théaaker from relocating a signed element. Then how
can we protect the message? Well, lets proceedbgtefep and try to protect the message as strongly
as we can. First of all, every element of the mgssaill be given a unique Id. Lets consider thee a
only two SOAP nodes the initial sender and themadte recipient. We will introduce the
intermediaries later. As we saw the attacker ceateror delete elements from a SOAP message. First
we want to restrain him from doing so. Digest vata@ help us in this regard. Previously in section
2.1.6 we discussed about digest value. Lets conagiding that is created by concatenating alidse

of a SOAP message. We call this string S1.

S1="“EHB12345678"
Lets consider a digest method D () that takes mmgsand generates a digest value for that string.
MD =D (S1)

Now if we concatenate an id to the string S1 oetdehn id from string S1 the digest value will be
changed. Lets assume that another id 9 has beeateoated to the string S1 and the resulting string
is S2.

S2 = “EHB123456789"
Now lets calculate the digest value for the st@2y let this digest value is MD’.
MD’ = D (S2)

According to the properties of digest method MDMB. Therefore we can use this digest method for
restraining the attacker from adding or deletirepr@nts in a SOAP message. The sender of the SOAP
message will have to ensure that each element hagjae Id. However, Id is an optional attribute.
Therefore we will create a module that will enstirat each element gets an Id. After that a digest
value will be calculated on the string of Ids o& tBOAP message and this digest value will be sent t
the sender along with the SOAP message. The saiilfieheck that each element has a unique Id and
then will create a digest value on the string af pdesent in the received SOAP message. This digest
value will be compared with the digest value sgnthe sender. If it does not match then the receive
can infer that the attacker has added or deletex® fdements to or from the message. We should note
here that we are now considering that there arg b nodes, the initial sender and the ultimate
receiver.

So, using message digest we can detect any additidaletion of elements in a SOAP message. We
said before that the message digest method takiep@tsa string, which is created by concatenating
all the Ids of a SOAP message. Now, how the recetem determine in which order it should
concatenate the Ids to create the string? If tbeiver cannot determine it then it has to go thihoting
following steps:

i) Concatenate all the Ids of the SOAP messagestte a string S
i) Calculate all the permutation of the string S

iii) For each permutation P do the following

iv) Calculate digest value MD’ for P

V) Compare MD’ with MD where MD is the received égj value

If the string contains 1000 Ids with an averagéefdyth of 2 then the total number of permutatioh wi
be

42



Factorial (2*1000) = 3.317 * £6°

Figure 6.4: Pre-order traversal of a tree and its sing representation

This is a huge number. Therefore, certainly itds an efficient way. One solution of this ineffinizy

is that the sender gives the receiver a hint réggnthe ordering it has used to create the stringo
along with the digest value. Another solution cob&lboth the sender and the receiver know apriori
what ordering to use. We will use the later solutin our present work. Both the sender and the
receiver will use the pre-order traversal technigiua tree for this ordering. In a pre-order traatiof

a tree the root is traversed first, then the childof the root are traversed from left to righteardWe
can define this traversal technique recursiveljosws:

0 if tis an empty tree
Traverse(t) =
,ts,....,t)) iftis atree with root r and
the children of r argtt .tn.
in left to right order

Figure 6.4 shows the pre-order traversal of adsl how this traversal list can be represented as a
string. It is obvious from the traversal list thveg can build up the original tree if given withgtsiort
of traversal list.

So, the element addition and deletion attack has bemoved by using the message digest technique.
What about modification? As the traversal list isque for a tree, if the attacker just cut and gmst
elements from its original position to another, ttasersal list will be changed which would resolt

the change of digest value. Moreover, the attackanot change the depth of an element.

43



For instance, Let the absolute path of elementom fihe root is
AbsolutePath (m)y,x,y, z, m

The depth of element m is 4. Now if we want to dethe depth of element m, we have to introduce
a new node or remove some existing node from tis®late path of m. However, if we do this
modification, it will change the traversal list tife tree, which will result in the change of thgedit
value.

However, the attacker can change the name of elsmlanthis case the traversal list will not change
and consequently the digest value will also notnglea As a countermeasure of this modification
problem we will take not only the Id of an elembunt also the name of that element while creatieg th
traversal list. We will concat the name of an elatweith its Id in the following way:

Element Identifier = Elemtidame:Elementid

Now can the attacker change the Id or name of eglament? Not really. The attacker can only
change the Id and name of unsigned elements bubtahange the Id or name of signed elements.
Therefore, this digest method does not allow tiecker to relocate or modify any signed element of
the SOAP message. In our present work we will @nbtect the signed elements against the rewriting
attack. Protection of unsigned elements from rémgiattack is left as future work. For now, we leav
it to the discretion of the application to signthié necessary elements.

So from our discussion above we can conclude thptdtect signed elements of a SOAP message
against XML Rewriting attack we need the followipigces of information:

i) The name of an element

i) The id of the signed element

iii) The depth of the signed element

iv) The parent’'s name and id of the signed element

V) The digest value of the pre-order traversaldishe SOAP message tree.

The above information except the first one will gnt from the sender to the receiver in a header
block, which we have named as RewritingHealer. Viledescribe the structure of this header block
later. Here we should take care of the mattertthiatheader block could itself become the subjéct o
XML Rewriting attack. To preclude this attack wevbdmposed the following restriction regarding
the location and the signature of the header block:

i) Rewriting Healer must be signed. AdditionallyRPath expression must be used to
reference the Rewriting Healer from the Signatleenent.

i) The Rewriting Healer must exist as an immedgtigd of the Header of the SOAP
message.

iii) Every message should contain this Rewritincalée. Even if a message does not have any
signed element, it should contain the Rewritingldealith no information regarding
signed elements.
If the above conditions are enforced correctly,atiacker will not be able to relocate or modifg th
Rewriting Healer.

So far we have considered that there are only t@AFSnodes, the sender and the ultimate recipient.
However, according to SOAP specification, a SOARsage can traverse zero or more intermediaries
before reaching the ultimate receiver. So we haveonsider the existence of the intermediaries in
our protocol. Now let us introduce intermediarie®ithe scene.

We saw before in our discussion of SOAP processingel that each SOAP node assumes a role
while processing a SOAP message. There are SOARedeables and also application defined roles.

44



However, we also have stated that in our curremkwe would consider only SOAP defined roles.
The role of a SOAP node determines which headaxkbld should process. Header blocks contain a
role attribute that is used to target it for a SOAd®le. This role attribute can assume one of three
possible values. These values are Next, UltimatieRecand None. When a SOAP node finds that the
role attribute’s value of a header block matchesrthe it has assumed it might process the blobk. T
ultimate recipient of the message can assume tas WitimateReciever and Next. The intermediaries
can only assume the role Next. If the role attefsivalue of a header block is None, it meansahgt
SOAP node on its path should not process this melaldek. In other words no SOAP node can
assume the role None. The default role attributalse for a header block is UltimateReciever. That
is, if a header block does not contain any rolebatte’s value, its role attribute’s value will be
considered as UltimateReciever. We will assumedhahe children of a header block will inherieth
role of its parent.

A SOAP intermediary will only process the headerckk targeted for it. It cannot remove or reorder
any header blocks that are not targeted to it. iitermediaries can only remove header blocks with
role attribute’s value Next. Moreover, it can appés own header blocks. But this modification does
not change the relative order of the header bltaigeted to the Ultimate Receiver. The Body of the
SOAP message is always targeted to the UltimateiRec Lets define a function, which will map a
role name to a positive integer value.

1 if x is Ultimd&Reciever
f(x) = 2 if x is Next
3if x is None

Figure 6.5: Tree representation of a SOAP message,
each ndddabelled with its role’s integer
value

Now if we represent a SOAP message using a traetste and label each node of the tree with the

role attribute’s integer value of correspondingnadat, it will look something like Figure 6.5. We
should recall that an element inherits the rolgoparent.

45



Figure 6.6: Tree only representing nodes correspomayg to elements targeted to the
intermediary

It should be noted that the envelope and the heaflar SOAP message does not have any role
therefore they are represented using their Id EHnespectively. All the nodes of the tree in Fegur
6.5 (Except the nodes with label E and H) haveddrieree labels 1, 2 or 3.

Now if we delete all the nodes from the tree inufgg6.5 except the nodes with label 2 and the nodes
with label E and H, we will get a tree which reeis all the elements of a SOAP message that are
targeted to the intermediary. The resulting treghiswn in Figure 6.6. In the same manner if wetdele
all the nodes from the tree of figure 6.5, excépthodes with label 1, we will get a tree compased
nodes representing the elements targeted to thendié Receiver. It is also true for the nodes
representing elements with role None.

So we saw that from the tree of a SOAP messagewexiract three different trees corresponding to
the three different roles. Moreover, we will assgach SOAP node a number starting from 0. Each
SOAP node will determine this number itself by lmmkat how many SOAP nodes have processed the
SOAP message previously. A SOAP node will get ithfisrmation from our RewritingHealer header
block. Later we will see how. We also have defimedile for the creation of the Id of an unsigned
element. Each SOAP node should create the Id fonaigned element as follows:

Unsigned_element_id = node_number.element_asldam_integer

That is, the Id will be composed of three partsasated by a dot, the number of the SOAP node who
is creating the Id, the role attribute’s integelueaof the element for which the Id is being create
random integer value so that the resulting Id isju@ within the document.

The above Id format allows the receiver of a SOAEssage in identifying, which SOAP node has
added which unsigned elements and which elemextded for which role. For the signed element we
don’t need this Id format. Because our header bieitlkcontain the Id for each signed element and
from this information the receiver can identify, ialn signed elements have been added by which
SOAP node and for which role the element was addle of the attributes of RewritingHealer
header block are Role and NodeNumber. The Roléatttr specifies for which role’s tree (as we
discussed before) this RewritingHealer header blooktains information and the NodeNumber
specifies which SOAP node created this Rewritindétdaeader block.

Therefore each SOAP node will create three Rewglitealer header block corresponding to the three

roles. Then the node will extract three trees spoeding to the three roles from the tree
representation of the SOAP message as we desdrdieck. Let the RewritingHealer header block for

46



role UltimateReciever is h_1, for role Next is hard for None is h_3. We also assume that the tree
for role UltimateReciever is t_1, for role Nextti2 and for role None is t_3. Now h_1 will be fdle

up with information from t_1, h_2 will be filled upith information from t_2 and h_3 will be fillecou
with information from t_3. Then the SOAP node veign the three RewritingHealer header blocks
and will append them to the outbound SOAP message.

When an intermediary will receive a SOAP messédggilliretrieve the RewritingHealer header block
with role attribute value “Next”. Then it will takine node_number from this RewritingHealer header
block. Let this node number is x .It will get alet signed elements added by node x from the
RewritingHealer header. Then it will find all thasigned elements added by node x for role next. The
Id format we specified before helps a node in gadgtermining it. Then it will verify all the sigde
elements depth, parent's Id and parent’'s namet i successful, it will form the tree with the
determined signed and unsigned elements added d& xiomake the pre-order traversal list of the
tree, take the digest value of the traversal hst @@mpare it with the digest value present ingseder
block. If the two matches, the verification succeddtherwise an error is generated. Moreover, after
processing the header block the node must remove it

The processing for the ultimate recipient is thensaas the intermediaries. However, instead of
processing only the RewritingHealer header blockhwble attribute’s value next, the ultimate
recipient will process all of the Rewriting Healerader blocks.

6.2 Rewriting Healer

In previous section we saw that in order to proteetSOAP message from XML Rewriting
attack the sender needs to send some informatgandieg the structure of the SOAP message to the
receiver. We said that we have introduced a heblibek to carry these information and we named
that header block as Rewriting Healer. But we ditl provide the detail structure of this Rewriting
Healer. This is the section where we will descthmestructure of Rewriting Healer.

Figure 6.7 shows the overall structure of our peggbRewriting Healer header block. The Rewriting
Healer header block contains some attributes ame shild elements.

RewritingHealer@ID: This mandatory attribute consaihe Id of a RewritingHealer header block

RewritingHealer@Role: This mandatory attribute s which SOAP node should process a
particular RewritingHealer header block. It alsoedfies that this RewritingHealer contains
information only for the elements whose role attté value is the same as this Rewriting Healer’'s
role attribute.

