
Abstract

Internet’s continuous growth have made it harder and harder for small
businesses and non-profit organizations to find solutions for surviving
a flash crowd. To use a Content Delivery Network (CDN) is usually
not an option since it is simply too costly. This also includes solutions
for replicating their content in a cost-efficient way. In recent years
extensive research has been done in the field of Distributed Hash Tables
(DHT), producing structured overlay networks, that have features that
can be used by many applications. In this Master Thesis we present
DOH, DKS Organized Hosting, a Content Distribution Peer-to-Peer
Network (CDP2PN), where distributed web server’s cooperatively will
work together to share their load. DKS, which is a DHT, will provide the
system with the well balanced placement and replication features that is
needed in any CDN, and application level request routing will be used for
load-balancing the DOH nodes. DOH will provide the same features as
corporate CDNs to almost the same cost as a regular low-end web server.

The main delivery of this project is a prototype implemented in Java,
using DKS[4], the Jetty[27] web server, and a modified JavaFTP[11]
server package. This prototype, along with system model, was used in
the evaluation tests of the proposed CDN design.

i

Sammanfattning

Internets fortsatta utbredning har gjort det allt sv̊arare för
sm̊aföretagare och ideella organisationer att hitta lösningar för att
överleva en s̊a kallad ”flash crowd”. Användning av nätverk för att
distribuera webbsidesinneh̊all (CDN) är oftast inte ett alternativ, efter-
som det är för dyrt. Detta inkluderar även lösningar för att replikera
sina websidor p̊a ett kostnadseffektivt sätt. De senaste åren har mycket
forskning ägnats åt distribuerade hash-tabeller (DHT) vilket har resul-
terat i virtuella nätverksstrukturer med funktionalitet som är anpassade
till m̊anga olika applikationer. I denna examensrapport presenteras
DOH, DKS Organized Hosting, vilket är ett peer-to-peer CDN: ett
nätverk av samverkande webbservrar arbetandes tillsammans för att
dela p̊a belastningen. DHT:n DKS ger systemet välbalanserad placering
av inneh̊allet och möjligheter till replikation, vilket är funktioner som
varje CDN behöver. Tillsammans med DNS-baserad request routing,
som används för att distribuera webserverbelastning, kommer detta att
skapa ett CDN med samma funktionalitet som ett kommersiellt, men till
en kostnad som motsvarar densamma som företaget hade för endast sin
webserver innan.

Detta examensarbetes huvudsakliga utkomst är en prototyp imple-
menterad i Java, vilken använder sig av DKS[4], web servern Jetty[27]
och en modifierad variant av JavaFTP[11] server paketet. Denna
prototyp, samt en tillika utvecklad systemmodell, används sen för att
testa och utvärdera den föreslagna systemdesignen.

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Vision . 1
1.3 Related Work . 2

2 Background 3
2.1 Overlay Networks . 4
2.2 Consistency . 4
2.3 Distributed Hash Tables . 5

2.3.1 General DHT characteristics 5
2.3.2 DKS(N,k,f) . 6

2.4 Request Routing . 10
2.4.1 DNS based . 11
2.4.2 Transport layer . 13
2.4.3 Application layer . 14

2.5 Replication systems . 15
2.5.1 Akamai . 15
2.5.2 RaDaR . 16
2.5.3 SPREAD . 17
2.5.4 Globule . 17
2.5.5 SCAN . 18
2.5.6 Backslash . 19
2.5.7 CoralCDN . 20

3 Key issues when creating DOH 20

4 Analysis and Design 24
4.1 Terminology . 25

4.1.1 Actors . 25
4.1.2 Subsystems . 25

4.2 Actor scenarios . 25
4.2.1 User . 26
4.2.2 Publisher . 26
4.2.3 Super user . 26
4.2.4 Administrator . 26

4.3 Use Cases . 27
4.3.1 User . 27
4.3.2 Super User . 27
4.3.3 Publisher . 28
4.3.4 Administrator . 28

4.4 Subsystem collaboration . 29
4.5 Subsystem design view . 29

4.5.1 Translator . 29
4.5.2 Node . 32

iii

5 Implementation 35
5.1 Development platform . 35
5.2 Node . 35

5.2.1 Web Server . 36
5.2.2 FTP Server . 36
5.2.3 DKS Peer . 38

5.3 Translator . 41
5.3.1 Web cache . 41
5.3.2 Rerouter . 42

6 Validation 43
6.1 Fairness of the Rerouter . 43

6.1.1 Asymmetric node scores 44
6.2 Use Case validation . 44
6.3 Portability . 45

7 Evaluation 49
7.1 Test-bed platform . 49
7.2 Critical Path . 49
7.3 Design choice evaluation . 50
7.4 Performance Evaluation . 52

7.4.1 Model description . 55
7.4.2 Simulator description . 56
7.4.3 Results . 56

8 Conclusions 60

9 Future work 61

10 References 64

Appendices 68
A Acronyms . 68
B Rerouter validation . 69
C DOH Manual . 71

C.1 Starting a Translator . 71
C.2 Starting a DOH Node . 71
C.3 User Management . 72
C.4 To publish content . 73

iv

List of Figures

1.1 A high level view of a DOH node in the CDP2PN. 2
2.1 DKS(N,k,f) topology. 7
2.2 The steps involved in retrieving a client HTTP-request. 11
2.3 The DNS resolution process. 12
2.4 Akamai Client HTTP content request. 16
2.5 A high level view of RaDaR. 17
2.6 The Tapestry Infrastructure . 19
4.1 Starting point for the system analysis. 24
4.2 Use Cases in DOH. 28
4.3 Interaction within the DOH system. 30
4.4 The system view after the analysis. 31
4.5 XML syntax for the DOH Web Cache. 33
4.6 Directory structure example . 35
5.1 Jetty overview and example. 36
5.2 User information XML structure 37
5.3 Adding files to DKS in DOH. 40
5.4 Retrieving files from DKS in DOH. 40
5.5 An example HTTP 302 reroute message. 42
6.1 An excerpt from a DOH webcache 46
6.2 The Login dialog between the DOH FTP server and the client. . 46
6.3 Uploading content to a Node’s FTP server. 47
6.4 An example of rerouting in DOH. 47
6.5 Removal of a web page. 48
6.6 Failed DOH FTP server login attempt. 48
7.1 Average request response times for object granularities in DOH. 51
7.2 Time to retrieve files of different sizes in DOH. 53
7.3 The performance of Jetty under different workloads. 53
7.4 Performance of DOH 1. 54
7.5 Performance of DOH 2 . 54
7.6 The average service time in DOH, using directory-wise approach 58
7.7 The average service time in DOH, using the file-wise approach . 58

v

List of Tables

2.1 DKS routing tables. 8
2.2 Keys stored in DKS network showed in Figure 2.1 when f = 2. . 8
4.1 Actors, and software used for each actor, in the DOH system . . 25
4.2 The main building blocks of the DOH system. 26
5.1 Protocol between a DOH node and the Translator web cache. . . 41
6.1 First Rerouter simulation. 43
6.2 Second Rerouter simulation. 44
6.3 Rerouter simulation using asymmetric node scores. 45
7.1 The time used by DOH for retrieving files of different sizes. . . . 50
7.2 Using a cache or not . 51
7.3 Performance of DOH 1 . 52
7.4 The ideal number of nodes for different request rates. 59

vi

1 Introduction

In the past couple of years the peer-to-peer (P2P) community has grown
rapidly, not to say avalanche-like. P2P applications such as Napster, Kazaa
and Gnutella are well-known, and have had millions of users worldwide. The
goal of the peer-to-peer community is to create distributed and decentralized
solutions to solve problems such as single points of failure and those related to
scalability.

The main focus of this report is defining and creating a pull based Con-
tent Delivery Network (CDN) on top of a structured P2P system. This
also includes developing an architectural prototype implementing the basic
functionality of such a system.

1.1 Motivation

Take the example of a small company that, for example, creates web site
solutions. The company have a web server located on a 10 Mbit broadband
line, which usually serves them well. One day a big news portal review their
site and recommend it to the portal users. Since the site has become a ”hot
object” it will generate a huge amount of hits. Subsequently the company’s
server will not be able to cope with the strain and their bandwidth will be
consumed, making the page unavailable.

The situation described above is called the flash crowd effect (also known as
the SlashDot effect[1]), where a sudden increase in traffic makes whole web
sites go down. One solution for surviving a flash crowd is that a company
pays for joining a CDN. For now we use a general definition of a CDN taken
from [35]: ”A CDN is a network optimized to deliver specific content [. . .] Its
purpose is to quickly give users the most current content in a highly avail-
able fashion.” For small companies which do not have the need for a CDN on
a daily basis, it may be considered cost-inefficient to pay for this kind of features.

Imagine instead that the company in the example above had been a peer in
a peer-to-peer network designed to cooperatively divide load and replicate
content between the participating web servers. Then they would have access to
the same features as if they where a part of a CDN but without paying a third
party.

1.2 Vision

The use of a peer-to-peer system that cooperatively divides load between web
servers should be interesting for many small companies. The vision for this
master thesis project is to provide technology making it possible for small busi-
nesses and non-profit organizations to obtain the same hosting services that
have been available to big companies for years, at an affordable price. By using
DKS(N,k,f)[4], a distributed hash table (DHT) mainly developed at KTH[33],
this master thesis project aims at creating a Content Delivery Peer-to-Peer Net-
work (CDP2PN) called DKS Organized Hosting (DOH). The idea is to combine

1

DKS with a web server and create DOH-nodes with both DHT and web server
functionality, as seen in Figure 1.1.

1.3 Related Work

Many P2P systems, like [44], [52], [36], [46], and [58], have been used for
creating DHTs. However, the reasons for choosing DKS(N,k,f) is manifold.
Two of the main arguments for choosing DKS(N,k,f) is that it has local atomic
joins and leaves. I.e. by serializing all joins and leaves DKS(N,k,f) guarantees
that the DHT never will be in an inconsistent state. Furthermore, by using
symmetric replication DKS(N,k,f) allows for concurrent lookups. I.e. the client
using the DHT will get more then one result when doing a lookup. This speeds
up the lookup-time, if only one response is needed, or could be used as a
base of a voting protocol in the case that the layer on top of the DHT want
to be sure that the retrieved object not has been tampered with. These are
features that, to the author’s knowledge, no other P2P overlay network provides.

Until recently Content Distribution Networks has been proprietary solu-
tions owned by companies like e.g. Akamai[2, 21]. Akamai’s solution uses DNS
redirection to reroute client requests and is based on BGP (Border Gateway
Protocol) information and detailed knowledge of the underlying network topol-
ogy. This is not a viable solution for a non-corporate CDN, since this knowledge
is not always easily obtained. RaDaR[43] uses a hierarchical Multiplexing
service to redirect the clients and a Replication service to keep track of replicas.
All incoming requests goes through the multiplexing service which distributes
the requests by looking at server load. RaDar is an example of a non-P2P
approach of solving the CDN problem. Other solutions like CoralCDN[25],
Globule[40] and SCAN[16], all propose some type of peer-to-peer content
delivery network to solve the same issues. The authors of Globule make the
observation that local web space is cheap, and could be traded for non-local,
creating replicas on different slaves over the world. Client requests are then
routed to the master or one of these slaves using for example the number
of hops between Autonomous Systems (AS) as a metric of proximity. The
problem is however, that the negotiation for replication space is not handled
automatically but needs to be done by a human administrator, whereas DOH
is aimed at being completely autonomous. SCAN uses Tapestry[58] and has
all the features of a CDN and is indeed a P2P system. One of the main goals
of SCAN, however, is to keep the number of replicas at a minimum to reduce

User (Browser)
↓ ↑

Application server
DHT

Web Server
⊥

Figure 1.1: A high level view of a DOH node in the CDP2PN.

2

overhead. This will cause sites to be unavailable whenever the master copy is
unavailable for some time. CoralCDN uses the Coral[26] implementation of a
Distributed Sloppy Hash Table (DSHT) to keep pointers to the master (or valid
caches) on different nodes. A round-trip time (RTT) clustering mechanism
is used to exploit node proximity information and CoralCDN probes the
closest cluster first for a copy. Redirection is done by using the systems own
CoralDNS-servers which stores information about Coral-nodes. In CoralCDN,
as in SCAN, if the master copy of a site becomes unavailable for Coral, the
site will soon not be reachable for any user. In DOH however, when using
DKS(N,k,f) and its symmetric replication, we make sure that sites always are
available.

PAST[47] is a storage utility built on top of Pastry[46] and share many
of the key ideas with the system presented in this thesis. Unfortunately as
stated in [47]: ”PAST does not provide facilities for searching, directory lookup,
or key distribution.” Where keys are needed to decrypt content. This makes it
unusable from DOHs point of view in its current state, since searching for files
is a key issue for the system to work as intended.

Open Content Network (OCN)[38] also is an effort to make a P2P CDN.
OCN extends the HTTP protocol to create a Content-Adressable Web and,
unlike DOH, it uses a browser plug-in for its clients to recognize it. The features
of OCN is multiple parallel downloads of the same file and an ad hoc creation
of a CDN. By ad hoc the developers mean that anyone that has installed the
browser plug-in can help out to share the files recently downloaded, as is the
case in e.g. the BitTorrent network[12]. The creators claim that OCN is a
P2P CDN, however they seem to be aiming at P2P more then CDN: OCN is
designed for handling large files and uses the users extensively to distribute
files, as most existing P2P systems do.

DotSlash[59] is described by the authors as being a rescue system for
web servers during hotspots but do share the same motivation as this thesis:
to help web servers survive a flash crowd. DotSlash, however, does not store
content globally but all servers will store their own content. When a flash
crowd occurs, an overlay network with rescue servers will be created, and the
”hot objects” will be cached at these servers during the flash crowd. This
network will be abandoned when workloads are back to normal.

Some of these systems will be described in greater detail in Section 2.5,
to see what can be learned before creating DOH.

2 Background

To be able to fully understand the problem addressed in this thesis, some back-
ground information may be needed. In this section we will introduce some tech-
nologies and concepts that are vital for understanding the rest of this document.
First there will be an explanation about overlay networks and consistency mod-
els, then a discussion of DHTs in general and DKS(N,k,f) in particular. Then
different request routing mechanisms are reviewed. Combined, these techniques

3

might lead to CDNs, which concludes this section.

2.1 Overlay Networks

Introducing new services into the Internet routing structure is problematic, slow-
ing down progress. As a consequence overlay and peer-to-peer networks have
been created for the introduction of new technologies, offered, not by network
routers, but by end-systems and other new intermediates. Overlay networks
are virtual communication structures that are logically ”laid over” a physical
network such as the Internet. Manually configured overlay networks is nothing
new, e.g. [23] was published 1994, the new and exiting feature is that they are
getting more and more self-organizing and nowadays handles changes and fail-
ures autonomously. Different overlays focuses on different issues, for instance:
resilience[5]; security[34]; and semantics[18]. In this report the focus will be
structured peer-to-peer overlay networks, implementing DHTs. The definition
of ”structure” is taken from DKS(N,k,f)[28]. The assumptions made are that
the identifier space is discrete and defined as I = {0, . . . , N − 1} for some
large constant N (N ∈ N). A set S is now defined, with a distance function
d : I × I → R satisfying the following criteria:

1. d(x, y) > 0

2. d(x, y) = 0, iff x = y

We can now formally define a structured P2P system: A structured P2P
system is a P2P system with a set S , where each peer in the system has got an
identifier from the set and the choice of the neighbors of a peer is constrained
by the distance function of that set. This simply means that: all nodes should
have an ID from the identifier space; there should be an ID-based joining
mechanism for joining nodes; there should be a way of measuring distance
between node’s IDs and finally that all nodes has distance 0 to themselves and
themselves only.

Using this definition, and generating peer IDs from the same namespace
as the keys, an overlay network can implement a DHT abstraction by deter-
ministically mapping each key in the space to the peer with the numerically
closest identifier.

2.2 Consistency

If a system only allow one copy of each object to exist or do not allow objects
to change, consistency issues will not be a problem. Since such a system has
grave limitations, a complete field of research exist concerning how to maintain
consistency of replicated objects and which guarantees such a system can give
its users. In this section the two main policies in this field will be introduced.

Strong consistency
If a system guarantees strong consistency it guarantees that no client of the
system will ever access a stale, i.e. an old, object. In a highly dynamic envi-
ronment with multiple, dispersed, replicas this is not easy to achieve and the

4

overhead might not be worth the gain. Therefore strong consistency seldom is
used in wide-area systems, unless it is absolutely necessary.1

Weak consistency
Since strong consistency is hard to maintain and sometimes is not required,
a weaker, more flexible, consistency model is introduced. In a system that
guarantees weak consistency replicas may differ, but all updates are guaranteed
to reach all replicas eventually (i.e. in a timely fashion). In wide-area systems
with large RTTs, or in systems where updates do not have to be propagated
instantaneously this consistency model might suffice.

Since all CDNs uses replicated objects, and allow them to change over
time, they must have a consistency model. The overlay structure and the
request routing mechanisms must be adjusted, or chosen, to fit that model.
How to actually achieve this will be described later, when the CDNs are
reviewed in more detail.

2.3 Distributed Hash Tables

A DHT is a self-organizing overlay network of nodes that supports lookup,
insertion and deletion of hash keys. The core of a DHT protocol is a distributed
lookup scheme that maps each hash key into a deterministic location with well
balanced object placement and low overhead.

