

Design of a Session Layer Based
System for Endpoint Mobility

P E T T E R A R V I D S S O N
M I C A E L W I D E L L

Master of Science Thesis
Stockholm, Sweden 2006

ICT/ECS-2006-109

Prototype System Design, Implementation and
Evaluation

Design of a Session Layer Based
System for Endpoint Mobility

P E T T E R A R V I D S S O N
M I C A E L W I D E L L

Master of Science Thesis
Stockholm, Sweden 2006

ICT/ECS-2006-109

Prototype System Design, Implementation and
Evaluation

Supervisor
Dr. Yuri Ismailov

Ericsson AB

Examiner
Assoc. Prof. Vladimir Vlassov

ECS/ICT/KTH

Design of a Session Layer Based System for Endpoint Mobility 5

Abstract

Traditional mobility is highly focused on computers moving from one
network to another. This is a very narrow-minded way of thinking about
mobility. Mobility might just as well be some documents moving from one
computer to another, or a computer moving in time. A computer might
be disconnected from a network for a long time and then reconnected to
the very same network. There has been no mobility from the network’s
point of view, but we have had mobility in time. This calls for a major
change in how we look at mobility.

Therefore we have introduced a new design where any object can be
mobile, in both time and space. We call these mobile objects endpoints.
They can be devices, documents, users or anything you can imagine, and
they are named with globally unique names which are mapped to their
current positions on the network. In the old IP address system, names act
both as identifiers of computers and descriptions of how to reach them.
We have separated the name of an endpoint from the information about
how to reach it, so the routing information can be updated at any time.
Now objects can move anywhere in the network, and always be reached
with their name.

But we want to do more than this. We have created the possibility to
establish a session. A session is a persistent connection between two ob-
jects. Whenever an object is reconnected to the network any applications
using a session for communication will automatically continue.

We have implemented and tested this design and we have shown that it
is possible to achieve this high degree of mobility. We clearly see that the
new possibilities that open up with a system like this are nearly unlimited.

Design of a Session Layer Based System for Endpoint Mobility 6

Contents

1 Introduction 10
1.1 Problem statement . 10

1.1.1 Session layer . 11
1.1.2 Naming system . 11
1.1.3 Requirements . 11

1.2 Expected results . 12
1.3 Evaluation strategy . 12

2 Background 13
2.1 Important concepts . 13
2.2 Protocol stack . 13
2.3 OSI Model . 13

2.3.1 Application Layer . 14
2.3.2 Presentation layer . 14
2.3.3 Session layer . 14
2.3.4 Transport layer . 15
2.3.5 Network layer . 16
2.3.6 Data-link layer . 16
2.3.7 Physical layer . 16

2.4 The Internet Protocol Stack of Today 16
2.4.1 TCP . 17
2.4.2 UDP . 17

2.5 Related work and existing solutions 17
2.5.1 At what layer does mobility belong? 17
2.5.2 Network layer mobility . 18
2.5.3 Transport layer mobility 19
2.5.4 Session Layer mobility . 19
2.5.5 Multi layer mobility . 21
2.5.6 Connection management 22

2.6 Development environment . 22
2.6.1 The TCP/IP-stack . 22
2.6.2 Networked devices . 23
2.6.3 Compiler and editor . 23

2.7 Conclusions . 24

3 Design 25
3.1 Basic design decisions . 25

3.1.1 Endpoints . 25
3.1.2 How will the user perceive the Session Layer? 26
3.1.3 Naming and services . 26
3.1.4 Mobility . 27
3.1.5 Data integrity . 28
3.1.6 Automatic rebinding and the Session Layer Daemon . . . 29
3.1.7 How our design relates to previous work 29

Design of a Session Layer Based System for Endpoint Mobility 7

3.2 Session Layer services . 30
3.2.1 Session services . 30
3.2.2 Use cases . 30

3.3 Naming . 38
3.3.1 Naming problems . 38
3.3.2 Introduction to the naming system 38
3.3.3 Session Name Server . 39
3.3.4 Name lookup . 40
3.3.5 Shortcomings of the naming system 40
3.3.6 Session Name Server Protocol 40

3.4 Data integrity . 42
3.4.1 Checkpoint oriented integrity 42

3.5 Session Layer Daemon . 49
3.6 Endpoint policies . 50
3.7 Session Management Protocol . 50

3.7.1 The session header . 51
3.7.2 Data channel initialization messages 52
3.7.3 Data channel messages . 53
3.7.4 Control channel messages 53

3.8 Session layer states . 54
3.8.1 ACTIVE (state) . 54
3.8.2 READY RESUME (state) 56
3.8.3 SUSPENDED (state) . 57
3.8.4 SEND RESUME OK (junction) 58
3.8.5 SEND RESUME (junction) 58
3.8.6 SENT RESUME (state) 59

3.9 Additional state machine properties 60
3.9.1 The CLOSED state . 61
3.9.2 Handling of unanswered RESUME messages 61

4 Implementation 62
4.1 Basic implementation decisions 62
4.2 Basic concepts . 64

4.2.1 Locks and waitqueues . 64
4.2.2 Receiving bytes . 65

4.3 Disk based endpoints . 66
4.3.1 Directory based endpoints 66
4.3.2 Saving and loading endpoints on disk 66
4.3.3 Saving application states to disk 67
4.3.4 Loading application states from disk 67

4.4 Session Layer API . 68
4.4.1 Endpoint related functions 68
4.4.2 Service related functions 68
4.4.3 Session related functions 68

4.5 Naming . 69
4.5.1 The server . 69

Design of a Session Layer Based System for Endpoint Mobility 8

4.5.2 The client library . 69
4.6 Synchronization . 70

4.6.1 Buffer . 70
4.6.2 Creating checkpoints . 73
4.6.3 Resuming checkpoint . 74

4.7 Session Layer Daemon . 74
4.7.1 Netlink sockets . 74
4.7.2 Our extensions . 74
4.7.3 Mobile objects . 76
4.7.4 Differences between design and implementation 78

4.8 Session layer states . 78
4.8.1 Session data structures . 78
4.8.2 Session Control Thread 80
4.8.3 Session system calls . 82
4.8.4 Session auxiliary functions 85

4.9 Session Layer Demonstration . 88

5 Analysis 90
5.1 Introduction . 90
5.2 Testing and evaluation . 90

5.2.1 Method . 90
5.2.2 Hardware and software . 90
5.2.3 Functionality testing . 91
5.2.4 Reliability testing . 92

5.3 Conclusions . 93

6 Conclusions and future work 94
6.1 Summary . 94
6.2 Conclusions . 94
6.3 Future work . 95

References 96

A Segment oriented data integrity 98

List of Figures

1 The OSI layer model . 14
2 The matrix stack paradigm. 21
3 The development network. 23
4 The architecture of the Session Layer and its control mechanisms. 25
5 The description of an endpoint 26
6 Session Layer mobility mechanism 28
7 Endpoint and service name lookup 40
8 The SNS protocol message types and payloads. 43
9 The structure of a checkpoint. 44

Design of a Session Layer Based System for Endpoint Mobility 9

10 The prcedure followed when establishing a new checkpoint. . . . 45
11 The local checkpoints when a session has just been initiated. . . 46
12 Creation of a new checkpoint. 47
13 The session protocol header. 51
14 State diagram for the Session Layer 55
15 Implementation of the Session Layer design. 62
16 Different execution contexts in the Session Layer implementation.

The arrows indicate which modules that communicate with each
other. 64

17 Endpoint directories . 66
18 Circular buffers in the checkpoint implementation. 71
19 Screen shot of the implemented Session Layer Daemon. 75
20 Session data structure. 78
21 A sample usage of the session segment data integrity. 99

Design of a Session Layer Based System for Endpoint Mobility 10

1 Introduction

Until recently, Internet relied on static mappings between users, computers,
network and link addresses. It resulted in a reliable, high performance and
well functioning infrastructure for naming, name resolution and routing in the
”traditional” Internet. However, considering the increasing degree of network
heterogeneity and a shift towards dynamic networking and mobility among net-
works, the usage of only the existing names is not enough in order to efficiently
and simply fulfill new requirements put on the networks today.

As mobile devices that are able to connect to the Internet grow in popularity,
new usage patterns emerge. It is getting more common for a computer to be
connected to the Internet from several different geographical positions, as well
as from several different network addresses. These changes in user behavior calls
for mobility support from the underlying communication systems.

Our basic definition of mobility is that a computer attached to a network
changes its network address, and therefore possibly its network attachment
point. Mobility taking place induces problems with today’s Internet infrastruc-
ture, since computers are identified and addressed with their network address.
We need a way to name a computer independently of its current network ad-
dress, as well as a way to contact the computer using this name.

When a computer changes its location on a network, ie. mobility takes
place, there is a need to continue communication where it was stopped before
the change in location. Therefore there is a need for ways to suspend and resume
connections.

Definition Suspend means to pause data communication during a communi-
cation session, without in any way destroying the session.

Definition Resume means to continue data communication on a previously
suspended communication session.

There is also a need for ways to relocate connections to use new interfaces,
network addresses and transport addresses. There is a vast amount of work
already done in this field, but it is far from mature. A lot more work is needed
before a user may do simple things such as bringing his laptop from work to
home without loosing any connections.

1.1 Problem statement

The goal of this master thesis project is to design and implement a Session
Layer in the OSI stack [3], that provides a new way for applications to initiate,
suspend, resume and relocate communication sessions. It must be emphasized
that the main goal of the project is not to simply provide mobility support for
computer networks. We want to make it possible to name devices, documents
and users in a way such that they all can be completely mobile.

Design of a Session Layer Based System for Endpoint Mobility 11

1.1.1 Session layer

Instead of creating connections when we want to initiate communication, we
create sessions. A session is very similiar to a connection (ie. a Transmission
Control Protocol (TCP) connection). The advantages of sessions are that they
are not statically bound to network addresses, transport addresses or proto-
cols like traditional connections. Sessions can be changed dynamically at any
time. Sessions are also more persistent than sockets. If a session looses network
connection, it will not be destroyed after a while like a traditional connection.

If a network interface is lost, the session will automatically be suspended.
As soon as the device on which the session resides has some form of network
access, the session will automatically be resumed without any loss of data.

Users might want to define their network connection preferences. For ex-
ample, a user might want to have as low latency as possible, without taking
bandwidth into account. Another user might only want to use Wireless Local
Area Network (LAN), even if wired connections exist. For that reason a policy
management system is needed. This system decides when and how to change
between different network interfaces, connection types and protocols when net-
work conditions change.

1.1.2 Naming system

We will need a new naming system for these sessions. We cannot use network
and transport adresses to identify sessions, as these addresses could be changed
during communication. So there is a need to develop a new naming system to
globally and uniquely identify sessions and the endpoints they are bound to.

Another important part of this project is that we do not only want to name
devices. We want to be able to give names to information entities, like a col-
lection of documents. In this way we will be able to move information entities
between computers and networks, and it will still be accessed with the same
name. Also we want to give network names to persons, so that we can contact
a person through the same endpoint address, independently of what country he
is in, what computer he is using, or what network address this computer has at
the moment.

1.1.3 Requirements

To summarize the requirements above, we will need to have the following func-
tionality.

• A Session Layer between the transport layer and application layer.

– This Session Layer should be designed and implemented.
– Full support for mobility, ie. when moving between networks and

locations, the Session Layer should seamlessly update the sessions so
that the connections are not lost.

– Support for suspend and resume; the application should be able to
pause the communication through a session and later resume it.

Design of a Session Layer Based System for Endpoint Mobility 12

– The sessions should be at least as secure as the sockets of today are.

• A naming system for the endpoints to which sessions are attached.

– Should define globally unique names for sessions and the endpoints
to which they are attached.

– Software for this naming system should be designed and implemented
to work seamlessly with the Session Layer.

1.2 Expected results

We expect to have a working prototype of the Session Layer, complete with a
accompanying naming system, meeting the requirements stated in section 1.1.3.
Along with this prototype we expect to have well designed state machines for the
Session Layer, and complete specifications of the protocols used in the Session
Layer and its naming system.

1.3 Evaluation strategy

For this type of software implementation, we think the best way to evaluate it
is by making use cases. The degree of success of the implementation will be
determined by how well the requirements defined by the use cases are met. The
use cases should cover different everyday scenarios as well as odd scenarios and
boundary tests.

Design of a Session Layer Based System for Endpoint Mobility 13

2 Background

2.1 Important concepts

Before discussing the related work in the area of mobility and the Session Layer,
explanations of a few important concepts are given below.

Proxy
A proxy (or proxy server) is a host that in some way forwards data between
two other hosts. In the context of mobility, proxies are often used as
gateways to the Internet, to make mobile devices appear to have static IP
addresses.

Home agent
A home agent is a form of proxy that mobile devices can connect through.
Hosts can always reach a mobile device through its home agent. When the
mobile device moves and changes IP address, it will only have to inform its
home agent, so that the home agent can redirect the traffic to the mobile
device at the new IP address.

Triangle routing
A problem that will arise when using home agents, is that all packets des-
tined to the mobile device will have to be routed through its home agent.
If the mobile device is communicating with a host that is geographically
close, but its home agent is far away, the network performance could be
very bad because of the triangle routing.

2.2 Protocol stack

When designing network protocols there is often a need to put one protocol on
top of another. This is called protocol stacking. When several protocols are
stacked on top of each other they will form a protocol stack. An example is the
Internet as it is structured today.

2.3 OSI Model

The OSI Model[3] is an abstraction of a protocol stack, see figure 1. It con-
sists of seven layers. At each layer there is a definition of the services that a
protocol at this layer should implement. The idea is that a layer should only
use functionality provided by the layer below it in the stack, and only provide
functionality to the layer above it. If the functionality provided between layers
is standardized it is possible to use implementation of different layers from dif-
ferent vendors. This gives a very flexible type of network in which most devices
would be able to communicate with eachother. We will now briefly describe the
different layers in the OSI Model.

Design of a Session Layer Based System for Endpoint Mobility 14

Figure 1: The OSI layer model. Picture from Wikipedia, http://en.
wikipedia.org/wiki/Image:Osi-model-jb.png, licensed under GNU Free
Documentation License.

2.3.1 Application Layer

This layer should provide the functionality needed by the user to access infor-
mation on the network. The user will typically use an application that will use
the functionality provided to deliver the information requested. An example is
the web browser that uses the Hyper Text Transfer Protocol (HTTP) to present
Hyper Text formatted web pages for the user.

2.3.2 Presentation layer

The Presentation layer should provide functionality to “identify transferable
syntaxes”, “select transfer syntax” and access services of the Session layer (which
is directly below the Presentation layer). The idea is that this layer should decide
how the information provided by the Application layer should be formatted.

2.3.3 Session layer

The Session layer should provide the following functionality to the Presentation
layer.

Session-connection establishment
The Session Layer should enable two presentation-entities to establish a

Design of a Session Layer Based System for Endpoint Mobility 15

session-connection between them. The presentation-entities are identified
by session-addresses, and both sides negotiate session parameters.

Session-connection release
The session-connection release service allows presentation-entities to re-
lease a session-connection without loss of data.

Normal data transfer
The ability to send data between presentation-entities.

Token management
Allows the presentation-entities to control explicitly whose turn it is to
carry out certain control functions.

Session-connection synchronization
The presentation-entities should be able to define and identify synchro-
nization points and to reset the session-connection to a defined state and
agree on a resynchronization point. The Session Layer is not responsible
for any associated checkpointing or commitment action associated with
synchronization.

Exception reporting
The Session Layer should provide exception reporting to inform the present-
ation-entities of exceptional situations.

Activity management
The user of the Session Layer should be able to divide logical pieces of
work into activities. A session could span several activities, and these
activities can be interrupted and then resumed.

2.3.4 Transport layer

The Transport layer should relieve the Session layer from the task of actually
deciding how to deliver the data. This can be done in different ways and it is
important to separate connection and connectionless Transport layer services.

Connection services

Transport-connection establishment
The Transport layer should enable two session-entities to establish a Trans-
port layer connection. Session-entities are identified by a transport-address.

Transport-connection release
It should be possible for a session-entity to release a transport-connection
and this should inform the correspondent session-entity.

Data transfer
The Transport layer should provide the means for two session-entites to
transfer data between them.

Design of a Session Layer Based System for Endpoint Mobility 16

Expedited data transfer
The transport layer should provide functionality to send urgent data that
will be allowed to bypass the ordinary data stream.

Suspend facility
The Transport layer should make it possible for two session-entities to
suspend a transport-connection.

Connectionless services The Transport layer should provide functionality
to deliver data between session-entities, but it does not give any guarantee for
delivery or correct ordering of the data. Session-entities are identified by the
transport-address.

2.3.5 Network layer

The network layer should deliver data between transport-entities. Those entities
are identified by the network-address. This means that the the network layer
is responsible for routing the data to the correct network-address. This can be
done both by conctions or connectionless data delivery. The difference between
the two modes are very much the same as on the transport layer. The Network
layer should also map between network-addresses and data-link adresses. It
is also responsible for error detection and it should report any errors to the
Transport layer.

2.3.6 Data-link layer

The Data-link layer should provide functionality for the Network layer to use
connections between different netwrok-entities. Different network-entities are
identified by a data-link address.

2.3.7 Physical layer

The physical layer should perform the actual delivery of data. It consists of
connections between different data-link entities which are used to transfer data
between them.

2.4 The Internet Protocol Stack of Today

Today, the protocol stack used for communication over the Internet uses Internet
Protocol (IP) as the network layer protocol. On the transport layer, the two
most commonly used protocols are Transmission Control Protocol (TCP) and
User Datagram Protocol (UDP). The network address used by IP is called IP
address. It is a 4 byte number identifying a host, and also providing information
about the route to that host. The transport address used by TCP and UDP is
called port number, which is an integer defining which application to connect to
on the host at the current network address.

Design of a Session Layer Based System for Endpoint Mobility 17

2.4.1 TCP

TCP is the most commonly used transport layer procotol on the Internet today.
TCP provides functionality to the layers above to create connections between
two hosts. When a connection is established, TCP packets containing data can
be sent over it. TCP emulates connections over IP packets, the IP protocol
itself is not connection oriented.

