

 An agent-based system for Web
Services provision and selection,

using semantic markups

W I L L I A M G R O L E A U

Master of Science Thesis
Stockholm, Sweden 2005

IMIT/LECS-2005-72

An agent-based system for Web
Services provision and selection,

using semantic markups

W i l l i a m G r o l e a u

Master of Science Thesis
Stockholm, Sweden 2005

IMIT/LECS-2005-72

E x a m i n e r
A s s o c . P r o f . V l a d i m i r V l a s s o v

(I M I T / K T H)

Abstract

We have seen the number of available web-services on the web dramatically

increasing for the past few years, as well as the growth of public interest in accessing
these services. Internet is hence becoming a marketplace where providers and
requesters need to be able to work altogether for the sake of each other interests.
Furthermore, providers and requesters do not need to be necessarily humans, but
can also represent automats looking for services to build composite services. A
system, “An agent-based system for Grid services provision and selection”, has been
brought up, fulfilling two purposes: bringing requesters and providers together in a
marketplace and achieving a certain degree of automatic interoperability between
services for automatic composition purposes. The system consists of an agent
architecture working as a marketplace where service providers and requestors can meet and
negotiate about services. Users specify their requirements to agents, which start negotiating
with other agents provisioning services. Nonetheless, the services used by the system
cruelly lack semantic markup, which can be added with the use of OWL-S which
allows unambiguous interpretation of web resources and content through the use of
shared web ontologies. In this work, we see how semantics have to be added to the
system, “An agent-based system for Grid services provision and selection”, by the use of
OWL-S, and we do not restrict anymore the system to Grid Services. We also particularly
study the matchmaking of services issue, by introducing new and more powerful procedures
allowing finer matchmaking of services, designed to allow requesters to find Web
Services satisfying precise requirements.

The main result of this work is thus a prototype of the upgraded version of the
mentioned system. Two matchmaking methods have been implemented in order to assess
which of those is the most appropriate. Our proposed prototype also includes new working
modes: one to ensure the requester’s privacy and a second to improve the efficiency of the
system. The description of the implementation is also given in this work.

Contents

Chapter 1. Introduction... 1

1.1. Preliminary definitions & concepts ... 1
1.1.1. Web services .. 1
1.1.2. Semantics ... 1
1.1.3. Requesting & Providing services : a motivating example 2

1.2. Project goals .. 3
1.3. Outline.. 3

Chapter 2. Web services & Grid Services .. 5
2.1. Web-services basic activities .. 5

2.1.1. Description (WSDL) ... 5
2.1.2. Publishing & Discovery (UDDI) .. 5
2.1.3. Binding & Evocation (SOAP) .. 6

2.2. Grid services & Stateful web-services... 7
2.2.1. Stateful Web-services vs. Stateless Web-services................................... 7
2.2.2. Grid Services by OGSI ... 7
2.2.3. From OGSI to WS-RF.. 8
2.2.4. Globus Toolkit 4 .. 8

Chapter 3. Semantics.. 11
3.1. Introduction... 11

3.1.1. Background ... 11
3.1.2. OWL & OWL-S .. 12
3.1.3. Reasoning... 14

3.2. Reasoning... 14
3.2.1. JESS approach .. 14
3.2.2. JENA approach ... 15
3.2.3. Comparing approaches .. 16

Chapter 4. Services discovery approaches..18
4.1. Matchmaking... 18

4.1.1. Matching service profiles ... 18
4.1.2. Matching service models .. 20
4.1.3. Comparison ... 21

4.2. Frameworks... 22
4.2.1. Introduction to Agents & Multi-Agents Systems 22
4.2.2. Agent-based system for Grid services provision and selection 23
4.2.3. UDDI-based discovery systems .. 24
4.2.4. Others... 25

Chapter 5. Proposed Solution – Design .. 26
5.1. Preliminary Considerations ... 26

5.1.1. Terminology... 26
5.1.2. Scenario of system use .. 26
5.1.3. System needs.. 28

5.2. Model of the application ... 28
5.2.1. Use Cases.. 28
5.2.2. Interaction between parts (sequence diagrams)................................... 29

5.3. Algorithms ... 33
5.3.1. Profile matching .. 33
5.3.2. Model matching... 36
5.3.3. Filtering SPAs & Secure mode filter ... 39

Chapter 6. Implementation ..41
6.1. Agents... 41

6.1.1. SPA ... 41
6.1.2. SSA ... 42
6.1.3. EDF... 44

6.2. Other packages.. 45
6.2.1. matcher .. 45
6.2.2. reasoner.. 46
6.2.3. storage .. 46
6.2.4. content .. 47

6.3. Manual ... 48
6.3.1. Required software and libraries .. 48
6.3.2. Configuration .. 49
6.3.3. GUIs & Application example ... 50

Chapter 7. Proposed Solution – Evaluation .. 55
7.1. Time performances ... 55

7.1.1. Matchmaking... 55
7.1.2. Application... 58

7.2. Evaluating accuracy.. 59
Chapter 8. Conclusion & Future Works.. 60
A. Bibliography ... 62
B. Abbreviations .. 63
C. OWL services used in the application example of Section 6.3.3 64

List of Figures

Figure 2-1 Web-services lifecycle .. 5
Figure 2-2 Interaction scheme in a Web-services infrastructure .. 5
Figure 2-3 Web-services scenario with relations between WSDL, SOAP and UDDI [21] 7
Figure 2-4 Relationship between OGSA, GT4, WS-RF, and Web Services 9
Figure 2-5 GT4 Architecture .. 10
Figure 3-1 A fragment of the Vehicle ontology.. 11
Figure 3-2 Top level of the service ontology.. 13
Figure 4-1 Algorithm for output matching ... 19
Figure 4-2 Rules for the degree of match assignment .. 19
Figure 4-3 Algorithm matching outputs of either a split or a sequence node................... 21
Figure 4-4 Collaboration diagram of the service providing part of the system 23
Figure 4-5 Collaboration diagram of the service selecting part of the system 23
Figure 4-6 Architecture of the DAML-S/UDDI matchmaker in [10]............................... 24
Figure 5-1 Illustration of the scenario of system use.. 27
Figure 5-2 Use Cases of the system (from [1])... 29
Figure 5-3 adding a service to an SPA.. 30
Figure 5-4 Searching services (“regular” mode) .. 31
Figure 5-5 Searching services (“secure” mode).. 32
Figure 5-6 Searching services (“Filter SPAs” mode) ... 33
Figure 5-7 Service matching algorithm .. 34
Figure 5-8 Sample OWL-S input parameter ... 34
Figure 5-9 Outputs matching algorithm.. 35
Figure 5-10 Algorithm assigning a matching score for two parameters........................... 36
Figure 5-11 Model Matchmaker algorithm... 37
Figure 5-12 Function selecting the appropriate algorithm for the corresponding node ... 38
Figure 5-13 Algorithm used to match either Split or Sequence Nodes 38
Figure 5-14 Category matcher algorithm.. 40
Figure 6-1 Method initializing a service search.. 43
Figure 6-2 Behaviors flow of the service search .. 44
Figure 6-5 Excerpt of the advertisement's profile... 51
Figure 6-6 Excerpt of the request's profile.. 52
Figure 6-7 Service Selection Agent GUI .. 53
Figure 6-8 Service Provision Agent GUI.. 54
Figure 7-1 Services parsing time chart ... 56
Figure 7-2 Class getting time chart ... 56
Figure 7-3 Relationships inferring time chart ... 57
Figure 7-4 Time repartition in a matchmaking process .. 58

List of Tables

Table 3-1 Composition of the OWL Service Profile .. 14
Table 3-2 OWL Reasoner comparison ... 17
Table 4-1 Rankings for the matching of two parameters.. 20
Table 4-2 OWL services matcher comparison.. 22
Table 5-1 Glossary of recurrent terms .. 26
Table 6-1 Behaviors of the Service Provision Agent.. 42
Table 6-2 Behaviors of the Service Selection Agent .. 43
Table 6-3 Behaviors of the Extended Directory Facilitator.. 45
Table 6-4 Reasoner interface .. 46
Table 6-5 Matching interface.. 46
Table 7-1 List of services used for testing purposes... 55

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 1

Chapter 1. Introduction

This work is based on a previous project, an agent-based system for grid services
provision and selection in [1], and is included in a more important research
framework: web and grid services automatic composition, for which it brings an
essential basis. The project will focus on adding semantics to the selection and
provision system described in [1], which will lead us to bring some changes to the
architecture in order to host new semantic reasoning and matchmaking engines. As
the matchmaking process is an important part of the services discovery problem, it
will be one of our main focuses. This work will then include the development of a
prototype platform supporting web services and grid services provision and selection,
thanks to a matchmaking engine reasoning over the semantics of the services.

We are now about to show an example motivating the web services automatic
selection, and motivating the automatic composition and we will then expose the
goal of this project, before presenting the outline of this work.

1.1. Preliminary definitions & concepts

Before getting in details in the various technologies concerned, we need to clarify
some of the basic concepts, such as web services, semantics, and the general
context of providing and requesting web services.

1.1.1. Web services

A Web service is a modular, self-describing, self-contained unit of application

logic fulfilling atomic tasks and is accessible by Internet through standard XML
protocols and format. The use of standard XML protocols makes Web Services
platform, language, and vendor independent. They eliminate the interoperability
issues of existing distributed technology, such as CORBA and DCOM, by leveraging
open Internet standards - Web Services Description Language (WSDL - to describe),
Universal Description, Discovery and Integration (UDDI - to advertise and syndicate),
Simple Object Access Protocol (SOAP - to communicate). All these standards will be
briefly discussed in chapter 2. The advantages of web services are their simplicity,
their use of open standards, their flexibility (loose coupling between application
publishing and applications using the services), and their efficiency. However,
standard web-services appear to be limited to human use, hence the necessity to
make them usable by machines to automate various tasks.