2.3.1 General DHT characteristics

When a node is joining the DHT overlay network it is assigned an ID from some
namespace. Keep in mind the hash table terminology with <key,value>-pairs:
then a key usually is hashed to the node with the closest ID, for some notion of
closeness, and the value stored can either be actual data or merely a directory
of pointers to several data storage locations. When a node is doing an insertion,
put(key, value), the key is hashed and the node then searches the network
for the node with the closest ID. This node is responsible for storing the value.
When a node is doing a retrieval, get(key), it starts by doing the same thing:
it hashes the key, searches for the closest node and retrieves the value from
that node. It is not the case that all the nodes know all the other nodes, but
rather that they have partial knowledge of the network to keep the routing
information scalable. Internally, when executing the hash table operations, the
DHT system will have to perform a lookup, lookup(key), that returns the
host identifier for the host that stores the key. There are several known DHT
routing strategies and usually they provide O(log N) lookup time, where N
is the number of nodes in the system. A degree of fault-tolerance, by using
replication, is normally built-in in the DHT since the nature of P2P networks
is somewhat unstable with nodes joining and leaving the system at a high rate.

The well balanced object placement, or load-balance, is given since each
node is responsible for a chunk of the entire hash table and the hash function
used should be producing uniformly distributed output. As described in [50]:

1See [49], p.30-33

5

”If the hash function used by the table is uniform, then regardless of the
distribution of resource names stored, resources are distributed uniformly
over the hash space. As long as the chunks of the hash space assigned to
participating nodes are of roughly equal size, then each node maintains a
roughly equal portion of all resources stored into the distributed hash table,
thereby achieving load balancing.”

The features that makes DHTs good candidates for building distributed
applications are the following:

• decentralized

• self-organizing

• well balanced object placement

• scalable

• robust

2.3.2 DKS(N,k,f)

Distributed K-ary Search (DKS)[4], has three parameters N, k and f defining
the system. N is the maximum number of nodes that can be present in the
network, k is the search arity within the network and f is the degree of fault
tolerance. These parameters are known by all nodes in the system, fixed and
decided upon when creating the network. N, k and f are chosen such that
N = kL, where L is big enough to achieve a very large network, and due to the
replication scheme used also that N mod f = 0.

The approach is based on two main ideas: the distributed k-ary search
method and a novel technique called correction-on-use. The principle of DKS2

is to be able to resolve a key identifier t, i.e. to find its corresponding value, in
at most logk(N) steps. This can be guaranteed by dividing the search space into
k equal intervals in each step of the search. (This can be seen as a generalization
of [52], where k = 2.) The difference between correction-on-change, which is
used in e.g. [52] and correction-on-use, that is used in DKS is the following:
correction-on-change uses periodic stabilization to correct routing entries when
the network changes, while the correction-on-use technique basically corrects
routing failures on the fly.
All the nodes in a DKS system has a unique identifier x∈I. The identifier space
is denoted I = {0, 1, . . . , N-1} and is organized as a ring, see Figure 2.1. A
value v with the associated key t is inserted at the first node met when moving
clockwise in the identifier space starting at t. Therefore a node is responsible
for storing all the elements with keys mapped to the identifier space between it
and its predecessor p.

Routing in DKS
To guarantee that lookups can be resolved in at most logk(N) hops, each node
in the network organizes its routing table in different levels (L = logk(N)). At

2DKS will throughout the report be used as short term notation for DKS(N,k,f).

6

Figure 2.1: Shows the ring topology if the DKS(N,k,f) network.
Nodes 0, 2 and 5 are present in the system. N is 8, k is set to 2
and the keys 1, 2 and 3 are inserted.

each level the node has a different view of the identifier space, i.e. it divides
some part of the identifier space into k equal intervals and holds one node
responsible for each interval. (See Table 2.1 for an example of a DKS routing
table.) When moving towards higher levels the view is narrowed down until
each interval corresponds to a single node. At the first hop the lookup is routed
with information from level one and at the second hop with information from
level two and so on. Generally lookups are forwarded to the node that at the
current level is responsible for the identifier space that the lookup concerns.
The lookup is forwarded until it is received at the node with ability to resolve
the lookup locally. E.g. assume that a client request key 3 from node 0 in the
DKS network described by Figure 2.1 and Table 2.1, then the following steps
are performed by the system:

1. Node 0 starts off by checking if 3 is between itself and its predecessor 5,
which it is not.

2. Node 0 looks in its routing table in level 1 for the node responsible for the
interval that 3 is in, which is itself.

3. Node 0 looks in the second level of its routing table to see which node is
responsible for that interval. It turns out to be node 5.

4. Node 0 sends a lookup request to node 5.

5. Node 5 checks if 3 is between itself and its predecessor 2, which it is.

6. Node 5 performs a local lookup and returns the value to the client or to
node 0.

Replication
The replication in DKS is based on the assumption of symmetry, i.e. if node i
stores replicate objects for node r, node r should store i’s objects as well. This
is achieved using the mathematical concept of equivalence classes. Using the f
parameter, the DKS identifier space is divided into N ÷ f equivalence classes,
where all nodes in a class store each others objects. This gives the system f
replicas of each object. Look again at the DKS network described in Figure

7

Node ID: 0 Node ID: 2 Node ID: 5
Level Interval Resp Interval Resp Interval Resp
1 [0,4[0 [2,6[2 [5,1[5

[4,0[5 [6,2[0 [1,5[2
2 [0,2[0 [2,4[2 [5,7[5

[2,4[5 [4,6[0 [7,1[2
3 [0,1[0 [2,3[2 [5,6[5

[1,2[2 [3,4[5 [6,7[0
Predecessor: 5 Predecessor: 0 Predecessor: 2
Keys: Keys: 1,2 Keys: 3

Table 2.1: The DKS routing tables for Figure 2.1 showing for
each node on all levels which node is responsible for an interval.
N = 8, k = 2 and f = 1 makes L = 3. Nodes 0, 2, 5 and keys 1,
2, 3 are currently in the system.

2.1. With f = 2, and assuming that all nodes are present, node 0 and node
4 would store each others keys, node 1 should store keys for node 5 and vice
versa, etc. (But since not all nodes are present in this network, we end up with
nodes storing keys as described in Table 2.2.) This means that f nodes in the
system store each key and that those f nodes can reply to a request for that
key. Since N and f is known by all nodes in the system, a node can calculate
which nodes that are associated with each other and send a lookup to any of
them when requesting an object. This advantage, that the system can share
the lookup load internally, is one of the reasons for choosing DKS as the DHT
to use in DOH.

Self-organization
The DKS system uses atomic leave and join operations along with correction-
on-use to achieve self-organization, a quick overview of these techniques is found
below.

Atomic leaves: When the node is leaving the network it should appear as if it
is done in an atomic fashion, to make sure that no keys are lost. This is managed
by letting the application layer on top of DKS transfer the node’s state to its
successor, meanwhile the node buffers all relevant incoming messages. When the
state transition is finished the successor sends a message telling the node that
it can leave. The node forwards all buffered messages to the successor and then
leaves quietly. Since DKS has correction-on-use nodes trying to communicate
with the node that left will find out that the node is gone and update their
routing table information. If two leave requests interfere with each other, the

Node ID: 0 Node ID: 2 Node ID: 5
Keys: 3 Keys: 1,2 Keys: 3, 1, 2

Table 2.2: Keys stored in DKS network showed in Figure 2.1
when f = 2.

8

requests will be serialized and therefore the atomic property will still hold.

Atomic joins: First a component called pP is added to all nodes in the
network which will be used only for making the insertion of nodes in the
network atomic. At any given time, in node n, pP is either an address to a node
that is being inserted or nil if no node is being inserted at that instant. There
are two main cases when a node, nj , is attempting to join a DKS network: if it
is empty or non-empty.

Joining an empty DKS network
This is the base case, when n is the first node in the network. Thus n performs
the following actions:

- Set all routing entries at all levels to its own address.

- Set its predecessor pointer to point to itself and pP to nil.

Joining a non-empty DKS network
To join a non-empty DKS network, the joining node, nj , sends a join request to
a known node, n, which already is in the network. The join request might be
forwarded so that the new node can be inserted at its correct position. Then
n calculates the new node’s routing table. Very simplified the way that the
routing table for nj is calculated is as follows: First n makes nj responsible for
the interval closest to nj on all levels. Then node n divides the area that it is
responsible for in two parts. It sets itself as responsible for the values between
nj - n, nj as responsible between n’s predecessor p - nj and the node that to its
knowledge is nj ’s successor on that level, responsible for the rest. After that,
both nodes updates their predecessor pointers and n sets pP to nil, since no
node is being inserted. When done, it sends over the routing table to nj . The
insertions are done in a local atomic fashion, i.e. that if two concurrent joins
occurs at the same node, the node will serialize them.

Correction-on-use: This technique is built on two observations. First
that by sending level and interval information along with lookup/insertion
messages the receiving node, n, can derive whether the message came to the
right node or not. (This is because of the made assumptions of N and k.) If
this not is the case, n informs the sending node, m, that it has an error in its
routing table, and points it in the right direction (i.e. n’s predecessor). When
m receives the error message it updates its routing table and tries to send
the same request to the new node. The second observation is that whenever
a node n receives a message from a node m, it can detect if it shall have
m in its routing table. If that is the case it will update the routing table
accordingly. E.g. assume that a new node 3 has joined the network described
in Figure 2.1 making node 0’s routing table in Table 2.1 erroneous. Now node
3 stores key 3, and since node 5 inserted node 3, node 5’s routing table are
up-to-date. As in the previous example node 0 makes a lookup request to node
5. Node 5 calculates which predecessor node 0 thinks it has, and sees that
node 0 thinks that node 2 still is node 5’s predecessor. It then sends an error
message to node 0 and points it to node 3, node 0 updates its routing entry
and queries node 3 instead. Node 3 responds by giving node 0 the value of key 3.

9

Some drawbacks of using DHTs for the purpose of creating CDNs exist,
for instance that the same mechanism that provides the load-balancing (hash-
ing) also destroys locality. This can be solved using multiple DHTs, creating
several overlay networks as in [26], or by using multiple ID spaces and using the
locality of DNS-names as in [30]. Another is the case when replication is done
statically and replicas cannot be migrated towards big user groups without
destroying the routing mechanism, but this limitation could be handled by
using for example caching, or other mechanisms that will be described later
when specific CDNs are reviewed.

2.4 Request Routing

In a CDN request routing normally is used to redirect clients to the best replica
of a replicated object, where best is determined based on different policies and
metrics. The steps involved when a client request is made to see e.g. a web
document are shown in Figure 2.2. Steps A-D concerns translating the URL
into a network address and steps E-F is the request-response dialog. (Arrows
B and C are divided into two because the client’s DNS server normally has
to go through several intermediate servers before finding the server’s DNS
server.) [10] differentiates between three major request routing mechanisms:
DNS based, transport layer and application layer request routing. DNS based
modifies step C, transport layer modifies step F and application layer request
routing modifies step F or might add a whole new request cycle.

But before looking on DNS based request routing, it is appropriate to
do a review of the domain name system containing some terminology and other
aspects that is important for this thesis.

DNS
The Domain Name System is the naming scheme used on the Internet. It
provides features such as a more human friendly naming and translation
between those names and IP addresses. Domain names are hierarchical, with
the most significant part of the name on the right. The left-most segment of
the name is the name of an individual computer. E.g. foo.bar.com where com
is the top-level domain, bar a domain and foo the name of a computer. The
mapping between a computers human name and its IP address is called a bind.

The DNS servers are arranged in a hierarchy that matches the naming
hierarchy. A root server is on top of the hierarchy and is responsible for the
top-level domains. Naturally one DNS server cannot contain all the DNS
entries for a top-level domain, but rather it contains information about how to
reach other servers. As in the example above, the root server does not know
the IP address of foo, but it knows the address to the DNS server responsible
for the bar domain, as explained below.

Resolving a name: The translation of a domain name into an equivalent IP
address is called name resolution. The software used for doing this is usually
referred to as a resolver and is a part of the operating system. Each resolver
is configured with one or more local domain name server’s IP addresses. The

10

Figure 2.2: The steps involved in retrieving a client HTTP-
request.

resolver sends a DNS request message containing the name to its local DNS
server and starts waiting for a DNS response from the server. If the server is
an authority for the name, it will do a local lookup and respond to the resolver.
Otherwise it will have to ask one of the root servers on how to continue. The
root server, which knows the top-level domain will point the querying server in
the right direction and the query will proceed until an authority for the name
is found. Take, once again, the example of foo.bar.com, then the resolving
process is shown in Figure 2.3.

Each entry of the DNS database has three items: a domain name, a
record type, and a value. The record type specifies how the value is to be
interpreted. The three types that are relevant for this thesis are the following:

A the A record, where A stands for address, is used for the binding of a
domain name to an IP address.

NS the authoritative name server for the domain.

CNAME the CNAME record is similar to a symbolic link in a file system.
The entry provides an alias for another DNS entry. E.g. when a company
might not want to name their web server www. Then a CNAME record
could be used to redirect DNS requests for www to the actual web server.

This concludes the DNS review, using this information DNS based rerouting
will be explained.

2.4.1 DNS based

Using their own augmented DNS servers somewhere in the resolution process,
CDN systems often uses the DNS based request routing approach. The differ-

11

Figure 2.3: The DNS resolution process.

ence between regular DNS servers and the customized ones used by CDNs are
the mechanisms implemented for choosing a reply. It is not uncommon that a
site has several IP-addresses, and a round-robin strategy is then used in regu-
lar DNS servers to choose a machine when a request is made. When operating,
regular DNS servers usually do not handle information about client-server prox-
imity or server load metrics. This is what is added to the CDNs DNS servers:
different policies for choosing which replica to direct clients to, using e.g. the
client’s IP and AS information and estimating server utilization to find close
replicas on idle servers.

Single reply: The single reply technique can be used when the DNS server is
authoritative for the whole domain or subdomain. It will return the IP address
for the best replica server.

Multiple replies: Here several IP-addresses are returned and the local DNS
server uses round-robin when replying to client requests. This technique could
also be seen as a two level round-robin algorithm, since a number of web servers
are given to the local DNS by the remote DNS in a round-robin fashion, then the
local DNS distributes these web servers to clients, once again using round-robin.

Multi-level Resolution: In this approach multiple DNS servers can take
part in a single resolution process. As described in [10]: ”An example would be
the case where a higher level DNS server operates within a territory, directing
the DNS lookup to a more specific DNS server within that territory to provide
a more accurate resolution.” This resolution process will eventually end up at a
server with a CNAME or a NS record. CNAMEs, or canonical names, can be
used in a DNS server to give a host several domain names. This can also be used
to redirect the client to a whole new domain, where the resolution process starts
all over again. This could be seen as a bit slow, but imagine that one DNS server
is getting to many requests, then this is a way to share the load. NS records
could be used to transfer the authority from the domain to a sub-domain, which
gives finer redirection granularity. Unfortunately the NS approach is limited by

12

the number of parts in the name, due to DNS policies. This approach can be
combined with single or multiple replies.

Object Encoding: A useful technique is to code some information concern-
ing document content in the URL, using this information to redirect clients.
E.g. the URL to an image could be image.url.com, then requests for images
will be redirected to the image server of url.com.

These are some of the DNS techniques currently used, and even though
they are quite useful they have some drawbacks as well. The granularity of
replication using DNS based request routing solutions are normally in the size
of complete sites, since redirection is done using the domain or subdomain
names. When 4-5% of that replication is enough to get comparable performance
result, according to [15], this might be considered to costly. Every DNS lookup
response comes with information on how long the answer is valid, a so called
time-to-live value (TTL), and the answer and its TTL is cached along the
lookup path. This is good in the normal case since any DNS with a valid entry
will reply to a lookup and thus share the load and shorten lookup latency. But
when redirecting requests, this is not a desired feature because you loose control
over the redirection when other DNS servers reply instead of the system’s
customized ones: Since all DNS servers along the resolution path caches the
result, as long as the entry is valid, the proceeding requests following that
path will be redirected to the same replica and might choke that host. Small
TTL values are used for handling this problem and to be able to quickly adapt
the system to node changes. Unfortunately this much-used technique has two
major drawbacks. When interpreted correctly it will produce more lookup
traffic, congesting the network. Furthermore a lot of DNS servers rewrite the
TTL to their own minimum if the received value is considered to small, thus
destroying the purpose of the whole scheme. Another drawback is that there
is nothing that says that a client’s DNS server and the client itself is close to
each other, making it tricky to do proximity calculations. All in all, DNS based
redirection is a bit crude, but is very useful and combining different DNS based
strategies along with transport or application layer request routing can be very
attractive indeed.

2.4.2 Transport layer

Transport layer request routing, or TCP-handoff, is quite obviously implemented
in the transport layer. Since more client information is available, such as e.g
client IP addresses, finer granularity can be achieved. The first packet sent in
the client request is examined and routing decisions are made using the IP, port
and the application level protocol information along with system policies and
metrics. In general the connection flow is divided so that client-to-replica-host
packets are sent via the redirecting server and replica-host-to-client packets are
sent directly to the client. This is ok, since the flow from the replica host to
the client is assumed to be much larger. However doing this for many requests
will still slow the redirecting server down and this solution therefore does not
scale as well as the others. One other thing; when creating a large system using
this type of redirection, a complete network with modified infrastructure have
to be created and maintained. As stated earlier, one of the reasons that overlay

13

networks even began to be deployed in the first place was the problems arising
when the need of this occurred.