RewritingHealer@NodeNumber: This mandatory atteébapecifies the node that created a particular
RewritingHealer header block with a positive integalue.

RewritingHealer/Time: This child element contaif®e tTime at which the sender created the
RewritingHealer header block. Each subsequent timast have monotonically increasing value. This
element is used for the protection against theestod replay attack. Moreover, the initial sendir w
only add this element in its RewritingHealer head#ock whose role attribute’s value is
UlimateReciever. That means with node with numbesl0add this element.

RewritingHealer/MessagelD: This element containsldentifier for the RewritingHealer header
block. The client uses this element for the cotietaof responses. The server copies the MessagelD
of the request into the response so that the ati@mtcorrelate the response with the request. ely
initial sender creates this element in the Rewghiealer header block whose role attribute’s vatue i
UlimateReciever.

a7



Figure 6.7: Structure of RewritingHealer

RewritingHealer/SignedElementinfo: This elementtaors information regarding the signed elements
of a SOAP message, which has the same role atti#walue as the RewritingHealer’s role attribute’s
value.

RewritingHealer/SignedElementinfo/ID: This elemepécifies the Id of a signed element

RewritingHealer/SignedElementinfo/Depth: This elatrgpecifies the depth of a signed element with
the above Id.

RewritingHealer/SignedElementinfo/ParentName: Thgnent specifies the name of the parent of a
signed element with the above Id.

RewritingHealer/SignedElementinfo/ParentID: Thismeént specifies the Id of the parent of a signed
element with the above Id.

RewiritingHealer/TraversalDigest: This element isantainer for the digest value of the pre-order
traversal of a tree.

RewritingHealer/TraversalDigest/DigestValue: Thiemneent contains the Digest Value. SHA-256
algorithm is used to create this digest value. digest value is created on the string represemtatio
the pre-order traversal list of a tree as describefibre. This tree is composed of nodes which
represent elements of a SOAP message that havesahe role attribute’s value as this
RewritingHealer’s role attribute value.

48



6.3 RewritingHealer Processing Rule

In the previous section we saw the Structure ofRbarritingHealer. We showed what attributes and
elements this header block contains and also destrvhat each of those attributes and elements
specify. In this section we will see the processings for RewritingHealer header block. We wilese
how this header block is created and verified ifiiedgnt SOAP nodes like intermediaries and ultimate
recipient. In the description of the processing fiihe role of an element” means the value of the r
attribute of that element. However if the elemeoesl not have this attribute it means the role
attribute’s value is inherited from its parent asexplained before.

Creation Rule for RewritingHealer header block:

arwpdpE

o

B ©©oN

15.
16.

17.
18.
19.
20.
21.
22.

23.

Determine the node number of this SOAP nodetheshumber is NN

For each unsigned element UE do step 3to 7

If UE contains an Id then do 4 to 5

If the Id is not referenced from anywhere o§ttilocument then remove it and go to step6
Change the Id of UE to NN.R.I, where NN is therent node number, R is the role of the
unsigned element, | is some random positive integéare unique within the current SOAP
message. Adapt the reference element and Go t@step

Create an Id IDUE of the form NN.R.I, where Nd\the current node number, R is the role of
the unsigned element, | is some random positiveget value unique within the current SOAP
message.

Set the Id attribute’s value of UE to IDUE

Create an empty set of Ids . Let the set isiBuslySignedElement

For each existing RewritingHealer header of 8@AP message do step 10

. Retrieve the Id from all SignedElementinfo edents of the RewritingHealer header block and

insert the Ids in the set PreviouslySignedElement

. For each role R in the set (UltimateRecievextNNone) do step 12 to 28
12.
13.
14.

Set IR = f(R), where f maps a Role R to a pasinteger

Get a unique ID value Id

Create a RewritingHealer header block with Id= Role = IR , NodeNumber = NN and
prepend it under the Header of the SOAP messagjee IMessage does not contain a header
then create it before prepending.

If NN is 0 and IR is 1 then do step 16 and 17

Create a Time element and insert the currerg tinder this element and append this Time
element under the current RewritingHealer headssiol

Create a MessagelD element and insert a ramok@ger number under this element. After
that append this element under the current Rewtt@aler header block. Put this MessagelD
in a buffer.

For each Signed element SE with Identifiemithe SOAP message do step 19 to 22

If Id is in the set PreviouslySignedElementgstep 18

Determine the role R’ of SE and compute f(R)R= Also determine the depth D of SE ,
Parent’'s Name PN of SE and Parent’s ID PID of SE.

If IR = IR go to step 18

Create a SignedElementinfo element with ID # Deépth = D, ParentName = PN and
ParentID = PID. After that append this element uritie current RewritingHealer header
block

Create a tree with all the elements of the S@®Bsage that have role R” and f(R”) = IR and
that have been added by node with number NN. Tée will be rooted at the envelope
element and the label of the root will be E. Moregithe label of the node which will specify
the Header of the SOAP message will be H

49



24. Compute a string S by making a pre-order tsaleyn the above tree

25.
26.
27.

28.

Compute a digest value MD using SHA-256 omgt8

Create a TraversalDigest element an appemdi@rthe current RewritingHealer header block
Create a DigestValue element and set its waitieMD. Then append this element under the
TraversalDigest element.

Sign the created RewritingHealer header usiRgti referencing

RewritingHealer verification rule for Intermediaries

1.
2.

BPO®NOUIAW

11.

12.
13.
14.
15.
16.

17.
18.
19.
20.
21.
22.

0.

Retrieve the RewritingHealer header block HD& tas role attributes value Next
Check if HDR is signed or not. If it is signedl @ next step else generate an error and
terminate.
Create an empty set SEID.
Retrieve all the SignedElementinfo from HDR gl them in a set SE.
For each SignedElementinfo in SE do step 6 to 12
Set D = Depth element value of SE
Set PN = ParentName element value of SE
Set PID = ParentID element value of SE
Set MID = ID element value of SE
Retrieve the element Elem with Id MID. Let thepth of this element is D’, Name of the
parent of this element is PN’ and Id of the paxdrthis element is PID’
Compare D with D’, PID with PID’ and PN with Pfér equality. If all of the comparisons
succeed go to next step. Else generate an errcagesind terminate
Put MID in the set SEID
Create a set USEID with all the Ids of the gnsd elements in the SOAP message
For each Id | in USEID do step 15 to 16
Retrieve the role part IR from I.
If IR = f(Next) , where f maps a Role nameatpositive integer value , then remove this Id
from USEID
Create a tree T with all the elements witmI&EID or USEID
Create a String S with the pre-order travdisiabf the above tree.
Compute digest value MD’ using SHA-256 on thén§ S
Retrieve the Digest Value MD present in HDR
Compare MD with MD'. If they are equal go tokhsetep else generate error and terminate.
Remove HDR from the SOAP message

RewritingHealer verification rule for ultimate recipient

1.

n

©CoN O AW

11.

Retrieve the Time T and MessagelD MID from tlenRtingHealer header block which has
NodeNumber attribute’s value 0 and Role attribwtge UltimateRecepient

Fetch the last Time LT value from the cache ciwhias sent from the same location as the
current request.

If LT>=T then generate an error and terminateego to next step.

Store T in the cache as LT

Put MID in a buffer to be sent with the response

Determine total number of distinct NodeNumbesfNRewritingHealer header blocks

For NN =0 to N do step 8 to 30

For each role R in the set {UltimateRecieverxtNBlone} do step 9 to 30

Retrieve the RewritingHealer header block HD& tias role attributes value R and
NodeNumber value NN

. Check if HDR is signed or not. If it is signgadl to next step else generate an error and

terminate
Create an empty set SEID.

50



12. Retrieve all the SignedElementinfo from HDR a@ud them in a set SE.

13. For each SignedElementinfo in SE do step 20Dto

14. Set D = Depth element value of SE

15. Set PN = ParentName element value of SE

16. Set PID = ParentID element value of SE

17. Set MID = ID element value of SE

18. Retrieve the element Elem with Id MID. Let thepth of this element is D’, Name of the
parent of this element is PN’ and Id of the paxdrthis element is PID’

19. Compare D with D’, PID with PID’ and PN with Pfér equality. If all of the comparisons
succeed go to next step. Else generate an errcagesind terminate

20. Put MID in the set SEID

21. Create a set USEID with all the Ids of the gned elements in the SOAP message

22. For each Id I in USEID do step 23 to 24

23. Retrieve the role part IR and Node Number N&ftfrom I.

24. If IR '=f(R), where f maps a Role name to aipiee integer value, or NN’ = NN then
remove this Id from USEID

25. Create a tree T with all the elements witmI&EID or USEID

26. Create a String S with the pre-order travdistbf the above tree.

27. Compute digest value MD’ using SHA-256 on tiwng S

28. Retrieve the Digest Value MD present in HDR

29. Compare MD with MD'. If they are equal go taxhstep else generate error and terminate.

30. Remove HDR from the SOAP message

When generating a response for the client the RiegHealer processing module will go through
the following step:

1. Create an empty RewritingHealer header blockagopend it under the Header of the of the
SOAP response message. If no header is preseate @@ew Header and then append it.

2. Fetch the MessagelD MID that was present inaberequest message and that was kept in a
buffer.

3. Create a MessagelD element under the Rewritiatgi&eader block and set its value with
MID.

4. Sign the RewritingHealer header block.

After getting the response the RewritingHealer pssing module on the client side will verify the
Signature of the RewritingHealer header block. Tievill take the MessagelD from the header
block and will try to correlate this MessagelD witie last sent request MessagelD. If it fails, it
will generate an error.

6.4 Scenario with RewritingHealer:

In this section we will provide some scenarios &mndnstrate how RewritingHealer can detect
potential rewriting attack in SOAP message. The BQOAessages that we will use for our
demonstration are not specific to any particulapligption. Instead they are general SOAP
messages where the name of the Header element8auhd elements are totally arbitrary.
Moreover, we will omit a lot details from the exadmBOAP messages. For instance we will not
show the Signature element that contains referemtiee RewritingHealer header element using
xpath expression.

Figure 6.8 shows a SOAP message that has beenspeacesing our RewritingHealer creation

rule. Every unsigned element has been given a arigjurhe message contains a RewritingHealer
header element. This header element has NodeNuatthibute’s value of 0 as it has been created

51



by the initial sender and Role attributes valuelofs it contains information regarding the
elements of the SOAP message targeted to the WRegipient

<Envelope>
<Header>
<A ld="Id-1">123</ >
<D id="Id-4">.... </ >
<B id="0.1.1"><C id="0.1.2">.....</ ></ >
<Security id ="0.1.6">
<BinarySecurityToken 1d="0.1.4"> abcdefg./.><
<Signature>
<SignedInfo>
<Reference URI="#Id>...... </>
<Reference URI="#1d-4">...... </ >
</ >
</ >
</ >
</ >
<RewritingHealer ID="5" NodeNumber="0" Role="1">
<MessagelD>1</MessagelD>
<Time>tttt</Time>
<SignedElementinfo>
<ID>ld-1</ID><Depth>2</Depth><PID>H</PID>
<Pname>Header</Pname>
</SignedElementinfo>
<SignedElementinfo>
<ID> Id-4</ID><Depth>2</Depth><PID>H</PID>
<Pname>Header</Pname>
</SignedElementinfo>
<TraversalDigest>
<DigestValue>XYZUSDF</DigestValue>
</TraversalDigest>
</RewritingHealer>
<Body Id=“0.1.6">
<G ld="0.1.7">..</ >
</ >
</ >

Figure 6.8: SOAP message with
RewritingHealer header block

<Envelope>
<Header>
<D id="Id-4">.... </ >
<A Id="Id-1">123</ >
<B id="0.1.1"><C id="0.1.2">.....</ ></ >
<Security id =“0.1.6">
<BinarySecurityToken 1d="0.1.4"> abcdefg./.><
<Signature>
<SignedInfo>
<Reference URI="#Id>...... </ >
<Reference URI="#1d-4">...... </ >
</ >
</ >
</ >
</ >
<RewritingHealer ID="5" NodeNumber="0" Role="1">
<MessagelD>1</MessagelD>
<Time>tttt</Time>
<SignedElementinfo>
<ID>ld-1</ID><Depth>2</Depth><PID>H</PID>
<Pname>Header</Pname>
</SignedElementinfo>
<SignedElementinfo>
<ID> Id-4</ID><Depth>2</Depth><PID>H</PID>
<Pname>Header</Pname>
</SignedElementinfo>
<TraversalDigest>
<DigestValue>MNOPQR</DigestValue>
</TraversalDigest>
</RewritingHealer>
<Body Id=“0.1.6">
<G Id="0.1.7">..</ >
</ >
</ >