1.1.2. Semantics

Information on the web has been primarily designed for human interpretation and

use, making this information totally unusable by computers. Expressing information
on the web in computer understandable form is an interesting challenge since it
could allow different kind of interactions between machines; any human intervention
would not be needed and machines could be able to autonomously cooperate
through the Internet.

Hence, knowledge needs to be formalized and information on the web needs to
be annotated with semantic information so that human and computers share the

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 2

meaning of the information exchanged along with the information exchanged.
Globally, syntactically different terms can be used by service requesters and service
providers as long as they both agree on their semantic meaning.

All semantic reasoning is based on the important concept of ontology, hierarchies
linking concepts altogether and expressing relationships between them. For instance,
the ontology of vehicles could express that Ford is a sub-concept of car, and so that
ford could somehow be replaced by car, in an attempt to find any particular service.
Semantics could then allow more complex services discovery and could replace
limited keyword look-ups. We will explore and present these possibilities in details in
Section 1.1.3, showing the motivation for our project. We will see in Chapter 3 the
languages used to express ontology and the languages used to describe services with
semantic information, key element to the automatic service discovery issue we are
now about to look closer.

1.1.3. Requesting & Providing services : a motivating example

As we saw in the previous Section, automatic services discovery seems to be an

interesting issue, as with the increasing growth in popularity of Web services,
discovery of relevant Web services becomes a significant challenge. Before pursuing,
let us clarify the global organization of a discovery framework. These frameworks are
divided in three parts:

 Service provider. A service provider owns services and holds their

implementation, and generally stands for a company willing to advertise
services.

 Service requester. Entity, human or not, having a need potentially achievable
by advertised services. It will look for services and eventually evoke them.

 Service broker. A service broker stores the description of the services brought
by service providers and will direct a service requester to appropriate
providers holding services fulfilling the request. The service broker and
service provider can somehow be the same entity, i.e. the service provider
matches a request with its stored services, as in the architecture in [1]. This
part is the main focus of our work, since it is in charge of matching relevant
advertised services with user’s need.

A service discovery framework finds all its interest in the fact that it can provide

users – or machines – with an elaborate way of finding relevant services, enhancing
existing standard registries. Let us say you want to invoke a service allowing you to
rent cars online. You first need to locate services fulfilling your wish. Within a regular
UDDI framework, the only way to look for these services is to browse the registry,
filtering it with keywords such as ‘car’, arental’ … A UDDI registry will probably have
entries corresponding to the desired service but will also contain entries – apparently
– matching your need, e.g. a travel agency proposing attractive car rentals within
the condition that you book a flight or a hotel with them, or professional vehicle
rentals services, for example. As a result, the filter will return relevant services,
drowned in an important number of non relevant services. Using a service discovery
framework like the one of our work, instead of fetching services by keywords, one
could fetch a service by specifying the expected input parameters (type of car,
location, maximum price, date …) and the expected output parameters (type of car,
date, price …). This way, services having incoherent or additional input parameters
(in our example, flight or hotel information) would not match the request and would
be pruned, leaving the user with only relevant services. Synthetically, our task will

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 3

be to augment the possibilities of UDDI, presently unable to store semantic
information thus unable to allow powerful searches (in Section 2.1.2 we will see in
details UDDI registries).

However, single web-services may not satisfy users’ requests, thus mechanisms
should be developed in order to build composite web-services, satisfying more
complex requests. Due to the high number of available web-services and to the
complexity of the task, composition of web-services is, for a human-being, almost
infeasible. Therefore, there should be mechanisms to automatically combine existing
services together in order to fulfill users’ requests. These mechanisms should take
into account that web-services are updated “on-the-fly”, and should auto-update
their data at runtime so to base the decisions upon up-to-date information.
Automatic composition would be of great interest for the case where, for instance,
you expect the output price of your car rental service to be in euros whereas all the
services return prices in Swedish crowns. In such a case, the automatic composition
system would search by itself “value-added” web-services converting euros into
Swedish crowns, thus removing any needed human interaction. Automatic
composition is out of the scope of this work, but our project is the base for any
composition system, as it would allow services composer to automatically fetch
appropriate services in the composition process. We are now about to see the goal
and the scope of our work.

1.2. Project goals

The ambition of this project is to solve the sub-problem of providing a system for
advertising and requesting semantic web services and grid services. An important
issue of this system is the matchmaking between a requested service and a service
previously advertised. By adding semantic to services in the framework, discovery of
services is to be used not only by humans, but also – and essentially – by computers,
enabling more ambitious purposes, such as automatic composition of services. The
implication of this work in this latter purpose then becomes obvious; an intelligent
program could use the platform to perform searches for the value-added services
needed in the dynamically built composite service. Besides, the problem of automatic
web composition has already been addressed in various systems, mainly using AI
Planning ([2], [5] and [6]).

This thesis will also provide a short survey on different services discovery
frameworks and matchmaking techniques. It will also provide a prototype of the
system described below.

1.3. Outline

Chapter 2 provides a deeper overview of the web services and grid services
technology. Themes of description, publication, discovery, and evocation of services
are approached, along with the correspondent technologies, WSDL, UDDI, and SOAP.

Chapter 3 provides an approach to technologies adding semantics to the web and

more specifically to web services, with a presentation of languages such as OWL, and
tools needed to work with these languages.

Chapter 4 provides a view of the existing services discovery frameworks, and

show different matchmaking techniques.

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 4

Chapter 5 covers the design part of our proposed architecture for provisioning
and matching services.

Chapter 6 demonstrates the implementation issues of our system and shows an

application example with snapshots

Chapter 7 evaluates the developed prototype.

Chapter 8 summarizes and discusses the method and future directions for this

work.

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 5

Chapter 2. Web services & Grid Services

We are now about to give a more precise overview of the web services

technology, covering their four basic activities: description, publication, discovery,
and evocation. We will then have a look on a particular form of web services: grid
services, and see what differentiates them from basic services.

Figure 2-1 Web-services lifecycle

Figure 2-2 Interaction scheme in a Web-services infrastructure

2.1. Web-services basic activities

2.1.1. Description (WSDL)

In order to be classified, stored, discovered and used, services need to be
described, including functional descriptions (operations provided, messages
exchanged, binding information) as well as non-functional descriptions
(documentation, security issues …). The standard used to describe is actually the
XML based WSDL (Web Services Description Language) and can be compared to the
distributed programming IDL, i.e. it serves as a programmatic interface to web
services, and specifies their properties: what the service does, where it is located
and how it is invoked.

2.1.2. Publishing & Discovery (UDDI)

Publishing is a Mandatory activity to make services available and ready for use.
Publishers can provide description of their services to public registries available on
the Internet, such as UDDI. Information about services and businesses can be
published through UDDI, which can be browsed on the Internet by any user looking
for particular services – or for services provided by a specific company. A UDDI

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 6

response will provide all technical details required to interact with a service. A UDDI
registry is nothing more than an XML schema defining four key data structures:

 Business entities describe information about businesses (name, description,

services offered and contact information).
 Business services provide more details on each service being offered. Each

service can have multiple binding templates.
 Binding templates describe a technical entry point for the service (e.g., mailto,

http, ftp, etc.).
 tModels describe what particular specifications or standards a service uses.

The tModel key structure of UDDI partially addresses the problem of classification,

as it allows abstractions on specifications. One could use the categoryBag element of
the tModel to categorize services in a Yahoo!-like classification scheme. For instance,
to find skateboards manufacturers, one would look into the directory:

“Business_and_Economy/Shopping_and_Services/Sports/Skateboarding/Deck_an
d_Truck_Manufacturers/”

A skate selling service would then only have to “register” itself as part of that
directory in a potential Yahoo! Business Taxonomy tModel, so users browsing in the
previous directory could find their services.

The discovery activity is the counterpart of the discovery, thus is highly

dependant on the technique used to publish services. The basic way to discover
services remains the usage of UDDI, which only allows discovering through keywords
corresponding to the key structures of the registry (search by business entities, by
services keywords or description, templates …). The subject of our work is precisely
aimed at improving this discovery process, lacking the semantics needed for
powerful searches.

2.1.3. Binding & Evocation (SOAP)

Binding and evoking services occurs once a requester has found which service to
call. Binding services refers to the question “how to call the service?” which is
selecting an entry-point for the service (http, ftp …). Once an entry-point is set, the
client and the service provider communicate by exchanging SOAP messages, XML-
based standard for making remote procedure calls. Its header can contain various
information which can be needed by some of the entities relaying a SOAP messages.
For instance, the WS-Addressing uses the SOAP header to address web-services and
messages, particularly WS-Resources (see Section 2.2.3). Figure 2-3 below details
Figure 2-2, and represents a more detailed scenario of interactions within a web-
service framework.