2.4.2 UDP

UDP is used to send packets (datagrams) between two hosts. The protocol is
not connection oriented, and it does not guarantee that a packet that is sent
reaches its destination.

2.5 Related work and existing solutions

In this section we will briefly describe other efforts to achieve our goals. Some
of them are complete systems, others just solve some specific problems. This
is what we will later base our design decisions on. We look at the definitions
of the Session Layer, mobility on different layers in the IP stack and different
types of connection management.

2.5.1 At what layer does mobility belong?

There have been a lot of discussion about what layer or layers in the OSI model
(see figure 1) is suitable for holding support for mobility. Wesly [17] discusses
this important question in a paper that is summarized below.

Placing mobility support in the network layer has the benefit that it is in
the middle of the hourglass model1, and therefore it can benefit every higher
layer using IP. The downside is that we cannot escape triangle routing, which
can be a serious problem under some circumstances. Another disadvantage is
that the mobile node’s home agent becomes a single point of failure. Also,
the communication between IP and higher layer protocols is currently not rich
enough to provide the higher layers with information about mobility taking
place, which would be a very useful feature.

Transport layer mobility is a rather good solution, since it does not need any
changes to the infrastructure of networks. We do not need any home agents or
home networks, nor any changes in infrastructure besides having access to DNS
and DHCP services.

Session Layer mobility has basically the same advantages as transport layer
mobility, but we do not have to make any significant changes in how the trans-
port protocols work. The major downside of a Session Layer implementation is
that it requires changes in applications.

As a sidenote, it can be argued that the need for changes in applications
is a bigger problem than the need for changes in the operating system. If the

1The IP stack can be seen an hourglass with IP in the middle, holding it together. You
can use any protocol on top of or below IP.

Design of a Session Layer Based System for Endpoint Mobility 18

operating system is changed in a way that does not affect the API towards
applications, it is very simple to install an upgrade to the operating system,
and then continue using the old applications as before. If a change is needed in
every application, they must all be recompiled. This can be very hard to realize,
since every developer of closed-source applications must be convinced that the
changes should be made.

2.5.2 Network layer mobility

As stated above implementing mobility in the network layer has its advantages
and disadvantages. The standard for IP mobility, Mobile IP, is implemented in
this layer, but there are also other solutions.

Mobile IP Mobile IP [8] is one of the simpler approaches to mobility. When
a host is mobile it will relay all incoming traffic through a home agent. This
home agent has a static IP address and is always possible to reach. Every time
the mobile host moves it will update its home agent. This ensures that the home
agent will forward traffic to the new address. When the mobile host sends a
packet it will send it to the host but change the source address to be the address
of its home agent. This way the communication will look completely normal
from the other host’s point of view.

Internet Indirection Infrastructure (i3) The i3 [14] approach to mobility
works like an event system. The user registers for a specific type of messages,
and also sends messages of a specific type. All services that have registered
for a specific type of messages will get all messages of this type. Therefore the
destination of a message is not defined by an IP address, but by a unique type
identifier.

Messages will be of the form (ID, data). All messages will be sent through i3

enabled servers. A request for a message will be of the form (ID, IP). Only one
server is responsible for an ID, which means that all messages with that ID will
be forwarded to this server, which will have a list of recipients. This makes it
possible for an application to form any type of overlay network and the system
also supports connection migration.

The i3 architecture is a lot more complicated than the summary above, and
it also has some more advanced features like ID stacking. Those features are
not really interesting for our work as we are mainly looking for a way to achieve
mobility and connection migration.

The HIP project The basic concept of the Host Identity Protocol (HIP) [6]
is that a host should not be identified by an IP address but by a Host Identifier
(HI). The HI should be a public key so that a host can easily know that it
communicates with the same peer all the time. With this in mind, there is a
simple solution to mobility. Since the connection is identified by the HI (along
with the ports), a reconnection is still possible after a change of IP address.

Design of a Session Layer Based System for Endpoint Mobility 19

2.5.3 Transport layer mobility

As stated in section 2.5.1, transport layer mobility has some advantages over
network layer mobility. Therefore a lot of research has been done in this area
and we will here present some of the different approaches.

Reliable Network Connections Zandy et al. [18] present two systems for
implementing transparent mobility and disconnection handling. They are trans-
parent in the way that applications do not have to be rewritten or recompiled
for the mobility and disconnection handling to work. The applications can still
behave as if they were using conventional sockets.

The first system is reliable sockets called rocks. They do not require any
changes in the system kernel, but are linked in to replace the standard sockets
API. This system is backwards compatible with conventional sockets, in the
sense that they can detect if the other peer has the extended rock functionality.
If it has not, the local rock can revert to behaving like a conventional socket. The
basic idea with rocks is to keep endpoints open when network failures occur, or
if the other host changes its IP address. They also have functionality to suspend
and resume connections.

The second system is reliable packets called racks. They have functionality
similar to rocks, but they are implemented as a packet filter instead of replacing
the existing socket API. This packet filter monitors the packets flowing into and
out from user space, and performs necessary modifications of these packets. It
also inserts new packets when needed.

Migrate The Migrate project [13] focuses on TCP connection migration, and
how that can be used to enhance mobility. The approach is to add an extra
option to the TCP header, namely the migrate option. When this option flag
is present in a SYN message and the server knows about migrate, it will send
a SACK with the migrate option set. This assures that this implementation
is completely backwards compatible with old TCP implementations. In the
three-way handshake of two migrate enabled hosts they will also use parts of
the TCP header for communicating a pair of public keys. Those keys will later
be used to identify the other peer when it resumes the connection. When a
connection is lost TCP saves all states and waits for a migrate packet. This
packet is validated with the public keys, and if it came from the right peer the
connection is resumed at exactly the state it was terminated in. This means that
communication is started from the last acknowledged byte in the TCP window.

2.5.4 Session Layer mobility

Session Layer mobility has the same advantages over network mobility as trans-
port layer mobility. It can also assure that we do not change the underlying
transport protocols. On the other hand, inserting a new layer between ap-
plication and transport layer will need every application to be modified and
recompiled.

Design of a Session Layer Based System for Endpoint Mobility 20

Robust TCP Connections for Fault Tolerant Computing The robust
TCP socket is a way to make TCP connections invulnerable to network or link
failures. Ekwall et. al. [1] implemented a Session Layer in Java, which has
the same API as the normal Java sockets. This Session Layer reconnects TCP
connections if they go down, without any loss of data. The application using
this library will not notice anything, it will seem as if the connection was never
lost.

A mobile TCP socket Qu et al. [9] explain how they have implemented a
mobile TCP socket using some small modifications to the socket implementa-
tion. The basic idea is to put a layer between the application and the socket.
This layer will be responsible for keeping the connection open when the TCP
connection goes down. Therefore it is also responsible for opening the connec-
tion when the other peer comes up again.

From the application’s point of view this socket will always have the same
IP addresses both local and remote. This will assure backwards compatibility
with the BSD socket API. The mobile socket will also buffer the data sent by
the application so that it may resend it if the underlying connection goes down.
It also keeps a server socket open on the same port as any connection, so that it
may receive resume messages from connection peers that has lost and resumed
their connections.

SLM The Session Layer Mobility (SLM) [4] approach to mobility is backwards
compatible with the existing sockets as it does not need any changes to the
current IP stack. Mobility is achieved by using proxies on both sides of the
communicating link. Therefore the applications will only connect to their local
proxy and not directly to the other host. This way all mobility is managed
between the proxies, hiding any mobility from the application. Naming is done
by adding an extra naming server on top of DNS. This server is to be asked
about movements of the user.

MSOCKS+ MSOCKS+ [5] is an architecture which aims at providing mo-
bile devices the means to change network addresses and the NICs used during
connections. It also provides a way to specify which traffic that should go to
which interface.

This is done via proxies. The proxy server should be placed between the
mobile devices and the rest of the Internet. When a mobile device wants to
initiate a connection, it connects to the proxy server providing information on
which host and port number it wants to connect to. The proxy server initiates
a new connection to the static host, and thereafter forwards all (even acknowl-
edgment and synchronization) packets between the hosts. The two end-points
will see these two connections as one single connection. This is called the split
connection model.

It is assumed that the “static host” never changes IP address, so only the mo-
bile host will need a library to handle reconnections and mobility. The MSOCK

Design of a Session Layer Based System for Endpoint Mobility 21

Figure 2: The matrix stack paradigm.

library is placed as a Session Layer between the application and the traditional
TCP socket.

If the mobile device moves to another location (another IP address) or to
another interface, it must reconnect to the proxy using a reconnect function
in the MSOCK library. The proxy sees the reconnect message, and un splices
the two previous connections, replacing the old mobile/proxy connection with
a new one. The static host will not notice anything, and sees it as the same
end-to-end connection is still open.

2.5.5 Multi layer mobility

Some projects handle mobility at several layers. This way one can achieve a lot
more flexibility in how the mobility is done. At the same time this increases the
complexity of the system.

Mobility Support for Networked Applications built in the TCP/IP
Stack In Wang’s master thesis report[16] it is explained how to modify the
Linux TCP/IP stack to make it dynamic in the bindings between different pro-
tocols at different layers. The goal is to make the network stack (and therefore
also the socket) fully dynamic, so that the IP address, TCP port and IP protocol
version can be changed at any time during an established connection. This way
it can react to any changes in the underlying network, even theoretically change
the transport protocol used, although this has not yet been implemented.

Figure 2 illustrates the evolution from the traditional stack paradigm to this
new matrix stack paradigm, where no binding between different protocols in
different layers are static. Everything could be dynamically rebound during
ongoing connections.

The big problem with this is of course that changing the stack in this way
is fatal to protocols like TCP, if the changes are not carried out the same way
on both sides simultaneously. Therefore Wang suggests that a Session Layer is
needed.

Design of a Session Layer Based System for Endpoint Mobility 22

2.5.6 Connection management

Session Initiation Protocol The Session Initiation Protocol (SIP) [2] pro-
tocol is used for initiation of sessions. It basically provides means to transport
requests from one user to another, only identifying users with their SIP Uniform
Resource Identifier (URI). The URI is a name and a Fully Qualified Domain
Name (FQDN), e.g name@example.com. SIP relies on SIP proxies to deliver
requests to users. SIP can be used in conjunction with e.g, Session Descrip-
tion Protocol [12], which describes what kind of session we want to establish.
Those messages can contain anything from port numbers to data compression
type. When both peers have agreed upon the type of session they want, they
can establish an ordinary connection to transfer data of the session. As SIP
is mainly aimed at Voice over IP (VoIP) [15] this connection is often done via
RTP [10, 11].

2.6 Development environment

In order to implement a Session Layer, modifications to TCP/IP stack will be
needed. Therefore we will need access to the source code of a TCP/IP stack.
We will also need at least two networked devices to be able to run tests of the
networking capabilities of the Session Layer. To make the necessary changes in
the TCP/IP stack, and to develop the code for the Session Layer, we will of
course also need an editor and a compiler.

2.6.1 The TCP/IP-stack

We want to be able to test our implementation in a simple way, therefore we
want some kind of user space TCP/IP-Stack. We have investigated the following
two methods of getting this.

Daytona stack2

This is wrapper code around the Linux 2.3 IP-stack so that it may be run
in user space. The implementation seems very unstable and the code is
not very well structured.

User Mode Linux (UML)3

UML is a system that enables us to run a Linux kernel as a virtual machine
in a host system. This is distributed as a set of patches, included in the
main Linux kernel since version 2.6.9. With UML, it is possible to run
several virtual Linux machines on top of one machine.

After this investigation UML was a clear winner. It seems very stable and it
enables us to run several virtual machines on the same computer. Booting a
UML kernel takes very little time, as compared to booting a physical machine
with the same kernel. A good thing with UML compared to the Daytona stack

2http://nms.csail.mit.edu/~kandula/data/daytona.pdf
3http://user-mode-linux.sourceforge.net/

Design of a Session Layer Based System for Endpoint Mobility 23

is that any changes we make can be easily integrated into the main Linux kernel.
This will make real tests easier as we can run our modified kernel directly on
physical machines.

2.6.2 Networked devices

During design and implementation of our work we have used ordinary PCs
with Pentium 4 processors. On these machines we have run the Gentoo Linux
distribution4.

On top of this we run our UML machines. To be able to test the functionality
of the TCP/IP stack, the UML machines need networking capabilities. To
arrange this we have used the Ethernet bridging functionality in the Linux
kernel. The network testing setup is explained in figure 3.

Figure 3: The development network.

Every virtual device needs its own Media Access Control (MAC) address,
but they should have the same address every time they run. To achieve this
we will make a MAC address every time we start UML by hashing static values
that are different on different hosts. As of now we use the output from “pwd”
and “uname” as input to the hash.

2.6.3 Compiler and editor

As we are working on the TCP/IP stack inside the Linux kernel we have to use
the Gnu C Compiler, (GCC)5. The Linux kernel will not compile with any other
compiler as it depends on special features of GCC.

4http://www.gentoo.org
5http://gcc.gnu.org/

Design of a Session Layer Based System for Endpoint Mobility 24

2.7 Conclusions

We have seen that there has been many attempts to achieve parts of what we
want to do. Several of these attempts were successful and work in a good way.
However, it must be emphasized that the related work we have looked at mainly
describes methods of achieving mobility in networking, while we are trying to
establish a new way of thinking about connections and endpoints. The benefits
of our work will go beyond the mobility techniques that have been developed so
far.

The development environment we have chosen is very mature and easy to
work with.

Design of a Session Layer Based System for Endpoint Mobility 25

3 Design

In this chapter we will describe and define the different aspects of our system
design. We will start by explaining the basic design ideas and decisions. Then
we will define which services the Session Layer will provide to applications using
it. Following this we will define the different subsystems that the Session Layer
consists of. Finally we will describe the Session Layer protocol used for session
management communication.

3.1 Basic design decisions

Figure 4: The architecture of the Session Layer and its control mechanisms.

This section will introduce the basic ideas and concepts which our Session
Layer design will rely on. We will not only describe the ideas and concepts, but
also briefly explain why we have made these decisions. The overall design of the
Session Layer is shown in figure 4.

3.1.1 Endpoints

In our design communicating entities are called endpoints, see figure 5. An
endpoint can be anything from a computer to a collection of documents. The
Session Layer has the responsibility to manage endpoints in a way that enables
them to be truly mobile. An endpoint is a named entity, the name is globally
unique. To be useful endpoints need to provide services, such as HTTP or FTP,
to other endpoints.

Those services also need to be named, but they only need to be unique within
the scope of the endpoint. An endpoint might of course have any number of
services. When an endpoint connects to a service at another endpoint, there

Design of a Session Layer Based System for Endpoint Mobility 26

is a need to create a session to deliver data between the endpoints. Sessions
should be persistent. This means that a session should not be broken due to any
event of mobility. Sessions are named with a unique identifier, which consists
of two public keys in an RSA system. This assures that sessions can verify the
authenticity of eachother when they are mobile. An endpoint might contain any
number of sessions.

Figure 5: An endpoint is a named entity that contains the basic functionallity
needed for mobile communication. They provide services and contain sessions.

3.1.2 How will the user perceive the Session Layer?

The user closest to the Session Layer will be the application programmer. Of
course, normal users of the applications on a system will also perceive the Ses-
sion Layer, but the way they perceive it will be dictated by the application
programmer. Since we are not in control of how the programmer wants to for-
ward information about the Session Layer to the actual user, we will concentrate
on describing how the programmer perceives the Session Layer.

We have decided to design the interface to the programmer in a way that is as
close as possible to the BSD socket system calls. This way the programmer will
not need to learn a totally new paradigm of network programming. Of course
some things will be new to the programmer, like the concept of endpoints and
sessions. But sessions can basically be seen as sockets that are more persistent
and are allowed to be suspended.

3.1.3 Naming and services

To achieve true mobility, there is a need for a new naming convention for re-
sources. It is not possible to use network addresses anymore, since we can not
assume that they do not change during the session. Transport addresses (like
TCP ports) can also be changed during a session, so there is a need for other

Design of a Session Layer Based System for Endpoint Mobility 27

means of referring to a specific application at a host. This also follows from the
definition of the Session Layer in the OSI model.

A name in our naming system is of the format “object@domain”. Object is
here the name of an object that belongs to this domain. We call an object that
is named in this way an endpoint. At an endpoint there may reside a number
of services. A service is basically a process listening for session establishment
requests. In our new paradigm for networking, the service has big similarities
to a traditional BSD socket listening on a port. Our service will still be a socket
listening on a port, but we will hide the port number from the user. The domain
part of a name is a standard domain name like “example.com” which can be
reached using DNS. The naming system is explained in more detail in section
3.3.

3.1.4 Mobility

To tackle mobile events, the Session Layer needs support from underlying layers
to change the socket accordingly. If a device is moved to a new address we need
to update the socket connected to this device with new addresses. We will call
this concept rebinding. We have found two possible solutions for rebinding, to
create new connections and to use the Mobile Socket.

New connections One possible way to achieve mobility is to open a new
transport layer connection every time there is a mobility event. This makes it
possible to handle any mobility events as the socket can be set up in any way
when it is connected for the first time. This is an easy and reliable solution.

The Mobile Socket To achieve a higher degree of flexibility for the Session
Layer we may use the Mobile Socket[16]. The mobile sockets function like tradi-
tional BSD sockets, except for the extended functionality that enables the user
of the socket to dynamically change source and destination network-addresses
and transport-addresses. The concept of mobile sockets goes beyond that. It
also enables the user to dynamically change what network layer protocol to use
(e.g. change from IPv4 to IPv6).

Session Layer Mobility Directly using one of the mobility concepts de-
scribed above will not work. If a user changes the connection’s destination
network-address in an established connection, the user on the other side must
simultaneously change its source network-address if we want to be able to con-
tinue communication. This is where the Session Layer serves an important
purpose. The Session Layer will administer and synchronize these dynamic re-
bindings of network-addresses, transport-addresses, protocols etc. adequately.

