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Abstract

During the last years more and more network applicaomsleveloped to
build up overlay distribution networks. Overlay distribat networks that
fulfill the people’s needs, such as sharing files w#ilch other. A great
example is to look at BitTorrent that millions of peoate using today. There
are also demands on good streaming services; people vwsa# tbe tv-shows
they missed and follow lectures over the internet aatepbly live. With
other words lots and lots of data needs to be trandfexrer the network. It
would be nice to optimize the transmission of data isdlwverlay networks
and not only use plain routing. This can be achieved Matfwork Coding.

First of all this thesis is a part of a bigger proj@cigether in this project we
have made research in different areas such as Ne®aiting, Peer
Selection, transport protocols and different kinds of paftkenats. After that
a prototype was developed, a prototype for a media streaminigution
network that uses Network Coding.

The focus in this thesis has been to first of all enpnting the
communication parts such as the message structure apaciet
transmission part, and second has been to implemeatthal prototype
application. Apart from that this thesis has made s@sts on the prototype
and after that an evaluation took place.

The evaluation told us that there is a lot of workaardthe future to get a
prototype that could challenge the existing streaming sex,iicg we are sure
that the combination of an overlay network where evexge are helping
distribute information and using Network Coding are going ta geeat
solution for streaming media to a big crowd.



Vocabulary

Term
Field size:

Generation:

Global code:
Innovative info:

Jitter:
Local code:

NC dimension:

NC:

Neighbor:
Node:
Parent:
Child:
Source:
Receiver:

Non-innovative
info:

IV

Symbol Definition

The bit size of the individual data values/symbols
contained in the packet to be sent, e.g. 8 bits or 16 bits.

The media stream to be sent via network coding is
divided into "generations"”. A single generation contains
packets that are all related to the same set of s@ujrce
vectors. [2]

The encoding vectors that are sent node to node.

Incoming global code to a node that provides new
information (non redundant) which will help create a
full-rank matrix.

Uncontrollable latency variance.

The temporary vector that is multiplied by the receive
incoming global code vectors at a node to create a new
outgoing global vector.

The dimension of the matrix created for network coding
of the source stream. It should be equal to or less tha
the value of the "minimum cut" between the source and
any receiver. The input stream is divided ihtoumber

of x-streams.

Network Coding: a method used to encourage and allow
mixing of data at intermediate nodes, which helps to
maximize the flow of data across the minimum cut ef th

topology. [8]
A node that is only one “hop” away in the topologyeTh
neighbors are the only nodes that you know of.

Can be a receiver, source or a receiver&sourcesin th
overlay network.

A Parent is a node that distributes information to lamot
node (Child).

A Child is a node that receives information from aeoth
node (Parent).

A Source is a node that helps distribute information in
the overlay network. Also called Parent.

A Receiver is a node that receives information and iises
but doesn’t forward it to someone else.

Incoming global code to a node that provides no new
information (redundant).



Term
Peer:

Premature
transmission:

Rank:

Server Rate:
Source Rate:

Time invariant
NC:

Time variant NC:

Tracker:

Full rank

Symbol Definition

Is

An active node in the overlay network that you're
communicating with. Parent or a child.

Each node will transmit coded content after certain
amount of time whether it receives full ranked content
not.

The rank of a matrix is the number of the linearly
independent rows or columns of a matrix. [9]

Current output bandwidth at the server/source.

The bandwidth required to output the total of the
individualx streamsrg="h -ry)

The initial global encoding matrix (from the servdoes
not change throughout the lifetime of the transmission

The initial global encoding matrix (from the server)
changes periodically over time. This method provides a
more "robust” network coding solution, as with periodic
change comes a greater chance that the matrix has ful
rank and can be solved completely.

A standalone application that the nodes connects to, t
get information about the network.

A matrix that is non-reducible and has a rank that is
equal to the number of rows; is also called a non-singula
matrix. If a matrix is full rank, it can be solved.
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1. Introduction

Large scale communication networks like Internet aeel @dmost by
everyone today. Nowadays users not only want to read iafam they also
want to get information in the form of video/audio streaio meet the users’
needs lots of different techniques are discussed and igatstiby
researchers all around the world.

1.1 Problem Statement
There are several problems you need to think about whiglinigua prototype
of a media streaming distribution network. The prototyya is working on
every node in the network should have several chdacezn area of usage. It
could choose to act as a source node, receiver nodebottas

A source node only encodes the incoming data stream emarfts it to its
children whereas a receiver node only decodes the incomingtdzaan and
sends it out to the screen. As you probably alreadydayout the prototype
collects all information, decodes it, send it to theeen and then encodes the
streams and send them to its children nodes when drising as a source and
a receiver.

Of course the most common node acts as both a soureeraodiver,
because in our case clients don’t wait for the whadewistream before they
send it along, they send it along continuously. Working asla source is not
going to be that common for the clients but maybe timspany that offers
this video stream needs to have a few servers to helpetivork stream the
video to all its users.

The choice for act only as a receiver should nahbeelients’ decision; the
client should become only a receiver automatically ifdient has a really
bad upload capacity. Clients that are joining the netWrork a mobile phone
or a bad ADSL connection are examples on clientsvifibdnly act as
receivers.

When talking about encode data streams it means tlwdtth# incoming data
streams will be combined using network coding (NC) and netamading is
also used when decoding the data streams. NC is thet@chimque that we
are going to use when implementing this prototype and theréfaill steer
some of the other parts of the prototype, parts such as@leetion and data
processing.

Since there is usually more than one incoming datarste¢dhe input of a
node, it is necessary to acquire synchronization. Sgntation of the
incoming data streams is a main requirement for a nakstiabuted network.
If you don't supply synchronization among these data stréfagne can be
serious problems for real-time applications such in ow o@lia streaming.



10

To acquire synchronization you will need a buffering model could tag
every packet, related with the same source vector,ansttecific number and
then put all incoming packets in a single buffer sorted #ftespecific
number. In other words, every node needs a mechanismputsathe incoming
packets in the buffer in the right order.

As mentioned above there is several main issueshilsatiesis will have to
dig deep into, issues such as NC, peer selection and datsgping. Dig deep
to reach the goal of this project, that is to desigpleément and evaluate a
prototype application to stream media over a peer selaetawrk. This
network should use network coding to make the packet tias®m more
efficient.

1.2 Related Work

There is lots of researching going on about network codiogt of the
available research is theoretically like in [1, 3,B4}t more and more practical
views are coming as you can see in [2]. Also most oéMising research is
about NC in a file distributed way and not in a raaktistreaming way.

Anyhow, there is some available theoretically redear real time
streaming using NC but to our best knowledge it seems thatenbas
researched and build a prototype in this area. You couldiatkseveral
different approaches and theories to tackle the issugser selection [14, 15,
19] and data processing [5-7, 9-12] when building such a prototype

1.3 Structure of thesis

First of all | want to explain that this thesis is atpd a big project where four
people, included me, worked pretty much together. This méahshuch of
the research were done together in the group and thad that some of the
subchapters in the background chapter were also done i@ \gork.

Subchapter such as: 2.1 and 2.2.1 are group-work and subchapteas:such
2.2.2 and 2.3 are more or less my own parts.

The reminder of this thesis is structured as follow: Chaptmvers the
research areas related to the thesis; Chapter 3 présestsalysis and design
of the system prototype; Chapter 4 describes the impleti@mof the
proposed prototype design in detail; the evaluation of tipéemented
prototype is discussed in Chapter 5; then the conclusiaife dlfiesis is found
in Chapter 6; and finally Chapter 8 covers the future work.



2. Background

To reach the goal of the thesis some real investig&ioaeded in certain
areas. Areas such as peer selection and data processuggyaimportant
when talking about real-time media streaming in anlayeretwork.
Important for sure, but one thing one needs to think dfasthe peer
selection and the data processing part must be investigatesl sense that
network coding is used. Therefore it is necessary to dig iée NC first, so
one will understand all the issues and problems thatappgar when trying
to come up with a solution for peer selection and dateegsing.

2.1 Network Coding

There has been a lot of research on routing and ga&urting more efficient
because plain routing basically just forwards packetth Watwork coding,
nodes in an overlay network send out packets that arbications of
information from the previous incoming packets. This leadsossible
throughput improvements and a more robust network asnsgil

Combining incoming information requires some computatiotiseahodes
in the network; this will not be a bottleneck thesesdlagcause of the very
powerful computers. Instead the network bandwidth willheetkiottleneck and
therefore it has become very important to try maximgizhe bandwidth.

11
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2.1.1 Overview

The main idea behind NC is that in some cases it would bbe ombimized to
send a combination of information instead of sendindhaliiformation
separate. This would lead to a reduced amount of network baagethe
same time it achieves the same result.

Figure 2.1: A possible scenario without network coding.

In Figure 2.1 the S is the source that is sending someriat®n to the
receivers (R). For the information to get there, uistrtravel through some
nodes (N) in the network. The two letters in theifey a and b, is the actual
information that the receivers wants, it must hawth a and b to get the
“message”.

Figure 2.1 also shows that when all links have maximumdwalth usage
and network coding is not used; N forced to choose if it should forward
packeta or b. This means that depending on whatcNooses, Rand R will
be satisfied, but not at same time. If there are dmanewidth left for N N3
could transmit botla andb and that would satisfy bothyRRnd R at the same
time. But this scenario would also lead to that the badttiis not optimum
used, becauseyNs going to send both andb to both R and R.

This problem could be solved iz dnows which packet to send where,
because thenNonly needs to send packeto R, and packea to R.. Many
of the problems could be solved if all facts are knowrech node, but this



also means that the topology has to be known for madl. Another way to
solve these problems is to use NC which will be explaingtdidudown.

Figure 2.2: A possible scenario with network coding.

As shown in Figure 2.2, when all links have maximum badtwisage and
network coding is usedNs forced to do a combination afandb to be able
to forward packea andb. This means that;Rand R will be satisfied at the
same time, becauseg Bould use thé part of the combination and; Rould
use thea part of the combination.

The major problem with NC is that when a certain patkabt received at a
node then would all packets be useless for that nodeislibescause it is
impossible to resolve the original information with scum&nown encoded
data.

One way to do this problem smaller and also make thkemgntation more
feasible is to divide the information into generatiortse if some part is lost
would that only mean that the all the parts in thaegaion would be lost.

2.1.2 Basics

As said before NC is letting nodes encode the incomimgrmdtion before
sending it on, with help from some coding scheme. Anmbagimplest
coding schemes is linear coding, which regards a block afataa vector
over a certain base field and allows a node to apply arlinensformation to
a vector before passing it on.

13
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Linear network coding is proved to be an optimum schemerfcode
information according to this paper [2].

Linear equations are simple as said before, and thdesinlipear system is
one with two equations and two variables.

Solving three-variable, three-equation linear systemmi® difficult, at
least initially, than solving the two-variable systdmsause the computations
involved are messier. The systematized method for sollmghtree-or-more-
variables systems is called Gaussian elimination. Gaus$imination is the
most common method to solve linear equation systems andat
complicated at all.