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 7

Figure 2-3 Web-services scenario with relations between WSDL, SOAP and UDDI [21]

2.2. Grid services & Stateful web-services

2.2.1. Stateful Web-services vs. Stateless Web-services

Web-services we have discussed earlier were implicitly stateless, as are
commonly web-services. Stateless means that the service simply gets its task done
and then disconnects from the client or from whosoever, thus keeping no state
information from one invocation to another. This behavior is common and keeping
information through different invocations is usually pointless (e.g. a weather service
only provides temperature information when asked and does not need to remember
any information between two invocations). Nonetheless, some applications,
especially grid applications, require statefulness. Let us consider an example of
stateful web-service. Suppose we want a service acting as an integer accumulator,
which means that each call to the service would increase the accumulator by the
value passed in parameter to that service. For instance, the first invocation of the
service with 5 as parameter will return 5, the second call with 2 as parameter will
return 7, the third call with 4 returns 11 and etc. In that case, the service
remembers a state (i.e. the value of the accumulator), and is then called stateful
web-service. The state is kept, not in the web-service itself, but in a separate entity,
called resource. A resource can be a single integer as below or can have a more
complicated structure. One web-service can have several resources associated, and
each of them can be accessed thanks to their unique identifier, which has to be
specified using WS-Addressing in the SOAP header.

2.2.2. Grid Services by OGSI

OGSI (Open Grid Services Infrastructure, [11]) defined mechanisms for creating
and managing so called grid-services. A fuller presentation is available in [1], we will

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 8

limit ourselves here to a short introduction as this infrastructure is becoming
obsolete and is being replaced by the WS-Resource Framework (WS-RF, [3]). Briefly,
OGSI is an infrastructure focused on WSDL interfaces for grid-services and sets a
new transient standard to extend WSDL: GWSDL (Grid-WSDL). GWSDL allows
services to be described by Service Data Elements (SDE), which brings additional
description information such as classification or taxonomy. OGSI also defined a set of
predefined portTypes (GridService, HandleResolver, NotificationSink …), of which at
least one had to be defined by the grid-service. Additionally, OGSI provided
mechanisms for managing services’ lifetime, as WS-RF does, as we will now see.

2.2.3. From OGSI to WS-RF

The WS-Resource Framework (WS-RF, [3]) is an effort to merge the two concepts
of web-services and grid-services, by introducing a new concept, the WS-Resource. A
so called WS-Resource is an association of a (stateless) web-service and a resource
(as described earlier in Section 2.2.1). As a consequence, the OGSI SDEs are now
replaced by the resource properties (attributes of the resource) associated with a
service and the transient standard GWSDL has been discontinued for WSDL 1.1
(while waiting for WSDL 2 release). Moreover, the OGSI two-level naming scheme
(GSH, GSR) is now reduced to an endpoint reference optionally including a reference
to a particular resource, and in addition, new specifications have been provided for
the lifetime management of resources. So basically, we can assume that the names
of the concepts have changed, but the concepts themselves remain the same. We
can now consider the WS-RF specification, gathering five different specifications, all
related to the management of WS-Resources:

 WS-ResourceProperties. A resource is composed of zero or more resource

properties (resource properties are the “attributes” of the resource(s)
associated with the service, e.g. a filename, file size …). WS-
ResourceProperties is the specification defining how resource properties are
defined and accessed.

 WS-ResourceLifetime. Resources can be created and destroyed at any time.
The WS-ResourceLifetime supplies some basic mechanisms to manage the
lifecycle of resources.

 WS-ServiceGroup. This specification provides functionalities to manage
groups of WS-Resources, and provide an entry-point to groups of resources.

 WS-BaseFaults. This specification provides a standard way of reporting faults.

We will now explore the possibilities of the Globus Toolkit, which implements the

WS-RF specifications.

2.2.4. Globus Toolkit 4

The Globus Toolkit is a software toolkit, developed by The Globus Alliance, which

is used to program grid-based applications. It also essentially provides high-level
services, such as resource monitoring and discovery, security infrastructure, or data
management services. GT4, the latest release, includes a complete implementation
of the WS-RF specification, and all material provided by the toolkit is built on top of
that implementation.

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 9

Figure 2-4 Relationship between OGSA, GT4, WS-RF, and Web Services

GT4 provided software components are divided into five categories:

 Common Runtime. The Common Runtime components provide a set of

fundamental libraries and tools which are needed to build both WS and non-
WS services.

 Security. Security components ensure secure communications.
 Data management. These components allow to manage large sets of data in

virtual organizations.
 Information services. The Information Services, more commonly referred to

as the Monitoring and Discovery Services (MDS), includes a set of
components to discover and monitor resources in a virtual organization.

 Execution management. Execution Management components deal with the
initiation, monitoring, management, scheduling and coordination of
executable programs, usually called jobs, in a Grid.

The following figure (Figure 2-5) all the various components contained in each of

these five categories:

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 10

Figure 2-5 GT4 Architecture

It appears that the Monitoring & Discovery Service framework could be of some

use in a discovery process. It includes WS-RF implementations of the Index Service
and a Trigger Service. An MDS server can be used to keep resources status
information, and to query resource contents. Basically, this is a point of entry for
groups of resources which allows querying over these resources for discovery
purposes for instance. Note that the discovery of resources is rather elementary and
does not allow querying on any meta-information. Note also that the purpose of MDS
is managing information of a computational grid (knowing which resource is available,
knowing the state of the grid …) and not discovering WS-Resources, i.e. discovering
web-services.

MDS has been widely used in the Grid community for resource discovery as UDDI
has been used in the web community for business service discovery. However, both
MDS and UDDI only support simple query languages and do not offer expressive
description facilities, nor provide sophisticated matchmaking capabilities. This is the
reason why we have to come up with a system enabling advanced matchmaking.

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 11

Chapter 3. Semantics

As seen in the first chapter, semantic web is a way to give explicit meaning to
information in order to make it easier for machines to process data available on the
web. In the first part, we will introduce the needed concepts and languages needed
to work with ontologies, and the second part will focus on reasoning approaches and
algorithms.

3.1. Introduction

3.1.1. Background

We have already stated the needs for a semantic web in Section 1.1.2, which can

be summed up by saying there is a want for making data available for non-human
use. Web services would profit from semantics as it would fulfill an early requirement
for UDDI: a way to perform intelligent searches. Until the semantic problem was
addressed in a satisfactory manner, the best mechanism to facilitate such searches
was through taxonomic categorization and classification potentially allowed by the
tModel key structure (see Section 2.1.2). This metadata information stored in UDDI
is a first step toward more efficient look-ups, yet insufficient to complete precise
services searches. The concept of ontology we are about to develop is close to these
concepts of categorization found in the tModels, and we will see in the next Section
languages and concepts used to solve these problems of classification and meaning
agreements.

Figure 3-1 A fragment of the Vehicle ontology

An ontology defines the terms used to describe and represent an area of

knowledge, and is meant to translate an explicit general agreement. We can see in
the fragment of the vehicle ontology in Figure 3-1 (taken from [10]) some of the
necessary DL (Description Logics, see [23]) knowledge:

 Class, or concepts, definitions (e.g. Car is a subclass of vehicle; SUV is a

subclass of Car …), also known as ABox definitions.

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 12

 Not shown here, classes can be described by properties, or in DL terminology,
RBox containing axioms about properties, e.g., that property P is a
subProperty of R.

 Not shown here, classes can be “instantiated”, we call individual an instance
of a concept, and in DL terminology an ABox contains assertions about
individuals, either that an individual is a member of some class, or related by
a property to some other individual.

3.1.2. OWL & OWL-S

To model ontologies, the W3C is proposing a standard known as OWL (Web

Ontology Language, [4]), to be used in situations where the content need more than
just being showed to humans. OWL is based on the language DAML+OIL, a
combination of the languages DAML (Darpa Agent Markup Language) and OIL
(Ontology Inference Layer), itself built on top of RDFS (Resource Description
Framework for Services). OWL brings an extension to RDFS by providing richer
modeling primitives and brings the equivalent of a Description Logics with XML
syntax.

Ontology languages give us the possibility to reason on classes, properties and
individuals (instances of classes). Individuals are described by properties, which in
turn are described by properties (the properties of properties or the characteristics of
properties). In addition, restrictions (cardinality, range of values) can be placed on
how properties can be used by instances of a class. Next, OWL allows more complex
class construction by defining union, interSection, and various operations on classes.
Let us consider now the three characteristics elements of OWL.

 Class. A class stands for a concept (vehicle, car …) and is characterized by
axioms and can be defined by a combinations of other classes:

--- Axioms: one Of (enumerated class), disjoint with, equivalent, subclass
--- Boolean combinations of other classes: union, complement, interSection

 Individuals. An individual is an “instance” of a class, and they can be linked to
properties.

 Properties. A property can be applied to individuals, and can have
characteristics (i.e. “the properties of properties”), or can be applied
restrictions:

--- characteristics: inverse, transitive, functional
--- restriction: cardinality, range of values

Several ontology languages are available (OWL, DAML+OIL, RDFS, WSMO …) and

no standards have been set yet, however OWL seems to be well positioned to
become the standard in the future, for its rich expressive power and his layered
architecture perfectly fit for scalability. This is the reason why we will focus in this
project on OWL and its upper-ontology for web services, OWL-S.

OWL-S is an OWL based web services ontology providing a mark-up language to
describe properties and capabilities of services in a computer-understandable form,
and is currently at the version 1.1. OWL-S has been developed purposely to enable
automatic web discovery, automatic web invocation and automatic Web service
composition and interoperation, which fits the aim of the project. We can notice that
OWL-S is the successor of the outdated DAML-S. OWL-S Services are described by
profiles, models, and groundings. Each service (instance of the general Service class)
can present several (or no) profiles and these one or more profiles can optionally be
described by at most 1 service model (subclass of ServiceModel) which has to be

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 13

supported by 1 service grounding (instance of a subclass of ServiceGrounding). To
summarize, the service profile is used to advertise services, to support requests and
is to be used in the context of service discovery, while the ServiceModel and the
ServiceGrounding give information on how to use the selected service, as shown in
the figure below from the owl-s 1.1 white paper ([3]).