Figure 6.9: SOAP message with
RewritingHealer header block and signed
elements reordered by attacke

The SOAP message of Figure 6.8 contains two sigrestler elements with Ids id-1 and id-4.
Therefore the RewritingHealer header contains tv@gredElementinfo> elements. These two
<SignedElementinfo> elements contain informatiogarding the two signed header elements.
<TraversalDigest> element contains a digest vabidA-256 has been used for digest value
computation. The digest value is calculated onftilewing string, which is the pre-order traversal
string for the SOAP message of Figure 6.8:

(Envelope:E (Header:A¢ld-1()D:1d-4() B:0.1.1(C:0.1.2())Security:0.1.6(BST:0.1.4()))
Body:0.1.6(G:0.1.7()))

Now let the attacker has intercepted the SOAP rgessé Figure 6.8 and he wants to modify it.
Figure 6.9 shows how the attacker can modify thessage. The attacker neither deleted nor
introduced any element in the SOAP message. Her@istdered the signed header elements. In
Figure 6.9 the two signed elements are shown id.bAk we can see from Figure 6.9, none of the

52



information that is present under the <SignedEldim&® element of the RewritingHealer header
block can detect the modification made by the &#acThis is because the modification will not have
any effect on these information. Lets see what Bappo the digest value. The receiver will now
calculate a digest value on the following strindpiah is the pre-order traversal string for the SOAP

message of Figure 6.9:

(Envelope:E(Header:H1d-4()A:1d-1() B:0.1.1(C:0.1.2())Security:0.1.6(BST:0.1.4()))

Body:0.1.6(G:0.1.7()))

As it can be seen that this traversal string is emial to the traversal string we showed before,
according to the feature of the SHA-256 the newdated digest value will not be equal to the one

that is present in the received SOAP messagettgoreceiver will detect the tampering.

<Envelope>
<Header>
<A Id="Id-1" role="next">123</ >
<B id="0.1.1">
<Cid="0.1.2">.....</ ><D id="Id-4">.... &
</ >

<Security id =“0.1.6">
<BinarySecurityToken
<Signature>
<SignedInfo>
<Reference URI="#Id>...... </ >
<Reference URI="#1d-4">...... </ >
</ >
</ >
</ >
</ >
<RewritingHealer ID="5" NodeNumber="0" Role="1">
<MessagelD>1</MessagelD>
<Time>tttt</Time>
<SignedElementinfo>
<ID> |d-4</ID><Depth>3</Depth><PID>0.1.1</PID>
<Pname>B</Pname>
</SignedElementinfo>
<DigestMethod>SHA-256</DigestMethod>
<DigestValue>XYZUSDF</DigestValue>
</RewritingHealer>
<RewritingHealer ID="6" NodeNumber="0" Role="2">
<SignedElementinfo>
<ID> |d-1</ID><Depth>2</Depth><PID>H</PID>
<Pname>Header</Pname>
</SignedElementinfo>
<TraversalDigest>
<DigestValue>XYZUSDF</DigestValue>
</TraversalDigest>
</RewritingHealer>
<Body Id="0.1.6">
<G Id="0.1.7">...</ >
</ >
</ >

1d="0.1.4">abcdefg...></

Figure 6.10: SOAP message with two
RewritingHealer header blocks

<Envelope>
<Header>
<A 1d="Id-1" role = “next">123</ >
<Bid="0.1.2"> <D id="1d-4">.... </ ></ >
<B id="0.1.1"> </ >
<Security id =“0.1.6">
<BinarySecurityToken
<Signature>
<SignedInfo>
<Reference URI="#Id>...... </ >
<Reference URI="#1d-4">...... </ >
</ >
</ >
</ >
</ >
<RewritingHealer ID="5" NodeNumber="0" Role="1">
<MessagelD>1</MessagelD>
<Time>tttt</Time>
<SignedElementinfo>
<ID> Id-4</ID><Depth>3</Depth><PID>0.1.1</PID>>
<Pname>B</Pname>
</SignedElementinfo>
<DigestMethod>SHA-256</DigestMethod>
<DigestValue>XYZUSDF</DigestValue>
</RewritingHealer>
<RewritingHealer ID="6" NodeNumber="0" Role="2">
<SignedElementinfo>
<ID> Id-1</ID><Depth>2</Depth><PID>H</PID>
<Pname>Header</Pname>
</SignedElementinfo>
<TraversalDigest>
<DigestValue>XYZUSDF</DigestValue>
</TraversalDigest>
</RewritingHealer>
<Body Id="0.1.6">
<G Id="0.1.7">...</ >
</ >
</ >

1d="0.1.4">abcdefg...</

Figure 6.11 : SOAP message with two
RewritingHealer header blocks and element
created by attackel

53




Figure 6.10 shows another example SOAP messagestownthis SOAP message contains some data
targeted to the ultimate recipient and the regiet@d to the intermediary. Therefore, the message
contains two RewritingHealer header blocks. Bothth®@m have the same NodeNumber attribute’s
value but they have different value for Role atitéo RewritingHealer with Role attribute’s valuelof
contains information regarding the element targébetthe ultimate recipient and with Role attribste’
value of 2 contains information regarding the eletitargeted to the intermediary. The digest value
for the RewritingHealer with Role attribute’s valokl is calculated on the following string:

(Envelope:E(Header:H(B:0.1.1(C:0.1.2()D:1d-4())Seiyi0.1.6(BST:0.1.4()))
Body:0.1.6(G:0.1.7())))

On the other hand the digest value for the Revgitigaler with Role attribute’s value of 2 will be
calculated on the following string :

(Envelope:E(Header:H(A:1d-1())))

Suppose the attacker intercepted the message wkFsgl0. Now he wants to modify the message. As
it can be seen from the intercepted SOAP messagmiiains one header element with name B and Id
0.1.1. This header element contains two childreth wame C and D. The D child is signed. At first
the attacker creates a new header element with Barhs we said before that each unsigned element
of a SOAP message would be given a unique Id byrRewritingHealer creation process, the attacker
has to provide this new element with an Id. Howewer showed previously that no new Id could be
created; otherwise it will have effect on the Diyedue. The only way left for the attacker is to
delete an existing unsigned element and give tisdynereated element the Id of the deleted element.
Therefore, the attacker deleted the unsigned elemigin name C and Id 0.1.1 and gives the newly
created element this Id. Now he cut the signed eltwith name D and Id id-4 and pastes it under the
newly created B element.

When the intermediary will receive the above mesdagwill only verify the information present in
the RewritingHealer with Role attribute’s valuefTherefore the intermediary will not identify $hi
tampering as none of the elements targeted fomtikemediary has been forged on. However, when
the ultimate receiver will receive the modified is@ge he will be able to identify the tamperingao t
different ways. First of all he can identify th@dification by verifying the information that isggent
under the <SignedinfoElement> of the RewritingHealdéose Role Attribute value is 1. This is
because although the parent’s name of the reloehdadent is still the same, the parent’s id hanbee
changed. The second way of identifying this modiiien is the Digest Value comparison. Because of
the modification of the SOAP message, the travesisadg of the modified message will not be equal
to the one for which the digest value was creaehsequently their digest value will be differeat a
well. Therefore, by computing the digest value andhparing it with the one present in the SOAP
message, the receiver can easily identify the taimpe

54



Chapter 7: Implementation

We will provide a java implementation of our propdsmethod. We have chosen Axis, a soap
processor engine, for the creation and processin§QAP messages. For signature creation and
verification we will use a Apache XML Security [4prary version 1.4. This library implements the
security standard for xml. Apache provides botkajand c++ implementation of this library. We have
used Tomcat 5.0, which is a servlet engine fordiygloyment of both axis servlet and our produced
modules.

7.1 Axis Overview:

Apache Software Foundation has provided an impl¢atien for SOAP. They have named it Axis.

Axis is a SOAP engine, which provides a framewask ¢onstructing SOAP processors such as
clients, servers, gateways, etc.[39] This engineusently implemented in java. However a c++
implementation of this engine is on its way. Prélyeaxis engine is available in two different forms

1. Axis engine as a servlet. This form of axis eegieeds to be deployed as an web application
in a servlet engine like Tomcat

2. Axis engine as a stand-alone server.
Axis does not only provide a SOAP processor. [Jl$o provides a tool, Java2WSDL, for creating
WSDL file from the java code of a web service, altddminClient, for deploying web service in
Axis a tool, tcpmon, for monitoring SOAP messagehexge between the client and the server and a
tool, WSDL2Java for creating client and server groRecent version of axis also provides a web
service called SOAPMonitor that can be used to loISOAP message exchange between client and
server without changing the configuration file bétserviet engine.
The core processing logic of an Axis engine cannveked in two different ways.[39] It can be
invoked by an application on the client side, oldyansport listener on the server side. Whoeaits c
it, once it is called, it creates a message contitkt the received message. This message context is
package that may contain a request or a respoosg @aith some properties. Then the core processing
logic passes the message to a series of handbkh. d these handlers process the message and pass
it to the next handler until it is reached to itdniate destination, which may be a web servica or
transport listener. Figure 7.1 shows the messageifi an axis engine on server side.

Transport  Global Service
|

Target
Service

-
Fatum
conbrol to
|isE & uer

Response

Axis Engine

Figure 7.1: Message flow through an Axis engine aserver side [39]

55



In Figure 7.1 the small cylinders represent hamsdiard the big cylinders represent a chain.[39] A
handler can be thought of as a plug-in in Axis eagiHandlers are nothing but web service. They
intercept a SOAP message, process it in a predefiay and then passes it to the next entity. There
are three different types of handlers.[39] Transgmecific handler, Global handler and Service
specific.

We know that SOAP message can be exchanged usiagedi transport mechanism like http, SMTP,
ftp etc. The transport listener’s job is to reteaguotocol specific data from the received mes§z@je.
With this data the transport listener creates addlgs object and pack it into a MessageContext bbjec
along with some properties. It also put the transpame, for instance http, in the MessageContext
object. Once the message context is preparedpagsed to the axis engine. The axis engine first
determines the type of transport by transport nakrteansport is an object that can contain a reques
chain or a response chain or both of them.[39] Airchs a sequence of same type of handlers. For
instance, all the Transport handlers are aggregaiddrm a Transport chain and all the Service
Handlers are aggregated to form a Service chaie mMiessage passes through all the transport
handlers in the chain in turn. Once all transpandiers have processed the message, it is passed to
the global chain. Global handlers are applicabledib messages. In this Global chain there is a
handler, which determines the service to be caltech the URL. For instance from the URL
“http://localhost: 8080/axis/services/AirLineTickservice” it determines the service name
AirlineTicketService. Once all the global handlene done with the message, it is passed to the
Service chain. A Service chain may contain reghastllers and/or response handlers. However at the
end of the service chain there is always a Seiowider that implements the back end logic of the
web service.[39] Each service might have its owecs handlers. After the processing of the sexvic
chain the message is routed to the target serltgough most of the web service generate response,
not all of them do. If the target service generatessponse, the response passes through the adme p
as before but in reverse order to the transpddrer. The transport listener sends the messathe to
client. As we saw from our discussion so far, asage passes through a series of handlers in turn
once it gets into the axis engine and before reaycthie target service and vice versa. Each hahdker

a specific method, which is called invoke(). Thigthod takes a MessageContext object as its
argument. When the transport listener, or a handéats to pass the message to the next handler it
calls the invoke () method of that handler. In vwharder the handler will be called depends on two
factors [39]:

1. The configuration of the deployment descripite 6f axis. We will see later how this file is
configured.
2. Whether the axis engine is running on the clggrdn the server side

Service Global Transport

A request

| N message

= — -
transpart
madium

-— Target
response Service
message
ioptional )

—j|Messag
Canten)

Client Application

Axis Engine

Figure 7.2: Message flow through the axis engine dhe client side [39]

56



Figure 7.2 shows how message flows through the enggne on the client side. It is almost same as
the message flow of server side however the floth pa reversed. [39] In this case the client
application invokes the core axis engine proceskigiy instead of the transport listener. Then the
message context is passed to the request senadg dhit is present. In the request service chhi
message passes through all the handlers. It sheuldted here that the service chain does noticonta
any service provider as a distant service provevides the service. After the service chainhére

is any global chain, it gets the message and passesthe transport chain after processing. The
handlers of transport chain process the messagesemtl it to the remote node. When a response
arrives it passes through the same sequence ofenamain but in a reverse order.