Theoretically NC consists of two different parts. Thstfpart is the global
encoding matrix (g which could be fixed or randomly created. This is the
entire idea behind NC which makes it possible for a nofteteard some
data, without first having received the complete generaiibe other part of
NC is the original information (X). These will thee multiplied which then
generates the result (Y) according to the following foemul

Y =G, X

The crucial thing is to choose a global encoding matexk tiekes it possible
to resolve the original information at a receiver later This is also based on
the field size because if a field size that is langeugh is chosen then would
this matrix be solvable with high probability. But on titber hand the field
size should be kept as low as possible to achieve theshigineughput
possible and by that also keep the overhead as low ablposine could say
that field size is how much information that is avalgato represent each
piece of the encoded data.

A solution to this problem would be to use finite fieldat make it possible
to have a fixed field size. After some reading [2]-[4)gems that 2or
perhaps 2 would be an appropriate fixed field size.

A finite field is a field with a finite field order.@., number of elements),
also called a Galois field. The order of a finitedied always a prime or a
power of a prime. For each prime power, there existstigxane (with the
usual caveat that "exactly one" means "exactly one up isparorphism")
finite field GF@") [5].

Another NC technique is random network coding (RNC), aediifference is
that the global encoding vector is randomized insteatiabit and predefined.
You will find more information about random network coding3].



2.1.3 Practical
Below is NC described in a more practical way.

The general procedure of NC for the source is as follows:

1.
2.
3.

4.

Start with the original information (X)

Create a random or fixed global encoding matriy (G

Multiply the global encoding matrix Bwith the original information
(X) to retrieve the encoded data (Y). (Y £2X)

Then send both &nd Y to the children of that source.

For a middle node would the procedure of NC be quite &imil

1.

4.

Start with receiving the global encoding matrix)(énd the encoded
data (Y).

2. Create a random or fixed local encoding matriy.(G
3.

Calculate a new global encoding matrix,®y multiplying the old
global encoding matrix with the local encoding maf@x = G * Gy).
Calculate new encoded data, ¥y multiplying the old encoded data
with the local encoding matrix = G * Y)).

For a receiver would the procedure of NC be somewhatiect|

1.

2.
3.

Start with receiving the global encoding matrix)(énd the encoded
data (Y).

Solve X in the formula (Y = & X).

Then if everything went well should the original inforroatbe
resolved.

A practical and more mathematical example of NC coealdden in Appendix

A. The example was developed after careful readingistésearch paper [2].

15
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2.2 Data Processing

The data processing part is divided up in three parts: mgfenodel, data
format and encode/decode function for network codingryEvede in an
overlay network needs a buffering model, a buffering mddeld¢onsist of
one or more buffers, size of the buffers, a flushingcg@nd much more.

Real time streaming makes it very important to know wdreghwhat to
flush to its children. The data format part is also vergortant, how to build
up the different message types that those differentggdection scenarios are
using; what should be included and which protocol is going tesbd when
sending these messages.

Apart from these two issues every node in the netweekls to have a
network coding encode/decode function. This is the héaneovhole
prototype; which mathematically areas are going to be usaacteeed on
combining, encoding and decoding the incoming data streams.

2.2.1 Buffering Model

2.2.1.1 Introduction

The buffering model specifies how the strategy of W lbuffers works. The
main task of the first buffer, called transmissiofffény is to synchronize the
packets’ arrivals and departures. This buffer containeadhedecoded
information.

The second buffer, called playback buffer, is to ke of the decoded
information and store it in the right order for theuat playback.

In practice the capacities of different edges vary (dejog on loss,
congestion, competing traffic etc.), thereby must thesmission be
synchronized. To get it synchronized in practice the pankst contain a
field with information (generation number) about whicheyation a certain
packet belongs to.

Packets that are related to same source vectors. XX, are in same
generation where h is the generation size. This fieldldvbe sufficient if it
has a size that is one byte because same generatidrencould be reused
over time.

When a packet arrives at a node on whichever edge, tketpaut into the
transmission buffer sorted by the generation numbdeenn first possible
opportunity or after a while the information will bens@en the outgoing
edges. Before sending the packet, it should be generatedragoan linear
combination of packets from the buffer within the acgealeration.

The current generation will regularly be taken froen titansmission buffer
to the playback buffer. The information could be deletéer sbme time or
saved for a certain time, depending on if the node dhmaible to resend the
information at a later stage.



2.2.1.2 Absolute delay/Latency

The absolute delay (Palso known as latency is the time it takes for &ketc
to travel from the source (S) to a destination nodg &8 shown in Figure 2.3.

LT N/ Tt |

} Tp1 Tpn }
\
I

Figure 2.3: The absolute delay (D,) in a schematic network.

Figure 2.3 also shows that the packet may travel through stimer nodes
(N1, .., Ni-1) to get to the destination nodeyjMind then the absolute delay
will increase. From that the absolute delay is the stithe travel time
between every node on the way to the destination, dusum of all nodes’
processing time.

Dn = Z(Tpi +Tti)
i=1

Where:
* Tyis the processing time at the node (time betweesivimg and
transmitting).
» Tiis the travel time from the parent to the child.

The absolute delay could be minimized in two ways first is to keep the
node close to the source i.e. have a peer selesitiategy that creates a
topology with low diameter.

The second way is to minimize the processing bsneaving a flushing
strategy that prioritize low processing time.

The absolute delay is not as important as keeplog @elay spread, because
if a node has a big absolute delay it just meaaisttte node are experience a
constant delay of the stream. This means thatdbe would get to see the
information a bit later than a node with a smadibsolute delay.

17
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2.2.1.3 Delay spread

The delay spread () at a node (N is the time difference in arrivals between
the first packet (R) and the last packet ([pin one generation as shown in
Figure 2.4.

Dfn DIn
S, [ ]
S, 1
S3 —
Dgne—

Figure 2.4: The definition of the delay spread (D).

Figure 2.4 shows a node that getting incoming padkem three different
parent-peers and the first incoming packet fronheaw one of the parent-
peers belongs to the same generation. Every packet same generation is
needed for decoding the packets and thereforedlag dpread is an important
criterion to determine the buffer size. Delay sgresathen the time between
the first packet from a certain generation arraed the last one.

D, =D —-D; =m Z(Tpi +T, )j - min[z (T, +T, )j
i=1 i=1

Where:
* Dsis the actual delay spread.
* D is the absolute delay (see Chapter 2.2.1.2) totas$t packet.
* Dy is the absolute delay (see Chapter 2.2.1.2) ®fitst packet.

This means that the delay spread is mostly dep¢mdaine flushing strategy
in the transmission buffers of preceding nodesgua) between the source
and the node. It also depends on the delay difterener different preceding
edges. The delay spread will propagate because aidcumulated I
However if the flushing strategy in the transmisdmuffer flushes the
incoming packets as soon as possible then woyrd0r



It is preferable to keep the delay spread as low as possiagsure that the
transmission buffer could be as small as possible. Tdrerevo ways to
minimize the delay spread.
The first is to choose a flushing strategy that makeprheessing time at
every node constant from the first to the last packéte transmission buffer.
The second method is to assure that the preceding etlbeaseakame
absolute delay.

Ideally when every edge have same delay and every nodeduanee
processing time, the delay spread could be minimized by dnawvivell
designed peer selection strategy. This strategy woultiecagapology with
receivers that all have its sources (parents) adhee distance from the
source. This would then result in a topology with ndties could have
differences in absolute delay but still having a smallydsfaead.

2.2.1.4 Jitter

The jitter (D) is the variation in absolute delay over time from source (S)
to a destination node (Nas shown in Figure 2.5. Jitter is caused by network
congestion, timing drift, or route changes [6].

Tpn
[z [T ez o]
<7an

47Dn X+1

Figure 2.5: Thejitter (D;) in a schematic network.

Figure 2.5 shows that a packet (x) has an absolute de(@yngfand the next
packet (x+1) has an absolute delay of B), jitter is the time difference
between these two delays.

Djn = D”(x+1) - an z[g(-rpi +-I-ti )j( ) _[é (Tpi +-I-ti )j

Where:
» Djis the actual jitter.
* Dny, is the absolute delay (see Chapter 2.2.1.2) for the padiet.
* Dny is the absolute delay (see Chapter 2.2.1.2) for theafet.

This means that if the jitter (Dis positive then the latter packet (#2) travels

slower than the earlier packet (#1) and if the jittemegative then the opposite
will occur.
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The jitter is dependent of the network steadiness amhe irocessing time at
a preceding node differs over time. The problem isithsithard to do
something about the network more than choosing stahlgections i.e. have
a peer selection strategy that takes this into concern

The processing time could be different over timepgeicular node has a
comprehensive workload at a certain time, which affédesiata processing
rate. But this is also hard to do something about mawretily to prioritize the
decoding and encoding process before others.

As said earlier it is hard to minimize the jitter bugrin is one way to deal with
the problem and that is to have a jitter buffer, fraowmon it is called the
playback buffer. This buffer intentionally delays thevang packets so that
the overlaying software (media player) experiencesa donnection with
very little problems.

2.2.1.5 Transmission buffer

The main goal of the transmission buffer is to take cdithe delay spread.
This buffer could work in two different ways.

* By block decoding, that means that the node collectstiooe packets
and later on hopes to be able to invert G

* By earliest decoding, that means that the node perfGanssian
elimination after each packet arrival. Then could théendetect and
discard non-innovative packets as soon as possible. This atsol
lead to that the computational load for the node will isriduted over
time.

Earliest decoding is the preferred method. This is baséldeoiact that it
would also do the decoding faster after a complete gametzas been
received at the node, which means that the playbackriedtild be a little bit
smaller. Earliest decoding would also mean that the kode's which
packets to transmit to its children and by that be abtelp send innovative
packets.

A well considerer flushing strategy should be implemetaqutevent
deadlock that could happen if every node in the netwoits iex new
information and none of them has received full rank éndirrent generation.

This type of problem could be solved by using two differemttatjies. The
first strategy is to send new information to the childsren the first
opportunity arises (when the outgoing queue is empty) sébend strategy is
to use premature transmission. This means that the ravegtits new
information to its children before it receives fulhkain the transmission
buffer based on a pre-set waiting time.



The first chance flushing strategyhas two main advantages. The first is that
the latency and the delay spread automatically will ip¢ &enall.

The second one is that the information will be seeveral ways which
will lead to redundancy. Unfortunately the redundancy mayla&ibto a
much larger network load. This happens because in the gasstscenario
would every innovative packet, that is received at thenpsyrée sent to the
receiver. This means that the receiver gets a coenghieration from every
parent and that is not optimum if the network load shbalétept as low as
possible.

However the network load could be smaller if the nesmresends a special
packet back to the parent when it has got full rank. Thisldvinen stop the
transmission from the parents to the receiver ofpiagicular generation.

