

Media Streaming Distribution Network with Network Coding

J O H A N N E S E R I K S S O N

Master of Science Thesis Stockholm, Sweden 2006 ICT/ECS-2006-107

Prototype System Design, Implementation and Evaluation

Media Streaming Distribution
Network with Network Coding

Prototype System Design, Implementation and Evaluation

Master of Science Thesis
August 2006

Johannes Eriksson joherik@kth.se

ZTE Research and Development Lab
ZTE Corporation, Sweden AB

Stockholm, Sweden

Examiner: Vladimir Vlassov vlad@it.kth.se
Supervisor: Eric Sun sun.zheng1@zte.com.cn
Advisor: Richard Wang wang_rz@yahoo.com

 Master of Science Thesis Stockholm, Sweden 2006 ICT/ECS-2006-107

 III

Abstract
During the last years more and more network applications are developed to
build up overlay distribution networks. Overlay distribution networks that
fulfill the people’s needs, such as sharing files with each other. A great
example is to look at BitTorrent that millions of people are using today. There
are also demands on good streaming services; people want to see the tv-shows
they missed and follow lectures over the internet and preferably live. With
other words lots and lots of data needs to be transferred over the network. It
would be nice to optimize the transmission of data in these overlay networks
and not only use plain routing. This can be achieved with Network Coding.

First of all this thesis is a part of a bigger project. Together in this project we
have made research in different areas such as Network Coding, Peer
Selection, transport protocols and different kinds of packet formats. After that
a prototype was developed, a prototype for a media streaming distribution
network that uses Network Coding.

The focus in this thesis has been to first of all implementing the
communication parts such as the message structure and the packet
transmission part, and second has been to implement the actual prototype
application. Apart from that this thesis has made some tests on the prototype
and after that an evaluation took place.

The evaluation told us that there is a lot of work to do in the future to get a
prototype that could challenge the existing streaming services, but we are sure
that the combination of an overlay network where every node are helping
distribute information and using Network Coding are going to be a great
solution for streaming media to a big crowd.

 IV

Vocabulary

Term Symbol Definition

Field size: The bit size of the individual data values/symbols
contained in the packet to be sent, e.g. 8 bits or 16 bits.

Generation: The media stream to be sent via network coding is
divided into "generations". A single generation contains
packets that are all related to the same set of source (h)
vectors. [2]

Global code: G The encoding vectors that are sent node to node.

Innovative info: Incoming global code to a node that provides new
information (non redundant) which will help create a
full-rank matrix.

Jitter: Uncontrollable latency variance.

Local code: The temporary vector that is multiplied by the received
incoming global code vectors at a node to create a new
outgoing global vector.

NC dimension: h The dimension of the matrix created for network coding
of the source stream. It should be equal to or less than
the value of the "minimum cut" between the source and
any receiver. The input stream is divided into h number
of x-streams.

NC: Network Coding: a method used to encourage and allow
mixing of data at intermediate nodes, which helps to
maximize the flow of data across the minimum cut of the
topology. [8]

Neighbor: A node that is only one “hop” away in the topology. The
neighbors are the only nodes that you know of.

Node: Can be a receiver, source or a receiver&source in the
overlay network.

Parent: A Parent is a node that distributes information to another
node (Child).

Child: A Child is a node that receives information from another
node (Parent).

Source: A Source is a node that helps distribute information in
the overlay network. Also called Parent.

Receiver: A Receiver is a node that receives information and uses it
but doesn’t forward it to someone else.

Non-innovative
info:

 Incoming global code to a node that provides no new
information (redundant).

 V

Term Symbol Definition

Peer: An active node in the overlay network that you're
communicating with. Parent or a child.

Premature
transmission:

 Each node will transmit coded content after certain
amount of time whether it receives full ranked content or
not.

Rank: The rank of a matrix is the number of the linearly
independent rows or columns of a matrix. [9]

Server Rate: Current output bandwidth at the server/source.

Source Rate: rs The bandwidth required to output the total of the
individual x streams (rs = h · rx)

Time invariant
NC:

 The initial global encoding matrix (from the server) does
not change throughout the lifetime of the transmission.

Time variant NC: The initial global encoding matrix (from the server)
changes periodically over time. This method provides a
more "robust" network coding solution, as with periodic
change comes a greater chance that the matrix has full
rank and can be solved completely.

Tracker: A standalone application that the nodes connects to, to
get information about the network.

Full rank A matrix that is non-reducible and has a rank that is
equal to the number of rows; is also called a non-singular
matrix. If a matrix is full rank, it can be solved.

 6

1. INTRODUCTION.. 9

1.1 PROBLEM STATEMENT... 9
1.2 RELATED WORK ... 10
1.3 STRUCTURE OF THESIS... 10

2. BACKGROUND .. 11

2.1 NETWORK CODING.. 11
 2.1.1 Overview.. 12
 2.1.2 Basics .. 13
 2.1.3 Practical .. 15
2.2 DATA PROCESSING.. 16
 2.2.1 Buffering Model ... 16
 2.2.2 Packet format... 24
2.3 BUILDING A PEER-TO-PEER NETWORK... 26
 2.3.1 Startup Process .. 26
 2.3.2 Peer Selection Process ... 28
 2.3.3 Leaving Process... 31
 2.3.4 Bad or Change of Condition... 32

3. DESIGN.. 35

3.1 SYSTEM OVERVIEW... 35
 3.1.1 Logic Layer.. 36
 3.1.2 Upper Interface.. 37
 3.1.3 Lower Interface.. 38
3.2 PROTOTYPE APPLICATION ... 39
 3.2.1 SourcePrototype... 39
 3.2.2 PeerPrototype.. 40
3.3 PACKET TRANSMISSION PART .. 40

4. IMPLEMENTATION.. 43

4.1 ARTEFAKTUR COMPONENT DEVELOPMENT KIT – ACDK.. 43
4.2 ENVIRONMENT DETAILS .. 44
4.3 DESCRIPTION.. 44
 4.3.1 Prototype Application... 44
 4.3.2 Packet Transmission Part... 45
4.4 IMPLEMENTATION SUMMARY .. 46
 4.4.1 Overview.. 46
 4.4.2 Step-to-Step Tutorial .. 46
 4.4.3 Discussion ... 48

5. EVALUATION... 49

5.1 TEST-BED PLATFORM .. 49
 5.1.1 A Peer Prototype.. 49
 5.1.2 A Source Prototype .. 49
5.2 CORRECTNESS... 49
 5.2.1 One receiver .. 50
 5.2.2 Two receivers... 50
 5.2.3 Five Receivers.. 51
 5.2.4 Correctness Summary... 54
5.3 PERFORMANCE.. 55
 5.3.1 Memory Consumption .. 55
 5.3.2 CPU Usage.. 55
5.4 INTEGRATION WITH LOGIC LAYER ... 55
 5.4.1 Prototype Application... 55
 5.4.2 Packet Transmission Part... 56

 7

6. CONCLUSIONS & FUTURE WORKS .. 57

6.1 RESEARCH AREAS... 57
6.2 DESIGN... 57
6.3 IMPLEMENTATION ... 58
6.4 EVALUATION .. 58
6.5 FUTURE WORKS.. 59

7. REFERENCES... 60

APPENDIX A: PRACTICAL EXAMPLE OF NC................ .. 62

APPENDIX B: EXAMPLES OF THE EARLY STAGE............ 64

APPENDIX B.1: THE FIRST NODE IS JOINING THE NETWORK. ..64
APPENDIX B.2: THE SECOND NODE IS JOINING THE NETWORK. .. 65

APPENDIX C: AN EXAMPLE OF THE LATE STAGE. 66

APPENDIX D: AN EXAMPLE OF THE LEAVING PHASE........ 67

APPENDIX E: AN EXAMPLE OF THE BAD/CHANGE CONDITION PHASE......... 68

APPENDIX F: A “HELLO WORLD!” EXAMPLE, WRITTEN WITH ACD K’S
SCRIPTING LANGUAGE. ... 69

 8

 9

1. Introduction

Large scale communication networks like Internet are used almost by
everyone today. Nowadays users not only want to read information, they also
want to get information in the form of video/audio streams. To meet the users’
needs lots of different techniques are discussed and investigated by
researchers all around the world.

1.1 Problem Statement
There are several problems you need to think about when building a prototype
of a media streaming distribution network. The prototype that is working on
every node in the network should have several choices for an area of usage. It
could choose to act as a source node, receiver node or as both.
 A source node only encodes the incoming data stream and forwards it to its
children whereas a receiver node only decodes the incoming data stream and
sends it out to the screen. As you probably already figured out the prototype
collects all information, decodes it, send it to the screen and then encodes the
streams and send them to its children nodes when it is working as a source and
a receiver.

Of course the most common node acts as both a source and a receiver,
because in our case clients don’t wait for the whole video stream before they
send it along, they send it along continuously. Working only as a source is not
going to be that common for the clients but maybe the company that offers
this video stream needs to have a few servers to help the network stream the
video to all its users.
 The choice for act only as a receiver should not be the clients’ decision; the
client should become only a receiver automatically if the client has a really
bad upload capacity. Clients that are joining the network from a mobile phone
or a bad ADSL connection are examples on clients that will only act as
receivers.

When talking about encode data streams it means that all of the incoming data
streams will be combined using network coding (NC) and network coding is
also used when decoding the data streams. NC is the main technique that we
are going to use when implementing this prototype and therefore it will steer
some of the other parts of the prototype, parts such as peer selection and data
processing.

Since there is usually more than one incoming data stream at the input of a
node, it is necessary to acquire synchronization. Synchronization of the
incoming data streams is a main requirement for a media distributed network.
If you don't supply synchronization among these data streams there can be
serious problems for real-time applications such in our case media streaming.

 10

To acquire synchronization you will need a buffering model. You could tag
every packet, related with the same source vector, with a specific number and
then put all incoming packets in a single buffer sorted after the specific
number. In other words, every node needs a mechanism that puts the incoming
packets in the buffer in the right order.

As mentioned above there is several main issues that this thesis will have to
dig deep into, issues such as NC, peer selection and data processing. Dig deep
to reach the goal of this project, that is to design, implement and evaluate a
prototype application to stream media over a peer selected network. This
network should use network coding to make the packet transmission more
efficient.

1.2 Related Work
There is lots of researching going on about network coding, most of the
available research is theoretically like in [1, 3, 4], but more and more practical
views are coming as you can see in [2]. Also most of the existing research is
about NC in a file distributed way and not in a real time streaming way.
 Anyhow, there is some available theoretically research in real time
streaming using NC but to our best knowledge it seems that no one has
researched and build a prototype in this area. You could also find several
different approaches and theories to tackle the issues of peer selection [14, 15,
19] and data processing [5-7, 9-12] when building such a prototype.

1.3 Structure of thesis
First of all I want to explain that this thesis is a part of a big project where four
people, included me, worked pretty much together. This means that much of
the research were done together in the group and that led to that some of the
subchapters in the background chapter were also done in a group-work.