2.4.3 Application layer

Application layer request routing has even more information available and there-
fore it can make even more fine-grained routing decisions, down to a level of in-
dividual objects. With the client’s IP address and content request it should be
able to determine which replica host that is the best for this request. There are
two main approaches for doing these decisions and they will now be described
briefly.

Header Inspection: There are several ways for application layer request
routing to use the first packets sent to determine what the content of the request
is and where to redirect it. HTTP[24] for example describe the content of the
requested URL, and in many cases this is all the information needed to redirect
the client properly. Redirection can be done by using the built-in functional-
ity of HTTP as well. Using e.g. the 302-error message, ”this page has moved
temporarily”, which can be used for redirecting clients to another replica in the
system.

Content Modification: Using this technique a content provider can get
full control in redirecting the client without the help of intermediate devices.
Basically a content provider directly communicates to the client which replica
that should be chosen and these decisions are made depending on system
policies. The method explores the possibilities of the basic structure of HTML.
I.e. that a page normally contains embedded objects and by modifying the
references to them, either beforehand or on the fly, so each object can be
fetched from the best replica. This technique is also known as URL-rewriting,
since the URLs within a page is rewrited. A drawback is that the pages become
hard to cache since the URLs used might not be valid any more. And also
that the URL-rewriting, if done beforehand, requires that server load are quite
stable since best replica is calculated in advance.

There is not one of these strategies that can be used in all systems for
all purposes, which of course would have been nice. For achieving the goals
of this thesis, where the system should be used by small companies, the
DNS based single reply or multiple replies request routing combined with
application based header inspection might be the way to go. Since smaller sites
usually only have one DNS server that is responsible for the whole domain or
sub-domain single reply DNS based request routing is applicable. But then
again using the replication provided by DKS, the multiple reply technique
could be a natural choice, slightly modified it actually implements a two-tier
round-robin scheduling algorithm described in [17], which is proven to yield
good performance results.

One thing that was not discussed is the transparency of the different
strategies. From user point of view, and developer as well, it would be
preferable if the rerouting was done in a transparent manner. In general it
can be said that DNS based and transport layer request routing is transparent

14

while application layer is not. These different request routing mechanisms can
be combined though, to obtain even better performance and as we will see later
when looking at actual Replication systems (CDNs), they are.

2.5 Replication systems

Content delivery networks exists for mainly two reasons: First for companies
that do not want to buy and maintain their own web-hosting structure and
second to decrease user-perceived latency. It is the latter which is relevant for
this work. Decreasing the latencies is usually done by combining two methods:
replication (or caching) and by redirecting clients to servers ”close” to them,
where close can be defined using geographical, network topology or time metrics.

According to [49], there are five important issues when creating a web
replica hosting system:

1. How do we select and estimate the metrics for taking replication decisions?

2. When do we replicate a given Web document?

3. Where do we place the replicas of a given document?

4. How do we ensure consistency of all replicas of the same document?

5. How do we route client requests to appropriate replicas?

Which combined with what to replicate, makes up a replication system. Let us
look briefly at how some of the related systems solves these issues.

2.5.1 Akamai

In November 2003, according to [57], Akamai[21] had a commercially deployed
infrastructure that contained more then 12000 servers, creating more then 1000
networks in 62 countries. Most of the servers are located in clusters on the edge
of the Akamai topology and using their massive infrastructure, Akamai just
allocates more servers to sites experiencing high load. The replication is mainly
done by caching the web documents and where to replicate them is decided
by three functions calculating a combined metric. The functions are Nearest,
Available and Likely. Nearest is time (the smaller the better), Available is
load and network bandwidth and Likely is which servers usually provide the
customers object. Replicas are placed on edge servers, so the traffic within the
Akamai network is kept to a minimum. Consistency is ensured by a versioning
scheme that encodes version information in the document’s names. All Akamai
edge servers have assigned a DNS name. The client request rerouting is done
by firstly using regular DNS-servers and then low-level Akamai DNS-servers
that has knowledge of which of these edge servers that has valid copies of the
requested object. With every response a TTL value is sent. The TTL usually
is small to encourage frequent refreshes, which allows the Akamai system to
reroute later requests from the same user. (See Figure 2.4.)

The fundamental approach for Akamai when creating its CDN, differs
widely from ours. An Akamai client do not own any web hosting infrastructure

15

Figure 2.4: ”Client HTTP content request. Once DNS resolves
the edge server’s name (steps 1 and 2), the client request is issued
to the edge server (step 3), which then requests content (if nec-
essary) from the content provider’s server, satisfies the request,
and logs its completion.” ([21], Figure 1)

but instead buy the service from Akamai. Akamai has its own backbone and
clusters content servers at the edge of this backbone to serve clients. So to use
their approach for creating a CDP2PN is not an option.

2.5.2 RaDaR

RaDaR[43], as seen in Figure 2.5, uses a Multiplexing service (MUX) and a
Replication service. The multiplexing service keeps mappings between physical
names and symbolic names. When an object is created the host server registers
the physical name at the MUX which assigns a symbolic name to be used by
the external clients. All requests have to go through the MUX which fetches
the physical object at one of host servers and returns it to the client. The
decision on how many replicas there should be and where to place them are
taken by the hosting servers, using access statistics. RaDaR also supports
migration to move whole sites if the system detect that clients are far from the
content. The Replication service keeps track of all the hosting servers on the
network and the server loads and the system uses this information for choosing
a host to migrate or replicate content to.

The multiplexing scheme provides the ability to use very advanced schemes
for load-balancing and replication decisions but unfortunately it might become
a bottleneck when dealing with large systems. Also the idea of peer-to-peer
networks where all peers have the same capabilities is not very applicable to
the RaDaR system.

16

Figure 2.5: A high level view of RaDaR. ([43], Figure 2.)

2.5.3 SPREAD

SPREAD[45] is an example of using an entirely different approach. It is
designed to be deployed in the network layer rather than the application layer
as is the other CDNs described in this section. Client redirection is done by
using a network packet-handoff mechanism which uses router hops as a metric,
and IP-tunneling to route each packet along the same path. (Similar to the
TCP-handoff mechanism described in Section 2.4.2) Replication is done by
considering the network path between the edge server and the origin server and
by determining which proxies to put replicas on along that path. So it is actu-
ally the routers who takes the replication decisions. Depending on documents
characteristics, for instance its access pattern, strong consistency is maintained
by using three different methods: Client validation (if-modified-since), where
clients check if the replica is valid; server-invalidation, where servers send out
invalidation messages and proxies get fresh copies when needed and finally
replication, where new copies of documents is pushed to proxies when updated.

Obviously this is far from the approach taken in this thesis, but has its
place here since it shows that CDNs can be implemented using the existing
routing infrastructure. It also, and more importantly, shows how different
methods to maintain consistency can be used for different documents, which
most certainly could be applied to objects in the DOH network.

2.5.4 Globule

Globule[40] is implemented as a module to the popular web server Apache[6].
Replication in Globule is done on a per-document basis, where a document
object contains two things: the actual content, a page and all its embedded
objects, and a meta-object that stores information for making replication
decisions and consistency checks. In Globule, replication decisions is described
as minimizing a cost function over the nodes involved in storing an object. This
is done by simulating different strategies based on recent client requests. The

17

minimum corresponds to the best replication strategy for that document. An
overview of the replication strategies used and their performance can be found
in [41]. Where to place replicas depends on available servers. The observation
that the authors of Globule make, is that local space is cheap, compared to
non-local. Therefore Globule server administrators negotiate with each other
to exchange server resources, and the local server keeps track and limits the
peers resource usage. The master copy is kept on your own local server and
the slave replicas are kept at negotiated host servers. Client redirection is
done by DNS-redirection using a customized DNS server, which is part of
the Globule implementation, as described in [40]: ”before sending an HTTP
request, the client needs to resolve the DNS name of the service. The DNS
request eventually reaches the authoritative server for that zone, which is
configured to identify the location of the client and return the IP address of
the replica closest to it.”

The fundamental idea in Globule, to exchange local space for non-local,
differs from the one in this thesis. Globule only replicates a part of the data to
its slaves and if the master goes down, the slaves will not be to much use. In
DOH all data should be replicated. Also DOH should be totally self-organizing
compared to a Globule system, where administrators have to negotiate with
each other for obtaining non-local space.

2.5.5 SCAN

SCAN[16] uses dynamic, adaptive replication and the system considers client
latency and server load when deciding what to replicate. The goal of the system
is to keep replicated objects to a minimum to decrease replication overhead.
To achieve this there are two interlocking phases of the dynamic placement
algorithm: replica search and replica placement. The replica search phase tries
to find a replica that meets the client latency constraint on a server which is
not overloaded. If no such replica is found the replica placement phase starts
and a new replica will be created. SCAN creates multicast trees for keeping
track of replicas and these trees are used for propagating updates. Therefore
consistency is not strong, but updates are assumed to be propagated in a timely
fashion as in the weak consistency model. SCAN is built upon Tapestry[58] and
uses the Tapestry infrastructure that provides locality information. Tapestry
has several defined root nodes and when a new replica is published that
information is pushed towards a root node, where each node on the way stores
a pointer to it. When a query is made it is also pushed towards the root node
and the first node that knows the answer, i.e. the first node that has a pointer
to a replica of the requested document, replys to it. (See Figure 2.6.) This
guarantees that clients will be redirected to the closest replica of the document
they are requesting.

The authors of SCAN assumes that SCAN servers are placed in Internet
data centers of major ISPs with good connectivity, direct connected to the
backbone. This approach limits the participants of a peer-to-peer network
severely and can not be used in DOH.

18

Figure 2.6: ”The Tapestry Infrastructure: Nodes route to nodes
one digit at a time: e.g. 0325, B4F8, 9098, 7598, 4598. Objects
are associated with a particular ”root” node (e.g. 4598). Servers
publish replicas by sending messages toward root, leaving back-
pointers (dotted arrows). Clients route directly to replicas by
sending messages toward root until encountering a pointer (e.g.
0325, B4F8, 4432)” ([16], Figure 2.)

2.5.6 Backslash

The authors of Backslash[50] describe their own system as ”a collaborative
web mirroring system run by a collective of web sites that wish to protect
themselves from flash crowds.” In other terms, since their solution has features
such as request routing and replication, it fits our definition of a CDN. In [50]
a peer-to-peer network of web servers are suggested for helping each other
during flash crowds. The disk space in a participating backslash peer will be
divided into three parts: the web site of the server; a replica storage part and
a part that is a temporary cache. It is implemented on top of CAN[44] and
every object is replicated just once, but cached as many as needed.3 Under
normal operation a participating web server does nothing extra. But if it is
starting to get overloaded it will enter another mode of operation and start to
redirect requests to other servers that stores the hot object, either cached or
as a replica. A simplified DNS server is present in every node and the request
routing mechanism described uses both DNS-based and application layer URL-
rewriting along with object encoding. This intercepts request traffic on two
different levels, one before the congested network is reached and another where
the overloaded node has to redirect the request itself. (The latter can be used
e.g. when redirecting requests for embedded objects using the object encoding
technique.) An example of this redirection technique taken from [50]: ”... the
original URL http://www.backslash.stanford.edu/image.jpg is rewritten as
http://<hash>.backslash.berkeley.edu/www.backslash.stanford.edu/image.jpg,
so as to redirect the requester to a surrogate Backslash node at Berkeley,

3The authors claim that Backslash can use most existing DHTs, as long as it provides
neighborhood information.

19

where <hash> denotes the base-32 encoding of a SHA-1 hash of the entire
original URL.” (Where SHA-1 is short for Secure Hashing Algorithm 1 and is
described in [22].) The URL subdomain backslash is used for distinguishing
backslash nodes, which the backslash DNS server is responsible for and
therefore it can redirect client requests coming to those nodes. <hash> might
be used for lookup within CAN when arriving to the new node and the original
URL might be forwarded for transparency reasons, but the authors does not say.

The paper mainly focuses on different caching strategies to be used dur-
ing a flash crowd, which is certainly interesting but out of scope for this thesis.
The described request routing mechanism however, looks very appealing indeed
even though it is not described in detail.

2.5.7 CoralCDN

CoralCDN[25] uses Coral[26] and its DSHT for replication and is designed with
a DNS-server per node. A Coral node hierarchically divides its peers into three
different clusters, based on RTT. Replication is done on demand, by scanning
those clusters for the requested object. If the object not is found close enough,
a copy is fetched from the origin server and a reference is stored in the Coral
system that the node now has the object. The idea is that pointers to popular
objects will overflow a node and spill to other nodes, hence distributed sloppy
hash table. Consistency is not strong since every request gets a random set
of the pointers to an object and the fetched replica might be stale. For a
URL to be a part of the CoralCDN, it needs to be ”coralized”, which is done
by appending the suffix .nyud.net:8090. Using existing .net DNS-servers
and the built-in CoralDNS-servers, which contain entries for the .nyud.net
domain, along with the coralized URLs the system can redirect a client to
a close CoralCDN node. If that node has a copy of the requested object it
returns it to the client, else it searches the Coral network for the object, fetches
a copy and returns it to the client, as described earlier.

CoralCDN is the CDN that comes closest to DOH, the approach is simi-
lar to the one in this thesis. There exist differences though, mainly that if the
master copy in a CoralCDN system becomes unavailable, all replicas also soon
will be discarded as well and the whole site would have disappeared from the
Internet until the master comes back. In DOH, DKS provides a basic degree
of replication that will guarantee that the site still would be up even if the
”master” copy is unavailable for some time. The nice thing about this approach
is that any site can be added to the system by just adding.nyud.net:8090 at
the end of the URL.

3 Key issues when creating DOH

With the knowledge now gained, a look on which solutions and techniques that
actually could be applied to the DOH system is justified. Listed below are some
of the major design issues that have to be decided upon when creating such a
system as this:

Request Routing: In the ideal case, the user types the URL into the browser

20

and get to see the page, with out ever knowing that he was rerouted. The
problem is that URLs are location dependent and we want to create a
system that is not, while keeping the rerouting transparent from the users
point of view.

Object Granularity: How large should replicated chunks be? Should it be
per-file, directory or complete sites? And, if needed, how to cluster them?

Bootstrapping: How to solve the bootstrapping problem for peers, a problem
all P2P networks have to solve. Can this mechanism be combined with
bootstrapping for publishers, creating only one mechanism for both issues?

Adaptive replication: DKS provide DOH with a basic degree of replication
but during a flash crowd that might not be enough. Should caching be
used and in that case, how do we maintain consistency?

Static vs Dynamic Content: The first prototype of DOH will only support
static content, but how to serve dynamic content should be kept in mind
during the design phase since future work probably will include dynamic
content. Should an existing web server, like e.g. Apache, be used or should
a new one be created?

Deployment: How are publishers supposed to deploy their content? If using
e.g. the File Transfer Protocol[42] (FTP) should a regular FTP client
be enough or should a new one be developed? When dynamic content is
supported, easy deployment for publishers will become increasingly im-
portant.

Evaluation: How to evaluate the system result. What to compare it with?
How can we claim that we have built something that actually works and
has good performance?

In this section these questions will be reviewed and we look how they are solved
in some of the previously described systems, mainly CoralCDN and Backslash
since they are closest to the DOH system. Consider this section as a smooth
transition phase between the background section and the analysis and design
section.

Request Routing
To achieve load-balance, w.r.t the number of requests that each node handles,
is a crucial point when creating a system like this. Unfortunately, from the
author’s point of view, there is not one solution that stands out from the rest
as a clear candidate for using in the DOH system. CoralCDN[25] is the system
that is closest to DOH so lets look in more detail how this is achieved in that
system.

A CoralCDN node consists of three parts: An HTTP-proxy, a DNS server and
the Coral[26] DSHT. To use CoralCDN, a content publisher (or anyone else
for that matter), simply appends.nyud.net:8090 to the hostname in a URL
for it to become a part of the CoralCDN. The DNS part of a node contain
entries for the.nyud.net domain and clients will be rerouted using DNS based
rerouting. Coral uses a hierarchal clustering strategy based on RTT to keep

21

track of ”close” nodes. Every node maintain three different clusters, where
the RTT is used to determine which node that should be in which cluster. A
HTTP-request is rerouted as described in [25]:

1. A client sends a DNS request for www.x.com.nyud.net to its local resolver.
(A part of the browser)

2. The client’s resolver attempts to resolve the hostname using some Coral
DNS server(s), possibly starting at one of the few registered under the
.net domain.

3. Upon receiving a query, a Coral DNS server probes the client to determine
its RTT and last few network hops.

4. Based on the probe results, the DNS server checks Coral to see if there are
any known nameservers and/or HTTP proxies near the client’s resolver.

5. The DNS server replies, returning any servers found through Coral in the
previous step; if none were found, it returns a random set of nameservers
and proxies. In either case, if the DNS server is close to the client, it only
returns nodes that are close to itself. (Because of the clustering)

6. The client’s resolver returns the address of a Coral HTTP proxy for
www.x.com.nyud.net.

The actual rerouting is thus done in two steps: the coralized URL directs the
resolver to a node in the system and then the probing mechanism try to find
a ”close” Coral node to redirect it to. For DOH something similar has to be
developed but whether it will be integrated with the system and part of every
peer, or implemented as a stand-alone mechanism is yet to be decided.