To solve the problem of synchronization when rebinding connections between
different network and/or transport addresses, we will use the concept of suspend
and resume. When we need to rebind a connection, we will suspend the session,
meaning that we stop all data transfer immediately. When we have stopped the

Design of a Session Layer Based System for Endpoint Mobility 28

Figure 6: Session Layer mobility mechanism. This is the basic mechanism for
session mobility which supports a broad range of different mobility events. For
the simplest types of mobility events, e.g. network changes, all steps except
resume are optional.

data transfer, we perform our rebind of the connection. After that we inform
the other peer of this rebind by sending a session layer message, resume, to
the other peer. This resume message contains information of what our new
network/transport addresses or protocols are.

The other peer will now perform the necessary changes on its side (rebinding
the connection). When it is done it will respond with a session layer message,
resume ok, which means that it is now ready to resume the data transfer.

The suspend and resume commands are not only useful when rebinding the
connection. They also enable the user to pause communication at any point,
for example to perform network maintenance, and then resume communication
without any network-addresses, transport-addresses or protocols being changed.
See figure 6 for a step by step description of the mobility concept.

3.1.5 Data integrity

Besides handling foreseen disruption of communication (e.g. the suspend com-
mand), the Session Layer must handle unforeseen disruptions in communication
appropriately. An example of this is that a user goes out of range of his Wireless
LAN access point and looses the connection. Later, the user plugs in an Ether-
net cable and expects all sessions and data transfers to automatically continue
without any loss or corruption of data.

To handle this scenario gracefully, we have decided to use checkpoints. The
design of the checkpointing system is described in section 3.4.1.

Design of a Session Layer Based System for Endpoint Mobility 29

3.1.6 Automatic rebinding and the Session Layer Daemon

In order to make the rebinding really useful, there is a need to somehow auto-
mate it. When a user has been using Wireless LAN and wants to switch to wired
Ethernet, there should be no need to manually suspend the session, rebind the
socket to the Ethernet interface, and then resume the session.

To make the Session Layer more useful and user friendly, we have decided to
design and implement a Session Layer Daemon (SLD). This is a process that
will monitor the status of all network interfaces on a system. It will also check
for new network interfaces, and see if any interface disappears (e.g. when a
laptop user pulls out a PCMCIA network card).

When the SLD notices an event that is useful information for the Session
Layer (e.g. a new and faster network interface is available) it will forward
this information to the Session Layer. The Session Layer will then decide if
rebinding of the connection is needed. With this design approach, the user will
not have to think about how to connect to the network. The Session Layer will
automatically (according to a policy) change between network interfaces when
conditions change.

Another important task for the session layer daemon is to automatically de-
tect new devices other than network devices, that are attached to the computer.
Imagine that you have a Universal Serial Bus (USB) Mass Storage Device with
some web content. When you attach this device to your computer the con-
tent should automatically, if you want it to, be available from your computer
through a HTTP server. When you want to remove this device you want it
to automatically save all sessions to it so that they can be resumed when the
device is attached to another computer. This is what makes the session layer
go beyond traditional mobility.

3.1.7 How our design relates to previous work

Most of the other work done in the mobility area focuses on maintaining the
traditional way in which applications interact with sockets, to ensure backwards
compatibility. We argue that mobility requires such a big change to the tra-
ditional network thinking, that there is a need to introduce a new paradigm
for handling network connections. This means we cannot escape changing the
interaction between applications and the sockets.

A lot of work is done on the same layer as our work, the Session Layer,
but that is where the similarities end. Most of those projects are concerned
with TCP only and will not address things such as naming and on/off (re-
sume/suspend) semantics[9, 5].

This said, our project still has a lot in common with other projects. For
example the naming system we propose is very similar to the one used in SIP
and the control messages in the session management protocol could just as well
be SIP messages. Also the mechanism we use to achieve mobility on the lower
levels, the mobile socket, is very similar to the one developed in the migrate
project [13] to achieve mobility on the transport level.

Design of a Session Layer Based System for Endpoint Mobility 30

3.2 Session Layer services

The Session Layer should provide the functionality needed to achieve the goals
stated in the beginning of this paper.

3.2.1 Session services

This is a list of services that the session layer must provide.

For endpoints:

• Creation of endpoints.
• Destruction of endpoints.
• Provide one or several default endpoints which can be used by e.g. clients.

This is to simplify for applications that do not have any special interest
in device mobility and are happy to share an endpoint with a lot of other
applications.

• Rebinding of endpoints, e.g. change interface.
• Load endpoints from disk.
• Save endpoints to disk.

For services:

• Creation of services.
• Destruction of services.
• Accepting a client on a service.

For sessions:

• Connect to a service.
• Suspend a session.
• Resume a session.
• Close a session.

Note that session objects can only be created out of a connection to a service.
With BSD sockets, you first create the socket object, then use it to connect to
another host. This is an important difference and it is also an important design
decision. A session does not have a meaning unless it has been established
between two endpoints. A socket on the other hand might be connectionless.

3.2.2 Use cases

In this section we will list and explain the event flow in a range of use cases.
We have tried to cover most of the functionality that the Session Layer should
have.

Design of a Session Layer Based System for Endpoint Mobility 31

Use case 1 – Unexpected disconnection
Name Unexpected disconnection
Summary The system unexpectedly looses all network inter-

faces.
Preconditions

• A session is established.
• Data is being sent in both directions.

Triggers The local system suddenly looses all network com-
munication capabilities, e.g. no working network
interface is available.

Main path All communication stops, the functions for sending
and receiving data will block.

Alternative path –
Postconditions No send or receive calls will return until a new

interface is available.
Notes –

Design of a Session Layer Based System for Endpoint Mobility 32

Use case 2 – New network interface, no previous interfaces exist.
Name New network interface, no previous interfaces ex-

ist.
Summary This use case describes what happens if no net-

work interfaces are available, and suddenly a new
interface comes up.

Preconditions

• A session is established.
• No network interfaces are available.

Triggers A new network interface is made available on the
system.

Main path

1. The Session Layer Daemon notices the new
network interface and forwards the event to
the Session Layer.

2. Communication on all endpoints and ses-
sions continues. All receive or send calls that
the application was blocked in when the net-
work was lost will now return successfully.

Alternative path If the policy associated with an endpoint prohibits
it from resuming, for example if the policy says
that the endpoint must only use a special type of
interface, the endpoint’s sessions will remain sus-
pended.

Postconditions If the main path was executed, all communication
will be allowed again without any data loss or data
corruption.

Notes What happens with each endpoint is very depen-
dent on the policy associated with the endpoint.
The policy may state that the endpoint must only
use 1 Gigabit Ethernet, and if a 10 Megabit Eth-
ernet interface is made available the sessions asso-
ciated with that endpoint will remain suspended.

Design of a Session Layer Based System for Endpoint Mobility 33

Use case 3 – New network interface, previous interfaces do exist.
Name New network interface, previous interfaces do ex-

ist.
Summary This use case describes what happens if one or

more network interfaces are available, and sud-
denly a new interface comes up.

Preconditions

• A session is established.
• At least one network interface is available.

Triggers A new network interface is made available on the
system.

Main path

1. The Session Layer Daemon notices the new
network interface and forwards the event to
the session layer.

2. The policy manager will check the policies
for every endpoint, and decide if the end-
point should switch to the new interface or
not.

3. All endpoints that have policies preferring
the new network interface to the previous
ones available will suspend, rebind to the
new interface, and resume communication.

Alternative path –
Postconditions Communication will be enabled as before, but

some endpoints may be communicating on new
network interfaces.

Notes As usual, the applications on the system will not
have to know or care about this happening. The
transition to new interfaces will not be noticed by
them.

Design of a Session Layer Based System for Endpoint Mobility 34

Use case 4 – Both peers simultaneously rebind endpoints
Name Both peers simultaneously rebind endpoints
Summary A session is established. One peer moves from one

network to another, this leaves this peer without
connection during a certain amount of time. Dur-
ing this time the other peer changes its connection
to the network.

Preconditions

• A session is established.
• Data is being sent in both directions.

Triggers Both peers simultaneously rebind their sessions to
new source IP addresses.

Main path Communication continues as before, the applica-
tion notices no difference.

Alternative path –
Postconditions To the application it appears as if nothing has hap-

pened, except for a short pause in communication.
Notes –

Use case 5 – Application performs suspend
Name Application performs suspend
Summary An application suspends the session.
Preconditions

• A session is established.
• Data is being sent in both directions.

Triggers The application calls the suspend command, spec-
ifying a session to suspend.

Main path All communication stops. Any receive or send
calls that the application is in will block.

Alternative path –
Postconditions All communication through the suspended session

has stopped.
Notes –

Design of a Session Layer Based System for Endpoint Mobility 35

Use case 6 – Application performs resume
Name Application performs resume
Summary The application calls the resume command, spec-

ifying a session to resume.
Preconditions The session has previously been suspended.
Triggers The application calls the resume command.
Main path The session will be enabled for further communi-

cation. If the application was blocked in a receive
or send call when suspending, these calls will now
return successfully.

Alternative path –
Postconditions –
Notes Communication through the resumed session is

now possible again.

–

Use case 7 – Create endpoint
Name Create endpoint
Summary The application wants to create a new endpoint to

use for communication.
Preconditions –
Triggers The application calls the function to create an end-

point, providing a name that identifies it.
Main path The new endpoint is created and can now be used.
Alternative path If the endpoint name already exists within the cur-

rent computer’s domain, the function returns with
an error indicating this.

Postconditions A new endpoint with the name provided by the
application now exists.

Notes –

Design of a Session Layer Based System for Endpoint Mobility 36

Use case 8 – Close endpoint
Name Close endpoint
Summary The application wants to destroy an existing end-

point.
Preconditions An endpoint exists.
Triggers The user calls the function for closing an endpoint,

providing the name of the endpoint to be closed
Main path

1. All sessions associated with this endpoint are
closed and removed.

2. All services associated with this endpoint are
removed.

3. The endpoint itself is removed.

Alternative path If the computer on which the application resides
does not have ownership of the endpoint, nothing
will be done to it and the function will return with
an error stating this.

Postconditions The closed endpoint does not exist anymore.
Notes –

Use case 9 – Create session
Name Create session
Summary The application connects to a service attached to

an endpoint, thereby creating a new session.
Preconditions –
Triggers The application calls the function to connect to a

service.
Main path

1. The session layer connects to the service and
negotiates the session ID for a new session.

2. The function returns a pointer to the new
session.

Alternative path If the service on the other side rejects the creation
of this session, the function will return an error
stating this.

Postconditions If the service accepted the creation of the new ses-
sion, it is now ready to be used.

Notes –

Design of a Session Layer Based System for Endpoint Mobility 37

Use case 10 – Create service
Name Create service
Summary The application creates a new service that will lis-

ten for new session establishment requests.
Preconditions An endpoint exists, which the local computer has

the ownership of.
Triggers The application calls the function for service cre-

ation, specifying the desired service name.
Main path The service is created.
Alternative path If a service with the name specified already exists,

no service will be created. Instead, the service
creation function will return with an error message
stating that the service already exists.

Postconditions A service with the specified name now exists and
listens for new session establishment requests.

Notes –

Use case 11 – Accept incoming session establishment request
Name Accept incoming session establishment request
Summary The application accepts an incoming session estab-

lishment request. The new session is established.
Preconditions There is an open service on an endpoint which the

current local computer owns.
Triggers The application calls the function which accepts

incoming session establishment requests. An in-
coming session establishment request is accepted
by the local session layer.

Main path

1. The characteristics of the new session is ne-
gotiated.

2. The session is created.

3. A pointer to the new session is returned to
the calling application.

Alternative path –
Postconditions A new session now exists and is ready for use.
Notes –

Design of a Session Layer Based System for Endpoint Mobility 38

Use case 12 – Close session
Name Close session
Summary The application closes a session.
Preconditions A session exists which the application has owner-

ship of.
Triggers The application calls the function to close a ses-

sion, specifying the session’s name.
Main path The session is closed and deleted.
Alternative path –
Postconditions The session that was closed does not exist any-

more.
Notes –

3.3 Naming

In this section we will describe the design of the naming system that comes
with our session layer. We begin by explaining the problems with naming that
need to be addressed, followed by basic important concepts, which are needed
to understand the naming system.

3.3.1 Naming problems

The biggest problem concerning naming in mobility-enabled networks is that
the conventional naming system for the Internet, IP addresses, is both used to
identify devices and to describe how to forward packets to them. Therefore
there is a need to separate the information about how to reach devices (and
other mobile objects) from their names. A name of an object should always be
constant, as it is always the same object we are referring to, but the information
about how to reach it will obviously change often when moving objects.

Not only IP addresses may change when moving objects. Also the port num-
bers associated with services attached to an object may change. Suppose we
want to move a web service currently listening on TCP port 80 to a different
computer. But the computer we are moving to already has a web service listen-
ing on port 80. The port of the moved service must now be changed, and peers
connecting to the service must be made aware of this port change.

3.3.2 Introduction to the naming system

We have developed a naming system to resolve the problems stated in the pre-
vious section. This naming system makes it possible to identify endpoints inde-
pendently of which host they are currently residing at. Additionally, it enables
users to identify services independently of which port they are listening to at
the moment, or which protocol they are currently using.

For endpoints, we have decided to use the same naming convention as the
one used by SIP. The names for endpoints are of the format “object@domain”.
An example of such a name would be “web@example.com”, identifying the

Design of a Session Layer Based System for Endpoint Mobility 39

“web” endpoint of the domain “example.com”. The domain name itself, “ex-
ample.com” is a standard domain name which can be found in a conventional
DNS server.

When it comes to services, we have extended the SIP naming convention a
little. A service name is written before the endpoint name, with a dot separating
the service name from the endpoint name. So a valid identifier for a service we
want to reach could be “www.web@example.com”, identifying the service called
“www” at the endpoint “web” which belongs to the domain “example.com”.

In the traditional TCP/IP paradigm, applications connect from a port, to
another port at the other peer. Now we connect to a service (which is mapped
to a port), but where do we connect from? The answer is that we connect from
an endpoint, e.g. an endpoint that is used for all outgoing session connections.
We use a randomized TCP port, as in a conventional TCP connection.

A problem may arise here. Assume that we move our default endpoint to
another computer and are forced to change the port from which our connection
was initiated, and the other computer looses its network connection during our
movement. When we have moved, we will try to resume the session with the
other host, but it can not be found since it is disconnected from the network.
We will give up and wait for the other host to resume the session when it has a
network connection.

A few moments later, the other host gets network reachability again, and
it tries to resume. The potential problem now is that we have changed our
port, and the other host does not know about it. We have solved problems
of this nature by having every host always listening for session control channel
messages on a specific port which is always the same. The resuming host will
send a resume message to the session control channel (described in section 3.7)
specifying its IP address, port number and protocol. When we reply to this
resume message with a resume ok message, we specify our own current IP
address, port number and protocol. This way both hosts will always now what
specific network settings that should be used.

3.3.3 Session Name Server

As the syntax described in section 3.3.2 is not compatible with the original
syntax of the DNS, there is a need for a new naming service. We will refer to it
as the Session Name Server (SNS). This server keeps track of what IP address,
port and protocol, that all services and endpoints associated with its domain,
are currently using. When the application wants to start listening on a new
service, it will make a request to create such a service at an endpoint which it
has previously created. The request will be forwarded to the local SNS, and
the current attributes (e.g. port, protocol) of the service will be recorded in the
SNS. These attributes will of course be updated whenever they change.

There needs to be a way for the SNS to check if a request to create or delete
an endpoint or a service is legal. Only certain users should be able to create
new endpoints within a domain, and only the creator of an endpoint should be
allowed to attach services to it.

Design of a Session Layer Based System for Endpoint Mobility 40

3.3.4 Name lookup

Figure 7: When creating a session there is a need too lookup the name for both
the endpoint and the service.

The name lookup is a two step process. We will explain it by providing an ex-
ample. Assume that we want to establish a session with “www.web@example.com”.
We will first ask our DNS about the IP address for “example.com”. The SNS
of example.com must always be present at the IP address which is stored in the
DNS.

Now we will contact example.com and ask for information about how to
contact the service “www.web” at this domain. The SNS at “example.com” will
provide IP address, port and protocol information, and now we may connect
and establish a session with the service. See figure 7.

There are some problems associated with this design we will discuss them
in the next section. The reason why we have not addressed those problems is
because we want to use the same syntax as SIP.

3.3.5 Shortcomings of the naming system

The naming system used have one major flaw in its basic design. It is actually
not possible to distinguish it from an ordinary URL. Imagine that you want to
use “scp” to copy a file to another host, you will then use a user@host URL to
make sure that “scp” uses the right user to login to the host. If you want to use
“scp” to a host named with the proposed naming system your identifier will be
object@domain. Those two URLs can not be distinguished from each other.

3.3.6 Session Name Server Protocol

In this section we will describe the protocol used when communicating with the
Session Name Server (SNS). This is a very simple protocol that we have designed

Design of a Session Layer Based System for Endpoint Mobility 41

and implemented with the only intention to use it in our prototype. No security
mechanisms or extensive error handling is used. However, this protocol has
served us well during our development of the prototypes.

There are eight different message types for requests to the SNS. Half of them
concern endpoints, and the other half concerns services. The message types and
the functionality are described below. See figure 8 for detailed information about
the fields in messages of different types. The only two message types that are
answered are get ep and get service. If the endpoint or service is found in
the SNS, the corresponding IP address or port will be returned. If the endpoint
or service is not found, 0 will be returned.

NEW EP
This message type is used when we want to create a new endpoint. The
payload of this message is the endpoint name followed by the 32 bit IP
address that the name should refer to.

CHANGE EP
When we want to change the IP address that an endpoint refers to we
send a message of this type. The payload consists of the endpoint name
followed by the 32 bit IP address.

DEL EP
We send this message when we want to delete an endpoint. In this case
that means that the SNS should no longer be aware of the endpoint, and
it should also delete all services attached to this endpoint. The payload
consists of the endpoint name.

GET EP
This message type is used when we want to lookup the IP address of an
endpoint. The payload consists of the endpoint name. The SNS will reply
with the 32 bit IP address, or zero if the endpoint was not found.

NEW SERVICE
When we want to register a new service at the SNS we use this message
type. The payload starts with the service name followed by the endpoint
name, with a dot in between, e.g. “servicename.endpoint@example.com”.
After this we supply a 16 bit port number that the service currently listens
for new connections at.

