
 Page 1 of 89

An Overload Protection Mechanism

in Radio Base Station (ORBS)

Analysis, Simulation, and Solutions

H A B I B A L I V I R J I

Master of Science Thesis

Stockholm, Sweden 2005

IMIT/LECS-2005-84

Page 2 of 89

Page 3 of 89

An Overload Protection Mechanism

in Radio Base Station (ORBS)

Analysis, Simulation, and Solution

By:

Habib Ali Virji

(habibvirji@yahoo.com

November 2005-11-22

Industry Advisor at Ericsson Radio AB: Tony Malmstrom

Supervisor in KTH: Vladamir Vlassov

Department of Microelectronics and Information Technology

Royal Institute of Technology, Stockholm, Sweden.

Page 4 of 89

Acknowledgement

I would like to express my gratitude to Mr Tony Malmström for giving me the opportunity to do

this thesis work in Ericsson Radio Systems AB, Kista, Sweden.

I am thankful to Mr Olle Rosendahl for his feedback and explanation of concepts. I am grateful

to Ludomir Rewo, Fredrick Lunell, Daniel Tekle, and Vitali Fridland for their support in this

thesis work.

I would also like to thank my mentor Dr Ahmed Hemani for his views and help during the thesis

work. I am thankful to Mr. Vladimir Vlassov for supervising me in this thesis and making it

acceptable to KTH standards.

Page 5 of 89

Abstract

In wireless communication, Radio Base Station (RBS) establishes a physical link over an air

interface with the Mobile Equipment (ME). The functionality provided by the RBS is either

related to the traffic generated between RBS and ME or execution of activities related to

Operations and Maintenance (O&M).

In RBS resources management and process scheduling on processor is done through Real Time

Operating System (RTOS). In Ericsson’s RBS it uses OSE as its RTOS that uses pre-emptive

scheduling to schedule processes on processor. RoseRT is used as an IDE, which also provides

virtual machine for executing automatic generated code and developer code, which is usually

written in C++.

The workload created by RBS tasks sometime exceed more than the processor capacity and lead

to a system restart, such situation is known as an overload situation. To control system resources

and processor utilization under situation of overload, an overload protection mechanism is

implemented in RBS.

Overload protection main aim is to allow continuation of services for already connected users

and prevent RBS from restarting. The main focus of this thesis is to study RBS present overload

protection mechanism and suggest other possible ways for effectively implementing overload

protection mechanism.

To understand the working of overload protection, a load simulator is built that imaginarily

represents load created by traffic application and works along with the present overload control

implementation. The simulation program is implemented in C++ with Rational RoseRT as its

IDE. The reason for developing simulation program is that overload protection works in a very

complex environment and to understand it there is a need to observe overload protection

working along with real system. Then based on the understanding of the overload protection

different ways of controlling overload protection and measuring processor utilization are

discussed.

Page 6 of 89

Abbreviations:

3G – Third generation wireless communication system

3GPP – 3rd Generation Partnership Project

AMPS – Advanced Mobile Phone System

ATM – Asynchronous Transfer Mode

BC – Base Control

BCNM – Base Control Node Manager

BS – Base Station

BTS – Base Transceiver System

CDMA – Code Division Multiple Access

CN – Core Network

CPI – Clock Per Instruction

FDD – Frequency Division Duplex

FDMA – Frequency Division multiple Access

FIFO – First In First Out

GGSN – Gateway GPRS Support Node

GMSC – Gateway Mobile Switching Centre

GPRS – General Packet Radio Service

GSM – Global System for Mobile Communication

HLR – Home Location Registry

IDE – Integrated Development Environment

IP – Internet Protocol

ITU.T – International Telecommunication Union

LRS – Logical Resource System

ME – Mobile Equipment

MMS- Multimedia Message Service

MSC – Mobile Switching Centre

NBAP – NodeB Application Protocol

NMT – Nordic Mobile Telephone

NodeB – UMTS RBS

O&M – Operations and Management

OOAD – Object Oriented Analysis and Design

Page 7 of 89

OS – Operating System

OSE - Operating system embedded

PB - Power balancing function of RBS

PSTN – Public Switched Telephony Network

QoS – Quality of Service

RBS – Radio Base Station

RLS- Radio Link Set-up function

RNC – Radio Network Controller

RoseRT - Rational Rose Real Time

RTOS – Real Time Operating System

RTS – Runtime Service Library

SGSN – Service GPRS Support Node

TA – Traffic Application

TACS – Total Access Communication System

TDMA – Time Division Multiple Access

TDM – Time Division Multiplexing

TDD – Time Division Duplex

UMTS – Universal Mobile Telephone System

UTRAN – Universal Terrestrial Radio Access Network

USIM – Universal Subscriber Identity Module

VLR – Visiting Location Registry

WAP – Wireless Application Protocol

WCDMA – Wideband Code Division multiple access

Page 8 of 89

Table of Contents

ABSTRACT ..5

ABBREVIATIONS: ...6

1. INTRODUCTION ...9

1.1 BACKGROUND.. 9
1.2 PURPOSE ... 9
1.3 THESIS OUTLINE ... 9

2. WIRELESS COMMUNICATION ..11

2.1 WIRELESS GENERATIONS .. 11
2.2 WIRELESS COMMUNICATION OVERVIEW .. 12
2.3 UMTS / WCDMA .. 13
2.4 RADIO BASE STATION .. 17

3. RBS IMPLEMENTATION ...21

3.1 ROLE OF REAL TIME OPERATING SYSTEM (RTOS) IN RBS... 21
3.2 RATIONAL ROSE .. 23

4. OVERLOAD PROTECTION - NEED AND PRINCIPLES27

4.1 NEED FOR OVERLOAD PROTECTION... 28
4.2 OVERLOAD PROTECTION PRINCIPLES ... 29
4.3 PRESENT OVERLOAD PROTECTION: .. 30

5. SIMULATION IMPLEMENTATION AND RESULTS...33

5.1 PROBLEM DEFINITION AND FORMULATION .. 35
5.2 MODEL BUILDING AND DATA COLLECTION.. 36
5.3 SIMULATION EXPERIMENT AND ANALYSIS .. 43
5.4 DOCUMENTATION AND IMPLEMENTATION OF THE RESULTS...44

6. SOLUTIONS ..46

6.1 PROCESSOR UTILIZATION MEASUREMENT ... 49
6.2 ROSERT CUSTOM CONTROLLER: ... 53
6.3 PROCESS SCHEDULING:... 54
6.4 WAYS OF BETTER IMPLEMENTING OVERLOAD PROTECTION: ..57
6.5 SYNCHRONIZATION MESSAGE SOLUTION... 66

7. CONCLUSION ..69

8. REFERENCES ..71

APPENDIX A: UML ..74

APPENDIX B: CELLO ...75

APPENDIX C: OVERLOAD PROTECTION CODE...76

APPENDIX D: SIMULATION PROGRAM CODE ..79

Page 9 of 89

1. Introduction

1.1 Background

Wireless communication in its short span has become one of the major forms of the

communication. From its primary function of carrying voice over an air interface it has now

moved on to support rich multimedia applications and Internet facilities

In the wireless communication the only form of communication over an air interface is between

RBS and ME. Rest of the communication is over the high-speed landline network. Thus the

connectivity of the mobile user to the wireless network is mostly depended on functioning of

RBS. RBS functionality is either related to the traffic control function or either related to the

operations and management (O&M) function.

RBS functionality is implemented in both hardware and software. The execution of traffic

application is dependent on scheduling done by both RTOS OSE and IDE RoseRT. The tasks

functionality implemented in software has specific time stringent requirements. If the tasks

present in the system are more than the load RBS can handle it will lead to an invocation of

overload situation. Overload situation has to be avoided, as one of the primary goals of 3G is to

support no drop of calls and allowing continuity of services for users.

To control overload situation, RBS has an implementation of overload protection functionality.

Overload protection mechanism aim is to facilitate continuous communication of service for

already connected users even under heavy workload. An activity that leads to heavy workload like

Radio Link Set-up (RLS) is deactivated till the processor load is reduced to the satisfactory level.

This thesis tries to study the present overload protection mechanism and study the effective ways

of implementing overload protection mechanism.

1.2 Purpose

The main goal of this thesis is to check implementation of present overload protection

mechanism in RBS and to:

• Understand the complex environment under which RBS is developed

• Develop load simulator tool that represents load created by traffic application and runs along

with overload protection processes.

Page 10 of 89

• Different means to measure processor utilization and other ways to ensure proper working of

overload protection.

• Understand the working of OSE and RoseRT environment and flow of message between

these two environments.

1.3 Thesis Outline

Wireless communication: Part 2 gives brief view of wireless communication overview and its

generations, WCDMA architecture and features, RBS architecture and functionality.

RBS as an Embedded System: Part 3 describes about role of RTOS in RBS and covers

implementation scheduling done by RTOS OSE and IDE RoseRT.

Present overload protection: Part 4 presents the present overload protection mechanism

implementation, its needs, and its principles.

Simulator Implementation: Part 5 contains the details about the simulation program developed

for an overload protection and results observed from the simulation.

Solution and Analysis: Part 6 presents solutions for overload protection and other ways of

implementing overload protection.

Conclusion: Part 7 summaries the work done

Page 11 of 89

2. Wireless communication

2.1 Wireless Generations

Wireless communication usage goes back to a century with its usage by Guglielmo Marconi for

sending wireless telegraph. There has been three wireless generations (see figure 2.1) with latest

generation being 3G whose services are being provided by service providers like AT&T,

Cingular, T-Mobile, NTT [46], but still the second generation and the technology developed

during second and third generation is still dominant in the market.

Figure 2.1: This picture shows the transition growth of wireless communication.

First Generation: It made use of analogue circuit switched network. It was developed with an

aim to free people from using fixed lines telephone and gives users mobility in their telephone

usage. The military people primarily used this set of wireless communication. It got evolved into

commercial field and was launched as Advance Mobile Phone System (AMPS) in USA, Nordic

Mobile Telephone (NMT) in Scandinavia, and Total Access Communication System (TACS) in

UK.

Second Generation: This generation marked a change from analog communication system to

digital communication system. It provided higher network capacity and better security compared

to the previous generation. The standards that prevailed in second generations are Global

Systems for Mobile Communication (GSM) and Code Division Multiple Access (CDMA).

CDMA is the name of the technology as well as transmission technique that works on the

principle of spread spectrum. GSM uses Time Division Multiple Access (TDMA) transmission

techniques that allocate user different time slots on a given frequency.

2.5 Generation: The long gap between second and third generation and high cost involved in

upgrading of network to 3G lead to 2.5 wireless generation. This generation marked beginning of

packet switched data elements such as Internet through Wireless Application Protocol (WAP)

First

generation

ANALOG

Second

generation

DIGITAL

Third generation

Digital/Packet

Switched

2.5 generation

Digital/Packet

Switched

Page 12 of 89

and Multimedia Messaging Service (MMS). This was provided through General Packet Radio

Service (GPRS), which was the first wireless technology to make use of packet switched network.

Third Generation: It supports packet switched data elements like Internet and multimedia over

wireless communication at higher bit rate. It makes use of Wideband Code Division Multiple

Access (WCDMA) as its radio transmission technology over an air interface. It is compatible

with second-generation technologies like GSM.

2.2 Wireless Communication Overview

In wireless communication the area that service provider aims to provide is subdivided into cells

and each cell is handled by the Radio Base Station (RBS). As shown in figure 2.2, wireless

communication comprises of communication between the RBS and Mobile Equipment (ME)

over an air interface, rest of the communication between RBS and Radio Network Controller

(RNC), and then between RNC and Mobile Switching Centre (MSC) are on high-speed landlines

network.

Figure 2.2: Wireless communication overview

ME move from cell to cell and make use of principal of handover and frequency reuse to

connect to RBS. RNC function is to handle handover and radio channels between different RBS.

Mobile Switching Centre (MSC) connects the mobile network to the Public Switched Telephone

Network (PSTN). MSC contains Home Location Registry (HLR), which includes information

about the subscriber and the location of the ME and Visitor Location Registry (VLR), which

contains dynamic information and copies from HLR for ME currently in the area covered by a

RBS.

Besides handling of each cell, RBS carries out the functionality of the radio multiplexing.

Multiplexing over an air interface is required to enable multiple ME to connect to the RBS and

allow efficient usage of bandwidth. Multiplexing can be achieved in terrestrial network through

ME

RBS

RBS

RNC MSC

PSTN

Internet

HLR

VLR

ME

ME

Page 13 of 89

Time Division Multiple Access (TDMA), or through Code Division Multiple Access (CDMA), or

through Frequency Division Multiple Access (FDMA).

2.3 UMTS / WCDMA

Third generation of wireless communication is based on Universal Mobile Telecommunications

System (UMTS) standard and uses WCDMA as its air interface. UMTS is a set of open

specification that is backed up by 3rd generation partnership project (3GPP), 3GPP has its

representative bodies from Europe, Japan, China, Korea, and USA, whose aim is to set a truly

global standard for wireless communication and lead to a seamless global roaming for mobile

users.

The major change in wireless generation has been the way radio transmission is multiplexed over

an air interface. The multiplexing technique used for transmission decides how the radio

spectrum can be divided into channels and how these channels separate different users of the

system. Channel allocation can be done either based on some scheduling mechanism or randomly

chosen. If randomly chosen then user cannot be for sure whether access to the network will be

contention free but if scheduled then the channel allocation is fixed and resources are allotted

dynamically based on the user requirements.

UMTS air interface is based on WCDMA, which is an extension of the CDMA multiplexing

methodology. CDMA technology is based on the principle of spread spectrum, where allocated

bandwidth is much higher than the requirements of the user. It is based on scheduled channel

allocation. All the users use the same carrier frequency and the codes are used for distinguishing

the different users and channels. Each user in the mobile network can only correlate to the

message that has the user code and all other messages looks like noise due to the correlation

technique in ME.

In WCDMA, the user information bits spread over a wide frequency bandwidth is obtained by

multiplying the user data rate with a spreading code of sequence. There are two basic modes of

operations in WCDMA are Frequency Division Duplex (FDD) and Time Division Duplex

(TDD). In FDD separate carrier frequency are used for downlink and uplink activities. TDD uses

one carrier frequency for sharing frequency between uplink and downlink.

Page 14 of 89

WCDMA supports data speed from 384 kbps till 2 Mbps and provides a bandwidth of 5 MHz

for each channel carrier. [38] It supports transmission from multiple users simultaneously and

uses variable spreading to support multi-code connections. The signal that is transmitted from

the RBS or ME is subject to reflections, diffraction, and attenuations. This is known as multi-

path propagation where signal can take different directions to get to the end user and it can be

either RBS or ME.

Figure 2.3: Showing multi-path propagation in WCDMA network

In figure 2.3 it shows that ME or RBS receives multiple signals due to multi-path propagation, it

has to properly scrutinize received signals and select only one of the signals from received signal

and rest has to be discarded.

Architecture: UMTS network is an evolution from GSM, second-generation technology, and GPRS

technology, 2.5-generation technology. The architecture of UMTS as shown in figure 2.4, the

network bears a strong resemblance to these technologies. It includes of two main parts:

1. UTRAN (UMTS Terrestrial Radio Access Network)

2. Core Network (CN)

Figure 2.4: UMTS Architecture [6]

RBS

ME

UE

USIM

ME

UTRAN

Node B

Node B

Node B

Node B

RNC

RNC

CN

 External

 Network

MSC/

VLR

GMSC

HLR

GGSN SGSN

PSTN

Internet

Uu Iu

Cu Iur
Iub

Page 15 of 89

UTRAN comprises of components that handles the air interface for managing connections with

multiple ME. The two main components of the UTRAN are RBS and RNC. (Note: In UMTS,

RBS is referred to as Node B but for sake of uniformity in this thesis RBS is used through out

the documentation). Core network is responsible for switching and routing of calls over PSTN or

Internet based on the nature of traffic. It includes of MSC, HLR, VLR, GGSN, SGSN, and

GMSC. All the interfaces used in UMTS standards are defined to allow usage of different

equipment from different manufactures.

UTRAN: It includes of one or more radio network systems (RNS). RNS comprises of RNC,

several RBS, and UE.