Object Granularity
The size of the replicated4 chunks are really important for the system perfor-
mance. In general too small chunks creates much overhead in terms of lookups
and entries in the hash table, whereas too big chunks is not very space-efficient.
The two extremes are to replicate on a per-file or a per-site basis. When
replicating each individual file itself the used physical space in the system
will be optimal. However the overhead of maintaining the mappings and the
lookup overhead will slow the system down considerably. When replicating on
a per-site basis much more space is used then necessary. Consider the example
when one document on a site becomes a ”hot object”, the size of a site is
usually in the order of megabytes and the size of a document in kilobytes.
Then it is easy to understand that it is not very space-efficient to replicate the
whole site. Per-directory might seem like a good trade-off between the two
other approaches, however: since web pages are not browsed sequentially, like
e.g. a book, they show poor locality even within a directory. Furthermore,
when using a DHT you are not dependent on the directory hierarchy. I.e. two
pages that are in the same directory on an ordinary server could very well be
hashed to different nodes.

4In this section no distinction is made between replicas and cached objects, the term
replication is used to refer to both.

22

So how should you cluster content? There are solutions that suggests
using access patterns[15] or server logs[53]. There also exist systems that
replicate on a per-document basis, e.g. [40], and even though quite complex,
this solution seem to provide good performance.

Bootstrapping
The problem addressed here is how a booting DOH node finds a node that
already is in the network. An easy way to solve this problem would be to use
some kind of cache of available nodes from the Internet, like e.g. Gnutella[29].
This means that when a node is booting it uses a URL to fetch information
about known nodes that are already in the system. It then contacts one of these
nodes and tells that node it want to join the system. Using for example XML
to define a cache hierarchy, this could be easily achieved. One other advantage
is that this web cache approach could be combined with ”bootstrapping” for
users and publishers, i.e. a non transparent request routing mechanism, where
users/publishers get to choose manually from a list between different hosts.

Adaptive replication
DKS will provide DOH with a basic degree of replication depending on how
the f-parameter is chosen. But since the system goal is to maintain low latency
towards users even during a flash crowd, this might not be enough. Another
strategy for surviving flash crowds has to be decided upon, to be prepared in
case that the replication will not be enough to satisfy system requirements. This
strategy will be caching. There already exist solutions for decentralized P2P web
caches, namely Squirrel[32], which is built on top of Pastry[46]. The authors of
Squirrel uses some assumptions that are not valid in our case, e.g. that all peers
reside on a LAN and that they cooperate within that LAN to create one big
cache of multiple client browser caches. But the algorithms described can still
be used though slightly modified. In [32] a solution called the Directory scheme
is described. In that scheme a client hashes the URL of an object and does a
lookup to the node responsible, according to the routing algorithm in [46]. This
node is called the home node. It stores a directory of pointers to other nodes
that has the object cached, called delegates, and redirect requests to delegates
in a round-robin fashion. If no node has a copy, the client fetches the object
itself from the origin server and inserts the object in the cache. (In our system,
the home node will be the node storing the object and therefore it can always
provide a valid copy to the requesting node.) Inspiration also is taken from the
P2P caching scheme described in Backslash[50]. As described earlier there are
several different modes of operation that a Backslash node could be working in,
where normal and overloaded mode are two of them. In normal mode the web
server will reply to requests as usual, but when getting overloaded it will start
to redirect client requests to other nodes that currently caches the requested
object. This could be our starting point as well and combined with a modified
version of the Directory scheme a caching mechanism could be created.

Static vs Dynamic Content
To create a web server that handles static content is pretty straightforward, it
is when it comes to dynamic content that the servers become more complex.
The choice here is simply between choosing an existing web server and adjust it

23

to fit our needs or to create a new one. As stated earlier, serving static content
is the primary goal of this work. However using an already existing web server
like e.g. Apache would mean that the system can be more easily adapted to
handle dynamic content in the future, since the functionality is already there.
An attempt to adapt an existing web server for our purposes will be made, but
if it proves to be to slow a process, a new simple web server will be implemented
instead. (For more information about handling dynamic content in CDNs look
at e.g. [31, 48].)

Deployment
When using static content, deployment is not a big issue. (Compared to deploy-
ing dynamic content like e.g. JavaBeans where specialized software is needed.)
DOH publishers could actually use their regular FTP-client to upload their
content. The two things that needs to be decided upon is how to maintain
resonable security and how the hashing of the content is done. On the server
side the FTP operations has to be sligthly modified to allow the system to hash
the content into place. How login information should be stored and handled is
always important and might need its own structure in form of a web site.

Evaluation
The one metric that is really important to look at when evaluating this system,
is the latency that the client experiences. One way of evaluating the system
is to look at the ideal case, a stand-alone web server with low workload, and
compare the latency of that system with DOH, under different workloads. An
other way of doing evaluation, is to use one of the software developer’s rules of
thumb, that e.g. Windows uses extensively, which states that after X seconds
something must happen or else the users think that something is wrong. Using
this we can make sure that the system always respond within that limit of time,
though of course the faster the better, and state that this is sufficient.

4 Analysis and Design

The aim of this section is to define the functionality required of the system and
also how it could be implemented. The starting point of the analysis is that a
system should be created which have users that wants to achieve their goals by
using this system. (See Figure 4.1) The steps of the analysis will be as follows:

• Define sets of users.

Figure 4.1: Starting point for the system analysis.

24

• Define subsystems.

• Determine functionality for the sets, from a high-level view to a low.

• Decide which subsystem that should implement the functionality.

• Look at how the subsystems must interact.

• Look at how to implement the functionality.

4.1 Terminology

Terminology used in the analysis section is mostly taken from UML[56]. System
specific terminology and definitions will be explained in this section.

4.1.1 Actors

When describing how a system can be used and by whom, the term actor can
be used to define different sets of users. In DOH there are several different sets
of users, i.e. actors, as defined in Table 4.1. One physical person can of course
belong to more than one of these sets, e.g. one might be both a User and a
Publisher. In Table 4.1 the software that the actor is assumed to use when
interacting with the system is also defined.

4.1.2 Subsystems

There are two major building blocks that will be used when modeling the system
and when showing internal interaction patterns. These subsystems, and what
they contain, are shown in Table 4.2. They will be explained in more detail in
Section 4.4, where the interaction between them is described.

4.2 Actor scenarios

One way to capture the functionality that is required from a system is to start
from a high-level view: what do the different actors want to achieve when using
the system? Since the actors in DOH are now defined, scenarios of system usage
can be created from their point of view, to determine what functionality DOH
needs.

Name Explanation
User Someone browsing the internet.

User Software: a regular browser.
Publisher Someone that has a web site published in the DOH system.

Publisher Software: an FTP-client.
Super user Someone that creates new users.

Super user Software: an FTP-client.
Administrator Someone that manages a peer in DOH.

Administrator Software: a DOH node.

Table 4.1: Actors, and software used for each actor, in the DOH
system

25

Translator Node
Rerouter DKS
Web cache FTP server
DNS server Web server

Table 4.2: The main building blocks of the DOH system.

4.2.1 User

Joe is a regular guy, that has just typed in his favorite web page, foobar.com, in
his browser. Without Joe knowing it, foobar.com has joined a DOH network.
This however, since DOH rerouting is done in a transparent way, does not
matter. The page will be fetched and presented to Joe just as before.

Later on, Joe find an interesting link to a fishing homepage via a huge news
site. This homepage is experiencing its largest load ever. Luckily it is also a
part of a DOH network and is replicated and cached so that Joe can see it,
perceiving no more delay then usual.

I.e. from the user’s perspective the ideal case is when the user is com-
pletely oblivious that he/she is using the DOH system.

4.2.2 Publisher

Bob is the web master of a small non-profit organization’s web site. He is getting
a bit anxious since he has heard that a big charity event is planned in a few
days. He suspects that the site will be overloaded but he do not know what to
do about it. That evening his wife Sue tells him about DOH and he realizes
that this could be the answer to his problem. He registers an account, gets
a list of DOH nodes, chooses one and uploads the site to it. He then puts a
customized html page as the index page for his site. This html page will reroute
the requests to a DOH Translator which in turn will reroute and distribute the
requests for his site. The event is a big hit and even though the number of
requests is at an all time high, thanks to DOH, no user is experiencing any
degrade in performance.

4.2.3 Super user

Alice is a trusted Publisher in DOH who has agreed to help the system admin-
istrators. She checks if there are any requests for new Publisher accounts and if
so, creates a new account and insert the account information in the DKS DHT.

4.2.4 Administrator

Dirk is a web server administrator for a small company. When he hears about
DOH he decides that his company must become a part of this network and
downloads the DOH-package from the Internet. He installs it on one of his
machines and informs the employees of the company how they shall proceed to
upload their content in the future. (As described in the Publisher scenario.)

26

4.3 Use Cases

The Use case method is well-known and widely used for capturing functionality
and behavior of a system. A Use case describes the interaction between the
system and an actor trying to achieve a goal while using the system. Taking
information from the actor scenarios, Use cases are defined as seen in the use
case diagram in Figure 4.2. The use cases that do not interact directly with
an actor are usually called abstract use cases and it could be discussed whether
or not they should be in the use case diagram. Since the focus here is the
functionality of the system the choice is made to display them, for the sake of
completeness.

4.3.1 User

When a user browses a web page the steps normally involved for fetching the
page are seen in Figure 2.2. DOH will interact with the User on two levels.
First when the DNS-lookup is done, it will eventually reach the DOH translator
and be translated into an IP address of a DOH node. Secondly the browser
will send a request to that node and ask for the page. The node will do a DKS
lookup and retrieve the object from the DKS hash table and respond to the
User. Thus dividing the process into two main Use cases, as seen in Figure 4.2,
is reasonable:

DNS lookup: When a DNS lookup is made (i.e. transforming a URL to an
IP address) it will eventually reach the DOH translator. The translator
will take the URL and using the Rerouter it will find a node. This node’s
IP will be sent back to the User.

HTTP GET: When the http request arrives at a DOH node it will hash the
URL and perform a DKS get, which will return the object from the hash
table. It will then reply with a http response to the User.

Rerouting: The redirector facility has information about node’s load and some
proximity metrics. It is used to find a node within the DOH system that
is not overloaded and close to the User.

DKS get: See Section 2.3.2, page 6.

4.3.2 Super User

The super user in DOH is responsible for creation and maintenance of Publisher
accounts. Information that is required for a secure login procedure, is stored in
the DKS DHT.

Account: Will store login and content information of a Publisher.

Create Account: Creates a Publisher account.

Delete Account: Deletes a Publisher account.

27

Figure 4.2: Use Cases in DOH.

4.3.3 Publisher

Before using the system an account has to be created for the Publisher. The
account information, which will be stored in DKS, will be used for a secure
login procedure. After logging in, the Publisher can upload, modify or delete
his content. This results in the following Use cases for a publisher:

Login: Logs in to the Publisher’s account.

Upload: Uploads content to one DOH node. The content will be inserted into
the DKS DHT.

Delete: Remove content from the DOH system.

DKS put: See Section 2.3.2, page 6.

DKS remove: Removes an object from the DKS DHT.

4.3.4 Administrator

For now lets just assume that an Administrator can do two different things.
Start and stop a node. The work before the node is started, maintenance work
and crashes is out of scope for this analysis. Therefore, the Administrator Use
cases looks like follows:

Start node: When the node boots it fetches a cache of known nodes from the
web and performs DKS join. When the initialization phase is done it is a
peer of the joined DOH network.

Stop node: Whenever a node needs to stop, DKS leave is performed and the
node is gracefully removed from the DOH network.

28

DKS join: See Section 2.3.2, page 8.

DKS leave: See Section 2.3.2, page 8.

Notice that all DKS use cases are existing functionality in DKS, which is al-
ready implemented. So at this stage in the project it can be noticed where the
DKS system will provide functionality for creating DOH and where functionality
needs to be added to fulfill the requirements. Mainly functionality concerning
account maintenance and rerouting is lacking and that should be kept in mind
for the future sections.

4.4 Subsystem collaboration

In the previous section it has been stated how the different actors should
interact with the subsystems. In this section the internal communication
within the system for each use case will be shown. In the analysis view it is
enough to divide the system into two main building blocks, as Table 4.2 shows.
The Translator handles interaction between the user and the system before an
HTTP request is sent to a Node. I.e. the last step in the DNS lookup process
and the rerouting of a User to a Node in the system. It will also maintain a web
cache that is used when Nodes wants to join the system and information about
other Translators in the system. A Node, as shown in Figure 1.1, contains an
FTP server, the DKS DHT, and a web server. It will serve User’s http requests
and confirm identity, insert, and remove content for Publishers.

In Figure 4.3 the interaction between the building blocks for all the use
cases are shown as a sequence diagram. For simplicity reasons only one
node is drawn in the figure representing all nodes in the system. So when
Node calls itself in Figure 4.3, that call is actually to another node in the system.

As described in the beginning of this section, the functionality needed
in the system has been captured and allotted to a subsystem. The picture of
the system has thus evolved from the non-specific view in Figure 4.1 to the
more detailed view in Figure 4.4. The question of who does what has now been
answered and only the question of how is left.

4.5 Subsystem design view

The two subsystems from Figure 4.4 will now be looked at in further detail to
get some ideas on how to actually implement the functionality assigned to them.

4.5.1 Translator

The internals of the DOH translator is shown in Table 4.2. The DOH DNS
server will be a mini implementation of a DNS server which will be authoritative
for a DOH node only. The Rerouter will get nodes that are up and running
from the web cache and will probe them for load information and proximity.
Thus when a DNS lookup is made, the DOH DNS will choose one or several
DOH nodes that are not overloaded and return the IP of that node. Even
though this is not easy to implement, the real challenge to get the system to
work smoothly is another. Section 2.4 describe the details of how an actual

29

Figure 4.3: Interaction within the DOH system, shown for all
use cases as a sequence diagram. (The star after Node is there
to symbolize that there are usually several nodes involved in the
process.)

30

Figure 4.4: The system view after the analysis.

DNS lookup is made. But one DNS characteristic that is not mentioned, is the
propagation speed when things change. The DNS system was not developed to
handle frequent machine changes and therefore do not respond quickly to them.
The normal propagation speed is in the order of 24 hours for an update to be
publicly known. Implementing a system like DOH, this becomes a problem
when doing the final resolution step and going from a regular DNS server to
one of the DOH DNS servers. Consider the resolution process in Figure 2.3
once again, but this time imagine that the authoritative DNS server is part of
the DOH system. Since the root server slowly adapts to changes this peer needs
to be a part of the system for 24 hours before it is recognized. In a normal
P2P system this is a very long time and therefore either some assumptions
needs to be added about peers or else the Translator has to be implemented as
a stand-alone device.

This fact is disregarded for the time being and the assumption is made
that the requests are reaching the translator in some way. Then a closer look
of how the actual rerouting mechanism should work and what information it
will need, could now be done.

Rerouting in DOH
In DOH, DNS based request rerouting will be used as the primary redirection
mechanism. Since the assumption is made that the Publishers should not have
to change their URLs to participate in DOH, the first redirection step will
be a CNAME redirection. This will redirect the request to a Translator, and
more precise to the internal DNS that is in authority. The second step will
be for the DOH DNS to choose an IP address to one or several DOH nodes
which can serve this request ”best”, according to some metrics. The DOH
nodes available to the DNS will be obtained, as stated earlier, from a web cache.

A secondary request rerouting mechanism is added to the system for
those Publishers who do not have the possibility to make changes in their local

31

DNS server. The difference is only in how the Translator is found. In this
approach, a customized HTML page is created and placed where the index
page used to be. This page will redirect the users on the application level to
the Translator instead of using DNS based rerouting.

The Rerouter part of the Translator handles the collection and analysis
of the metrics and the node IPs. For this thesis, two metrics is considered to be
enough for determining which DOH node that is ”best” for a specific request.
The Rerouter periodically probes the nodes in its cache, to get server load
and RTT values. These metrics are used to calculate server load and network
congestion and is calculated and compared over time. Thus, for this thesis the
request routing mechanism only ensures that nodes will not get overloaded.
Client to node proximity measurements is considered to be an optimization
and will be left for future work.

Bootstrapping
As stated earlier the bootstrapping problem will be solved by using a web
cache located at the Translator. It will contain nodes that are known to be up
and running. There will be three levels of this caching structure, the first will
keep a list of known caches, the second will be the cache and the third will be
each individual cache entry, i.e. the actual nodes. When a node wants to join
the system, it contacts the web cache it used last time or if that cache is down
it queries a web cache list for online caches. Each cache contains nodes that
are known to the system and when queried the cache will respond with several
valid entries. The booting node will contact one of these nodes and tell that
node it wants to join the system. The same mechanism will be used to find a
node when a Publisher wants to upload or delete content.

The cache will be defined using XML and the syntax of the cache and a
node entry is shown in Figure 4.5. The fields common for both the web cache
and a node are several. The ip field contains the IP addresses of the cache and
the nodes and the url and dks ref fields will hold the URL to the cache and
the node’s DKS ID respectively. The uptime is used for both the web cache
and the node entry and is a time value of how long the entity has been up and
a part of the system. version is added for use in the future where different
versions of DOH will have different features and a cache or a node can be
chosen with respect to that. The ping and the two score entries will be used
by the next level in the hierarchy for determining closeness and how reliable
a cache or a node is. Finally the ttl value in the node entry will be used to
determine when to update the entry.