Subchapter such as: 2.1 and 2.2.1 are group-work and subchapters such as:
2.2.2 and 2.3 are more or less my own parts.

The reminder of this thesis is structured as follow: Chapter 2 covers the
research areas related to the thesis; Chapter 3 presents the analysis and design
of the system prototype; Chapter 4 describes the implementation of the
proposed prototype design in detail; the evaluation of the implemented
prototype is discussed in Chapter 5; then the conclusions of the thesis is found
in Chapter 6; and finally Chapter 8 covers the future work.

 11

2. Background

To reach the goal of the thesis some real investigation is needed in certain
areas. Areas such as peer selection and data processing are very important
when talking about real-time media streaming in an overlay network.
Important for sure, but one thing one needs to think of is that the peer
selection and the data processing part must be investigated in the sense that
network coding is used. Therefore it is necessary to dig deep into NC first, so
one will understand all the issues and problems that may appear when trying
to come up with a solution for peer selection and data processing.

2.1 Network Coding
There has been a lot of research on routing and making routing more efficient
because plain routing basically just forwards packets. With network coding,
nodes in an overlay network send out packets that are combinations of
information from the previous incoming packets. This leads to possible
throughput improvements and a more robust network as said in [1].
 Combining incoming information requires some computations at the nodes
in the network; this will not be a bottleneck these days because of the very
powerful computers. Instead the network bandwidth will be the bottleneck and
therefore it has become very important to try maximizing the bandwidth.

 12

2.1.1 Overview
The main idea behind NC is that in some cases it would be more optimized to
send a combination of information instead of sending all the information
separate. This would lead to a reduced amount of network usage but at the
same time it achieves the same result.

Figure 2.1: A possible scenario without network coding.

In Figure 2.1 the S is the source that is sending some information to the
receivers (R). For the information to get there, it must travel through some
nodes (N) in the network. The two letters in the figure, a and b, is the actual
information that the receivers wants, it must have both a and b to get the
“message”.
 Figure 2.1 also shows that when all links have maximum bandwidth usage
and network coding is not used, N3 is forced to choose if it should forward
packet a or b. This means that depending on what N3 chooses, R1 and R2 will
be satisfied, but not at same time. If there are some bandwidth left for N3, N3
could transmit both a and b and that would satisfy both R1 and R2 at the same
time. But this scenario would also lead to that the bandwidth is not optimum
used, because N4 is going to send both a and b to both R1 and R2.
 This problem could be solved if N4 knows which packet to send where,
because then N4 only needs to send packet b to R1 and packet a to R2. Many
of the problems could be solved if all facts are known for each node, but this

 13

also means that the topology has to be known for each node. Another way to
solve these problems is to use NC which will be explained further down.

Figure 2.2: A possible scenario with network coding.

As shown in Figure 2.2, when all links have maximum bandwidth usage and
network coding is used N3 is forced to do a combination of a and b to be able
to forward packet a and b. This means that R1 and R2 will be satisfied at the
same time, because R1 could use the b part of the combination and R2 could
use the a part of the combination.

The major problem with NC is that when a certain packet is not received at a
node then would all packets be useless for that node. This is because it is
impossible to resolve the original information with some unknown encoded
data.
 One way to do this problem smaller and also make the implementation more
feasible is to divide the information into generations. Then if some part is lost
would that only mean that the all the parts in that generation would be lost.

2.1.2 Basics
As said before NC is letting nodes encode the incoming information before
sending it on, with help from some coding scheme. Among the simplest
coding schemes is linear coding, which regards a block of data as a vector
over a certain base field and allows a node to apply a linear transformation to
a vector before passing it on.

 14

 Linear network coding is proved to be an optimum scheme for encode
information according to this paper [2].
 Linear equations are simple as said before, and the simplest linear system is
one with two equations and two variables.
 Solving three-variable, three-equation linear systems is more difficult, at
least initially, than solving the two-variable systems because the computations
involved are messier. The systematized method for solving the three-or-more-
variables systems is called Gaussian elimination. Gaussian elimination is the
most common method to solve linear equation systems and it is not
complicated at all.

Theoretically NC consists of two different parts. The first part is the global
encoding matrix (Gt) which could be fixed or randomly created. This is the
entire idea behind NC which makes it possible for a node to forward some
data, without first having received the complete generation. The other part of
NC is the original information (X). These will then be multiplied which then
generates the result (Y) according to the following formula:

XGY t ⋅=

The crucial thing is to choose a global encoding matrix that makes it possible
to resolve the original information at a receiver later on. This is also based on
the field size because if a field size that is large enough is chosen then would
this matrix be solvable with high probability. But on the other hand the field
size should be kept as low as possible to achieve the highest throughput
possible and by that also keep the overhead as low as possible. One could say
that field size is how much information that is available to represent each
piece of the encoded data.
 A solution to this problem would be to use finite fields that make it possible
to have a fixed field size. After some reading [2]-[4] it seems that 28 or
perhaps 216 would be an appropriate fixed field size.
 A finite field is a field with a finite field order (i.e., number of elements),
also called a Galois field. The order of a finite field is always a prime or a
power of a prime. For each prime power, there exists exactly one (with the
usual caveat that "exactly one" means "exactly one up to an isomorphism")
finite field GF(pn) [5].

Another NC technique is random network coding (RNC), and the difference is
that the global encoding vector is randomized instead of static and predefined.
You will find more information about random network coding in [3].

 15

2.1.3 Practical
Below is NC described in a more practical way.

The general procedure of NC for the source is as follows:

1. Start with the original information (X)
2. Create a random or fixed global encoding matrix (Gt)
3. Multiply the global encoding matrix (Gt) with the original information

(X) to retrieve the encoded data (Y). (Y = Gt * X)
4. Then send both Gt and Y to the children of that source.

For a middle node would the procedure of NC be quite similar:

1. Start with receiving the global encoding matrix (Gt) and the encoded
data (Yr).

2. Create a random or fixed local encoding matrix (Gl).
3. Calculate a new global encoding matrix (Gn) by multiplying the old

global encoding matrix with the local encoding matrix (Gn = Gl * Gt).
4. Calculate new encoded data (Yn) by multiplying the old encoded data

with the local encoding matrix (Yn = Gl * Y r).

For a receiver would the procedure of NC be somewhat related:

1. Start with receiving the global encoding matrix (Gt) and the encoded
data (Y).

2. Solve X in the formula (Y = Gt * X).
3. Then if everything went well should the original information be

resolved.

A practical and more mathematical example of NC could be seen in Appendix
A. The example was developed after careful reading of this research paper [2].

 16

2.2 Data Processing
The data processing part is divided up in three parts: buffering model, data
format and encode/decode function for network coding. Every node in an
overlay network needs a buffering model, a buffering model that consist of
one or more buffers, size of the buffers, a flushing policy and much more.
 Real time streaming makes it very important to know when and what to
flush to its children. The data format part is also very important, how to build
up the different message types that those different peer selection scenarios are
using; what should be included and which protocol is going to be used when
sending these messages.
 Apart from these two issues every node in the network needs to have a
network coding encode/decode function. This is the heart of the whole
prototype; which mathematically areas are going to be used to succeed on
combining, encoding and decoding the incoming data streams.

2.2.1 Buffering Model

2.2.1.1 Introduction
The buffering model specifies how the strategy of the two buffers works. The
main task of the first buffer, called transmission buffer, is to synchronize the
packets’ arrivals and departures. This buffer contains the non decoded
information.
 The second buffer, called playback buffer, is to take care of the decoded
information and store it in the right order for the actual playback.

In practice the capacities of different edges vary (depending on loss,
congestion, competing traffic etc.), thereby must the transmission be
synchronized. To get it synchronized in practice the packet must contain a
field with information (generation number) about which generation a certain
packet belongs to.
 Packets that are related to same source vectors X1, …, Xh are in same
generation where h is the generation size. This field would be sufficient if it
has a size that is one byte because same generation number could be reused
over time.

When a packet arrives at a node on whichever edge, the packet is put into the
transmission buffer sorted by the generation number. Then on first possible
opportunity or after a while the information will be sent on the outgoing
edges. Before sending the packet, it should be generated as a random linear
combination of packets from the buffer within the actual generation.
 The current generation will regularly be taken from the transmission buffer
to the playback buffer. The information could be deleted after some time or
saved for a certain time, depending on if the node should be able to resend the
information at a later stage.

 17

2.2.1.2 Absolute delay/Latency
The absolute delay (Dn) also known as latency is the time it takes for a packet
to travel from the source (S) to a destination node (Nn) as shown in Figure 2.3.
 S NnTt1 Tp1 TtnN1 Dn Tpn

Figure 2.3: The absolute delay (Dn) in a schematic network.

Figure 2.3 also shows that the packet may travel through some other nodes
(N1, .., Nn-1) to get to the destination node (Nn) and then the absolute delay
will increase. From that the absolute delay is the sum of the travel time
between every node on the way to the destination, plus the sum of all nodes’
processing time. ∑

=
+=

n

i
tpn ii

TTD
1

)(

Where:

• Tp is the processing time at the node (time between receiving and
transmitting).

• Tt is the travel time from the parent to the child.

The absolute delay could be minimized in two ways. The first is to keep the
node close to the source i.e. have a peer selection strategy that creates a
topology with low diameter.
 The second way is to minimize the processing time by having a flushing
strategy that prioritize low processing time.

The absolute delay is not as important as keeping a low delay spread, because
if a node has a big absolute delay it just means that the node are experience a
constant delay of the stream. This means that the node would get to see the
information a bit later than a node with a smaller absolute delay.

 18

2.2.1.3 Delay spread
The delay spread (Dsn) at a node (Nn) is the time difference in arrivals between
the first packet (Dfn) and the last packet (Dln) in one generation as shown in
Figure 2.4.
 S3S2S1 NnDfnS1S2S3 DlnDsn

Figure 2.4: The definition of the delay spread (Dsn).

Figure 2.4 shows a node that getting incoming packets from three different
parent-peers and the first incoming packet from each and one of the parent-
peers belongs to the same generation. Every packet in the same generation is
needed for decoding the packets and therefore the delay spread is an important
criterion to determine the buffer size. Delay spread is then the time between
the first packet from a certain generation arrives and the last one.
  +− +=−= ∑∑

==

n

i
tp

n

i
tpfls iiiinxnxnx

TTTTDDD
11

)(min)(max

Where:
• Ds is the actual delay spread.
• Dl is the absolute delay (see Chapter 2.2.1.2) for the last packet.
• Df is the absolute delay (see Chapter 2.2.1.2) for the first packet.

This means that the delay spread is mostly dependant of the flushing strategy
in the transmission buffers of preceding nodes (parents) between the source
and the node. It also depends on the delay difference over different preceding
edges. The delay spread will propagate because of the accumulated Tp.
However if the flushing strategy in the transmission buffer flushes the
incoming packets as soon as possible then would Tp ≈ 0.