Radio Network Controller (RNC): RNC is responsible for the control of radio resource of

UTRAN. RNC interfaces with CN via lu interface, via lub to control RBS, and via lur interface

between RNC for soft handover. It plays a pivotal role in performing of activities like:

• Power Control (PC)

• Handover Control (HC)

• Admission Control (AC)

• Load Control (LC)

• Packet Scheduling (PS)

Radio Base Station (RBS): It is similar to GSM’s Base Station (BS) or Base Transceiver Station

(BTS). RBS is the physical unit for handling radio transmission and reception from various cells.

RBS performs the air interface processing, which includes channel coding, interleaving, rate

adaptation, and spreading. The connection with UE is made via Uu interface, which is actually

WDMA air interface used for communication between RBS and ME. It is also responsible for

providing soft handover and inner closed loop power control for ME.

User Equipment (UE): UE comprises of Universal Subscriber Identity Module (USIM) and Mobile

Equipment (ME). ME is the device used by user for communicating with RBS over an air interface. USIM

is the smart card technology used for holding user identity and personal information.

Core Network: It is responsible for handling both circuit switched and packet switched traffic. The

main entities that play a pivotal role in core network are:

Page 16 of 89

HLR: A database that holds all the necessary information about ME like its subscription

information, location of ME registered at that time for enabling charges, and routing of calls over

MSC or SGSN.

MSC: It is a link that connects the wireless network and fixed network. MSC performs all

necessary functions in order to handle the circuit switched and packet switched traffic to and

from ME. A ME roaming in a certain MSC are handled by VLR in charge of that area.

Gateway MSC (GMSC): It is a switch that handles traffic of circuit switched connections between

ME. At this point UMTS network is connected to the external circuit switch network like PSTN.

Serving GPRS Support Node (SGSN): This node is used for handling packet switched services

like multimedia or Internet.

Gateway GPRS Support Node (GGSN): The support node has the same functionality for

handling the packet traffic as the GMSC does for the circuit domain.

Capabilities: The major change in UMTS architecture is the multiplexing technique used by an air

interface for radio transmission. There have been changes in RNC and RBS to support new

requirements but the air interface marks a major change in this network.

Some of the main capabilities of the UMTS network are [38]:

• Capability to support packet switch and circuit switch data at higher rate – 144 Kbps for

mobility traffic, 384 Kbps for pedestrian traffic, and 2 Mb/Sec for indoor traffic.

• Supports interoperability through defined standard interfaces.

• Common billing and user profiles, standardization of user profiles, call details, and

information exchange between service providers. This feature is a result of 3GPP that

provided a common platform for different service providers to come in contact with each

other more easily and make contracts for exchanging information about the user moving

from one region to another.

• Support for packet switched data like multimedia services, Internet, and mail facilities.

• Fixed and variable bit traffic to support user’s on demand bandwidth requirements.

• Asymmetric data rates in uplink and downlink.

Page 17 of 89

• Intersystem handover support between GSM and WCDMA

2.4 Radio Base Station

It is a physical unit used for handling radio transmission and reception with cells. RBS is referred

to as Node B in WCDMA/UMTS Terrestrial Radio Access Network (UTRAN). RBS is

connected to both RNC and ME to carryout its functionality. In figure 2.5 shows how RBS looks

physically.

Figure 2. 5: An indoor RBS [19]

Functions: RBS functionality can be divided into two parts

1. Traffic related functions that deal with communication with RNC and ME for handling

of cells, common channels, dedicated channels, and ATM links.

2. O&M functions are used to set the system into an operational state, handling of

equipment malfunction, and monitoring the performance of RBS.

RBS receives its input from RNC over lub interface. The lub interface is divided into physical

layer, ATM adaptation layer, and network layer for frame handling. The topmost layer is Node B

Application Protocol (NBAP), which handles different air interface channels. NBAP functions

are divided into dedicated procedures each terminating in separate logical ports in RBS.

The communication between RNC and RBS is controlled by BCNM (Base Station Control Node

Manager). BCNM handles reduction of processor workload in overload protection mechanism.

The start and stop of overload protection is done through this control unit in RBS. To reduce

workload the parameters used for RLS (Radio Link Setup) over NBAP are changed. This

parameter change will block RLS function till workload is reduced in the system.

All these functionalities run on Ericsson’s cello platform, which acts like a middleware providing

facilities of database and Real Time Operating System (RTOS). The cello platform is used in

Page 18 of 89

development of switching network nodes such as simple ATM switches, Radio Base Stations

(RBS), or Radio Network Controllers (RNC). It provides a robust real time distributed telecom

control system which supports ATM, TDM, or IP transport. The nodes that uses cello can run

between 1.5 Mbit/s – 155 Mbit/s. (See Appendix B for more details on cello)

RBS implements following functionality to support radio traffic:

1. Platform Independent

2. Radio Transport Functions

3. Synchronization functions

4. Bearer functions

5. Traffic control functions

6. Configuration management function

7. Fault management function

8. Performance management function

9. User Interface function

10. Infrastructure function

Node Architecture: As shown in figure 2.6, RBS node comprises of user plane functions to

implement transport, base-band, radio, and antenna near parts functions and control plane

functions that provide functions related to the traffic and O&M activities.

Figure 2.6: RBS Node Architecture

(Note: All these functionalities and this node architecture form the basis for the simulation model

that will be developed to check overload protection mechanism.)

As RBS node architecture is three layered as this eases in development of such a complex

application of RBS. Each layer implementation is carried out separately allowing layered approach

to be carried out effectively:

Traffic Control O&M

Transport Baseband Radio Antenna Near Parts

Infrastructure and Platform

Control Plane

User Plane

Page 19 of 89

1. Infrastructure and Platform: This layer comprises of cello platform and application layer.

Functionality implemented in application layer runs on cello platform. Cello platform

runs independently from application layer and allows possibility to change processor and

other hardware parts without changing implementation in application layer.

2. Control Plane:

a. Traffic Control: In this layer, inputs supplied by RNC and RBS internal functions

are all handled. It includes of four sub layers:

i. Hardware layer handles details of a specific board.

ii. Equipment layer hides details of specific board functionality.

iii. Logical resource layer provides logical resources such as ATM links,

channels, cell carriers, etc. It transforms functions into operations on

devices.

iv. Traffic service layer is used to handle NBAP procedures. It receives

request from RNC and utilizes above layer to perform its functionalities.

Through this layer nodes functionality is controlled.

b. O&M View: This view eases in configuration of system and allows seeing log files

through GUI interface. It tries to segregate MO (Managed Object) from RO

(Resource Object). MO represents alarm/event generating objects and logs about

notification of subscription objects. RO handles low levels details of MO.

3. User Plane: This layer deals with functionality implemented in hardware.

Base Station Control (BC) implements traffic service layer in RBS and takes part in all control

functions. It uses logical resources (LRS) of RBS to fulfil its functionalities. BC performs

following functionalities.

1. Common Procedures:

• Common transport channel set-up/reconfigure/delete

• Common measurement

• Cell set-up/reconfiguration/deletion

• Resource status indication

• System information update

• Radio link set-up/release

• Reset

Page 20 of 89

2. Dedicated Procedures:

• Radio Link Addition/Deletion

• Radio Link Configuration

• DL power control

• Dedicated measurement

• Compressed mode

• Radio Link Failure/Restore

3. NBAP message trace support.

Overload protection control functionality is implemented in BC. When overload protection

signal is received, BC stops NBAP parameters related to RLS till workload is reduced. In rest of

the documentation mostly traffic service layer is discussed as BC is part of it. In next section we

will see how functionality implemented in RBS uses OSE as its RTOS and uses RoseRT as its

IDE and for its runtime environment.

Page 21 of 89

3. RBS Implementation

The traffic service layer functionality of RBS is very complex. It has certain functions that include

being reactive to Uu interface through which it communicates with ME and with lub interface for

communication with the RNC.

All these functionalities are implemented like in real time embedded systems. Radio Base Station

(RBS) is a soft real time embedded system, it follows same rule of a soft real time system. In soft

real time system, missing of deadline does not lead to a major catastrophe but leads to provision

of bad QoS to the user. The important characteristic of real time system is that implementation

has to not only comply with logical correctness but also need execution of events on time.

Timing plays a very critical part in the real time system and any miss of target will lead to the user

dissatisfaction. Tasks can be performed on time if the proper scheduling of tasks is done. In most

real time systems time management, resource allocation, and scheduling are provided by Real-

Time Operating System (RTOS). RTOS scheduling can be static or dynamic, pre-emptive or non

pre-emptive, and fixed priority based or random based.

Scheduling is done through schedulers and dispatchers. Schedulers are used to arrange running of

a task and plan when a task is going to start, for doing this it generates a table that is used by the

dispatcher. The dispatcher executes the task present in the tables generated by scheduler and the

timer controls task invocation.

In RBS development, the important roles are played by RTOS and application runtime

environment. In section 3.1, a brief overview of processes and how they are scheduled in OSE is

covered. In section 3.2 it covers RoseRT general overview and runtime mechanism of RoseRT

Runtime Service Library (RTS).

3.1 Role of Real Time Operating System (RTOS) in RBS

An Operating System (OS) is a computer program that is responsible for managing all the tasks

in the systems like memory allocation, job scheduling, interrupt handling, and distribution of

input and output. [45] The requirements of OS in an embedded system differ from general OS

requirements that embedded system OS has stringent timing requirements.

Page 22 of 89

RBS needs RTOS to provide basic set of functionalities that can be used by any other processes

in the system. The RTOS in RBS manages resource management, portability, fault management,

scheduling, and debugging. RTOS scheduling policy defines how particular process will behave

during execution.

RTOS has to effectively handle the timing requirements. Hard real time systems are time bound

while soft real time systems are priority based. Scheduling plays a pivotal role as the processor

have multiple programs running simultaneously, and based on scheduling it knows what task

needs to be executed. In soft real time system, scheduling can be either fixed priority based where

priorities are assigned before hand or dynamic priority based where priority are assigned at

runtime on executing parameters like deadlines.

Scheduling algorithm is used to ensure critical timing constraints are met for reaching deadlines.

[43] The burst time, which is the time taken up by the process for execution on processor and the

I/O wait, has to comply with the system requirements on the maximum time the task can take to

make system meet its real time requirements.

OSE: Operating System Embedded (OSE) is a product of ENEA and is used in Ericsson’s RBS.

OSE is a dynamic, fault tolerant and distributed real time operating system. It is designed to meet

real time demands as well as to meet requirements of high availability, reliability, and safety. OSE

comprises of two types of kernels; one designed to run on target environment referred as hard

kernel and other to run on host machine called soft kernel.

The main functionalities of OSE are [42]:

1. Resource allocation

2. CPU allocation

3. Event priority

4. Communication

5. Timing

6. Error handling

OSE comprises of processes (function with a context) and signals (information carriers).

Processes are of five types in OSE: Interrupt process occurs on event of hardware interrupt or

Page 23 of 89

software event like a signal. Timer interrupt processes are a special case of interrupt processes

called in response to changes in system timer. Prioritised processes are written as infinite loops

and runs till the higher priority process is ready to execute. Background processes runs in strict

time-sharing environment. Phantom processes do not have any programmable code and is used

for communication with processes across target boundaries.

As shown in figure 3.1, OSE processes are considered to be in either one of these three states

waiting, running, or ready state.

Figure 3.1: Process handling in OSE [19, 23]

If a process is in waiting state then process waits for some event to occur. It does not require any

system resources till process is in running state. The running process is the one that has the

highest priority among any ready process and can be pre-empted only by the process having

higher priority than the priority of running process. This is the special feature of OSE that

enables scheduling based on process priorities. In ready state, process wait until all processes with

higher priority have finished their execution or have entered into the waiting state. The two

processes when they share same priority and they both are in ready state, OSE uses round robin

scheme to schedule tasks.

OSE scheduling is based on pre-emptive priority scheduling, where low priority process running

can be pre-empted by high priority process that is in ready state. Processes are scheduled based

on their priority assigned; possible number of priorities is 32 in OSE. The scheduling of OSE

plays a pivotal role in providing traffic service layer functionality. During an overload situation

how overload protection implementation functionality is scheduled and how resources of the

system are handled are all dependent on scheduling policy.

3.2 Rational Rose

Rational Rose is a visual design tool developed by Rational Software to facilitate object oriented

analysis and design (OOAD). This tool is made with collective effort of three pioneers in UML,

Ready

Waiting Running

Page 24 of 89

Booch, Jacobson, and Rumbaugh. [20] RoseRT allows creation of visual model based on UML to

simplify, increase efficiency, and make software less error prone through out software

development.

Rational software used in development of real-time system is Rational Rose Real Time (RoseRT).

It is a tool used in modelling and implementing of reactive systems, complex, event driven, and

concurrent systems such as RBS. The advantage of using RoseRT is that modelling eases

verifying design process and allows solving the problem at a higher abstraction level. The model

driven approach provides rich information structure that eases in understanding behaviour of the

system.

The model driven approach comprises of various components that can be used in modelling the

system and these are: classes, components, relationships, objects, operations, modules, processes,

and processor. These components can be used either in physical model, logical model, static

model, or in dynamic model.

The RBS developed using RoseRT is a collection of capsules that can exchange asynchronous

messages. The execution time of the traffic application is spent in executing developer written

code; RoseRT generated code, and RoseRT runtime systems (RTS). [20] The execution of code is

done on a single thread or on multiple threads. The threads that are executed have their own

controller that comprises of main loop, has a duty of picking up message from the message

queue, and delivering it to the destination capsules. Each controller has five different message

queues for each priority

The behavioural specification of the RoseRT is specified through state-chart diagrams. The

different components used in state-chart diagrams showed in figure 3.2 are [14]:

• Capsules: defines the possible state the process can be in. Code is executed when state is

entered and allows transactions to take place.

• Transitions: the action that can be performed by the process under a certain state

• Ports: they provide a means to receive signals from other capsules

• Protocols: defines message syntax and semantics based on which communications between

two ports take place.

Page 25 of 89

Figure 3.2: Different state-chart diagrams parts of rational rose

State diagrams define how objects should react to an external stimulus. These objects can be

either active object or passive object. Passive object does not have their thread of control and can

react only when invoked by method calls from external callers. Passive object are very useful

where resources are scarce in the system. Passive classes provide improved memory usage and

better performance.

Active classes are useful but have high performance and memory overhead associated with them.

The active classes have their own thread of control and communicate with other capsules using

asynchronous messages. The communication between capsules is done through ports. Ports are

used for two-way communications and use signals for communications. If two ports are wired

they can communicate based on interface defined using protocols.

RTS implements a virtual machine that allows executing a model developed in RoseRT. The

capsule of state-chart diagrams is scheduled by the scheduling mechanism of controller in

RoseRT. The scheduling involves dispatching of messages to appropriate capsules and when

message is received by appropriate capsule related transitions are executed. Next message is

dispatched only when task submitted to the transition is completed.

RTS runs on OSE, OSE is responsible for scheduling controller and controller schedules traffic

application functions in RoseRT environment. Controller is like a process in OSE and is

scheduled by OSE based on pre-emptive scheduling. The capsules in RoseRT belonging to same

logical thread can efficiently utilize processor as they can run concurrently and are scheduled by

controller based on First in First out (FIFO) principle.

Capsule Capsule

Port

Transaction

Page 26 of 89

Ericsson’s uses in-house controller to make it run-able on cello platform. When inter-capsule

message is sent between capsules a synchronization message is sent to the OSE message queue of

that controller to make it schedulable by OSE.

To receive message from OSE the message has to be registered in RoseRT using

REGISTER_OSE_SIGNAL. When message is received from OSE, it is translated to RoseRT

signal and memory for the OSE message is freed up. Messages from OSE message queue are

handled at lower priority and are sent to appropriate capsules only when queues in RoseRT are

free.

The scheduling of capsule in RoseRT requires first scheduling by OSE and after that RoseRT

controller schedules capsules based on FIFO. The scheduling of overload protection will require

using of both OSE and RoseRT controller to invoke some action to control overload situation.