4.5.2 Node

Two different approaches to implement the Node functionality and to combine
its components will be described. The first will be used if the choice is made to
use an existing web server and the second if a new one is created instead. The
three components of a Node, as shown in Figure 1.1 is an application server, the
DKS DHT and a web server. The application server will be listening to port 80
for HTTP-requests. When a client requests some URL, the application server
will call DKS to do a lookup operation and retrieve the object requested. It is

32

<doh_webcache>

<ip></ip>

<url></url>

<uptime></uptime>

<version></version>

<ping></ping>

<cache_score></cache_score>

<node></node>

</doh_webcache

<node>

<ip></ip>

<dks_ref></dks_ref>

<uptime></uptime>

<version></version>

<ping></ping>

<node_score></node_score>

<ttl></ttl>

</node>

Figure 4.5: XML syntax for the DOH Web Cache. To the left:
the web cache. To the right: a node entry.

now that the two approaches differ. In the first, when using an existing web
server, the object is stored in the web server’s root folder, with the directory
structure matching the one of the URL. Then a modified HTTP-request is sent
from the application server to the web server via the loopback interface, modified
so that the web server responds to the client instead of the application server.
In the other approach, when creating a new web server, the fetched object
can be kept in some local data structure and sent to the client directly from
the application server. The advantages of using the first approach is that the
system could be easily extended to implement more of the existing web servers
functionality. The disadvantage is that a garbage routine has to be created
to remove old objects and also that this approach would probably be slower,
since objects has to be written to disc before being returned. The advantages
of creating a new web server is that objects does not have to be written to disc
and the disadvantages is that adding more features to later versions of the DOH
system will be harder.

Adative replication
Using the Directory scheme defined in [32] and combining that with the entry
caching scheme of DNS, an adaptive caching algorithm has been devised.

The approach used is that whenever an object is requested it is likely to
be requested soon again. Therefore it makes sense to cache it. What is not
mentioned explicitly when describing the DKS lookup is that the return path,
when returning the object to the node doing the lookup, is also recursive. As
with the DNS, this could be used for caching the result along the lookup path.
When a new request is arriving somewhere in the system, the node receiving
the request will look in its cache if it already has a valid copy of the object. If it
does it will return the object, if it does not it will perform a DKS lookup. When
the object is found it will be cached along the respond path on its way back to
the querying node. Consistency could be kept by using the if-modified-since
field that is built-in to the header of the HTTP protocol. When caches are full,
e.g. the Least Recently Used (LRU) algorithm, or some other caching policy,
could be used for deciding which objects to evict.

A normal lookup in DKS is described in Section 2.3.2 on page 7. As-
sume once again that node 0’s request arrives at node 5. When the object is

33

returned to node 0 it will cache it, as would any other node along the respond
path. When a new request is made node 0 will check if it has a valid copy of
the object and respond itself.

Object Granularity
This is one of the most important issues to get right for the system to show good
performance. In DOH files will be hashed directory-wise. I.e. all files in the
same directory will be hashed to the same node. E.g. as in Figure 4.6, where the
files banner.swf and index.html in directory www.url.com will be hashed to
one node and files 1.jpg, 2.jpg, and index.html in directory b will be hashed
to another. This is done because the directory structure is easy to obtain
and, more importantly, effectively can be used when transforming a URL to a
key. E.g. consider the URL http://www.url.com/a/b/index.html When this
request reaches a DOH node, it simply performs dks get(www.url.com/a/b/),
where www.url.com/a/b/ is the key.

Only because the files are hashed directory-wise it does not mean they
have to be returned directory-wise. In the previous example, DKS allows
index.html to be sent along with the request as the value to be retrieved, since
this entry in the hash table might, and actually does, contain multiple values.
Further optimizations could be done, such as calculating which the embedded
objects of index.html are (1.jpg and 2.jpg) and return them all on the same
lookup, since the probability for a request concerning them in the near future
is very high.

Login
For the login feature an existing Public Key Infrastructure (PKI) could be used.
When a person wants to be a Publisher he will have to contact a Super user. The
new Publisher needs to have a digital signature certified by some Certification
Authority (CA). The Super user will add the new Publishers username as a key
in the DKS DHT and as the value, the Publishers public key will be stored.
Authentication is done by receiving the username of the Publisher that are
trying to log in, encoding some random numbers with that username’s public
key and challenge the Publisher to encode it with his private key. If this string
matches the original, the login has succeeded.

34

wwwroot/:

www.url.com/

wwwroot/www.url.com:

a/ banner.swf index.html

wwwroot/www.url.com/a:

b/

wwwroot/www.url.com/a/b:

1.jpg 2.jpg index.html

Figure 4.6: Example of a directory structure for the site
www.url.com. To the left: the directory hierarchy. To the right:
the files stored in each directory

5 Implementation

A prototype has been developed to check the validity of the design and to do
some performance tests to see if the system will meet the performance demands
required of a CDN.

This Section is divided into two major subsections, each describing a
subsystem of DOH: the Node and the Translator. The implementation details
will be described from the functionality perspective, using the specification
created in Section 4. In this context it, hopefully, will be easier to understand
the reasons for different implementation details.

5.1 Development platform

Since DKS was already implemented in Java, it became a natural choice when
considering implementation language. The following version and edition was
used: Java (TM) 2 SDK (Standard Edition) Version 1.4.2[54]. The code of the
prototype was written in Borland JBuilder X Enterprise[13].

5.2 Node

The node functionality was decided by the actors in the design phase and could
be summed up like this:

1. Should answer to HTTP requests with content retrieved locally or via
lookup in DKS.

2. Should support uploading and deletion of content for publishers.

3. Should support management of publisher accounts.

4. Should join and leave DKS gracefully.

35

In the prototype of the Node, the web server functionality required by the User
actor was implemented by modifying the Jetty[27] web server, which is licensed
under the Apache license[7]. The functionality required by the Publisher was
realized using the FTP standard and implemented by modifying the JavaFTP
server[11] package, which also is licensed under the Apache license. The Node
prototype also is a peer in the DKS network and uses the DKS DHT API to
store and retrieve data.

5.2.1 Web Server

Jetty 5[27] is used in DOH to implement the web server functionality that is
required. An overview of Jetty’s internal structure can be seen in Figure 5.1.
There is a set of HTTPListeners that listens for requests and then notifies their
server on incoming requests. The HTTPServer is responsible for matching a
request to an HTTPContext, usually by using the directory part of the URL.
The context will pass the request on to its registered HTTPHandlers until
the request is recognized and handled, where handled usually means that a
response has been sent back to the requestor. The most common listeners and
handlers, e.g. listeners for HTTP and SSL and handlers for ”page not found”
and static content, are already provided by the Jetty developers.

The fact that Jetty is modular in this way, will allow for a change in
the DOH design. Since it is fairly easy to add new behavior to the web server,
there is no need for an application server listening to port 80 (as described in
Section 4.5.2). All that is needed is to create your own, customized, handler.
In our case, the functionality that needs to be added to make Jetty ”DOH
compliant” is to create a handler that searches DKS if the page not is found
locally. In the created DOHHandler, the requested page is searched for, first
locally in the web server cache and if not found the page is retrieved from DKS
and written to the disc. Then it can be displayed using the regular handler
functionality provided by Jetty. How the DKS lookup is done will be described
later, in Section 5.2.3.

5.2.2 FTP Server

JavaFTP server[11] is a package implementing the FTP standard and was a
part of the now closed Apache Avalon project[9]. It has been modified so that

HttpListenern −→1HttpServern −→1HttpContextn −→1HttpHandler

SocketListener1 −→1HttpServer1 −→1HttpContext1 −→1ResourceHandler
port:8080 ”/” ”./docroot”

Figure 5.1: Top: a generic overview of the internal Jetty struc-
ture. Bottom: An example. This depicts a single listener on port
8080 passing requests to a single server, which in turn passes
them to a single context ”/” with a single handler which returns
static content from the directory ”./docroot”.[27]

36

when connected to a host, instead of uploading files to the host’s local file
system, the files are uploaded and stored in DKS.

Since there should be no difference in the look and feel between the FTP server
in DOH and a usual FTP server, information about the user and his uploaded
files needs to be stored somehow between sessions. This is done by storing user
information as an XML scheme in DKS, retrieve it during the login procedure,
record changes locally during the session, and store changes in DKS when
quitting. There are two reasons for having user information encoded as XML.
First of all, since a directory might contain both other directories and files
recursively, no simpler structure would do. And second, using XML let us use
already existing, efficient, XML parsers for parsing the User information.

When a Publisher makes an attempt to log in, a lookup in the DHT is
done for that username. If there are no hits, or if the password is wrong,
login will fail. If there is a hit and the password entered is matched against
the password stored, DOH will parse the user information and display the
previously uploaded content, if any. The complete structure of the user
information XML scheme can be found in Figure 5.2.

The user information consists of three types of directory elements: do-
mains, directories and files. The file element keeps information about the
file, such as: file name, size, and time of last modification. A domain and a
directory are the same thing, except that a domain will only be present at
the top level of the directory structure and has the imposed restriction that it
should be named to the domain name of the web site it is storing. Remember
that objects should be stored in DKS so that they could be found using the
URL, as described in Section 4.5.2. If the top directory is named after the
domain when uploading content, getting the keys for storing objects will be
simple. Assume e.g. that someone wants to publish his site that has the domain
name www.url.com with files as shown in Figure 4.6. If the top directory, the
domain, is named www.url.com, all files will be stored under the correct hash
index just by hashing the directory path.

<user_info>

<user_name></user_name>

<password></password>

<domain>

<name></name>

<dir></dir>*

<file></file>*

</domain>*

</user_info>

<dir>

<name></name>

<dir></dir>*

<file>

<name></name>

<modified></modified>

<size></size>

</file>*

</dir>

Figure 5.2: User information XML structure. A star means zero
or more occurrences of that label. E.g. a dir can contain multiple
other dirs. Labels without stars is mandatory and should be in
the structure only once.

37

5.2.3 DKS Peer

To be able to join the DKS network, a node already in the network must be
contacted. In DOH a booting node must have a URL to a Translator and the
booting node will get information about existing nodes via his Translator. A
small GUI has been developed, containing a start and a stop button. Pressing
start will boot the node and make it a part of the DOH system. Pressing stop
will make sure that the node leaves DOH, and especially the DKS network,
gracefully. I.e. the leaving node will leave DKS as described in Section 2.3.2.

The current implementation of the DKS API does not provide a hash
function. It just states that keys, or more accurate indexes, used should be 64
bits5. So when using the distributed put(key, value) method of DKS, the
key should be the already hashed index. The value should be a DKSObject,
where the DKSObject class is a wrapper around an array of bytes. The
lookup(key) operation, where key once again is the already hashed index,
returns a DKSObject array containing all the objects stored under that index.
The internal order of this array is unspecified.

Since the decision was made in DOH to use URLs as the keys in the
hash table, some special arrangements had to be made to handle the practice
of not referring to the index-page when typing URLs. When receiving a URL
that ends with a front-slash DOH will therefore first perform a check to see
if the specified directory contains an index-file. E.g. assume that the URL
http://www.url.com/ is received by a Node. Then the URL will be hashed
and since it ends with a front-slash, the Node will first perform a search
within the directory for an index-file. If an index-file is found, it will be
sent back. If not, a listing of all the files in the directory will be returned
instead. However the issue with multiple URLs pointing to the same content
has not been addressed so far in DOH, i.e. the URLs http://url.com and
http://www.url.com will not lead to the same page.

In order for the DOH system to handle large objects, a way of fragment-
ing objects is needed for mainly one reason: to avoid running out of memory.
Without fragmentation, consider the scenario when e.g. a Publisher is upload-
ing a large file, then all of the file must be kept in memory before it is being
stored in DKS. Fragmenting the file means that the system has better control
over memory usage and can avoid running out of memory.

The information that is needed for fragmenting objects and then merge
them correctly again are the following: type of object, an optional file name (if
the type specifies a file), number of fragments, the number of this fragment,
and finally the data. The different types of objects in DOH are two: files
and users. A syntax example: if the delimiter used is an & and the stored
object is a file with the name index.html, divided into 5 fragments where
this is the first, then this is how it would be stored in the DKS DHT:
FILE&index.html&5&1&<data>

A class called DOHObject has been implemented, keeping an array of
5DOH uses SHA-1[22], shortened to 64 bits, to create a hash table index from a key.

38

these fragments. When a lookup operation is done from e.g. the web server,
the returned DKSObject array is searched for the fragments of the requested
file and a DOHObject containing all the fragments of the requested object is
returned. Figure 5.3 graphically shows the steps performed by DOH when
adding a file to DKS and Figure 5.4 shows the steps when retrieving it again.

For the prototype a straightforward cache algorithm has been implemented
as default: Each node will cache the files that it receives from the lookup on
disc. After that the Jetty web server will itself choose which files to cache
in memory. The cached files are said to be stale when a certain amount of
time has passed, currently 5 minutes, and a new copy will be retrieved from
the DHT. No garbage collection has currently been implemented. The reason
for abandoning the cache algorithm described in Section 4.5.2 is because the
current version of DKS does not support the features needed for it to work.

39

Figure 5.3: Adding files to DKS in DOH: first the key is hashed
to get an index; if needed, the file is fragmented; each fragment
is then added to the calculated index in the hash table.

Figure 5.4: Retrieving files from DKS in DOH: once again hash
the key to get the index; lookup returns a DKSObject array
containing all the files added to the index; filter the fragments
for the requested file and put them in a DOHObject. The file
can now be assembled.

40

5.3 Translator

In the prototype the Translator will be a stand-alone part with the following
functionality:

1. Keep a cache of existing DOH nodes.

2. Re-route HTTP requests to a node in the system.

3. Calculate which node is best to re-route to.

4. Display node information to Publishers in a human-readable format.

To achieve this functionality two packages was implemented: the Web cache
and the Rerouter package. These will now be described in more detail.

5.3.1 Web cache

As for the prototype a small protocol has been created between the Node and
the web cache part of the Translator. (See Table 5.1 for the complete protocol
specification.) The web cache keeps track of two lists of nodes: the now active
nodes and old, inactive, nodes. This is to be able to calculate the node score
more accurately, a node that jumps in and out will get a lower score since it is
less trustworthy than a stable node. (The structure of the web cache can be
seen in Figure 4.5)

For a node to be able to boot and become a part of DOH, it needs a
URL to a Translator’s web cache. When booting, it queries the cache for known
nodes and the cache responds with DKS references to all nodes it knows. A
DKS reference contains, among other things, the node identifier and the node
IP. After receiving the DKS references the node can start the process of joining
the DKS network. When the node has joined, it sends an INFO-message
containing its node information to inform the cache that a new node now exists.
The node information is shown in Figure 4.5. When a node is leaving, it sends
a LEAVE-message to the web cache, which removes the node from the active list.

To be able to calculate which node is the ”best” to re-route to, the nodes also
inform the web cache about their load. There are two different types of load
messages, the regular load message, UPDATEC, and the OVERLOAD-message.
If the web cache receives an OVERLOAD message it will decrease the score

Initiator Message Msg Content Replay Replay Content

Node BOOTING - CACHES A web cache

Node INFO A Node entry ACK -

Translator PING - PONG -

Node LEAVING Node ip - -

Node OVERLOAD Node ip - -

Node UPDATEC Node load info and IP ACK -

Table 5.1: Protocol between a DOH node and the Translator web
cache.

41

of that node by 50% to assure that the load of the node will be decreased
instantly. UPDATEC is sent regularly when the node has received a fixed
number of requests, currently 1000. The content of the message is information
of the node’s load. The load is calculated by using the undocumented class
sun.misc.Perf, to get precise timing and also to be able to get the CPU
frequency. The class, included in Java SDK since version 1.4.2, allows for
accessing the high performance timer of the CPU. The formula for calculating
load in the prototype is like follows: time in ms that it takes to handle
1000 requests divided by the CPU frequency times a constant k, where k =
1000 to get values between 1 - 1000 on the testbed. There are more elaborate
ways of calculating load, but this is sufficient for the evaluation of the prototype.

When the cache receives an UPDATEC-message, it calculates a new score for
that node. The node score is based on the inverse load of the node, inverse
number of incarnations of the node, and also on the RTT between the node
and the cache. (Hence the PING and PONG messages in Table 5.1.) The node
score will be a number between 1 - 1000, where 1000 is the best, and the node
with the currently best node score will get to answer the incoming requests.
The node score is decreased with one on every rerouted request, to ensure that
fairness is achieved.

5.3.2 Rerouter

The Rerouter prototype is implemented as a Listener that listens for incoming
requests on the standard HTTP port and handles the incoming HTTP requests
in one of two different ways. Usually it will get the ”best” DOH node from
the web cache and send an HTTP 302 response message back to the requestor,
adding the ”best” DOH node’s IP to the old URL. The HTTP standard[24]
states that the 302 message is used for pages that is temporarily moved and
therefore it can be used for e.g redirecting. (See Figure 5.5 for a complete ex-
ample of an HTTP 302 answer.) When having received the 302 response the
requestor will try to get the requested page from the new URL, thus contacting
a DOH node, and the request will be handled as described in Section 5.2.1.
The special case is when the requested URL contains the word
doh webcache.xml, then the Rerouter will assume that the request is com-
ing from a Publisher wanting to find an IP address to a node. In this case
the Rerouter will create an HTTP response, the content being the nodes in the

HTTP 302 Found
Date: 13.37 May 31:th 2005 GMT
Server: DOH Server 0.3b
Location: http://192.168.2.23/www.url.com/a/b/index.html
Content-Length: 0
Connection: close
Content-Type: text/plain

Figure 5.5: An example reroute message. The
HTTP 302 answer from the Rerouter to a request for
http://www.url.com/a/b/index.html, where 192.168.2.23

was currently the ”best” DOH node’s IP.