7.2 Module Description:

Figure 7.3 shows the module structure of our imgletation of RewritingHealer.

Client
Application

RewritingHealer
Verifier

RewritingHealer
Creator

E Server
Axis Engine

Figure 7.3: Module Structure of RewritingHealer

Presently our implementation of RewritingHealerc@mposed of two modules, RewrtingHealer
Creator and RewritingHealerVerifier. The RewritingglerCreator module takes a SOAP message,
adds Id attributes to appropriate elements, geeerdewritingHealer header with necessary
information. The RewritingHealerVerifier module &ka SOAP message, extract RewritingHealer
headers from the message and verify whether tloenmation is correct or not.

We have implemented the RewritingHealerVerifier mledas a handler for Axis engine. Previously
we saw what is a handler and how it works in thetext of Axis. RewritingHealerCreator module is
implemented both as a handler of an axis engineaaradgeneral library.

From Figure 7.3 we can see that when the clientiGgiipn sends a message to the server, the
message first goes to the RewritingHealerCreatdhd client is using the RewritingHealerCreator
library, it has to call a method of that librarytivthe envelope (Root element of a SOAP message) it
has prepared to send to the server. Then thigyiwvél append necessary information to this enpelo
and give it back to the client application. Thee ttlient application can send this message to the
server.

57



public wvoid invcke (| MessageContext mcnxt ) bthrows dxisFaalt]
S Boolean variahle that indicates whether
Fifa message is tampered or not
boolean tampered = false ;
fA A Betrieve the S04APMe=s=age form the message context
S0ATMessage messg = mohxt.getBecquestMessage () ;
Fi5iGet the parts of the message
SOLPPart part = messgy.getS0AFPParti);

tryi{
S fRecrieves the envelope
erwvelope = part. gecEnvelope () ;
S5 This wector data stricture contains all the
Sefdeternined roles for a node
wy role set.cleart);
S AFThis wector data structure comtains all the
S/ BemritingHealer header of a 20AF message
rhset.clear();
S fThis hashwnap data structure contains all the Ids
S0 of the signed elements of this S0AF message

signedidlist._ clear{);

AAAfThis hashneap data structure contains all the Ids present
Sffunder the <8igmedinfoElement= elements of a particular
FAfRewritingHealer header element

cursignedidlist. clear () ;

S This method determines the role set for a node
determineRoleSat (17

A fDisplay the Z0APF message in the GUT
this. qui. secRecievedMessage (ehwvelope toString() ) ;

FiffCreate
this, createSignedIDList () ;

SAffRetrieve all rewriting healer from the Z0AT message
this.retrieveldllPewmritingHealer (),

S0 Werify whether the message is tampered or not
if{ lwerifyi)){

m=y += "Message Tamperedin";

tanpered = true ;
}else

m=y += "Message was not Tamperedin';

¥
tcatch{ Exception e ){
this.gqui.setRecieveddessage e . tolcring ()

}
FFfDisplay the GUI of the rewriting healer
gui.secVisible (true) ;

FAAFTE the message was tampered then generate an AxisFault
if{ tampered ) throw mew AxisFault ("Message Was Tampered");

t

Figure 7.4: The invoke method of the RewritingHeale/erifier handler

On the other hand, if the client application watttsuse the RewritingHealerCreator module as a
handler of axis engine the, it has to configuredéployment descriptor configuration file, of th&i&
engine. At the same time, a stand-alone Axis engiot Axis servlet, has to be used if the client
wants to use the RewritingHealerCreator handler.

The RewritingHealerVerifier mdelus only available as a handler of Axis engine.uke
this verification module for a service, it has te bonfigured in the configuration file, server-
config.wsdd, of the server side axis engine. WinenRewritingHealerVerifier gets the request SOAP
message from the client, it determines its roleextdact appropriate RewritingHealer header froen th
received SOAP message. Then it verifies those nimdition. If it could not find any tampering, it lets
the message go, otherwise it generates a SOAR faeitlly, there should have another two modules
in the module structure of RewritingHealer to appehe received MessagelD from the Request
SOAP message in the response SOAP message anddlateoa request MessagelD with a response
MessagelD. We did not implement those modulesietvever, their implementation is trivial. The
implementation of those two modules is left as fetwork.

As we mentioned before, each handler has a speetiod called invoke(). This method takes one
argument namely MessageContext. The MessageCoatedpsulates a Message, which in turn

58



encapsulates a request or a response messagewatbrepme properties. This method is the entry
point to a handler. When one handler needs to ffassequest or response message, it calls the
invoke() method of that handler. Figure 7.4 showsnapshot of the invoke() method of our
RewritingHealerVerifier handler. As it can be séem Figure 7.4 this method throws an AxisFault if
any tampering is found on the received messaghidrmethod we are first initializing some data

public boolean werifylld

FAfffPer sach zole of thi=z node
for[ int i =0 ; i < :rrry_:l:ol e_set.sise[]; i++ 14
fffDetermine the rele

String cur_zole = [(Etringlmy_rel e =et_get(i];
A0 Map the role name Ho an integer walue

int irole = th:i.s.m.'l.pRole[cu:l:_role];

JA P Betrieve all rewriting healer with this role
Wector th = thiz.retrieveRewritingHealer(icale];

JdfPax cach rewriting healer with irele
forl dnt 4 =0 ; 4 < zh.o=ize(]; J++ 14

J#{Take the BawritingHeal ar a= a S0AF =lement
SO0APE]l ement =el = [S0APElement)ich_get(]];

JéfC0lear cur=signedlist wector
curs ignedidl istz.clearl];

FFffJecify whether the information present in this
.-".-".-"Rewriting’l{e:.le: iz correct or nob
ifl !werifyRewritinglealezr(=el]] peturn false;

¥
]

return tras;

Figure 7.5: The verify method of RewritingHealerVeifier

structures and determining the role of the curnemte. Then we are creating a list containg allldse

of the signed elements of the current SOAP messAdier that we are retrieving all the
RewritingHealer header element(s) from the SOAPsags and invoking the method verify. The
shapshots of this verify method is shown in Figuté. This method returns a Boolean value
depending on the status of the verification. Ifstimethod returns true then the handler let's the
message go further, otherwise it generates an AxisFOur RewritingHealerVerifier has a graphical
user interface. This GUI shows the received SOARsage and the result of different types of
verification like SignedElementinfo verification,d2st value verification etc. Later we will see how
this GUI looks like.

59



publiz S0APEncvel ope inceoke( Z0APEncvel ope env ]9

eyl
7 This hashmap datastructure will keep all the Ids presenc
féfin the current enwvelope
idlist.clear(];
f#ffThi= hashmap data structure will keep all the Ids of the
f¢Bigned Elements of the current enwvelope
=ignedidlist.clear(];
f#/Thi= hashmap data structure will keep the Ids of =igned
fffElements that was sigrned by some previous node
prevsignedidlist_cleaxz(];
S This wector dava structure will keep the Ids of
fff all the Id=s of RewritingHealer header added by
fifehis node
added rewriting healer.clear();

7/ Thi= variable is used to generate unigque Ids

counter = 0
this.envel ope = env;

S/ Determine the node rumber
node_numbet=find.ﬂodeﬂumbe:[];

S This method creates a list of Ids of all the Bigned
f¢fElementes that i= presant in the current snvelope
createfignedIDLiss(];

S This methed creaves a li=st of Id=s of all the Jigned
ffithat was =igred by =ome previous node
createPreviignedIDLis=&(]);

f#ffBetrieve the header of the current envelpe
Javas.uml.seap.S0APHe ader hdr = envelope. getHeader();

fAFFPue all the Ids of slemants presant in this headar
createEBnisvinglDLise(hdr);

7/ Becrieve the body of the current arwelpe

Javax .xml . soap.20&PBody body = enwvelope_ getBady();
féfFPut all the Ids of elements present in this body
createExi=tinglDLi=t(body);

S8 Provide Id o all unsigned elements of Header
addldastrihdr, 1),

fAffProwide 14 to all un=igned elements of Body
addIdastribady, 1],

ffffCreate Rewritingealer for role UVltimateReciepient
createlewr itingteal e ("Mt imateReciaver") ;

ffffCreare BewritingHealar for role Naxe

createBenr itingHealec [ "next"];

fiffCreate Bewritinglealer for zole none

createPenr itingHealer [ "none"]

AdBign all created Rewritingealer using spach
this =ignBewmritingHealex(];

fffBeturn the envelope to the client application
raturn this-envelope;

Yoatch( Emception « I{
Syetem.oui .princlnie);
writeToLogle];

]

return null;

¥

Figure 7.6: The invoke method é&tewritingHealerCreator library

The RewritingHealerCreator module is available @ la general library and as an Axis hanlder. This
handler is to be configured on the client side axigine. However, whether it is a general librargro
axis handler, both of them contain an invoke() radthn the case of an axis handler this methodstake
a MessageContext as its argument and in libras/rtiéthod takes an Envelope as its argument. The
rest of the working processes of these two modadesalmost identical. Figure 7.6 shows a snap shot
of the invoke method of RewritingHealerCreator medurhe method takes an Envelope as its
argument. In the method, at first some data strastare initialized and the number of the current
node is determined. Then two types of Id lists@eated. One list contains all the Ids of the signe
elements, and the other contains Ids of signedesigsrthat were signed by some previous node. Then
another list this method creates another list whidhcontain the Ids of all the signed and unsigne
elements. After that this method gives all the gned elements added by this node a unique Id of a
specified form and creates RewritingHealerHeadedifferent roles.

60



7.3 A Simple Application

We have developed a simple web service applicatia@emonstrate how our proposed method can be
used to detect XML Rewriting Attack in real life.nd name of our proposed web service is
MathService as it provides the service of differarithmetic operations like, addition, subtraction,
multiplication, division and exponentiation. Figufe/ shows the interface of our MathService. As it
can be seen from Figure 7.7, there are five methodbe web service, which perform the five
mentioned arithmetic operations. Each of these odstbake two arguments a and b. Although for

package com.thesis. service;

public class MathBervice {

public leng add( loeng a  lomg b )
return ath;

¥

public leng subtract( leng 2 « leng b M
return a-b;

¥

public long multiply( leng a . leng b J4
return a*b;

¥

public leng dividel long & « leng b 14
return a.-"l:-;

¥

publia long sxponent( long a . leng b 14
return (longlMarh.powf (deublela: (deublelb);

¥

Figure 7.7: Interfacef the Math Service

the addition and multiplication operation the ordéthe arguments does not matter, for the reftef
operations it does. For instance, for any two iete@ and b, (a-b) != (b-a). Moreover, when thentli
will send a request to this web service, it haprtavide a signed subscriber ID as a header eleofent
the request SOAP message. This MathService hasidienawhich will validate a client using the
subscriber ID.

A web service is published using a web servicerg$on language (wsdl), which describes the
different interfaces of a web service, its mesdagmat and their order etc. The wsdl file for ouslw
service is provided in Appendix A. In axis eveensgce needs to be deployed. There are two ways to
deploy a service in Axis.

i) Using the AdminClient tool provided by Axis
i) By configuring the server-config.wsdd deployneescriptor file of the server side Axis
Engine

We will use the second approach to deploy our wehice in Axis. We need to add the following
lines in this server-config.wsdd file to deploy aueb service. Line 001 specifies the name of our

001. <service name="MathService" provider="java:RPC

002. <parameter name="allowedMethods" value="adutract multiply divide exponent"/>
003. <parameter name="className" value="comglsesivice.MathService"/>

004. <parameter name="scope" value="Session"/>

005. </service>

Listing 1

service and the type of message exchange pattedh hysour service. We are using RPC style of
message exchange. That means a request/respofseofstyessage exchange. Line 002 to 003

61



specifies the methods provided by the servicentme of the main class of that service along with i
package nhame and the scope.