 19

It is preferable to keep the delay spread as low as possible to assure that the
transmission buffer could be as small as possible. There are two ways to
minimize the delay spread.
 The first is to choose a flushing strategy that makes the processing time at
every node constant from the first to the last packet in the transmission buffer.
 The second method is to assure that the preceding edges all have same
absolute delay.

Ideally when every edge have same delay and every node have same
processing time, the delay spread could be minimized by having a well
designed peer selection strategy. This strategy would create a topology with
receivers that all have its sources (parents) at the same distance from the
source. This would then result in a topology with nodes that could have
differences in absolute delay but still having a small delay spread.

2.2.1.4 Jitter
The jitter (Dj) is the variation in absolute delay over time from the source (S)
to a destination node (Nn) as shown in Figure 2.5. Jitter is caused by network
congestion, timing drift, or route changes [6].

Figure 2.5: The jitter (Dj) in a schematic network.

Figure 2.5 shows that a packet (x) has an absolute delay of (Dnx) and the next
packet (x+1) has an absolute delay of (Dn(x+1)), jitter is the time difference
between these two delays.

x

n

i
tp

x

n

i
tpnnj iiiixxn

TTTTDDD  +− +=−= ∑∑
=+=

+
1)1(1

)()(
)1(

Where:
• Dj is the actual jitter.
• Dnx+1 is the absolute delay (see Chapter 2.2.1.2) for the (x+1) packet.
• Dnx is the absolute delay (see Chapter 2.2.1.2) for the (x) packet.

This means that if the jitter (Dj) is positive then the latter packet (#2) travels
slower than the earlier packet (#1) and if the jitter is negative then the opposite
will occur.

 20

The jitter is dependent of the network steadiness and if the processing time at
a preceding node differs over time. The problem is that it is hard to do
something about the network more than choosing stable connections i.e. have
a peer selection strategy that takes this into concern.
 The processing time could be different over time if a particular node has a
comprehensive workload at a certain time, which affects the data processing
rate. But this is also hard to do something about more than try to prioritize the
decoding and encoding process before others.

As said earlier it is hard to minimize the jitter but there is one way to deal with
the problem and that is to have a jitter buffer, from now on it is called the
playback buffer. This buffer intentionally delays the arriving packets so that
the overlaying software (media player) experiences a clear connection with
very little problems.

2.2.1.5 Transmission buffer
The main goal of the transmission buffer is to take care of the delay spread.
This buffer could work in two different ways.

• By block decoding, that means that the node collects h or more packets
and later on hopes to be able to invert Gt.

• By earliest decoding, that means that the node performs Gaussian

elimination after each packet arrival. Then could the node detect and
discard non-innovative packets as soon as possible. This would also
lead to that the computational load for the node will be distributed over
time.

Earliest decoding is the preferred method. This is based on the fact that it
would also do the decoding faster after a complete generation has been
received at the node, which means that the playback buffer could be a little bit
smaller. Earliest decoding would also mean that the node knows which
packets to transmit to its children and by that be able to only send innovative
packets.
 A well considerer flushing strategy should be implemented to prevent
deadlock that could happen if every node in the network waits for new
information and none of them has received full rank in the current generation.

This type of problem could be solved by using two different strategies. The
first strategy is to send new information to the children when the first
opportunity arises (when the outgoing queue is empty). The second strategy is
to use premature transmission. This means that the node transmits new
information to its children before it receives full rank in the transmission
buffer based on a pre-set waiting time.

 21

The first chance flushing strategy has two main advantages. The first is that
the latency and the delay spread automatically will be kept small.
 The second one is that the information will be sent in several ways which
will lead to redundancy. Unfortunately the redundancy may also lead to a
much larger network load. This happens because in the worst case scenario
would every innovative packet, that is received at the parents, be sent to the
receiver. This means that the receiver gets a complete generation from every
parent and that is not optimum if the network load should be kept as low as
possible.
 However the network load could be smaller if the receiver sends a special
packet back to the parent when it has got full rank. This would then stop the
transmission from the parents to the receiver of that particular generation.

Figure 2.6: The first chance flushing strategy.

In Figure 2.6 the sources will send three packets each which will then lead to
an unnecessary transmission of six packets (the packets with dotted lines).
These are unnecessary because the node wants to resolve the original
information, that is a, b and c, and it can do that by using only three packets
(the packets with filled lines). Could the destination node (Nn) instead send
acknowledge when it has full rank would the parents be able to stop sending
the remaining packets. In this particular case, this would lead to that only two
packets will be sent unnecessarily. This means that only five information
packets will be sent instead of nine.
 If one or two arbitrary connections would be lost should this only lead to the
fact that the stopped message will be sent later in time, but the receiver could
anyhow get full rank. The attentive reader could also see that for the current
generation there is one of the sources (S3) that is not useful at all because
every packet from that source is non-innovative when received.

 22

This is nothing to be concerned about for one particular generation.
But if this repeats over time then should that source be dropped in favour for a
new one that hopefully sends a higher degree of innovative packets.

The premature transmission flushing strategy has one crucial advantage.
This is that it keeps the network load at a minimum. The problem is that it is
not redundant, which means that if some receiver does not get full rank for
one generation then that generation could not be saved. This would
unfortunately lead to an interruption of the stream and as result poor quality
for the user.

Figure 2.7: The premature transmission flushing strategy.

In Figure 2.7 the sources will send one packet each, which together leads to
full rank at the destination node (Nn) and can therefore resolve the original
information. This keeps the network load at a minimum, but if one of the
sources is lost this would make it impossible to get full rank.
 This is the case when the information is streamed in real time and there is no
time to ask for missing packets, especially when the receiver does not know
which packet that is missing and which one of the sources has it.

The buffer size of the transmission buffer is hard to calculate and know in
advance. One method that possibly could help and dynamically finger point in
the right direction is to measure the delay spread for some of the first
generations received, and then calculate the average of them. This result could
then be multiplied with a factor (z) to make it large enough.
 The problem is that in an implementation of this buffer, the size should not
be a certain time but it should be a number of generations. This could be
determined by taking the previous result and divide it with the average time of
the recently received packets and then the result will be the number of
generations.

 23

 The main problem with this approach is that it would be much better to have
a reasonable buffer size directly from the beginning. In this case the buffer
size will be dynamically calculated after a certain time.

Another approach is to have a static transmission buffer size that is defined by
simulation. This would then mean that the buffer would not be adapted to the
actual circumstances, but it might still be sufficient to get a size near the
required one as long it is not smaller than required.
 If this approximation will be used, it seems reasonable to believe that the
necessary size is dependent difference in distance of the parents from the
source.

2.2.1.6 Playback buffer
The playback buffer should work in a rather straightforward way and the main
task of this buffer is to take care of the jitter and the frame. The playback
buffer contains the decoded information that will be played by the overlay
software (media player). It will receive the information from the transmission
buffer as fast as possible when the transmission buffer has gotten a generation
with full rank that it could solve.
 The basic idea with this “extra” buffer is to be able to have some time
between arrivals of the first packet in a generation to the last in the
transmission buffer. This buffer must have sufficient size to handle a certain
playback time before it runs out just to be sure that the stream is complete.

The flushing strategy of the playback buffer is quite simple. It should flush or
erase the information from the buffer when it has been played, and then the
information thereby has served its purpose. This would be done at even
intervals because the information stream rate is constant.
 Would this buffer be empty at anytime, the procedure starts over and the
overlaying software has to wait for this buffer to be refilled.

It is difficult to know how big the buffer size of the playback buffer should be.
It is hard to know mostly because the main purpose of the playback buffer is
to take care of the problems caused by jitter. As said before, jitter is caused by
network congestion, timing drift, or route changes and these factors are
impossible to know in advance. One method that possibly could help and
dynamically finger point in the right direction is to measure the jitter for some
of the first generations received and then calculate the average of them.
 The main problem is also the same as it was for the transmission buffer,
which is that it would be much better to have a reasonable buffer size directly
from the beginning. But in this case the buffer size will be dynamically
calculated after a certain time.

Another approach is to have a static playback buffer size that is defined by
simulation. This would then mean that the buffer would not be adapted to the

 24

actual circumstances. But as said before it might still be sufficient to get a size
near the required one as long it is not smaller than required.
 If this approximation will be used, then it seems reasonable to believe that
the necessary size is dependent difference in distance of the parents from the
source. An example of buffer size is 5 seconds. That is the default buffer size
in the windows media player [7].

2.2.2 Packet format
The packet format is very important to get an effective communication
between nodes in the network. There are several known predefined transport
protocols that could do the job for us, protocols like TCP, UDP, RTP and
RTCP. The different protocols are good for different things, for example TCP
is not good for streaming but UDP is. Why that is so, is going to be explained
later in this chapter.
 There is also one other way to go, and that is to build our own packet format
on top of UDP and TCP. The benefit of that suggestion would be to minimize
the overhead because many of the fields in RTP and RTCP are not needed for
the prototype but on the other hand it is a little bit risky and time consuming.
Another benefit of developing an own packet format is that it can include
whatever that is needed, with fields exactly as big as they should be; with
other words it provides flexibility.

2.2.2.1 TCP
Transport Control Protocol or TCP is defined in RFC 793 [10] and it is not
good for streaming because it is a connection oriented protocol and that makes
it not fast enough, plus it also comes with a lot of overhead. TCP is however
really good for building up an overlay network topology because it is reliable
and one can get a lot of feedback, plus it also guarantee delivery. So, TCP is
great but it is not sure that it is enough for our purpose for the network, maybe
some fields of our own needs to be applied on top of TCP.

2.2.2.2 UDP
User Datagram Protocol or UDP is a connectionless transport protocol defined
in RFC 768 [11]. UDP provides a procedure for application programs to send
messages to other programs with a minimum of protocol mechanism. UDP
runs on top of IP (Internet Protocol) and it uses IP for transporting a message
from a computer to another, and provide unreliable datagram delivery
semantics of IP.
 UDP is good for streaming because it is a very light-weight protocol with a
very little overhead. It is even a better choice when talking about live
streaming, because then the source just wants to send packets continuously
and does not care of resending lost packets and things like that.

2.2.2.3 RTP
Real-time Transport Protocol or RTP is defined in RFC 3550 [12] and is
running on top of UDP. RTP provides end-to-end network transport functions

 25

suitable for applications transmitting real-time data, such as audio, video or
simulation data. RTP has no intentions to resend lost packets and it does not
guarantee quality-of-service.
 For our cause, RTP feels like a possible solution to our packet format but as
said before an own format makes it more flexible and less overhead.