Figure 3-2 Top level of the service ontology

We will now detail the ServiceProfile, ServiceModel and ServiceGrounding.

 ServiceProfile:

The class ServiceProfile is meant to “advertise” the service, i.e. it presents “what

the service does” with all necessary functional information: required input and
generated output parameters of the service, its preconditions (e.g. being logged on
the system), and its results (i.e. the transformation produced by the execution of the
service, e.g. a booking ticket service has for result to effectively book the ticket). It
is important to note that the ServiceProfile class can be used not only to describe
and advertise services, but also to request a service, i.e. a requester can create a
service profile to describe its need, so that this requested profile can be matched
against advertised profiles. The profile is meant to present all the information needed
to determine whether a service meets one’s need or not. All the elements of the
service profile, organized in description, service functionalities or functional attributes,
are shown in Table 3-1.

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 14

Table 3-1 Composition of the OWL Service Profile
 ServiceModel

The service model tells "how the service works”, that is, it describes in details all

the processes chained while executing the service, how these potential processes are
executed, and under which conditions they are executed. This can be compared to a
BPEL composite service (see [12]). This service model can be useful in the case of
selecting relevant services matching specific needs, as it can be used to perform a
more in-depth analysis of whether the service meets a particular need. For instance,
the matchmaking engine in [9] uses the ServiceModel to match a request with an
advertisement.

 ServiceGrounding

A service grounding specifies the details of how to access a service. Typically a
grounding may specify some well know communications protocol (e.g., RPC, HTTP-
FORM, SOAP, Java remote calls …), and service-specific details such as port numbers
used in contacting the service. This will not be of great interest for our work.

3.1.3. Reasoning

Given OWL documents, it should be possible to deduce additional information
which could be used while matching services. The reasoning process essentially
deduces new information from subsumption (subconcept and superconcept
relationships between concepts of a given terminology, e.g. in our ontology in Figure
3-1, Vehicle subsumes Car, Vehicle subsumes SUV) but should also provide
reasoning on individuals, that is, mainly checking the consistency of the knowledge
base (e.g. determining, given an appropriate TBox corresponding to the Figure 3-1,
that an individual A, if declared to be both a Car and a Bus, is a consistency error).

Reasoning engines usually work with standard algorithms for DL reasoning, called
tableau algorithms, evolutions of tableau calculus for first order logic. Yet some other
inference engines, as Jess (Section 3.2.1) may use other algorithms, such as The
Rete algorithm. The Rete algorithm reasons over a graph, the Rete, where the nodes,
with the exception of the root, represent patterns and paths from the root to the
leaves represent left-hand sides of rules (conditional expression).

3.2. Reasoning

3.2.1. JESS approach

Jess (Java Expert System Shell) is a rule engine and scripting language which
supports the development of rule-based systems. The data from RDF or RDF based
document is transformed and stored as facts and the logic is defined as a collection
of rules. Jess uses the Rete algorithm (see [20]) to process rules and infer new
information, an efficient mechanism for solving the difficult many-to-many matching
problem. These facts and rules are represented using the KIF (Knowledge
Interchange Format) axiomatisation, shown in the following examples. One Jess rule
would have the form “(PropertyValue <predicate> <subject> <object>)”, which is
enough to assert any OWL information since it is based on RDF, using triples for any
constructs. For instance one Jess fact may be:

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 15

(MAIN::triple
(predicate "http://www.w3.org/2000/01/rdf-schema#domain")
(subject http://www.mindswap.org/2003/owl/geo/onto.owl#hasCoordinateSystem")
(object ”http://www.mindswap.org/2003/owl/geo/onto2.owl#SpatialThing"))

Indicating that, in the owl document, the property hasCoordinateSystem is

limited to the domain (as defined in the rdf-schema from the W3C specification)
SpatialThing. And one Jess rule could look like:

(defrule subclassInstances
 (PropertyValue http://www.daml.org/2001/03/daml+oil#subClassOf ?child ?parent)
 (PropertyValue http://www.w3.org/1999/02/22-rdf-syntax-ns#type ?instance ?child)
=>
 (assert (PropertyValue http://www.w3.org/1999/02/22-rdf-syntax-
ns#type ?instance ?parent))
)

Stating that an instance of a subclass is an instance of the parent class.
The Jess underlying Rete Algorithm is a powerful mechanism improving the speed

of forward-chained rule systems by limiting the effort required to re-compute the
conflict set after a rule is fired. Its drawback is its high memory space requirements.
It takes advantage of two empirical observations:

 Temporal Redundancy: The firing of a rule usually changes only a few facts,
and only a few rules are affected by each of those changes.

 Structural Similarity: The same pattern often appears in the left-hand side of
more than one rule.

However, it is important to note that Jess is not freely distributed and is
submitted to license restrictions.

3.2.2. JENA approach

Jena is a Java framework for building Semantic Web applications. It provides a
programmatic environment for RDF, RDFS and OWL, including a rule-based inference
engine. It includes:

 A RDF API
 Reading and writing RDF in RDF/XML, N3 and N-Triples
 An OWL API
 In-memory and persistent storage
 RDQL – a query language for RDF

Apart from these features, widely used by an important number of applications,

Jena (starting from Jena2) also provides a support for inference engines. The Jena2
inference subsystem is designed to allow a range of inference engines or reasoners
to be plugged into Jena. Such engines are used to derive additional RDF assertions.
The primary use of this mechanism is to support the use of languages such as RDFS
and OWL which allow additional facts to be inferred from instance data and class
descriptions. The default OWL reasoner included in Jena is rather limited and
incomplete hence the need for a fuller reasoner to be plugged on Jena.

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 16

3.2.3. Comparing approaches

A bunch of OWL reasoners are available, all different by the underlying inference
engine, the language they are based on, or by their completeness. These reasoners
are, for the most known, FaCT, Racer, F-OWL, Pellet, OWLJessKB and many others.
As seen in Section 3.1.3, our requirement for a reasoner is the ability to reason over
OWL-DL documents, supporting subsumption inferencing and reasoning on
individuals. This is basically done by almost all available reasoners, however, for our
work is implemented in a Java environment, we should limit our choice to a reasoner
efficiently pluggable in a Java environment. Basing our choice on this criterion may
not seem straightforward, however our reasoning tasks required being not
excessively complex and the available reasoners providing quite the same
functionalities, it is yet sound to discriminate reasoners upon Java compatibility. We
recorded three potential adapted reasoners for our work: the simple Jena OWL
reasoner, Pellet and OWLJessKB. The first is an elementary but yet sufficient
reasoner, the second is an elaborated OWL-DL reasoner plugged on Jena, and the
latter is based on Jess. Our choice will thus essentially be made upon a comparison
between Jess and Jena.

 Jena OWL Reasoner is a still undergoing development rule-based reasoner for
OWL-Lite. Reasoning about classes is done indirectly by creating “temporary”
instances, and if a “temporary” instance of a class A can be deduced as being
member of another class B, then the reasoner deduces that class A is a
subclass of class B. This approach is in contrast to more sophisticated
Description Logic reasoners which work with class expressions and can be less
efficient when handling instance data. The reasoner is thus most suited to
applications involving primarily instance reasoning with relatively simple
ontologies and least suited to applications involving large rich ontologies.
Moreover, the reasoner is supposed to be sound but not complete.

 Pellet is an open-source Java based OWL DL reasoner which can be used in

conjunction with either Jena or OWL API libraries. It is based on the standard
tableaux algorithms developed for expressive Description Logics and supports
all the OWL DL constructs. Pellet presents several useful features such as
ontology analysis and repairing, data type reasoning or entailment.

 OWLJessKB is a description logic reasoner for OWL and is a successor to

DAMLJessKB. The semantics of the language is implemented using Jess (see
Section 3.2.1), and both Jena (see Section 3.2.2) and Jess are needed to run
OWLJessKB. This reasoner can parse OWL documents, but is limited to OWL
1.0.

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 17

 FaCT Racer Jena Pellet OWLJessKb

Java
DIG

interface
DIG interface

Implement
ed in Java

Implemented
in Java

Implemented
in Java

OWL support OWL-DL OWL-DL OWL-Lite OWL-DL OWL-DL

License
Free/Ope
n-Source

License/
Commercial

(http://www.racer-
systems.com/produ
cts/racerpro/index.

phtml)

Free/
Open-
Source

Free/Open-
Source

License
(http://herzb
erg.ca.sandia
.gov/jess/)

Limitations
No ABox
support

Maladapted
to large

ontologies/
only

supports
RDF tuples

Performance
slightly under

FaCT or
Racer

Limited to
OWL 1.0

Advantages
Optimized/

Better
performances

Suited for
light weight
applications

(performance
between Jena

and
FaCT/Racer)

Handle
arbitrary
tuples/

supports
closed-world
assumption

Table 3-2 OWL Reasoner comparison

We will retain only two reasoners for our work: Jena and Pellet, suited for our
basic reasoning needs, and offering good enough performances.

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 18

Chapter 4. Services discovery approaches

In this chapter, we will focus on solutions addressing similar concerns as the one

of our work. This includes the global framework, where providers register their
advertised services, and where requesters send descriptions of desired services to a
matchmaker. One of the most important features, not to say the crucial one, is the
engine responsible of the matchmaking, i.e. finding advertised services
corresponding to a request. In the first part of the chapter we will concentrate only
on existing OWL services matchmaking methods, and we will then see services
discovery frameworks and how matchmaking engines are included in those
frameworks. Section 4.2.2 provides a description of the framework this project is
extending.