Once we have deployed our web service any cliemtadl this service and use it. Now we want to use
our proposed method with our MathService for thetgution against XML Rewriting Attack. Our
RewritingHealerVerifier is a service specific haedlif a service wants to use it , it has to camnfigit

in the server-config.wsdd. This can be done byrapld couple of more lines with the lines in Ligfin
1. Listing 2 shows the resulting configuration imf@tion.

001. <service name="MathService" provider="java:RPC
002. <requestFlow>
003. <handler type="java: com.sid.verifier. WgBubscriberlD"/>
003. <handler type="java:com.xml.healer.RengitiealerVerifier"/>
004. </requestFlow>
005. <responseFlow>
006. </responseFlow>
007. <parameter name="allowedMethods" value="adutract multiply divide exponent"/>
008. <parameter name="className" value="com.tisesisce.MathService"/>
009. <parameter name="scope" value="Session"/>
010. </service>
Listing 2

As it can be seen from Listing 2, a new tag <retitles/> is added with the previous lines. This tag
contains the information of all service specifimtier in top to bottom order. When a request will
come for a service they will pass through all afs handlers in the specified order before reaching
the target service. We have specified the name@htandlers in the <requestFlow> tag of Listing 2.
The first handler will verify the subscriber ID tfie request message and the second one is our
RewritingHealerVerifier handler. Therefore, whereguest will come for MathService it will first go

to VerifySubscriberID handler. Then if the procegsof this handler succeeds, it will pass the retjue

to RewritingHealerVerifier, which will verify theeguest SOAP message against XML rewriting
attack. In Listing 2 we can see that another tagponseFlow> is added. This tag contains the name
of all the handlers that should get the responssage before being sent to the client.

£ Math Service Client

Subscriber's ID: 1423

First Operand: |1 ]

Second Operand: |1 3

Select Operation Type: [subtract

Compute

Operation Result: 3

Figure 7.8: MathService Client Interface
We have created a simple client application thdt wse our MathService. Figure 7.8 shows the

graphical user interface of our client. This Figutemonstrates that, the user has to provide a
Subscriber’'s ID , the first and the second operandhe operation. Then the user has to select the

62



type of opration from a list operation type likedadubtract etc. At last the user will have to prine
compute button. The result of the opration is diget at the bottom of the interface. When the user
presses the compute button, the application crea83AP message. In this SOAP message there will
have three signed elements. The subscriber’s Bfitht operand and the second operand. From 7.8
we can see that the user has selected subtragératmn. Therefore, the order of the operandhén t
SOAP message determines the result of the operdtidiigure 7.8, it is shown that the user hasmive
the first operand’s value 16 and the second operamatiie 13. So the result is 3. However if we
change the order of these operands the resulba/iB. After the SOAP message is fully creatied, t
client application will give it to our RewritingH&saCreator, which will append necessary information
in it and will give it back to the client. After &h the client invokes the remote MathService whid t
SOAP message. The client’'s code is given in AppeBdiNow lets see what will happen when the
RewritingHealerVerifier will receive this message.

< RewritingHealer, Yerifier

=soapenv.Envelope kmins:soapeny="htto.fschemas xmisoal ~ | etifying Rewriting Healer with Rale 1 and ModeMumber0 | =
=ds:Signedinfos Detecting potential store and replay attack: hot Found
=dz:CanonicalizationMethod Algorithm="http: A w3 orgiT) erifying Signed Element Information..

=ds Signaturedethod Algorithm="http: M w 3. orgl 2000704, Signed Element ID: 3

=z Reference URE"#1"= Signed Element Parent ID: H

=ds:Digesthethod Algorithrn="itp w3, orgl 2000009 m Signed Elermeant Parent Mame: Header
=dz:Digestyalue=dhGh2hUe QHEVYWACHILSWLIglus I U=<1 Signed Element Depth: 3

<lds:References Elerment passed all check

=z Reference URE"#2"= Signed Element ID: 2

=ds:Digestethod Algorithrm="hitp e w3, orgl 20 000090m Signed Element Parent ID: 0.1.5
=dz:Digestyalue=EfxdjJ9nGlyveDAvlss 1 vaSmz+Al==/d=:Di Signed Element Parent bame: subtract

<lds:References Signed Element Depth: 4

=z Reference URE"#3"= Element passed all check

=ds:Digestethod Algorithrm="hitp S w3, orgf 20 000090m Signed Element ID: 1

=dz:Digestvalue=al PQ1ZMIOK0OKkES S oke GaowoM Cl=</ds: Signed Element Parent ID: 0.1.5

<lds:References Signed Elerment Parent Mame: subtract

=z Signedinfos Signed Element Depth: 4

<dsSignaturevalues apioRpIQFZyHIS GzzE gvT MAthpoU+g1 Elerment passed all check

=/d=s:Signature=<ins1:Security= erifing Traversal Digest. . Computed Traversal List (E(H{30
<RewtitingHealer ID="5" Modekumber="0" role="1" soaper Computed Digest Value: pk2agMGRUSmZaec T 4bvdiF Oipah
=Time=1170192862410=Time= Recieved Digest Value: p2agMGpUBmZaec? 4hWdiF DipahH
<MessagelD=1 MessagelDe Digest Veriication Resultok
=SignedElementinfo==I0=3=/D==Depth=3=/Depth==Parentl erifying Rewriting Healer with Role 2 and RodeMumber 0
<SignedElementinio=<|D=2<D==Depth=4<Depth==Farent Detecting potential store and replay attack: hot Found
=SignedElementinfo==I0=1=/D==Depth=4 =iDepth==Parentl etifying Signed Element Information..

Recieved SOAP message (=TraversalDigests verification Result [Verifing Traversal Digest..Cornputed Traversal List (E(H0)
=Digestvalue=pk2agMGpUEmZAecT 4bVdiIF DipahHIZ RG] Computed Digest Value: DMNg+Wss CIRDzKEPwizB Y9 8rk
<TraversalDigests Recieved Digest Value: DMNg+Ws s CIRDzRPuAIEKT YT 8
=/RewritingHealer= Digestverification Result Ok
<RewtitingHealer ID="6" Modekumber="0" role="2" soaper efifying Rewriting Healer with Role 3 and Modehlurmber 0
=soapenyBody ID="0.1.4"= Cetecting potential store and replay attack: Mot Found

: =" v e 2="hitp:iservice thesis.co etifying Signed Elernent Information..
=g |D="1" xsilype="vxsd:long"=16=/a= etifing Traversal Digest. . Computed Traversal List (E(HO))
=h 1D="2" xgitype="xsd:long"=1 3= Computed Digest Value: DMo+Ws s CIRDzE P38 KT a8k
=/ns2:subtract= Recieved Digest Value: DMNg+WssCIRDzkPwedz 8 KT YISk
</soapenv:Bodys DigestVerfication ResUEOK
=lzoapenv:Envelopes il was not Tampered

7y

14 start (& e, [ wmswi. - mzm. - Z2zm. - o WL, | = Java-., Bz, - [RLOER - €L

Figure 7.9: The RewritingHealerVerifier interface

The interface of RewritingHealerVerifier has tworfsa The left part shows the received SOAP
message and the right part shows the result aéréifit types of verification. Figure 7.9 represe¢hés
status of the RewritingHealerVerifier when it re@s the above mentioned SOAP message from the
client. The red border rectangle on the ReceivedB@essage part of Figure 7.9 shows the order of
the two signed operands the client sent with thé&B@essage. The Received SOAP message part
also demonstrates the information added by the fegidealerCreator on the client side like the Ids
of unsigned elements, the RewritingHealer heademenhts etc. The Verification Result part shows
diferrent verification result. The red border rexje on the right side of Figure 7.9 shows thelfina
result of the verification. It is saying that nonjgering was done on the Received SOAP message. The
Verification Result also demonstrates the diffeistaps of the verification.

63



Now lets assume that an attacker in the middtbetlient and the server intercepted the aboeatli
SOAP message and changed the order of the sigmedrafs. For the reason we described previously,
this modification will not have any effect on thgrsature value of those signed operands. Moreover,
all the previous solutions for XML Rewriting Attackill not be able to detect this modification.
Therefore, the attacker will easily be able towg®uthorized access to our service. We have created
simple attacker for this demonstration. The coddlie attacker is given in Appendix B.

< RewritingHealer, Yerifier

=soapenyvEnvelope kmins: soapeny="http:lschemas xmlsoa

|

etifying Rewriting Healer with Rale 1 and ModeMumber0 | =

=ds:Signedinfos Detecting potential store and replay attack: hot Found
=dz:CanonicalizationMethod Algorithm="http: A w3 orgiT) erifying Signed Element Information..

=ds Signaturedethod Algorithm="http: M w 3. orgl 2000704, Signed Element ID: 3

=z Reference URE"#1"= Signed Element Parent ID: H

=ds:Digesthethod Algorithrn="itp w3, orgl 2000009 m Signed Elermeant Parent Mame: Header
=dz:Digestyalue=dhGh2hUe QHEVYWACHILSWLIglus I U=<1 Signed Element Depth: 3

<lds:References Elerment passed all check

=z Reference URE"#2"= Signed Element ID: 2

=ds:Digestethod Algorithrm="hitp e w3, orgl 20 000090m Signed Element Parent ID: 0.1.5
=dz:Digestyalue=EfxdjJ9nGlyveDAvlss 1 vaSmz+Al==/d=:Di Signed Element Parent bame: subtract

<lds:References Signed Element Depth: 4

=z Reference URE"#3"= Element passed all check

=ds:Digestethod Algorithrm="hitp S w3, orgf 20 000090m Signed Element ID: 1

=dz:Digestvalue=al PQ1ZMIOK0OKkES S oke GaowoM Cl=</ds: Signed Element Parent ID: 0.1.5

<lds:References Signed Elerment Parent Mame: subtract

=z Signedinfos Signed Element Depth: 4

<dsSignaturevalues apioRpIQFZyHIS GzzE gvT MAthpoU+g1 Elerment passed all check

=/d=s:Signature=<ins1:Security= erifing Traversal Digest. . Computed Traversal List (E(H{38
<RewtitingHealer ID="5" Modekumber="0" role="1" soaper Computed Digest Value: adcen2LzCaCTeREKYInePIrGezSM
=Time=1170192862410=Time= Recieved Digest Value: pk2agMGpUBmZaecT 4hWdiF DipahH
<MessagelD=1 MessagelDe DigestVerification Result NOT Ok
=SignedElementinfo==I0=3=/D==Depth=3=/Depth==Parentl Message Tampered

<SignedElementinio=<|D=2<D==Depth=4<Depth==Farent
=SignedElementinfo==I0=1=/D==Depth=4 =iDepth==Parentl
Recieved SOAP message (=TraversalDigests verification Result
=Digestvalue=pk2agMGpUEmZAecT 4bVdiIF DipahHIZ RG]
<TraversalDigests

=/RewritingHealer=

<RewtitingHealer ID="6" Modekumber="0" role="2" soaper
=soapeny:Body D=
=nsZsubtract ID="0.1.5" ¥mlnsns i="hitp:iisenice hasis.co
=k |D="2" xsilype="xsd:long"=13=/h=

<a |D="1" xsiype="yedlong"=16=/a=

=InsZsubfract=

</soapenv:Bodys

=lzoapenv:Envelopes

Ly e w [ . = [ g [ - s s i e
14 Start [& meum. [Smzwi. - TzMe.  Tew, o[ Texe < Java. 100% Q(JEJ] .

Figure 7.10: RewritingHealerVerifier detectingXML Rewriting Attack

Figure 7.10 shows the status of the RewritingH&&gfier when it receives the SOAP message from
the attacker. The red border rectangle in ReceB@&P message part shows that the order of the
operands has changed by the attacker. In the ¥atidn Result part we can see that, the verifiantb

all the information in the SignedElementinfo of fRewritingHealer header correct. However when it
compares the computed digest value with the ongeptén the RewritingHealer header, it found the
attack, as the two digest values are not equal r@théorder rectangle on the Verification Resuit pa
shows the final verification result.