2.2.2.4 RTCP
Real-time Transport Control Protocol or RTCP is defined in RFC 3550 [12],
the latest version of RTP’s RFC. RTCP is RTP’s control protocol and
provides out-of-band control information for an RTP flow. RTCP task is not
to transport any data itself but it periodically sends control packets to
participants in a streaming media session. It gathers statistics on a connection
and information such as bytes sent, packets sent, lost packets, jitter and round
trip delay.
 With other words, RTCP provides a media streaming service quality-of-
service.

2.2.2.5 Summary
RTP and RTCP sounds really great for our casue of a media streaming service
in a distributed overlay network, but it also seems like a little bit overkill to
use these two great protocols for our first version of this prototype.
 The time it takes to develop an own packet format on top of TCP and UDP
probably not going to be as long as the time it takes to investigate RTP and
RTCP’s design. It also seems that the complexity of these protocols would
make the implementation of these rather hard at a first glance.
 However, there will for surtain come times when RTP and RTCP will be
discussed again in this or another similar project. The most important thing for
this project is to see that every thing with the NC and the communication
betwenn nodes works, after that in some later version maybe it is time for
RTP and RTCP.

 26

2.3 Building a Peer-to-Peer Network
Peer-to-peer networks and peer selection are also two very big topics in the
academic world today, mainly because of the increasing of file sharing
between people around the world. Large peer-to-peer networks are building
up today to distribute files, files that clients in the network want as fast as
possible.
 In our case we want to distribute real-time data streams to all of the clients
in the network, and then the peer selection becomes even more important
because a client must get parent-peers that provide a stable flow of
information. This peer selection part of the report is explained best in a
scenario based way. The scenarios will be explained by text and by some
sequence diagrams.

2.3.1 Startup Process
The startup phase is a very critical phase where clients want to join the
network. To do that the client needs to know some things about the network,
things such as which nodes are its neighbors and which nodes are its peers.
This can be done in several ways, one could have a centralized tracker that
provides the clients with neighbors or peers as Bram Cohen talked about in
[13] or one could use a more distributed way and use a gossip-like solution as
they are talking about in [14] and [15].
 Let’s take a closer look on these two solutions below, but first we must
mention that there are two different stages in the startup phase. One early
stage when the first h clients are connecting to the network and one late stage
when there are already more than h clients in the network. The two stages are
going to be more explained in detail further down in this chapter.

2.3.1.1 Centralized Tracker
A centralized tracker could be a detached application that a client must
connect to, to get information about the network. Then the client must know
the address of the tracker in some way. Maybe the company that provides the
streaming-service makes the address available on the internet or maybe it is
hard coded in the user’s application.

When the client connects to the tracker there are basically two scenarios that
could happen, either the tracker gives the user a bunch of neighbors or a few
parent-peers. The first goal for the client is to find some parent-peers that
could provide the data stream, and the user will reach its goal in both of the
scenarios. So, the question is: Which way is the best?

Let’s say that the tracker chooses peers to every new client connecting to the
network as shown in Figure 2.9 and also provides old clients with new peers if
they need to change some of them. Then the tracker would be heavy loaded,
especially when talking about big networks with thousands of clients. Not
only heavy loaded in the sense of computations at the tracker, also in the sense
of heavy communication to and from the tracker.

 27

 That leads us towards the first scenario: send a bunch of neighbors, possible
peers, to the client as shown in Figure 2.8. If that is the case the tracker lays
over the responsibility of choosing peers to the clients themselves and then
minimizes the computational costs at the tracker. The communication with the
tracker won’t be that heavy either because now the clients don’t need to
contact the tracker every time they need a new peer; they just choose another
one from the list of neighbors. Common Node TrackerHi I'm new! Add nodex neighbours Choose neighboursChoose peers

Figure 2.8: A scenario where the tracker provides neighbours to the node.

Figure 2.9: A scenario where the tracker provides peers to the node.

2.3.1.2 Distributed Algorithm
A distributed algorithm such as the PRO (Peer-to-peer Receiver-driven
Overlay) protocol described in [14] doesn’t use a tracker for getting
information about the network. Instead it uses gossip through the network to
collect information from lots of nodes, and then the client can choose the best
parent-peers by itself. But how does a client start gossiping, one can wonder,
in some way the new client must have a picture or some kind of view of the
network so it know where to start.

 28

2.3.1.3 Early Stage
Every node should have h parents, h is a fixed number and it is equals to the
amount of subparts in a generation (X1, X2, …, Xh).
 The early stage is not that common for clients because it is only for the h
first clients and the main source node when connecting to the network. When
the first client connects there is no need for a peer selection, because the new
client just chooses everybody of its neighbors to be its parent-peers.
 When a client, in this stage, gets a child-peer the client must check whether
it has that child as a parent or not. If it does not have that neighbor as a parent
it chooses that one to be a new parent, this is done because everybody should
have h parents each and to avoid cycles in the network. When the h client
connects to the network we are getting a full mesh topology of the network,
main source node included.
 For better understanding in the early stage please look at Appendix B.1 and
B.2. There you will find some examples of nodes joining the network in the
early stage.

2.3.1.4 Late Stage
This is the phase where almost every client is connecting to the network and it
is a big difference compared to the early stage. When a client connects in this
phase there is some kind of topology already built up, so the new client jumps
right into it.
 But how does the client know which nodes it going connect to? The answer
to that is that the client needs some kind of a peer selection mechanism. There
are several different mechanisms for peer selection and they will be described
in the peer selection process below.
 For better understanding in the late stage please look at Appendix C. There
you will find an example of a node joining the network in the late stage.

2.3.2 Peer Selection Process
When building up an overlay network one have to think of building it for the
right purpose. There are a lot of criteria that influence the chose of a peer
selection mechanism.
Criteria such as:

• Low diameter – With a high diameter the stream needs to travel through
many, many peers and the packet loss will increase.

• Structured network – If one has a structured network, the peers lies near
(geographically) each other and minimizes the delay.

• Non-clustered - A clustered network would bring bottlenecks to the
network. If a bottleneck breaks every stream on that cluster will be lost.

• Bandwidth utility - If one want to use a low diameter protocol it can be
good to maximize the bandwidth utility to get as many children as
possible.

 29

• Delay (latency) – Of course one wants to minimize the delay, so the
buffers don’t need to be that big.

• Non-innovative messages – We also want to minimize the amount of
non-innovative messages, because these messages don’t contribute with
useful information.

• Tracker load – If using a tracker in big networks it could be a
bottleneck, therefore it is important to try to minimize the
communication with the tracker and also the computation for the
tracker.

• Fairness – Especially important when live media streaming is wanted,
because then every node in the network needs to get the information at
the same time. Each and every node should be treated similar.

Reach every one of these criteria with one peer selection mechanism is very
hard, if not impossible. Anyhow, I will mention and discuss some possible
peer selection mechanism below.

2.3.2.1 Random Peer Selection
When choosing peers, does the client or the tracker choose parent-peers,
child-peers or both? The most effective way is to choose parent-peers, because
then the client is sure that it will get information that it could send along to its
future child-peers.
 Okay, so now the client has parents that provide it with useful information
but should it choose its child-peers now? It might work about okay but it
would be better to let they choose parents by themselves because the new
client doesn’t know if the other client needs a parent or not.

With random peer selection it is very hard to say how it affects all the
different criteria, just because it is random. It hardly going to become a
structured network and it probably won’t become that clustered either. Other
criteria like low diameter, non-innovative messages and latency will be hard
to minimize with a random peer selection.
 Presumably the only two things one can grant is that fairness is provided and
the work for the tracker won’t reach a work-limit it can’t handle.

2.3.2.2 PRO Protocol
As described before the PRO protocol tries to find the best parent-peers and
connect to them. But how does one know which nodes are the best ones? The
PRO protocol is designed for non-interactive streaming applications and its
primary design goal is to maximize delivered bandwidth, so of course
available bandwidth is something that contributes to the decision of choosing
the best parent-peers.
 PRO has two criteria to decide which nodes are the best ones, first, as
mentioned, is available bandwidth and second the relative delay. Relative
delay between two peers can be estimated with Global Network Positioning
(GNP) [16, 17]. The available bandwidth is much harder to estimate, because

 30

then one has to make end-to-end measurements. This can be done with some
probing technique [18], but it is not scalable because the available bandwidth
changes in time; it means that probing must be used periodically.
 In this case, a live media streaming network, the main criterion is to
maximize the delivered bandwidth because in this project we want a stable
flow of information with the bandwidth that the main source uses when
streaming.

Okay, so this protocol maximizes the bandwidth utility and minimizes the
delay but how about the other criteria mentioned? There is going to be a
structured network because of the GNP and therefore there is a risk that it also
will be some clusters in the network. There are probably going to be groups
(clusters) in the network where nodes lie near to each other geographically.
These groups might get only a few weak connections between each other and
that is not good, because if a weak connection breaks all information from that
cluster will be lost.
 In this case it also will become fairly unfair for the nodes when they are
connecting to the network. They will be treated differently depending on
where in the world they are connecting from and how big bandwidth they can
provide.

2.3.2.3 Low Diameter Protocol
Low diameter protocol is just what the name indicates; a protocol for
minimize the diameter of the network [19]. First of all there is a tracker with a
record of all the clients in the network, there is also a tracker cache. Some of
the clients are in the cache and some aren’t. When a new client is joining the
network by contacting the tracker it chooses h parent-peers from the cache.
After getting h parents the new client is ready for having child-peers and
therefore automatically becomes a member of the tracker cache.
 When a client, in the cache, has gotten x (a fix number) child-peers it
becomes full and is automatically removed from the cache. A full client will
be put in the cache again if one or some of the child-peers disconnects.

The number of child-peers a client should have before it gets full is hard to
estimate when talking about streaming, because then it is important that the
client can provide a stable flow of streaming media to all of its child-peers. In
this case it had been nice for the clients to know their own available
bandwidth, because then they had known how many child-peers they could
provide streaming to.

Another thing is when choosing the parent-peers from the cache, should the
clients choose parent-peers randomly or should they try to find the best ones?
Probably the easiest thing is to choose randomly as mentioned before, because
finding the best parent peers is not easy at all.

 31

We already know that this protocol minimizes the diameter in the network and
therefore also minimizes the packet loss, but how about the other criteria?
Probably it is not going to be an especially structured network and nothing
tells us that it going to be a clustered network either.
 The delay is hard to estimate because in this case the underlying network
topology is unknown and then we don’t know how the packets traverse, but
one thing is for sure and that is that the packets don’t need to traverse
especially many hops in the overlying network. Therefore the delay will
probably be okay, not minimized but okay.
 The other criteria is kind of hard to say something about, maybe the network
will provide reasonable fairness if the nodes choose parent-peers from the
cache randomly.