4.1. Matchmaking

The matchmaking is the core part of any discovery system as it is the component
in charge of proposing relevant services to a user requesting a specific service. As
mentioned in Chapter 3, the most relevant language used to describe web or grid
services appears to be the potential standard OWL-S. An OWL-S description
comprises three parts: the profile, the model and the grounding, where only the first
two parts describe the service in itself. Thus, only the profile and the model can be
exploited to calculate to what degree a pair of services matches. In the following two
Sections, we will see how the profile and the model can be used for matchmaking.

4.1.1. Matching service profiles

The idea beneath the matching methods (in [10] and [7]), is that two services do
not necessarily need to be exactly equal to match; they only need to be “sufficiently”
similar. It is obvious that a service provider and a service requester do not have any
prior agreement and can have very different objectives. For instance, a provider can
advertise vehicle selling services, whereas a requester can be looking for a service
selling car, both services are aimed at different objectives, but they are still similar
enough to be considered as matching. In order to allow sufficiently similar matches,
the matching process has to be flexible, i.e. it should recognize a degree of similarity,
and it should be to the user to decide the minimum degree of similarity required in a
match. Yet, the inherent problem with flexible matches is the risk that providers
would advertise voluntarily generic services, so the matching engine systematically
returns its services (problem which can occur on the requester side as well), thus
leading to a great number of “false positive” (services wrongfully returned as
matching). Consequently, an important task is to encourage providers and
requesters to describe services honestly, so to reduce false positives and false
negatives. It is also noteworthy to remark that the more (resp. the less) flexible a
match is, the more (resp. the less) false positives and the less (resp. the more) false
negatives will be returned. The key to sufficiently similar matching is then to
recognize semantic matches despite syntactic differences.

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 19

 A first approach:

The algorithm taken from [10] and shown in Figure 4-1 consists of matching all

the outputs of a request against the outputs of an advertisement, and all the inputs
of the advertisements against the inputs of the request.

Figure 4-1 Algorithm for output matching

Then, according to subsumption relationships between inputs or outputs, a

degree of match is determined (exact, plug in, subsumes or fail). Figure 4-2 shows
how the degree of a match is determined:

Figure 4-2 Rules for the degree of match assignment

 An extension of the algorithm

Another extended profile matching has been presented in [7] and [8] which uses

the classification of elements available since the DAML language. The idea is similar
to the previous matching engine described above, but deepens the concept of flexible
matches and degree assignment. Indeed, the algorithm distinguishes up to 9
different degrees for the matching of parameters. These 9 different degrees are
justified by the classification of parameters and service profiles, taken into
consideration. The signification of each degree is shown in Table 4-1. DAML-S service
profiles are defined as subclass of the Profile class, but can also be indirect
subclasses of Profile, this way it is possible to build a service hierarchy (see the
explanatory remarks about profile-base class hierarchies in [13]) and relationships
between two profiles can be found with reasoning on subsumption. This feature,
even if not really used in practice, would provide an interesting “yellow-page” style
service categorization. Moreover, IOPEs (Inputs-Outputs-Preconditions-Effects) can
also be classified the same way, by defining an IOPE parameter as a subproperty of
another IOPE parameter. Thanks to these classifications, a distance between two
profiles or two parameters (parameter here stands for the meta-information and not
the value of the parameter itself) can be computed.

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 20

Table 4-1 Rankings for the matching of two parameters

The property-match result is the result obtained from the “category match” of the

properties of the IOPEs. Then, for each possible property-match result, 3 type-match
results are possible (the type-matching is the basic matching evoked in the first
approach). If a property-match (resp. a type-match fails), we do not need to
consider the type-match (resp. property-match) result.

 the ATLAS matchmaker

In [14], a different matchmaker, based on the DAML-S services profiles, is
presented. The novelty brought by this method is simply the consideration of the
functional attributes (geographicRadius, degreeOfQuality …) during the matching
process, the service functionalities matching remains quite similar as [10]. The
formula used to match inputs is below:

And the matching of outputs:

Where subs(i, j) is true when i subsumes j.

4.1.2. Matching service models

The authors of the method in [9] present their algorithm as an extension to
profile matchmaking as they take into account the detailed process description of
services, the service model. It is their belief that this algorithm, based on richer
descriptions, should lead to more accurate matches. To understand how the
algorithm works, let us first note that the service model describe the process
executed when calling the service. This process can be decomposed into other
processes, which can in turn be decomposed themselves, and so on … A process
which cannot be decomposed is called atomic and a process composed of other
processes composite. A composite process can be of several types: Split, Sequence,
Unordered, Split+Join, Choice, If-then-else, Iterate and Repeat-Until. The service

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 21

model can eventually be considered as a tree representing the global process, having
the atomic constituent processes as leafs and each sub-tree being a composite
process. Thus, the proposed algorithm works recursively over the tree of the service
model, and each node is matched (with a particular algorithm depending on the type
of the composite process at the node: split, sequence …). The algorithm is started by
simply matching the root of the tree, which will call recursively the matching
algorithm over its nodes and sub-nodes. Below is shown the algorithm used to match
outputs of either a split or a sequence composite process (Figure 4-3). I is the list of
inputs to be matched, O is the list of outputs to be matched, N is the node being
matched.

Figure 4-3 Algorithm matching outputs of either a split or a sequence node

A split or a sequence node denotes a list of processes to be done concurrently

(split) or in order (sequence), and which finishes when all the children processes are
terminated. Hence the algorithm above which calls the match a success if all the
desired outputs can be satisfied by all the children collectively. By opposition,
matching a choice node is done by finding at least one node satisfying the desired
outputs.

We believe it is true that this kind of match can provide a more precise and more
accurate match between two services, yet we should not forget that the service
model is not primarily provided to express requirements for finding matches with
advertisements, thus this does not seem to be the most relevant way to solve the
matching problem.

4.1.3. Comparison

In the following table, n stands for the height of process model tree.

Profile Matching
4 degrees 9 degrees

Model
Matching

Others (Atlas
…)

Complexity O(1) O(1) O(2 n) O(1)

Accuracy Minimal
sufficiency

Better than 4
degrees

matching
High

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 22

Speed Fast Fast
Time

consuming
O(2n) algorithm

Similar as
profile

matchers

Space Knowledge
storage (low)

Knowledge
storage (low)

Knowledge
storage +

algorithm stack

Similar as
profile

matchers
Table 4-2 OWL services matcher comparison

From the two profile matchers, we should prefer the 9 degrees profile matcher

which offers a better accuracy with the same performance in time or space, the only
difference observed being the slightly higher complexity due to the higher number of
reasoning tasks to perform. For a higher accuracy, the service model should be
picked, which would imply neglecting speed and memory considerations. As a matter
of fact, this matcher does the same reasoning tasks as the profile matchers, but
performs them a greater number of times, and furthermore adds a non-negligible
algorithm complexity. Profile matchers offer a tradeoff between speed and accuracy,
model matcher offer a high accuracy at any costs, and other matchers (ATLAS or
others) allow unsubstantial additional features easily pluggable into one of the
previous matchers.

4.2. Frameworks

We saw above the subpart of matching a pair of services, we are now about to
review some frameworks which integrate these matchmaking techniques, along with
other ways of matching services. But before that, let us introduce important concepts
of agents’ structures.

4.2.1. Introduction to Agents & Multi-Agents Systems

Agents systems provide the scalability and the flexibility needed in distributed
environments and distributed agents offer an interesting alternative to centralized
repositories as the number of web services is dramatically increasing each day.
Agents systems can be useful to leverage the problem of location and
implementation of services changing frequently, by removing the centralized server
necessary to check regularly services changes. Using MAS (Multi-Agent Systems), we
make service advertisers autonomous, so that themselves can inform other entities
of any change on the service(s) they are providing. Thus, providers and requesters
can interoperate asynchronously.

Let us present shortly the principle of agents. Agent oriented programming is a
paradigm on top of the object oriented paradigm, that is, agents are an evolution of
objects. Synthetically, agents are entities acting (taking decisions independently) on
behalf of a user, in order to achieve specific goals. Their characteristics are:

 Ability to act proactively, i.e. ability to take initiatives
 Reactivity (to events occurring in their environment, to contacts with other

agents …)
 Social abilities.

We call Multi-Agents Systems (MAS) systems in which several (heterogeneous)

agents are connected altogether. MAS are commonly used to solve problems beyond
single agents capabilities or to model market places where each agent act in a self-

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 23

interested manner toward their own and divergent motivations. Yet our setting is a
situation of mutually beneficial cooperation where agents have different goals, but
where no opposition or conflicts of interest can arise among them (providers’ sole
motivation is advertising services, requesters’ motivation is to find suitable services
and each one need to cooperate so that they both can accomplish their task). Our
MAS infrastructure will be used to make our system more flexible and more scalable,
with greater conception clarity. We will now see the MAS system this work is
extending.

4.2.2. Agent-based system for Grid services provision and selection

Figure 4-4 Collaboration diagram of the service providing part of the system

Figure 4-5 Collaboration diagram of the service selecting part of the system

This system is the base system our work is intended to extend. It provides a

framework service providers and requesters can directly use to publish or find
services. This platform has been designed to be used exclusively for grid services, for
it uses OGSI’s Service Data Elements (see Section 2.2.2). In this system, no
semantic information is used to describe services, and services can only be retrieved
thanks to the OWL-S ServiceCategory element, used for classification. Services
(requested or advertised) are described in WSDL, with the OWL-S ServiceCategory
attributes (CategoryName, Code, Taxonomy and Value) enclosed in the SDEs. The

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 24

interest of this platform is not limited to the matchmaking of services, as it also gives
users an ad-hoc method to publish services, either by adding single services or by
adding a Globus Virtual Organization Registry ([15]). Basically, the system works as
follow. A user has first to instantiate a Service Selection Agent (SSA) to perform its
search. The SSA then fetches all the Agents providing services in the system, and
sends the service request to all of these services. The Agents interfacing the users
providing services (Service Providing Agents, or SPA) matches the request with the
one or more services they store, and in case of success, returns the list of matching
services to the SSA originating the request. Once an SSA has emitted a request to
several SPAs, it only waits until a certain time for results to come. Below are the
collaboration diagrams showing the global setting and interactions of the system for
the provision and selection part.