42

web cache transformed to the XML scheme described in Figure 4.5, and there-
after reply to the request itself. From this XML page the Publisher can choose
whatever node he wants and connect to it.

6 Validation

This Section will cover the most important parts of the validation of the
implemented prototype. One can say that validation means testing whether
the implementation fulfills the proposed design. A system like DOH is rather
straightforward to validate, since the use cases are specified and most of the
system functionality is towards a human user. E.g. it is easy to validate that
a User is rerouted and that a Publisher is connected and able to upload and
delete content, using the mere eye.

However there exist other parts of the system that needs to be validated
as well, first of all the Rerouter needs to be validated in terms of how fair it
really is. Is it dividing load at all? This will be the first validation scenario and
then the system will be validated to the use cases described in Section 4.3.

6.1 Fairness of the Rerouter

In the validation of the Rerouter the simulated nodes will be assumed to
be equal according to performance. I.e they can handle the same num-
ber of requests in a given amount of time. This way it can be verified if the
Rerouter is fair, because then the nodes should get the same amount of requests.

A test program is developed that will initiate a Rerouter, spawn off and
attach 5 simulated nodes to it, and then perform a given number of requests.
All the nodes will start off with an equal node score, in this case it is the max
node score of 1000. At first a run is done that performs 5000 rerouting requests
and, as the results in Table 6.1 shows, the Rerouter so far seems to be fair.

The nodes are periodically assumed to inform the Rerouter of their load,
and for the simulation this is done every thousand request. To further verify
the Rerouter’s fairness the number of requests is increased to 100000 and this
test setting is iterated 1, 10, 100, and 1000 times to check for tendencies. (See
Table 6.2.) What can be noticed is that the median is close to 20000 requests
already with only one iteration, and that the range between maximum and

Node Number of requests
3 1001
2 999
1 999
0 1000
4 1001

Table 6.1: Rerouter simulation of 5000 requests with 5 nodes,
where all nodes start with an equal node score.

43

minimum values are decreased from 209 to 3 when you go from 1 to 1000
iterations. Thus the Rerouter, under perfect conditions, could be considered
fair. (See Appendix B for the exact numbers of the runs.)

6.1.1 Asymmetric node scores

Now when it has been shown that the Rerouter is fair using symmetric node
scores a test is done to check for another important characteristic of the
Rerouter, namely to see what happens when the node scores are asymmetric. In
this validation test, four nodes are simulated: Node 1 has a node score of 1000,
Node 2 has a node score of 500, and Node 3 and 4 has a node score of 250 each.
2000 requests are then executed and the result, as shown in Table 6.3, is good:
the Rerouter divides the load according to the node scores. An increase to 3000
requests shows the same pattern as the symmetric case: after a few iterations
all nodes has roughly got 250 more requests each. (See Appendix B.)

6.2 Use Case validation

The use cases, see Section 4.3 and Figure 4.2, is now to be validated. To
capture all the functionality described in the use cases and to validate them,
the following scenario will be used: find a Node to login on, login to a Node’s
FTP server with username Bob and password foo, upload some content, browse
that content, delete the content, and try to browse it again. After that Bob’s
Publisher account will be deleted and another login will be attempted. That
will show that one can:

1. Start a Translator.

2. Start a DOH Node.

3. Add a user.

4. Find nodes using the translator.

5. Login.

6. Upload a web page.

7. Browse a web page that are uploaded.

8. Delete a web page.

9. Delete a user.

of iter Max Min Median
1 20 106 19 897 19 992
10 20 065 19 947 19 995
100 20 018 19 975 20 000
1 000 20 001 19 998 19 999

Table 6.2: Rerouter simulation with 5 nodes and 100000 requests,
iterated from 1 - 1000 times.

44

Node Node score Number of received
at the start requests

1 1000 1000
2 500 500
3 250 250
4 250 250

Table 6.3: Rerouter simulation with 4 nodes and 2000 requests
using asymmetric node scores.

Contacting the Translator to get a Node to upload too might look like in Fig-
ure 6.1 where the web cache information is displayed. Figure 6.2 shows the
login dialog between then FTP client and the FTP server and Figure 6.3 shows
when a Publisher (Bob) is uploading his content to a DOH node. Figure 6.4
shows a User browsing Bob’s page and Figure 6.5 shows a User trying to browse
the same page after Bob has removed it, and the time for updates has expired.
Finally, Figure 6.6 shows Bob attempting to login after his Publisher account
has been deleted. The use cases ”Stop Node” and ”Stop Translator” have been
validated but is excluded from this presentation. (For more instructions on how
to use DOH see Appendix C.)

6.3 Portability

Since DOH is written in Java it would be a nice feature for the system to be
portable between different operating systems. Under the implementation of
DOH this has been a goal and the system has been tried on Linux (Mandrake
9.2) and Windows XP and at least runs on both these platforms.

45

Figure 6.1: An excerpt from a DOH webcache showing how a
Publisher can find a Node to upload content to.

Connect to: (2005-09-09 10:33:35)
hostname=ip-133.kistaip.net
username=
startdir=
ip-133.kistaip.net=192.16.126.133
220 Service ready for new user
USER bob
331 User name okay, need password for bob
PASS ***********
230 User logged in, proceed
SYST
215 UNIX Type: FtpServer
FEAT
502 Command FEAT not implemented
Connect ok!
PWD
257 ”/” is current directory

Figure 6.2: The Login dialog between the DOH FTP server and
the client.

46

Figure 6.3: Uploading content to a Node’s FTP server.

Figure 6.4: An example of rerouting in DOH. Browsing the newly
uploaded content.

47

Figure 6.5: Trying to browse the same page, after it has been
removed.

Connect to: (2005-09-09 15:20:03)
hostname=ip-133.kistaip.net
username=
startdir=
ip-133.kistaip.net=192.16.126.133
220 Service ready for new user
USER bob
331 User name okay, need password for bob
PASS ***********
530 Access denied

Figure 6.6: Failed DOH FTP server login attempt. (User bob
has been deleted.)

48

7 Evaluation

In this Section the performance of the system will be tested. The crucial per-
formance factor to get right in DOH is the User perceived latency and it will
therefore be the focus of the evaluation. At first a test is designed that will
examine some of the design properties of DOH with respect to this latency,
namely the object granularity of the system and the use of caching. After that
the prototype will be evaluated with respect to its performance and furthermore
a simulation of the system will be presented and used to perform more thorough
tests on a larger scale.

7.1 Test-bed platform

The computer running the first set of tests is an AMD Athlon 64 3000+ with
512 MB RAM. The operating system is Microsoft Windows XP SP 2.

To run the different parts of the system Java(TM) 2 Runtime Environ-
ment, Standard Edition (build 1.4.2 04-b05) was used.

In addition Borland Optimizeit Enterprise Edition 6[14] is used to run
some fine-grained evaluation tests. Opimizeit is a tool for isolating and
resolving performance of Java (J2EE) applications, it can provide information
on a level of functions.

7.2 Critical Path

The critical path of any system is the path of events that will be worst, i.e
critical to get right, with respect to the performance measurement used. In the
case of DOH the performance measurement is response times and the critical
path for a request is as follows:

1. Redirection from old home to a Translator.

2. Redirection from a Translator to a Node.

3. Retrieve requested file from the DHT.

4. Unwrap files and write them to disc.

5. Send data to User.

The redirection from the old home to a Translator could be done in two ways,
as explained earlier. The DNS entry for the page might be updated, or a
simple JavaScript-file could be used. This redirection step is not considered
when evaluating the system, since it strictly speaking not is a part of the system.

To analyze the critical path, files of increasing sizes where added to the
system and then extracted again, using Optimizeit[14] to get the timing values
shown in Table 7.1. Also it can be noted that when it comes to bigger files,
the performance of DOH is the performance of DKS since over 90% of the time
used by a request of a file with a large file size is spent in DKS.

49

File size findInDKS Lookup Unwrapping Fragments Total time
5 Kb 41 ms 12 ms 6 ms 1 15 ms
15 Kb 47 ms 24 ms 5 ms 1 50 ms
17 Kb 35 ms 18 ms 6 ms 2 40 ms
30 Kb 58 ms 41 ms 6 ms 2 65 ms
60 Kb 111 ms 90 ms 18 ms 4 125 ms
120 Kb 160 ms 113 ms 29 ms 8 250 ms
240 Kb 293 ms 252 ms 30 ms 15 512 ms
480 Kb 521 ms 445 ms 47 ms 30 1010 ms
960 Kb 872 ms 784 ms 71 ms 60 2003 ms
1920 Kb 1650 ms 1504 ms 117 ms 120 4050 ms
3840 Kb 3115 ms 2868 ms 206 ms 240 7121 ms

Table 7.1: The time used by DOH for retrieving files of different
sizes. findInDKS consists of two stages, first the lookup and
then the unwrapping of DKSObjects into files on the disc. The
difference of total time from findInDKS is mostly due to DKS
related activities on lower levels of the DKS overlay network.

7.3 Design choice evaluation

As described in Sections 3 and 4.5.2, the object granularity of the system is
important for good performance. DOH is designed to hash and retrieve objects
on a per directory basis, i.e if one file from a directory is requested all files
from that directory is currently retrieved and cached. Here this approach will
be compared to hashing and retrieving objects on a per file and per site basis,
with and without using a cache.

The test is performed using just one Node, and the Translator and the
Node is residing on the same computer. Approximately 50 files with a mean file
size of 10Kb, in 6 domains, and 16 directories are then uploaded to the Node.
The test program will act as a web browser. It will randomly pick one of the
domains and then request some of the pages in that domain. The time for each
request will be recorded using the undocumented class sun.misc.Perf, which
can be used to create a very precise timer. The system is restarted before every
run, i.e the node does not have any files cached at the beginning of a run. Runs
with 100, 1000, and 10000 requests where made and the results are shown in
Figure 7.1, which shows the average response times for each strategy. What
can be noted is that the impact of a ”cold” system is big as expected: the
average response time for all strategies in the 100 request run is significantly
higher then the response time in the 10000 request run. This suggests that
the system should benefit from the use of caches, which is also supported by
looking at the strategy in the figure that do not use a cache at all. (Using the
site- and directory-wise approaches without caching was omitted since they
make no sense. What is the point in retrieving more objects from the DHT
and not cache them?)

When reviewing the strategies using this test as a base, there are very
small differences between the approaches: in the long run all strategies that

50

Figure 7.1: Average request response times for different object
granularities in DOH.

uses caches differs very little from the ideal case (No DHT), which is as one
should expect.

Two other important performance measures is the amount of memory
and CPU used. During the tests of the strategies using a cache, the node
used about 30Mb of memory and the processor of the test machine never
exceeded 30%. During the file-wise test with out caching, the amount of
memory used was 40Mb and the processor worked in between 50-100% all
the time. To further look at the differences between caching and not caching
objects Optimizeit was used get the timing characteristics of the two file-wise
approaches. Two new runs where made, with 1000 requests, and the result is
found in Table 7.2. Thus it is relatively easy to understand that how to cache
objects and for how long is very important for system performance.

One of the reasons that there are very small differences between the directory-
and site-wise approaches is of course the design of the tests. In total the size
of the uploaded files are about 1 Mb, which is to small to see the differences
between these approaches. But as explained in Section 3 downloading the
complete site every time a page is requested is not very efficient, which also
can be realized by looking at Figure 7.2 (extracted from Table 7.1) where the

File search (%) Total time (s)
Cache 26 8
No cache 86 35

Table 7.2: Using a cache or or not. Procentage spent looking for
files and total run time to execute 1000 requests.

51

retrieval time for files of different sizes in DOH is displayed. The file-wise
approach is optimal when it comes to retrieval-overhead, since it has none.
However it shows a smaller cache hit ratio then e.g. the directory-wise
approach. In conclusion it can be said that if picking one of the approaches, the
directory-wise seems to give the best tradeoff between downloading overhead
and cache hit ratio when the load of the system is reasonable.

7.4 Performance Evaluation

The testbed used for the performance evaluation is several Pentium 3, 500Mhz
computers with 256 MB RAM running Linux (Red Hat 9.3). In this section the
term workload refers to the grade of parallelism used in that particular run: the
number of parallel, independent, clients that are used at any given run is the
workload of the object being evaluated.

First scenario
The first testing scenario was to evaluate a stand-alone Jetty web server, to
use as a baseline for comparisons. This scenario is very similar to the one used
when validating the system: approximately 50 files, with a mean size of 10Kb
was uploaded to the system and the test program was basically a browser that
requested a random page and recorded how long time each request took. This
was repeated for several workloads and the result is shown in Figure 7.3. After
that, the first evaluation test of DOH was made. Choosing to use the workload
of 100 parallel requests, 4 test runs where made with an increasing number of
nodes. The results can be found in Table 7.3. What can be noticed is that at
this workload, Jetty still is faster. However when increasing the workload to
200 parallel requests with 4 DOH nodes, DOH has an average response time of
135ms compared to Jetty’s 171.

Second scenario
The second test scenario is larger in scale: 18 domains, 47 folders, and 503
files (mean size is still 10Kb). The idea here is to evaluate how DOH would
perform in a real life scenario. Runs where made with 1 - 5 nodes and with
workloads of 10, 50, and 100 parallel requests. Also, for reference, Jetty was
run with this new file set on workloads of 10, 50, and 70. Figure 7.4 shows the
response times for 1 - 5 nodes under different workloads and compares it with
Jetty. As can be seen, DOH is slower then Jetty for all the workloads that was
tested. Due to a bug, the DKS version had to be changed between the tests.

Nodes Response
times

1 120
2 120
3 110
4 110

Table 7.3: The average response time for DOH, when the work-
load is 100 parallel requests.

52

Figure 7.2: Time to retrieve files of different sizes in DOH.

Figure 7.3: The performance of Jetty under different workloads.

53

Figure 7.4: The average response time for DOH under different
workloads, for a number of nodes. Jetty is included for compari-
son reasons.

Figure 7.5: The average response time for DOH under different
workloads, for a number of nodes.

54

This is very unfortunate since no real comparisons can be made between the
results in the different scenarios. For instance, in this scenario ”Java out of
memory”-errors where generated when workloads exceeded 70 parallel requests.
The problem is that it can not be determined if this is because of the larger
working set or because this version of DKS uses more memory. Furthermore,
it can not be stated that the slower response times is due to the larger file set,
but might be the because the new ”beta” DKS version extensively writes to
System.out. However, an excerpt of the results from this testing scenario is
shown in Figure 7.5. What could be a pattern, is that all the graphs in the
figure seems to have a minima, i.e. for all tested workloads there is an ”ideal”
number of nodes where the response time is smallest. During these testing
scenarios the need for a less complex and more controllable environment has
grown stronger. There are simply to many other factors that interferes with
what we want to measure. It also would be of interest to control the number
of requests per second (request rate), instead of the number of parallel requests
(workload). Then further examination could be done regarding the results that
suggests that there exist an ”ideal” number of nodes for each workload. For
these reasons, a model was developed and a simulator implemented to continue
the testing in a more fine-grained and controlled manner.

7.4.1 Model description

A simulation model of DOH was implemented as well, using the lessons from
the earlier described tests as a base. The model is supposed to be an accurate
description of the DOH system, with respect to the user-perceived latency.
Indata will be requests and outdata will be system statistics such as number of
requests, average load, total time, cache hit ratio, and most important average
service time i.e the user-perceived latency.
When creating a model of the system, some assumptions of system behavior
is often needed and the DOH Simulation model is no exception. The first
assumption is that all nodes have the same performance and capacity. The
arrival rate of the requests is then assumed to be exponentially distributed,
and furthermore the generated requests are assumed to be equally distributed
between the nodes (because of the Translator). For determining which file that
is requested it is shown in [19] that a heavy-tailed distribution should be used,
and therefore the Zipf distribution is used in the model for that purpose. File
sizes in the model will be roughly uniformly distributed, with a few files that
will be much larger than the mean while most of the files are smaller. This is
not entirely true to reality but will suffice for our evaluation needs.

Since the earlier tests shows that caching is an important feature for the
system performance, the simulation model needs to have that feature as well.

The three factors that determines the service time of a request are the
current load of the server, the size of the requested file and if the file is cached
or not. To get accurate timing characteristics, the results from Table 7.1 and
the results from the Jetty performance test, Figure 7.3, was used.

Both these tests produces linear functions where the time in milliseconds
can be obtained from the size of the file or the workload. Since the simulator
implements a cache a function for calculating service times for requests under

55

different work loads and file sizes could now be created:

ST = load ∗ 0.85 + 2 + cM ∗ (2 ∗ fileSize + 15 + H ∗ (log2(N) ∗ 100))

where ST is the service time in milliseconds, load is the number of parallel
requests served, cM ∈ {0, 1} is a cache miss or hit, fileSize is the size of the file
in kilobytes, H ∈ {0, 1} is used to determine whether the file is stored locally or
if a number of hops is needed to find it. The probability that H = 1 is f

N , where
f is the fault tolerance parameter, N is the number of nodes in the system, and
the average number of hops is used. (See Section 2.3.2 for further explanations
of the DKS parameters.)