CHANGE SERVICE
This is the service equivalent to change ep. The payload starts with the
service name followed by the endpoint name, with a dot in between. After
that comes the 16 bit port number that we have changed to.

DEL SERVICE
This message type is used for deleting a service. The payload consists of
the service name followed by the endpoint name, with a dot in between.

Design of a Session Layer Based System for Endpoint Mobility 42

GET SERVICE
When we want to know at which port a service is listening we use this
message type. The payload is the service name followed by the endpoint
name, with a dot in between.

3.4 Data integrity

An important role for the session layer is to provide means of restarting rebound
connections. A rebound connection may or may not be in a state that the trans-
port layer protocol can handle. Therefore the session layer needs to be able to
retransmit any packets that were lost due to the rebinding, and synchronize the
data stream appropriately so that the user of the session layer does not receive
any corrupted data. This can be done in several ways. We have developed and
tested two designs.

The first design is based on the concept of data segments that are acknowl-
edged continuously, see Appendix A. After we had developed and implemented
the first design, we were made aware of some drawbacks when testing it. We
then created and implemented a second design, keeping the drawbacks of the
first design in mind. We also tried to make the second design more in line with
the semantics of the OSI definition of the session layer [3].

3.4.1 Checkpoint oriented integrity

This is a description of the design of our second data integrity system. The idea
with our checkpoint oriented data integrity is that we continuously establish
new checkpoints in the data stream. All bytes in this stream must be correctly
transfered in order. When we have established a checkpoint, both peers have
agreed that all data has been transferred correctly up to this point. With this
knowledge we may drop all data before the checkpoint, as we know it has been
safely transferred to the other side. If the connection is broken in any way we
will resume from the last established checkpoint.

A checkpoint consists of two values, one for the send and one for the receive
stream. See figure 9. For any given checkpoint identity number these two values
must be identical on both hosts. To assure this we have developed a simple
protocol that will continuously negotiate new checkpoints during data transfer.
This protocol uses the same message headers as described in section 3.7.1. In the
rest of this section we will describe the ideas behind our checkpointing protocol
in detail.

How to reach an agreement We will now try to describe the procedure
that is followed when two hosts want to agree upon a checkpoint. Figure 10
illustrates the procedure. A checkpoint is always negotiated between two hosts,
we will here call them host A and B. The first thing to do when host A creates
a new checkpoint is to send a checkpoint message. This message contains the
relative position in the send and receive stream. These positions will be used

Design of a Session Layer Based System for Endpoint Mobility 43

H
ea

de
r

ty
pe

F
ie

ld
1

si
ze

(b
yt

es
)

F
ie

ld
1

co
nt

en
t

F
ie

ld
2

si
ze

(b
yt

es
)

F
ie

ld
2

co
nt

en
t

N
E

W
E

P
64

E
nd

po
in

t
na

m
e

32
IP

ad
dr

es
s

C
H

A
N

G
E

E
P

64
E

nd
po

in
t

na
m

e
32

IP
ad

dr
es

s
D

E
L

E
P

64
E

nd
po

in
t

na
m

e
N

/A
N

/A
G

E
T

E
P

64
E

nd
po

in
t

na
m

e
N

/A
N

/A
N

E
W

SE
R
V

IC
E

64
Se

rv
ic

e
na

m
e

16
P
or

t
nu

m
be

r
C

H
A

N
G

E
SE

R
V

IC
E

64
Se

rv
ic

e
na

m
e

16
P
or

t
nu

m
be

r
D

E
L

SE
R
V

IC
E

64
Se

rv
ic

e
na

m
e

N
/A

N
/A

G
E

T
SE

R
V

IC
E

64
Se

rv
ic

e
na

m
e

N
/A

N
/A

Figure 8: The SNS protocol message types and payloads.

Design of a Session Layer Based System for Endpoint Mobility 44

Figure 9: The structure of a checkpoint.

by host B to understand at which byte this checkpoint should be created. The
checkpoint that A just sent will be called the pending checkpoint. It is now
important that host A does not send any further checkpoint messages until it
has received an answer from host B. This is to assure that host A will always
have a checkpoint in common with host B, by avoiding to have several of A’s
own checkpoint messages on the network at the same time.

Host B will receive this checkpoint message. The byte positions that the
message contains can now be compared with the byte positions host B has. It
is quite obvious that the amount of bytes that B has received should be equal
to the amount of bytes that A has sent, but the amount of bytes that B has
sent may be greater than the amount of bytes that host A has received. This
is due to the full duplex nature of the stream that the checkpoint protocol is
working on. Therefore host B now needs to decide which value to use, its own
or host A’s. The right thing to do is for B to choose its own value, the ordered
nature of the stream will assure that if the checkpoint message arrives, all bytes
that have been sent before it also arrived. Another way to look on this is to
always use the highest of the two positions, this will give the same functionality
as described above and also solve another problem which will be discussed later.

It is now time for host B to create a new pending checkpoint. This pending
checkpoint will use the method described above the get its positions in the send
and receive streams. The last thing to do is to send a checkpoint message back to
host A. This message will contain the same positions as B’s pending checkpoint.

When host A receives the checkpoint message, that was sent by host B as an
answer to its request, it will update its pending checkpoint in the same manner
as described above. That is, it will always choose the bigger of two values. After
this it is safe for host A to send a new checkpoint message.

We previously talked about a problem that was solved by always using the
bigger of two positions. This problem occurs when both hosts want to create a
new checkpoint at the same time. The meaning of “at the same time” here is
that the they we will not receive the other hosts message before they sent their
own. When they receive the other hosts checkpoint message they will treat it
as an acknowledgment of their own message and treat it as described above. As
all values can be different there is a need for a common consensus (remember

Design of a Session Layer Based System for Endpoint Mobility 45

Figure 10: The prcedure followed when establishing a new checkpoint.

that the sole purpose of a checkpoint is to point out the same byte position on
both hosts) and this consensus is reached when both hosts use the same method
to set their positions. This method is as we said before, to always choose the
biggest position.

Another problem is that there is a need to identify different checkpoints in
the stream. Therefore we have developed a protocol in which there are three
valid checkpoint identifiers – 0, 1 and 2. When creating new checkpoints we
will give them one of these three identifiers. When asking to resume from the
checkpoint with a certain identifier, like 2, it is very important that both sides
refer to the same checkpoint. How this is ensured and why we need three
identifiers is explained below.

We have talked about pending checkpoints but each host actually always
keeps track of two checkpoints. They are called the acknowledged and the
pending checkpoint. At the beginning of a session we assign the identifier 0 to
the acknowledged checkpoint, and identifier 1 to the pending checkpoint. They
are both placed at position 0 in the send and receive streams of a host, so in

Design of a Session Layer Based System for Endpoint Mobility 46

Figure 11: The local checkpoints when a session has just been initiated.

practice they refer to the same checkpoint at this stage. See figure 11.
When we later establish a new checkpoint, we want to add this as a new

pending checkpoint. The pending checkpoint is the checkpoint that we currently
are negotiating. When we add a new pending checkpoint, we must do something
with the old pending checkpoint. As we can not send a checkpoint before we got
an answer to the last one, we know that the old pending checkpoint, actually is
an acknowledged checkpoint. There is no need for two acknowledged checkpoints
so therefore we will drop all data before the old acknowledged checkpoint and
make an acknowledged checkpoint of the pending one. This algorithm will now
be described in detail.

1. Initially the host will have the acknowledged and pending at the same
stream positions, as shown in figure 11.

2. Send and receive data.

3. Now two things may happen which will trigger new checkpoints, depending
on which we will act differently.

• We receive a checkpoint message from the other host.
– If this checkpoint message has the same identifier as our pending

checkpoint, then we should compare values between the check-
points and take the maximum value of them.

– If this checkpoint message has the identifier that comes after the
one that the pending checkpoint has, e.g. pending is 2 and the
new is 0, then the other side clearly wants to create a new check-
point. We will start by dropping our acknowledged checkpoint
and free its identifier. Then we will make our current pending
checkpoint the new acknowledged checkpoint. We can do this
because we are getting a request to make a new checkpoint, and
that means both sides have agreed on the previous one, since we
never send new requests of making checkpoints if we have any
old requests pending. We will set our pending checkpoint to have
the identifier and stream positions that the received checkpoint
message states.

Design of a Session Layer Based System for Endpoint Mobility 47

Figure 12: Creation of a new checkpoint.

We should also send a checkpoint message back to the other host,
to inform it that we have received and acted on this checkpoint
message.

– If this checkpoint message has the same identifier as our acknowl-
edged checkpoint, then this is a protocol violation and we should
terminate this session.

• The send buffer at this host has less free space than a given amount,
e.g. 50%, left. This buffer will soon be full so we need to establish a
new checkpoint in good time to be able to make room for new data
in the buffer.

– If our sent checkpoint variable is false, then we should send a
checkpoint with the current values from our send and receive
buffers. This checkpoint should have the identifier following our
pending checkpoint. This checkpoint will also be set to pending
and the pending checkpoint will be set to acknowledged.

– If our sent checkpoint variable is true, we need to await this
checkpoint before we may create a new one. Otherwise we will
not be sure that the other host got our last checkpoint message.
We do not want to have two checkpoint requests on the network
at the same time.

4. Optionally send and receive more data.

5. Repeat from step 2.

An example To explain our checkpointing system, we will now present an
example which demonstrates how it works. In this example, a session is estab-
lished between hosts A and B.

When host A has sent and received a number of bytes and decides to estab-
lish a checkpoint, it will send out a request to establish a checkpoint with the

Design of a Session Layer Based System for Endpoint Mobility 48

identifier 2. Host A will drop the current acknowledged checkpoint and make
the pending checkpoint its new acknowledged checkpoint. It will then set its
new pending checkpoint to the current position in the receive and send stream,
and assign it the identifier 2 before sending the checkpoint message to B. Fig-
ure 12 illustrates the process of introducing a new checkpoint. At the top, we
see how the checkpoints position in the data stream when the new checkpoint is
created. In the bottom, we have the same data stream, but here we have made
the changes necessary for the new checkpoint to be introduced to the system.

When asking to establish new checkpoints, the identifier that is not currently
used by the pending or acknowledged checkpoints is always chosen. This is why
we need a third identifier, only two of them would cause misunderstandings
about what checkpoint is really meant. Besides the identifier of the checkpoint
it wants to create, host A supplies the byte position in its send and receive
stream that the checkpoint should be placed at.

Host B will accept the request to create a checkpoint with the identifier 2,
drop its acknowledged checkpoint, making the current pending checkpoint the
new acknowledged checkpoint. Then it will assign identifier 2 to its pending
checkpoint and set it to the specified position in its send and receive stream.
In case host B does not agree with what A specifies as the number of bytes
sent and received in the stream since last checkpoint, it will compare the “sent
bytes” field from host A with its own “received bytes” field, and establish the
checkpoint at the largest of these two numbers. Host A’s “received bytes” field
will be compared to host B’s “sent bytes” field in the same way, and again it will
pick the largest of these two numbers. This is done to assure that even if the
checkpoints were sent simultaneously they will still refer to the same position
in the stream.

To acknowledge the creation of the new checkpoint, host B will now send
back a checkpoint message to host A specifying at what values the checkpoint
was created at host B. When receiving this message, A will adjust its own values
if they differ from what host A originally sent out.

The next time one of the hosts wants to establish a checkpoint, it will have
the identifier 0, since this is the only one of the three identifiers that is not
occupied by the pending or acknowledged checkpoint at the moment. When
checkpoint 0 is being established, the pending checkpoint will be set to this
identifier. The checkpoint established before as pending with identifier 2 will
now be the acknowledged checkpoint. Since we have started the establishment
of a new checkpoint, we can be sure that the old pending checkpoint is set to
the same values at both sides. This is because we never start the establishment
of a new checkpoint if we have not received the acknowledgment of our latest
checkpoint establishment request.

Rollback Now if we assume that the session is broken some time after check-
point 2 was established. Host B is the first to try to resume the session. To
be sure that data integrity is maintained, host B sends a resume message to A
stating that it wants to begin from checkpoint 1, our acknowledged checkpoint.

Design of a Session Layer Based System for Endpoint Mobility 49

A host will always try to resume from the acknowledged checkpoint.
Why not begin from the latest checkpoint? It could seem more reasonable

to resume from the pending checkpoint, since that is the one most recently
established. We do not do this because the pending checkpoint could be illegal
due to previously lost messages. Suppose, for example, that host A tries to
establish a checkpoint “0” with host B. Host A sets the pending checkpoint to
0 at its own side and then sends out the checkpoint message to host B. The
message is then lost and never reaches host B. Now the checkpoint that A refers
to as 0 may not be the same checkpoint as B refers to as 0. So the pending
checkpoint is always seen as a checkpoint undergoing establishment. We never
resume from it.

Problems As Palmskog[7] discovered in his evaluation of this protocol it is
possible to have data corruption under certain circumstances. For this to happen
both host A and B need to send their checkpoints simultaneously. They will
both treat the other hosts checkpoint as an acknowledge for their own. When
A gets the checkpoint from B it will act as if this checkpoint was an answer to
the checkpoint it sent. This means that it is now possible for A to send another
checkpoint. This is the problem, there is no guarantee that B has received
the previous checkpoint before A send this one. This means that it is possible
for A to have two checkpoint messages on the network at the same time. If
both are lost there is no common checkpoint and therefore the session will be
corrupted. Clearly this error will not happen very often, but a solution is needed
and Palmskog is currently working on one.

3.5 Session Layer Daemon

The Session Layer Daemon is used to intercept what happens to the local net-
work configuration and other mobile events such as attachment of mobile devices
(such as USB mass storage devices). It should act as a data collector and an
event generator. The basic responsibilities of the Session Layer Daemon are the
following.

• Collect information about the current state of the network configuration.
• Collect information about the current state of mobile devices.
• Properly configure new network interfaces or old ones that get a carrier

(e.g. someone plugs in a cable).
• Properly configure mobile devices and add any endpoints associated with

them.
• Forward important changes to the session layer.

To achieve this the Session Layer Daemon will need means of monitoring and
configuring network interfaces. Those means can often be provided by the oper-
ating system in some way. We think that each operating system should continue
to use its own way of discovering and configuring new interfaces, but we should
intercept those events so that we may forward them to the session layer. In case

Design of a Session Layer Based System for Endpoint Mobility 50

no such mechanisms exists, the Session Layer Daemon will need to contain all
the functionality described above.

There is also a need to intercept events about mobile devices and configuring
them. When a new device is discovered, it might contain endpoints that we need
to insert in to the session layer. How this is done is also very operating system
dependent.

3.6 Endpoint policies

Endpoint policies are used to decide if an endpoint should rebind to a new
interface or stay with the old one, when an event is received. There needs to be
different policies for different situations. To define policies is a hard task and
is also very dependent on how the user wants his computer and applications to
behave.

A policy could be a request to always try to keep the endpoint on an interface
that has connection. It could also be an advanced policy that only allows the
application to work during certain circumstances. That could be a scenario like
an application may only use links that do not have any cost associated with
the amount of data transferred. E.g. an FTP client that downloads a “not so
important” file.

Policies are an important part of the session layer design, but it is beyond
the scope of this paper. Therefore we have only implemented a simple policy
that tries to maintain network connection. In other words our policies will only
change interface when it is needed to maintain communication. We will not
take important things like interface speed, latency and cost into account in our
policy.

3.7 Session Management Protocol

There is a need for session layers on different hosts to communicate both data
and control messages with each other. Therefore we have designed a protocol
that has this functionality. This protocol is split in to two different parts.
Control and data messages. Those messages are actually never sent on the
same channel, they just have headers of the same structure.

When a session is established, a data channel is created using a protocol on
the transport level, e.g. TCP. This channel is used for ordinary data transfer
between hosts. When one host wants to suspend the connection or move to
another address it will create a new channel to the other host to deliver a
control message. We call this the session control channel.

Data messages Those messages are used to deliver data and to reach agree-
ments about checkpoints. They are also used when we setup the connection.
The main scenario for data transfer is to first send a connect message, then
await a connect ok. After this we are free to send data and checkpoint
messages. Finally we send a close message and await a close message in
response.

Design of a Session Layer Based System for Endpoint Mobility 51

Figure 13: The session protocol header.

Control messages Those messages are used to deliver control events and are
not sent over the data channel. Control events are mainly products of mobility
in both time and space. e.g. a pause in the connection or a move in the
network (or both). There are two types of messages, suspend and resume.
The suspend message will suspend the other host, so that it will stop sending
data and receive. The resume message will resume a previously suspended host
(this does not mean that the host received a suspend message, it may also have
been disconnected by the network). This message may also contain information
about any mobility in space, e.g. a change of network address. To assure that
this resume is wanted and that the resume is synchronous this message will
be answered with either a resume ok or a resume denied message. Those
messages will also contain any information about mobility in space, e.g. a change
of port number.

3.7.1 The session header

The main purpose for the session header is to be flexible so that it can be used
on top of several different transport protocols. Therefore we have design it to
be as simple and general as possible. See figure 13 which illustrates the different
fields in the session header.

The session handle field This should be a big integer, preferably at least
128 bits6, that is generated in a way so that it is unique to this session. It will
then be used to identify this session when packets go through the network and
is demultiplexed at hosts.

Combining the session handles (SH) from two hosts generates a session iden-
tifier which can uniquely identify a session, that is the communication channel
between two hosts. The session handle could e.g. be a public key in an RSA

6This number needs to be unique in the network for session routing to be functional.
Therefore it should be at least statistically unique

Design of a Session Layer Based System for Endpoint Mobility 52

system, which could make it possible for hosts at both ends to securely identify
each other. We will not discuss this in more detail as it is out of the scope of
this paper.

The message type field This field is used to identify which type of message
this is. We will discuss the different message types used later.

The flags field This field is for different flags that can be set in the session
header. As of now only two bits are used by the session checkpoint numbers to
distinguish between different checkpoints. Therefore six bits are left for exten-
sions to the protocol.

The size field This 16 bits unsigned integer contains the size of the payload
in this packet.

The payload The payload is different for different messages, the simplest is
of course the data in a data message. But it can also be information about a
change of address in a resume message.

3.7.2 Data channel initialization messages

Below is a description of all message types that will be transferred over the data
channel. The data channel is the main connection between the two hosts, and
every session has its own data channel.