4.2.3. UDDI-based discovery systems

Some methods have been developed, consequently to the observations that UDDI
does not allow browsing according to capabilities and that it only provides limited
search possibilities (see Section 2.1.2), in order to bring new functionalities to it.
[16] and [10] propose a framework coupled with UDDI. This framework remains
compliant with the current UDDI registries, so that searches can be done through
regular registries (keyword searches) or through the new augmented registry,
storing semantics information. Below is the sample architecture used by [10] in
addition to the DAML-S matchmaker presented above in Section 4.1.1.

Figure 4-6 Architecture of the DAML-S/UDDI matchmaker in [10]

The system works as follow. Upon receiving a request, the Matching Engine

component selects the advertisements from the AdvertisementDB that are relevant
for the current request. Then it uses the DAML+OIL Reasoner to compute the level of
match. In turn the DAML+OIL Reasoner uses the OntologyDB as data to use to
compute the matching process. The AdvertisementDB also takes advantage of the
OntologiesDB to index advertisements for fast retrieval at matching time. The
AdvertisementDB can be likened to the Directory Facilitator (DF) in the previously
described work ([1]), although this latter DF simply always returns all the services
(more accurately, all the agents providing services). In the same way, the Matching
Engine can be likened to the SPAs, as these latter match requests with their services
even though they do not include any semantic reasoner or any ontology data bases.
We can see that our ambition to extend the system in [1] will imply endowing SPAs
of semantic reasoning (along with an appropriate ontology storage), and improving

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 25

the DF to make it work similarly as the AdvertisementDB of the system just
described and thus return only relevant SPAs.

4.2.4. Others

 RETSINA/LARKS

RETSINA is a multiagent infrastructure that performs goal-directed information
retrieval, information integration and planning tasks. The motivation for this platform
is a bit different from ours but still proposes an interesting matchmaking engine,
composed of several filters:

--- Context matching: for each pair of word of the slot context in the
associated language LARKS used to describe the services, a word distance
is computed.

--- Profile comparison: term-frequency inverse document frequency weighting
(TF-IDF), technique from the information retrieval area, is used to
calculate the similarity of two profiles (based on frequency and relevance
of words in the document).

--- Similarity matching: computation of distance values for input/output pairs
and for input/output constraint. Used to refine the previous filter (e.g.
recognizes that {computer, book} has a closer distance than {computer,
notebook}, which is not seen by the previous filter).

--- Signature matching: matching pretty similar to other techniques evoked in
the previous Sections. Checks if the input/output matches, based on
semantics.

--- Constraint matching: similar as signature matching, but applied to input
and output constraints.

The filters provided are quite powerful but not portable in OWL-S, it would yet be

interesting to find equivalent filters for an OWL-S matchmaker, as it may help
filtering the set of services to match, i.e. to improve the Directory Facilitator as
evoked in Section 4.2.3 (selecting candidate services for a match instead of selecting
all services for a match).

 COINS, EcoCBL and others:

Other approaches for matchmaking exist but are mainly based on their own
capability description language, due to their concern being only to describe
capabilities of agents, instead of specifically describing services. However, these
methods have the same concern as ours: matchmaking capabilities. We can quote
COINS in [17], matching capabilities by calculating the distance of the words in the
capability description thanks to TF-IDF (equivalent to the RETSINA context matching),
ecoCBL in [18] or JAT-CDL in [19]. Like we said in Chapter 3, we will focus on OWL-S
for the reasons already evoked, and this will lead us to discard such methods and
use methods described in the first paragraph of this chapter instead.

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 26

Chapter 5. Proposed Solution – Design

In this chapter we will approach the overall design of our proposed solution. We

will start by discovering the needs of the system along with how it could be used,
and then we will model the application with UML diagrams, finally the non-trivial
algorithms used will be discussed. This chapter will tackle functional specifications
and not technical specifications, which will be discussed in the next chapter.

5.1. Preliminary Considerations

5.1.1. Terminology

Here are presented the most recurring terms used in this thesis, along with their
signification.

Term Signification

Service Provision Agent (SPA)
An agent handling the service

provider’s part in a negotiation of
services.

Service Selection Agent (SSA)
An agent handling the service

requestor’s part in a negotiation of
services.

Directory Facilitator (DF)
A predefined agent holding a

directory where other agents can publish
themselves and search for others.

Extended Directory Facilitator (EDF)
An agent meant to replace a

Directory Facilitator Agent (DF), by
providing some additional functionalities.

Table 5-1 Glossary of recurrent terms

5.1.2. Scenario of system use

There will be two different types of users in the system; those who provide
services and the ones requesting them.

The scenario we are presenting involves music and media libraries on the internet.
Suppose a music-selling company wants to publish its services on the web to allow
users to buy music online. Providing an artist name and a track name, the service
would return the MP3 corresponding to the search criteria. This would constitute an
interesting low-cost way of selling music, all automatized. The company could then
register to the platform along with their others media-accessing services, so that
anyone can find and access the services. The company could also register its services
to UDDI registries but its limitations does not make it the best way to make the
services known to the open public. Moreover, some other limitations evoked a little
bit later will confirm the choice of not using UDDI. Suppose now a user wishes to use
the platform to locate services of that type. If he knows exactly his desired songs
with the performer, he will not have any trouble to get his music. However, it could
happen that the user does not know exactly the name of his wanted track. In that
case, the first reaction to adopt is to locate another service on the platform which

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 27

has for output the same concept the music-selling service had in input (“track
name”). Such a search should provide results containing media-library services
giving track names provided the name of an artist and an album name (plus
optionally a track number). Those other media-library services could provide lots of
useful services to be combined with the music-selling services, and could
substantially facilitate the music search. For instance they could help finding artists
given a genre, or could help to inform about tracks (see Figure 5-1 for examples).
These media-library/music-selling services combined together would form sorts of
composite services with the same result: finding mp3s from the music-selling service,
but with different inputs (genre, or artist and track, or year and artist and track
number …). We can see that the company selling music makes a good choice when
using the platform instead of UDDI, indeed, it naturally enhances users’ ergonomics,
who do not have to restrict their music search on a track name and an artist name.
Such things are not possible with UDDI, as media-library services are searched
based on input or output parameters, according to what the music-selling service
expects in input and to what information the user wishes to provide in input.

Below is illustrated the scenario, the music-selling service provided by the
company is the service on the right, and all other media-library services are other
costless services, provided by other entities to the platform. The dotted line
represents some of the possible combination between services.

Media-library

Album
name
Artist
name

{tracks name}

Media-library
year

Artist
name

Music-Selling Mp3

Track
name
Artist
name

Media-library

Album name

Artist name track name

Track number

Media-library

Track
name

Artist
name

Album
name
year

Media-librarygenre {artists name}

{Albums}

Figure 5-1 Illustration of the scenario of system use

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 28

5.1.3. System needs

The system will be articulated around two main objectives: it should first provide
a way for services providers to register their services, so that users on the other side
can have access to them, and it should then provide a way for users to find relevant
services, according to their specific needs. We should also bear in mind that users
can be humans as well as computers. In order to realize these two objectives, a third
important feature has to be set: the matchmaking engine (coupled with a reasoning
engine), which will be in charge of finding correspondences between requests and
advertisements. Finally, as this system is to be in a distributed environment by
nature, there should be a mechanism enabling actors of the systems to locate each
others. Apart from upgrading the previous version of the system by adding
semantics, several other issues should have to be tackled.

We should first consider some security issues of the system, for instance, there
should be possibilities for a user to emit requests not giving away too much
information to SPAs (privacy issue), and the requester should then be able to select
its services from a set of services given by the different SPAs. This way, the role of
the SPAs would not be to match its services with a request, but to filter its potentially
matching services from a request carrying limited information. This mode will be
called the “secure mode”, by opposition to the regular mode, where the SPAs match
a request containing all necessary information.

Then, efficiency issues could be considered, by evolving the DF agent. In the
previous version, this agent’s task is limited to returning all available SPAs, our
system could provide an extended DF (EDF) which would return only a restricted list
of SPAs, depending on the request of the user (in that case, the user would provide
limited information, as for the secured mode, to the EDF first). We will call that mode
the “filter SPAs” mode.

To sum up, we can notice the following major upgrades from the previous
system:

 Semantics to be added
 Matchmaking to be enhanced
 Several working modes, which can be combined or both deactivated:

--- Secure mode
--- Filter SPAs mode

5.2. Model of the application

5.2.1. Use Cases

The Use Case for the application have not changed since last version, the system
is still used the same way. Here is the global Use Case as a reminder (Figure 5-2):

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 29

Figure 5-2 Use Cases of the system (from [1])

As the use of the system does not deeply change from last version, we will only

focus here on important changes, for deeper understanding we invite the reader to
refer to Section 3.3 in [1].