2.3.3 Leaving Process
The leaving process is just as it sounds, when clients are leaving the network.
Of course there are many things the network must handle when clients leaves.
The child peers of that specific client must get a new parent peer as shown in
Appendix D and the tracker, if there is one, plus all of the clients’ neighbors
must delete the client from their lists. All of these different issues are going to
be explained later in this chapter but first we must describe the two different
ways a client could leave the network.
 The first and most common way is that a client leaves the network
gracefully; it decides when to leave and tells everybody that needs to know
that it is leaving so they are prepared. The other way, will hopefully not
happen too often, is that a client non-graceful leaves the network. A non-
graceful leave could be when a computer crashes and can’t keep the
connections up and running or it could be when a clients’ ISP has some
problem with the internet connection or something like that.

2.3.3.1 Graceful Leave
When a client decides to leave the network it tells all of its peers, both parents
and children, and the tracker, if there is one, that it is leaving as shown in
Figure 2.10. The tracker needs to know because it is necessary to delete the
client from the client list so that if a new client joins it can’t get the leaving
client as a neighbor. The parent peers wants to know so they don’t waste time
on trying sending more data to that specific child peer. For telling the children
there is basically two scenarios.
 One idea is that the leaving client chooses a new parent peer to its children;
the other idea is that the leaving client just tells the children that it is leaving
and lets the children choose a new parent by themselves.

 32

Figure 2.10: A possible scenario of a graceful leave.

Probably the best thing is to let the child-peer choose a new parent-peer; the
peer selection mechanism takes care of how the child-peer is going to that.

2.3.3.2 Non-Graceful Leave
When a client leaves the network non-graceful all of that specific client’s
peers will notice it after some time as shown in Figure 2.11. Figure 2.11 also
shows that all the peers, both child and parent, and the tracker are removing
the leaving client from their internal lists. The clients’ children will notice it
by not getting anymore data packets and the clients’ parents will notice it by
not getting anymore “keep-alive” messages from the client if something like
“keep-alive” messages has been implemented.

Figure 2.11: A possible scenario of a non-graceful leave.

The hard thing is now to decide when a peer should be declared “dead” and
removed from the lists. There is a chance that the packets will start dropping
in again after a while when the peer has recovered. When the child-peer of the
leaving client has declared it dead it needs to choose a new parent-peer using
the peer selection mechanism.

2.3.4 Bad or Change of Condition
Through this chapter about building peer-to-peer networks we have talked
about the startup process and the different peer selection mechanisms, the

 33

thing left now is to talk about when peers are bad parents or when good peers
becomes bad.
 To understand when a peer is bad we need to define bad for a peer in a
media streaming distributed network. There are several things that can make a
parent-peer bad; to get an overview I list them here:

• Non-innovative messages - Too many non-innovative messages from
the same parent-peer is not good. The child-peer needs to get lots of
innovative messages to be able to decode the encoded data.

• Bandwidth - Does not get the required bandwidth from a certain parent-
peer, the live streaming becomes just streaming and not live. It will also
influence this node’s child-peers and the delay will just grow and grow.

• Instability - When the connection, between a parent-peer and a child-
peer, jumps up and down, the child-peer is in trouble and needs a new
and better parent-peer. It is very important that the child-peers are
getting a stable flow of information to keep the streaming live.

The chance of getting a bad parent-peer depends on which peer selection
mechanism is used and the amount of bad luck. Before choosing parent-peer
you don’t know if a node is sending non-innovative packets or not, so in that
sense it is all about bad luck.
 If a client using random peer selection or choosing randomly from the
tracker cache when using the low diameter protocol, the client doesn’t know if
the parent-peer’s available bandwidth is enough for streaming. If it instead
uses some peer selection mechanism that knows the available bandwidth of
the neighbors it will not get the same problem. Not at first it won’t, but you
never know what is going to happen later on. There might happen something
with the ISP or maybe the parent-peer is starting some other application that
steals bandwidth.
 Instability is maybe something one can check before choosing parent-peer
with help from a tool like pchar [20] or a similar tool, but that is out of the
scope of the project. If instability occur with some parent-peer just try to
choose a new one.
 The hard thing is to decide when a parent-peer is instable; how often it
jumps up and down within a timeframe. It is also hard to decide how many
non-innovative messages are too many, before the child-peer must choose a
new parent.
 The easiest thing would be to trigger the peer selection mechanism directly
when a parent-peer turns bad, but probably it wouldn’t be the most effective
and best way to do. Too many changes in the network at the same time would
probably make the traffic load much higher and interrupt the media streaming.
 A more effective way would to have some kind of non-innovative message-
counter; when a limit is reached, change parent-peer. Another way would be
to have some timers as shown in Appendix E that triggers the peer selection
mechanism, but in what period of time would be feasible?

 34

 These things are almost impossible to decide before one has implemented a
prototype with a working peer selection mechanism, and then massive tests
will decide how to work around these problems.

 35

3. Design
This project was a group work where different parts where divided up among
the group members. In the design chapter there going to be two big different
parts; an overview of the whole system where I am not going into any details
and a part, chapter 3.2, where I will explain in more detail what I have been
doing.

3.1 System Overview
One could say that the system consists of 7 different parts:

• simulation program,
• prototype application,
• upper interface,
• logic layer (“black box”),
• lower interface,
• NS-2 packet transmission mechanism,
• prototype packet transmission part.

 The two applications are both using the upper interface, logic layer and the
lower interface but then of course the simulation application uses the NS-2
packet transmission mechanism and the prototype application uses the
prototype packet transmission part. This is explained better with Figure 3.1.
 The system design shown in Figure 3.1 is divided up into three layers, one
upper layer (shown in yellow and blue in Figure 3.1) where the actual
application will be implemented, one core logic layer (shown in orange in
Figure 3.1) where all the logic will be implemented such as NC and peer
selection, and finally one lower layer (shown in yellow and blue in Figure 3.1)
where the transmission part will be implemented. This three layers is
connected by and communicates through two interfaces (shown in green in
Figure 3.1), the upper layer interface and the lower layer interface.

 36

Figure 3.1: Project Description

The upper interface, lower interface and the logic layer will be explained
below, explained in a common sense not much into details because those were
done in a group. The prototype application and the packet transmission part,
shown in yellow in Figure 3.1, on the other hand will get a subchapter each
and there they will be explained with more details and depth because that was
developed by me.

3.1.1 Logic Layer
The logic layer is the heart of the system. It is here the peer selection, data
processing and network coding takes place among other important things.
Important things in a project like this become often secret because the
companies will not reveal it to the competitors. Therefore the logic layer got
the nickname “the black box”.
 Even though I can not show any details of the logic layer one should know
that this is the heart of the prototype and it is needed for building up a media
streaming distribution network. To access the logic layer one should use the
two interfaces; they are the way in and out of logic layer. The interfaces will
be described below.

 37

3.1.2 Upper Interface
The upper interface exists to make a connection between the actual prototype
application and the logic layer. The connection is made by two part-interfaces,
one for the information flow from the application through the interface to the
logic layer and one for the other way around. The interface that the application
uses to call the logic layer is called NcControlInterface and the one that the
logic layer uses to call the application is called NcControlCallbackInterface as
shown in Figure 3.2.
 In Figure 3.2 generalization is shown with a solid line and a fat triangular
arrow from a subclass (such as PrototypeApplication and NcController) to a
superclass (such as NcControlCallbackInterface and NcControlInterface), this
means that a subclass extends a superclass and it also implies inheritance from
the superclass to subclass.
 Figure 3.2 also shows composition, also known as composite aggregation,
by an association line and a filled diamond, which means that an instance of
the part (such as NcControlInterface or NcControlCallbackInterface) belongs
to only one composite instance (such as PrototypeApplication or
NcController) at a time.

+receiveMedia()+getCurrentTime()+scheduleEvent()«interface»NcControlCallbackInterface +init()+join()+leave()+fireEvent()+sendMedia()+connect()+quit()«interface»NcControlInterface
+NcController()+getCommunicator()+getPeerMaintainer()+getCurrentTime()NcController

PrototypeApplicationUpper Layer Interface-End11 -End2*
-End31-End4 *

Figure 3.2: The upper layer interface with its connections.

 38

3.1.3 Lower Interface
The lower interface exists to make a connection between the logic layer and
the prototypes packet transmission part. This connection is also made by two
part-interfaces, one for the information flow from the logic layer through the
interface to the packet transmission part and one for the other way around.
The one that the logic layer uses to call the packet transmission part is called
NcCommunicationInterface and the one that the packet transmission part uses
to call the application is called NcCommunicationCallbackInterface as
illustrated in Figure 3.3.
 Figure 3.3 shows that a Communicator extends a
NcCommunicationCallbackInterface to take care of the receiving packets
from the underlying transmission part and it also has an instance of the
NcCommunicationInterface whenever it needs to send along a packet to the
transmission part.
 Figure 3.3 also shows that the PrototypeApplication extends the
NcCommunicationInterface to be able to send the packet coming from the
logic layer.

Figure 3.3: The lower layer interface with its connections.

 39

3.2 Prototype Application
 The prototype application is the main application where all starts. The
application initiates a logic layer and calls one or more of the upper layer
interface functions in an appropriate order. It also initiates a communicator for
the packet transmission part, a SourceCommunicator or a PeerCommunicator,
and the NodeProperties class. The NodeProperties class is for parse out
neighbours from a configuration file and save it in two lists; the childList and
the parentList. This is done before initiating the logic layer because the logic
layer needs a communicator to work. There are two different types of a
prototype: SourcePrototype and PeerPrototype. Of course a
SourceCommunicator belongs to a SourcePrototype and a PeerCommunicator
belongs to a PeerPrototype.
 The prototype application is defined by three classes (as shown in Figure
3.4) such as Main, App and NodeProperties where NodeProperties is just a
help-class. If interested on how this design works and what the classes do
please read Chapter 4.3.1.

Figure 3.4: A stripped version of the prototype application design.

3.2.1 SourcePrototype
One SourcePrototype is needed in every media streaming network, it is the
source that is actual does starts the sending of data. It is recommended that it
is one source in the network before the first user joins. The SourcePrototype
needs to be connected with a streaming service to become a real streaming
source but that is out of the scope of this project.

 40

 Our SourcePrototype will instead divide up a file, the substance of the file
does not matter, into generations and send them out on the network.

3.2.2 PeerPrototype
A PeerPrototype is the application a user needs to connect to the streaming
network. The design is the same as the SourcePrototype, it calls the same
functions of the upper layer interface. The difference you will find when the
applications are using the upper layer interface to call the logic layer, is that
the applications tells the logic layer if it is a peer or a source so it knows how
it should react.
 In the end a PeerPrototype and a SourcePrototype are doing the same, which
is sending out generations of information to the neighbours. The difference is
that one has to start the streaming and that is the work of the SourcePrototype.

3.3 Packet Transmission Part
This is the part where the actual sending and receiving of packets takes place.
The raw packets with information come from the logic layer through the lower
interface with a destination address. The packet transmission part’s task is to
create a socket connection, either a TCP socket connection or a UDP socket
connection depending on the type of the message. When a connection is made
the message should be sent to the destination and that is about it.
 Of course some server sockets is also necessary, one must be prepared for
incoming messages, both TCP and UDP messages. When receiving a packet
this part makes a “call back” to the logic layer through the lower interface.
Then it is up to the logic layer what to do with it, probably it first will be
decoded.