7.4.2 Simulator description

From the model a simulator was created that implements the model. The sim-
ulator has two important classes: the Dispatcher class and the Node class. The
Dispatcher class contains the main method, a list of Node objects, and the global
clock. Each Node object have a list of events and furthermore all nodes have
the same list of generated pseudo files. Each simulated time step is assumed to
be one millisecond, and follows the following algorithm:

1. Generate a number of requests.

2. Distribute them among the nodes.

3. For all nodes: evaluate the events for this time step.

(a) For all events:

i. Calculate which file that should be requested.
ii. Calculate service time.
iii. If not cached ⇒ cache.

4. Increase time with one.

5. When simulation clock equals end time ⇒ finish the requests that are in
the system and then calculate statistics.

Of course the load will be increased with one for all incoming requests and
decreased with one every time the request is served. All requests are assumed
to be taken care of as soon as they reach the node. Therefore there will be
no waiting time, but the service time however, will increase with the load as
explained earlier. Regarding the caching, two different simulators actually where
implemented: one for file-wise retrieval and caching and one for both directory-
and site-wise. Thus the different approaches can be compared in the simulator
as well.

7.4.3 Results

Since Jetty has been tested under different workloads, it will be the baseline
when evaluating our results. As shown in Figure 7.3 the response time is
describing a linear function during different loads. This is used in the simulator
to improve the accuracy of the calculated service time, as described earlier, and
also it will be used for comparison with DOH.

56

In the first test scenario, when performing 200 parallel requests, the av-
erage service time for Jetty was 171 milliseconds, which equals a rate of 1170
served requests per second. (It can also be noted that the CPU of the machine
running the server had almost 100% load starting from 70 parallel requests,
but that the server still only shows linear degrade in performance from that
point and up to the 200 requests tested.) This was the starting point for the
first round of simulation: the request rate was chosen to be 1170 requests per
second and then the number of nodes was increased.

The in-parameters for the simulation is chosen as follows: the request rate is
1170 requests/s as stated earlier; the number of files in the system is 1000 (in
the case of the directory-wise approach: 100 directories containing 10 files each);
the average file size is 30Kb (concurring with the average file size of the web, as
showed in [8]); simulation time is 100 seconds and TTL in the cache is 3 seconds.

The results are promising and are shown in Figure 7.6 for the directory-
wise approach and in Figure 7.7 for the file-wise approach. In fact, at this rate,
using two DOH nodes gives the Users better performance results, then using
a regular Jetty server. After performing these tests and a number of others
with request rates in the interval between 1000 - 3000 requests per second, it
can be determined that for each request rate there is a ”minimum” on the
graph representing the ideal number of nodes for just that rate. This minimum
represents the point where the average cache hit ratio for the whole network
is the highest, for request rates that is in the range of 500-750 requests per
node and second, see Table 7.4. When increasing the TTL in the cache it
shows that the directory-wise approach benefits more then the file-wise, and
with TTLs over 30 seconds, the directory-wise is faster. Also, as can be seen
in Table 7.4, changing the TTL in most cases wont change the ideal number of
nodes. Furthermore it can be noted that when the network increases in size, for
the tested ratios, the directory-wise approach outranks the file-wise even when
using small TTL values. Increasing the number of files in the system will not
change the ideal number of nodes, it will however increase the service times.

After these tests, the main conclusion is the same as the one in [41]:
there is not one single caching strategy that is best for every situation.

57

Figure 7.6: The average service time in DOH, with 1170 requests
per second, retrieving files directory-wise

Figure 7.7: The average service time in DOH, with 1170 requests
per second, retrieving files with the file-wise approach.

58

Directory-wise approach

RR TTL N ST CR R/N

1000 3% 2 80 94% 500

1000 30% 2 14 99% 500

1000 60% 2 9 100% 500

1000 100% 2 5 100% 500

1500 3% 3 84 94% 500

1500 30% 2 14 99% 750

1500 60% 3 8 100% 500

1500 100% 3 6 100% 500

2000 3% 3 83 95% 667

2000 30% 4 15 99% 500

2000 60% 4 9 100% 500

2000 100% 4 6 100% 500

2500 3% 5 88 94% 500

2500 30% 4 15 99% 625

2500 60% 5 9 100% 500

2500 100% 5 6 100% 500

3000 3% 5 93 95% 600

3000 30% 5 15 99% 600

3000 60% 5 9 100% 600

3000 100% 6 6 100% 500

File-wise approach

RR TTL N ST CR R/N

1000 3% 2 50 70% 500

1000 30% 2 14 93% 500

1000 60% 2 10 96% 500

1000 100% 2 6 98% 500

1500 3% 2 63 76% 750

1500 30% 2 16 95% 750

1500 60% 2 11 97% 750

1500 100% 2 8 99% 750

2000 3% 3 80 75% 667

2000 30% 3 19 95% 667

2000 60% 3 13 97% 667

2000 100% 3 8 99% 667

2500 3% 4 94 73% 625

2500 30% 4 23 95% 625

2500 60% 4 15 97% 625

2500 100% 4 9 98% 625

3000 3% 4 106 76% 750

3000 30% 5 25 94% 600

3000 60% 5 17 97% 600

3000 100% 5 10 98% 600

Table 7.4: The ideal number of nodes for different request rates.
Where RR is the request ratio per second, N is the ideal num-
ber of nodes, ST the service time, CR the cache hit ratio, and
RR/N the request ratio per node and second. The number of
files in the system are 1000 for both approaches, however in the
case of the directory-wise they are divided to 100 directories con-
taining 10 files each).

59

8 Conclusions

In this report DOH has been presented as a way of creating a CDP2PN, i.e.
an inexpensive way of protecting your web server against a flash crowd[1]. The
system is based on DKS[4], which is an overlay network developed at KTH[33].
Each node in the DOH network consists of a web server, an FTP server, and
is also part of the DKS overlay network. Furthermore a Translator has been
introduced that translates and reroutes HTTP-requests to DOH nodes. It also
keeps a cache of nodes that are known to be in the system, for solving the
bootstrapping issues that comes with P2P systems and for Publishers to find
nodes to login to, when uploading content. The idea of DOH is to store files
in a DHT so each node is able to retrieve the files requested and cache them
locally for future requests. Thus when a sudden traffic surge occurs, there will
not only be one server serving all the requests but a network of cooperating
web servers helping each other to divide the load.

In order to test these ideas a prototype, realizing the design (except for
the DNS-server part of the Translator), was implemented in Java[54]. Several
tests has been run to validate the prototype against the proposed design,
including: validation of the fairness of the Translator’s rerouter; adding
Publishers to the system; uploading content into the DHT using the node’s
FTP server; browsing the uploaded content with a regular browser; deleting
the content; and deleting Publishers. According to these validation tests the
prototype fulfills the requirements stated in the use cases of the proposed design.

The prototype was also evaluated performance-wise, to see if DOH has
the performance to function in a real life scenario. The first test looked at
retrieval time versus file sizes, and it shows that in that aspect, the performance
of DOH depends heavily on the performance of DKS: over 90% of the time used
by the system comes from DKS-related activities when file sizes is increased to
4Mb. Furthermore it can be stated that while DOH is not fast, it is neither to
slow to be used. When workloads (number of parallel requests) are low Jetty
(the stand-alone web server used for comparison) outperforms DOH, but when
the traffic increases DOH’s response times will not increase as fast as Jetty’s.
E.g. at 100 parallel requests, the average response time for Jetty is 87ms
compared to 110ms for DOH. However at 200 parallel requests, the average
response time for Jetty is 171ms compared to 135ms for DOH.

The simulator suggests that DOH will perform well, with response times
smaller then 300ms, at request rates smaller than approximately 1200 requests
per second and node. Assume that 100 000 users decide to visit a site in a
period of 5 minutes. Further assume that they will produce an average of 10
requests each. This will give the system 1 million requests in 300 seconds,
or a request rate of 3333 requests per second. Then 3 DOH nodes should be
able to handle that traffic surge, an increase in traffic that would cause a huge
degeneration of performance in Jetty. DOH would be able to handle a flash
crowd, however the price the users of the system would have to pay is that the
page retrieval under normal workloads would be slower.

Three different approaches for file storage and retrieval has also been

60

evaluated, to see which is the best: file-, directory-, and site-wise. Unfortu-
nately, the results show that there is no clear candidate to use in all cases. If
web pages are changing rapidly or if the load of the network is small, then the
file-wise approach yields the best results. If there seldom are changes in the
stored sites or the load is higher, then the directory-wise or in some cases even
the directory-wise approach is the best to use. This suggests that the system
would perform even better if there was a way of using at least two of the
approaches at the same time, and DKS indeed supports this kind of flexibility
(see Section 9 for more information on this.)

Finally a comparison of DOH against a stand-alone web server was per-
formed. Or rather, the web server was tested under different workloads and
when it started to degrade in performance the response times at that ratio
(1170 requests per second) was compared with the response times of DOH
with different number of nodes. It was found that there exist an ideal number
of nodes for each request ratio, where there is a minimum on the performance
graph. E.g. a request rate of 1500 requests per second will yield its best
performance with 3 nodes in the system (with an average of 14ms in response
time), while a request rate of 3000 requests per second has its minima with 5
nodes in the system (15ms). This minimum occurs when the cache hit ratio is
largest, which suggests that even more effort should be used to find an even
better caching strategy. Since DOH already has a virtual file system, it should
be fairly easy to add information that can be used for caching decisions, such
as frequency of modification and version of the file.

When it comes to memory and CPU used, the single most important
factor to decrease these factors is the cache. When not using a cache, the CPU
will have to work very hard even at rather small request rates and the memory
consumed is 25% higher. However, when using a cache and fragmenting files
when inserting them into the DHT, the memory required is not a big issue for
most of todays web servers. The CPU on the other hand will have quite a high
workload when the web server starts to experience higher loads, but that is
inevitable and depends heavily on the web server chosen, i.e Jetty[27].

9 Future work

There are two different types of future work for the DOH system. The first
concerns enhancing the existing functionality with the knowledge gained from
this project, and the second is to add functionality to the system.

Enhancing existing functionality
The functionality that the system should benefit the most from is creating a
dynamic approach for choosing how to retrieve files. DKS supports a lookup
that will only retrieve the specified object from the DHT. Thus one can hash
on directories and when the load is small, instead of downloading the whole
directory one can choose to only download the requested file. Furthermore the
caching scheme could be extended to take into account how often files change
when deciding TTL, and nodes might also probe the DHT for finding out if
they have the same object instead of downloading it blindly.

61

As stated before, the caching algorithm should also be improved for the
system to enhance its performance further. When looking to improve the
caching scheme, maybe the use of an invalidation scheme should be considered
as well. DKS supports the use of broadcasting messages, which might be used
for this reason. On the other hand, Akamai[2] uses a versioning scheme in
the URLs to determine which is the latest version of a page. Since the URLs
already plays an important role when finding objects in DOH, this might be
added to our system as well, without the need of changing the design drastically.

The next thing to improve for the system to be able to work in a real
environment is the Translator. It should also be implemented as a node
in DKS, then it could use the information of DKS’s routing tables to see
which nodes that exist, and no communication needs to be done between the
Translator and the DOH-nodes except for load information. Also implementing
the DNS part of the Translator would provide the system with the benefits of
the DNS rerouting approach described in Section 2.4.1.

Adding new functionality
Research is now being done on how to use CDNs with dynamic content, e.g.
[48], and that could be the next step for DOH as well. As stated earlier, that
was one of the reasons for using an already existing web server: to facilitate the
use of dynamic content in later versions of the system. The DKS DHT could
still be used for storage, if a middle-layer is created that has some support
for SQL syntax (or something similar). For such a system, questions about
transactions, states and how to handle failures becomes very important. Take
the example of someone wanting to purchase something from an e-commerce
web site that uses DOH 2.0 which supports dynamic content. What will
happen if a node crashes during a session? How do you store the state to
achieve failover? Making sure that the system supports the ACID properties of
a transaction is a must, but how should that be achieved? Logging the user’s
activity, and implementing a two-phase commit protocol are ways of dealing
with these issues, but how do they effect the performance?

Furthermore, when deploying your application into such a system, what
scheme should you use to avoid namespace collisions, to know what to run, and
making sure that the applications not is harmful for the node running them.
Meta-info about the application has to be provided to the system, which can
be done using e.g. an XML-scheme. Looking at e.g. JavaBeans[55] might be a
good starting point to see how deployment of applications is done.

Also security issues needs to be addressed. As DOH now is implemented, there
is no way for the owner of a node to limit the resources that the system uses.
This concerns both CPU, memory and disc space. The next step would be to
at least have the functionality for node owners to be able to assign a disc quota
that can be used by DOH. Also one should consider to protect the cached
content as well and try to find a tradeoff between how secure the replicated
objects in the node cache needs to be against the fact that they need to be
quickly accessed by the system. Furthermore the user management in the

62

prototype needs to be reviewed, and how to get it secure is quite a big challenge
as with all distributed systems. Who should be responsible for adding and
deleting users, and how should they be authenticated? Remember that anyone
can start a node that joins the DOH network, and as it is now the person that
starts the first node has all the administrator privileges.

63

10 References

[1] S. Adler, ”The Slashdot Effect: An Analysis of Three Internet Publications” [On-
line] http://ssadler.phy.bnl.gov/adler/SDE/SlashDotEffect.html, 2005.

[2] Akamai Technologies, Inc. [Online] http://www.akamai.com/, 2005.

[3] L. O. Alima, S. El-Ansary, P. Brand, and S. Haridi, ”A framework for peer-to-peer
lookup services based on k-ary search.” Technical Report TR-2002-06, (SICS),
May, 2000.

[4] L. O. Alima, S. El-Ansary, P. Brand, and S. Haridi, ”DKS(N, k, f): A Family of
Low Communication, Scalable and Fault-Tolerant Infrastructures for P2P Appli-
cations”, In The 3rd International workshop CCGRID2003 (Tokyo, Japan), May
2003.

[5] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris, ”Resilient
Overlay Networks,” In 18th ACM Symposium on Operating Systems Principles
(SOSP), p. 131-145, October, 2001.

[6] [Online] http://www.apache.org/, 2004.

[7] [Online] http://www.apache.org/licenses/LICENSE-2.0, May, 2005

[8] M. F. Arlitt and C. L. Williamson. ”Internet web servers: Workload characteriza-
tion and performance implications.” In IEEE/ACM Transactions on Networking,
5(5):631-645, October 1997.

[9] [Online] http://jakarta.apache.org/avalon, May, 2005

[10] A. Barbir, B. Cain, F. Douglis, M. Green, M. Ho.man, R. Nair, D. Potter, and O.
Spatscheck, ”Known CN Request-Routing Mechanisms”, RFC3568, IETF, July,
2003. [Online] http://www.ietf.org/rfc/rfc3568.txt

[11] R. Bhattacharyya [Online] http://www.mycgiserver.com/r̃anab/ftp/, May, 2005.

[12] BitTorrent, Inc. [Online] http://www.bittorrent.com/

[13] Borland, JBuilder X Enterprise. [Online] http://www.borland.com/jbuilder/,
May 2005.

[14] Borland, Borland R© OptimizeitTM Enterprise Suite 6. [Online]
http://www.borland.com/optimizeit, Sept 2005.

[15] Y. Chen, L. Qiu, W. Chen, L. Nguyen, and R. H. Katz, ”Clustering Web Content
for Efficient Replication”, In 10th International Conference on Network Protocols,
IEEE Computer Society Press, (Los Alamitos, CA.), November, 2002.

[16] Y. Chen, R. Katz, and J. Kubiatowicz. ”SCAN: A dynamic, scalable, and efficient
content distribution network.” In Proceedings of the International Conference on
Pervasive Computing (Zurich, Switzerland), August, 2002.

[17] M. Colajanni, P. S. Yu, and D. M. Dias. ”Analysis of task assignment policies in
scalable distributed Web-server systems.” In IEEE Transactions on Parallel and
Distributed Systems, 9(6):585-699, 1998.

[18] A. Crespo and H. Garcia-Molina. ”Semantic Overlay Networks for P2P Systems.”
Technical report, (Stanford University), October, 2002.

64

[19] M. E. Crovella, M. S. Taqqu, and A. Bestavros. ”Heavy-tailed probability distri-
butions in the World Wide Web.” In A Practical Guide To Heavy Tails, p.3-26,
Chapman & Hall, New York, 1998.

[20] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and Ion Stoica. ”Wide-area
cooperative storage with CFS”. In SOSP (Banff, Alberta, Canada), October 21-24
2001.

[21] J. Dilley, Maggs, B., Parikh, J., Prokop, H., Sitaraman, R., AND Weihl, B.
”Globally Distributed Content Delivery.” IEEE Internet Computing 6 5 p.50-58,
September, 2001.

[22] D. Eastlake and P. Jones. ”US Secure Hash Algorithm 1 (SHA1)”, RFC 3174,
2001. [Online] http://www.ietf.org/rfc/rfc3174.txt

[23] H. Eriksson, ”MBone: The Multicast BackBone,” Communications of ACM,
vol.37, no. 8, p.54-60, August, 1994.

[24] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T.
Berners-Lee. ”Hypertext Transfer Protocol - HTTP 1.1”, RFC2616, Network
Working Group, June 1999. [Online] http://www.ietf.org/rfc/rfc2616.txt

[25] M. J. Freedman, Freudenthal, E., and Mazi‘eres, D. ”Democratizing Content Pub-
lication with Coral.” In Proceedings of the 1st Symposium on Networked Systems
Design and Implementation (NSDI 2004) (San Francisco), March, 2004.