S; a®b b La®b&c |
S [TET]  (a8he,

Figure 2.6: Thefirst chance flushing strategy.

In Figure 2.6 the sources will send three packets each wiilidinen lead to
an unnecessary transmission of six packets (the packétdatied lines).
These are unnecessary because the node wants to tasodveinal
information, that is a, b and c, and it can do thatidigg only three packets
(the packets with filled lines). Could the destination n(\dg instead send
acknowledge when it has full rank would the parents betals®p sending
the remaining packets. In this particular case, this weald to that only two
packets will be sent unnecessarily. This means that melyrfformation
packets will be sent instead of nine.

If one or two arbitrary connections would be lost stidhis only lead to the
fact that the stopped message will be sent latemig, tbut the receiver could
anyhow get full rank. The attentive reader could alsdlssefor the current
generation there is one of the sourcegt{tt is not useful at all because
every packet from that source is non-innovative wheaived.
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This is nothing to be concerned about for one partigdaeration.
But if this repeats over time then should that souecdrbpped in favour for a
new one that hopefully sends a higher degree of inn@vptekets.

The premature transmission flushing strategyhas one crucial advantage.
This is that it keeps the network load at a minimune problem is that it is
not redundant, which means that if some receiver does nhtligank for
one generation then that generation could not be s@tsiwould
unfortunately lead to an interruption of the stream ancsult poor quality
for the user.

St [ ] (Gen#2] [ Gen#3 )
S a®o [Gen?2]  [Genfd]
Ss b&c L Gen#2 | L Gen#3 |
Figure 2.7: The premature transmission flushing strategy.

In Figure 2.7 the sources will send one packet each, whghtter leads to
full rank at the destination node {Nand can therefore resolve the original
information. This keeps the network load at a minimuat,ifone of the
sources is lost this would make it impossible to getrank.

This is the case when the information is streamedahtime and there is no
time to ask for missing packets, especially when thevecdbes not know
which packet that is missing and which one of the souragst.

The buffer size of the transmission buffer is hardalculate and know in
advance. One method that possibly could help and dynadyriiceger point in
the right direction is to measure the delay spreaddimesof the first
generations received, and then calculate the averaperaf This result could
then be multiplied with a factor (z) to make it lagg@ugh.

The problem is that in an implementation of this hyffiee size should not
be a certain time but it should be a number of gemastiT his could be
determined by taking the previous result and divide it thighaverage time of
the recently received packets and then the result /iihé number of
generations.



The main problem with this approach is that it would bemhetter to have
a reasonable buffer size directly from the beginninghis case the buffer
size will be dynamically calculated after a certaimet

Another approach is to have a static transmission bsiferthat is defined by
simulation. This would then mean that the buffer wowltibe adapted to the
actual circumstances, but it might still be sufficienget a size near the
required one as long it is not smaller than required.

If this approximation will be used, it seems reasonabbelieve that the
necessary size is dependent difference in distantte gfarents from the
source.

2.2.1.6 Playback buffer

The playback buffer should work in a rather straighténd way and the main
task of this buffer is to take care of the jitter amel frame. The playback
buffer contains the decoded information that will be/@thby the overlay
software (media player). It will receive the inforioatfrom the transmission
buffer as fast as possible when the transmissiorebb#s gotten a generation
with full rank that it could solve.

The basic idea with this “extra” buffer is to beeatd have some time
between arrivals of the first packet in a generatiohéddst in the
transmission buffer. This buffer must have suffitisme to handle a certain
playback time before it runs out just to be sure thastheam is complete.

The flushing strategy of the playback buffer is quite samfglshould flush or
erase the information from the buffer when it hasnlj@ayed, and then the
information thereby has served its purpose. This would he dbeven
intervals because the information stream rate istamm.

Would this buffer be empty at anytime, the procedungssterer and the
overlaying software has to wait for this buffer to bidlesl.

It is difficult to know how big the buffer size of tipdayback buffer should be.
It is hard to know mostly because the main purpose gildyback buffer is
to take care of the problems caused by jitter. As saiddygitier is caused by
network congestion, timing drift, or route changes aeddtfactors are
impossible to know in advance. One method that possihligdelp and
dynamically finger point in the right direction is to asere the jitter for some
of the first generations received and then calculaeaterage of them.

The main problem is also the same as it was for#msinission buffer,
which is that it would be much better to have a redslerauffer size directly
from the beginning. But in this case the buffer sizé waldynamically
calculated after a certain time.

Another approach is to have a static playback buffertbateis defined by
simulation. This would then mean that the buffer wowltibe adapted to the
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actual circumstances. But as said before it mightb&tisufficient to get a size
near the required one as long it is not smaller teguired.

If this approximation will be used, then it seems reabtnto believe that
the necessary size is dependent difference in distditbe parents from the
source. An example of buffer size is 5 seconds. Thaeislefault buffer size
in the windows media player [7].

2.2.2 Packet format

The packet format is very important to get an effeatvemunication
between nodes in the network. There are several kipoedefined transport
protocols that could do the job for us, protocols like TGBP, RTP and
RTCP. The different protocols are good for different thjrfgr example TCP
is not good for streaming but UDP is. Why that is sgpisg to be explained
later in this chapter.

There is also one other way to go, and that is ta lmwt own packet format
on top of UDP and TCP. The benefit of that suggestionldvbe to minimize
the overhead because many of the fields in RTP and Rig€GRbaneeded for
the prototype but on the other hand it is a little bityrigakd time consuming.
Another benefit of developing an own packet format i ith@an include
whatever that is needed, with fields exactly as bidnag $hould be; with
other words it provides flexibility.

2221TCP

Transport Control Protocol or TCP is defined in RFC 793 @t it is not
good for streaming because it is a connection orientgdqwl and that makes
it not fast enough, plus it also comes with a lot acfrbeead. TCP is however
really good for building up an overlay network topology beeauss reliable
and one can get a lot of feedback, plus it also guaalgkvery. So, TCP is
great but it is not sure that it is enough for our purposthe network, maybe
some fields of our own needs to be applied on top of TCP.

2.2.2.2 UDP

User Datagram Protocol or UDP is a connectionlessgoahprotocol defined
in RFC 768 [11]. UDP provides a procedure for application progrto send
messages to other programs with a minimum of protocoharésm. UDP
runs on top of IP (Internet Protocol) and it uses HRransporting a message
from a computer to another, and provide unreliable datadedirrery
semantics of IP.

UDP is good for streaming because it is a very light-itgigotocol with a
very little overhead. It is even a better choice wtadking about live
streaming, because then the source just wants to sendpeckghuously
and does not care of resending lost packets and thinghdike

2.22.3RTP

Real-time Transport Protocol or RTP is defined in RFC 332D4&nd is
running on top of UDP. RTP provides end-to-end network tranfpmstions



suitable for applications transmitting real-time datach as audio, video or
simulation data. RTP has no intentions to resendplacitets and it does not
guarantee quality-of-service.

For our cause, RTP feels like a possible solution to aztkgbdormat but as
said before an own format makes it more flexible ansl deerhead.

2.2.2.4 RTCP

Real-time Transport Control Protocol or RTCP is defim@FC 3550 [12],
the latest version of RTP’s RFC. RTCP is RTP’s oangrotocol and
provides out-of-band control information for an RTP fl&RT.CP task is not
to transport any data itself but it periodically senddrodpackets to
participants in a streaming media session. It gathatistgts on a connection
and information such as bytes sent, packets sent, ldgttpagtter and round
trip delay.

With other words, RTCP provides a media streaming sequiaéty-of-
service.

2.2.2.5 Summary

RTP and RTCP sounds really great for our casue of a regdaming service
in a distributed overlay network, but it also seeikes & little bit overkill to
use these two great protocols for our first versiothisf prototype.

The time it takes to develop an own packet format otdCP and UDP
probably not going to be as long as the time it takesviestigate RTP and
RTCP’s design. It also seems that the complexith@$¢ protocols would
make the implementation of these rather hard asigiance.

However, there will for surtain come times when Rarfd RTCP will be
discussed again in this or another similar project. Thst important thing for
this project is to see that every thing with the NC dedcommunication
betwenn nodes works, after that in some later versiaybe it is time for
RTP and RTCP.
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2.3 Building a Peer-to-Peer Network

Peer-to-peer networks and peer selection are also twydigetopics in the
academic world today, mainly because of the increadifite sharing
between people around the world. Large peer-to-peer netacksuilding
up today to distribute files, files that clients in tlegwork want as fast as
possible.

In our case we want to distribute real-time data stsei@ all of the clients
in the network, and then the peer selection becoressmore important
because a client must get parent-peers that provide a fibablef
information. This peer selection part of the repoexiglained best in a
scenario based way. The scenarios will be explaingdxbyand by some
sequence diagrams.

2.3.1 Startup Process

The startup phase is a very critical phase wheretsligant to join the
network. To do that the client needs to know somegthabout the network,
things such as which nodes are its neighbors and which noglés peers.
This can be done in several ways, one could haveteatieed tracker that
provides the clients with neighbors or peers as Braneftdiked about in
[13] or one could use a more distributed way and use a gdssipeliution as
they are talking about in [14] and [15].

Let’s take a closer look on these two solutions belmwfirst we must
mention that there are two different stages in theéwgigphase. One early
stage when the first clients are connecting to the network and one taiges
when there are already more thadlients in the network. The two stages are
going to be more explained in detail further down in thispter.

2.3.1.1 Centralized Tracker

A centralized tracker could be a detached applicatioretichént must
connect to, to get information about the network. Therclibat must know
the address of the tracker in some way. Maybe the conthahprovides the
streaming-service makes the address available on theahtarmaybe it is
hard coded in the user’s application.

When the client connects to the tracker there asEdlly two scenarios that
could happen, either the tracker gives the user a bunwigiibors or a few
parent-peers. The first goal for the client is to fane parent-peers that
could provide the data stream, and the user will reagjo@bin both of the
scenarios. So, the question is: Which way is the best?

Let's say that the tracker chooses peers to everychemt connecting to the
network as shown in Figure 2.9 and also provides old cheitisnew peers if
they need to change some of them. Then the trackedweeuheavy loaded,
especially when talking about big networks with thousandseritsl Not

only heavy loaded in the sense of computations at thieeiraalso in the sense
of heavy communication to and from the tracker.



That leads us towards the first scenario: send a bafmeighbors, possible
peers, to the client as shown in Figure 2.8. If thttascase the tracker lays
over the responsibility of choosing peers to the climsselves and then
minimizes the computational costs at the tracker.cbmemunication with the
tracker won't be that heavy either because now teatslidon’'t need to
contact the tracker every time they need a new paey;jtist choose another
one from the list of neighbors.

Common Node Tracker

Hi I'm new!

N

v

X heighbours
> Choose peers

Figure 2.8: A scenario where the tracker provides neighbours to the node.
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Common Node Tracker

Hi I'm new! :
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|
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Ie ___________________________

Choose peers

Add node

0

Figure 2.9: A scenario where the tracker provides peersto the node.