To ease some things up server sockets, sockets and datagram sockets are
going to be used. Server sockets are going to be multithreaded to optimize the
performance of the handling of incoming messages. For a better
understanding look at Figure 3.5 that shows a class-diagram of the packet
transmission part.

 41

Figure 3.5: A stripped version of the packet transmission part design.

The class-diagram in Figure 3.5 contains eight classes such as
PrototypeCommunicator, SocketConnectionFactory, SocketConnection,
TcpSocketConnection, UdpSocketConnection, UdpSocketThread,
ListenThread and InputThread where the PrototypeCommunicator is the heart
of this packet transmission part. If interested on how this design works and
what the different classes do please read Chapter 4.3.2.

 42

 43

4. Implementation
Before starting implementing I needed to study some C++, because it was
rather new to me. First of all I started to learn about different data types, like
strings, maps, queues, iterators and much more [21]. After that I went on
reading about memory management, pointers and references, and then I got a
little bit more confident in the C++ language.
 I knew that the packet transmission part was going to be the hardest one,
with the threading and the socket programming. So, I started looking for some
external libraries that I could use, that included thread handling and socket
wrapping. I read about and tried some libraries that I found, libraries like:
datareel [22] and ACDK [23].
 After some investigation I finally decided to go with ACDK because it was
big enough (maybe little too big) and it had a build in script language that
looked just like Java. I am much more convenient with using Java when I am
implementing, so that made my decision easier. It also had a nice API that
could help me find what I was looking for. There will be more information
about ACDK below.

4.1 Artefaktur Component Development Kit – ACDK
ACDK is a big development framework that has C++ as its core
implementation language [23]. It provides a very nice build in scripting
language that is similar to Java as shown in Appendix F and ACDK C++
objects can be used directly via scripting. Apart from the ACDK scripting,
you could use all features of C++ because ACDK is implemented in pure
C++. That includes using C/C++ libraries, allocating objects on stack and
using templates and so on.
 ACDK is a framework with enhanced memory management features like
garbage collection and debugging features. It also provides productive
packages similar to JDK, packages like acdk::lang, acdk::net, acdk::io and
acdk::util and so on.
 One could say that ACDK is a combination of Java and C++, where Roger
Rene Kommer [31] has tried to combine the advantages of both of the
language.
 Other things that are great with ACDK is that it provides multithreading and
a acdk::net-library, which makes the implementation of a prototype like ours
much easier.

To get a little bit more insight of how ACDK look likes, please take a look at
Appendix F. There you will find a “Hello World!” example, written with
ADCK’s build in scripting language.

 44

4.2 Environment Details
Most of the time during the implementation I used a server at the office:

• Pentium dual core processor running at 3.2 GHz
• 2.0 GB internal memory
• Red Hat 9.0 [24] was working as operating system
• As editor Eclipse [25] with CDT (a plug-in for managing C/C++

projects [26]) was used.

Some of the time though I used my own Laptop:

• Pentium 4 running at 2.2 GHz
• 512 MB internal memory
• Fedora Core 3 as operating system [27]
• Eclipse as an editor.

One could say that Fedora is an updated version of the last version of Red Hat,
meaning Red Hat 9.0.

4.3 Description
Of course my part of the system implementation was the prototype application
and the packet transmission part as described in the design chapter, but also
helping out implementing the logic layer. In the logic layer my task was to
implement the whole message structure of the system, a message structure that
we had come up with after the research in the beginning of the project. I can
not show a detailed design of the structure and not describe it into a detailed
level because restrictions from the company.
 The things I can say are that it is eight different messages, with different
information and purpose. Some of these messages are for building up the
network and some of them are for the media streaming service. The hardest
thing with this task was the bit mathematics when needed to encode and
decode messages.
 The implementation of the message structure was going on constantly,
mostly because of the changing in the design but also when we decided to
keep ACDK out of the logic layer completely I had to make some heavy
changes in the code. The decision to keep ACDK out of the logic layer were
based on that we wanted the logic layer (the heart) to be as clean and fast as
possible.

4.3.1 Prototype Application
The implementation of the prototype application for this first version was
rather basic so the major goal in implementing the prototype was to get the
application to use the upper interface in the right way. We wanted the first
version to be basic mostly because the logic layer was not completely
implemented; it had no peer selection mechanism and no tracker. If the logic

 45

layer would be completely implemented, then the application just had to call
the join-function in the upper layer to join and build up the network. Now,
when not having a peer selection mechanism and a tracker it made the
prototype little bit messier.
 Instead of using the join-function I have used the connect function that
connects to the neighbor to which the prototype sends along. Of course a user
has more than one neighbor and therefore the prototype needs to call the
connect function many times instead of just one call to the join function.
Another drawback with this connect function is that the neighbor a user is
connecting to, must also use the connect function and connect back to the
user. This means that the neighbors need to be hard coded somewhere in the
prototype.
 Instead of hard coding the neighbors in the prototype I did it in
configuration files, one configuration file to each of the users. Then I had the
prototype application loop through to read and parse the configuration file so
it could use the connect function. The name of the configuration file needs to
be typed in as an argument when starting the application.
 The prototype application was made in two different versions, one for a
regular user (peer) and one for a source. Not much difference between these
two prototypes because the source acts almost like a regular user and vice
versa. The only thing that differs is that the source prototype must be able to
start sending data not only forward incoming data.

4.3.2 Packet Transmission Part
The packet transmission part starts to act directly when the prototype
application initiates a PrototypeCommunicator.
 The first thing the PrototypeCommunicator does is that it starts the
ListenThread and the UdpSocketThread. It starts these threads in the
beginning because one wants to be sure of that the prototype is ready for
incoming messages directly so that no messages will be lost.
 The ListenThread is a server socket thread that listens for incoming TCP
connections, if getting one it starts an InputThread to handle the request. This
makes the ListenThread non-blocking and prepared for many incoming
connections at the same time.
 The InputThread handles the incoming packet, and when it has collected all
bytes it makes a callback to the PrototypeCommunicator’s receive function.
The same thing happens when the UdpSocketThread gets an UDP-packet; the
UdpSocketThread makes a callback to the PrototypeCommunicator’s receive
function.
 When the receive function in PrototypeCommunicator has been called, as it
will be every time the threads has collected a new message, the
PrototypeCommunicator will also make a callback but this time to the logic
layer through the lower layer interface.
 Apart from receiving packets and making callbacks the
PrototypeCommunicator waits for instructions from the lower layer interface,
instructions about sending packets to a specific destination. The logic layer

 46

calls the PrototypCommunicator’s send functions through the lower layer
interface and it sends along the data, destination address and the destination
port.
 From this point the PrototypeCommunicator takes over the work by creating
a SocketConnection, either an UdpSocketConnection or a
TcpSocketConnection depending on the message type.
 After that the PrototypeCommunicator calls the send function in the
UdpSocketConnection or the TcpSocketConnection class and the
SocketConnection sends the packet out on the socket towards the destination.
 Finally the PrototypeCommunicator calls the close function in the
SocketConnection class that closes the socket for further sending.
 That is pretty much what the packet transmission part does; communicating
with the neighbors in the overlay network and also communicating with the
logic layer through lower layer interface.

4.4 Implementation Summary

4.4.1 Overview
In this Section the implementation of the whole prototype should be
summarized, summarized in a way that the readers of this thesis will
understand what happens in every step of the logic in the prototype. Every
step means from the beginning when starting the application through the steps
in the logic layer to the steps in the packet transmission part and then all the
way back the other way. This will also be showed by a diagram.

Apart from the step-to-step tutorial of the prototype I am going to discuss a
little bit about the chosen solution of the socket and thread problem.

4.4.2 Step-to-Step Tutorial

1. The PrototypeApplication calls the Upper Layer Interface’s init
function.

2. Logic Layer initializes a PrototypeCommunicator through the Lower
Layer Interface.

3. The Communicator creates a ListenThread (TCP) and a
UdpSocketThread.

4. The application makes a join(); wants to join the network.
5. Logic Layer sending a message to the Tracker through the

Communicator.
6. The Communicator creates a TcpSocketConnection to the Tracker and

sends the message to it.
7. ListenThread receives a response from Tracker and creates an

InputThread.
8. The InputThread makes a callback to the Logic Layer through the

Communicator.

 47

9. The Logic Layer decodes the message, finds out that it is a message
from the Tracker.

10. Start immediate the Peer Selection mechanism; choose parents.
11. Logic Layer sends messages to the parents through the Communicator.
12. The Communicator creates TcpSocketConnections to the parents and

sends them a message.
13. ListenThread receives a message from the parents and starts several

InputThreads.
14. The InputThreads makes callback to the Logic Layer.
15. The Logic Layer decodes the messages and finds out that it is a

response from the parents.
16. Logic Layer sends messages to the parents to inform that it is ready for

real data packets.
17. The Communicator creates UdpSocketConnections and sends along the

messages to the parents.
18. The UdpSocketThread starts to receive lots and lots of data packets and

makes callbacks to the Logic Layer.
19. The Logic Layer decodes the data packets and sends the pure media

information to the application.
20. The Logic Layer also encodes the incoming information with NC and

sends along the combination of the incoming packets to its children.
21. This continues until the application leaves the network by calling

leave() or quit() or crashes.

It is recommended to watch Figure 4.1 to get a deeper understanding of what
is happening.

Figure 4.1: Step-by-step when a user is joining the network.

 48

Under this time the ListenThread may receive request for information from
future children, of course the logic layer must send a response. If it sends yes,
the child will send another request over UDP. The UdpSocketThread receives
it and makes a callback to the logic layer, and then the logic layer will start
sending combined NC data packets to that specific child. This scenario is not
shown in the figure above.
 Another thing that is not showed above is when the user chooses to leave or
quit, then a special message will be sent to the tracker, parents and to all the
children.

4.4.3 Discussion
Every time a message should be sent over TCP the Communicator creates a
new TcpocketConnection, wouldn’t it be better to use some of the old
TcpSocketConnections (sockets)? Maybe in some cases, but the main thing
that made this design to what it is was that if a node has a lot of peers there
will be many TCP sockets up all the time and that is rather demanding for the
network.
 It would be especially demanding for the tracker that communicates with all
the nodes in the network.
 Okay so it would be demanding, but a drawback of this design is that if a
node gets peers that lay nowhere near it (geographical). Then creating a TCP
connection would probably take a long time.
 In this scenario it would be nice to keep the TCP connection up if the users
need to communicate with each other again.