Page 27 of 89

4. Overload Protection - Need and Principles

RBS functionality execution is dependent on how OSE schedules controller and how RoseRT

controller schedules traffic application functionality. The development methodology of RBS

implementation has to meet functional requirements like Radio Link Set-Up and Power

Balancing functions, and non-functional requirements issues related to QoS, meeting deadline,

reliability, availability, and security.

RBS to provide QoS requirements has to efficiently handle an overload situation where system

has more jobs than it can handle. To safeguard from overload situation, overload protection is

implemented. Overload protection is a measure in RBS to ensure the availability of the network

connection for already connected users and ensure reliability of the services offered by the

system. Overload Protection has to ensure reduction of the throughput, handling of QoS at

acceptable levels, avoid system from restart, and providing continuity of services for already

connected users.

As per ITU.T overload protection should secure time constraints and reduce throughput by

rejecting excessive amount of tasks already present in the system. [35,28] So there are two

functionalities of overload protection. First functionality is related to the time constraints, as

exceeding time limit will lead to missing deadline and providing service after deadline is of no use

in real time system. Second functionality of reducing throughput requires giving preferences to

some tasks. This requires a kind of traffic differentiation, which is a way of distinguishing

activities belonging to which function of RBS, when activities are permitted into the system so

that when overload situation arises it can reduce throughput.

Overload is directly related to the amount of workload the processor can handle. Processor

workload is defined as the mixture of program and operating system commands that are

submitted on the machine for execution. [40] The reason for system getting overloaded could be

due to processor having more processes than it can handle. As message queue in RoseRT

comprises of both intra-capsule, inter-capsule, and OSE messages it can sometime lead to

message queue overflow.

Page 28 of 89

The proper implementation of overload protection will lead to reduction of resources that are

used up in overload situation and avoid system from restart. The present implementation

provides details about how to control network resources under overload situation, details about

controlling the admission control of the overload protection, and techniques for making signal

received till NBAP handler to stop RLS function to reduce workload.

The next section elaborates the need for overload protection and is followed by a section that

presents principles of overload protection. The last section covers the present implementation of

overload protection mechanism.

4.1 Need for Overload Protection

It is important to fulfil QoS requirements to safeguard system from overload situation as it leads

to performance degradation, drops in the calls of already connected customers, and above all the

time taken to restart and start working again.

Traffic application comprises of 20 functions and each function has sub-functions to handle the

air traffic. Some of the most prominent functions are RLS, PB, RLR, etc. When situation of

overload arise the activities that put workload on the system, like RLS, are stopped for a period

till processor workload is reduced.

In embedded systems, worst-case scenarios are used to evaluate performance of the system. As

these scenarios helps us in giving information about the maximum performance and behaviour of

the RBS in situation such as overload situation. The main parameters that are captured for RBS

are execution time, intensities, and amount of workload it creates on the processor when it is

executing.

Following are the worst-case scenarios for some of the main functionalities of traffic application

in RBS:

Functionality name Execution time Intensity per second CPU load

Radio link setup (RLS) 5.5 61 33.3%

Power balancing (PB) .056 286 16%

Radio link release (RLR) 2.0 61 12.1%

Page 29 of 89

It has been noted the processor performance of nearly 100% is observed when all 20

functionalities of traffic application are running in worst-case scenarios.

To ensure the better QoS under overload situation, these measures have been proposed in the

system:

� Software optimisation of the control plane activities

� Faster CPU that involves moving from PowerPC 750 to PowerPC GX. It can increase

performance by nearly twice.

� Cache increase will lead to reduction in CPU – memory communication

� Multi-processor system where each increase in the processor leads to performance increase

by approximately 80% and each processor will handle these tasks separately encode/decoder,

and AAL2 connections.

The solutions presented above impose a new cost in the development of the system and changes

in hardware. It is not a viable solution as companies to be competitive try to reduce cost of

development and release product early in the market to capture the market. But the changes

suggested require considerable development effort and subsequent delay in the release of the

product.

There is very less probability of worst-scenarios will happen and system will be under such heavy

overload situation. Making such huge changes will not be that high regarding instead an overload

protection mechanism properly implemented can solve issues pertaining to an overload situation

and ensure that calls for already connected customers remains connected and new connection are

stopped till workload is reduced.

4.2 Overload Protection Principles

To implement overload protection it requires considerably attention that the means used for

overload protection does not itself become a load that will take the execution time of the CPU or

consume resources of the system.

Several principles are followed in order to carry out overload protection principles.

1. The proper means to measure processor utilization of CPU workload is needed. If

utilization is more than 70% it should invoke some operation to stop time-consuming

activities in the system.

Page 30 of 89

2. To apply edge control as early as possible in order to avoid late rejection problem. When

the 50% processor utilization is noticed in set time interval it should lead to 10%

reduction in throughput of maximum throughput allowed.

3. The users connected have higher preferences compared to new connections

establishment. New connections lead to high processor utilization and are stopped till

workload is reduced. This rule requires some form of traffic differentiation to implement

this functionality.

4. For continuous working of RBS, it should be ensured that system is available under

overload situation and does not lead to restart.

Above principles forms the cornerstone on which overload protection mechanism is designed.

All the principles are not fully present in the present system. First and second principles are

lacking and there is no traffic differentiation done. Because of no traffic differentiation messages

enter into the system and are executed in RoseRT and only when there is communication with

RNC over NBAP some appropriate action is taken.

The techniques followed should help in reducing overload in the system, avoid system restart,

and avoid internal buffer overflow. The possibility of checking the system when overloaded

through measurement of OSE queue length is ruled out because of cello platform nature.

4.3 Present Overload Protection:

Overload protection present implementation is invoked when timeout signal is received by

higher-level priority process when it is waiting for signal from a lower-priority process. It follows

the principle of starvation theory to enable its working. According to the starvation theory a low

priority process never gets access to the processor due to higher effective process access to the

processor.

As shown in figure 4.1, the overload protection mechanism is implemented through two

processes running along with the main traffic application. These overload protection processes

starts when RBS starts and run continuously like daemons in background and ensure system

working under overload situation by invoking overload mechanism.

Page 31 of 89

First process that plays pivotal role in overload protection is Load Control Server that runs at the

highest priority (In OSE the process having priority 11 is higher compared to process having

process priority 12). The responsibilities of this process are as follows:

� To send signal to Load Control Response Server process and wait to receive back response

from the process. The message sending involves starting timer to keep track of time it took to

receive back signal.

� If it receives back the signal before the completion of the maximum time set (like 100ms) it

will wait for elapse of time interval to send back signal to the Load Control Response Server.

� If the signal sent reply is not received in time interval set, it sends signal to traffic application

controller to activate overload protection, that is to stop radio link set-up till workload is

reduced. If it receives signal after lapse of set time from Load Control Response Server it

omits that signal.

The second process is traffic application running at middle level priority under RoseRT virtual

machine. The overload protection signal expected from Load Control Server process is registered

in this application. The signal when received appropriate action is present in Base Station Node

Manager (BCNM) section of RBS. The action includes taking steps to stop RLS Connection. The

workload is produced by this process and sometime leads system to an overload situation and

causes lower priority process to starve. In overload situation Load Control Response Server

process will starve.

Figure 4.1: Showing different processes and their priority in overload protection implementation

The third process along is Load Control Response Server process. The responsibility of this

process includes receiving signal from Load Control Server and responding back to it.

To cease overload protection, Load Control Server sends signal after lapse of 100 ms to Load

Control Response Server. If Load Control Server receives back signal in set-time period it will

Load control Server

Load Control Response Server

Traffic Application

Priority levels
Highest

Middle

Lowest

Processes

Page 32 of 89

call for the cease of overload protection by sending message again to BCNM. All the activities

that are carried out during overload protection are recorded in cello database (see appendix B for

more information about cello) for O&M purpose. The information stored in cello includes the

time overload protection was active, number of users rejected, and other relevant details.

Overload protection needs to meet its principles as discussed in previous section for avoiding

system restart and services to the connected users. To ensure overload protection proper

working, processor utilization has to be present in numerical values and implementation should

include scheduling of both OSE and RoseRT controller.

In next section we will see how simulation is used for checking above conjecture. The topic

covered includes steps taken in development of the simulation program, analysis of the results,

and verification and validation of the model.

Page 33 of 89

5. Simulation Implementation and Results

The present overload protection mechanism needs to be checked way to see whether it meets the

purpose it is designed for. During start of the thesis it was reported that the result produced by

overload protection mechanism under situation of overload varies. Sometimes its works and in

some situations it does not work.

The fluctuation requires some analysis of the system in order to find out the reason for its failure.

There are various ways through which system analysis can be done. It is very difficult to

analytically verify model such as overload protection as it involves two queues and also lacks

semantics of how messages are handled in RoseRT making the task difficult.

The other possible way of understanding system behaviour is through Simulation. Simulation is a

means through which part of the system working is implemented to achieve desired results.

Simulation is extensively used nowadays for understanding system behaviour and is one of best

ways of developing software. The major implication with simulation is that it is time consuming,

and simulate only some part of the system is implemented, but complete system behaviour

cannot be understood. [22]

Figure 5.1 showing flow of overload protection signal from OSE to RoseRT

The working of overload protection in theory involves sending message to the BCNM capsule to

turn off parameter of NBAP handler when situation of overload is found. In a working system it

involves flow of messages as presented in Figure 5.1, message is first sent from Load Control

Server to OSE message queue, then message from OSE message queue is only retrieved by the

T
A

Load Control Server

D
M

O
&

M

Load Control Response Server

OSE

CC2 CC1 CC3

Overload Protection

Signal

1

RoseRT

message

OSE signal for OP

DM-Dedicated Measurements

TA-Traffic Application

O&M-Operation and

Maintenance

OP- Overload Protection

CC – Controllers

1-BCNM

Page 34 of 89

controller when there are no more a messages left in RoseRT message queue, there is no

preference given by RoseRT for messages which are of high priority in OSE. This leads to some

kind of unpredictability in the system.

The other problem is that the OSE message queue had problem of buffer overflow and also

RoseRT message queue has queue utilization of 100% [14]. So under situation of overload it has

been found that only 25% of the resources are available in the system [1,2,3]. To understand

system working under some such situation requires simulation program to see possibilities that

are leading to unpredictability in the system.

The simulation program aim is to develop a model that allows checking present overload

protection mechanism in order to investigate it’s working under situation of overload. The need

for investigating is to understand whether under overload situation does the message dispatched

from OSE processes reaches destined capsules, does message get received under RoseRT, and

understand how pre-emptive scheduling works for OSE.

To simulation of the program requires following some steps in order to get understanding of the

system. If we divide it into small steps there are 12 stages that simulation program has to undergo

but it can be divided into 4 steps:

1. Definition of problems and objectives

2. Model building and data collection

3. Simulation experiment and analysis

4. Documentation and implementation of the results

There are various ways through which simulation can be carried out. One can make use of

Simulink® to model the system in it and see how queues work, whether overload protection

signal is received or not can be checked. But the problem is that the working of system is not

known if pre-emptive scheduling is modelled in Simulink it cannot be guaranteed for certain that

behaviour produced by the system matches with target environment.

 So for this purpose target environment is selected to be same as the development environment

use of developing application layer software of RBS. As through simulation it will check working

of pre-emptive scheduling of the OSE, how controller handles messages delivered from OSE,

and mechanism followed by controller for sending messages between capsules. All this can be

Page 35 of 89

observed only when the simulation model is developed with the current system and not

developed based on just conceptual model.

This simulation requires getting out the behaviour of the system through simulator and does not

involve just modelling. The simulator program will replicate that part of the system that is related

to overload protection by creating a right kind of environment in the system that in someway is

similar to traffic application.

The program developed is called simulator, and will involve simulating behaviour of the traffic

application, overload protection based on the input parameters of the current system. To make

simulator runs it will also involves configuration in OSE to make this simulation program run-

able.

To develop this simulator we follow steps in developing simulation model. There are basically

four steps followed in modelling and all steps undertaken in developing simulator are covered in

these steps:

5.1 Problem definition and formulation

The simulation program first step is to get clear why the simulation program is being developed.

There are some sub steps in this step and will be covered in this section:

1. Problem formulation:

2. Set of objectives:

3. Overall project plan:

Problem formulation: To study overload protection mechanism of present RBS in order to see

the reason for getting unpredictable behaviour of the overload protection mechanism, to study

how effective is processor utilization measurement function, and see whether capsule in RoseRT

receives message from the overload protection process.

Set of objectives: The task carried out by RBS can be divided into TA, DM, and O&M. One of

the functionality of TA it provides is overload protection that allows system to continues its

operation even under overload situation by reducing throughput and stopping new connections.

The objective of the simulation model is to:

1. To check whether overload protection complies with ITU.T recommendation

Page 36 of 89

2. To check whether overload protection meets its purpose under situation of overload

3. To check how effective is the method

4. To check the possible reasons of unpredictable behaviour.

5. To check processor utilization measurement to check overload is a good means to check

utilization or not.

6. To check whether NBAP handler parameter is set off the time message is sent by OSE or

takes it time.

Limitations: The simulation program cannot check whether setting of NBAP parameter off is

effective way of reducing workload. It does reduce workload but to determine by how much

percentage is not possible to calculate through simulation program. The recommendation by

ITU.T is considered in this case that stopping new connection does reduce throughput and

workload in the system.

Overall project plan: The model should try to use RoseRT and OSE to get current working

scenario of the system under situation of overload. Simulating traffic application with certain

workload that can lead the system to overload situation is a better solution compared to running

the real application. Simulation program tries to use service time and inter arrival time of the

current system but the workload created will be done in a way that it leads system to overload

situation.

5.2 Model building and data collection

This stage in the simulation program design is where the base of the simulation program on

which the implementation will be carried out comprises of following steps:

1. Model conceptualisation

2. Data collection

3. Model Translation

4. Verification

5. Validation

Model conceptualisation: The main idea in developing the simulation program is to enable the

scenario where two OSE processes run at different priorities and one process representing traffic

application runs with heavy workload in between these processes. The simulator to be built will

Page 37 of 89

be simulating traffic application. The model should provide enough means in studying the

working of overload protection mechanism and message flow between two message queues.

The workload in the simulation needs to match with the workload generated by RBS to get

correct analysis of the working of the system, the frequency i.e. the number of time function

takes place in 1 minute or in terms of queuing theory an inter-arrival time of the task, and the

duration i.e. the time taken for executing task, in queuing theory it is usually referred by service

time of the task.

The simulation model to be developed has only certain activities that represent traffic application

and not all the functionalities of RBS. The functionality represented through simulation program

does not carry out any functionality of the system does, but only creates workload for the period

system performs its work.

The input parameters of RBS are receiving of radio signal for some request. What can be

considered is the maximum amount of time a particular can take place. The time is usually called

worst-case scenario time period of traffic application. The workload is created for that particular

time period which exceeds the set time interval period. If the period exceeds then some

appropriate action is taken.

Selection of proper workload is needed to get better understanding of overload protection

mechanism implementation. Some of the ways of creating workload is through running real

application, or by using some standard benchmark, or through implementation of a kernel.

Workload is chosen depending on the application for which it is tested.

For the simulation program, kernel provides an appropriate workload for the overload

protection, because this methodology is based on isolating of individual features of the machine

to explain the difference in the performance of the real program. [40] Other workload requires

lot of development activities to be undertaken. To limit our scope to just test overload protection

mechanism of RBS, kernel workload mechanism is best suitable for checking reaction of

overload protection when system is under heavy overloaded.

To simulate a workload on processor, program is divided into three capsules. One capsule is

referred as a driver capsule; it will be responsible for sending messages between other two

Page 38 of 89

capsules. The signal is exchanged between two processes in asynchronous way. Before the

communication between two capsules start two processes in OSE are instantiated. Then the

communication happens between these capsules, and workload created by capsule tries to make

processor busy in capsules and create starvation situation for Load Control Response Server

process.

Figure 5.2: Present working mechanism of overload protection [35]

Figure 5.2 represents different processes running at different priorities levels in simulation

program. C1 and C2 represent capsules representing Radio Link Setup and Power Balancing

functionality. One capsule represents radio link set-up and other represents power balancing. The

driver capsule contains normal loop that executes for a period of time.