2.3.1.2 Distributed Algorithm

A distributed algorithm such as the PRO (Peer-to-peerifedriven
Overlay) protocol described in [14] doesn’t use a trackegétting
information about the network. Instead it uses gossiputirohe network to
collect information from lots of nodes, and then thentlcan choose the best
parent-peers by itself. But how does a client starsigowy, one can wonder,
in some way the new client must have a picture or danekeof view of the
network so it know where to start.
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2.3.1.3 Early Stage

Every node should haveparentsh is a fixed number and it is equals to the
amount of subparts in a generation,(Xz, ..., Xp).

The early stage is not that common for clients bseat is only for théa
first clients and the main source node when connectitigetoetwork. When
the first client connects there is no need for a pelecction, because the new
client just chooses everybody of its neighbors to$parent-peers.

When a client, in this stage, gets a child-peer thatatieist check whether
it has that child as a parent or not. If it does not haateneighbor as a parent
it chooses that one to be a new parent, this is decause everybody should
haveh parents each and to avoid cycles in the network. \Whesm client
connects to the network we are getting a full meshloggyoof the network,
main source node included.

For better understanding in the early stage pleaseaodgpendix B.1 and
B.2. There you will find some examples of nodes joiningnigisvork in the
early stage.

2.3.1.4 Late Stage

This is the phase where almost every client is conmgpbbi the network and it
is a big difference compared to the early stage. Whéirrat connects in this
phase there is some kind of topology already builisaghe new client jumps
right into it.

But how does the client know which nodes it going contegt The answer
to that is that the client needs some kind of a pdectsen mechanism. There
are several different mechanisms for peer selectiorntaydwill be described
in the peer selection process below.

For better understanding in the late stage pleasealbAgpendix C. There
you will find an example of a node joining the networkha late stage.

2.3.2 Peer Selection Process

When building up an overlay network one have to think dbilmg it for the
right purpose. There are a lot of criteria that infeeethe chose of a peer
selection mechanism.

Criteria such as:

* Low diameter — With a high diameter the stream neettsitel through
many, many peers and the packet loss will increase.

» Structured network — If one has a structured network, teespies near
(geographically) each other and minimizes the delay.

* Non-clustered - A clustered network would bring bottleneckbkdo
network. If a bottleneck breaks every stream onchater will be lost.

» Bandwidth utility - If one want to use a low diameteotprcol it can be
good to maximize the bandwidth utility to get as many childre
possible.



» Delay (latency) — Of course one wants to minimizedélay, so the
buffers don’'t need to be that big.

* Non-innovative messages — We also want to minimizeutheunt of
non-innovative messages, because these messages anitiute with
useful information.

» Tracker load — If using a tracker in big networks it couldbe
bottleneck, therefore it is important to try to mirzenithe
communication with the tracker and also the computdtiothe
tracker.

» Fairness — Especially important when live media stregnsi wanted,
because then every node in the network needs to get thena@tion at
the same time. Each and every node should be treatéarsi

Reach every one of these criteria with one peect@emechanism is very
hard, if not impossible. Anyhow, | will mention and disss®me possible
peer selection mechanism below.

2.3.2.1 Random Peer Selection

When choosing peers, does the client or the trackersehoarent-peers,
child-peers or both? The most effective way is to caquesent-peers, because
then the client is sure that it will get informatithat it could send along to its
future child-peers.

Okay, so now the client has parents that provide it useful information
but should it choose its child-peers now? It might walvkut okay but it
would be better to let they choose parents by themskéasise the new
client doesn’t know if the other client needs a paremiab.

With random peer selection it is very hard to say haaffécts all the
different criteria, just because it is random. ltdiyagoing to become a
structured network and it probably won’'t become that cladteither. Other
criteria like low diameter, non-innovative messages atehty will be hard
to minimize with a random peer selection.

Presumably the only two things one can grant is tlatefss is provided and
the work for the tracker won'’t reach a work-limit @rct handle.

2.3.2.2 PRO Protocol

As described before the PRO protocol tries to find tlst jbarent-peers and
connect to them. But how does one know which nodes areettt ones? The
PRO protocol is designed for non-interactive streamindjgtjpons and its
primary design goal is to maximize delivered bandwidtlgfsmurse
available bandwidth is something that contributes to thisidecof choosing
the best parent-peers.

PRO has two criteria to decide which nodes are thedes, first, as
mentioned, is available bandwidth and second the reldélay. Relative
delay between two peers can be estimated with Glolaldyle Positioning
(GNP) [16, 17]. The available bandwidth is much hardesstonate, because
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then one has to make end-to-end measurements. Thig clomé with some
probing technique [18], but it is not scalable because thablabandwidth
changes in time; it means that probing must be used peilyd

In this case, a live media streaming network, the mérion is to
maximize the delivered bandwidth because in this projeavave a stable
flow of information with the bandwidth that the maousce uses when
streaming.

Okay, so this protocol maximizes the bandwidth utility amdimmzes the
delay but how about the other criteria mentioned?d isegoing to be a
structured network because of the GNP and thereforeithanesk that it also
will be some clusters in the network. There are dobbgoing to be groups
(clusters) in the network where nodes lie near to etiwdr geographically.
These groups might get only a few weak connections betessnother and
that is not good, because if a weak connection brdaiksaamation from that
cluster will be lost.

In this case it also will become fairly unfair ftvetnodes when they are
connecting to the network. They will be treated défety depending on
where in the world they are connecting from and how aigdividth they can
provide.

2.3.2.3 Low Diameter Protocol

Low diameter protocol is just what the name indicaagsrotocol for
minimize the diameter of the network [19]. First bthere is a tracker with a
record of all the clients in the network, therelsa tracker cache. Some of
the clients are in the cache and some aren’t. Wimenwveclient is joining the
network by contacting the tracker it chookgsarent-peers from the cache.
After gettingh parents the new client is ready for having child-peers and
therefore automatically becomes a member of the tradahe.

When a client, in the cache, has gotten x (a fix nujrdield-peers it
becomes full and is automatically removed from théneaé full client will
be put in the cache again if one or some of the childspiisconnects.

The number of child-peers a client should have befayets full is hard to
estimate when talking about streaming, because theimipiortant that the
client can provide a stable flow of streaming media tofatls child-peers. In
this case it had been nice for the clients to know then available
bandwidth, because then they had known how many child-ffre=rsould
provide streaming to.

Another thing is when choosing the parent-peers froncdlobe, should the
clients choose parent-peers randomly or should thep tiigd the best ones?
Probably the easiest thing is to choose randomly asionedtbefore, because
finding the best parent peers is not easy at all.



We already know that this protocol minimizes the ditanin the network and
therefore also minimizes the packet loss, but how atheubther criteria?
Probably it is not going to be an especially structurédiak and nothing
tells us that it going to be a clustered network either.

The delay is hard to estimate because in this casentterlying network
topology is unknown and then we don’t know how the packeatverse, but
one thing is for sure and that is that the packets dee'd mo traverse
especially many hops in the overlying network. Therefoeedelay will
probably be okay, not minimized but okay.

The other criteria is kind of hard to say something ahoaybe the network
will provide reasonable fairness if the nodes choosenpaesers from the
cache randomly.

2.3.3 Leaving Process

The leaving process is just as it sounds, when clientsarmg the network.
Of course there are many things the network must bamdén clients leaves.
The child peers of that specific client must get a newmnggreer as shown in
Appendix D and the tracker, if there is one, plus athefclients’ neighbors
must delete the client from their lists. All of thediferent issues are going to
be explained later in this chapter but first we must dasc¢he two different
ways a client could leave the network.

The first and most common way is that a client ésathe network
gracefully; it decides when to leave and tells everylibdy needs to know
that it is leaving so they are prepared. The other wdihapefully not
happen too often, is that a client non-graceful leavesi¢twork. A non-
graceful leave could be when a computer crashes andkespithe
connections up and running or it could be when a clients’ ES’sbme
problem with the internet connection or something et

2.3.3.1 Graceful Leave

When a client decides to leave the network it tellgfilis peers, both parents
and children, and the tracker, if there is one, thatléaving as shown in
Figure 2.10. The tracker needs to know because it is negéssielete the
client from the client list so that if a new cligatns it can’'t get the leaving
client as a neighbor. The parent peers wants to knohegadbn’'t waste time
on trying sending more data to that specific child peertditing the children
there is basically two scenarios.

One idea is that the leaving client chooses a new fppeen to its children;
the other idea is that the leaving client just tellsdidren that it is leaving
and lets the children choose a new parent by themselves.
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Figure 2.10: A possible scenario of a graceful leave.
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Probably the best thing is to let the child-peer choosmaaparent-peer; the
peer selection mechanism takes care of how the childigpgeing to that.

2.3.3.2 Non-Graceful Leave

When a client leaves the network non-graceful athat specific client’s
peers will notice it after some time as shown inuFég2.11. Figure 2.11 also
shows that all the peers, both child and parent, andabkeir are removing
the leaving client from their internal lists. The olig' children will notice it
by not getting anymore data packets and the clients’ pamdhtsotice it by
not getting anymore “keep-alive” messages from the ciiesaimething like
“keep-alive” messages has been implemented.
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Figure 2.11: A possible scenario of a non-graceful leave.

The hard thing is now to decide when a peer should berddcidead” and
removed from the lists. There is a chance that do&qis will start dropping
in again after a while when the peer has recovered nWigechild-peer of the
leaving client has declared it dead it needs to choose a ment{peer using
the peer selection mechanism.

2.3.4 Bad or Change of Condition

Through this chapter about building peer-to-peer networkisave talked
about the startup process and the different peer salaogchanisms, the



thing left now is to talk about when peers are bad pacendien good peers
becomes bad.
To understand when a peer is bad we need to define bagder & a

media streaming distributed network. There are severajgtihat can make a

parent-peer bad; to get an overview | list them here:

* Non-innovative messages - Too many non-innovative messagea
the same parent-peer is not good. The child-peer needsltdspet
innovative messages to be able to decode the encoded data.

» Bandwidth - Does not get the required bandwidth from aireparent-
peer, the live streaming becomes just streaming and nott livél. also
influence this node’s child-peers and the delay will gretw and grow.

» Instability - When the connection, between a parent-geé a child-
peer, jumps up and down, the child-peer is in trouble and reeew
and better parent-peer. It is very important that thiel-gigers are
getting a stable flow of information to keep the streamirg |

The chance of getting a bad parent-peer depends on whicbetesion
mechanism is used and the amount of bad luck. Before cigopaient-peer
you don’t know if a node is sending non-innovative packet®grso in that
sense it is all about bad luck.

If a client using random peer selection or choosingaary from the
tracker cache when using the low diameter protocol, thatatioesn’t know if
the parent-peer’s available bandwidth is enough for singarif it instead
uses some peer selection mechanism that knows theldedindwidth of
the neighbors it will not get the same problem. Noirat i won't, but you
never know what is going to happen later on. There nhigpbpen something
with the ISP or maybe the parent-peer is starting sohe application that
steals bandwidth.