[26] Michael Freedman and David Mazi‘eres. ”Sloppy hashing and self-organizing clus-
ters.” In 2nd International Peer To Peer Systems Workshop (Berkeley, CA, USA),
February, 2003.

[27] Mortbay Consulting. [Online] http://jetty.mortbay.org/jetty/index.html, May,
2005.

[28] Ali Ghodsi, Luc Onana Alima, Seif Haridi. ”Symmetric Replication for Structured
Peer-to-Peer Systems”,In The 3rd International Workshop on Databases, Informa-
tion Systems and Peer-to-Peer Computing, (Trondheim, Norway), August, 2005.

[29] Gnutella, [Online] http://www.gnutella.com, May, 2005.

[30] N.J.A. Harvey, M. Jones, S. Saroiu, M. Theimer, and A.Wolman. ”Skipnet: A
scalable overlay network with practical locality properties.” In Proceedings of the
4th USENIX Symposium on Internet Technologies and Systems, March, 2003.

[31] C. Huang, S. Sebastine and T. Abdelzaher, ”An Architecture for On-Demand
Active Web Content Replication”, In 16th Euromicro Conference on Real-Time
Systems, (Catania, Italy), July, 2004.

[32] S. Iyer, A. Rowstron, and P. Druschel. ”Squirrel: A decentralized, peer-to-peer
web cache.” In Proceedings of the 21st Annual ACM Symposium on Principles of
Distributed Computing. ACM, July, 2002.

[33] [Online] http://www.kth.se/, 2005.

[34] A. D. Keromytis, V. Misra, and D. Rubenstein. ”SOS: Secure Overlay Services”
In Proceedings of ACM SIGCOMM, p.61-72, August, 2002.

[35] I. Lazar and W. Terrill. ”Exploring content delivery networking.” In IT Profes-
sional, 3:47-49, July-August, 2001.

65

[36] P. Maymounkov and D. Mazi‘eres. ”Kademlia: A peerto- peer information system
based on the xor metric.” In Proceedings of the 1st International Workshop on
Peer-to-Peer Systems (IPTPS02) (Cambridge, MA), March 2002.

[37] MySQL AB, [Online] http://www.mysql.com, 2005.

[38] Open Content Network, [Online]http://open-content.net/, 2005

[39] The PHP Group, [Online] http://www.php.net, 2005.

[40] G. Pierre, and M. van Steen ”Design and implementation of a user-centered con-
tent delivery network.” In Proc. 3rd Workshop on Internet Applications, (San Jose,
CA), 2003.

[41] G. Pierre, M. van Steen, and A. S. Tanenbaum. ”Dynamically selecting optimal
distribution strategies for Web documents.” IEEE Transactions on Computers,
51(6):637–651, June 2002.

[42] J. Postel and J.K. Reynolds. ”File Transfer Protocol”, RFC959, October 1985.
[Online] http://www.ietf.org/rfc/rfc959.txt

[43] M. Rabinovich and A. Aggarwal ”RaDaR: A scalable architecture for a global
Web hosting service.” In The 8th Int. World Wide Web Conf, May, 1999.

[44] S. Ratnasamy, P. Francis , M. Handley , R. Karp , S. Schenker, ”A scalable
content-addressable network”, In Proceedings of the 2001 conference on Appli-
cations, technologies, architectures, and protocols for computer communications,
p.161-172 (San Diego, California, United States), August 2001.

[45] P. Rodriguez and S. Sibal, ”SPREAD: scalable platform for reliable and efficient
automated distribution”, In Proceedings of the 9th international WWW conference
on Computer networks : the international journal of computer and telecommuni-
cations networking p.33-49, (Amsterdam, Holland), June, 2000.

[46] A. Rowstron and P. Druschel, ”Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems”. In IFIP/ACM International Con-
ference on Distributed Systems Platforms (Middleware) p.329-350 (Heidelberg,
Germany), November, 2001

[47] A. Rowstron and P. Druschel, ”Storage management and caching in PAST, a
large-scale, persistent peer-to-peer storage utility”, In Proceedings of the eighteenth
ACM symposium on Operating systems principles (Banff, Alberta, Canada), Oc-
tober 21-24, 2001.

[48] S. Sivasubramanian, G. Alonso, G. Pierre, and M. van Steen. ”GlobeDB: Auto-
nomic Data Replication for Web Applications.” In Proceedings of the 14th Inter-
national World-Wide Web Conference, May, 2005.

[49] S. Sivasubramanian, G. Alonso, G. Pierre, and M. van Steen. ”Web Replica Host-
ing Systems.” In ACM Computing Surveys 36(3), September, 2004.

[50] T. Stading, P. Maniatis, and M. Baker, ”Peer-to-peer caching schemes to address
flash crowds,” In Proceedings of IPTPS’02 (Cambridge, MA), March, 2002.

[51] SICS, [Online] http://www.sics.se/, 2005.

66

[52] I. Stoica , R. Morris , D. Karger , M. F. Kaashoek , H. Balakrishnan, ”Chord:
A scalable peer-to-peer lookup service for internet applications”, In Proceedings
of the 2001 conference on Applications, technologies, architectures, and protocols
for computer communications p.149-160, (San Diego, California, United States),
August 2001.

[53] Z. Su et al, ”Correlation-based Document Clustering using Web Logs”, In Proc. of
the 34th Hawaii International Conference On System Sciences (HICSS-34), 2001.

[54] Sun Microsystems. Java 2 Platform, Standard Edition (J2SE). [Online]
http://java.sun.com/j2se/, May 2005.

[55] Sun Microsystems. JavaBeans [Online]
http://java.sun.com/products/javabeans/reference/index.html, November 2005.

[56] UML, OMG, [Online] http://www.uml.org, 2005.

[57] A. Vakali and G. Pallis. ”Content delivery networks: Status and trends.” In IEEE
Internet Computing 7(6):68-74, December, 2003.

[58] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. ”Tapestry: An infrastructure
for fault-tolerant wide-area location and routing.” Technical Report UCB/CSD-
01-1141 (UC Berkeley) April, 2001.

[59] W. Zhao and H. Schulzrinne. ”DotSlash: A selfconfiguring and scalable rescue
system for handling web hotspots effectively.” In International Workshop on Web
Caching and Content Distribution (WCW), (Beijing, China), October 2004.

67

A Acronyms

List of used acronyms in thesis.

ACID Atomicity, Consistency, Isolation, and Durability

API Application Programming Interface

AS Autonomous Systems

BGP Border Gateway Protocol

CDN Content Delivery/Distribution Network

CDP2PN Content Delivery Peer-to-Peer Network

CLI Command Line Interface

CPU Central Processing Unit

DHT Distributed Hash Table

DNS Domain Name Service

DOH DKS Organized Hosting

DKS Distributed K-ary Search

DSHT Distributed Sloppy Hash Table

GUI Graphical User Interface

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

ID IDentifier

IP Internet Protocol

ISP Internet Service Provider

LAN Local Area Network

LRU Least Recently Used

P2P Peer-to-Peer

PHP PHP Hypertext Preprocessor

PKI Public Key Infrastructure

RTT Round-Trip Time

SHA-1 Secure Hashing Algorithm 1

SICS Swedish Institute of Computer Science

SQL Structured Query Language

TCP Transmission Control Protocol

TTL Time To Live

URL Uniform Resource Locator

XML eXtensible Markup Language

WWW World Wide Web

68

B Rerouter validation

Symmetric runs

5 nodes, 100 000 requests, 1 iteration:

Node: 0.0.0.3, number of hits: 19992 max: 20106

Node: 0.0.0.2, number of hits: 20034 min: 19897

Node: 0.0.0.1, number of hits: 20106 median: 19992

Node: 0.0.0.0, number of hits: 19897 max-min interval: 209

Node: 0.0.0.4, number of hits: 19971

5 nodes, 100 000 requests, 10 iterations:

Node: 0.0.0.3, number of hits: 19987 max: 20065

Node: 0.0.0.2, number of hits: 20065 min: 19947

Node: 0.0.0.1, number of hits: 20004 median: 19995

Node: 0.0.0.0, number of hits: 19995 max-min interval: 118

Node: 0.0.0.4, number of hits: 19947

5 nodes, 100 000 requests, 100 iterations:

Node: 0.0.0.3, number of hits: 20014 max: 20018

Node: 0.0.0.2, number of hits: 19991 min: 19975

Node: 0.0.0.1, number of hits: 20000 median:20000

Node: 0.0.0.0, number of hits: 20018 max-min interval: 47

Node: 0.0.0.4, number of hits: 19975

5 nodes, 100 000 requests, 1 000 iterations:

Node: 0.0.0.3, number of hits: 20001 max: 20001

Node: 0.0.0.2, number of hits: 20001 min: 19998

Node: 0.0.0.1, number of hits: 19998 median: 19999

Node: 0.0.0.0, number of hits: 19999 max-min interval: 3

Node: 0.0.0.4, number of hits: 19999

69

Asymmetric runs

Start node scores:

Node 1: 1000

Node 2: 500

Node 3: 250

Node 4: 250

4 nodes, 2000 requests, 1 iteration:

IP: 4, number of hits: 250

IP: 3, number of hits: 250

IP: 2, number of hits: 500

IP: 1, number of hits: 1000

4 nodes, 3000 requests, 1 iteration:

IP: 4, number of hits: 498

IP: 3, number of hits: 497

IP: 2, number of hits: 746

IP: 1, number of hits: 1259

4 nodes, 3000 requests, 10 iterations:

IP: 4, number of hits: 505

IP: 3, number of hits: 495

IP: 2, number of hits: 747

IP: 1, number of hits: 1252

4 nodes, 3000 requests, 100 iterations:

IP: 4, number of hits: 501

IP: 3, number of hits: 501

IP: 2, number of hits: 748

IP: 1, number of hits: 1248

4 nodes, 3000 requests, 1000 iterations:

IP: 4, number of hits: 499

IP: 3, number of hits: 499

IP: 2, number of hits: 750

IP: 1, number of hits: 1250

70

C DOH Manual

C.1 Starting a Translator

The translator can be started in two different ways. First if you do not have
an old cache file, you might start by giving it parameters or use the default para-
meters. If an old cache file exist, the translator will use that file when it boots. Syntax:

java -jar DOHTranslator.jar [-h (help) | -url (url) -tp (port of translator) -uptime
(uptime) -v (version) -p (ping) -score (cache score) -t (list of other translators) -wp
(port of web cache)]

The Translator will start two listeners on ports 4711 (the default port for the
web cache) and 8080 (the default port of the translator, which can be changed using
the e.g. the url parameter) When started and ready, the Translator window will look
something like this:

>java -jar DOHTranslator.jar
INFO: Could not find any old cache file...
initializing new cache using default values!!
Translator ip: 192.168.50.182
Translator url: http://localhost:8080
Uptime: 12
Version: 1
Score: 110
DOH Web Cache is running!

There is a shutdown hook added to the Translator, so when the program is exited
by the user, using e.g. Control-C, it will save the current cache in a file called
doh webcache.xml. This file will be used at the next boot, if it is not removed.
However, all the cache entries and the IP-address of the Translator are discarded since
they might no longer be correct.

C.2 Starting a DOH Node

Now when there is a Translator to connect to, it is time to start the first DOH Node. At
first, some configuration is needed. The configuration file has the following parameters:

host The DNS name if the computer hosting the node.

port The web server’s port, if not set default (80) is used.

home The web server’s root directory.

dks port The DKS node port, if not set default (4440) is used.

ftp conf The path to the FTP configuration file.

And it might look something like this:

host=computer.company.com
port=80
home=./wwwroot/
dks port=4440
webcache url=http://doh.translator.org:4711
ftp conf=./ftpd.conf

NB: the separator should be an equals sign, or the startup might fail.
The FTP configuration file, ftpd.conf, must also be updated with host ip and home
directory. How is explained in the file itself and therefore not included here.

71

When the configuration is done, it is time to start the Node itself. This can
be done using the DOHNode.jar, or the DOHNodeCLI.jar. They both have the same
syntax, the only difference is that DOHNode.jar has a minimal GUI. Syntax:

java -jar DOHNodeCLI.jar <configuration file>

If this is the first node that enters the system, you will be asked to provide an
administrator password for the FTPs. When started and ready, the Node window
will look like this:

INFO: Node details sent to Cache.
2005-sep-08 17:05:37 org.mortbay.util.FileResource <clinit>
INFO: Checking Resource aliases
2005-sep-08 17:05:37 org.mortbay.http.HttpContext setStatsOn
INFO: setStatsOn true for HttpContext[/,/]
FtpServer.server.config.user.manager =
ranab.server.ftp.usermanager.PropertiesUserManager
FtpServer.server.config.log.flush = true
FtpServer.server.config.ip.allow = false
FtpServer.server.config.data = ./wwwroot/apps/ftp/data/
FtpServer.server.config.prop.encrypt = true
FtpServer.server.config.anonymous.login = 10
FtpServer.server.config.anonymous = true
FtpServer.server.config.log.level = 1
FtpServer.server.config.self.host = computer.company.com
FtpServer.server.config.root.dir = ./wwwroot/
FtpServer.server.config.port = 21
FtpServer.server.config.home.create = false
FtpServer.server.config.admin = admin
FtpServer.server.config.idle.time = 60
FtpServer.server.config.poll.inverval = 60
FtpServer.server.config.login = 20
FtpServer.server.config.log.size = 1024
FtpServer.server.config.server.host = 198.162.5.33
Started FTP
2005-sep-08 17:05:38 org.mortbay.http.HttpServer doStart
INFO: Version Jetty/5.1.3rc4
2005-sep-08 17:05:38 org.mortbay.util.Container start
INFO: Started HttpContext[/,/]
2005-sep-08 17:05:38 org.mortbay.http.SocketListener start
INFO: Started SocketListener on 0.0.0.0:80
2005-sep-08 17:05:38 org.mortbay.util.Container start
INFO: Started org.mortbay.jetty.Server@110b053
********* NODE IS STARTED! **********
Write stop to stop it!

The only command that is supported by the Node CLI is stop, which will try to
shutdown the node gracefully by informing the DKS network and the Translator that
the node is shutting down.

C.3 User Management

When we have a node up and running it is time to add some users to the system so
that content, eventually, can be uploaded. Currently, the FTP admin account is the
only account that is allowed to add and delete users. This is also the only thing that
can be done with the admin account, it can not be used to store files and folders.

This is how to add a new user: first create a file on your computer that is
called new user&username&password (where username is the username and password
is the password of the new user); connect and login as admin on the node’s FTP
server; upload the file. (The content of the file does not matter, the system will look
at the file name.) The FTP server will say that the file not has been uploaded, but
instead there should be a new user added. To delete a user you do the same thing:
create a file called delete user&username (where username is the username of the
user that should be deleted); login as admin; upload the file. When a user is deleted
all of his stored files are deleted as well.

72

This might not be the best and most secure way of adding and deleting user
accounts, but it is sufficient enough to be used with the prototype.

C.4 To publish content

The implementation of the DOH FTP server and the fact that uploaded files are
stored in a DHT instead of a regular file system requires two things from the FTP
clients used. The DOH FTP server is session oriented and a copy of the user’s
virtual files are retrieved from the DHT during the login, which marks the session
start. During the session any changes of the user’s files are recorded locally and the
virtual files in the DHT are not updated until the session ends. Since the DOH FTP
server is session oriented in this way, it will not work well with FTP clients using
multiple connections. Furthermore it will not work well with FTP clients that omit
the FTP command ”QUIT” when disconnecting from a server, since that command
is being used by the server to mark the end of a session. (See Section 5.2.2 for all the
implementation details of the DOH FTP server.)

When you have found an FTP client that supports this, and have a registered
account, then you should upload the content that are to be published on any of
the DOH Node’s FTP server. (Node IP’s can be found be contacting a translator
and requesting the file doh webcache.xml, where all the Translators active nodes are
displayed.) After that you make sure that there is a redirection from the page’s old
location to the Translator. Using e.g. JavaScript or by adding a CNAME record to
the authorative DNS server. The JavaScript-based redirect file might look like this:

<HTML>
<HEAD>
<SCRIPT type=”text/javascript”>
<!- -
function delayer(){
var oldURL = document.location.href

// using substring to remove http:// from original url
document.location = ”http://my.translator.com/” + oldURL.substring(7,oldURL.length)
}
//- ->
</SCRIPT>
</HEAD>

<!- - 3000 is the number of millisecs to wait before redirecting - ->
<BODY onLoad=”setTimeout(’delayer()’, 3000)”>
<H3 >This page is hosted on a DOH Network!</H3>
<P>Please wait until you are redirected</P>
</BODY>
</HTML>

(That script can be found in the file doh.html, which comes with the DOH
package. If you do so, do not forget to change the URL of the Translator.)

One more restriction is imposed on the Publisher from the system. The top
level directory of the published site must be named after the domain name. E.g. if
the site’s name is www.url.com then the top level directory should also be named
www.url.com. (See Section 5.2.2 for details.)

Publisher checklist:
1. Get an account.

2. Rename your top level directory to the domain name of the site you are about
to upload, e.g www.url.com.

3. Find a Node to upload to, by e.g contacting a Translator and requesting the file
doh webcache.xml (E.g. http://a.translator.com/doh webcache.xml)

4. Upload content.

5. Add a redirection from your page’s old destination to a Translator. Use e.g. the
JavaScript found in doh.html.

73