 Type of Services concerned by the system. The previous system was
resolutely using Grid Services, whereas this version should be more flexible.
Besides, the concept of Grid service, as said in Section 2.2.2, is becoming
obsolete, and both web services and grid services are now to be replaced by
the WS-RF. However, in order to select a service, we only need to consider
the description part of an OWL Service (mostly the profile and secondarily the
model, refer to Section 3.1.2). The fact that a service uses a wsdl, gwsdl or
endpoint references in SOAP messages only affects the grounding part of an
OWL Service, part which is note relevant in the selection process. As a
consequence, regular Web-Services, Grid-Services, or WS-RF services can be
used by the system. Yet, The Virtual Organizations provided by the Globus
Toolkit 3 ([15]) used in the previous system cannot be used anymore, but
have to be replaced by the Indexing Services, provided by the Globus Toolkit
4, implementing the WS-RF.

 Description of services. OWL Services were used by the previous system, but
without exploiting the capabilities of the language. Services were described by
GWSDL documents along with SDEs (see Section 2.2.2), which were wrapped
and translated into an OWL Service (more precisely, the SDEs were
transferred to the service category tag of the OWL Service). This system
should dispense with WSDL or SDEs descriptions, and use OWL descriptions
directly to express the requests and to describe advertised services.

5.2.2. Interaction between parts (sequence diagrams)

This Section will deal with the internal running processes of the application, i.e.
with the interaction between agents. Collaboration diagrams from the previous
system, presented in Section 4.2.2, are still up to date.

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 30

 SPA

The SPAs should provide the following functionalities:

--- Adding & Removing service(s)
--- Registering & Deregistering to a DF or to an EDF

Below (Figure 5-3) is presented the UML sequence diagram for the service adding

action (which includes the registering functionality).

spa:SPA DF EDF

addService(service)

Top Package::Service Provider

(!registered)? register()

addService(service)

RegisterSPA(service)

addServicesWithSPA
(spa, service)

Figure 5-3 adding a service to an SPA

As the EDF agent is only optionally started, the action “RegisterSPA(service)” is

not done systematically. The EDF, by opposition to the regular DF, also stores, apart
from agent’s references, references (i.e. URLs) of the services shared by each SPAs.

The diagram for the service removing action is not presented but is the trivial
symmetric of the previous diagram.

 SSA

The SSA should provide the following functionalities:
--- Finding SPAs
--- Finding ”relevant” SPAs (“Filter SPAs” mode)
--- Finding services matching a request
--- Matching services with a request (”Secure” mode)

A user wishing to search services has to first instantiate an SSA, let ssa be that

instance, and let spa_1 … spa_n be instances of SPAs sharing services. The regular
search for services works as in the sequence diagram below:

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 31

ssa:SSA

Top Package::Service Requester

search(OWLService)

DF spa_1:SPA spa_n:SPA

listSPAs := GetSPAs()

SearchSPA(OWLService)

SearchSPA(OWLService)

List of

successfully

m
atched

services

List of matching
services

List of matching

services

match(service)

match(service)

Figure 5-4 Searching services (“regular” mode)

The first call to the DF (GetSPAs()) allows the SSA to obtain a list of all available

SPAs, so that each of them can be probed (SearchSPA(…)) for services matching the
request (OWLService). The SSA eventually asynchronously receives replies from
probed SPAs and gathers all returned services for further treatments (limited to
simple display in our project).

Small differences can be observed when using the “secure” mode, as the

following sequence diagram shows:

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 32

List of

successfully

m
atched services

Figure 5-5 Searching services (“secure” mode)

Instead of sending the full OWL Service to the SPAs, only the profile of the

request is sent. The class of the profile and its category are matched
(matchCategory(…)) against the same entities in the services advertised by each SPA.
After sending all the requests to the SPAs, the SSAs then wait to collect all the
replies. Each reply from each SPA (“List of matching profiles/category”) contains a
set of services potentially matching the user’s request. To determine if those services
effectively match the request, the SSA has to match each of them against its request
(match(OWLService)) (the job done by the SPAs on regular mode is here done by
the SSA).

The “Filter SPAs” mode varies only for the first part of the negotiation, as the list

of SPAs to contact is obtained from the EDF instead of the DF:

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 33

Figure 5-6 Searching services (“Filter SPAs” mode)

The DF still has to be used to locate the EDF (GetEDF()). Then, in order to find

relevant SPAs (i.e. SPAs sharing services potentially matching the user’s request),
the profile of the request is sent to the EDF (GetSPAs(…)), which in turn matches the
class of the profile and its category against all the advertised services
(matchCategory(…), rigorously identical to the action performed by SPAs on “secure”
mode). A list of SPAs to contact is then returned to the SSA and the services search
can then begin as usual, in either “regular” (see Figure 5-4) or “secure” mode
(Figure 5-5)

5.3. Algorithms

5.3.1. Profile matching

The algorithm used is the one described in Section 4.1.1 and is used with its
extension (9 degrees profile matcher). The global algorithm, as described in Figure
5-7, does not differ from the one of the previous system, except the fact that it can
return more than one service. It successively matches the inputs, the outputs and
the class of the profiles.

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 34

Figure 5-7 Service matching algorithm

As mentioned in Section 4.1.1, the matchProfile(…) function only performs a

concept match on the type of the profile (most of the time, profiles are instances
(are hence of the type) of the default base class Profile, contained in the ontology
http://www.daml.org/services/owl-s/1.1/Profile.owl and are thus considered
as “unclassified”).

To understand the following algorithms and the concept match or property match,
let us focus on the following considerations. The concept match will match the type
of the parameters, by opposition to the property match which matches the class of
the parameters. Let us have a look at the following example:

Figure 5-8 Sample OWL-S input parameter

In that example, the type of the parameter (i.e. that will be used in the concept

match) is “SupportedLanguage”, present in the ontology
http://www.mindswap.org/2004/owl-s/1.1/BabelFishTranslator.owl. The class, or
property, of the input (i.e. that will be used in the property match) is “Input” (the
input is thus said to be “unclassified”). The concept match, as seen in the first part of
the algorithm in Figure 5-10, is hence a process which will try to find relationships
between two concepts (equivalence, subsumption, invert subsumption, or disjoint-
ness). The same way, the property match, as seen in the second part of the
algorithm in Figure 5-10, is a process which will try to find relationships between two
properties (unclassified, subproperty, equivalence, or disjoint-ness).

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 35

The final score for two parameters, depending on both the concept match of the

parameters’ types and the property match of the classes of the parameters (function
assignDegree(…) in Figure 5-10), is an integer comprised between 0 and 9; the
signification of each rank is given in Table 4-1.

The rather trivial algorithm used to match inputs and outputs has been described

in [10], and the outputs matching algorithm is shown in Figure 5-9.

Figure 5-9 Outputs matching algorithm

The above algorithm computes what can be stated as “the worst of the best

scores” obtained. Indeed, for each output of the request, it finds the best matching
output in the advertisement (finds “the best score”), and the final result of the
function is the smallest score obtained in all the best matching outputs (“worst of the
best score”). It can be summed up by the formula:

The algorithm used to match inputs is quite similar to the above algorithm, but
instead of finding a matching output in the advertisement for each output of the
request, an input in the request is found for each input of the advertisement (the
outer loop iterates over the parameters of the advertisement and the inner one over
the parameters of the request), and the call to scoreMatch is done by
scoreMatch(inputReq, inputAdv).

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 36

The match degree assignment (scoreMatch(…)) as described in [8] for the 9-
degree profile matcher, is done by the algorithm in Figure 5-10.

Figure 5-10 Algorithm assigning a matching score for two parameters

The function getParamType() gets the type of the parameter in order to compute

the concept match. The function getType() gets the class (property) of the
parameter in order to compute the property match.

5.3.2. Model matching

The system allows to choose between the previous profile matchmaker, and the

model matchmaker we are about to describe. The model matchmaker has the
advantage of being rather sound, but pays the price of its efficiency by being quite
time consuming. See Section 4.1.2, for a reminder of the idea of using the service
model to match services. The first algorithm we are about to present is copied
straight from [9], whereas we’ve taken some slight liberties with a second version
exposed later on this Section.

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 37

Figure 5-11 Model Matchmaker algorithm

As we can see from the algorithm of Figure 5-11, the matching relation between

inputs or outputs of two services is binary: two Inputs or Outputs match or fail; by
opposition to the profile matchmaker where several degrees could be assigned to
express the level of match. We will see later that these degrees intervene at another
point of the algorithm, and also allow flexible matches as the profile matchmaker
does.

The call to parameterMatch starts the recursive algorithm (launched two times,
one for the inputs, one for the outputs) at the root node of the process model of the
service. The function, shown in Figure 5-12, simply redirects the execution to the
right algorithm corresponding to the type of the node being matched (Split,
Sequence, IfThenElse …). An example of those algorithms is given in Figure 5-13,
and is nothing more than the algorithm already presented in Figure 4-3 in Section
4.1.2, slightly adapted for our application.

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 38

Figure 5-12 Function selecting the appropriate algorithm for the corresponding node

In the shown functions, N is a node which can be of any type (Choice, Split,
Sequence …), but we also have to assume that it contains a list of its child nodes
(children element) and a matchSet element (set type). The parameter O is a list
containing the parameters to be matched (either inputs or outputs, depending on the
first call to parameterMatch). The operation head(O) extracts the first element of the
list and removes it.