CONNECT
The session connect message is used to initiate a session. It needs to
contain both the endpoint name of the server and the endpoint name of the
client. The name of the server will be used by any session gateway to route
the message to the correct endpoint. The name of the client is used in the
same way, but for sending back the connect ok or connect denied
messages described below. The header will contain the SH of the sender
instead of the receiver. This is to inform the other host of the SH that the
local host has generated for this session.

CONNECT OK
This message is used to acknowledge a connection. It should contain the
endpoint name of the client in its payload. The SH in the header should be
the one for the host sending this packet, just as in the connect message,
to inform the other host about the responding host’s local SH generated
for this connection.

CONNECT DENIED
This message is sent if the host does not want to communicate with the
host connecting. It should contain the endpoint name of the client in its
payload. The SH in the header should be set to zero.

Design of a Session Layer Based System for Endpoint Mobility 53

CLOSE
This message is used to finish a session. As sessions are persistent, this
message is important.

3.7.3 Data channel messages

Data channel messages are supposed to be sent over an already active data
channel. Therefore they do not need any kind of endpoint name in the message
as the session is already established.

DATA
This message is used to deliver data from one application to another
through the Session Layer. The payload should of course be the data
to be delivered.

CHECKPOINT
This message requests initiation of a checkpoint. How this works is de-
scribed in section 3.4.1.

3.7.4 Control channel messages

All messages sent over the control channel should have the endpoint name of
the receiving session first in the payload. This to assure that the packet will
always reach its destination.

SUSPEND
This message is sent when we want to inform the other host that we need
to suspend this session. When this message is delivered no data messages
should be sent from any of the hosts.

RESUME
This message is sent when we want to resume a suspended or broken
session. The payload consists of the senders IP address and port number
(this could be generalized to support other transport protocols). The host
that receives this message will decide if it needs to rebind to this address.

RESUME OK
This message is sent when a host has acted upon a resume message,
e.g. rebound to a new address. This informs the other host that we
are done with every action needed to resume, and that ordinary data
communication can now be continued. As in the resume message the
payload consists of the senders IP address and port number.

RESUME DENIED
This message is sent to inform a host sending a resume message that
this host is suspended by the user space application, and will not allow
resuming the connection at this point. The other side should wait until the
suspended side sends a resume message. Even here the payload consists of

Design of a Session Layer Based System for Endpoint Mobility 54

the senders IP address and port number. This assures that the other host
has updated information about our current network attachment point.

3.8 Session layer states

The inner workings of the Session Layer are built upon a state machine. In
this section we will explain in detail how this state machine works. Figure 14
shows the state diagram. The transitions T1 to T18 are described and explained
below.

3.8.1 ACTIVE (state)

This state is the normal state for the session to be in. This is the only state
where any actual data is transferred. There are a few things that may happen
in this state:

Transition 1:

Event Our current network interface enters down state. There
are no other interfaces in up state.

Action Enter ready resume state.
Description As we lost our connection we want to resume as soon

as possible. The ready resume state will perform a
resume as soon as there is a new working interface.

Transition 2:

Event A user space application wants to suspend the session.
Action Send a suspend message to the other host and enter the

suspended state.
Description We will inform the other side that we are going to sus-

pend the session by sending the suspend message. Then
we go to the suspended state where we will wait for a
user space application to resume.

Transition 3:

Design of a Session Layer Based System for Endpoint Mobility 55

R
E

A
D

Y
_R

E
S

U
M

E

S
U

S
P

E
N

D
E

D

S
E

N
T_

R
E

S
U

M
E

A
C

TI
V

E

T2
: U

se
r s

us
pe

nd
s;

 s
en

d
S

U
S

P
E

N
D

T5
: U

se
r s

us
pe

nd
s

N
et

w
or

k
ca

rd
 lo

st
, w

e
ha

ve
 a

no
th

er
; r

eb
in

d
an

d
se

nd
 re

su
m

e

T1
: N

et
w

or
k

lo
st

T3
: R

ec
ei

ve
d

R
E

S
U

M
E

; r
eb

in
d

T1
4:

 G
ot

 R
E

S
U

M
E

_O
K

T1
0:

 S
en

t R
E

S
U

M
E

_O
K

; r
ol

lb
ac

k

T1
8:

 R
ec

ei
ve

d
R

E
S

U
M

E
, n

ot
 in

iti
at

or

T1
5:

 R
ec

ei
ve

d
R

E
S

U
M

E
_D

E
N

IE
D

T1
2:

 S
en

t r
es

um
e

T8
: R

ec
ei

ve
d

R
E

S
U

M
E

; s
en

d
R

E
S

U
M

E
_D

E
N

IE
D

T9
: U

se
r r

es
um

es

T1
6:

 N
et

w
or

k
ch

an
ge

; r
eb

in
d

T1
7:

 R
ec

ei
ve

d
R

E
S

U
M

E
, w

e
ar

e
in

iti
at

or

T7
: N

et
w

or
k

ch
an

ge

T1
3:

 F
ai

le
d

to
 s

en
d

R
E

S
U

M
E

T6
: R

ec
ei

ve
d

R
E

S
U

M
E

T1
1:

 F
ai

le
d

to
 s

en
d

R
E

S
U

M
E

_O
K

T4
: R

ec
ei

ve
d

S
U

S
P

E
N

D

Figure 14: State diagram for the Session Layer

Design of a Session Layer Based System for Endpoint Mobility 56

Event We received a resume message.
Action Rebind to the address and/or port specified in the re-

sume message if they are different from before. Then
go to the send resume ok junction.

Description Here we will do a rebind only if the address and port
specified in the resume message differs from the ad-
dress and port we are currently using in the session’s
socket. Then we send a resume ok message to the
other host to acknowledge that we are finished with
our rebind.

Transition 4:

Event We received a suspend message.
Action Change to the ready resume state.
Description The other host tells us that it wants to suspend the

session, so we enter the ready resume state.

3.8.2 READY RESUME (state)

The basic concept of this state is that we want to resume the session as soon
as possible, but we have been put into this state because of network connection
problems. Once we have entered this state, we will wait here until we get
new information about the network interfaces that may enable us to resume
communication. We also exit this state if the user wants to suspend the session,
or if we get a resume message from the other host.

Transition 5:

Event A user space application commands us to suspend the
session.

Action Change to the suspended state.
Description We must change to the suspended state because we do

not want to resume the session under any circumstances
other than the user space application commanding us
to resume it.

Transition 6:

Design of a Session Layer Based System for Endpoint Mobility 57

Event We received a resume message.
Action Rebind the socket if needed, rollback to previous check-

point, and enter the send resume ok junction.
Description We did get a resume message, and since we are in the

ready resume state, we also want to resume as soon
as possible. So we rebind our socket if the information
in the resume message indicates that we have to. We
will also perform a rollback to the previous checkpoint if
we did a rebind. If we did not perform a rebind, there is
no need to rollback, since the TCP connection was only
paused and nothing critical has changed. When we are
done with rebind and rollback we send a resume ok
message to inform the other host that we are done.

Transition 7:

Event We received a network change event.
Action Enter the send resume junction.
Description The network change event probably indicates that we

have a new connection opportunity available, so we try
to resume the session by sending a resume message.

3.8.3 SUSPENDED (state)

The concept of this state is that it will block the session from doing anything
until the user space application commands the session to resume. We only
enter this state if the user space application explicitly commands the session to
suspend, and the only event that can make us exit this state is that the user
space application commands the session to resume.

Transition 8:

Event We received a resume message.
Action Send a resume denied message to the other host.
Description Since we will not exit this state until an user space

application wants to resume, we answer the resume re-
quest with a resume denied message, to inform the
other host that we are not ready to resume yet.

Transition 9:

Design of a Session Layer Based System for Endpoint Mobility 58

Event A user space application wants to resume.
Action Change to the send resume junction.
Description Since the user space application wants the session to be

resumed, we proceed by sending a resume message.

3.8.4 SEND RESUME OK (junction)

In this junction we attempt to send a resume ok message, and react on the
result of that attempt.

Transition 10:

Event Successfully sent resume ok.
Action Perform a rollback to the most recent checkpoint. Then

enter the active state.
Description We have now sent a resume ok message, so we know

that both sides has rebound successfully. To re-
synchronize the connection, we perform a rollback.
Then we will enter the active state to resume commu-
nication at the checkpoint we rolled back to.

Transition 11:

Event Failed to send resume ok.
Action Enter the ready resume state.
Description Since we failed to send the resume ok message, some-

thing must be wrong with the network connection.
Therefore we enter the ready resume state in which
we will wait until we get updated network interface in-
formation.

3.8.5 SEND RESUME (junction)

In this junction we send a resume message to the other host and take different
paths depending on the result of this action. This is a junction more than a
state, since we just perform an action and then proceed to a state, instead of
waiting for some event to trigger the state change.

Transition 12:

Design of a Session Layer Based System for Endpoint Mobility 59

Event Successfully sent resume.
Action Change state to sent resume.
Description Since we sent the resume successfully, we can safely

enter the sent resume state.

Transition 13:

Event Failed to send RESUME.
Action Enter the ready resume state.
Description Since we failed to send the ready resume message

something must be wrong with the network connection.
Therefore we enter the ready resume state in which
we will wait until we get updated network interface in-
formation.

3.8.6 SENT RESUME (state)

The concept of this state is that we have just sent a resume message, and now
we are awaiting the answer in the form of a resume ok message. We will also
handle other events as described below.

Transition 14:

Event We received a resume ok message.
Action Rollback to a previous checkpoint, and change to the

active state.
Description The resume ok message informs us that the other host

has performed any required rebind and rollback, and is
now entering the active state. So we also perform a
rollback to a previous checkpoint, and we then enter
the active state.

Transition 15:

Event We received a resume denied message.
Action Enter the ready resume state.
Description The other host denied our resume request, which means

that it is in the suspended state. We enter the
ready resume state, where we will wait for the other
host to send us a resume message.

Design of a Session Layer Based System for Endpoint Mobility 60

Transition 16:

Event We received a network change event.
Action Rebind the session socket if needed, then enter the

send resume junction.
Description The network change event indicates that we must

change the settings of our socket, and therefore we need
to rebind to these new changes. When we have per-
formed a rebind, the other host will have trouble find-
ing us if we don’t inform it about the changes. So we
go to the send resume junction to resume the session
again.

Transition 17:

Event We received a resume message and we are the initiator
of the session.

Action Change to the send resume junction.
Description If we get a resume message after we have just sent a

resume message, this means that the two sides almost
simultaneously have sent out these resume requests. In
order to solve this potential conflict, we make the ini-
tiator of the session (the host that started the session)
go to the send resume junction, while the other host
enters the ready resume state to await the new re-
sume message.

Transition 18:

Event We received a resume message and we are not the
initiator of the session.

Action Change to the ready resume state.
Description We have the same conflict as described in the previous

state transition, and since we are not the initiator of
the session we enter the ready resume state to await
a new resume message.

3.9 Additional state machine properties

The state machine presented in section 3.8 is a good overview of how the Session
Layer works, but it is not complete. To make the state machine easier to
understand we have deliberately left some things out. Those things will be
described and discussed here.

Design of a Session Layer Based System for Endpoint Mobility 61

3.9.1 The CLOSED state

There is a state called closed which is not shown in figure 14. The reason why
we do not show this state in the figure is that it would make it harder to read
and understand. So instead, we explain the closed state in this section.

If we in any state receive a session close message, we will reply with a
session close message. After that we will enter the closed state.

We will also enter this state any time the local user space application decides
it wants to close the session. In the later case, a session close message will
be sent to the other host before we enter the closed state.

When we are in the closed state, the session has ended. No further com-
munication will take place.

3.9.2 Handling of unanswered RESUME messages

We have found a valid scenario where the state machine will deadlock. This
is indeed a big problem, but it also have a very simple solution. First we will
describe the problem.

If host A successfully sends a resume message to host B, host A will be in
the sent resume state. It will wait there until it either gets a resume ok or
a resume denied message. If host B now tries to send a resume ok or re-
sume denied message but fails, host A will still be waiting in the sent resume
state. Host B on the other hand will notice that it failed to send the message
and therefore not change the state. This is were the problem is, now it is posible
for host B to send a resume message. This message, if received by A, would
indicate a collision and therefore A would take appropriate actione depending
on if it is the initiator or not. B on the other hand jsut sent a resume message
and will not se this as a conflict. Therefore the states of host A and B will be
out of sync. This could for example lead to a live lock where A and B will send
resume messages back and forth between eachother. Luckily, there was an easy
solution to this problem.

If B would have set an variable that indicates that it have received a reume
message, but failed to respond, it could send a resume denied message, that
would put A in the ready resume state. After this B knows that A is not in
sent resume anymore, and can therefore send a resume message.

Design of a Session Layer Based System for Endpoint Mobility 62

Figure 15: Implementation of the Session Layer design. The line marks the
boundary between kernel and user space.

4 Implementation

In this chapter we will explain which parts of our design we have implemented,
and how we have implemented these parts.

4.1 Basic implementation decisions

In this section we will outline how our implementation of the Session Layer was
done, describing how we implemented the different parts that together build the
Session Layer. The goal with our implementation is to demonstrate that the
key features of the Session Layer can be implemented and that these features
work as intended.

We carried out the implementation gradually during our design of the Session
Layer. This was very helpful, since it made us aware of weaknesses in the design
that we had to resolve.

While reading the following sections please look at figure 15 to understand
the big picture. Our implementation is built around several important parts,
which all more or less implement one of the conceptual parts in the design. We
will start explaining the top of figure 15 and then slowly move downwards.

Session enabled applications An application that is linked to the session
API is called a session enabled application. It can do anything that involves

Design of a Session Layer Based System for Endpoint Mobility 63

communication with other applications. We have developed a server and a client
application to test the Session Layer with.

Session Layer Daemon The Session Layer Daemon is responsible for mon-
itoring the network for changes. We have tried to save time by benefiting from
an existing application that has capabilities similar to those our Session Layer
Daemon should have. We have extended netplugd7 which is very good at mon-
itoring state changes in network interfaces. It will even handle Wireless LAN
interfaces, so that when we get in and out of reach of a wireless network, net-
plugd will generate an event for us. Of course it also detects traditional Ethernet
cable connections and disconnections.

We will extend netplugd so that it forwards any relevant information to the
session layer. As you may notice this part has moved out from the Session
Layer. This is due to the decision of putting the Session Layer in kernel space.
As we want to use netplugd as our Session Layer Daemon we need to run it in
user space.

Another responsibility of the Session Layer Daemon is to monitor events of
mobile objects. In our implementation mobile objects are USB mass storage
devices. To monitor events from those we have used udev8. Udev is used to
invoke user space programs on kernel space events. Therefore we have built this
system outside of Session Layer Daemon.

Session API This is a helper API that invokes the system calls provided by
the Session Layer.

Session layer This is the central part of the design and thus also the central
part of the implementation. This is where we have the data structures for
keeping endpoints and sessions. It also provides the system calls used by the
Session API. It will also take care of the buffers and functions that are needed
to provide data integrity. This is done by checkpointing.

Session control thread This thread is responsible for communication be-
tween Session Layers. It is not in the design, but it is needed to listen for
incoming connections from other Session Layers. It will act on the different
control messages received to alter the state of the corresponding session.

Kernel sockets To be able to communicate with the world we need commu-
nication channels. These channels are provided by the kernel sockets. They
work just like ordinary sockets, only that we keep pointers to them instead of
file descriptors.

All these different parts work together to make this a valuable system. The
central point is the Session Layer, to which all threads do changes and execute
in. Threads may or may not continue into the kernel sockets and the Linux

7http://people.debian.org/ enrico/netplugd.html
8http://www.kernel.org/pub/linux/utils/kernel/hotplug/udev.html

Design of a Session Layer Based System for Endpoint Mobility 64

Figure 16: Different execution contexts in the Session Layer implementation.
The arrows indicate which modules that communicate with each other.

network stack to get their work done. See figure 16 for a layout of the different
execution contexts that execute the Session Layer code.

4.2 Basic concepts

In this section we will describe some basic concepts that are important to know
about when reading about the implementation. Those concepts are used in
many functions and we want to avoid explaining them every time they occur.

4.2.1 Locks and waitqueues

To protect different execution contexts from each other we need means of locking
data structures. There is also a need for the session control thread to suspend
execution of user threads. Locks are built around semaphores and we suspend
execution using waitqueues that are native to the Linux kernel.

Communication locks At any given point in time there must not be more
than one thread sending or receiving on a session. Therefore we have introduced
a send and a receive lock. Those locks must be held when sending or receiving.

State lock This lock should be held when reading or altering the session state.
This is to assure that transitions between states are atomic. This means that
only one thread is granted to change the state of the session at any given time.

Design of a Session Layer Based System for Endpoint Mobility 65

It is important that this lock is held during the execution of all code that is a
part of the state change.

Interrupt lock When the Session Control Thread changes the state of a
session it must not continue its work before other threads has acted upon this
statechange. Therefore it must release the state semaphore. Before it can
continue it must acquire the state semaphore again, but it can not be done
before we know that other threads have acted upon the state. Therefore we will
acquire the interrupt semaphore. This semaphore must be taken by a thread
that wants to block on a call like send or recv. The Session Control Thread
will interrupt any such function when it changes the state. The thread whom
called the function will notice this, acquire the state semaphore, act upon the
state and release the interrupt and state semaphores. This will allow the Session
Control Thread to continue.

Session waitqueue This is a waitqueue for user threads executing in the
Session Layer. Whenever an application calls send or receive on a session there
is a chance that the call will block. The reason might be that there is currently
no network that can deliver the message or that the application on the other
side has suspended the session. To achieve this, functions like send and receive
are built around loops that check the state of the session every iteration.

If the state changes from active the user thread will put itself on the wait-
queue. The user thread will not leave this queue until someone activates it. This
way we can change the state from the session control thread and interrupt what
the user thread is doing. When the user thread will check its state it will se
that it is not active. When the session control thread notices that it is possible
to activate the user thread again, it will do so by changing the state to active
and activating the waitqueue.

Hash table locks We decided to make the hash tables thread safe. Therefore
all functions in the hash table API will lock the hash table before using it.