 49

5. Evaluation
This part of the thesis presents results of evaluation of the implemented
prototype. Unfortunately it is a little bit hard because of the “black box”, but
some measurements will be displayed. Measurements such as: memory
consumption, correctness and CPU usage in idle state and working state.
Because of the “black box” this chapter is going to be intended on the two
parts described in chapter 4, the prototype application and the packet
transmission part. For the prototype application and the transmission part the
evaluation would mostly be about the integration of these two parts and the
“black box”.

5.1 Test-bed Platform

5.1.1 A Peer Prototype
Most of the computers that are running as peers are Pentium(R) D 2.8 GHz
with 1.00 GB RAM. The operating system is Microsoft Windows XP SP2.
 To be able to run the PeerPrototype, Microsoft Virtual PC [28] was installed
and on that specific virtual PC the operating system openSUSE 10.0[29] were
running. This was needed because the prototype is build for Linux in this first
version, it will be translated to work on Windows in later versions.
 One of these computers did not need to install Microsoft Virtual PC because
openSUSE 10.0 were already installed directly on the computer.
 In the test phase a laptop was also used. A Pentium 4 2.2 GHz with 512 MB
RAM. The operating system is Fedora Core 3.0. In addition to this, ACDK
was installed on every workstation.
 The computers are connected in a little office network through a Gigabit
switch and every computer (including the source) in the network is equipped
with a Gigabit network interface.

5.1.2 A Source Prototype
The source prototype is running on a Pentium dual core processor running at
3.2 GHz with 2.00 GB internal memory. The operating system is Red Hat 9.0.
 Of course ACDK was installed on this computer to, because every prototype
peer or source needs it to work.

5.2 Correctness
To test the correctness of this prototype several test were done, test with
different numbers of computers in the overlay network. All the tests included
the source sending a video-file to the receiver/receivers, and then the
receiver/receivers checked whether the amount of bytes sent were equal to the
bytes received. For further correctness checking the receiver/receivers also
played the video-file in a media player.

 50

5.2.1 One receiver
First of all I tested the prototype with one main source and just one receiver
(see Figure 5.1). This means that it is a test in the early stage (see chapter
2.3.1.3). Because of that this test is not testing network coding but it tests the
encode/decode-part of the message structure and the packet transmission part.

The file sent from the source: germancoastguard.mpg, 2 576 388 Bytes.

Source Peer
Bytes sent: Bytes received:
2 576 388 2 576 388

Table 5.1: Shows the result of the first basic test.

Everything worked out fine and the bytes sent was equal to the bytes received.
Every byte was in order and the receiver could watch the video-clip without
problems.

Figure 5.1: A topology with one source and one receiver.

5.2.2 Two receivers
This test included one main source and two receivers (peers), in other words
an overlay network with three nodes. Worth mention is that it was a full mesh
topology (see Figure 5.2) in this test case and that means that the network
coding part and some other part in the logic layer were tested because the
peers were not only receiving but also they helped distribute the video-clip to
the other peer.

The file sent from the source: germancoastguard.mpg, 2 576 388 Bytes.

Source Peer #1 Peer #2
Bytes sent: Bytes received: Bytes received:
2 576 388 2 458 988 2 457 388
2 576 388 2 476 388 2 437 988
2 576 388 2 459 588 2 458 788

Table 5.2: Shows the result of the second test.

 51

This time everything worked out okay, the receivers did almost get the whole
video-clip, just over 95 %. It is really hard to say what the problem is because
it depends on so many things in the logic layer. At this time the logic layer is
being tuned and therefore, before it is finished, it may lead to some issues like
this.
 One could think that the last 5 % is packet loss in the network, but in this
office the computers are running on a Gigabit LAN and everyone is connected
to each other through the Gigabit switch so probably the packet loss is not the
problem.

The video-clip worked as it should; there was only a small amount of
interrupts in the picture.

Figure 5.2: A full mesh topology, every peer has two parents.

5.2.3 Five Receivers
This test included one main source and five receivers (peers), in other words
an overlay network with six nodes. The topology of the overlay network is
randomized. One generation is divided up into 3 pieces (h = 3) and that means
that all of the five peers must have three parents and some random number of
children. With this configuration it does not become a full mesh topology (see
Figure 5.3) and then sets more pressure on the logic layer and especially the
network coding part.
 The file sent from the source: germancoastguard.mpg, 2 576 388 Bytes.

Source Peer #1 Peer #2
Bytes sent: Bytes received: Bytes received:
2 576 388 2 368 988 2 367 988
2 576 388 2 278 788 2 358 588
2 576 388 2 436 388 2 296 988
Peer #3 Peer #4 Peer #5
Bytes received: Bytes received: Bytes received:
2 368 988 2 368 988 2 368 988
2 456 588 2 356 788 2 288 688
2 288 988 2 458 388 2 478 988

Table 5.3: Shows the result of the third test.

 52

This time with five receivers it worked out okay, a little bit worse than the
times before. Almost 92 % of the video-clip arrived at the receivers; one thing
that might seem a little bit strange is that in the first test all of the receivers but
one got the same amount of bytes.
 One thing that might be worth mention is that in this topology not every
receiver has the same distance to the main source, that will put the NC to the
test and it was not 100 % but it went okay for being the first version.

The vide-clip worked pretty okay, some more interrupts than the last test but
okay.
 ServerWorkstation WorkstationWorkstation

Workstation Workstation

Figure 5.3: A topology where every peer has three parents.

Another similar test was done, but this time is h equals to five. This means a
full mesh topology (see Figure 5.4) in an overlay network with six nodes
where one node is the main source node. This was done because it is
interesting to see whether the result is closer to what it should be than the last
test.

The file sent from the source: germancoastguard.mpg, 2 576 388 Bytes.

 53

Source Peer #1 Peer #2
Bytes sent: Bytes received: Bytes received:
2 576 388 1 274 388 2 267 388
2 576 388 1 880 788 1 988 788
2 576 388 1 534 388 1 566 388
Peer #3 Peer #4 Peer #5
Bytes received: Bytes received: Bytes received:
2 930 388 1 869 388 1 286 388
2 043 988 1 505 588 1 877 188
1 566 388 1 566 388 1 545 388

Table 5.4: Shows the result of the last test.

This result was not good at all, a little bit too random and the receivers did not
get much data at all. One thing that probably contributed to the result was the
full mesh topology. In a full mesh topology there are lots of cycles and in this
test, with five peers, the cycles and the non-innovative packets took over.
 Since the logic layer is being tuned at this point it is hard to configure the
network right for this particular topology. Some of the problems could depend
on the configuration of the network and when getting information from the
tuning I think the same tests will give better results.

Figure 5.4 illustrates the randomized topology with five workstations and a
server as main source node all connected with each other in a full mesh
topology.

 54

ServerWorkstation WorkstationWorkstation
Workstation Workstation

Figure 5.4: A full mesh topology, every peer has five parents.

5.2.4 Correctness Summary
After some investigation of the result one could say that the packet
transmission part works exactly as it should, sends and receives all the
packets. Still there is something wrong because the result were not 100 % but
it were okay and a few interrupts on a video streaming service is acceptable.
 One should know that the logic layer is big and complex so it is really hard
to track down the issues, actually bug searching and tuning the logic layer
might be another master thesis project.
 Another problem was that the same test did not give the same result over
and over again, it felt kind of random. That is not a good thing but this
problem probably arises from the other problem where the receivers did not
get the whole video-clip.
 Different configuration gave of course different results but it is hard to see
which configuration is the best one for this prototype. Huge testing needs to
be done on the logic layer to get some real answers, preferably with some
good network simulator. Actually this is already prepared by my group mates;
the simulation of the logic layer starts whenever the company decides to.
 Apart from the problems I must say that this first version of the prototype
was okay for this first version, the results were good but too random. The
prototype worked somewhat better than the project group expected.

 55

5.3 Performance

5.3.1 Memory Consumption
When the first test was running the memory consumption increased over time;
somewhere there was a memory leak. The memory leak was not to be found
in the prototype application neither the packet transmission part because these
two parts uses ACDK and ACDK has a build in garbage collector that takes
care of that.
 After some investigation the memory leaks were found, it showed to be
more than one. Some of the leaks were found in my message structure, were I
had used objects and forgot to delete them after. This is a rather common
problem when using C/C++. The leaks were filled and the tests could
continue.
 After that the tests showed that the memory consumption differed a lot
between different operating system. The computers with openSUSE had
memory consumption on 15.5 MB and the computer with Fedora had 31.4
MB and last computer with Red Hat had memory consumption on 33.1 MB.
 The overall memory consumption seems okay; ~30 MB is not that much for
today’s computers.

5.3.2 CPU Usage
The CPU usage of the computers differed a lot, most because of the virtual
PCs. This solution with the virtual PCs is not the best one, but it is convenient
and easy to use.
 However the virtual PCs used ~30 % of the CPU and that was
approximately 10 times worse than a similar computer running openSUSE
directly. This computer used only ~3 % (80 MHz) of the CPU and that is a
really surprisingly and good result. The last workstation, the laptop, with
Fedora used ~8 % (176 MHz) of the CPU which is a okay result.
 The overall CPU usage seems okay; ~80-180 MHz is not too much for
today’s computers.

5.4 Integration with Logic Layer

5.4.1 Prototype Application
The integration with the logic layer is really easy and smooth for the prototype
application. The only thing the application needs to do is to call the init
function and after that call the join function or the connect function.
 On the other hand no peer selection mechanism was implemented in this
version and that made it messier, as told before (see ch. 4.3.1). Still it is a
smooth integration, especially because of the nice design of the upper layer
interface and the complexity of the logic layer that takes care of the most
things.
 The smooth integration makes time for implementing a lot of features to the
application; probably the next version will have a nice GUI. Worth mention is

 56

that probably the integration with a media player (in a later version) will take
more time and effort for the programmers.

5.4.2 Packet Transmission Part
The integration with the logic layer is exactly as it was for the prototype
application, meaning smooth and easy. The Packet transmission part must be
ready to send packets whenever the logic layer says so and also it must be
ready to receive messages, both over TCP and UDP.
 The design of the lower layer interface is very general, as is the upper layer
interface, and that is great for integration purpose. If someone wants to make
an own packet transmission part and not working on the existing version that
would be no problem. Just plug it in. The only thing it has to think of is to
handle the send request from the logic layer and making callbacks when
receiving messages.
 The same pertain to the prototype application where the general upper layer
interface makes it easy test different type of applications. Just plug it in.
 A drawback to have the interfaces so general is that the logic layer becomes
very big and complex. As more general the interfaces becomes as more
complex the logic layer gets. Still it makes it flexible and portable.

 57

6. Conclusions & Future Works
During this thesis project I have researched, designed, implemented and
evaluated a prototype of a media streaming distributed network with network
coding. This chapter summarizes the work and provides some conclusions.

6.1 Research Areas
This section includes conclusions about the three big research areas: Network
Coding (NC), Data Processing and Peer Selection.