We have shown already that with our proposed methdd not possible for an attacker to add or
delete an element to or from a SOAP message.dls not possible for the attacker to change the
depth of an element. The only modification the cktat can make is the re-ordering of elements.
However, if he reorders the signed elements of ARS@essage our demonstration showed that our
algorithm detects this modification successfully.orgover, in our demonstration we only
demonstrated the signed element reordering attadkita detection. In chapter 6 we saw how our
algorithm can detect other types of attack.

64



7.4 Evaluation

In this section we will try to providesample evaluation of our proposed approach. Our
evaluation will be based on the following criteria:

i) Processing Time
i) Bandwidth Consumption
iii) Attack Detection

Processing Time:

Here we will analyze the time complexity of our posed approach. First we will analyze the time
complexity for RewritingHealer verification process

Lets assume that the message contains k RewritadgHeeader. We should note here that each node
could append 3 header blocks for three respeaties.rHowever, each subsequent intermediary will
remove the header block for role “Next”. Therefare can assume that each node append 2 header
blocks. It is very unlikely that there would be mdhan 20 intermediaries. So the total number of
header blocks will not exceed 41 normally. We asstinat we can retrieve all the RewritingHealer
header blocks in constant time. It is obvious, askmwow that they will be the immediate children of
the Header of SOAP envelope.

Now if we map the ids of signed elements to it®eaisded information (depth, parent-name, parent-
id, node_number, role) in a hash table, then theviiing task can be done in constant time C1

iv) Determining whether a element was previousiysd or not

V) Determining whether a element was signed byrticqodar node with a particular
role

Vi) Determining whether a element is signed abatot

vii) Retrieving the associated information of atmarar signed element

This hash tables can be created in C*k*n1 timesrelk is the number of header blocks and n1 is the
total number of signed elements ids in all of teader blocks and C is some constant value.

For each header block, traversing the whole treeldvtake O(n) times. However at the time of this
traversal it is possible to perform the followirggk in constant time using our created hash tables:

i) Determining an element is signed or not
i) Determining if it is signed by a node with cent node number and role
iii) Retrieving the associated information of atparar signed element

Moreover while traversing we can keep track of depth of a particular element. Whenever it is
determined that a particular element is signed é&nds signed by the node whose added
RewritingHealer header block is being verified, ttieer verifications like depth is equal or notrgrd
name is equal or not etc, would take a constarg @2.

Therefore, for a particular RewritingHealer heddleck the time complexity of the whole verification
process is:

C1*C2*O(n)
Where n is the number of elements of the SOAP ngessad C1 and C2 are the constants we
specified before.
So for k header blocks the time complexity of teeification process would be:

C1*C2*k*O(n)
Where n is the number of elements of the SOAP mgesdais the total number of RewritingHealer
header block; C1 and C2 are the constants we gxbbiéfore.

65



Therefore our overall time complexity is:

C*k*n1+C1*C2*k*O(n)
=  C*k*nl+C1*C2*k*C3*n (we can write O(n) €3*n for some constant C3)
=  C*k*n+C1l*C2*C3*k*n (assuming n1 < n)
=  C4*k*n (assimgn C4 = C+C1*C2*C3)
= O (k*n)

Therefore, if there are no intermediaries or ndind® intermediaries appended any information & th
SOAP message the verification process complexityldvbecome O (n).

In the same way we can show that the time compldxit the creation of RewritingHealer header
block is also O(kn) where k is the total numbehe&der blocks present in the SOAP message and n is
the total number of elements in the SOAP message.

It is worth mentioning here that our RewritingHeaeproach eliminates the necessity of WS Security
policy for the detection of XML Rewriting AttacknIWS Security Policy, each assertion needs to
have a module to verify whether a message satiffiesassertion or not. Therefore, if there are
assertions in a WS Security policy file associatath the different patterns of XML Rewriting
Attack, each of these assertions will have a modaoteeach of these modules will have to process the
message. It is certainly a time consuming procedure

Bandwidth Consumption:

The main limitation of our RewritingHealer approaslthat, it is bandwidth consuming. Each node on

the processing path of a SOAP message might addramere RewritingHealer header depending on

the destination of their added elements. We shoatd here that, the SOAP account approach is also
adding SOAP Account header element. And if theeeitermediaries, more than one SOAP account
might be added to the message. In our Rewritingttebbader block there are three types of

information depending on which node has createdhéagler block.

1. The Signed Element information

2. The Digest value of the pre order traversal list

3. MessagelD and Time Information. This informatisnonly present in the RewritingHealer
header block created by the Initial node.

The length of the digest value is always fixed whgonly 256 bits that means 32 bytes. However the
length of the signed element information is noeéix It depends on the number of signed elements
added by a node. The more signed elements a ndtl@ppend in a SOAP message, the more
overhead our RewritingHealer approach will introglirc the SOAP message. To get an estimation of
the overhead of our proposed approach we ran sgateation test. Table 2 depicts the result of our
evaluation test. We have assumed that there arg twd nodes, the Initial Sender and the
UltimateReceiver. We created a SOAP message witteléBents. Initially only one of the 13
elements is signed. We recorded the length of tB&FS message before the addition of our
RewritingHealer information. Then we appended oewRtingHealer information and again recorded
the total length of the SOAP message. The diffexdretween the two recorded information represents
the overhead introduced by our RewritingHealerrimiation. We repeated the above process 12 times.
Each iteration signs one more element than thequewne. From Table 2, it can be seen that, as new
elements are getting signed the overhead of ourikegHealer approach is increasing quite rapidly.

66



Number of Number of | Total Size of SOAP| Total Size of Overhead | Overhead
Unsigned Signed message before SOAP message (bytes) (%)
Elements Elements addition of after addition of

RewritingHealer RewritingHealer

header (bytes) header (bytes)
12 1 4932 5565 633 11.37
11 2 5242 5994 752 12.55
10 3 5552 6442 870 13.55
9 4 5862 6850 988 14.42
8 5 6172 7278 1106 15.20
7 6 6482 7706 1224 15.88
6 7 6792 8134 1342 16.50
5 8 7102 8562 1460 17.05
4 9 7413 8992 1579 17.56
3 10 7724 9422 1698 18.02
2 11 8035 9852 1817 18.44
1 12 8346 10282 1936 18.83

Table 2: Overhead estimation of RewritingHealer (wthout optimization)

When the message contains 1 signed element theeaeof our approach is 11.37%, however when
the message contains 12 signed elements the oderdisad to almost 19%Gome optimizations can
be done in our RewritingHealer approach to minintie overhead. We have found that only the
signed elements ID and the Digest value alone caact all types of XML Rewriting Attack.
Therefore, if each RewritingHealer header blocktams only the Signed Elements Ids and the digest
value, it would be enough to detect all rewritintpeks. We ran the same evaluation test specified

above with this optimization. Table 3 depicts thsult of this evaluation test with optimization.

Number of Number of Total Size of Total Size of Overhead Overhead
Unsigned Signed SOAP message | SOAP message | (bytes) (%)
Elements Elements before addition | after addition of

of RewritingHealer

RewritingHealer | header (bytes)

header (bytes)
12 1 4932 5495 563 10.25
11 2 5242 5864 612 10.45
10 3 5552 6213 661 10.64
9 4 5862 6572 710 10.80
8 5 6172 6931 759 10.95
7 6 6482 7290 808 11.08
6 7 6792 7649 857 11.20
5 8 7102 8008 906 11.31
4 9 7413 8369 956 11.42
3 10 7713 8719 1006 11.54
2 11 8024 9080 1056 11.63
1 12 9441 1106 1106 11.71

Table 3: Overhead estimation of RewritingHealer (wtih optimization)

67




From Table 3 we can see that with optimization dkierhead introduced by our approach has been
reduced almost by a factor of 2. With one signesneint the overhead is 10.25% and with 12 signed
elements the overhead is 11.71%, which was 18.8Bkowut optimization. Figure 7.11 represents a

2500

2000
()]
g
g /-/./-/.
2 1500
= —e— with optimization
© —— without optimization
< 1000 -
)
>
o

500

0 T T T T T T T T T T T
1 23 456 7 8 9101112
Number of sighed elements

Figure 7.11: Comparison of the overhead introducetly RewritingHealer approach with
and without Oimtization

chart, which shows how the proposed optimization peduce the overhead of RewritingHealer
approach. We have plotted number of signed elenantyy the X-axis and the overhead in bytes
along the Y-axis of the chart. It can be seen ftbenchart that RewritingHealer has a linear ovaithea
growth rate both with and without optimization. Hewer, with optimization the growth rate has

substantially reduced.

Therefore, in the future it has to be proved fotyndiat only the Signed Elements ID and the digest
value can detect any sort of rewriting attacks tienstructure of the RewritingHealer can be chednge
to contain only the specified information.

Attack Detection:

Every XML Rewriting Attack performs some sort of difications on the SOAP message. As we said
previously XML Rewriting Attack takes place as XMligital Signature permits the use of XPointer
to refer a signed element and XPointer does nat@orany information regarding the location of the
referenced element. However, XPointer is not thly omason for the existence of XML Rewriting
Attack. We showed previously that, even XPath sdusistead of XPointer, XML Rewriting Attack
can still take place. This is due to the fact tBR@AP [1] allows the existence of header block that
not recognized by the receiver. Therefore, if tkeeiver finds a header block that it does not
understand, it cannot make complain if the heatterkids not mandatory. Moreover, WS-Security [6]
allows the existence of multiple security headeith ihe same name in a single SOAP message.
Therefore, it is possible for the attacker to redirthe XPath expression to a different elemeng Th
concept of XML Rewriting Attack assumes that thia@ker does not own the proper key to sign an
element. He/She changes the SOAP message in ehatagdes not compromise the signature of that
element. That means the attacker neither can delgighed element nor can add a signed element in a
SOAP message. The attacker also cannot modify rdnymation of a signed element. However, the
attacker can change the location of a signed elearehthis is the only way for him/her to perform a

68



attack. Therefore, any solution of XML Rewritingt&tk should have to provide a way for identifying
the location of signed elements.

We discussed previously different solutions for XiRewriting Attack. Most of the solutions tried to
identify the location of signed elements. In thstfisolution, they have used XPath with WS Security
Policy to identify the location of signed elemerigsit we showed how this method could become
vulnerable. The SOAP Account approach is also ¢rymidentify the location of signed elements by
associating information regarding the signed eldrimea header block. However, We showed that the
information present in the SOAP account headerkbiecnot sufficient enough to prevent XML
Rewriting Attack. Most importantly, the attack whethe attacker changes the order of signed
elements of a SOAP message cannot be detected/lmf e previously proposed solutions.

The solution that we have provided here prevdmsattacker from performing the following task in a
SOAP message:

i) The attacker cannot add a new element in a S@Afsage
i) The attacker cannot delete an existing elenfremh a SOAP message
iii) The attacker cannot change the order of theesil elements of a SOAP message

We are representing the SOAP message, which igcinain XML document, using a tree structure.

Then we are providing each unsigned element a enidgntifier. In our discussion so far we have

assumed that a signed element will be referencauh the Signature element using XPointer and

therefore it already contains an identifier. HoweveXPath is used for referencing, the name of a
signed element can be used as its identifier. Mremre taking the string representation of the pre-
order traversal list of the tree. In this stringcleaelement is represented using its name and its
identifier separated by a colon. After the stringdady we are taking the digest value using SH&-25

algorithm of that string. We then put this digeatue in our proposed RewritingHealer header block
and sign this header block. To prevent rewritingact on our header block we have imposed a
restriction that RewritingHealer header block mbstreferenced using XPath expression from the
Signature element. Therefore, we can say that oemted digest value is indirectly signed. That

means, although the digest value is not signedsie¥f, the header block that contains this digaties

is signed.

Now if an attacker adds a new element in the SOARBsage, it would definitely change the string
representation of the pre-order traversal listhef BOAP message elements. This will in turn change
the digest value.