Instability is maybe something one can check before amppsarent-peer
with help from a tool like pchar [20] or a similar toolitlthat is out of the
scope of the project. If instability occur with some péigeer just try to
choose a new one.

The hard thing is to decide when a parent-peer is instadle pften it
jumps up and down within a timeframe. It is also hard todgelsow many
non-innovative messages are too many, before the childipestrchoose a
new parent.

The easiest thing would be to trigger the peer selentechanism directly
when a parent-peer turns bad, but probably it wouldn't bentist effective
and best way to do. Too many changes in the netwohie aame time would
probably make the traffic load much higher and interrupintiedia streaming.

A more effective way would to have some kind of norewative message-
counter; when a limit is reached, change parent-pe@th&nway would be
to have some timers as shown in Appendix E that trigthes peer selection
mechanism, but in what period of time would be feasible?
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These things are almost impossible to decide before onmpksnented a
prototype with a working peer selection mechanism, andrtizessive tests
will decide how to work around these problems.



3. Design

This project was a group work where different parts wherieelil up among
the group members. In the design chapter there goingtteodeig different
parts; an overview of the whole system where | angoatg into any details
and a part, chapter 3.2, where | will explain in moraitlethat | have been
doing.

3.1 System Overview
One could say that the system consists of 7 differets:par

* simulation program,

* prototype application,

* upper interface,

* logic layer (“black box”),

* lower interface,

* NS-2 packet transmission mechanism,
* prototype packet transmission part.

The two applications are both using the upper interfage; layer and the
lower interface but then of course the simulation igpfibn uses the NS-2
packet transmission mechanism and the prototype applicagsrthes
prototype packet transmission part. This is explainedrbsttie Figure 3.1.

The system design shown in Figure 3.1 is divided up imeetlayers, one
upper layer (shown in yellow and blue in Figure 3.1) wheeeattiual
application will be implemented, one core logic lafg@rown in orange in
Figure 3.1) where all the logic will be implemented sasiNC and peer

selection, and finally one lower layer (shown in y@lland blue in Figure 3.1)

where the transmission part will be implemented. Tivise layers is
connected by and communicates through two interfaces (simogveen in
Figure 3.1), the upper layer interface and the lower leyerface.
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Prototype Application
(Control part: Ul etc.)

Prototype Application
(Packet transmission part:
socket manipulating, packet
sending, receiving etc)

Figure 3.1: Project Description

The upper interface, lower interface and the logicrlay# be explained
below, explained in a common sense not much into dékdisuse those were
done in a group. The prototype application and the packetrisgion part,
shown in yellow in Figure 3.1, on the other hand willgsubchapter each
and there they will be explained with more details amthdbecause that was
developed by me.

3.1.1 Logic Layer

The logic layer is the heart of the system. It ieeltee peer selection, data
processing and network coding takes place among other mmpaonings.
Important things in a project like this become oftearst because the
companies will not reveal it to the competitors. Therefbe logic layer got
the nickname “the black box”.

Even though | can not show any details of the logierlaye should know
that this is the heart of the prototype and it is needebuitding up a media
streaming distribution network. To access the logicrlaye should use the
two interfaces; they are the way in and out of logyet. The interfaces will
be described below.



3.1.2 Upper Interface

The upper interface exists to make a connection bettheesctual prototype
application and the logic layer. The connection is madievo part-interfaces,
one for the information flow from the applicationdhigh the interface to the
logic layer and one for the other way around. The faterthat the application
uses to call the logic layer is called NcControllfdee and the one that the
logic layer uses to call the application is called No@mCallbackinterface as
shown in Figure 3.2.

In Figure 3.2 generalization is shown with a solid lind a fat triangular
arrow from a subclass (such as PrototypeApplication atbNtroller) to a
superclass (such as NcControlCallbackinterface and Natiomerface), this
means that a subclass extends a superclass and it pl&simheritance from
the superclass to subclass.

Figure 3.2 also shows composition, also known as corepaggregation,
by an association line and a filled diamond, which melagisan instance of
the part (such as NcControlinterface or NcControli2ekinterface) belongs
to only one composite instance (such as PrototypeApplication
NcController) at a time.

PrototypeApplication -End1

Upper Layer Interface * -End2
AV
«interface» «interface»
NcControlCallbackinterface NcControlinterface
+receiveMedia() +init()
+getCurrentTime() +join()
+scheduleEvent() +leave()
+fireEvent()
+sendMedia()
-End4 ¥ +connect()
+quit()
VAN

NcController

@ +NcController()
+getCommunicator()
+getPeerMaintainer()
+getCurrentTime()

-End3

Figure 3.2: The upper layer interface with its connections.
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3.1.3 Lower Interface

The lower interface exists to make a connection berviie logic layer and
the prototypes packet transmission part. This connectmisasmade by two
part-interfaces, one for the information flow frone thgic layer through the
interface to the packet transmission part and onénéoother way around.
The one that the logic layer uses to call the packesmmission part is called
NcCommunicationinterface and the one that the packesitnission part uses
to call the application is called NcCommunicationCallbatiface as
illustrated in Figure 3.3.

Figure 3.3 shows that a Communicator extends a
NcCommunicationCallbackinterface to take care of theivemepackets
from the underlying transmission part and it also has @anos of the
NcCommunicationinterface whenever it needs to sendyaqracket to the
transmission part.

Figure 3.3 also shows that the PrototypeApplication extdrals
NcCommunicationinterface to be able to send the packeing from the
logic layer.

Communicator

+sendMsgA()
+recvMisgA()
+sendMsgB()
+recvMisgB()
+sendMsgC()
+recvMisgC()
+sendMsgD()
+recvMisgD() <>
+sendMsgE()
+recvMsgE()
+sendMsgF()
+recvMisgF()
+sendMsgG()
+recvMsgG()
+sendMsgH()
+recvMisgH()
+send()
+receive()

Lower Layer Interface
V4 .

«interface»
NcCommunicationCallbackinterface
+receive() «interface»
1 NcCommunicationinterface
* +init()

N g +send()

VAN

PrototypeCommunicator

Figure 3.3: The lower layer interface with its connections.



3.2 Prototype Application

The prototype application is the main application wiadiretarts. The
application initiates a logic layer and calls one orenof the upper layer
interface functions in an appropriate order. It alspatgs a communicator for
the packet transmission part, a SourceCommunicatoPeeeCommunicator,
and the NodeProperties class. The NodeProperties slmsparse out
neighbours from a configuration file and save it in twstsli the childList and
the parentList. This is done before initiating the Idgier because the logic
layer needs a communicator to work. There are two difféypes of a
prototype: SourcePrototype and PeerPrototype. Of course a
SourceCommunicator belongs to a SourcePrototype and@d®emunicator
belongs to a PeerPrototype.

The prototype application is defined by three classeh(asrsin Figure
3.4) such as Main, App and NodeProperties where NodePrapsriiest a
help-class. If interested on how this design works amalt whe classes do
please read Chapter 4.3.1.

Main
App
1
i) NodeProperties
+oin() -End1
+send() +initialize()
+leave() > +getChildList()
+quit() 1 +getParentList()
+connect()
+receiveMedia()
+getCurrentTime()
+scheduleEvent()

ﬁ * -End2

«interface» «interface»
NcControlCallbackinterface NcControlinterface

Figure 3.4: A stripped version of the prototype application design.

3.2.1 SourcePrototype

One SourcePrototype is needed in every media streaming neiwsithe
source that is actual does starts the sending of daaettommended that it
is one source in the network before the first user jdihe. SourcePrototype
needs to be connected with a streaming service to leeageal streaming
source but that is out of the scope of this project.

39



40

Our SourcePrototype will instead divide up a file, the substanthe file
does not matter, into generations and send them out oetiverk.

3.2.2 PeerPrototype

A PeerPrototype is the application a user needs to cotméhe streaming
network. The design is the same as the SourceProtdityadls the same
functions of the upper layer interface. The differeyme will find when the
applications are using the upper layer interface to calbtjie layer, is that
the applications tells the logic layer if it is a peea source so it knows how
it should react.

In the end a PeerPrototype and a SourcePrototype are deisgnie, which
is sending out generations of information to the neighbdines. difference is
that one has to start the streaming and that is tike e¥dhe SourcePrototype.

3.3 Packet Transmission Part

This is the part where the actual sending and receivingoiepmtakes place.
The raw packets with information come from the logyetathrough the lower
interface with a destination address. The packet trasgoni part’s task is to
create a socket connection, either a TCP socket connesta UDP socket
connection depending on the type of the message. Whamadation is made
the message should be sent to the destination and Hizius it.

Of course some server sockets is also necessaryustebe prepared for
incoming messages, both TCP and UDP messages. Whenngaepacket
this part makes a “call back” to the logic layer throughldkeer interface.
Then it is up to the logic layer what to do with itppably it first will be
decoded.

To ease some things up server sockets, sockets and dasagiats are
going to be used. Server sockets are going to be madded to optimize the
performance of the handling of incoming messages. Fettarb
understanding look at Figure 3.5 that shows a class-diagrdra packet
transmission part.



«interface»
NcCommunicationinterface

% ACDK::Thread
PrototypeCommunicator <
init) JAVANE
+send() > \j
SocketConnectionFactory +receive() 1 ListenThread
-getTcpSocket()
-getUdpSocket()
#getinstance() +run()
+createTcpSocketConnection() \—\ ‘ +stopThread()
+createUdpSocketConnection() SocketC&nnection
UdpSOcketThread L, N
+send()
+close() run
+getTepSocket() 0 InputThread
+getUdpSocket()
+getlp() —+run(
TepSocketConnection UdpSocketConnection
+send() +send()
+close() +close()
+getTcpSocket() +getUdpSocket()
+getlp() +getlp()

Figure 3.5: A stripped version of the packet transmission part design.

The class-diagram in Figure 3.5 contains eight classésasuc
PrototypeCommunicator, SocketConnectionFactory, SocketCoaomnec
TcpSocketConnection, UdpSocketConnection, UdpSocketThread,
ListenThread and InputThread where the PrototypeCommunicatoe heart
of this packet transmission part. If interested on Husvdesign works and
what the different classes do please read Chapter 4.3.2.
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4. Implementation

Before starting implementing | needed to study some Gegause it was
rather new to me. First of all | started to learn alabfférent data types, like
strings, maps, queues, iterators and much more [21]. thised went on
reading about memory management, pointers and reseand then | got a
little bit more confident in the C++ language.

| knew that the packet transmission part was going tihé hardest one,
with the threading and the socket programming. So, kestdobking for some
external libraries that | could use, that included threautiling and socket
wrapping. | read about and tried some libraries thatihd, libraries like:
datareel [22] and ACDK [23].