The two processes are primarily responsible for controlling overload protection mechanism runs

in OSE at two different priorities. Highest priority processes sends signals and wait for response

from lowest priority process. Lowest priority process gets time to execute when processes

running at priority above are not using processor.

One of the processes running in OSE runs at higher priority, thus it should be able to detect

overload situation and send message to driver capsule. To decrease workload driver capsule will

stop sending message till cease message is sent by higher priority process. The simulation

program will be developed in RoseRT and will work in OSE RTOS. Rational rose environment

and soft target (Solaris /simcello) environment is used through out the development lifecycle of

implementation.

Data Collection: The data for the simulation program has to match with the real system to get

some results. Input analysis is one of the core area on which system will give desired output.

Priority level

Load Control Server Process

Simulator Process

Load Control Response Server Process

C2

Driver Capsule

 High

 Medium

Low

C1

Page 39 of 89

The simulation model tries to create workload to invoke overload protection mechanism to see

its working. The workload has to follow some norms of the system in order to get correct output.

To simulate behaviour of the current system we can add few about number of times event takes

place and time it takes for processing an event. For that period we can create workload and make

system busy.

The data collection stage comprises of four sub stages and they are:

1. Find input data

2. Probability distribution to represent the input process

3. Based on distribution find parameters

4. Test the parameters selected

To get raw information directly from the system is a difficult task and was not available. As the

primary purpose is not to completely represent the system working it is required to represent it

partially. The available data was the service time and arrival time was the available data.

The data that was available had already undergone above given stages, as probability distribution

of data was reported to be Poisson distribution. ((e-α αx)/x!). As frequency of raw data is not

known and sample data used for finding this distribution parameters could not be tested for

goodness of fit using chi-square (Σ(Oi-Ei)
2/Ei

2).

Following this distribution of the input data given in form of functionality, execution process

take, intensity per second, and how much load is observed.

Functionality name Execution time Intensity per second CPU load

Radio link setup (RLS) 5.5 61 33.3%

Power balancing (PB) .056 286 16%

Radio link release (RLR) 2.0 61 12.1%

Model Translation: The model was prepared in order to check system working through

simulator. This model tries to follow software architecture procedure followed in the real system.

To match with the system requirements the simulator capsules in RoseRT were divided into four

parts as shown in Figure 5.3.

 K

 i=1

Page 40 of 89

Figure 5.3: Structure of simulation program developed under RoseRT

1. Top Capsule: The main capsule of the program from where the whole program begins. It

encompasses of all the capsules used in the simulation program.

2. Driver: This capsule is the main coordinating capsule of the whole program. This capsule

is responsible for starting Load Control Server and Load Control Response Server as

OSE processes; it is also responsible for sending messages to RLS and PB capsule in

asynchronous way.

3. RLS: This capsule represents radio link setup function. The service time of this capsule is

5.5 m/sec, which is based on the worst-case scenario timing of actual RBS.

4. PB: This capsule represents the power balancing function of RBS and runs for 0.2 m/sec

in the simulation program.

The development part was carried out in RoseRT environment. The various configurations were

made to enable running of application in OSE like configuring osemain.con, softose.con,

heap.con, and build.spec to enable application run-able in OSE. All these files play a pivotal role

in execution of program on soft target (Solaris) environment and target environment (RBS).

The RLS and PB capsules had code defined in their transition and are invoked on receipt of

message from driver capsule, followed by messages that are transferred through ports, and syntax

for messages sent though protocols. There are two possibilities of message passing between

capsules. It can be done either through send or invoke functions. Invoke is used when message

passing is asynchronous and send is used when message passing is synchronous.

The driver capsule sends signal to RLS and PB capsules. PB capsules and RLS capsules both have

a service time based on worst case scenarios time intervals presented in section 4.1. The inter-

Top Capsule

RLS PB

Driver

Page 41 of 89

arrival time is changed in order to create high workload. For the message received from the

driver capsule, message is sent after completion of the activity in the capsule. Driver capsule

randomly selects one of the capsules as in traffic application.

The driver capsule has functionality to start the OSE processes. First the Load Control Response

Server starts and then Load Control Server. The Load Control Server process sends the message

to Load Control Response Server process and waits for the response based on the supervision

time. If time elapses it sends overload protection signal to the driver capsule. The capsule

activates overload protection mechanism by stopping workload created by RLS capsule and waits

till the Load Control Server process does not send the signal back for ceasing overload

protection.

Validate: A model is validated in order to check whether right model is build. Model should be

able to demonstrate that it matches with real system for achieving its purpose.

The inference if made from the simulation program should give correct results. In this model to

get behaviour of the system it is simulated based on the service time and inter-arrival time similar

to the target system. The validity that can be produced for this model is structural validity as

model developed models behaviour similar to the produced by subpart of the real system.

In comparison to simulator, real system also has task divided into capsules and maximum time

they can take is based on worst case scenarios time. This is also present in simulator as task are

divided into capsule and capsule communicates through messages with each other, after receiving

message capsule performs some task to create workload in the system which is similar to

maximum time task can take in worst case scenario situation. In real system time is spent in

executing code and communicating with other physical entities. Instead of this in simulator

capsules create high workload to represent similar workload as real application.

When task arrives in the real system, OSE schedules specific controller and in simulator model it

happens when task arrives in the system it accepts task and then capsule allocates task to specific

capsule though it cannot be done in OSE but it is done in RoseRT though it not similar to how

real application works but as it involves moving from one capsule and this involves moving from

one thread to another and this is similar in real application.

Page 42 of 89

The results received from the model shows the behaviour of model is similar to what occurs in

that real system. At start OSE processes representing overload protection are first instantiated

from RoseRT model and then control passes to application running in RoseRT like it happens in

real system, and load created by simulator keeps system busy.

But as testing of simulation program was done on Solaris which is used for development purpose

and SoftOSE is used, which differs from HardOSE which is the one used in real system. Some

behaviour differed like control could not pass from RoseRT environment to OSE as control can

pass only from RoseRT to OSE when there is system call. To facilitate this system call was used

in overload protection process and it worked. But system call is not used in overload protection

method in real system but as it uses prioritized process and it creates interrupt unlike SoftOSE

where this behaviour is lacking.

So it shows that simulator represents functionality similar to how overload protection works with

real traffic application. Simulator purpose might be just limited to create workload but it does in a

way that it matches in functionality of real application.

Verification: It tries to address whether model build is right and has an ability to demonstrate

correctness according to specification, rules, formalizations, and constraints.

Verification is done through transforming model from one form to another with sufficient

accuracy. This is verified through pair wise consistency with OSE and RoseRT model. The model

purpose is basically to create workload based on some parameters and if you change parameters

workload produced will differ. The activity runs for fixed number of times as possible in worst

case scenario and if you change that parameters activity will run for amount of time that does not

matches with traffic application.

The model working along with overload protection process is a simple simulator whose

parameters that can be changed are number of times they can run, a workload that they create,

and how much time do they spent on their task.

So it is verified that model can be transformed into other forms with change of above

parameters.

Page 43 of 89

5.3 Simulation experiment and analysis

This is where the model developed is run, tested to check whether it meets its purpose, analysis

of the produced results, whether simulation achieved its purpose, and how many runs will be

required to check desired system property from the simulation program. This stage comprises of

following steps:

1. Production runs and analysis

2. More runs

Production runs and analysis: The testing for the simulation program was done exclusively on

the SoftOSE platform provided by the Ericsson. As previously stated OSE comes under two

versions one is soft target based and other is hard target based. The major difference between

these two platforms is that in soft target there is no provision for pre-emption except for system

calls. So the results produced from the targets vary a lot, but as testing on hard target requires lot

of configuration and requires lot of resources, it was exempted.

The problem found in soft target was that during execution after initialisation of the client and

server, RoseRT environment executes without pre-emption and after completion of the activities

in RoseRT, Load Control Server and Load Control Response Server communicates. To solve this

issue system call was added in overload protection process in real application to pre-empt and

code was added to ensure that OSE processes start before RoseRT as sometime OSE processes

are not even started when RoseRT starts executing. This was solved by adding delay before real

application creating necessary interrupt needed for OSE process to start before simulator.

Another issue was that the loop was not putting efficient load on the processor. To put more

load on the processor an array multiplication with a bigger array size was used. It differed a bit

with service time but created enough workload to check working of overload protection.

The results observed were that first OSE process start then followed by traffic application and

control does not leave RoseRT till all the activities are completed this happens when workload is

high, if workload is reduced then at set interval period the control passes from real application.

This behaviour shows that if activity is high in the system, simulation program does not leave

RoseRT till workload is reduced. Action has to be taken either in RoseRT or OSE as

coordination between two does not seem to work well during overload situation.

Page 44 of 89

So based on the results that were achieved and understanding of the behaviour of RoseRT and

OSE it is clear that if the signal is sent by Load Control Server, it will not be received as the

signal will be delivered to the OSE message queue and will only be extracted from the RoseRT

message queue only when no messages are left under situation of overload.

Figure 5.4: Showing the time period and frequency of various capsules collected through traces

The Figure 5.4 shows what the results were obtained from the simulation program. First overload

protection starts and then it is followed by the Driver capsule, then by RLS, and then by PB, after

that the OP starts.

So the results of the simulation clearly shows that the OSE co-ordination with RoseRT because

of multiple queues, the way controller works, and workload present in the system it is difficult to

send signal from OSE to RoseRT under system that has only 25% of resources available under

overload situation.

More runs: Every simulation program has its purpose. In stochastic models running of models

gives different results. As the purpose of simulation program is satisfied by the results obtained

so far, they are not carried further and investigated.

5.4 Documentation and implementation of the results

In this stage the results of the system designed are documented and what action needed for

correcting the implementation issues is carried out.

As the results expected out of the system was evident it was decided not to carry on the

simulation process further. During start of thesis working of RoseRT and OSE was not that clear

1
D

ri
ve

r
RLS

P
B

2 3

Time Period

F
re

qu
en

cy

4

1. OP server and client

start

2. OP Load Control
Server sends message
3. OP Load Control
Response Server sends
message
4. 2 is repeated

Page 45 of 89

but by mid of thesis it was quite evident how it works and thus need for simulating program main

purpose was lost.

Simulation results showed that the overload protection results are achieved when load is low but

does not work when load is high. These results are similar to what results were observed

regarding overload protection but change was done in overload protection code to create system

call explicitly compared to real system where pre-emption happens implicitly. This aid was given

to me by one of the employee in Ericsson which proved to be very valuable tip and helped in

achieving satisfactory results.

Page 46 of 89

6. Solutions

The present overload protection mechanism needs refinements to meet the ITU.T standard for

overload protection. This part presents different ways of controlling overload protection through

means of scheduling, RoseRT controller, and through other ways of implementing overload

protection. Processor utilization measurement is covered in one section, as it produces a value

based on which overload protection mechanism can take action.

The overload situation is directly related to the workload in the system, if workload is high then

overload situation will arise. The workload in UMTS RBS compared to previous generation RBS

differs due to increase in services it offers. The factors that can lead to overload situation

previously presented in part 4 are there but the additional workload are caused by complex

services added like intra-handover facility and handling of both circuit switched and packet

switched data leads to increase in workload. .

In overload situation, overload protection helps a lot in reducing workload by provision of

resources in a control way, as under overload situation only 25% of system resources are available

[1,2,3] and scheduling algorithms such as RMS can guarantee only if the processor utilization is less

than 69.5% [44] and if utilization exceeds deadlines will be missed. Avoiding overload situation is

very critical in providing QoS to the users but it is not justifiable with the high cost that will incur

from the implementation proposal presented in section 4.1 as chances of worst-case scenario

happening are very rare.

Overload protection mechanism can provide a good solution for controlling overload situation.

But overload protection does not only have to provide mechanism for controlling overload

protection, it has also to provide some mechanism for controlling higher utilization. The various

situations which overload protection has to deal with are:

1. Normal situation: This situation is when processor utilization is less than 50%. DM, TA,

and O&M activities run together in this situation, there is no action taken by overload

protection mechanism in this situation.

2. High utilization situation: It has processor utilization between 50% and 70%. Overload

protection takes some action in this situation to reduce workload in the system. In this

situation both DM and TA can carry on their task. As per ITU.T recommendation

Page 47 of 89

throughput by 10% should be reduced in this situation, action overload protection

mechanism can take is to block O&M activities to reduce workload by 10%.

3. Overload situation: This situation arises when utilization has gone above 70% of the

processor utilization. According to ITU.T recommendation for this step is to stop new

link setup function until workload is reduced. The action overload protection can take in

this situation is to stop most time consuming activities like RLS till workload is reduced.

The action described to be undertaken by overload protection is based on my observations about

system that which activities can help in reducing overload. The main parameters that are

considered are the deadline of the activity; inter arrival time of the activity, service time of the

activity, priority, and importance of activity in the system.

The last two situations are where actual overload protection action takes place for controlling

throughput. The important issue pertaining to these situations is how and when to take action.

When to take action depends on the numerical value attained from processor utilization

measurement and how to take action depends on the methodology followed for reducing

throughput through overload protection mechanism or through use of scheduling.

Figure 6.1: Flowchart of action taken by overload protection mechanism

The steps that can be undertaken by overload protection are showed through flowchart diagram

in figure 6.1. The steps in flowchart allow overload protection mechanism to control overload

Measure Utilization

Indicate utilization

U>50%

Start

U>70%

Wait for time interval to elapse

Reduce throughput

Block RLS & O&M

Reduce throughput by 10%

Block O&M

Yes

Yes

No

No

Page 48 of 89

situation in a controlled way. To summarize steps undertaken in implementing overload

protection are:

1. Some means through which processor utilization can be measured.

2. Indicate of load on continuous basis in form of numerical value to decide whether it is

higher utilization or overload situation.

3. If utilization is more than 50%, reduce throughput by 10% by blocking O&M activities.

4. If utilization is found to be more than 70%, stop RLS activities till workload is reduced

in the system.

Above steps are undertaken in implementing overload protection mechanism when overload

condition arises. After detection of processor utilization, action taken by overload protection

mechanism is to either control throughput or stop new radio links or take no action.

The major step in deciding how to control overload situation is through processor utilization

measurement and this can be done through counting the number of jobs that are offered to the

system in comparison to how many processes it actually executes, measuring processor ticks,

event driven measurements, sampling, or through CPI net execution time.

The most important thing is that after getting utilization numerical value, overload protection

methodology to take action after overload situation detection has to comply with the system

working. As starvation theory is good means of measurement but lacks precision and will be

appropriate only if the scheduler for activities in the system would have been OSE but as there is

an added scheduling by RoseRT.

So the implementation of overload protection has to be looked from the perspective of how

RoseRT controller and OSE work together. Solutions suggested for overload protection method

is based on this parameter.

The various solutions presented for controlling overload protection are:

1. Different ways of measuring processor utilization are presented and implementation details

of the implementation based on the system working.

2. Using RoseRT controller for providing scheduling to control overload situation, which is

better than present FIFO scheduling and in some implementation, it can be used for doing

traffic differentiation in overload situation.

Page 49 of 89

3. Overload protection can be controlled using scheduling algorithm for controlling overload

situation by reducing workload to enable activities to meet their deadline in the system.

4. Other different mechanisms that can be used for implementing overload protection

mechanism.

5. At last solution for controlling buffer overflow problem due to synchronization message.

The next five sections elaborate above given steps undertaken in study of overload protection

mechanism.

6.1 Processor Utilization Measurement

The working of overload protection is completely related to how precisely processor utilization is

measured. The present processor utilization measurement mechanism used in overload

protection is based on the use of timeout and utilization of processor is thus not convertible to

some numerical figure. It cannot detect whether processor utilization is 50% or 70 % from the

timeout mechanism used in present implementation.

Various general means of measuring processor utilization are covered in this section. Associated

with processor utilization measurement is how much workload system has at a point of time.

Processor utilization can help in performance analysis of the system and can be used for

attracting service providers by showing processor utilization in numerical figures.