Lets consider the following general string as aaneple. We can think of string S as the string
representation pre-order traversal list of a SOARsage. :

S = “ABCDEFGHIJ”

Let the digest value of that string is D. That is

MD(S) = D, where MD is a digest value function

Now if the attacker adds a new element with idemtiK in the SOAP message the new string
representation of the pre-order traversal listhef BOAP message would become something like the
following

S1 ="ABCDKEFGHIJ”

Let the digest value of this string is D’. That is

MD(S1) = D', where MD is a digest value function

69



Now as S1 != S, from the properties of hash fumc{see section 2.1.6) we can say that:
D' !=D.

Moreover, it is not possible for the attacker tongmte the digest value and put it in the
RewritingHealer header. This is because the Rewgtitealer header block is signed and if the attacker
wants to do this he/she would have to sign the RiegkHealer header block, which we presumed is
out of the attacker’s capability. Therefore, we canclude that the attacker cannot add new elements
in the SOAP message. In the same way we can shairhb attacker cannot delete an existing
element from the SOAP message.

Now lets see what happens when the attacker chéimgesder of signed elements. Figure 7.11

(2
(4 )
_/®/ @/\@
© OIOIO

Figure 7.12: A simplede representing a SOAP message

Depicts the tree representation of a SOAP mes&agd node of the tree is representing an element of
a SOAP message. Nodes with label E, B and H représe Envelope element, Body element and the
Header element of a SOAP message. The rest of dtlesnrepresent other elements of a SOAP
message and they are labelled using the ID valubeofespective element. According to the string
representation rule of the pre-order traversaloist SOAP message that we specified in section 6.1
the tree in 7.11 can be represented as

S2 = (E(H(1(4050)2(6()3(7(08()))B(10011(12)))

Now lets assume that the nodes with label 4 anck Beppresenting two signed elements. As they are
signed it is not possible for an attacker to pernfaany sort of modification on these elements.
However, lets assume that the attacker wants togehthe order of these two signed elements. As we
specified before that the attacker could relocasigaed element and hence he can reorder the two
signed elements with Id 4 and 5. The resulting &fter this modification is represented in Figure
7.12.

70



Figure 7.13: Tree of Figure 7.11 after elements ort has been changed

Now the string representation of the pre-orderedrsal list of the tree of Figure 7.12 will becon®e a
follows:

S3 = (E(H(18040)2(6()3(708())B(10()11()12())))

If we compare the two strings S2 and S3, we carttstedue to the modification, the two strings S2
and S3 are no longer equal. Therefore, their digakte will not be equal as well according to the
properties of hash function. Consequently, the abmwodification of the attacker will be easily
detected by our approach. So the attacker canraigehthe order of signed elements of a SOAP
message.

We have shown that the attacker cannot add anyeh@wents in a SOAP message, cannot delete an
existing element from a SOAP message and cannotleesigned elements of a SOAP message.
However, if the attacker is prevented in performamy of these tasks, he/she is in turn preventad fr
performing XML Rewriting Attack. Therefore, we caronclude that our approach provides a
mechanism for the detection of any sort of XML Rigiwg Attack.

71



Chapter 8: Conclusions and Future Work

The main goal of RewritingHealer is to guard SOABssages against XML Rewriting Attack.
Although all of the previous solutions tried toffuthe same goal as ours, we have shown scenarios
where these solutions are vulnerable. Most impdistanone of the previous solution can guard
against the signed element reordering attack. Hewewe have already shown that our
RewritingHealer can guard against a wide rangeMt)Rewriting Attack. One of the future works of
our proposed method is to prove formally that, ggime digest value of pre-order traversal prevents
the attacker to add or delete or modify any sigelethent form the SOAP message. We are now using
only the pre-order traversal technique for the gatien of an ordered list of SOAP message elements.
Another future work might be to find other travdrgachniques for the ordered representation of
SOAP message elements. One important point hehatisthe traversal techniques that will be used
must generate a unique ordered representation eofS(DAP elements. That means the traversal
techniques must satisfy the following propositiohene our universe of discourse is the set of all
general trees.

Ot1( (X = R(t1)) => 1(@2((t1 '=t2 )\ ( X = R(t2) ) , Where R(X) is the traversal ofene

Therefore, along with the discovery of new travetsahniques, the future work must also prove that
the traversal technigues satisfy the above prapaosit

In this report initially we have discussed abouffedent security protocols like symmetric key
cryptography, public key cryptography, digital saure, digital envelope and hashing. This
discussion gives an idea regarding the securithnt@logies that prevails in current digital
communication. Then we have given an overview ob wervice technology and SOAP. Different
web services security standards like XML Digitabrgture, WS Security, WS Policy and WS
Security Policy and their limitations have beencdssed in brief. We have demonstrated with
scenarios different types of XML Rewriting Attadiat can take place in web service communication.
We have specified some previous works that have lble@e for the detection of XML Rewriting
Attack. We have shown with vulnerability scenaribat none of these solutions can fully eliminate
XML Rewriting Attack.

Then we have proposed an approach for the deteati¥ML Rewriting Attack and demonstrated its
working process with different scenarios. We alaeehimplemented rudimentary modules to illustrate
the attack detection capability of our approach. Waee evaluated our approach based on processing
time, bandwidth consumption and attack detectiopabdity. Moreover, we have discussed some
previous works that have been done for the deteaifoXML Rewriting Attack and demonstrated
their vulnerabilities with scenarios. In our fueuvork we will establish a formal prove showingttha
our approach prevents any sort of signed elemeuwiifioation in the SOAP message. We will also
implement our approach with the optimizations thatspecified in section 7.4.

72



Chapter 9: References

[1] SOAP Version 1.2 Part 0 Primer W3C Recomme aafati

[2] XML-Signature Syntax and Processing, W3C Recemdation 12 February 2002

[3] WS-Policy specification at
http://msdn.microsoft.com/webservices/default.appi2/library/en-us/dnglobspec/html/ws-
policy.asp ,2007

[4] Georgiadis C., Mavridis I. and Pangalos G.
http://www.ibm.com/software/solutions/Webservicedd/SCA.pdf , 2007

[5] Web service Essential, Publisher, Orielly, ISBEN696-00224-6

[6] Web services Security: SOAP Message Securlty\W.S-Security 2004) OASIS Standard 200401,
March 2004

[7] Web services Security Policy Language (WS-Ségolicy)

[8] TulaFale: A Security Tool for Web services Kakeyan Bhargavan, C’edric Fournet, Andrew D.
Gordon, and Riccardo Pucella at Microsoft Research

[9] An Advisor for Web services Security Policieg Karthikeyan Bhargavan C’edric Fournet
Andrew D. Gordon Greg O’Shea at Microsoft Research

[10] A Multi-party Implementation of WS-SecureComsation Hongbin Liu, Geoffrey Fox, Marlon
Pierce, Shrideep Pallickara Community Grids Laldjdna University, Bloomington, Indiana 47404
[11] XML Signature Element Wrapping Attacks and @tmrmeasures by Michael Mcintosh , Paula
Austel from IBM research

[12] Towards Secure SOAP Message Exchange in alMohammad Ashiqur Rahman

[13] An Inline Approach for Secure SOAP Requests Barly Validation by Mohammad Ashiqur
Rahman

[14] Securing Web services with WS-Security: Demystigyil'S-Security, WS-Policy, SAML, XML
Signature, and XML Encryption by Jothy Rosenbergyid Remy

[15] http://msdn2.microsoft.com/en-us/library/ms866.aspx, 2007

[16] Semantics-enriched QoS Policies for Web serinteractions by Diego Zuquim Guimaraes
Garcia and Maria Beatriz Felgar de Toledo

[17] K. Bhargavan, C. Fournet, and A. D. Gordonrityeng policy-based security for web services.
In 11th ACM Conference on Computer and Communicati®ecurity (CCS’04), pages 268-277,
October 2004.

[18] Network Security: Private communication in@bpc word. By Charlie Kaufman, Radia Perlman,
Mike Spencier

[19] A. D. Birrell. Secure communication using ree procedure calls. ACM Transactions on
Computer Systems,3(1):1-14, 1985.

[20] Microsoft Research; http://research.microsoitn/projects/Samoa/ , 2007

[21] K. Bhargavan, C. Fournet, and A. D. Gordonritying policy-based security for web services.
In 11th ACM Conference on Computer and Communicatisecurity (CCS’'04), pages 268-277,
October 2004.

73



[22] K. Bhargavan, C. Fournet, A. D. Gordon, andPBcella. TulaFale: A security tool for web
services. In International Symposium on Formal Mdthfor Components and Objects (FMCQO'03),
LNCS. Springer, 2004

[23] B. Blanchet. An efficient cryptographic protwerifier based on Prolog rules. In Proceedings o
the 14th IEEE Computer Security Foundations Worksipages 82-96. IEEE Computer Society
Press, 2001.

[24] D. Balfanz, D. Dean, and M. Spreitzer. A ségunfrastructure for distributed Java applicason
In Proceedings of the IEEE Symposium on SecurityRrivacy, pages 15-26. IEEE Computer
Society Press, 2000.

[25] L. C. Paulson. Inductive analysis of the imerprotocol TLS. ACM Trans. Inf. Syst. Secur.,
2(3):332-351,1999.

[26] Isabelle, http://isabelle.in.tum.de/ , 2006

[27] M. Abadi, B. Blanchet, and C. Fournet. Just feeying in the pi calculus. In Proceedings of the
13th European Symposium on Programming (ESOP’@Winve 2986 of LNCS, pages 340-354.
Springer, 2004.

[28] WS-Trust; http://specs.xmlsoap.org/ws/200540&t/WS-Trust.pdf, 2006

[29] WS-SecureConversation;

http://specs.xmlsoap.org/ws/2005/02/sc/WS-Secure€sation.pdf , 2006

[30] K. Bhargavan, R. Corin, C. Fournet, and A.Grdon. Secure sessions for web services. In 2004
ACM Workshop on Secure Web services (SWS), page22,10ctober 2004.

[31] K. Bhargavan, C. Fournet, and A. D. Gordorseéfantics for web services authentication. In
31st ACM Symposium on Principles of Programmingdusages (POPL’'04), pages 198-209, 2004.
An extended version appears as Microsoft Reseagchriical Report MSR—-TR-2003-83.

[32] WSE, http://www.microsoft.com/downloads/desaalspx?Familyld=FC5F06C5-821F-41D3-
A4FE- 6C7B56423841&displaylang=en

[33] Mobile Values, New Names, and Secure Commuttioicg
http://research.microsoft.com/~fournet/papers/nebdlues-new-names-and secure-
communication.pdf , 2007

[34] D. Dolev and A.C. Yao. On the security of paliey protocols. IEEE Transactions on
Information Theory, IT-29(2):198-208, 1983.

[35] A Semantics for Web services Authenticatidtarthikeyan Bhargavan , C"edric Fournet,
Andrew D. Gordon , February 2004 , Technical RepmtER-TR-2003-83

[36] http://www-128.ibm.com/developerworks/libramg-secroad/ , 2007

[37] D. Dolev and A. Yao. On the security of puldliey protocols. IEEE Transactions on Information
Theory, 1T-29(2):198-208, 1983.

[38] R. Needham and M. Schroeder. Using encrygomuthentication in large networks of
computers. Commun. ACM, 21(12):993-999, 1978.