4.2.2 Receiving bytes

When we rollback to a checkpoint we might have given the user bytes that we
will now receive again from the other host. Therefore we must keep track of
how many bytes we have received since the last checkpoint. This will be done
by increasing a variable every time we receive some data. This variable will be
set to zero every time we perform a rollback. This way we know that as long as
we have received less bytes since the last checkpoint than we have given to the
user, e.g. is in the buffer, we must drop any incoming data. Doing this we can
assure that no duplicate data goes through to the application.

Design of a Session Layer Based System for Endpoint Mobility 66

Figure 17: Endpoint directories

4.3 Disk based endpoints

4.3.1 Directory based endpoints

A directory on the local computer is a convenient way for the user to perceive
the endpoint. For our demonstration, we have created a directory
(“/etc/session layer/endpoints/”) on every Session Layer enabled computer.
This directory always contains subdirectories with names of the endpoints that
currently reside at this computer. Figure 17 shows the endpoints directory of a
computer.

Every time an endpoint is attached to the local computer, it will show up
in the endpoints directory. For example, a user connects a USB memory stick
to the computer. This memory stick contains a directory that can be identified
as an endpoint. A link to the endpoint is created in the computer’s endpoints
directory. This is seen in figure 17, where the endpoint “storage@verkstad.net”
resides on a USB memory currently connected to the computer.

How to identify an endpoint directory There are two things that identify
a directory as an endpoint. The first thing is that the directory has a name
that fits the definition of an endpoint name. That means it can have a string
consisting of the characters a-z, ’-’ and ’.’ followed by an ’@’ character, which
is followed by a valid domain name. The second requirement on an endpoint
directory is that it contains a file with the name “.endpoint”.

4.3.2 Saving and loading endpoints on disk

Our implementation includes functionality that enables a user to save down an
endpoint with all its sessions to disk. The state of every program that has an
open session will also be saved. The reason why we save the state of programs is
that it is meaningless to resume a session unless we can bring back the program
to the state where we suspended the session. Imagine that we save a session
used by a file transfer application. Then we turn off the computer. When
we later load the session again and resume it, the session will know where to

Design of a Session Layer Based System for Endpoint Mobility 67

continue transferring data, but the application will not know unless it can load
its previous state from a file.

We have implemented two system calls for saving and loading endpoints
in the kernel. They are endpoint save to buffer and endpoint load from buffer.
The first system call will take an endpoint name and a user space buffer. When
calling this system call it will save all session structures associated with the
endpoint to the user space buffer. In the same way, the second system call will
load an endpoint from a user space buffer. An endpoint will be created, and all
sessions in the user space buffer will be copied into structures and associated
with the new endpoint.

These system calls will be called from user space programs that will make
sure the endpoint is saved and loaded from the right filename. The “.endpoint”
file in an endpoint directory is normally empty. If the endpoint is to be saved
to disk for later loading, the states of all the sessions will be saved into the
“.endpoint” file. If a new endpoint directory is inserted into the endpoints
directory, a user space program will look for the “.endpoint” file. If it is not
empty, the endpoint’s sessions will be loaded from this file.

4.3.3 Saving application states to disk

So how and when do we save and load application states on disk? The end-
point save to buffer system call will go through all sessions associated with the
endpoint that are to be saved, and make sure any current and future calls that
have to do with the sessions will return the -EMOVED error. This will inform
the user space application that it must save its state to a file since the endpoint
will move.

The user space application will now save a file with name of the form
.state.application name.x in the endpoint directory, where application name is
the name of the application and x is an integer. The application will try to save
to .state.application name.0, if that file already exists it will try .state.application-
name.1 etc. until it finds a non-existent filename.

After the user space application has saved its own state, it will close the ses-
sion and then exit. This close will inform the Session Layer that this application
is ready with saving its state. At this stage we have the complete endpoint, with
all its sessions, services and application states saved in the endpoint directory.
We may now move that directory between computers in any way we want. We
could for example e-mail it or move to a portable disk drive.

4.3.4 Loading application states from disk

When we want to load an endpoint from disk, we will have a user space program
called loadep read the .endpoints file in the endpoint directory, and then call the
endpoint load from buffer system call. The endpoint and all its sessions will be
loaded into the kernel’s Session Layer. After that, the loadep application will
go through the files in the endpoint directory which have names starting with
.state and start the corresponding applications with the state file as parameter.

Design of a Session Layer Based System for Endpoint Mobility 68

The started applications are then responsible for restoring their state from the
state files.

4.4 Session Layer API

In this section we will describe the Session Layer API towards the application.
This is a library of functions that will be called by the application developer.
Many of these functions are just simple wrappers around the corresponding
system calls. These functions just exist in case we would want to add some user
space functionality to these operations later.

4.4.1 Endpoint related functions

endpoint get(struct endpoint **ep)
This function will set the ep pointer to the default endpoint of the local
computer. In our implementation this local endpoint name is extracted
from the host name and loaded at boot time.

endpoint load from file(char *dir, struct sockaddr *sa)
This function will load an endpoint from a file and change its entry in the
SNS to the address specified. It will also load all sessions associated with
this endpoint.

endpoint save to file(struct endpoint *ep)
This function will save an endpoint to a file. It will also save all sessions
associated with this endpoint.

4.4.2 Service related functions

service bind(struct endpoint *ep, int port, struct service **s)
This function will open a new socket on a random port and make an entry
in the SNS mapping the service name to this port. This service may later
be used to accept incoming connections.

service unbind(struct service *s)
This function will release the bound port and remove the service from the
SNS.

service accept(struct service *s, struct session **sn)
This function will block until a connection is done to the service specified.
It will then create a new session and return it.

4.4.3 Session related functions

session connect(struct endpoint *localEndpoint, char *remoteEnd-
point, unsigned short int port, struct session **sn)
This function will try to connect to the service specified. If it succeeds a
new session will be created. This session can later be used for communi-
cation.

Design of a Session Layer Based System for Endpoint Mobility 69

session close(struct session *sn)
This will close a previously created socket.

session send(char *buf,int length,struct session *sn)
This function will send an amount of bytes to the other side of this session.

session recv(char *buf,int max length,struct session *sn)
This function will receive at maximum “length” number of bytes from the
other side of this session.

session suspend(struct session *sn)
This will suspend this session, stopping all communication.

session resume(struct session *sn)
This will resume a previously suspended connection.

All functions may return negative error values. Those should be checked as they
are bound to happen when e.g. an endpoint is moved (error value -EMOVED).

4.5 Naming

4.5.1 The server

The naming system we have developed is very simple. It is a standalone single
threaded server. Data is stored in two hash tables. One contains endpoints and
one contains services. When a message arrives we check the type of the message,
hash the name of the endpoint/service and set or get the address/port.

4.5.2 The client library

We have implemented a kernel space client library which connects to the SNS to
get information about endpoints and services. The client library is very simple.
It consists of eight functions:

session sns add endpoint(char *ep name, u32 address)
Adds an endpoint entry in the SNS. Address should be the current IP
address of this endpoint.

session sns change endpoint(char *ep name, u32 address)
Changes an entry in the SNS. Address should be the current IP address
of this endpoint.

int session sns delete endpoint(char *ep name)
Deletes an entry in the SNS.

session sns get endpoint(char *ep name, u32 *address)
Fills address with address information about the specified endpoint.

Design of a Session Layer Based System for Endpoint Mobility 70

session sns add service(char *ep name, u16 port)
Adds a service to an endpoint in the SNS. ep name should be of the
format service.object@doomain. port is the port number that the service
is currently bound to.

session sns change service(char *ep name, u16 port)
Changes a service at an endpoint in the SNS. ep name should be of the
format service.object@doomain. port is the portnumber that the service
is currently bound to.

session sns delete service(char *ep name)
Deletes a service. ep name should be of the format service.object@doomain.

session sns get service(char *ep name, u16 *port)
Get information about the portnumber of a service. ep name should be
of the format service.object@doomain. port will be filled with the infor-
mation.

All these functions will return a negative error value if they fail.

4.6 Synchronization

4.6.1 Buffer

To have a flexible buffer we decided to implement a circular buffer. For anyone
not familiar with the concept of a circular buffer it is very simple. When data
is added that goes beyond the end of the buffer it will be copied to the start of
the buffer. The advantage with the circular buffer is that we can redefine the
starting point of the buffer easily, when we reach the physical end of the buffer
it will just wrap around to the physical start of the buffer. For our buffers we
need several pointers, which are explained below.

• start - start of the buffer and also the start of the last acknowledged
checkpoint.

• pending - start of the pending checkpoint.
• processed - the point to which data has been processed. Processed data

is either sent over the network or given to the user.
• end - marks the last byte in the buffer.

See figure 18(a) and figure 18(b) for a view of the normal and the wraparound
case of the buffer.

Distance between different pointers In the buffer it is often interesting to
calculate the distance between different pointers. This may sound like a trivial
task, but as the buffer is circular, there is always a need to distinguish between
two cases. For example, when calculating the distance between start and end,
it should be calculated differently if end is greater or smaller than start. One
could look upon this as a normal case and a wrap around case. The following
functions for calculating distances is available in the session buffer.

Design of a Session Layer Based System for Endpoint Mobility 71

(a) Circular buffer without wraparound.

(b) Circular buffer with wraparound.

Figure 18: Circular buffers in the checkpoint implementation.

Design of a Session Layer Based System for Endpoint Mobility 72

session buf get pending end size
Returns the distance between pending and end, which is the number of
bytes sent since the pending checkpoint.

session buf get pending processed size
Returns the distance between pending and processed, which is the number
of bytes sent or forwarded to the user since the pending checkpoint.

session buf get start end size
Returns the distance between start and end, which is the number of bytes
allocated in the buffer.

session buf get start pending size
Returns the distance between start and pending, which is the number of
bytes sent or forwarded to the user since the last acknowledged checkpoint.

session buf free space
Returns the difference between the size of the buffer and the size of the
data, e.g. the free space left in the buffer.

session buf capacity
Returns the current capacity of the buffer, this is the maximum size of
the data that can be stored in the buffer.

Buffers The Session Layer needs to buffer both received and sent data for
every session. Therefore we have introduced a buffer abstraction that we call
buffers which simply contains two buffers. We have defined a set of functions
that works on two buffers instead of one. This is useful as all checkpoints
are changed on both buffers simultaneously. When looking at the buffers it
is important to know the difference between processed bytes for the send and
the receive buffer. In the receive buffer, processed means that those bytes were
given to the application. In the send buffer it means that those bytes were sent
out on the network. This gives that the processed pointer for the receive buffer
should never be reset as we do not want to give the application any duplicated
data. On the other hand, the processed pointer of the send buffer has to be
reset every time we want to restart from a checkpoint in order to resend all data
associated with that checkpoint.

session buffers create
Creates a new instance of the buffers data structure and initializes it.

session buffers add send data
Adds a number of bytes to the send buffer. This will move the end pointer
of the send buffer forward.

session buffers add recv data
Adds a number of bytes to the receive buffer. This will move the end
pointer of the receive buffer forward.

Design of a Session Layer Based System for Endpoint Mobility 73

session buffers process send data
Fetches a number of bytes from the send buffer. This will move the pro-
cessed pointer in the send buffer forward so that we know that those bytes
have been sent.

session buffers process recv data
Fetches a number of bytes from the receive buffer. This will move the
processed pointer in the receive buffer forward so that we know that those
bytes have been given to the application.

session buffers new cp
This function will create a new pending checkpoint and make the pending
checkpoint acknowledged. This means that we will move the start pointer
to pending and the pending pointer to the value specified in the call to
this function. This will be done for both send and receive buffers. Notice
that by moving the start pointer forward we have freed all data belonging
to the previous acknowledged checkpoint, thus making room for new data.

session buffers rollback
This function will reset both buffers to the acknowledged checkpoint. This
is done by setting pending to start for both buffers and setting processed
to start for the send buffer.

4.6.2 Creating checkpoints

Sending checkpoint When the buffer is beginning to fill up, there is a need
to create a checkpoint. In our implementation we will start to create checkpoints
when 50% of the buffer contains data. This value is in no way based on any
theory or experiment. It is just a value. When the buffer reaches this level,
which is determined by calculating the distances between start and end, the
send function will send a checkpoint message. This checkpoint will have
values derived from the buffers in the following fashion.

• Checkpoint number - This number is the identity number that is currently
unused. E.g. if our acknowledged has 1 and pending 2 the new will have
0.

• Send position - This position is derived from the distance between the
processed pointer and the pending checkpoint of the send buffer. This is
the amount of data that we have sent since the pending checkpoint.

• Receive position - This position should equal the end pointer of the receive
buffer, as this is the amount of bytes we received from the other host.

We must also set a variable containing the checkpoint number of the check-
point message just sent. It is important to know that we have sent a check-
point message when we do a rollback or receive a checkpoint message.

Design of a Session Layer Based System for Endpoint Mobility 74

Receiving checkpoint When a checkpoint message is received we know
that the acknowledged checkpoint can safely be dropped. Therefore we will put
the new checkpoint received as our pending checkpoint, moving the pending
checkpoint to acknowledged. If we did not send a checkpoint before we should
send it now, following the same steps as if the buffer was nearing full. This
checkpoint should have the same number as the received one. To only respond
with a checkpoint if we did not send one prevents the two hosts from triggering
each other every time they receive a checkpoint.

4.6.3 Resuming checkpoint

When we want to restart communication from a checkpoint, we should send
a resume message to the other host. This resume message should contain the
number of the acknowledged checkpoint. It the other host does not have this
checkpoint it will send the number of our pending checkpoint in the resume ok
message. As the protocol assures that we always have a common checkpoint this
will always work.

4.7 Session Layer Daemon

The Session Layer Daemon will be a quite big application that needs a lot
of system dependent code. Therefore we have decided to extend an existing
application to create a prototype SLD to be used for testing and proof of concept.
We have extended netplugd9 which is a simple application to get real time
information about cables being plugged in or out of network interfaces, and
Wireless LAN cards being within or out of range.

4.7.1 Netlink sockets

Netlink is a system in the Linux kernel that gives kernel space applications the
ability to communicate with user space applications through BSD sockets. This
is heavily used when forwarding networking and routing information from the
kernel to user space and also within the kernel. A netlink socket is created in
the same way as a normal BSD socket, but the address family af netlink must
be specified. Netlink has a system of special messages and headers, which can
be created and extracted using specific functions.

4.7.2 Our extensions

The original functionality of the netplugd application is that it uses netlink
sockets to retrieve information about Ethernet cables being plugged in or out,
and wireless interfaces becoming available and unavailable. Every kind of event
will trigger a script which the user will specify.

9http://people.debian.org/~enrico/netplugd.html

Design of a Session Layer Based System for Endpoint Mobility 75

We modified the netplugd application by removing the calling of these scripts.
Instead, we do the following. When an interface goes down, we call end-
point suspend() for all endpoints that reside on this device. This will suspend
all endpoints that are attached to the interface which went down.

When an interface comes up, we execute the following.

1. Call dhcpcd from within netplugd to attain an IP address for the network
interface.

2. Call ifconfig from within netplugd, parse out and store the IP address for
the interface.

3. Rebind all endpoints to this new IP address.

4. Call endpoint resume() for all endpoints.

Figure 19: Screen shot of the implemented Session Layer Daemon.

Figure 19 shows a sample run of the SLD. The steps executed in this test is
to remove an Ethernet cable from the interface eth1, insert it into the other
interface eth0, then pulling it out of eth0 and inserting it back into eth1. The
SLD makes sure to suspend, rebind and resume the sessions appropriately.

The information about interfaces being added to a hash table in the begin-
ning of the printout refers to a hash table within the SLD which holds all current

Design of a Session Layer Based System for Endpoint Mobility 76

network interface states. Whenever we get new state information we will update
this hash table, in which the information is hashed on the name of the interface.
We need this hash table to see what state we change from when a new event
comes in on the netlink socket, in order to see the whole picture of what has
really changed, and what is unchanged since before the event appeared.

4.7.3 Mobile objects

The Session Layer Daemon is supposed to handle events from mobile objects.
As mentioned before we will use udev for this. Udev is very flexible and we have
written some simple rules that will intercept events and start a script that will
act upon these events.

Udev rules Udev rules are stored in “/etc/udev/rules.d/” it will parse all
files in this directory that has the suffix “.rules”. Files are parsed in the order
they occur in the directory. Standard rules are named “50-udev.rules”, we want
to intercept events before those rules are activated so we named our file “10-
usb.rules”. This file contains the following rules.

KERNEL=="sd[b-z]", NAME="%k", SYMLINK+="usb%k", GROUP="users",\\

OPTIONS="last_rule"

ACTION=="add", KERNEL=="sd[b-z][0-9]", SYMLINK+="usb%k",\\

GROUP="users", NAME="%k"

ACTION=="add", KERNEL=="sd[b-z][0-9]", RUN+="/bin/mkdir -p /mnt/usb%k"

ACTION=="add", KERNEL=="sd[b-z][0-9]", \\

RUN+="/etc/session_layer/session_script.sh /dev/%k /mnt/usb%k",\\

OPTIONS="last_rule"

ACTION=="remove", KERNEL=="sd[b-z][0-9]", RUN+="/bin/rmdir /mnt/usb%k",\\

OPTIONS="last_rule"

A brief description of those rules follow:

1. This rule will intercept the event that a new disk device is attached. It
will create a symbolic link to this device that is named usb concatenated
with the device name of this device, e.g. “usbsda”.

2. This rule will intercept events about different partitions on the attached
usb device. It will create a symbolic link to this device that is named in the
same manner as above, adding only the device number, e.g. “usbsda1”.

3. This rule will create a directory in “/mnt/” for each partition on this
device. It will share the name with the partition, e.g. “/mnt/usbsda1”.

4. This rule will run a script that will search this mobile device for endpoints.
It will give it the name of the device and the directory it created in “/mnt/”
as arguments to the script.

Design of a Session Layer Based System for Endpoint Mobility 77

5. This rule will remove the directory created in “/mnt” when the device is
removed.

Searching for endpoints We have written a simple BASH10 script that will
mount mobile devices and search them for endpoints.
#!/bin/bash

logger -t "Session Layer" "Found usb device! $1 $2"

logger -t "Session Layer" "Mounting..."