After some investigation | finally decided to go with AKDecause it was
big enough (maybe little too big) and it had a build in sdaipguage that
looked just like Java. | am much more convenient with udavg when | am
implementing, so that made my decision easier. Itlasba nice API that
could help me find what | was looking for. There will bereninformation
about ACDK below.

4.1 Artefaktur Component Development Kit — ACDK
ACDK is a big development framework that has C++ asadte
implementation language [23]. It provides a very nicedbumilscripting
language that is similar to Java as shown in AppendndRA&CDK C++
objects can be used directly via scripting. Apart fromAB®K scripting,
you could use all features of C++ because ACDK is implated in pure
C++. That includes using C/C++ libraries, allocating olgject stack and
using templates and so on.

ACDK is a framework with enhanced memory managementies like
garbage collection and debugging features. It also provides preduc
packages similar to JDK, packages like acdk::lang, acdk::rak;:@cand
acdk::util and so on.

One could say that ACDK is a combination of Java and, @here Roger
Rene Kommer [31] has tried to combine the advantages loidfdhe
language.

Other things that are great with ACDK is that it pd®s multithreading and
a acdk::net-library, which makes the implementation pifadotype like ours
much easier.

To get a little bit more insight of how ACDK look likgslease take a look at

Appendix F. There you will find a “Hello World!” exampleyritten with
ADCK’s build in scripting language.
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4.2 Environment Details
Most of the time during the implementation | used aeseat the office:

» Pentium dual core processor running at 3.2 GHz

» 2.0 GB internal memory

* Red Hat 9.0 [24] was working as operating system

* As editor Eclipse [25] with CDT (a plug-in for managing €4C
projects [26]) was used.

Some of the time though | used my own Laptop:

* Pentium 4 running at 2.2 GHz

* 512 MB internal memory

» Fedora Core 3 as operating system [27]
* Eclipse as an editor.

One could say that Fedora is an updated version of theelesson of Red Hat,
meaning Red Hat 9.0.

4.3 Description

Of course my part of the system implementation wagtbtotype application
and the packet transmission part as described in the ddsgter, but also
helping out implementing the logic layer. In the lolgiger my task was to
implement the whole message structure of the systemesaage structure that
we had come up with after the research in the beginnitigegdroject. | can
not show a detailed design of the structure and notitdestinto a detailed
level because restrictions from the company.

The things | can say are that it is eight diffenmessages, with different
information and purpose. Some of these messages deiliding up the
network and some of them are for the media streanaingce. The hardest
thing with this task was the bit mathematics when ne¢aledcode and
decode messages.

The implementation of the message structure was goirgpnstantly,
mostly because of the changing in the design but atemwe decided to
keep ACDK out of the logic layer completely | had tokenaome heavy
changes in the code. The decision to keep ACDK othefogic layer were
based on that we wanted the logic layer (the healigtas clean and fast as
possible.

4.3.1 Prototype Application

The implementation of the prototype application for fing version was
rather basic so the major goal in implementing thegpype was to get the
application to use the upper interface in the right Wdg.wanted the first
version to be basic mostly because the logic layes mot completely
implemented,; it had no peer selection mechanism anchoker. If the logic



layer would be completely implemented, then the apdingust had to call
the join-function in the upper layer to join and build be hetwork. Now,
when not having a peer selection mechanism and a trackedé the
prototype little bit messier.

Instead of using the join-function | have used the cciriection that
connects to the neighbor to which the prototype sendg.al@fcourse a user
has more than one neighbor and therefore the prototyats e call the
connect function many times instead of just one cathégoin function.
Another drawback with this connect function is thatribghbor a user is
connecting to, must also use the connect function andecbback to the
user. This means that the neighbors need to be hard sodeavhere in the
prototype.

Instead of hard coding the neighbors in the prototype | did it
configuration files, one configuration file to each dof thsers. Then | had the
prototype application loop through to read and parse the cortiguide so
it could use the connect function. The name of the gardtion file needs to
be typed in as an argument when starting the application

The prototype application was made in two different eesione for a
regular user (peer) and one for a source. Not much eliiéer between these
two prototypes because the source acts almost like a regelaand vice
versa. The only thing that differs is that the source pypéomust be able to
start sending data not only forward incoming data.

4.3.2 Packet Transmission Part

The packet transmission part starts to act directly whemprototype
application initiates a PrototypeCommunicator.

The first thing the PrototypeCommunicator does is thethits the
ListenThread and the UdpSocketThread. It starts thesad$iin the
beginning because one wants to be sure of that the protetygedly for
incoming messages directly so that no messages wilsbe |

The ListenThread is a server socket thread thahssi@ incoming TCP
connections, if getting one it starts an InputThread tallesthe request. This
makes the ListenThread non-blocking and prepared for maayning
connections at the same time.

The InputThread handles the incoming packet, and whes icollected all
bytes it makes a callback to the PrototypeCommunicatectsive function.
The same thing happens when the UdpSocketThread gets an 0ke®-jplae
UdpSocketThread makes a callback to the PrototypeCommungetogive
function.

When the receive function in PrototypeCommunicatomless called, as it
will be every time the threads has collected a newsage, the
PrototypeCommunicator will also make a callback but thie tionthe logic
layer through the lower layer interface.

Apart from receiving packets and making callbacks the
PrototypeCommunicator waits for instructions from thedovayer interface,
instructions about sending packets to a specific destindti@nlogic layer
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calls the PrototypCommunicator’s send functions throughoter layer
interface and it sends along the data, destination adaindgtie destination
port.

From this point the PrototypeCommunicator takes ovewtité& by creating
a SocketConnection, either an UdpSocketConnection or a
TcpSocketConnection depending on the message type.

After that the PrototypeCommunicator calls the sendtiomdn the
UdpSocketConnection or the TcpSocketConnection classhand t
SocketConnection sends the packet out on the socketd®tie destination.

Finally the PrototypeCommunicator calls the close fiondn the
SocketConnection class that closes the socket forefusgmding.

That is pretty much what the packet transmission e$;ccommunicating
with the neighbors in the overlay network and alsmmmoinicating with the
logic layer through lower layer interface.

4.4 Implementation Summary

4.4.1 Overview

In this Section the implementation of the whole prgietghould be
summarized, summarized in a way that the readersfitésis will
understand what happens in every step of the logic iprtdtetype. Every
step means from the beginning when starting the applicdtiongh the steps
in the logic layer to the steps in the packet transamgsart and then all the
way back the other way. This will also be showed byagrdim.

Apart from the step-to-step tutorial of the prototype Iging to discuss a
little bit about the chosen solution of the socket &melatd problem.

4.4.2 Step-to-Step Tutorial

1. The PrototypeApplication calls the Upper Layer Interfacats
function.

2. Logic Layer initializes a PrototypeCommunicator throughlLibeer
Layer Interface.

3. The Communicator creates a ListenThread (TCP) and a
UdpSocketThread.

4. The application makes a join(); wants to join the roekw

5. Logic Layer sending a message to the Tracker through the
Communicator.

6. The Communicator creates a TcpSocketConnection tordeker and
sends the message to it.

7. ListenThread receives a response from Tracker andesraat
InputThread.

8. The InputThread makes a callback to the Logic Layer thrchggh t
Communicator.



9. The Logic Layer decodes the message, finds out tlsaa inessage
from the Tracker.

10.Start immediate the Peer Selection mechanism; choosetpa

11.Logic Layer sends messages to the parents through the @ocator.

12.The Communicator creates TcpSocketConnections to tleatgaand
sends them a message.

13.ListenThread receives a message from the parentsamtsl stveral
InputThreads.

14.The InputThreads makes callback to the Logic Layer.

15.The Logic Layer decodes the messages and finds out that it
response from the parents.

16.Logic Layer sends messages to the parents to informt teateady for
real data packets.

17.The Communicator creates UdpSocketConnections and semngstaé
messages to the parents.

18.The UdpSocketThread starts to receive lots and lotstafeckets and
makes callbacks to the Logic Layer.

19.The Logic Layer decodes the data packets and sends the guiee m
information to the application.

20.The Logic Layer also encodes the incoming informatiath WiC and
sends along the combination of the incoming packets thiigren.

21.This continues until the application leaves the nekvioyrcalling
leave() or quit() or crashes.

It is recommended to watch Figure 4.1 to get a deeper undérgast what
is happening.

PrototypeApplication Log ic Layer ‘ PrototypeCommunicator ListenThread UdpSocketThread TcpSocketConnection
Pty [ ] ity ] create() ! ! !
e —— ] | |
I join() ! create() \‘} i
L L Il
ﬁ sendMsgA() i i i InputThread i
I
—

i 5| e ! i create() i 1 i

[} ] 4 I ' N
i | - ! send() ! ! ! sendToTracker
I 8 8 I I I J
1 r s T — T
| = il | receive() | MsgB
I =1 5 } I I I
| : : T
1 = = 1 create()‘ ! !
| Q o ! ‘%
! ||| Decode message. ®|  receive() | receive() i i i
i Start PS Kemmooo o K (AR ‘ ‘ i
1 mechanism. sendMsgC() | T Toreate) 1T 1 |
I I I I I I
i 1 1 send() ! ! | sendToParent
I L L L L N
1 | 1 receive() MsgD
| : PSS S B
1 i 1 create() i !
i
! receive() | W UdpSocketConnection
1 1 N < B [ [ |
i sendMsgE() | i create()! i i i
} /} I I I 1 \‘\
i | | send() | ! ! sendToParent
I L L L Il I !
| receive() | receive() I receive() MsgF >
! Receiving Koo o [ e e B
i uit NC-Data. receive() 7\6 receive() -‘ré receive() MsgF
I q () I 1 I 1 1 1
— R I I I P pres R
i i i i i i i
I L I I I I I I

Figure 4.1: Step-by-step when a user isjoining the network.
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Under this time the ListenThread may receive requeshformation from
future children, of course the logic layer must sengsaanse. If it sends yes,
the child will send another request over UDP. The UdpSdbkead receives
it and makes a callback to the logic layer, and theroie layer will start
sending combined NC data packets to that specific child. Téigso is not
shown in the figure above.

Another thing that is not showed above is when the alssoses to leave or
quit, then a special message will be sent to the trapkeents and to all the
children.

4.4.3 Discussion

Every time a message should be sent over TCP the Goitawor creates a
new TcpocketConnection, wouldn't it be better to use softiee old
TcpSocketConnections (sockets)? Maybe in some casd$iebomain thing
that made this design to what it is was that if a n@deshlot of peers there
will be many TCP sockets up all the time and that iseratiemanding for the
network.

It would be especially demanding for the tracker thatmaamcates with all
the nodes in the network.

Okay so it would be demanding, but a drawback of this desithati if a
node gets peers that lay nowhere near it (geographicaih dreating a TCP
connection would probably take a long time.

In this scenario it would be nice to keep the TCP cdioreap if the users
need to communicate with each other again.