[39] http://ws.apache.org/axis/java/architecturedgthtml , 2007

[40] http://xml.apache.org/security/ , 2007

[41] http://www.xml.com/pub/a/2001/08/08/xmldsignit, 2007

[42] http://www.w3.0rg/Submission/WS-Policy/ , 2006

[43] Exclusive XML Canonicalization,Version 1.0,W3&commendation 18 July 2002

[44] WS Addressing; http://www.w3.org/Submissior3agSUBM-ws-addressing-20040810/, 2007
[45] Building Web Services with Java: Making SerafeXML, SOAP, WSDL, and UDDI, 2nd
Edition , By Steve Graham, Doug Davis, Simeon Simoe Glen Daniels, Peter Brittenham, Yuichi
Nakamura, Paul Fremantle, Dieter Koenig, Claudiat@er. ISBN-10: 0-672-32641-8; ISBN-13: 978-
0-672-32641-7

74



Appendix A:

WSDL of MathService:

<?xm version="1.0" encodi ng="UTF- 8" ?>

<wsdl : definitions target Namespace="http://service.thesis.conf

xm ns: apachesoap="http://xm . apache. or g/ xm - soap"

xm ns:inmpl="http://service.thesis.com xmns:intf="http://service.thesis.conf
xm ns: soapenc="http://schenmas. xm soap. or g/ soap/ encodi ng/ "

xm ns:wsdl ="http://schemas. xn soap. org/ wsdl /"

xm ns: wsdl soap="http://schemas. xm soap. or g/ wsdl / soap/"

xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schema" >

<I--WBDL created by Apache Axis version: 1.4

Built on Apr 22, 2006 (06:55:48 PDT)-->

<wsdl : mnessage nane="addRequest">
<wsdl : part nane="a" type="xsd:|ong"/>
<wsdl : part nane="b" type="xsd:|ong"/>
</ wsdl : mressage>
<wsdl : mnessage nane="exponent Request" >
<wsdl : part nane="a" type="xsd:|ong"/>
<wsdl : part nane="b" type="xsd:|ong"/>
</ wsdl : nressage>
<wsdl : mressage nane="di vi deRequest ">
<wsdl : part nane="a" type="xsd:|ong"/>
<wsdl : part nane="b" type="xsd:|ong"/>
</ wsdl : nressage>
<wsdl : mressage nane="di vi deResponse" >
<wsdl : part nane="di vi deReturn" type="xsd:|ong"/>
</ wsdl : mressage>
<wsdl : nessage nane="addResponse" >
<wsdl : part nane="addReturn" type="xsd:long"/>
</ wsdl : nressage>
<wsdl : mressage nane="nul ti pl yRequest ">
<wsdl : part nane="a" type="xsd:long"/>
<wsdl : part nane="b" type="xsd:|ong"/>
</ wsdl : nressage>
<wsdl : nressage nane="subtract Request" >
<wsdl : part nane="a" type="xsd:|ong"/>
<wsdl : part nane="b" type="xsd:|ong"/>
</ wsdl : nressage>
<wsdl : nressage nane="exponent Response" >
<wsdl : part nane="exponent Return" type="xsd:|ong"/>
</ wsdl : mressage>
<wsdl : mnessage nane="subtract Response" >
<wsdl : part nane="subtract Return" type="xsd:|ong"/>
</ wsdl : mressage>
<wsdl : message nane="nul ti pl yResponse" >
<wsdl : part nane="nul ti pl yReturn" type="xsd:|ong"/>
</ wsdl : nressage>
<wsdl : port Type name="Mat hServi ce">

75



<wsdl : operati on nane="add" paraneterOrder="a b">
<wsdl : i nput nessage="i npl : addRequest" nanme="addRequest"/>
<wsdl : out put nessage="i npl : addResponse" nane="addResponse"/>

</ wsdl : operati on>

<wsdl : operati on nane="di vi de" paraneterOrder="a b">
<wsdl : i nput nessage="inpl:divi deRequest"” name="di vi deRequest"/>

<wsdl : out put nessage="i npl : di vi deResponse" nane="di vi deResponse"/ >

</ wsdl : operation>
<wsdl : operation name="nul tiply" paraneterOrder="a b">

<wsdl : i nput nessage="inpl: multiplyRequest” nanme="multipl yRequest"/>
<wsdl : out put nessage="inpl: nul tipl yResponse" name="mul ti pl yResponse"/>

</ wsdl : operation>
<wsdl : operati on nane="subtract" paraneterOrder="a b">

<wsdl : i nput nessage="inpl: subtract Request" nane="subtract Request"/>
<wsdl : out put nessage="i npl : subtract Response" nanme="subtract Response"/ >

</ wsdl : operation>
<wsdl : operati on nane="exponent" paraneterOrder="a b">

<wsdl : i nput nessage="inpl : exponent Request" nane="exponent Request"/>

<wsdl : out put nessage="i npl : exponent Response" name="exponent Response"/>

</ wsdl : operation>
</ wsdl : port Type>
<wsdl : bi ndi ng nane="Mat hSer vi ceSoapBi ndi ng" type="i npl : Mat hServi ce">
<wsdl soap: bi ndi ng styl e="rpc"
transport="http://schemas. xm soap. org/ soap/ http"/>
<wsdl : operati on nane="add">
<wsdl soap: operati on soapAction=""/>
<wsdl : i nput nanme="addRequest" >
<wsdl soap: body
encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "
namespace="http://service.thesis.com use="encoded"/>
</ wsdl : i nput >
<wsdl : out put name="addResponse" >
<wsdl soap: body
encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "
nanespace="http://service.thesis.conl use="encoded"/>
</ wsdl : out put >
</ wsdl : operati on>
<wsdl : operation nane="divi de">
<wsdl soap: operati on soapAction=""/>
<wsdl : i nput name="di vi deRequest " >
<wsdl soap: body
encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "
nanespace="http://service.thesis.conl use="encoded"/>
</ wsdl : i nput >
<wsdl : out put name="di vi deResponse" >
<wsdl soap: body
encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "
namespace="http://service.thesis.com use="encoded"/>
</ wsdl : out put >
</ wsdl : operation>
<wsdl : operation name="nul tiply">
<wsdl soap: operati on soapAction=""/>
<wsdl : i nput name="rmul ti pl yRequest ">
<wsdl soap: body
encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "
nanespace="http://service.thesis.conl use="encoded"/>
</ wsdl : i nput >
<wsdl : out put name="nul ti pl yResponse" >
<wsdl soap: body
encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "
namespace="http://service.thesis.com use="encoded"/>
</ wsdl : out put >
</ wsdl : operation>
<wsdl : operati on nanme="subtract">
<wsdl soap: operati on soapAction=""/>
<wsdl : i nput nanme="subtract Request">

76



<wsdl soap: body
encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "
nanespace="http://service.thesis.conl use="encoded"/>
</ wsdl : i nput >
<wsdl : out put nanme="subtract Response" >
<wsdl soap: body
encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "
namespace="http://service.thesis.com use="encoded"/>
</ wsdl : out put >
</ wsdl : operati on>
<wsdl : operati on nanme="exponent">
<wsdl soap: operati on soapAction=""/>
<wsdl : i nput nane="exponent Request ">
<wsdl soap: body
encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "
namespace="http://service.thesis.com use="encoded"/>
</ wsdl : i nput >
<wsdl : out put name="exponent Response" >
<wsdl soap: body
encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "
nanespace="http://service.thesis.conl use="encoded"/>
</ wsdl : out put >
</ wsdl : operation>
</ wsdl : bi ndi ng>
<wsdl : servi ce nane="Mat hServi ceServi ce">
<wsdl : port bi ndi ng="i npl : Mat hSer vi ceSoapBi ndi ng" nane="Mat hServi ce">
<wsdl soap: addr ess
| ocation="http://local host: 8080/ axi s/ servi ces/ Mat hServi ce"/>
</ wsdl : port>
</ wsdl : service>
</ wsdl : definitions>

Web service Deployment Descriptor of Server Axis
Engine

<?xm version="1.0" encodi ng="UTF- 8" ?>
<depl oyment xm ns="http://xm . apache. org/ axi s/ wsdd/ "
xm ns:java="http://xm . apache. or g/ axi s/ wsdd/ provi ders/j ava">
<gl obal Confi gurati on>
<par anet er nane="adm nPassword" val ue="adm n"/>
<par aneter nane="attachnents.Directory" val ue="D:\ Tontat\apache-tontat -
4. 1. 32\ webapps\ axi s\ VEB- | NF\ at t achnent s"/ >
<par anet er nane="sendMul ti Refs" val ue="true"/>
<par anet er nane="sendXsi Types" val ue="true"/>
<par aneter nane="attachnents.inpl enentation"
val ue="or g. apache. axi s. att achnents. Attachment sl npl "/ >
<par anet er nane="sendXM.Decl arati on" val ue="true"/>
<r equest Fl ow>
<handl er type="java: org. apache. axi s. handl ers. JWBHandl er"/ >
</ request Fl ow>
</ gl obal Confi gurati on>
<handl er name="Local Responder"
type="j ava: org. apache. axi s.transport. | ocal . Local Responder"/>
<handl er name="URLMapper" type="java: org. apache. axi s. handl ers. http. URLMapper"/ >
<handl er name="RPCDi spat cher"
t ype="j ava: org. apache. axi s. provi ders. j ava. RPCProvi der"/ >
<handl er nane="Aut henti cate"
t ype="j ava: or g. apache. axi s. handl ers. Si npl eAut henti cati onHandl er"/ >
<handl er name="MsgDi spat cher"
type="j ava: org. apache. axi s. provi ders. j ava. MsgProvi der"/ >
<handl er name="soapnonitor"
t ype="j ava: or g. apache. axi s. handl er s. SOAPMbni t or Handl er " >
<par anet er nane="wsdl URL"
val ue="/ axi s/ SOAPNbni t or Servi ce-i npl . wsdl "/ >
<par anet er nanme="nanespace"

77



val ue="http://tenpuri.org/wsdl/2001/ 12/ SOAPMbni t or Ser vi ce-
impl . wsdl"/>
<par anet er nane="servi ceNane" val ue="SOAPMbni t or Servi ce"/ >
<par anet er nane="port Nane" val ue="Deno"/ >
</ handl er >
<servi ce name="SOAPMbnNi t or Servi ce" provider="java: RPC'>
<par anet er nane="al | onedMet hods" val ue="publ i shMessage"/ >
<par anet er nane="cl assNane"
val ue="or g. apache. axi s. noni t or. SOAPMbni t or Servi ce"/ >
<par anet er nane="scope" val ue="Application"/>
</ servi ce>
<servi ce name="Mat hService" provider="java: RPC'>
<r equest Fl ow>
<handl er type="java:com xm . heal er. Rewiti ngHeal erVerifier"/>
</ request Fl ow>
<par anet er nane="al | onedMet hods" val ue="add subtract multiply divide exponent"/>
<par anet er nane="cl assNane" val ue="comthesis.service. Mat hService"/>
<par anet er nane="scope" val ue="Session"/>
</ servi ce>

<servi ce name="Adm nServi ce" provider="java: M5G'>
<par anet er nane="al | onedMet hods" val ue="Adni nService"/>
<par anet er nane="enabl eRenot eAdni n" val ue="fal se"/ >
<par anet er nane="cl assNane" val ue="org. apache. axis.utils. Admn"/>
<namespace>http://xnl . apache. or g/ axi s/ wsdd/ </ namespace>
</ servi ce>
<servi ce name="Version" provider="java: RPC'>
<par anet er nane="al | onedMet hods" val ue="get Versi on"/>
<par anet er nane="cl assNane" val ue="org. apache. axi s. Versi on"/>
</ servi ce>

<transport nane="http">
<r equest Fl ow>
<handl er type="URLMapper"/>
<handl er type="java: org. apache. axi s. handl ers. http. HTTPAut hHandl er"/ >
</ request Fl ow>
</transport>
<transport nane="|ocal ">
<r esponseFl ow>
<handl er type="j ava: org. apache. axi s.transport.| ocal.Local Responder"/>
</ responseFl ow>
</transport>
</ depl oynent >

Appendix B:

MathService Attacker Code:

i mport java.io.FilelnputStream

i mport org.apache. axis.client. Call

i mport org.apache. axi s.client. Service;

i mport org.apache. axi s. nessage. SOAPEnvel ope;

/111 This class represents an attacker of our MathService
public class Attacker {
public Attacker(){

public static void main(String unused[]) throws Exception {
/111 The nofidied SOAP nessage is in the file attack. xm
FilelnputStreamfin = new Fil el nput Stream("attack.xm");
/1l Create an Envel ope with the nodi fied SOAP nessage
SOAPEnvel ope env = new SQAPEnvel ope(fin);
/111 The endpoi nt of MathService

78



String endpoint ="http://local host: 8080/ axi s/ servi ces/ Mat hServi ce";
/1llCreate a Service
Service service = new Service();
[1/Create a Call.
Call call = (Call)service.createCall();
try{
/1/Set the target endpoint in the Call
cal | . set Tar get Endpoi nt Addr ess( new
j ava. net . URL(endpoint));
[1l1nvoke the service
SOAPEnvel ope ret= call.invoke(env);
/11Print the response
Systemout.printlin(ret);
}catch( Exception e ){
e.printStackTrace();
}

79