/bin/mount -t auto -o rw $1 $2

logger -t "Session Layer" "done."

logger -t "Session Layer" "Searching $2 for endpoints and iterating over them:"

endpoints=‘ls $2 -1a | grep \@‘

for i in $endpoints;

do

/etc/session_layer/endpoint_create.sh $2/$i;

done

logger -t "Session Layer" "Done with this usb device."

First this script will mount the device. Then it will search the root of the
filesystem at this device for endpoint directories. To find an endpoint directory
we will search for directories containing “@”. Whenever an endpoint directory
is found it will call an endpoint creation script and pass the absolute path to
the directory as an argument.

Endpoint creation When an endpoint directory was found by the previous
script it will call an endpoint creation script. This script will load the endpoint
into the kernel and start any suspended programs. This is done by iterating
over all the state files that are stored within this endpoint directory.
#!/bin/bash

logger -t "Session Layer" "Creating endpoint from mobile directory $1"

Load endpoint from file into system

/usr/local/bin/loadep $1

Start every application specifying its state file

e.g. /app/path/appname --statefile /mnt/usb1/object@domain/.state.appname.0

cd $1

app_path=/usr/local/bin/

ep_path=‘echo $1 | sed s/\\\/$// | sed s/.*\\\///‘

export XAUTHORITY="/root/.Xauthority"

statefiles=‘ls -1a | grep ".state."‘

for f in ‘ls -1a | grep ".state."‘; do

/usr/bin/aterm -display :0.0 -e ${app_path}‘echo $f \\

| sed s/\.state\.// | \\

sed s/.[0-9]//‘ --ep ${ep_path} --statefile $1/${f} &

done;

First of all this script will run the “loadep” program to load the endpoint
with all sessions into the kernel. Then it will search the endpoint directory for
state files and execute application associated with those files. This will restore
all session in the state where they were saved.

10http://www.gnu.org/software/bash/

Design of a Session Layer Based System for Endpoint Mobility 78

Figure 20: Session data structure.

4.7.4 Differences between design and implementation

After doing this, we have a very simplified version of the Session Layer Daemon.
It will automatically change to new network interfaces when they are made
available to us. It breaks our design principles somewhat, because it performs
the suspend, resume and rebind commands itself. Our design states that the
SLD should only inform the Session Layer about interface changes, but in our
test implementation we carry out the rebinding of endpoints and sessions in the
Session Layer Daemon.

For our testing purposes, we think this is satisfactory. We can see no major
functional difference between executing the rebinding from the SLD or from the
Session Layer itself. Since we have not implemented any sophisticated policy
manager for the Session Layer, we might aswell perform these simple rebinding
related tasks directly in the SLD.

4.8 Session layer states

In this section we will describe how the Session Layer state machine was imple-
mented. The main controller of the state machine is a kernel thread which we
call Session Control Thread (SCT). This thread is always active, and it is con-
stantly listening for incoming events. The events are incoming messages on the
session control channel (e.g. resume, suspend, resume ok, resume denied).

4.8.1 Session data structures

The Session Layer contains a lot of data. Therefore it is important that the
data is organized in a good way. The overall organization of the data is shown
in figure 20.

Design of a Session Layer Based System for Endpoint Mobility 79

Endpoint hash table This is a hash table which contains endpoints hashed
on their network name, e.g. hd@verkstad.net. This makes it possible to have
quick lookups of endpoints, by knowing only their name.

Endpoints Endpoints are named containers that hold the two functional en-
tities that are needed for the Session Layer to work; services and sessions. This
will associate them with the endpoint name that is used to identify their current
network location. The endpoint data structure look like this:

• ep name - This is the name of this endpoint, the same name as used for
hashing.

• addr - This is the current address which is associated with this endpoint’s
name.

• sess table - This is a hash table that holds sessions hashed on their session
handle.

• serv table - This is a hash table that holds services hashed on their service
name, in this implementation this is the port number.

Service Services keep a listening socket open for incoming connections, they
do not do much more. Therefore the data structure for a service is rather simple.

• name - The service’s name, here a port number.
• socket - The listening socket that is used for accepting incoming connec-

tions.

Session The session data structure is used to hold all data that is important
for the session to function properly. Why all those fields are needed will be
motivated in more detail when we describe the implementation of the different
functions that act upon the session. Below is a short description of all data
fields in the session data structure.

• sid - This is the 128 bit long session handle, SH.
• peer ep name - This is the name of the endpoint at which the session we

are connected to resides.
• local ep name - This is the name of the endpoint which our this session

resides at.
• saddr - This is the IP address that our endpoint resides at.
• daddr - This is the IP address of the endpoint that the other end of this

session resides at.
• state sem - This is a semaphore associated with our state variable. This

semaphore should be decreased when checking or changing the state of
the session. This way we can assure that the state is always consistent.

• irq sem - This semaphore should be held when we block on a recv call.
This enables the control thread to notice this and interrupt us. It will
then try to acquire this semaphore and therefore it will have to wait until
we have acted upon the state change.

Design of a Session Layer Based System for Endpoint Mobility 80

• socket - This is the mobile socket used for communication.
• buffer - This data structure contains a send and a receive buffer.
• sent cp - This is the number of the checkpoint we have sent. It has to be
−1 if we have not sent any checkpoint message.

• acked cp - This is the currently acknowledged checkpoint.
• pending cp - This is the checkpoint that is in negotiation.
• recvd bytes - This is the number of bytes received since last checkpoint.

This value is compared with the amount of data given to the user since
last checkpoint. Data will only be given to the user if this value is bigger
or equal to the number given to user in the buffer. Otherwise we would
duplicate data to the user.

• got resume - If this is true it indicates that we got a resume message but
we did not succeed to send an answer. This is an important knowledge
about the state of the other host.

• initiator - This is set to true if this session was created from a connect call.
Otherwise, if it was created from an accept call, this will be false. This
is needed to distinguish the roles that hosts should have when conflicts
occur.

• wq head - This is the head of the wait queue associated with this session.
When the session is in any other state then the active state all ordinary
calls, such as send or recv, will block on this queue. They will be activated
by the session control thread when it is safe to proceed.

4.8.2 Session Control Thread

When we initialize the Session Layer, the kernel function kernel thread() is
called with a pointer to a function which we have defined. The contents of this
function is what our Session Control Thread (SCT) will be executing. It is built
around a while-loop which at the start of every iteration takes in a new message
on the session control channel. When the message is received a new thread is
spawned to handle this request. In this thread the endpoint which the message
is destined to is looked up in the endpoint hash table. If no endpoint is found,
the message is dropped.

When the endpoint which the message is destined to is found, the session
which the message refers to is looked up in the endpoint’s session hash table.
We need the pointer to this session so that we can modify and read its state
machine and other properties.

Next, we will switch on the message type, and for each message type we
perform actions depending on which state the session’s state machine is currently
in. Below is a list of exactly what is done in each situation.

Incoming message of type RESUME: The resume message tells us that
the other host wants to resume a session. The reasons for this could be many.
For example that the other host previously lost network contact and now gained
it back, or that the other host previously suspended the session and wants to

Design of a Session Layer Based System for Endpoint Mobility 81

resume it now. It could also be that the other host switched network interface
and wants to update us with a new IP address.

ACTIVE
If we are in the active state, we switch to ready resume state, then
we will interrupt any thread that is blocking on a recv or send call. We
will then acquire the interrupt semaphore to assure that this thread has
time to act upon this state change. After this we will drop through to the
ready resume case to do everything that is done there.

READY RESUME
The first thing we need to do is to set the got resume variable in the session
to true. This should not be reset until we have successfully answered this
message. Then we will extract the address the other host sent to us and
change our destination address accordingly.

Then we will check the checkpoint that was specified. If it is our pending
checkpoint we will move forward in the stream so that this will be our
acknowledged. Now we will bind a socket to a port. This socket will alter
be used to rebind this connection.

Now we will send a resume ok message with our current address and
the port number from the newly bound port. We will also specify our
acknowledged checkpoint as the checkpoint to be used in this resume. If
we fail to send this message we will go to the ready resume state. If we
succeed we will first reset the got resume variable int the session. Then
we will do an accept on the bound socket and wait two seconds for an
incoming connection. If there is a connection we will close the session’s
old socket and give it this new one. Then we will activate any threads
that were interrupted and move to the active state. If the accept timed
out we will go to ready resume.

SUSPENDED
If we are in the suspended state, it means that we will not under any
circumstances accept a resume request, since the local user of our session
has not approved of it. We will send back a resume denied message.

SENT RESUME
Here we have a collision. Both sides want to resume at the same time.
To avoid any deadlocks we have clear rules for what each host should do
in this situation. If we are the initiator of this session, we will send a
new resume message. If we are not the initiator, we will change state
to ready resume, so that we can take care of the incoming resume
message that the other side will send.

Incoming message of type RESUME OK: When we receive a resume ok
message we will act differently depending on the session’s current state.

Design of a Session Layer Based System for Endpoint Mobility 82

SENT RESUME
This is the state we will most commonly be in when we receive a re-
sume ok message. We will first extract address information from the
message and update our information, then we will check the checkpoint
specified. If it is our pending checkpoint we will move forward in the
streams so that it will be our acknowledged. This assures that both hosts
are synchronized. If the we do not have the checkpoint specified we will
terminate this session.

Now we will try to connect to the port specified in the message. If this
succeeds we will change the state to active, otherwise we will go to
ready resume.

All other states
Drop the message, since it does not make sense to receive a resume ok
message when we are not in the sent resume state.

Incoming message of type RESUME DENIED: We will only handle the
resume denied message if we are in the sent resume state:

SENT RESUME
Change state to ready resume. Since we received a resume denied the
other side is in the suspended state, which means we will not resume the
session until the other side wants it to be resumed.

All other states
Drop the message, since it does not make sense to receive a resume-
denied if it is not in response to a resume request.

Incoming message of type SUSPEND: When we receive a resume denied
message we will act differently depending on the session’s current state.

ACTIVE
Change state to ready resume. The other side wants to suspend the
session so we go to ready resume.

All other states
If we are in any other state the message will be dropped.

4.8.3 Session system calls

To make it possible for the session API to communicate with the Session Layer
we have defined a number of system calls. They are similar to the functions de-
fined for the session API. We will therefore divide them into the same categories
as the session API.

Design of a Session Layer Based System for Endpoint Mobility 83

Endpoints

endpoint create
This will create a new endpoint and add it to the endpoint hash table.
This endpoint can later be used in subsequent calls to functions for sessions
and services that we want to make use of this endpoint.

endpoint close
This will close an endpoint and remove all sessions and services residing
at this endpoint. This will of course kill any communication on those
sessions.

endpoint suspend
This will suspend all sessions on this endpoint. This is useful when we
want to put all sessions into the ready resume state when we e.g. lose
our network connection. Note that this function will not put sessions
associated with the endpoint in the suspend state. That state can only
be reached when the user explicitly suspends the session. Here sessions
will be put into the ready resume state.

endpoint rebind
Rebinds an endpoint to a new interface by rebinding the source address
of all session that reside at it. This is done by calling the session rebind
function for each session. This function is described in section 4.8.4. It
will also update the SNS with new information about rebound endpoint.

endpoint resume
When we e.g. have rebound to a new interface there is a need to resume
all sessions associated with this endpoint. This will be done with a call
to this function. It will send a resume message and change the state
to sent resume for all sessions. The resume ok message will then be
handled by the SCT. If any of the sessions are not in the ready resume
then they will be ignored.

endpoint save to buffer
Saves all session structures associated with the specified endpoint to the
user space buffer provided by the caller. Will then remove the endpoint
from the local computers Session Layer, and all sessions and services as-
sociated with it.

endpoint load from buffer
Loads all session structures into the specified endpoint from the user space
buffer provided by the caller. Will initiate and setup the endpoint and all
sessions so that they are ready to be used.

Services

Design of a Session Layer Based System for Endpoint Mobility 84

service bind
This function will bind a service to a specific port number. This is done
by creating a listening socket that is stored in the service data structure.
The service name will also be associated with the port in the SNS.

service accept
This function will use the previously bound socket in the service data
structure to accept incoming connections. Those connections will be given
to newly created sessions.

Sessions

session connect
This function will connect to a service located at an endpoint. As the
name resolution is done in the user space API this function actually gets
an IP-address and a port. It will connect to this port, send a connect
message and wait for a connect ok. After this a session is created and
given the socket that was used for the connection.

session send
This function will send a number of bytes given to it to another application.
This is a quite complex procedure as the Session Layer needs to take care
of data integrity. The function is constructed around a main loop. This
main loop may not be left before all the data from the user is in the buffer
and sent over the network. The main loop will go through the following
steps during every iteration.

• State: active

1. If there is room in the buffer add data from the user to the buffer.
2. If we have sent a checkpoint and the buffer has room for more

data, then we will make a nonblocking receive. This is to check if
there is a checkpoint from the other host waiting to be received.
If there is a checkpoint here we will process it. If the buffer did
not have room for any more data we will make a blocking receive.
This might receive checkpoints which can free room in the buffer.

3. If we had not sent a checkpoint we will check if the buffer is more
than 50% full. Then we will send a checkpoint message.

4. Now we will try to fetch data from the buffer. If we got it we
will send it. Otherwise we will check if the data was put into the
buffer. Then we will return to the user as we know that it was
sent (because otherwise we would have got data from the buffer
to send).

5. Restart from step 1
• Any other state

Block on wait queue of this session.

Design of a Session Layer Based System for Endpoint Mobility 85

session recv
This function receives at maximum a specified amount of bytes from an-
other application. This function is a lot simpler than the send function
but still it is not trivial. It is also built around a main loop. This main
loop will return as soon as there is unprocessed data in the buffer. This
data will be returned to the user. If the buffer have no unprocessed data
this function will block on the recv to buffer call, see 4.8.4. Another pos-
sibility is that the state is not active, then this function will block on
the wait queue of this session.

session suspend
This function will suspend the session by changing its state to suspended.
There are two cases that must be taken care of. First the session might be
in active state. If that is the case we must send a suspend message to
the Session Layer at the other host. Second, if we are in ready resume
state we must not send the suspend message. In both cases we should of
course go to the suspended state.

session resume
This function will resume the session if it has been suspended with the
session suspend function. Therefor it will first of all make sure that the
state is suspended. Now it must check the got resume flag. If it is set
we have previously got a resume that we failed to answer. The correct
thing to do in this situation is to first send a resume denied message,
to release the other host from the sent resume state. Then it will try
to send a resume message. If this message is successful we will go to
the sent resume state. If it fails we will go to the ready resume state.
This will force the session to retry to resume when network changes. After
this we will return success to the user, if the resume was not sent, next
call to recv or send could block.

session close
This function will start by sending a close message. The close message
means we will not send any more data to the other side, except for the case
we need to perform a resume and we must rollback to an old checkpoint.
After sending the close message, we will enter a receive loop where we
take in packets and perform normal receive operations. We will exit the
loop and return from the function once we get a close message back.
If communication was somehow disrupted after we sent our first close
message, and a resume is performed by the other host, we will issue a
rollback and send out all data since last checkpoint followed by a new
close message. This is done every time this happens.

4.8.4 Session auxiliary functions

This is a collection of functions used by the system calls when they need different
tasks done. This can be things like sending data or suspending a session.

Design of a Session Layer Based System for Endpoint Mobility 86

session rollback
This function will rollback the session to the current checkpoint. This is
done by setting the recvd bytes variable to zero. There is also a need to
reset the sent cp variable as this information is not valid any more. After
this we will call a buffer helper function that will reset the appropriate
pointers in the buffers.

For the send buffer this means that the pending checkpoint is moved to the
position of our acknowledged checkpoint, we will also move the processed
pointer of this buffer to this position. This will assure that when we restart
the session all data from the acknowledged checkpoint and forward will
be resent.

For the receive buffer this is a little bit different. We will move the pending
checkpoint to the position of the acknowledged, but we will not move the
processed pointer. This pointer tells us how much we have copied to
userspace, and as we do not want the user to get any duplicate data we do
not want to reset this. Instead as we should reset the recvd bytes variable,
which was done earlier in this function.

session rebind
This function will set our source or destination address according to the
parameters given. It can also change the source or destination port.

send session ctrl msg
This function will send a session control message over a TCP connection
to another Session Layer. The message may vary between the different
types this function can handle. This is the basic steps of the function.

• First we will create a session header and copy message type, flags
and session handle to it.

• Now we will check if the message type is one of resume or re-
sume ok. If that is the case we will set the flags to contain our
current checkpoint, that is the checkpoint we want to make a roll-
back to.

• After this we will try to create a TCP connection to the session
control thread on the other host. If it fails we will return a negative
error value to indicate that things have gone wrong.

• Now it is time to send the header and the bulk of this message. The
bulk is the endpoint name of the receiver. This is always included so
that any gateway in the network may do its job properly.

• Once again we check if the message is either resume or resume ok.
If that is the case we will now append the current address and port
number of the socket used by the session for data communication.
This is to inform the session control thread on the other host about
eventual changes in our network connection.

• Now we will close the TCP connection.

Design of a Session Layer Based System for Endpoint Mobility 87

send session data ctrl msg
This function will send a connect, connect ok or checkpoint message
over the data channel. Step by step it works like this.

• First we will create a session header and copy message type, flags
and session handle to it.

• If the message is of connect or connect ok type we will append
the name of the receiving endpoint and our own endpoint. This
to assure that the message can pass through any gateways in the
network.

• If the message is of the checkpoint type we will set the header flags
to contain the checkpoint we want to create and we will add a data
structure with two integer values, one for the receive stream and one
for the send steam.

• This function will return what send returns.

get session packet
This function makes it possible for the Session Layer to think that it always
gets every packet as a complete packet. Not as a stream of bytes. This
means that it will block until it has all data in a packet. The function
also takes a filter of packet types so that we can assure that we only get
packets that we want to have. This is the basic layout of this function.

• Check if the buffer is big enough to hold the header, otherwise return
a negative error value.

• If the buffer was big enough, execute the following loop.
1. Repeat receive calls until we have all of the header in the buffer.
2. Now apply the filter on the header to see if it should be taken

care of.
– The packet is wanted.
∗ Check the length of the payload and make sure it fits in

the buffer.
∗ If it does, repeat calls to receive until we have all of the

payload in the buffer. Now return the packet. This is the
normal exit of the loop.