Measurement of utilization can be either based on coarse-grained measurement or fine-grained

measurement. Means opted for measurement depends on the precision required. The processor

utilization that we are going to consider in this section is:

1. Measuring number of ticks that the processor takes in execution of task

2. Execution time of a single process, event driven approach

3. Execution time of processes for a period of time, this method is called sampling.

4. Measuring clocks cycles per instruction (CPI) that processor takes in execution of the

process.

The most precise measurement is obtained through fine-grained measurement, which can be

done only in hardware but requires an extra tool for its measurement. Coarse-grained

measurements are done in software and are not that precise as fine-grained measurements. The

measurements done can be either for a single process or for overall workload in the system.

Page 50 of 89

One of the means of measuring utilization is through execution time, which is a coarse-grained

technique. The execution time is measured from the time the activity started till the activity is

completed. It will include time taken for I/O activities, memory access time, and time taken by

OS for executing a task.

Execution time can be measured by creating workload through synthetic program (considers

some application operations and their frequency), toy benchmark, kernel where some part of

application is executed, or through execution of real application. The workload that is

appropriate for checking processor utilization for overload protection has to be done through

execution of real program. As processor utilization measurement has to be undertaken every set

time interval and this can be done only when real application is running.

As overload protection action has to be taken based on some set time interval, the results from

fine grained for such interval will be quite complex and is of not much help, so coarse- grained

based processor utilization techniques are presented below.

1. Measuring processor ticks: The ticks are measured when processor is idle and if processor is

busy it will report processor is busy. [8] The processor ticks that are measured require access

to one of the processor pins to measure processor ticks. In OSE get_ticks can be used since

system start and get_systime can be used for number of ticks since system start and the

number of microseconds since the last tick.

2. Event driven approach: To measure processor utilization is done through event driven

approach, where the time event started and time at which it stops is recorded. [11] Then

based on the difference how much time system was busy is calculated. It does not

differentiate between time taken for I/O, memory, and OS.

The code outline presented below shows how processor ticks can be used for measuring

processor utilization for a single function. When processor starts the time from the start of

the system is noted down and on completion of call then again the ticks are stored.

Difference between these two values gives how much time process took in executing the

process.

Page 51 of 89

3. Sampling: Processor load measurement is done through sampling, where processor utilization

is measured by the time taken by NULL processes which runs at lower priority for set time

interval. The difference between set time interval and NULL process gives processor

utilization. The result tells about how much processor utilization was observed for the period.

The sampling based approach can be used in OSE through use of timer-interrupt process.

Implementation details of how sampling can be used for measuring processor performance

are covered in code below. Code illustrates that first timer interrupt process is created that

invokes every 100ms and creates an interrupt. On its invocation it checks for signal from

NULL process. Signal specifies how much processor utilization is taken by NULL process.

Based on set time interval and idle time we calculate total time the processor utilization takes

by calculating processor busy time from the interval period.

// Event driven approach in OSE for measuring proce ssor

utilization for one event

#include “ose.h”

OS_PROCESS (my_process)

{

OSTICK tick1, tick2, store;

for(;;){

 tick1=get_ticks(); // number of ticks before start of

the process

 f1();

 tick2=get_ticks(); //number of ticks after end of the

process

 store=(tick2-tick1); //processor utilization

}

}

//Sampling based approach:

#include “ose.h”

extern OSENTRYPOINT new_process;

OS_PROCESS(my_process)

{

 PROCESS proc_;

 for(;;){

Page 52 of 89

4. Clock per Instructions (CPI): This implementation is usually determined based on the system

architecture, and system organization. To measure CPI it is required to know the path length

of Instruction Set Architecture (ISA) for a particular processor. The execution time can then

be achieved by multiplying path length of ISA with seconds per cycle processor takes. [13,9]

This gives precise information about how many instructions processor is executing in a given

period of time. This is considered to be one of the most effective ways of measuring

utilization but the information produced in precision in this method is of not that much great

use in detection of overload protection.

As overload protection involves measuring processor utilization every 100 ms the best approach

that suits our purpose is the sampling based measurement based on processor ticks. The code

snippet is given and can be implemented in each controller or as a process in OSE to measure

processor utilization. We will cover various ways of implementing overload protection and each

method involves different processor utilization mechanism.

Based on processor utilization mechanism, action can be taken either by overload protection

mechanism process, by scheduler, and RoseRT controller. Note that the results produced are

estimation, as we take average of the execution time of the process.

int number_of_tasks, utilization;

int time_period;

proc_=create_process(OS_TI_PROC, “utilization”, new _process,

(OSTIME) 100, (PROCESS) 0,(struct OS_redir_entry *) NULL), (OSVECTOR)

0, (OSUSER) 0);

start(proc_);

}

}

OS_PROCESS(new_process){

UNION SIGNAL *rec_sig;

rec_sig=receive_w_tmo(100, any_signal);

if(rec_sig->sigNo==IDLE_TASK)

 idle_task=idle;

time=period-idle/period*100;

printf(“processor utilization: %d”,time);

}

Page 53 of 89

6.2 RoseRT custom controller:

RoseRT eases a lot in software development activity of a complex system such as RBS. It has

been recently concluded from work done on study of RoseRT in Telecom systems that automatic

code generated by RoseRT is of high quality. The problem that can arise is the scheduling of

capsules by RoseRT controller and fine-grained software development practice followed in

developing software in RoseRT.

The other issue is that although code generated by RoseRT is highly optimised but how to

compose C++ code for UML diagram in optimised way is area of research. The code that is

added by the developer in between transition in state chart diagrams can spoil the optimised code

produced by RoseRT. The messages that are used in RoseRT rely on system behaviour and

cannot be verified formally.

As shown in figure 6.2, OSE process to communicate with RoseRT has to send a signal, as

communication in OSE takes place through means of signals. Signal is then converted to RoseRT

message by RoseRT controller, as messages are used for communication in RoseRT. The OSE

signal received in RoseRT controller’s message queue will be executed only when RoseRT

message queue is empty.

Figure 6.2: The flow of message between RoseRT message queue and OSE message queue [20]

The highly prioritized signal such as overload protection has to wait till message will be read from

the queue. This delay introduced can bring in big difference as under situation of overload if

RoseRT schedules RLS activity it will make task of scheduler more difficult and can lead to worse

outcomes. This scheduling of tasks by both OSE and RoseRT makes scheduling bit complicated

to achieve desired outcomes.

Translate

C
ap

su
le

Controller 1

OSE

C
ap

su
le

Controller 2

Controller1 Internal Queue

OSE queue for controller 1 OSE queue for controller 2

Controller2 Internal Queue Message

Translate

Dispatch Dispatch

Message
Signal Signal

Page 54 of 89

The implementation of the controller used in Ericsson’s RBS is RTCustomController in

comparison to RTPeerController and RTSoleController provided by RoseRT. RTSoleController

is provided for single threaded application and RTPeerController is used for multi threading

applications. RoseRT provides RTCustomController but Ericsson has implemented their own as

the changes in custom controller are only done related to the cello platform needs and

requirements.

As working of both OSE and RoseRT Controller in terms of scheduling and performing

necessary action is known, we can use RoseRT mechanism in performing activities to control

overload protection such as:

1. Perform traffic differentiation function

2. Controlling flow of synchronization message to OSE

3. Use dynamic scheduling for scheduling capsules based on messages received from OSE.

For implementation of traffic differentiation, controller can be used for checking if message is

related to O&M block it if load is less than 70 but greater than 50 and if load is found to be more

than 70 then RLS connections are blocked for a period of time. The system calls used and way it

can be implemented is covered in section 6.4.

If controller is used for controlling synchronization message, only one message related to the

controller is passed to the OSE message queue of the controller and rest of the synchronization

messages received for particular controller is discarded. More detail about this implementation in

custom controller is covered in section 6.5.

Scheduling implementation of RoseRT is based on FIFO. Real time system like RBS needs task

to be done on time and this can be modified through making task schedulable in RoseRT based

on dynamic scheduling or based on overload scheduling as presented in section 6.3.

6.3 Process scheduling:

Systems that are not overloaded, scheduling can be achieved through various scheduling

algorithms such as Rate Monotonic Scheduling (RMS), Earliest Deadline First (EDF), and

Deadline scheduling. But in overload situation RMS scheduling fails and cannot schedule

activities when processor utilization is more than 69.5%. [44] In terms of resource availability,

Page 55 of 89

only 25% of resources are available [1,2,3] making task of scheduler very complicated and

difficult.

The scheduler that is required in RBS has to be one that can effectively take measures in overload

situations and also schedule activities efficiently in normal situations.

Figure 6.3: Flowchart diagram for steps that scheduler needs to have for controlling overload

protection situation.

As shown in Figure 6.3, scheduling mechanism takes an activity and sees if the processor

utilization is greater than 70 or less than it. If utilization found is less than 70 then it continues

with pre-emptive priority scheduling and if utilization is found to be greater than 70 then

dynamic scheduling is used. The advantage of using dynamic scheduling over pre-emptive

scheduling is that dynamic scheduling schedules processes based on runtime parameters not on

priority defined at development.

Dynamic scheduling can schedule processes in much better way under overload situation. It

schedules based on deadline and execution time required for the processes. [48] As dynamic

scheduling is not only based on execution time but also on deadline, scheduling algorithm will

arrange execution of only TA functions as O&M functions in spite of having low execution time

will have higher deadline compared to TA. Scheduler will continuously reshuffle the queue, order

them, and allow some new task to be added as a run-able task, the effective priority of a task is in

constant flux in dynamic scheduling.

No

START

Measure Processor
Utilization

Pre-emptive priority
scheduling

U<70 Dynamic
Scheduling Yes

Page 56 of 89

To properly schedule in an overload situation Sanjoy and Jayant [1,2,3] divides scheduling of

overload protection into two domains. One domain is based on how much processor utilization

does activity takes and other is based on process deadlines. During overload situation the tasks

should be handled efficiently by allowing task that has nearest deadline to complete but only

those activities that are already in the ready state. The tasks present in the ready state must be

able to complete its operations in order to enable other tasks to complete their work.

Dynamic scheduling is a form of scheduling that is based on deadlines of the processes and in

that way resembles method suggested by Sanjoy but the difference is that without dividing it in

two domains we can schedule TA activities that have nearest deadline and short execution time.

If we implement this scheduling in OSE when processor utilization is found high then RLS

activities will not be scheduled as they have nearest deadline but long execution time.

The scheduling in RoseRT is based on FIFO but if it based on dynamic scheduling, task will be

scheduled based on their deadline and execution time, making a big difference in the system

performance in overload situation. As task will be scheduled based on the deadline and execution

time, RLS activity will be stopped and will lead to reduce in throughput as required by the

overload protection.

But care should be taken that the dynamic scheduling is used only when load is found in the

system otherwise it can lead to severe consequences that RLS is never allowed because of high

execution time. In normal situation if it uses RMS where task will be scheduled based on some

priorities it will make a big difference compared to FIFO implementation. There is of course a

scheduling overhead but proper scheduling can give better results.

Both scheduling suggests ways of dealing with overload situation and this can bring good results

in scheduling system in effective way. But the problem is that scheduling implementation like

such requires changes in OSE. This scheduling can be recommended to ENEA to be included

for better control of overload protection in the future release. As scheduling cannot be

implemented without OSE, we can look for other ways of controlling overload protection

without disturbing scheduler.

Page 57 of 89

6.4 Ways of better implementing overload protection:

This section presents three ways of controlling overload protection. First method tries to use

custom controller for detecting processor utilization and then based on the utilization takes same

action as present mechanism, change parameters in NBAP handler for new radio link setup.

Second method measures processor utilization through a processor utilization measurement

process (PUMP) in OSE and implements overload protection through traffic differentiation

through an OSE process, the idea behind this method is that TA does not receive RLS so there

will be no chance of it getting scheduled in RoseRT. Last method uses PUMP for measuring

processor utilization but custom controller handles traffic differentiation and does task of

reducing throughput.

First approach:

This approach modifies way of detecting processor utilization but action taken to reduce

workload is same like in the present system. The approach uses BCNM capsule as the base

capsule that handles processor utilization function through aid of custom controllers and turns

off the parameter of NBAP when overload situation is detected.

Each controller has a timer interrupt process that invokes every set time period and sends

information about processor utilization to BCNM capsule. To measure processor utilization by

controller it uses event driven scheduling where each controller keeps accounts of total time

taken for controller to complete its task. On interruption from timer interrupt process message is

sent to BCNM capsule.

BCNM on receipt of message from controller calculates utilization as the time taken by all

controllers in set time interval by total set interval period

Utilization = time taken by all controllers * 100%

 total set time interval

If utilization is found to be less than 70 no action is taken and if the utilization is found to be

greater than 70% same way of reduction of workload is followed as present mechanism. The

action taken is to change OnOff parameter of NBAP controller, which NBAP checks every time

before setting new RLS activity.

Page 58 of 89

Figure 6.4: Showing synchronization message sent by each controller after elapse of the set time

interval period to BCNM capsule

As shown in Figure 6.4, each controller records time interval it starts executing and stopped

executing this time is sent as a message to BCNM capsule, if it did note execute then it sends 0 to

BCNM. Each controller sends synchronization message to the TA controller that has BCNM

capsule. As majority of task performed is in TA custom controller, OSE will schedule TA

controller and it will lead to an action taken by BCNM to either control overload protection or

allow new RLS to be undertaken. If TA controller is already a running process then message will

be delivered to BCNM capsule immediately.

This methodology tries to follow same way of controlling throughput by stopping NBAP for

new RLS connections. But the change achieved is that utilization is achieved in numerical value

and not on the timeout mechanism and all activities related is carried out in RoseRT environment

and does not involve messages from OSE like the present system. If TA controller is not running

then DM controller and O&M controller will have to send synchronization message to make TA

controller schedulable and if TA is running it has to just inter capsule message to BCNM capsule.

The advantage from this approach is that only one of the scheduling mechanisms will be used for

overload protection and does not have to wait in OSE message queue of the controller to inform

BCNM about the overload protection as the present mechanism. It does not have to rely on two

message queues for the message to be delivered to the BCNM capsule.

The major problem that is present in this methodology is that it considers processor load created

by application in RoseRT and does not consider load created by OSE processes. As major work

of RBS is spent in performing RoseRT, this method in spite of not giving correct processor

utilization can still give reasonable results.

Dedicated

Measurements

Controller 1 Controller 2 Controller 3

Traffic
Application

O&M

BCNM

Page 59 of 89

The second problem is how to handle latest RLS request. As there is no traffic differentiation,

RLS still enters in RoseRT environment and are scheduled. The third issue is that it requires

synchronous message from each controller to BCNM at set time interval if TA controller is not

running. This may involve context switch between processes running in OSE, as controller is

after all process in OSE. The fourth issue is how to control when load is found to be 50% and

this can be done through sending message to OSE to intercept custom controller responsible for

O&M but it destroys layered architecture principles that top layer contacts with low layers to

perform some action.

Second approach:

This approach follows different approach to detect processor utilization and also action that is

taken for overload protection is completely different from above approach. It does not try to

involve RoseRT as it involves RoseRT scheduling and checking for NBAP parameter before

establishing link with RNC for new connection. If overload situation is detected action is

undertaken in OSE, as it will not involve relying on RoseRT message queue to pick up the

overload message and take some action. The other advantage is that RLS activities are killed

before they enter RoseRT environment making system free of RLS in overload situation.

It implements processor utilization measurement process (PUMP) in OSE that detects processor

utilization for set time interval, and based on processor load it starts traffic differentiation if

overload situation is found in order to stop RLS and in high utilization situation PUMP

intercepts O&M activities for a period till workload is reduced in the system. This method does

not try to change OnOff parameter of NBAP but tries to stop RLS request before entering

RoseRT environment.

Figure 6.5: Showing processes running at their priority levels.

As shown in figure 6.5, this methodology divides processes in three priorities. At highest priority

there is PUMP, which is a timer-interrupt process. At lowest priority there is NULL process that

PUMP

Traffic Application

NULL Process

Priority

Highest

Middle

Lowest

Page 60 of 89

is responsible for measuring the time interval it could execute in set time interval. Highest priority

process on its invocation tries to seek signal from NULL process and if does not receive any

signal it assumes NULL process could not execute in that interval.