5. Evaluation

This part of the thesis presents results of evaluatiohe implemented
prototype. Unfortunately it is a little bit hard becauséhef“black box”, but
some measurements will be displayed. Measurementsasuamemory
consumption, correctness and CPU usage in idle stdte@rking state.
Because of the “black box” this chapter is going to benad on the two
parts described in chapter 4, the prototype application &npatket
transmission part. For the prototype application and timsrmmssion part the
evaluation would mostly be about the integration o$¢hievo parts and the
“black box”.

5.1 Test-bed Platform

5.1.1 A Peer Prototype

Most of the computers that are running as peers are RER)WD 2.8 GHz
with 1.00 GB RAM. The operating system is Microsoft Windo¥P SP2.

To be able to run the PeerPrototype, Microsoft Virtua[Z8] was installed
and on that specific virtual PC the operating system dg8&S10.0[29] were
running. This was needed because the prototype is build for Lirttis first
version, it will be translated to work on Windows itelaversions.

One of these computers did not need to install Midtd4aual PC because
openSUSE 10.0 were already installed directly on thepcoen.

In the test phase a laptop was also used. A Pentiugh@tz with 512 MB
RAM. The operating system is Fedora Core 3.0. In additichis, ACDK
was installed on every workstation.

The computers are connected in a little office nekvilsrough a Gigabit
switch and every computer (including the source) in theork is equipped
with a Gigabit network interface.

5.1.2 A Source Prototype

The source prototype is running on a Pentium dual core processang at
3.2 GHz with 2.00 GB internal memory. The operating sysseRed Hat 9.0.

Of course ACDK was installed on this computer to, becausgy prototype
peer or source needs it to work.

5.2 Correctness

To test the correctness of this prototype several testaeere test with
different numbers of computers in the overlay netwsikthe tests included
the source sending a video-file to the receiver/recgiaard then the
receiver/receivers checked whether the amount of bgtgsasere equal to the
bytes received. For further correctness checking tleveséreceivers also
played the video-file in a media player.
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5.2.1 One receiver

First of all | tested the prototype with one main sowame just one receiver
(see Figure 5.1). This means that it is a test in tHg si@ge (see chapter
2.3.1.3). Because of that this test is not testing neteading but it tests the
encode/decode-part of the message structure and the packsatission part.

The file sent from the source: germancoastguard.mpg, 2 57B\388.

Source Peer

2 576 388 2 576 388

Table 5.1: Shows the result of thefirst basic test.

Everything worked out fine and the bytes sent was equal toyths received.
Every byte was in order and the receiver could watchitle®-clip without

problems.

Workstation

Figure 5.1: A topology with one source and one receiver.

5.2.2 Two receivers

This test included one main source and two receivers (peecgher words
an overlay network with three nodes. Worth mentgothat it was a full mesh
topology (see Figure 5.2) in this test case and that mibkanthe network
coding part and some other part in the logic layer westtl because the
peers were not only receiving but also they helped distrtbeteideo-clip to
the other peer.

The file sent from the source: germancoastguard.mpg, 2 57B\388.

Source Peer #1 Peer #2

2 576 388 2 458 988 2 457 388
2 576 388 2 476 388 2 437 988
2 576 388 2 459 588 2 458 788

Table 5.2: Shows the result of the second test.



This time everything worked out okay, the receivers dicdbatrget the whole
video-clip, just over 95 %. It is really hard to say wihegt problem is because
it depends on so many things in the logic layer. Attime the logic layer is
being tuned and therefore, before it is finished, it nreagd to some issues like
this.

One could think that the last 5 % is packet loss im#tevork, but in this
office the computers are running on a Gigabit LAN and everys connected
to each other through the Gigabit switch so probably thiegpdass is not the
problem.

The video-clip worked as it should; there was only a samtunt of
interrupts in the picture.

Workstation Workstation

Figure 5.2: Afull mesh topology, every peer has two parents.

5.2.3 Five Receivers

This test included one main source and five receivers{peeiother words
an overlay network with six nodes. The topology &f tiverlay network is
randomized. One generation is divided up into 3 pieces (randBj)hat means
that all of the five peers must have three parents amé sandom number of
children. With this configuration it does not become arfudsh topology (see
Figure 5.3) and then sets more pressure on the logicdageespecially the
network coding part.

The file sent from the source: germancoastguard.mpg, 2 57B\388.
Source Peer #1 Peer #2

2 576 388 2 368 988 2 367 988
2 576 388 2278 788 2 358 588
2 576 388 2 436 388 2 296 988
Peer #3 Peer #4 Peer #5

2 368 988 2 368 988 2 368 988
2 456 588 2 356 788 2 288 688
2 288 988 2 458 388 2 478 988

Table 5.3: Shows the result of the third test.
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This time with five receivers it worked out okay, a litbie worse than the
times before. Almost 92 % of the video-clip arrivedha teceivers; one thing
that might seem a little bit strange is that in th&t test all of the receivers but
one got the same amount of bytes.

One thing that might be worth mention is that in thijgology not every
receiver has the same distance to the main sourc¢eyithput the NC to the
test and it was not 100 % but it went okay for being tts¢ Wersion.

The vide-clip worked pretty okay, some more interrupts tharast test but
okay.

Seryer

\\_
Worksgfation W ation
rkstation
—\]
0
Workstation Workstation

Figure 5.3: Atopology where every peer has three parents.

Another similar test was done, but this time is h égjteafive. This means a
full mesh topology (see Figure 5.4) in an overlay nekwath six nodes
where one node is the main source node. This was doaadeeit is
interesting to see whether the result is closer tatwtshould be than the last
test.

The file sent from the source: germancoastguard.mpg, 2 57B\388.



Source Peer #1 Peer #2

2 576 388 1274 388 2 267 388
2 576 388 1 880 788 1 988 788
2 576 388 1 534 388 1 566 388
Peer #3 Peer #4 Peer #5

2 930 388 1 869 388 1 286 388
2 043 988 1 505 588 1877 188
1 566 388 1 566 388 1 545 388

Table 5.4: Shows the result of the last test.

This result was not good at all, a little bit too randomd the receivers did not
get much data at all. One thing that probably contributédeg@esult was the
full mesh topology. In a full mesh topology there #ts of cycles and in this
test, with five peers, the cycles and the non-innoegtackets took over.

Since the logic layer is being tuned at this poirg ttard to configure the
network right for this particular topology. Some bé tproblems could depend
on the configuration of the network and when getting infeionarom the
tuning | think the same tests will give better results.

Figure 5.4 illustrates the randomized topology with fivekstations and a
server as main source node all connected with eachiathdtill mesh

topology.
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Figure 5.4: Afull mesh topology, every peer hasfive parents.

5.2.4 Correctness Summary

After some investigation of the result one could say i packet
transmission part works exactly as it should, sendsecwves all the
packets. Still there is something wrong because thet nestg not 100 % but
it were okay and a few interrupts on a video streaming@eiviacceptable.

One should know that the logic layer is big and comptek is really hard
to track down the issues, actually bug searching and tuninggloeldyer
might be another master thesis project.

Another problem was that the same test did not giveahe result over
and over again, it felt kind of random. That is not adgthong but this
problem probably arises from the other problem wheredateivers did not
get the whole video-clip.

Different configuration gave of course different resblisit is hard to see
which configuration is the best one for this prototype. Heggrg needs to
be done on the logic layer to get some real answesferably with some
good network simulator. Actually this is already preparedigygroup mates;
the simulation of the logic layer starts whenevwer ¢company decides to.

Apart from the problems | must say that this firstsi@n of the prototype
was okay for this first version, the results were gooddmtrandom. The
prototype worked somewhat better than the project group expect



5.3 Performance

5.3.1 Memory Consumption

When the first test was running the memory consumptioreased over time;
somewhere there was a memory leak. The memory leaketds be found

in the prototype application neither the packet transomgsart because these
two parts uses ACDK and ACDK has a build in garbage doliébat takes
care of that.

After some investigation the memory leaks were fourghawed to be
more than one. Some of the leaks were found in mgagesstructure, were |
had used objects and forgot to delete them after. Thisather common
problem when using C/C++. The leaks were filled and tsis ould
continue.

After that the tests showed that the memory consompiiffered a lot
between different operating system. The computers wigmSUSE had
memory consumption on 15.5 MB and the computer with Feduie&h.4
MB and last computer with Red Hat had memory consumpitio®3.1 MB.

The overall memory consumption seems okay; ~30 Mi®ighat much for
today’s computers.

5.3.2 CPU Usage

The CPU usage of the computers differed a lot, mostukeaaf the virtual
PCs. This solution with the virtual PCs is not the loes, but it is convenient
and easy to use.

However the virtual PCs used ~30 % of the CPU and thait wa
approximately 10 times worse than a similar computer ruropenpSUSE
directly. This computer used only ~3 % (80 MHz) of the CiAd that is a
really surprisingly and good result. The last workstatibe,laptop, with
Fedora used ~8 % (176 MHz) of the CPU which is a okaytresul

The overall CPU usage seems okay; ~80-180 MHz is not too fouch
today’s computers.

5.4 Integration with Logic Layer

5.4.1 Prototype Application

The integration with the logic layer is really easyd smooth for the prototype
application. The only thing the application needs to do all the init
function and after that call the join function or t@nect function.

On the other hand no peer selection mechanism wasnmepked in this
version and that made it messier, as told beforecfse€.3.1). Still it is a
smooth integration, especially because of the nice Wedithe upper layer
interface and the complexity of the logic layer tlakiets care of the most
things.

The smooth integration makes time for implementingt @f features to the
application; probably the next version will have a ri&él. Worth mention is
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that probably the integration with a media playera(iater version) will take
more time and effort for the programmers.

5.4.2 Packet Transmission Part

The integration with the logic layer is exactly awas for the prototype
application, meaning smooth and easy. The Packet tramsmsat must be
ready to send packets whenever the logic layer sagsdalso it must be
ready to receive messages, both over TCP and UDP.

The design of the lower layer interface is very geheas is the upper layer
interface, and that is great for integration purpossoiiieone wants to make
an own packet transmission part and not working on therexigersion that
would be no problem. Just plug it in. The only thing it has taktbf is to
handle the send request from the logic layer and maialtigacks when
receiving messages.

The same pertain to the prototype application where trergampper layer
interface makes it easy test different type of appbeoa. Just plug it in.

A drawback to have the interfaces so general ighieabgic layer becomes
very big and complex. As more general the interfacesrbes as more
complex the logic layer gets. Still it makes it fleeiland portable.



6. Conclusions & Future Works

During this thesis project | have researched, designedennemted and
evaluated a prototype of a media streaming distributed netmititknetwork
coding. This chapter summarizes the work and provides soncus@ns.

6.1 Research Areas
This section includes conclusions about the three bigndsageas: Network
Coding (NC), Data Processing and Peer Selection.

After researching about NC it is easy to understand whyslsaich a big
topic in the academic and the industry world today. dtvery popular
technique that optimizes the transmission of data thrangbverlay network.