∗ If it does not, return a negative error value.
– The packet is not wanted. Then we use the buffer as a inter-

mediate storage and repeat receives until we have processed
the entirely payload. Note that here the payload does not
need to fit in the buffer. We overwrite the buffer every iter-
ation, this is possible as we do not want the payload.

3. Repeat from step 1.

create session
This function creates a new instance of session data structure. To do this
it will need an active socket, the endpoint name of this and the other host

Design of a Session Layer Based System for Endpoint Mobility 88

and a session handle. It will copy those parameters into the session data
structure and it will create buffers and set different fields to their initial
values.

recv to buffer
This function is called when we want to receive a packet on the data
channel. To do this this function will start with a call to get session packet
with a filter of data, checkpoint and close. If this returns successfully
we will switch on the message type.

• In the case of a data packet there are three cases.
– We have received as many bytes since the last checkpoint as there

are bytes in the buffer. This is the normal case when we just add
the received data to the buffer. We must of course also increase
the amount of data we have received since the last checkpoint.

– We have received less bytes than there are in the buffer, but if we
add the number of bytes received now we will overlap the buffer.
In this case we have finished a resume so we need to copy the
bytes in the packet that are after the end of the buffer to the
buffer. We must also increase the count of bytes received with
the same amount.

– If none of the above statements were true we already have the
data received in the buffer. Therefore it is safe to drop it, but
we still need to increase the byte count.

• In the case of a checkpoint the first thing we check is if we have
an unanswered checkpoint request.

– If that is the case we will: If the received checkpoint has the
same identifier as our pending we will set unset the variable that
indicates that we have an outstanding request. This since this
message can be seen as an answer to the previously sent request.
If the received checkpoint differs from our pending then this is a
protocol violation and we will terminate the session.

– If that is not the case this is a request for a new checkpoint. We
must therefore establish this checkpoint as our pending check-
point. After this we must send a checkpoint message as an
answer.

• In the case of a close packet we need to inform the user that the
session was terminated by the other host. This is done by returning
a negative error value. Moreover we need to respond with a close
packet. The session will also be moved to the closed state.

4.9 Session Layer Demonstration

To show the Session Layer and all its components in action, we have created a
demonstration setup. In this demonstration, we have implemented a simple file
server and client. The server will transfer a file to the client. The server is bound

Design of a Session Layer Based System for Endpoint Mobility 89

to the endpoint “storage@verkstad.net” listening on the service “file.storage-
@verkstad.net”. The client is bound to the endpoint “client@verkstad.net”.

Both the storage and client endpoints reside on their own USB memories.
The directory for the storage endpoint contains the file to be transferred to the
client. The file that the client receives will be stored in its endpoint directory.
The demonstration setup shows how users can move the endpoint USB mem-
ories between different computers, and simultaneously changing which network
interfaces and IP addresses they use, without breaking any sessions or services.

Design of a Session Layer Based System for Endpoint Mobility 90

5 Analysis

5.1 Introduction

In this chapter we will explain how we have tested our work and evaluated the
results. We will also discuss the results we have gotten from the testing.

5.2 Testing and evaluation

5.2.1 Method

What we want to evaluate The goal with this thesis project has been to
design and implement the Session Layer. The main reason for doing this is to
show that it is possible to realize the goals stated in section 1.1.3, and that it
can be implemented as a reliable, easy to use software system. Our work can
be divided into a few different categories which we want to evaluate.

Functionality testing
It is important that the functionality that is described in sections 1.1.3
and 3.2.2 is implemented correctly. We have tested this by running the use
cases using our implementation, and then checking if we got the expected
results.

Reliability testing
It would be quite easy to design and implement a software system that
fulfills the requirements stated in our use cases, while being very unstable
and unreliable. So we need to separately run stressful tests that will
create situations that are unusual but possible. Additionally we want to
run these tests for extended periods of time, to increase the probability
that we have covered all situations that may arise when using the Session
Layer.

Formal verification
Even if we run very comprehensive tests on our Session Layer implemen-
tation, we can never be totally sure that we have covered every situation
that may arise. Therefore the verification of the correctness of our Session
Layer design and implementation will continue with formal verification
work carried out by Palmskog [7].

5.2.2 Hardware and software

In this section we will briefly describe what hardware and software we have used
when we performed the tests.

Hardware In all our tests, we have used three computers. The first two
computers were used as Session Layer client and server. They are equipped
with 3 GHz Intel Pentium 4 CPUs, 1024 MB memory and 40 GB hard disk
drives. The third computer was used as a Session Name Server. It is equipped

Design of a Session Layer Based System for Endpoint Mobility 91

with an 1 GHz Intel Pentium 3 CPU, 512 MB memory and a 40 GB hard disk
drive. 100 MBit Ethernet network interface cards were used in all computers.

Software All test computers have a Gentoo Linux installation. We have im-
plemented the Session Layer in the Linux kernel, version 2.6.15. As compiler
we have used GCC version 3.3.6.

5.2.3 Functionality testing

To verify that we have implemented the required functionality in our Session
Layer prototype, we have performed every use case described in section 3.2.2 to
see if our prototype acts as expected. In this section we will go through a quite
typical life cycle of an endpoint and some sessions that reside at it, and in the
description of our test we will explain how all of our use cases are satisfied.

1. We have two hosts, A and B, which both have their own endpoints called
a@verkstad.net and b@verkstad.net respectively. Those endpoints were
created earlier using a system call, therefore use case 7; create endpoint
is satisfied. We have another host, which we call C, that runs our Session
Name Server.

2. Host A creates a service called s. We can see at the SNS output that an
endpoint which can be reached through the name s.a@verkstad.net has
been inserted into the SNS service table. The service has started listening
on host A, and thus we have fulfilled the requirements of use case 10;
create service.

3. Host B uses its client program to connect to the new service at host A. As
we can see from the system log that the Session Layer writes to, the session
ID is negotiated correctly between the two endpoints, and the session is
now ready to be used for communication. Therefore use case 9; create
session, and use case 11; accept incoming session establishment
request, are now both shown to be working correctly.

4. In our simple test setup, the server currently running on host A will start
sending a file to the client running on host B.

5. The application at host B will now suspend the previously created session.
All communication stops, and both hosts now block on their send and
receive calls. Use case 5; application performs suspend, has now
been proven to do what it should.

6. The application at host B resumes the session after a while, and com-
munication starts again. No data corruption is detected. Use case 6;
application performs resume, is satisfied.

7. The user at host A now pulls out the host’s Ethernet cable. This cable is
its only connection with the network. Communication stops and we can

Design of a Session Layer Based System for Endpoint Mobility 92

see that the send and receive calls that the server and client have made
are now blocking. Use case 1; unexpected disconnection, is now
satisfied.

8. Host A’s user inserts the cable again, but into another interface at host
A. After a resume is automatically carried out, communication is working
again. No data corruption has occurred. Use case 2; new network
interface, no previous interface exists, is satisfied.

9. The user at host B inserts a new Ethernet cable into a previously unused
interface on the computer. Due to our simple endpoint policy that states
that we should always change interface when a new one appears, that is
exactly what will happen. Communication continues on the new interface
after performing a resume. No data has been corrupted. Use case 3;
new network interface, previous interface exists, is satisfied.

10. Now both users pull out their Ethernet cables and switch to another in-
terface. When the cables are plugged back into new interfaces, neither
host’s information about the other endpoint’s position is correct. They
will ask the name server and perform a resume. Communication contin-
ues and no data has been corrupted. Therefore, use case 4; both hosts
simultaneously rebind, is satisfied.

11. The file transfer has now completed. Both hosts close their sessions. Com-
munication stops and the session is destroyed. Use case 12; close ses-
sion, is satisfied.

12. The server at host A will close its service and endpoint. They are now both
gone in SNS endpoint and service tables. Use case 8; close endpoint,
works as intended.

5.2.4 Reliability testing

In this section we will describe the tests used to verify that the implementation
can handle unlikely situations and conflicts. The tests that we describe here
have been used through the whole implementation phase and they have helped
us to understand how the session’s state machine act when unlikely situations
occur. Some errors found with those tests have forced us to change the design of
the state machine. We will describe three tests and during the implementation
we have used them together in different fashion. The final test was to combine
them all.

Suspend and resume testing In this test both the server and the client
calls the suspend and then the resume library function. Those functions are
called with a probability of 1

128 after each send and receive call. This causes a
lot of conflicts and synchronization issues in the session state machine.

Design of a Session Layer Based System for Endpoint Mobility 93

Network change testing In this test we both plug and unplug network
cables as fast as we can. This stresses the Session Layer Daemon and the SNS.
A problem is that the test speed is reduced by the “human factor”.

Device movement testing This test is similar to the test above. We both
plug and unplug devices containing endpoint directories, in our case USB Mass
Storage devices, as fast as we can. This test is quite simple but when combined
with the other tests the complexity increases.

When the implementation was finished, we could run all these tests simul-
taneously without any problems.

5.3 Conclusions

As shown in section 5.2 the implementation fulfills all use cases. The reliabilty
testing shows that the implementation was reliable enough to show that the
design is satisfactory.

Design of a Session Layer Based System for Endpoint Mobility 94

6 Conclusions and future work

6.1 Summary

In this thesis, we presented design and implementation of a session layer based
system for endpoint mobility. This section very briefly summarizes the work
that we have presented in this thesis.

Related work There have been previous attempts to solve different parts
of the problems that appear in mobile networks. We did not find that any of
the work solved the problem stated in the beginning of this paper. At the same
time we found that it existed good solutions to most parts of the bigger problem
we tried to address. Therefore we felt assured that it was possible to design a
system that solved the problem we wanted to solve.

Design and implementation The first part of the design work was coming
up with the fundamental parts of our approach to mobility, namely Endpoints,
Services and Sessions. When we had defined the basic building blocks, we
designed a naming system used to name mobile objects, or as we call them,
Endpoints. The scheme decided upon was mobileobject@domain, an example
could be usbhd@example.com. As one of our main goals with the project was
to have a disconnection tolerant system, we also designed a sub protocol used
to assure that data transferred over a session is consistent even if the transport
connection is corrupted. Here we decided to use a checkpoint based protocol.
Then we designed the core of the Session Layer, the state diagram and the
Session Management Protocol. Together they are used to keep track of witch
action that should be taken when different events occur. Parallel with the design
work we implemented a prototype of the Session Layer on top of the network
stack inside the Linux kernel.

Testing We think the tests we have designed and carried out for our prototype
have good coverage of problems that may arise. However, to really ensure the
correctness of some aspects of our design, formal verification is required. That
work will be carried out by Palmskog [7]. The results of our tests are satisfactory,
we have not found any major flaws in our design or implementation.

6.2 Conclusions

Network mobility Network mobility is already possible with a lot of different
systems, e.g. Mobile IP. Our creation of another system which is capable of this
is not very revolutionary. This said, our design still has some advantages over
other solutions such as Mobile IP. We do not have to deal with the problem
of triangle routing, which can slow down communication. The only drawback
that we can see with our design, is the need to change applications to support
the new API. As previously argued this is needed to move beyond traditional
mobility.

Design of a Session Layer Based System for Endpoint Mobility 95

Device mobility We have shown that device mobility is possible and that
our endpoint directories make it possible to name any device or data in a con-
venient way. We think that the possibilities here are unlimited. You could for
example give a web camera an endpoint and name it. Whenever you plug it
in to any computer or other networked device other users could connect to a
service provided that will show the video stream from this camera. This would
be a very easy extension to the implementation we have done and the same is
probably true for a lot of other devices.

Temporal mobility Temporal mobility is one of the forgotten, but maybe
the most useful, types of mobility. To be disconnected for long periods is normal
for most mobile devices, yet very few designs take this into account. A TCP
connection will die after around 15 minutes of inactivity, regardless of if the user
use Mobile IP or not. We have shown that temporal mobility is possible with
our design. Sessions will not die when the connection on the transport layer
dies. Sessions are persistent and can even be stored to non-volatile memory
which could be saved for years before they are resumed.

The design Our design shows that it is possible to combine, if not all, a lot
of different mobility types in one common design.

6.3 Future work

In this section we have identified and described a few areas where further work
is needed.

Naming The syntax of the naming system need to be thought through so
that it does not conflict with any existing syntax, such as the URI.

Security To enhance security there should be a thought through public key
solution to the session handle.

Session Gateway A session gateway that can route sessions between different
networks should be designed. For example it should route sessions between
private and public IP networks as well as different IP versions (e.g. 4 and 6).

User mobility It would be interesting to integrate the Session Layer into the
user workspace, which could make it possible for a user to move his running
software between different workstations.

Context aware mobility The Session Daemon should be improved in a way
such that it can choose between different networks in an intelligent manner.
It should be possible to have policies regarding as many aspects of different
connections as possible. This could be anything from bandwidth to the cost for
every byte that is sent.

Design of a Session Layer Based System for Endpoint Mobility 96

References

[1] Ekwall, Richard, Urbán, Péter, Schniper, André, Robust TCP Connections
for Fault Tolerant Computing, ICPADS ’02, 2002

[2] Handley, M., Schulzrinne, H., Schooler, E., Rosenberg, J., SIP: Session
Initiation Protocol, RFC 2543, March 1999

[3] ISO standard 7498-1, ”Information Processing Systems - OSI Reference
Model. The Basic Model”, http://www.acm.org/sigcomm/standards/
iso_stds/OSI_MODEL/ISO_IEC_7498-1.TXT

[4] Landfeldt, Björn, Larsson, Tomas, Ismailov, Yuri, Seneviratne, Aruna,
SLM, A Framework for Session Layer Mobility Management, Eight Inter-
national Conference on Computer Communications and Networks, 1999.
Proceedings.

[5] Maltz, David A., Bhagwat, Pravin, ”MSOCKS: An architecture for trans-
port layer mobility”, IEEE INFOCOM 1998 - The Conference on Computer
Communications, no. 1, April 1998 pp. 1037-1045

[6] Nikander, P., Ylitalo, J., Wall, J., Integrating security, mobility, and multi-
homing in a hip way, Proceedings of Network and Distributed Systems
Security Symposium (NDSS’03), pages 87–99. Ericsson Research Nomadi-
cLab, February 2003. 7

[7] Palmskog, Karl, Verification of the Session Management Protocol, 2006. To
appear.

[8] Perkins, Ed. C., IP Mobility Support for IPv4, RFC 3344, August 2002

[9] Qu, X., Yu, J.X., Brent R.P., A Mobile TCP Socket, International Confer-
ence on Software Engineering (SE ‘97), San Francisco, CA, USA, November
1997.

[10] Schulzrinne, H. et. al., RTP: A Transport Protocol for Real-Time Applica-
tions, RFC 3550, July 2003

[11] Schulzrinne, H. et. al., RTP Profile for Audio and Video Conferences with
Minimal Control, RFC 1890, July 2003

[12] SDP: Session Description Protocol, RFC 2327, April 1998, http://www.
ietf.org/rfc/rfc2327.txt?number=2327

[13] Snoeren, Alex C., Balakrishnan, Hari, Kaashoek, M. Frans, Reconsidering
Internet Mobility, HotOS-VIII

[14] Stocia, Ion, Adkins, Daniel, Zhuang, Shelley, Schenker, Scott, Surana,
Sonesh, Internet Indirection Infrastructure, IEEE/ACM Transactions on
Networking, Volume 12 , Issue 2, April 2004

Design of a Session Layer Based System for Endpoint Mobility 97

[15] VoIP Protocols and Standards, June 30th 2006, http://www.protocols.
com/pbook/VoIP.htm

[16] Wang, Yaoshang, Mobility Support for Networked Applications built in the
TCP/IP Stack, Stockholm, April 2006

[17] Wesly, M., Eddy, At What Layer Does Mobility Belong?, IEEE Communi-
cations Magazine, October 2004

[18] Zandy, Victor C., Miller, Barton P., Reliable Network Connections, Pro-
ceedings of the 8th annual international conference on Mobile computing
and networking, 2002

Design of a Session Layer Based System for Endpoint Mobility 98

A Segment oriented data integrity

This design works like a simplified version of TCP. Instead of keeping the data
consistent on the byte level it keeps it consistent on the segment level. A segment
is a part of the data stream that has a segment number associated with it. The
idea is to maintain a buffer of sent segments, and as we receive acknowledgments
from the other side, we drop segments from this buffer.

The design There are two values to be decided upon. Segment size and how
many outstanding segments we want to send before we need an ACK. The values
chosen here will have a great impact on performance and should probably be
different for different networks, as the optimal frequency of acknowledgments is
dependent on the bandwidth and the latency of the network connection. To help
explain this design we will pretend that these values are set to the following.

SEGMENT_SIZE = 200

NUMBER_OF_SEGMENTS = 2

This means that our buffer consists of two segments of 200 bytes each. We also
need two pointers, one that points to the segment where we currently should
put data and one that points to the first segment that needs an ACK. See figure
21.

Every time data is sent to the other host, it is added to the current segment
of the local session buffer. We start at segment 0, and continue to fill all available
segments. Every time we have sent some data over the network, we will check
if the other side has sent any acknowledgments. In that case, we will note that
the segment specified in the ACK has been received on the other side, and we
can free that segment and reuse it.

If all segments in the session buffer become full (that means they are all
unacknowledged), it means that there probably is some problem with the con-
nection. In this case we will stop sending data. In a future implementation,
this will mean that we suspend the current session until it can be resumed
again. If a TCP connection is resumed, data transmission will start from the
first unacknowledged segment.

Problems with this implementation

• It is impossible to choose a segment size and number of segments to use
that is advantageous for all kinds of networks.

• This mechanism does not conform to the very much similar mechanism
described in the OSI specifications for the Session Layer.

• Too high complexity for something solving a simple task.

These three problems make this design undesirable as the data integrity mecha-
nism for the Session Layer. Therefore we have designed another mechanism for
consistency which is described in the next section.

Design of a Session Layer Based System for Endpoint Mobility 99

Figure 21: A sample usage of the session segment data integrity.

	fp.pdf
	fp2.pdf
	report.pdf