The time interval utilization is measured by time not taken by NULL process in the time interval

set by total sampling period. The result shows much processor load was observed for that period.

Utilization=(Sample time interval – idle task) * 100

Sample time interval

The higher-level priority process uses hunt_from function of OSE if it detects utilization to be

greater than 50% or 70%. If utilization is observed to be 50% then it hunts for O&M signals and

intercepts them, activities related to O&M are like background task and can be delayed, as they

do not have real time system requirements.

If load is observed to be 70% then it kills RLS function after sending reject signal to RNC and

keeps an account of reject counter for each link dropped, this is done for O&M purposes. In

next sampling period if load is found to be less than 70 then RLS activities continue to work as

before. But if load is not reduced and shows utilization of more than 50 but less than 70 then

O&M activities are still intercepted. If load is found to be less than 50% then no action is

undertaken.

Actions undertaken when high utilization situation is found are as follows:

1. Processor utilization measurement measured. Based on the measurement if it is greater than

50 and less than 70, hunt function of OSE is used to search for name specified and if it finds

process with that name it returns it into name_ parameter. Following is the syntax call that

will be used for searching for process:

OSBOOLEAN hunt(char *name, OSUSER user, PROCESS *na me_, union SIGNAL

**hunt_sig);

2. Then intercept function is used that will change the status of process or block of processes as

intercepted. Intercept function creates a kind of breakpoint for the process. It uses process

ID to intercept a particular process or block of processes. The syntax of intercept is as

follows:

void intercept (PROCESS pid);

Page 61 of 89

3. When the load is found less than 50% then the continuation of service are specified through

resume call. The reason for resuming activities is that O&M activity if delayed can still be

carried out as they do not real time requirements. The syntax of resume function call.

void resume(PROCESS pid);

The code snipped in OSE for taking action specified above:

The step that has to be undertaken when overload situation is found is bit complicated compared

to O&M control.

Figure 6.6: Flow of control of messages in OSE through link handler to hunt for RLS signals

ATM

Phantom Process

PUMP

OSE

Link Handler

OSE

RLS

Link Handler PUMP’

RLS’

CC2 RBS

RNC

PROCESS hunt;

union SIGNAL huntsignal;

OSBOOLEAN check;

for(;;){

// processor utilization is measure through samplin g method described in

section 6.1

if(u>50 and u<70){

check=hunt(“O_M”,0, &hunt, &huntsignal);

huntsignal=receive((SIGSELECT *)any_sig);

intercept(huntsignal);

}

}

Page 62 of 89

The figure 6.6 shows the flow of messages that take place when PUMP is used for measuring

processor utilization and taking action to control throughput and stop radio link set-up. As

illustrated in figure following actions are undertaken under situation of overload:

1. PUMP calculates processor utilization in numerical value, and then checks whether utilization

is greater than 70. If utilization is greater than 70, a phantom process is started which runs

along with PUMP and sends all RLS signals redirected to it before being delivered to TA

custom controller. Phantom process of RLS is required as it creates replica for enabling

redirection table. As phantom process creates a redirection table and it is used for redirecting

RLS signal found through link handler. Link handler helps in hunting for RLS messages and

provides a logical map between two processes in two different target environments, RBS and

RNC.

2. After hunting of RLS signals, they are redirected to process created by PUMP in order to kill

RLS signal.

3. A reject signal is send to RNC and rejection counter is incremented

#include “ose.h”

extern OSENTRYPOINT new_process;

OS_PROCESS(my_process)

{

 PROCESS proc_;

 static const SIGSELECT rls_sig={12}; //assume rls_ sig is 12

 struct OS_redir_table redir_table[1];

 redir_table[0].sig=(SIGSELECT) rls_sig;

redir_table[0].pid=rls_pid;//pid of the rls

proc_=create_process(OS_PHANTOM, signal->remote_cal ls,

rem_hunt.name, (OSENTRYPOINT *) 0, (OSADDRESS) 0, (OSPRIORITY) 0,

(OSTIME)0, (PROCESS) 0,&redir_table, (OSVECTOR) 0, (OSUSER) 0);

start(proc_);}

}

OS_PROCESS(PROC_){

if(U>70){

 sig->remote_call.rls.reject_signal;

 reject++;

 kill(rls _signal);

}

}

Page 63 of 89

4. If load is reduced then still signal will be redirected through the phantom process created that

does filtering of RLS signals only under overload situation and rest of the time allows flow of

signals without hindrance.

Third approach:

In this approach PUMP measures processor utilization and instead of creating phantom process

and redirecting all RLS signals through it, the controller does traffic differentiation and function

of intercepting O&M signals. In above approach link handler, phantom process, and redirecting

all signals have to be undertaken in order to avoid RLS signal from entering RoseRT, making an

approach bit complicated.

Above approach misses the point that the signals already present in RoseRT are not stopped and

if they get to execute they will create more workload in the system. So incoming signals in OSE

are stopped though above approach but already accepted signals are not given any preference.

This approach tries to address that issue and makes overload protection solution suitable for the

target environment.

Each controller seeks for signal from PUMP process, TA controller seeks whether there is any

overload signal and O&M controller seeks for utilization signal in system message queue. Each

controller makes a system call to check for a signal and if signal is found it takes action

accordingly.

The controller on receive of utilization signal performs action to intercept signal and if signal is

overload it just discards the RLS signal before scheduling them and sends rejection signal to

RNC. TA controller and O&M controller undertake the overload protection functions. The

controllers are ongoing loop which read from controller queue but before it is read from the

queue it makes a system call that will read from OSE queue and looks for particular signal, if

found action related to overload protection is undertaken or action related to high utilization is

undertaken by respective controllers and if not found then controller continues reading from its

message queue.

PUMP role in this approach is to measure processor utilization and this is done based on the

signals it receives from the NULL process. The result of the utilization measurements is in form

of numerical values and this value is used for generating signal. If load generated is greater than

Page 64 of 89

50% and less than 70%, then utilization signal is sent and if load is greater than 70 then overload

signal is sent.

Figure 6.7: Shows PUMP, null process, and RoseRT controller working together

As shown in figure 6.7, OSE comprises of some processes that are blocked and some processes

that are ready. The scheduler arranges execution of the ready processes. Every set interval period

PUMP based on the inputs it receives from NULL process, it measure processor utilization and

if there is no input from NULL process it considers utilization to be 100%. Based on the

utilization numerical value, PUMP generates signals. The action taken on invoke of signal defers

in both controllers.

Outline of an action taken by PUMP after finding utilization of the process:

The steps undertaken by O&M controller are as follows:

1. Check for signals at start of loop and take action accordingly.

T
ra

ff
ic

 A
pp

lic
at

io
n

PUMP

CC3

D
ed

uc
at

ed

m
ea

su
re

m
en

t

O
&

M

B
O

A
M

NULL

OSE

CC1 CC2

Ready Process Blocked Process

//Code for processor utilization measurement proces s:

OSPROCESS(my_proc){

//utilization measurement is similar to sampling co de presented in

section 6.1

if(u>50 and u>70)

signal(utilization);

if (u<70)

 signal(overload);

}

Page 65 of 89

2. If utilization signal is found then all the processes related to O&M are intercepted using

intercept function call of OSE.

 void intercept (PROCESS pid);

3. If signal is not found then it performs read from its own message queue.

The action undertaken by TA controller is bit different from O&M controller as it does not

involve intercepting signal but taking up several actions other than it. Following are the steps

undertaken by TA:

1. Check for signals at start of loop and take action accordingly.

2. If overload signal is found then it sends rejection signal to RNC

3. It increments rejection counter for O&M purpose.

4. It kills signals that are related to RLS

5. If signal is not found then it performs read from its own message queue

//outline of code for taking action in O&M controll er

OS_PROCESS(my_proc){

for(;;){

 sig=receive_w_tmo(0,o_m); //read from OSE message queue

 if(sig==o_m)

 intercept(o_m);

receive(any_sig);//read from its own message queue

}

}

//outline of code implementation in Custom Controll er

OS_PROCESS(my_proc){

for(;;){

 sig=receive_w_tmo(rls_signal);

 if(sig==rls_signal){

 // send rejection signal to RNC

 sig->RNC.rls.reject_signal;

 reject++;

 kill(rls _signal);

 }

 receive(any_sig);

}

}

Page 66 of 89

The advantage of this approach is that it is easy to implement and can be done with small

changes in RoseRT. The other advantage from this approach is that RLS signals are dropped

before they enter traffic application. This method tries to reduce overload from the OSE and

does not make it schedulable and thus freeing up the resource of RoseRT.

6.5 Synchronization Message Solution

RoseRT controllers are OSE processes and each controller are assigned based on what functions

does it work and based on the functionality related to RBS it performs it is assigned priority. The

functions of RBS are divided into dedicated measurement, traffic application, and O&M

activities. For this each function there is a controller running as an OSE process.

CC: Custom Controller

 RoseRT message queue

Figure 6.8: RoseRT custom controller as OSE processes along with part in RoseRT environment

that controller handles

As shown in figure 6.8, the layered approach divides RoseRT environment in three logical parts

with each logical part is controlled by its own controller. This allows software to follow layered

approach and to take advantage of this methodology as activities related to a particular controller

can be carried out separately from each controller. But the functionality requires sending

messages to other controller and leads to lots of communication between these OSE processes.

For example TA sends message related to O&M regarding number of miss calls during overload

protection.

There is lot of message passing between these logical parts and that is usually done using inter

controller messages and message sent between capsules. The scheduling of processes is done by

OSE and to make scheduler arrange for execution of particular controller it has to be informed

by RoseRT that message has been passed to other controller and makes other controller

schedulable. To inform OSE to schedule each inter capsule message involves sending

Dedicated

Measurements

Traffic

Application

O & M RoseRT

OSE Message Queue

CC1 CC2 CC3 Processes in OSE

Page 67 of 89

synchronization message to OSE. The reason for sending this message is just an indication to

OSE to schedule other controller too.

The problem in this approach is that as TA is a fine-grained application. There is lot of

interaction with other controllers’ and these results in capsules sending synchronization message

to OSE message queue. As capsule does not know whether other capsule have sent message to

OSE, each inter capsule message involves synchronization message and sometimes leads to a

buffer crash problem.

To solve above situation the best way is to filter out the messages before it reaches OSE message

queue. Just one message is enough to indicate OSE scheduler to schedule respective RoseRT

controller for the message sent as intra-thread message between other logical parts.

Figure 6.9: Controller taking up action as part of controlling synchronization messages

As shown in figure 6.9, to control OSE synchronization message, each RoseRT controller keeps

a flag for other two controllers. After sending first message related to synchronization message it

receives from any capsule in its environment it stops all other synchronization messages from

reaching OSE message queue. To implement this functionality in RoseRT controller each

RoseRT controller sets a flag for controller after message was sent. For example if CC1 gets

synchronization message from some capsule then message will be passed to OSE message queue

and if that message was for CC3 the flag is set for CC3. The next synchronization messages sent

by any capsule to OSE for CC3 will be dropped.

Once the first synchronization message is sent from RoseRT to OSE, a flag is set to indicate that

message has been sent. The flag that has been set needs to be changed every time another

RoseRT controller is scheduled. So controller that is scheduled should inform after its complete

its operation that it has completed its operation.

Dedicated

Measurements

Traffic

Application

O & M RoseRT

OSE Message Queue

CC CC2 CC3
OSE processes

CC3=1

CC3 Message

Page 68 of 89

RoseRT controller thus can play a very pivotal role in controlling of overload protection as well

in controlling of RoseRT message queues.

Page 69 of 89

7. Conclusion

Wireless communication has gone through some changes and has some new facilities in

providing new facilities to its users. The change in air interface requires new support of facilities

from RBS and thus making development of such system more complex and some time create

high workload on the system.

The components used in development of RBS plays a pivotal role in the performance that is

achievable through the system when executed on main processor. The process is scheduled based

on OSE priority driven scheduling. RoseRT provides a virtual environment to allow execution of

a capsule. This virtual environment allows feasibility and interoperability in the development of

the product.

Overload protection is a method devised to control the system from restart when system is

having workload more than it can handle. The present mechanism is based on starvation theory

and employs two process running in OSE that run along with RoseRT traffic application and

responds to the overload situation by sending message to stop Radio Link Setup function.

The simulation program was used to check overload protection signal receiving by capsule under

situation of overload. As the resources in the system under overload situation are scarce and only

resources can be scheduled when processor load is 70% the receiving of message from OSE to

the RoseRT is an issue.

As RoseRT controller reads from OSE message queue when it does not have any message left in

its queues it delays message sent for stopping RLS. Overload protection method presently

implemented does not take into account reducing of throughput by 10% when processor

utilization is 50% it requires some better implementation.

The simulator was used to aid in understanding overload protection and results produced showed

that the simulator shows how overload protection mechanism varies with load. The behaviour of

the system shows that OSE and RoseRT cannot work together and control for overload

protection should be in either OSE or RoseRT environment but to rely on both will produce

such results.

Page 70 of 89

The better implementation will allow the processor workload reduction under overloaded

situation. The methods suggested about overload protection method need some implementation

in cello platform and will require some modification to support overload protection. A proper

way of traffic differentiation is needed to allow processor taking appropriate action when filtering

traffic under overload situation.

The first step was to find processor utilization in some numerical value so that overload

protection action can be taken in effective way. The sampling based method of processor

utilization is appropriate for overload protection as load measurement has to be done for specific

period of time.

Then based on processor utilization either we can take appropriate either in RoseRT controllers

and BCNM capsule, or do both processor utilization and traffic differentiation in OSE, or do

processor utilization in OSE and RoseRT controller checking continuously for overload

protection signal.

The task of thesis to analyze, simulate, and present overload protection was done and solutions

were suggested in such a way that their implementation can be carried out with little effort.s

Page 71 of 89

8. References

[Research Papers and White Papers]

1. Sanjoy K. Baruah et.al., 1991, On-Line Scheduling in the Presence of Overload, IEEE, PP 100-

110

2. Sanjoy K. Baruah et.al., 1994, On-Line Scheduling to Maximize Task Completions, IEEE, PP

228-236

3. Sanjoy K. Baruah et.al., 1997, Scheduling for Overload in Real Time Systems, IEEE

Transactions on Computers Vol 46 No 9, PP 1034-1039

4. Pedro Mejia-Alvarez et.al, 2003, An Incremental Server for Scheduling Overload Real-Time

Systems, IEEE, PP 1347-1361.

5. Swim et.al., 1995, Avoiding Deadline Decay Under Transient Overload, IEEE, PP 198 - 200

6. Risto Teittinen, 2003, Mobile Internet Technical Architecture - Vol. 1 Technologies and

Standardization, Mobile SMITA Seminar WCDMA technology on UTRAN, (pp. 155 -

167).

7. Tomas Lingvall, 2002, Load Control in a Radio Network Controller within UMTS, Thesis

Work, Linköping University.

8. Anders Ive, 2002, Runtime performance evaluation of embedded software, Department of

Computer Science, Lund University

9. Byron Miller, 2002, Determining Processor Utilization, Dr Dobbs Jounrnal

10. Pradip Bose and Thomas M. Conte, 1998, Performance Analysis and Its Impact on Design,

IEEE (pg 41-49)

11. David B. Stewart, 2001, Measuring Execution Time and Real Time Performance, Embedded

Systems Conference San Francisco CA.

12. F.E. Levine and C.P. Roth, 1997, Programmer’s view of Performance monitoring in the PowerPC

microprocessor, IBM J. Res Develop Vol 41 No 3 (PP 345-356)

13. Emma, 2001, Understanding some simple processor performance limits, IBM J. Res Develop

14. Konstantin Popov and Karl Filip Faxen, 2005, Analysing and Improving Performance of Telecom

Applications in Rational Rose Real Time, Ericsson

15. Lars Örjan et.al., 2002, CPP – Cello Packet Platform, Ericsson Review No.2, 2002, PP 68 –

74

16. Ericsson, Basic Concepts of Radio Access Network

Page 72 of 89

17. Bengt Gestner and Bengt Persson, 2002, Ericsson’s first WCDMA radio network controller,

Ericsson

18. Terry Quatrani, 6 Nov 2003, Introduction to UML, Rational Software, IBM

19. Jonas Mellin, 2002, OSE Delta, Distributed Real Time System Research, University of

Skövde

20. Olle Rosendahl, 2005, Structure and Runtime Mechanism, Ericsson

21. Friedmand and Waldbaum, 1975, Evaluating System changes under uncontrolled workloads, IBM

System Journal, PP 345-352

22. Peter Ball, 1996, Introduction to Discrete Event Simulation, 2nd DYCOMANS workshop on

Management and Control: Tools in Action PP 367-376

23. David Kalinsky, 2003, Introduction to Real Time Operating System, Enea Embedded

Technology.