After researching about NC it is easy to understand why that is such a big
topic in the academic and the industry world today. It is a very popular
technique that optimizes the transmission of data through an overlay network.
 The hard thing with NC is to know exactly how it should be used in a
network with certain needs and rules or how to configure the network to get
out the most of the NC’s benefits. With configure I mean which peer selection
mechanism is going to be used and which transport protocol is going to be
used and so on.
 Probably NC will continue to be a big research topic and more
communication application will use the technique in the future.

From the data processing part we choose to make our own packet format
running on top of TCP and UDP. I think it was a wise chose, the tests and
results showed me that the message structure and the packet transmission part
worked really well.
 I also learned that there are lots of things to think about when transfer data
over an overlay network. Things such as: delay, loss, jitter and so on. It is real
complex to take care of all of these issues and for that it might be a good idea
to use a protocol like RTP in the future that will help you with that.

Peer selection is a very interesting and huge topic. There are no books that say
how you should design your peer-to-peer network because there are so many
different scenarios that may lead you in different directions.
 In this thesis when all nodes in the peer-to-peer network should help each
other to stream some data, I think the most important criterion is that every
node should be treated the same. Due to administrative issues and planning
problems we didn’t choose any peer selection mechanism at this point. In
future versions I think it is going to be a randomized peer selection in some
way that will fulfill fairness in the network.

6.2 Design
For the prototype application I can conclude that the design weren’t hard at
all, it is a very small application. The nice designed interfaces made my parts
easier but as said before, the logic layer became really complex.
 This design could easily be bigger and better, I think I nice little GUI would
be nice for future version.

 58

 The design of the packet transmission part I think is a great solution, the
things that are needed is sending and receiving packets. This is done over a
socket connection and this design makes it possible to just add a socket
connection if you don’t want to use TCP or UDP.

6.3 Implementation
After the prototype was implemented I think that using ACDK was really
great and help me a lot with the threads and the sockets, but I also thinks that
it would be better for the prototype to not be depended on an external library.
Another drawback with ACDK was that it was kind of hard to get it working
as it should.
 So, maybe in future versions the prototype will be re implemented with a
more pure C++ code with raw C sockets and pthreads. Apart from that the
packet transmission seems to work really well.

6.4 Evaluation
After testing the prototype I think it was really hard to evaluate it because of
the complexity of the logic layer and for the reason that I couldn’t talk about
it.
 The NC part, combine/encode/decode information, seemed to work fine but
the result showed that more and bigger tests are needed to get a deeper
understanding. I think huge simulation tests are needed on a fixed topology
first to understand how to configure the NC. Then it probably is going to be
easier to make real tests with a real network and get better results.
 Apart from that the evaluation showed that the prototype used an okay
amount of the CPU and the memory. It also showed that there are a lot of
things to work on for the next versions before having a media streaming
prototype that will outclass the already existing streaming services.

 59

6.5 Future Works
There a lot of things to work on in the future to get a prototype that can
challenge the streaming services existing out there. First of all more and larger
tests are needed to get more accurate results and maybe also test different
packet formats and transport protocols. I think also it would be nice to
implement the packet transmission part without ACDK and instead with raw
C sockets and pthreads. After that the next thing would be to design,
implement and evaluate one or a few possible peer selection mechanisms.
 When having all that you probably needing a tracker application, that will
inform the joining nodes about the network topology and things like that.

After that when having a prototype that joins and builds up a network and
contributes to stream the media to its neighbors, then maybe some
investigation is needed about the media quality. A Technique like PET [30]
might be a good solution to get better quality on the streaming media.
 Apart from the quality issue the prototype must be connected to some media
player so a user can get the picture at all.
 There are several other features of the prototype that are left out in this
thesis, features that are needed if thinking of making this prototype
commercial. Features like: a useful GUI, video quality, security and much
more.

 60

7. References

[1] Network Coding: An Overview by Axel Davidian

Seminar on Topics in Communications Engineering at Munich
University of Technology, January 2005.

[2] Practical network coding by P. A. Chou, Y. Wu, and K. Jain, 51st
Allerton Conf. Communication, Control and Computing, 2003.

[3] A random linear network coding approach to multicast by T. Ho, M.
Médard, R. Koetter, D. Karger, M. Effros, J. Shi, B. Leong,
IEEE Transactions on Information Theory, 2003.

[4] On Average Throughput and Alphabet Size in Network Coding by
Chandra Chekuri, Christina Fragouli, and Emina Soljanin, IEEE
Transaction on Information Theory, 2005.

[5] Finite Field by Wolfram Research,
http://mathworld.wolfram.com/FiniteField.html

[6] Measuring Delay, Jitter, and Packet Loss with Cisco IOS SAA and
RTTMON by Cisco Systems, Inc. White paper, Document ID:
24121

[7] Reducing Broadcast Delay by Bill Birney, Microsoft Corporation
April 2003,
http://www.microsoft.com/windows/windowsmedia/howto/articles/B
roadcastDelay.aspx

[8] The Network Coding Homepage by R. Koetter, National Science
Foundation under Grant No: CCR-0325673 October 2003,
http://tesla.csl.uiuc.edu/~koetter/NWC/

[9] Wolfram Mathworld by Eric Weisstein at Wolfram Research August
2006,

 http://mathworld.wolfram.com/MatrixRank.html
[10] Transmission Control Protocol (TCP), RFC 793 by J. Postel at

Information Sciences Institute University of Southern California,
September 1981

[11] User Datagram Protocol (UDP), RFC 768 by J. Postel at Information
Sciences Institute University of Southern California, August 1980

[12] Real-time Transport Protocol (RTP), RFC 3550 by H. Schulzrinne,
S. Casner, R. Frederick and V. Jacobson at Network Working Group,
July 2003

[13] Incentives Build Robustness in BitTorrent by Bram Cohen May
2003, http://www.bittorrent.org/bittorrentecon.pdf.

[14] A Framework for Architecting Peer-to-Peer Receiver-driven
Overlays by Reza Rejaie and Shad Stafford, ACM 2004.

[15] Algebraic Gossip: A Network Coding Approach to Optimal Multiple
Rumor Mongering by Supratim Deb, Muriel Médard and Clifford
Choute, IEEE Transaction on Information Theory, 2004.

[16] SCoLE: Scalable Cooperative Latency Estimation by Michal
Szymaniak, Guillaume Pierre and Maarten van Steen,

 61

10th International Conference on Parallel and Distributed Systems,
July 2004.

[17] Predicting Internet Network Distance with Coordinates-Based
Approaches by T. S. Eugene Ng and Hui Zhang, Proceedings of the
IEEE INFOCOM 2002.

[18] Measurement-Based Optimization Techniques for Bandwidth-
Demanding Peer-to-Peer Systems by T. S. Eugene Ng, Yang-hua
Chu, Sanjay G. Rao, Kunwadee Sripanidkulchai and Hui Zhang,
Proceedings of the IEEE INFOCOM 2003.

[19] Building Low-Diameter P2P Networks by Gopal Pandurangan, Prabhakar
Raghavan and Eli Upfal, IEEE Journal on Selected Areas in
Communications, vol. 21, pp. 905-1002, 2003.

[20] Pchar: A tool for measuring Internet Path Characteristics by Bruce a.
Mah, http://www.kitchenlab.org/www/bmah/Software/pchar/

[21] C/C++ Reference by Nate Kohl, http://www.cppreference.com/
[22] DataReel Open Source by DataReel Software Development,

http://www.datareel.com/
[23] Artefaktur Component Development Kit by Roger Rene Kommer,

http://acdk.sourceforge.net/
[24] Red Hat Operating System by Red Hat, Inc. http://www.redhat.com/
[25] Eclipse SDK by The Eclipse Foundation, http://www.eclipse.org/
[26] Eclipse C/C++ Development Tooling by The Eclipse Foundation,

http://www.eclipse.org/cdt/
[27] Fedora Core Operating System by Red Hat, Inc.

http://fedora.redhat.com/
[28] Microsoft Virtual PC by Microsoft Corporation,

http://www.microsoft.com/windows/virtualpc/default.mspx
[29] openSUSE Operating System by Novell, Inc.

http://en.opensuse.org/Welcome_to_openSUSE.org
[30] Priority Encoding Transmission (PET): A New, Robust and Efficient

Video Broadcast Technology by Bernd Lamparter, Malik Kalfane,
Andres Albanese and Michael Luby, August 1995

[31] Dipl.Ing. Roger René Kommer, Kassel in Germany,
http://www.artefaktur.com

 62

Appendix A: Practical example of NC

This is the network layout for the example with one source, two middle nodes
and one receiver:
 SA R BY1 Y2Y3YA YBYA

Start at the source (S) with generating a global encoding matrix (Gt) and
multiply that with the original information (X):

81,100,68

81

100

68

6

5

3

567

982

375

321

3

2

1

333231

232221

131211

===⇒=⋅= =
=
=

⋅ ===
===
===

= YYYXG

X

X

X

Y t

ααα
ααα
ααα

Create a new local encoding matrix and multiply that with the received global
encoding matrix (Gt) at node A. The result is the new global encoding vector
(GA):

[] [] 24,56,40245640

000

000768 321

131211

321 ===⇒=⋅==== AAAA GGGG

ααα
βββ

Combine the received information with the local encoding matrix to get the
new encoded data (YA) at node A:

[] 54400

3

2

1

1 =⋅=
β
β
β

YYA

 63

Create a new local encoding matrix and multiply that with the received global
encoding matrix (Gt) at node B. The result is the new global encoding vector
(GB):

[] [] 120,176,9612017696

000

428 321321

131211

321 ===⇒=⋅==== BBBAAAB GGGGGGG

ααα
γγγ

Combine the received information with the local encoding matrix to get the
new encoded data (YB) at node B:

[] 18880

3

2

1

2 =⋅=
γ
γ
γ

AB YYY

Solve the received matrix which consists of information from the source (S)
and both of the nodes (A and B). Then will the result be the original
information sent from the source:

6,5,3 321

3

3

2

1

321

321

131211

===⇒=⋅ xxx

Y

Y

Y

x

x

x

GGG

GGG

B

A

BBB

AAA

ααα

 64

Appendix B: Examples of the early stage.

Appendix B.1: The first node is joining the network.

 65

Appendix B.2: The second node is joining the network.

 66

Appendix C: An example of the late stage.

 67

Appendix D: An example of the leaving
phase.

 68

Appendix E: An example of the bad/change
condition phase.

 69

Appendix F: A “Hello World!” example,
written with ACDK’s scripting language.

--
#include <acdk.h>
#include <acdk/lang/System.h>

using namespace acdk::lang;

// Minimal example, which just says Hello World!
class MiniAcdkSample
{
public:
 static int acdkmain(RStringArray args)
 {
 System::out->println("Hello World!"); // Java-
like? ;)
 return 0;
 }
};

int
main(int argc, char* argv[], char** envptr)
{
 return
acdk::lang::System::main(MiniAcdkSample::acdkmain,
argc, argv, envptr);
}
--