The hard thing with NC is to know exactly how it shobddused in a
network with certain needs and rules or how to configioeenetwork to get
out the most of the NC’s benefits. With configure | medich peer selection
mechanism is going to be used and which transport protogoing to be
used and so on.

Probably NC will continue to be a big research topat mwore
communication application will use the technique infthare.

From the data processing part we choose to make our owetgaaomat
running on top of TCP and UDP. | think it was a wise chtysetests and
results showed me that the message structure and #et pansmission part
worked really well.

| also learned that there are lots of things to thirduakvhen transfer data
over an overlay network. Things such as: delay, lossy gind so on. It is real
complex to take care of all of these issues and farttihaight be a good idea
to use a protocol like RTP in the future that will help yathwhat.

Peer selection is a very interesting and huge topia.eTdre no books that say
how you should design your peer-to-peer network becausedheiso many
different scenarios that may lead you in differen¢ctions.

In this thesis when all nodes in the peer-to-peer nétglwould help each
other to stream some data, | think the most importaetriom is that every
node should be treated the same. Due to administratiesissid planning
problems we didn’'t choose any peer selection mechanigmsaioint. In
future versions | think it is going to be a randomized pelecson in some
way that will fulfill fairness in the network.

6.2 Design
For the prototype application | can conclude that thegdeseren’t hard at
all, it is a very small application. The nice desigimedrfaces made my parts
easier but as said before, the logic layer becanily ceamplex.

This design could easily be bigger and better, | thinkd hide GUI would
be nice for future version.
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The design of the packet transmission part | thinkgeeat solution, the
things that are needed is sending and receiving packets. Toisdover a
socket connection and this design makes it possible toddst aocket
connection if you don’t want to use TCP or UDP.

6.3 Implementation
After the prototype was implemented | think that using AGkas really
great and help me a lot with the threads and the sodkétsalso thinks that
it would be better for the prototype to not be depended ontamexklibrary.
Another drawback with ACDK was that it was kind of heodyet it working
as it should.

So, maybe in future versions the prototype will be re@megnted with a
more pure C++ code with raw C sockets and pthreads. Apantthat the
packet transmission seems to work really well.

6.4 Evaluation

After testing the prototype | think it was really hard walaate it because of
the complexity of the logic layer and for the readmat 1 couldn’t talk about
it.

The NC part, combine/encode/decode information, seemedriofive but
the result showed that more and bigger tests are needetidaleeper
understanding. | think huge simulation tests are neededixgdaopology
first to understand how to configure the NC. Then it probabfing to be
easier to make real tests with a real network and gefrivegults.

Apart from that the evaluation showed that the prototygsel an okay
amount of the CPU and the memory. It also showedhlea¢ are a lot of
things to work on for the next versions before havimgeaia streaming
prototype that will outclass the already existing strears@rgices.



6.5 Future Works

There a lot of things to work on in the future to get a pyp®that can
challenge the streaming services existing out thergt &firall more and larger
tests are needed to get more accurate results and magtiestldifferent
packet formats and transport protocols. | think also it /el nice to
implement the packet transmission part without ACDK iastead with raw
C sockets and pthreads. After that the next thing woutd design,
implement and evaluate one or a few possible peer sgleogchanisms.

When having all that you probably needing a tracker apjgligaiat will
inform the joining nodes about the network topology anagshiike that.

After that when having a prototype that joins and builds ugtaark and
contributes to stream the media to its neighbors, feeybe some
investigation is needed about the media quality. A Technigad’iET [30]
might be a good solution to get better quality on theastireg media.

Apart from the quality issue the prototype must be condg¢oteome media
player so a user can get the picture at all.

There are several other features of the prototypeatkdeft out in this
thesis, features that are needed if thinking of makingptiototype
commercial. Features like: a useful GUI, video qualitgusiey and much
more.
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Appendix A: Practical example of NC

This is the network layout for the example with ooarse, two middle nodes
and one receiver:

Start at the source (S) with generating a global engoaliatrix (G) and
multiply that with the original information (X):

a,=5 a,=7 a,=3|| X =3 68
Y=|a,=2 a,=8 a,=9|[X,=5|=G [X=/100=Y,=68Y, =100Y, =81
0, =7 0;,=6 05=5||X;=6 81

Create a new local encoding matrix and multiplyt thigh the received global
encoding matrix (¢ at node A. The result is the new global encodmcfor
(Gn):

a4, o, O
G.=[3=8 B=6 B=710 0 0 |=[40 56 24=G, =40G,, =56G,, =24
0 0 0

Combine the received information with the localaiog matrix to get the
new encoded data 4Y at node A:

By
Y, =[Y, 0 0|0, =544

Ps



Create a new local encoding matrix and multiplyt thih the received global
encoding matrix (¢ at node B. The result is the new global encodajor

(Gs):

all a12 alS

G:=[);=8 1,=2 1, =40G, G, G |=[96 176 120=G,, =96G,, =176G,, =12(
0 0 O

Combine the received information with the localeiog matrix to get the
new encoded data gY at node B:

Vi
Y, =[Y, Y, 0|0y, |=1888

Vs

Solve the received matrix which consists of informafimm the source (S)
and both of the nodes (A and B). Then will the rebelthe original
information sent from the source:

all a12 alS Xl Y3
Gu Guh G |UX [=|YA | =X =3X,=5X%X;=6
G GBZ GBB X3 YB
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Appendix B: Examples of the early stage.

Appendix B.1: The first node is joining the network

First Node Tracker Source Node

; 7 SourceNode will be also :

Browse Media Program List and Select One to Watch i included in the list |

| Join } i

S > !
}NeighborList & Source Rate H! Check Node List and randomly choose neighbors for the new node

2 i

| Il |

| ! |

First User ! | i

| | Request 1st to H th Streams |

|

! ‘ >

! | Send 1st Stream }

N :

! oot | |

M |

| ——+—> Since the new comer is the first customer of |

| : the distribution group, it doesn't have any |

| other neighbors except for the source node. |

| Therefore, it has to request all the H streams i

! from the source i

| |

| Send H th Stream i

|
J—




Appendix B.2: The second node is joining the netwér

Second Node Tracker Source Node First Node

The source node here should
contain the strategy that only
giveup the muti-sent streams
(both to node 1 and node 2)

. . SourceNode will be also included , ,
i i5d ! " | in the list, and marked differently, ! !
Browse Media Program List and Select One to Watc} ! i ot !

i ! Toin i probably witha low priority i ‘What's indicated here is that,
! ! ! the common node needs to
! ! . . ! have the ability of encoding
[ . |
INeighborList & Somrce Rate H! Check Node List andrandomly choose neighbors for }the new node and snding more than one
! ! ! streams in this case

Second User ! ! ! - ;
| | Request [H/2] Stream o |
i : 3
! ! Send [E/2} different Encoded Siredtits~ ! !
) I - I I
oo oo R i ‘ .
! ! } D Add Second Node to its PeerList
| i |
V\ iRequest [HA2]+ to H th Streams i i
L | N |
| | Send [HAJH Steam } |
2 L 1 :
: : : :
! 1 ! This is when the first node get the B
| i Source Node can | knowledge of the second node (not
i ! randomly choose i in ts neighborlist and both its
| | [(E+1)/2] streams to ! neighborlist and peerlist are less
I 4-—--— send back or it can | than the expected values) and
i i also chooseina i decide to request [H/2] streams from
! ! sequential order as well ! it instead of the source node. This
1 | 1 can happen immediately after it
| i | -
| i I send its upload stream back to the
LL i Send H th Stream i second node
| | | N |
| | | | i
| | | ! |
1 i Request [H/2] Streams | ! |
\ | H |
f T T 1
i Send Encoded Stream i i
T T X
! | Request [H/2] streams instead of H |
|
| h |
| | Remove one stream
‘ b >
3 :
|
i
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Appendix C: An example of the late stage.

Randomly choose h+x neighbors Randomly choose 40-50 neighbors
! 7/
/ //
!
! //
! 7
! /
New Node I Tracker it
/ ’
- ) /
Give/me neighbors ,/
I

‘
|
|
, /
|
|
|

i
|
|
i 405 neighbors and h >/Random Neighbor #1 Neighbor #2 Neighbor #h+x
[
|
|
|
I

e
> Random |
|

|

Request data stream

data stream

Request data stream i
|

data stream

Request data stream

data stream
Trytofindthe L\ Kommmmm oo J
h best parent
of these neighbors.

Then disconnect > Best Parent

from the x worst Disconnecting
parents.

Disconnect with x parents

Disconnecting

—

Parent #1 Parent #2 Parent #h

Request data stream

data stream

vy |

Request data stream
|

data stream

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
N
|
|



Appendix D: An example of the leaving
phase.

In some way, gracefully
or not, a parent leaves.
The child must choose

anew one.
Child Peer Neighbor #1 Neighbor #1+x
Chooses 1+x B
neighbors from
Random

the neighborlist.

|

|

:
Connect to these, i | Request data stream
try to see which I

|

|

neighbor is the data stream
best one. Koo
]
| Request data stream
| ,
i data stream |
S ——— :

|
Try to find the |
best parent of > Best Parent
these neighbors. — 7 T

Then disconnect Disconnecting
from the x worst
parents.

Disconnect with x neighbors.

Disconnectin

New Parent

Request data stream

data stream
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Appendix E: An example of the bad/change

condition phase.

Every x seconds period of time
a node can change its parents. Check Whether you'll need
To make the statistics of the to change some parents.
parents fair this period needs
to be rather long, such as 30s. //
/
Child Peer // Neighbor #1 Neighbor #2 || Neighbor #2+x
= | e
LOOP every x second: | | !
Period starts here: : | !
: l !
I ! !
Say that the node | : |
needs to change 2 | : |
parents. Then choose Request data stream : | :
2+x neighbors and J : |
connect to them. ! : |
|
N J i i
: Request data stream ! |
| | \: !
| data stream | | !
L —— 4 I
! Request data stream | |
L 1 A
| data stream !
|
Try to find the K- mmTTTTTTTTTToTTooToooooooooooooo e 1

2 best parent

I

I
of these neighbors. T Best Parent
Then disconnect !

from the x worst Disconnecting
parents.

Disconnect with x parents

Disconnecting

New Parent #1 New Parent #2

Request data stream |

Request data stream
|

data stream

N

T




Appendix F: A “Hello World!” example,
written with ACDK'’s scripting language.

#i ncl ude <acdk. h>
#i ncl ude <acdk/ | ang/ System h>

usi ng nanmespace acdk::|ang;

/1 M niml exanple, which just says Hello Wrl d!
cl ass M ni AcdkSanpl e
{
publ i c:
static int acdkmai n(RStringArray args)
{
System :out->println("Hello World!"); // Java-
like? ;)
return O,
}
3

i nt
mai n(int argc, char* argv[], char** envptr)
{
return
acdk: :lang: : System : mai n( M ni AcdkSanpl e: : acdkmai n,
argc, argv, envptr);