24. Manimaran and Murthy, 1998, An Efficient Dynamic Scheduling Algorithm for Multiprocessor

Real Time System, IEEE Transactions on Parallel and Distributed System Vol 9 No 3, PP

312-319

25. Silcock and Kutti, 1991, Taxonomy of Real Time Scheduling, School of Computing and

Mathematics, Deaking University

26. Agarwal et. al., Measurement and Analysis of Process and Workload CPU times in Unix

environments.

27. Janssen and Graham, 2004, Model Driven Development of Resource Constrained Embedded

Applications, IBM Developer Works (Rational)

28. Oehlerich et. al., 1995, Load Control and Load Balancing in Switching Systems with Distributed

Processor Architecture, Siemens

29. Yufenz Zhao, 1999, Derivations of Local Timing Constraints in Early Design Stages, Master

Thesis, Chalmers University of Technology.

30. Gary Nutt, 1975, Computer System Monitors, IEEE Computer Society, Performance

Evaluation Review, PP 41-50

31. Colnaric and Veber, 2001, Dealing with tasking overload in object oriented real-time application

design, IEEE, PP 214-220

32. Buttazo et.al., 1995, Value vs. Deadline Scheduling in Overload Conditions, IEEE, PP 90 – 99

33. Sneha et. al., Fast and Robust Signalling Overload Control, Bell Laboratories

34. Alvarez et.al., 2003, An incremental server for Scheduling Overload Real Time Systems, IEEE

Transactions on Computers, Vol 52 No 10, PP 1347-1361

35. Åkerblad and Olsson, 2000, Overload Protection, Ericsson

Page 73 of 89

36. Rajesh K. Gupta, 2002, Embedded Systems, University of California, Irvine

 [Books]

37. Raj Jain, 1991, The art of Computer System Performance Analysis, John Wiley and Sons,

ISBN: 0-471-50336-3.

38. Harri Holma and Antti Toskala, 2001, WCDMA for UMTS, John Wiley and Sons,

ISBN:0 471 48687 6.

39. Deitel, 1990, Operating Systems, John Wiley and Sons, ISBN: 0201509393

40. John L Hennessey and David A Patterson, 1996, Computer Architecture: A Quantitative

approach, Second Edition, Morgon Kaufmann, ISBN: 1558603298

41. Peter Marwedel, 2003, Embedded System Design, Kluwer Academic Publishers, ISBN:

1402076908

42. OSE, 2003, OSE Documentation Volume 1 Kernel

43. Peter Brucker, 1998, Scheduling algorithms, Second Edition, Springer, ISBN: 354064105x

44. Wayne Wolf, Computers as Components: Principles of Embedded Computer Systems

Design, Morgan Kaufmanns

[Websites]

45. http://edition.cnn.com/2001/TECH/industry/10/22/3g.defined.idg/index.html,

46. Michael T. Trader, 2004, How to calculate CPU utilization,

www.embedded.com/showArticle.jhtml?article=23900614

47. Peter Dibble, 2001, Deadline Scheduling,

http://www.embedded.com/showArticle.jhtml?article=9900112

48. [Lecture Notes] CPU Scheduling, http://cs-alb-

pc3.messey.ac.nz/notes/59305/mod5.html

49. Michael Barr, 2002, Introduction to Real Monotonic Scheduling,

http://www.embedded.com/showArticle.jhtml?article=9900522

50. Srinivas Dharamasanam, 2003, Multiprocessing with Real Time Operating Systems,

http://www.embedded.com/showArticle.jhtml?article=10700141

51. David B Stewart, 2001, Introduction to Real Time,

http://www.embedded.com/showArticle.jhtml?article=9900353

52. Survey of Task Schedulers, www.kalinskyassociates.com/Wpaper3.html

53. www.ericsson.com/press/archive/ backgrounder/wcdma10000backgrounder.doc

Page 74 of 89

Appendix A: UML

UML (Unified Modelling language) is the standard language for specifying, visualizing,

constructing, and documenting all the artefacts of a software system. It provides abstraction at

many layers in design process. UML is useful because it encourages design by successive

refinement and progressively adding details of the design rather thinking about design at each

new level of abstraction.

The structural diagrams in UML are class diagrams, collaboration diagrams, component diagrams,

and deployment diagrams. The behavioural diagrams comprises of use case diagrams, sequence

diagrams, state diagram, and activity diagram.

The different activities carried out in UML are [18]:

1. The first activity of modelling start with the activity diagram that shows the flows of

control. Transition shows the flow of information. Each state of activity diagram can in

turn form into the use case diagram. Activity diagram can be used in planning stage where

the steps are not detailed as well as in design stage where it becomes more detailed. One

of another way to represent activity diagram is through swim-lanes. It shows flow of

control from ownership point of view.

2. Use case diagram shows flow of events by actors interacting with the system. Actors are

those entities that interact with the system. Overall use case provides with the correct

view about the different functionalities of the system.

3. Sequence Diagram shows the object interactions from time period perspective. This

diagram is very useful during analysis phase of software development and helps in finding

time sequence about the behaviour in use case diagram.

4. Collaboration diagram shows relationships and interaction between objects. This diagram

is used in later stage after program has its implementation done.

5. Class Diagram: This diagram shows relationships between the classes, classes’ attributes

and operations. Class diagram shows the static nature of system. The inputs in the class

diagram may be from different diagrams such as sequence diagram that gives the view

way operation should perform.

6. State transition diagram: It shows the different states class will be in.

Page 75 of 89

Appendix B: Cello

Cello is base product that has its usage in RBC, RNC and also in mobile handset. They provide

ATM cell switching network. It includes of ATM transport system, distinguished real time

telecom control system, and elements that can be used for network management system.

Cello provides tools and instructions to develop custom software and hardware for ATM cell

switching node, RBS and RNC. Cello consists of modules that include software, function to set

up connections and modify operating parameters, and hardware, such as processors board,

switchboards and backplane connectors.

Cello several services to the application program running on it [15]:

• Software execution platform: It uses OSE Delta on all processors present in the node. It

uses inband AAL5 paths for inter processor communication and has processor cluster to

allow robust and scalable software.

• Operation and maintenance of node: It provides management interface based on

CORBA, HTTP, Telnet and FTP. It makes use of Java environment for the

implementation purposes. It is also responsible for providing real time database and for

loading of MP (Main Processor)/BP (Board Processor) for fundamental configuration

and start/restart functions.

• Network and connection handling: It provides functions such as network routing, traffic

management, virtual connection for cross connections, and data transfer between ATM

end points. It provides signalling service and is responsible for creating time slots in

frame to transfer ATM cells. It provides network synchronization to enable cello node in

network to have a common timing rate.

• Physical infrastructure: It provides upto 20 subracks with 26 processor or device boards

in each subrack. It provides processor cluster. 17Gbps cell switch per subrack and timing

for network synchronization is handled by cello.

Cello platform provides a common base for all the application developed to it. Cello provides

database as described above that is used to retrieve value to be passed to client and server

running outside RoseRT environment. It gets value stored in it about the time overload

protection mechanism rejected connections and these details are printed to the operator to give

idea about system performance.

Page 76 of 89

Appendix C: Overload Protection Code

This part contains processes used in client and server communication.

Note: These codes are not my piece of code but Ericsson implementation of overload protection. I have made some
changes so that it works in simcello environment.

#include <ose.h>
#include <osetypes.h>
#include <stdio.h>
#include <time.h>

#include "omcsf_te_ose_dex.h"
#include "omcsf_te_error_dex.h"
#include "omcsf_te_trace_dex.h"

#include "bc_bcnm1.sig"
#include "bcnm_overload_data1.h"

#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */

time_t curtime;
SIGSELECT any_sig[] = {0};

OS_PROCESS(loadControlServer_procLoop)
{
 union SIGNAL *rec_sig, *send_sig;

 for (;;)
 {
 rec_sig = receive(any_sig);

 if (rec_sig->sigNo == BC_OP_INIT_SERVER_IND)
 {
 PROCESS bcNmPid = sender(&rec_sig);

 int sequenceNo = 0;
 /* sample interval for sending of signal BC_O P_PING_REQ */
 int sampleIntervalT = rec_sig->bcOpInitServer Ind.opSampleIntervalT;
 /* process Id of the response server */
 PROCESS pid = rec_sig->bcOpInitServerInd.pidR espoderServer;
 /* overload indication, 0 = not overloaded, 1 = overloaded */
 struct BcNmOverloadControlDataS *overloadPtr = (struct
BcNmOverloadControlDataS *)rec_sig->bcOpInitServerI nd.overloadPtr;
 /* supervision time for signal BC_OP_PING_RSP */
 int supervisionT = rec_sig->bcOpInitServerInd .opSupervisionT;

 send_sig = alloc(sizeof(struct BcOpPingReqS), BC_OP_PING_REQ);
 (void) time(&curtime);
 printf("\n %s",asctime(gmtime(&curtime)));

 printf(" BC_OP_INIT_SERVER_IND(samplIntervalT=%d , pid=%d,
supervisionT=%d, overloadIndicator=%d) received", s ampleIntervalT, pid,
supervisionT, overloadPtr->overloadIndicator);
 sequenceNo = sequenceNo + 1;
 send_sig->bcOpPingReq.sequenceNo = sequenceNo ;
 send(&send_sig, pid);

Page 77 of 89

 for(;;)
 {
 rec_sig = receive_w_tmo((OSTIME) supervisio nT, any_sig);
 if (rec_sig)
 {
 switch(rec_sig->sigNo)
 {
 case BC_OP_PING_RSP:
 (void) time(&curtime);
 printf("\n %s",asctime(gmtime(&curtime)));
 printf(" BC_OP_PING_RSP(sequenceNo=% d), expected
sequenceNo=%d received", rec_sig->bcOpPingRsp.seque nceNo, sequenceNo);

 if (sequenceNo == rec_sig->bcOpPingRs p.sequenceNo)
 {
 delay(sampleIntervalT);
 send_sig = alloc(sizeof(struct BcOp PingReqS),
BC_OP_PING_REQ);
 sequenceNo = sequenceNo + 1;
 send_sig->bcOpPingReq.sequenceNo = sequenceNo;

 send(&send_sig, pid);
 (void) time(&curtime);
 printf("\n %s",asctime(gmtime(&curtime)));
 printf(" Message sent : %d", sequenceNo);

 if (overloadPtr->overloadIndicator == 1)
 {
 (void) time(&curtime);
 printf("\n %s",asctime(gmtime(&curtime)));
 printf(" overloadIndicato r changed to: not
overload(0), sending BC_OP_OVERLOAD_CEASED_IND");
 overloadPtr->overloadIndicator = 0; /* set the
overload indicator to false */
 send_sig = alloc(sizeof(struct
BcOpOverloadCeasedIndS), BC_OP_OVERLOAD_CEASED_IND) ;

 send(&send_sig, bcNmPid);
 }
 }
 break;
 default: ; /* recieved unexpected sign al */
 }
 free_buf(&rec_sig);
 }
 else /* timeout, the base station is overl oaded */
 {
 (void) time(&curtime);
 printf("\n %s",asctime(gmtime(&curtime))) ;
 printf(" Timeout sequenceNo=%d received", sequenceNo);
 if (overloadPtr->overloadIndicator == 0)
 {
 (void) time(&curtime);
 printf("\n %s",asctime(gmtime(&curtime)));
 printf(" overloadIndicator changed to: overload(1),
sending BC_OP_OVERLOAD_IND");
 overloadPtr->overloadIndicator = 1 ; /* set the overload
indicator to true */
 send_sig = alloc(sizeof(struct BcO pOverloadIndS),
BC_OP_OVERLOAD_IND);
 send(&send_sig, bcNmPid);

Page 78 of 89

 }
 send_sig = alloc(sizeof(struct BcOpPi ngReqS),
BC_OP_PING_REQ);
 sequenceNo = sequenceNo + 1;
 send_sig->bcOpPingReq.sequenceNo = sequenceNo;
 send(&send_sig, pid);
 }
 }
 }
 else
 {
 /* received unexpected signal */
 free_buf(&rec_sig);
 }
 }
}

OS_PROCESS(loadControlResponseServer_procLoop)
{
 int sequenceNo;
 /* This is the main process loop */
 for(;;)
 {
 union SIGNAL *rec_sig, *send_sig;
 rec_sig = receive(any_sig);
 switch(rec_sig->sigNo)
 {
 case BC_OP_PING_REQ:
 sequenceNo = rec_sig->bcOpPingReq.sequence No;

 send_sig = alloc(sizeof(struct BcOpPingRsp S), BC_OP_PING_RSP);
 send_sig->bcOpPingReq.sequenceNo = sequenc eNo;
 (void) time(&curtime);
 printf("\n %s",asctime(gmtime(&curtime)));
 printf(" Server has sent the reply: %d", sequence No);
 send(&send_sig, sender(&rec_sig));
 break;
 default: ; /* received unexpected signal */
 }
 free_buf(&rec_sig);

 }
}
PROCESS startClient1(int prio, int stacksize)
{
 PROCESS proc;
 proc = create_process (OS_PRI_PROC,
 "bcNmLoadControlServer",
 loadControlServer_procLoop,
 stacksize,
 (OSPRIORITY) prio,
 (OSTIME) 0,
 (PROCESS) 0,
 (struct OS_redir_entry *) 0,
 (OSVECTOR) 0,
 (OSUSER) 0);
 (void) time(&curtime);
 printf("\n %s",asctime(gmtime(&curtime)));

 printf(" Client Started \n");

Page 79 of 89

 /* start the new tread (OSE Process) */

 start(proc);
 return proc;

}
PROCESS startServer1(int prio, int stacksize)
{
 PROCESS proc;
 proc = create_process (OS_PRI_PROC,
 "bcNmLoadControlResponseServer",
 loadControlResponseServer_procLoop,
 stacksize,
 (OSPRIORITY) prio,
 (OSTIME) 0,
 (PROCESS) 0,
 (struct OS_redir_entry *) 0,
 (OSVECTOR) 0,
 (OSUSER) 0);
 (void) time(&curtime);
 printf("\n %s",asctime(gmtime(&curtime)));
 printf("Server Started\n ");
 /* start the new thread (OSE Process) */
 start(proc);

 return proc;
}

#ifdef __cplusplus
}
#endif /* __cplusplus */

Appendix D: Simulation Program Code

This part contains codes for capsules and ports used in rational rose environment.

// {{{RME classifier 'Logical View::DriverC'

#if defined(PRAGMA) && ! defined(PRAGMA_IMPLEMEN TED)
#pragma implementation "DriverC.h"
#endif

#include <RTSystem/OverloadProtectionSim.h>
#include <DriverC.h>

// {{{RME tool 'OT::Cpp' property 'ImplementationPr eface'
// {{{USR
#include <bc_bcnm.h>
#include <bc_bcnm.sig>
#include <tsl_te_trace_actor.h>
// }}}USR
// }}}RME

static const RTRelayDescriptor rtg_relays[] =
{
 {
 "DriverRlsP"
 , &DriverRlsPro::Base::rt_class
 , 1 // cardinality

Page 80 of 89

 }
 , {
 "DriverPbP"
 , &DriverPbPro::Base::rt_class
 , 1 // cardinality
 }
};

static RTActor * new_DriverC_Actor(RTController * _rts, RTActorRef * _ref
)
{
 return new DriverC_Actor(_rts, _ref);
}

const RTActorClass DriverC =
{
 (const RTActorClass *)0
 , "DriverC"
 , (RTVersionId)0
 , 2
 , rtg_relays
 , new_DriverC_Actor
};

static const char * const rtg_state_names[] =
{
 "TOP"
 , "S1"
 , "S2"
};

const RTTypeModifier rtg_tm_DriverC_Actor_overloadp tr =
{
 RTNumberConstant
 , 1
 , 1
};

#define SUPER RTActor

DriverC_Actor::DriverC_Actor(RTController * rtg_rt s, RTActorRef * rtg_ref
)
 : RTActor(rtg_rts, rtg_ref)
 , opOnOff(1)
 , opRespServPrio(18)
 , opRoPrio(14)
 , opSampleIntervalT(1000)
 , opSupervisionT(100)
 , overloadRejectCounter(0)
{
}

DriverC_Actor::~DriverC_Actor(void)
{
}

// {{{RME operation 'registerOseSignals()'
bool DriverC_Actor::registerOseSignals(void)
{
 // {{{USR
 bool result = false;

Page 81 of 89

 result = REGISTER_OSE_SIGNAL(BC_OP_OVERLOAD_IND,
OpSignalPro::Base::rti_extOverloadInd, General, &ov erloadInitiator);
 if (result)
 {
 TRACE(3, STR("Register for BC_OP_OVERLOAD_IND (%d) ",
BC_OP_OVERLOAD_IND));
 }
 else
 {
 TRACE_ERROR(STR("OSE signal registration failed for
BC_OP_OVERLOAD_IND (%d) ", BC_OP_OVERLOAD_IND));
 }

 if (result)
 {
 result = REGISTER_OSE_SIGNAL(BC_OP_OVERLOAD_CEAS ED_IND,
OpSignalPro::Base::rti_extOverloadCeasedInd, Genera l, &overloadInitiator);
 if (result)
 {
 TRACE(3, STR("Register for BC_OP_OVERLOAD_CEA SED_IND (%d) ",
BC_OP_OVERLOAD_CEASED_IND));

 }
 else
 {
 TRACE_ERROR(STR("OSE signal registration faile d for
BC_OP_OVERLOAD_CEASED_IND (%d) ", BC_OP_OVERLOAD_CEASED_IND));
 }
 }

 return result;
 // }}}USR
}
// }}}RME

int DriverC_Actor::_followInV(RTBindingEnd & rtg_e nd, int rtg_portId, int
rtg_repIndex)
{
 switch(rtg_portId)
 {
 case 0:
 // DriverRlsP
 if(rtg_repIndex < 1)
 {
 rtg_end.port = &DriverRlsP;
 rtg_end.index = rtg_repIndex;
 return 1;
 }
 break;
 case 1:
 // DriverPbP
 if(rtg_repIndex < 1)
 {
 rtg_end.port = &DriverPbP;
 rtg_end.index = rtg_repIndex;
 return 1;
 }
 break;
 default:

Page 82 of 89

 break;
 }
 return RTActor::_followInV(rtg_end, rtg_portId, r tg_repIndex);
}

// {{{RME transition ':TOP:Initial:Initial'
INLINE_METHODS void DriverC_Actor::transition1_Init ial(const void *
rtdata, RTProtocol * rtport)
{
 // {{{USR
 (void) Timer.informIn(RTTimespec(0,0));
 // }}}USR
}
// }}}RME

// {{{RME transition ':TOP:S1:J42FB23C50280:t3'
INLINE_METHODS void DriverC_Actor::transition2_t3(const void * rtdata,
Timing::Base * rtport)
{
 // {{{USR
 if (!registerOseSignals())
 {
 TRACE_ERROR("OSE signal registration failed.") ;
 }
 TRACE(1, STR("OSE signal registration done"));

 int stacksizeServer = 256; // the pong process
 int stacksizeClient = 512; // the ping process

 TRACE(3,STR("Overload Protection server and client process to be
created, Stacksize = %d and %d", stacksizeServer , stacksizeClient));

 serverProc = startServer(opRespServPrio, stacksize Server);
 clientProc = startClient(opRoPrio, stacksizeClient);
 overloadRejectCounter = 0;
 overloadptr = new (BcNmOverloadControlDataS);
 overloadptr->overloadIndicator = 0; // false
 overloadptr->overloadRejectCounter = 0;
 //(void)bcNmOverloadControlP.startOverloadControlI nd((void
*)overloadptr).send();

 union SIGNAL *send_p = alloc(sizeof(struct BcOpIni tServerIndS),
BC_OP_INIT_SERVER_IND);
 send_p->bcOpInitServerInd.pidRespoderServer = serv erProc;
 send_p->bcOpInitServerInd.overloadPtr = (long unsi gned
int)overloadptr;
 send_p->bcOpInitServerInd.opSampleIntervalT = opSa mpleIntervalT;
 send_p->bcOpInitServerInd.opSupervisionT = opSuper visionT;
 send(&send_p, clientProc);
 (void) Timer.informIn(RTTimespec(10,0));
 INFO("Overload Protection Activated");

 int n;
 for(int i=0;i<200;i++){
 n=rand();
 TRACE(3,STR("OverloadProtectionDriver"));
 if(n%2==0)
 (void)DriverRlsP.DriRls().send();
 else
 (void)DriverPbP.DriPb().send();
 }

Page 83 of 89

 exit(0);
 // }}}USR
}
// }}}RME

// {{{RME transition ':TOP:S2:J430474AD00BB:pb'
INLINE_METHODS void DriverC_Actor::transition3_pb(const void * rtdata,
DriverPbPro::Base * rtport)
{
 // {{{USR
 TRACE(3,STR("PB MSG"));
 // }}}USR
}
// }}}RME

// {{{RME transition ':TOP:S2:J430474D302AE:rls'
INLINE_METHODS void DriverC_Actor::transition4_rls(const void * rtdata,
DriverRlsPro::Base * rtport)
{
 // {{{USR
 TRACE(3,"RLS MSG");
 // }}}USR
}
// }}}RME

INLINE_CHAINS void DriverC_Actor::chain1_Initial(v oid)
{
 // transition ':TOP:Initial:Initial'
 rtgChainBegin(1, "Initial");
 rtgTransitionBegin();
 transition1_Initial(msg->data, msg->sap());
 rtgTransitionEnd();
 enterState(2);
}

INLINE_CHAINS void DriverC_Actor::chain2_t3(void)
{
 // transition ':TOP:S1:J42FB23C50280:t3'
 rtgChainBegin(2, "t3");
 exitState(rtg_parent_state);
 rtgTransitionBegin();
 transition2_t3(msg->data, (Timing::Base *)msg->sa p());
 rtgTransitionEnd();
 enterState(3);
}

INLINE_CHAINS void DriverC_Actor::chain4_rls(void)
{
 // transition ':TOP:S2:J430474D302AE:rls'
 rtgChainBegin(3, "rls");
 exitState(rtg_parent_state);
 rtgTransitionBegin();
 transition4_rls(msg->data, (DriverRlsPro::Base *) msg->sap());
 rtgTransitionEnd();
 enterState(3);
}

INLINE_CHAINS void DriverC_Actor::chain3_pb(void)
{
 // transition ':TOP:S2:J430474AD00BB:pb'
 rtgChainBegin(3, "pb");

Page 84 of 89

 exitState(rtg_parent_state);
 rtgTransitionBegin();
 transition3_pb(msg->data, (DriverPbPro::Base *)ms g->sap());
 rtgTransitionEnd();
 enterState(3);
}

void DriverC_Actor::rtsBehavior(int signalIndex, i nt portIndex)
{
 for(int stateIndex = getCurrentState(); ; stateIn dex =
rtg_parent_state[stateIndex - 1])
 switch(stateIndex)
 {
 case 1:
 // {{{RME state ':TOP'
 switch(portIndex)
 {
 case 0:
 switch(signalIndex)
 {
 case 1:
 chain1_Initial();
 return;
 default:
 break;
 }
 break;
 default:
 break;
 }
 unexpectedMessage();
 return;
 // }}}RME
 case 2:
 // {{{RME state ':TOP:S1'
 switch(portIndex)
 {
 case 0:
 switch(signalIndex)
 {
 case 1:
 return;
 default:
 break;
 }
 break;
 case 4:
 // {{{RME port 'Timer'
 switch(signalIndex)
 {
 case Timing::Base::rti_timeout:
 chain2_t3();
 return;
 default:
 break;
 }
 break;
 // }}}RME
 default:
 break;
 }

Page 85 of 89

 break;
 // }}}RME
 case 3:
 // {{{RME state ':TOP:S2'
 switch(portIndex)
 {
 case 0:
 switch(signalIndex)
 {
 case 1:
 return;
 default:
 break;
 }
 break;
 case 1:
 // {{{RME port 'DriverRlsP'
 switch(signalIndex)
 {
 case DriverRlsPro::Base::rti_RlsDri:
 chain4_rls();
 return;
 default:
 break;
 }
 break;
 // }}}RME
 case 2:
 // {{{RME port 'DriverPbP'
 switch(signalIndex)
 {
 case DriverPbPro::Base::rti_PbDri:
 chain3_pb();
 return;
 default:
 break;
 }
 break;
 // }}}RME
 default:
 break;
 }
 break;
 // }}}RME
 default:
 unexpectedState();
 return;
 }
}

const RTActor_class * DriverC_Actor::getActorData(void) const
{
 return &DriverC_Actor::rtg_class;
}

const RTActor_class DriverC_Actor::rtg_class =
{
 (const RTActor_class *)0
 , rtg_state_names
 , 3
 , DriverC_Actor::rtg_parent_state

Page 86 of 89

 , &DriverC
 , 0
 , (const RTComponentDescriptor *)0
 , 4
 , DriverC_Actor::rtg_ports
 , 0
 , (const RTLocalBindingDescriptor *)0
 , 9
 , DriverC_Actor::rtg_DriverC_fields
};

const RTStateId DriverC_Actor::rtg_parent_state[] =
{
 0
 , 1
 , 1
};

const RTPortDescriptor DriverC_Actor::rtg_ports[] =
{
 {
 "DriverRlsP"
 , (const char *)0
 , &DriverRlsPro::Base::rt_class
 , RTOffsetOf(DriverC_Actor, DriverC_Actor::Driv erRlsP)
 , 1 // cardinality
 , 1
 , RTPortDescriptor::KindWired +
RTPortDescriptor::NotificationDisabled +
RTPortDescriptor::RegisterNotPermitted + RTPortDesc riptor::VisibilityPublic
 }
 , {
 "DriverPbP"
 , (const char *)0
 , &DriverPbPro::Base::rt_class
 , RTOffsetOf(DriverC_Actor, DriverC_Actor::Driv erPbP)
 , 1 // cardinality
 , 2
 , RTPortDescriptor::KindWired +
RTPortDescriptor::NotificationDisabled +
RTPortDescriptor::RegisterNotPermitted + RTPortDesc riptor::VisibilityPublic
 }
 , {
 "overloadInitiator"
 , (const char *)0
 , &OpSignalPro::Base::rt_class
 , RTOffsetOf(DriverC_Actor, DriverC_Actor::over loadInitiator)
 , 1 // cardinality
 , 3
 , RTPortDescriptor::KindWired +
RTPortDescriptor::NotificationDisabled +
RTPortDescriptor::RegisterNotPermitted +
RTPortDescriptor::VisibilityProtected
 }
 , {
 "Timer"
 , (const char *)0
 , &Timing::Base::rt_class
 , RTOffsetOf(DriverC_Actor, DriverC_Actor::Time r)
 , 1 // cardinality
 , 4

Page 87 of 89

 , RTPortDescriptor::KindSpecial +
RTPortDescriptor::NotificationDisabled +
RTPortDescriptor::RegisterNotPermitted +
RTPortDescriptor::VisibilityProtected
 }
};

const RTFieldDescriptor DriverC_Actor::rtg_DriverC_ fields[] =
{
 // {{{RME classAttribute 'serverProc'
 {
 "serverProc"
 , RTOffsetOf(DriverC_Actor, serverProc)
 // {{{RME tool 'OT::CppTargetRTS' property 'TypeD escriptor'
 , &RTType_RTulong
 // }}}RME
 // {{{RME tool 'OT::CppTargetRTS' property
'GenerateTypeModifier'
 , (const RTTypeModifier *)0
 // }}}RME
 }
 // }}}RME
 // {{{RME classAttribute 'clientProc'
 , {
 "clientProc"
 , RTOffsetOf(DriverC_Actor, clientProc)
 // {{{RME tool 'OT::CppTargetRTS' property 'TypeD escriptor'
 , &RTType_RTulong
 // }}}RME
 // {{{RME tool 'OT::CppTargetRTS' property
'GenerateTypeModifier'
 , (const RTTypeModifier *)0
 // }}}RME
 }
 // }}}RME
 // {{{RME classAttribute 'opOnOff'
 , {
 "opOnOff"
 , RTOffsetOf(DriverC_Actor, opOnOff)
 // {{{RME tool 'OT::CppTargetRTS' property 'TypeD escriptor'
 , &RTType_int
 // }}}RME
 // {{{RME tool 'OT::CppTargetRTS' property
'GenerateTypeModifier'
 , (const RTTypeModifier *)0
 // }}}RME
 }
 // }}}RME
 // {{{RME classAttribute 'opRespServPrio'
 , {
 "opRespServPrio"
 , RTOffsetOf(DriverC_Actor, opRespServPrio)
 // {{{RME tool 'OT::CppTargetRTS' property 'TypeD escriptor'
 , &RTType_int
 // }}}RME
 // {{{RME tool 'OT::CppTargetRTS' property
'GenerateTypeModifier'
 , (const RTTypeModifier *)0
 // }}}RME
 }
 // }}}RME

Page 88 of 89

 // {{{RME classAttribute 'opRoPrio'
 , {
 "opRoPrio"
 , RTOffsetOf(DriverC_Actor, opRoPrio)
 // {{{RME tool 'OT::CppTargetRTS' property 'TypeD escriptor'
 , &RTType_int
 // }}}RME
 // {{{RME tool 'OT::CppTargetRTS' property
'GenerateTypeModifier'
 , (const RTTypeModifier *)0
 // }}}RME
 }
 // }}}RME
 // {{{RME classAttribute 'opSampleIntervalT'
 , {
 "opSampleIntervalT"
 , RTOffsetOf(DriverC_Actor, opSampleIntervalT)
 // {{{RME tool 'OT::CppTargetRTS' property 'TypeD escriptor'
 , &RTType_int
 // }}}RME
 // {{{RME tool 'OT::CppTargetRTS' property
'GenerateTypeModifier'
 , (const RTTypeModifier *)0
 // }}}RME
 }
 // }}}RME
 // {{{RME classAttribute 'opSupervisionT'
 , {
 "opSupervisionT"
 , RTOffsetOf(DriverC_Actor, opSupervisionT)
 // {{{RME tool 'OT::CppTargetRTS' property 'TypeD escriptor'
 , &RTType_int
 // }}}RME
 // {{{RME tool 'OT::CppTargetRTS' property
'GenerateTypeModifier'
 , (const RTTypeModifier *)0
 // }}}RME
 }
 // }}}RME
 // {{{RME classAttribute 'overloadptr'
 , {
 "overloadptr"
 , RTOffsetOf(DriverC_Actor, overloadptr)
 // {{{RME tool 'OT::CppTargetRTS' property 'TypeD escriptor'
 , (const RTObject_class *)0
 // }}}RME
 // {{{RME tool 'OT::CppTargetRTS' property
'GenerateTypeModifier'
 , &rtg_tm_DriverC_Actor_overloadptr
 // }}}RME
 }
 // }}}RME
 // {{{RME classAttribute 'overloadRejectCounter'
 , {
 "overloadRejectCounter"
 , RTOffsetOf(DriverC_Actor, overloadRejectCount er)
 // {{{RME tool 'OT::CppTargetRTS' property 'TypeD escriptor'
 , &RTType_unsigned
 // }}}RME
 // {{{RME tool 'OT::CppTargetRTS' property
'GenerateTypeModifier'

Page 89 of 89

 , (const RTTypeModifier *)0
 // }}}RME
 }
 // }}}RME
};
#undef SUPER

// {{{RME tool 'OT::Cpp' property 'ImplementationEn ding'
// {{{USR

// }}}USR
// }}}RME

// }}}RME