Figure 5-13 Algorithm used to match either Split or Sequence Nodes

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 39

The recursion ends when an atomic process (leaf in the process model tree) is
found, and the algorithm used to match this type of node is similar to the algorithm
used to match two services in the profile matchmaker: the requested parameters are
matched against the parameters of the atomic process and a score is assigned the
same fashion as in the function in Figure 5-10 (score assignment in the profile
matchmaker). Besides, it is precisely at this moment that the 9 degrees evoked
earlier intervene, as a score is assigned to represent the matching degree of two
parameters. However, as the general model matchmaker algorithm requires that the
result of each node matching functions be a Boolean, we thus have to declare the
match of an atomic process a success if the score obtained is greater or equal than a
predefined, user-modifiable, threshold. It is in consequence at the atomic process
level that the flexibility of the matchmaker is justified. Nevertheless, we should bear
in mind that the algorithms of some nodes (e.g. Split or Sequence nodes) work by
distributing the requested parameters to the child nodes, trying to find the
appropriate attribution of parameters to each child. Minding this observation, we can
easily see that if the threshold is set too low, the distribution of the parameters can
be erroneously done (one parameter can be “assigned” to an atomic process whereas
it should have been assigned to another one, where it would have had a greater
score). As a result, the threshold has to be extremely well chosen not to induce any
errors in the matchmaker. The idea of our second version of the model matchmaker
comes from that remark; instead of letting the user choose the threshold, the
algorithm systematically tries all possible threshold (from 1 to 9) when matching
each node. This version should provide optimal results, but with a slightly worse
complexity.

5.3.3. Filtering SPAs & Secure mode filter

The platform also lets the user choose two optional modes: “secure” and “Filter
SPAs”. The modes can be used together or none can be used.

The idea beneath the matchmaking algorithm used in the “secure” mode is to
filter a set of services based on limited information, for privacy keeping purposes.
Using the information of the profile such as inputs or outputs is considered as too
much information giveaway and should be avoided. Other information contained in
the profile has thereby to be used, and the service category element seems to be a
good candidate as a replacement. Indeed, comparing the elements of the service
category seems to be a good way to eliminate incompatible services (if the service
category elements does not “match”, there is no more need to look at any other
elements of the profile, the profiles are advertising divergent services). We can also
remark that looking at the class of the profile, i.e. seeing if two profiles belong to the
same hierarchy, is also a good indication, for the same reasons.

The “Filter SPAs” mode uses exactly the same algorithm as the “secure mode”,
but not for the same reason: the mode requires a quick matching to prune a list of
services. Profile hierarchy matching and service category comparisons responds well
to that demand as it works by doing quick elementary comparisons and eliminates
services which have no chances of matching if passed into a profile or model
matchmaker.

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 40

Figure 5-14 Category matcher algorithm

The algorithm is shown in Figure 5-14. We can see that the service category is

obtained by the function getCategory(). Let us notice that two services category do
not need to be – exactly – identical to be considered equal, this has the virtue to
allow users to use jokers (‘*’) or even full regular expression when expressing
requests. Furthermore the profile matching, as evoked in Section 5.3.1 or 4.1.1, is
also used to complete the matching process. Indeed, if the two matched profiles are
classified (i.e. have their profile class different from the “Profile” class defined in the
daml.org ontologies), the service category comparison is not even used.

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 41

Chapter 6. Implementation

As in the previous work, the prototype has been implemented in Java using the
JADE multi-agent platform. Our goal in this chapter is to explain some details of the
implementation and to understand the structure of the prototype. In order to do so,
we will organize our study around the various Java packages:

 Agents package: SSA, SPA and EDF
 Other packages used by the agents:

--- matcher: used for matchmaking services
--- reasoner: used to infer new relationships between elements (used by

the matchmaker)
--- storage: used by agents or other package for various storing

purposes
--- content: package used for managing various contents: FIPA ACL

messages, OWL-S, Strings

Two versions have been implemented, one supporting only owl-s 1.0, another

supporting owl-s 1.1. The owl-s 1.1 uses a beta version of the owl-s api. The
upgrading to owl-s 1.1 is due to an undocumented bug in the owl-s 1.0 api which
prevented the application to work optimally (the version is nevertheless working).
Yet, this upgrade has had a good impact on the future scalability on the application,
as the owl-s api considerably changed from version 1.0 to 1.1 and now should not
include such major changes in future versions. The upgrade of the prototype to
greater owl-s version should be hence greatly eased. Besides, we changed the owl-s
1.0 api to make it support multiple profiles, but this could not be done in version 1.1
(the getProfiles() method, meant to return all the profiles, is yet still present, but
returns a list containing only one random profile).

The first version uses Java 5 features and has necessarily to be used with a Java
5 SDK (generics, “enum” and other new libraries are used). Java 5 could not be used
in the second version and we had to downgrade the prototype to Java 1.4 due to the
use of the axis package imposed by owl-s 1.1. Indeed, Java 5 cannot be used with
Axis libraries as the developers had the dumbest idea to call a package “enum”,
which is now a reserved word in Java 5.

For reasoning purposes, have been used: Pellet 1.2, Jena 2.2; and for xml
parsing purposes: jdom 1.0.

Notice: the javadocs of the application can be found at:
http://zill.free.fr/thesis/javadocs/

6.1. Agents

6.1.1. SPA

The service provisioning agents, implemented by the class ServiceProvisionAgent

(package agents.jade.SPA), are used to interface a user wishing to provide services
to the platform. As seen in the sequence diagrams of Section 5.2, the agent provides
the following functionalities:

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 42

 Adding a service: addService()
 Registering the agent to the DF/registering the services to the EDF:

storeServices(Collection services)
 Matching a requested service against all its provided services:

match(OWLOntology service, false)
 Matching the category of a requested service against all its provided service

categories: match(OWLOntology service, true)

The functionality allowing managing Virtual Organizations (GT4 Index Service)

has not been implemented.
All the implemented functionalities are implemented through “behaviors”. The

table below shows all behaviors of the agent:

Behavior Description
addServices Read an OWL-S service at the specified

URL and stores the read OWLOntology
into the local agent storage, and in its
knowledge base. When done, launches
the registerSPA behavior.

ListenForReq A cyclic behavior that listens for incoming
requests. If a message is received it will
be parsed and the right action will be
taken (typically, a search for services,
secure or not).

RegisterSPA Registers itself to the DF, and, if
available, sends a reference of shared
services to the EDF.

removeServices Removes the desired stored services
from the local agent storage and informs
the EDF, if relevant, that these services
are not available anymore.

SearchAndResponse Searches the local storage for the
requested service and sends the result
back.

Table 6-1 Behaviors of the Service Provision Agent

6.1.2. SSA

The service selection agents, implemented by the class ServiceSelectionAgent
(package agents.jade.SSA), are used to interface a user wishing to find services. As
seen in the sequence diagrams of Section 5.2, the agent provides the user one
functionality: searching services matching the desired requirements, specified in an
OWL-S file.

Behavior Description
GetSPAs Sends a request to the DF, or to the EDF

(“Filter SPAs” mode), to get available
SPAs to contact.

SearchSPA Sends a request to one given SPA to find
a desired service.

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 43

Receive A cyclic behavior that listens for incoming
messages. The behavior typically collects
returned results following requests
emitted by “GetSPAs” or “SearchSPA”.

Timeout A “waker” behavior, i.e. a behavior that
sleeps and wakes up after a given
timeout to terminate the collection of
search results (shuts down the “Receive”
behavior)

Table 6-2 Behaviors of the Service Selection Agent

Below is shown the function initiating a search for a service and determining the
way the agent behaves. This single method is called whenever a user wants to find a
service and it specifies the sequence the behaviors are executed.

Figure 6-1 Method initializing a service search

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 44

Figure 6-2 clarifies the function by showing a diagram representing the
succession of the behaviors. The ovals of the diagram represent the composite
behaviors (the names from the function above have been kept), the squares are the
behaviors described in Table 6-2. Grossly, the scheme redundantly used is:

 One (or more) request(s) is emitted (GetSPAs or SearchSPA) to one or more
agent(s) (EDF or SPA(s)), then

 A couple Receive-Timeout comes and collects the results:
--- Receive and Timeout works in parallel: Receive collects all incoming

results indefinitely until Timeout wakes up to shut it down.

The diagram below corresponds to the “Filter SPAs” mode. If working without the

mode, the composite behavior “sub” is simply replaced by the behavior GetSPAs
(which do not need to use a Receive-Timeout couple as it can get its result
immediately). Note that working in “secure” mode or not does not affect the flow of
behaviors.

Figure 6-2 Behaviors flow of the service search

6.1.3. EDF

The Extended Directory Facilitator is a novelty brought up to enhance the

Directory Facilitator included in the JADE platform. Ideally, the DF should be changed
in order to fit our needs; unfortunately, this agent is a predefined JADE agent and
hence cannot be modified, it is also already exploited at its full possibilities. The EDF
It is implemented in the class DFWrapperAgent in the package agents.jade.DF. The
EDF is only optionally launched, but if present, the SPAs systematically remain in
contact with it to make it hold an up-to-date list of services provisioned by each of
them. It is furthermore used only when SSAs specifically ask to work in “Filter SPAs”
mode, in which case the EDF will be used to select in its storage, SPAs providing
services that could match the request an SSA sent.

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 45

Behavior Description

Receive A cyclic behavior that listens for incoming
messages. Messages received can be:

 An SPA registering services
 An SPA deregistering services
 An SSA requesting a list of SPAs

Reply Sends the desired list of SPAs to the SSA
originating the request received by the
behavior “Receive”.

RegisterDF Register itself to JADE’s DF so it can be
found by SPAs and SSAs.

Table 6-3 Behaviors of the Extended Directory Facilitator

6.2. Other packages

6.2.1. matcher

The matcher package holds the modules in charge of matchmaking services. The
matching methods used (Profile matcher and the two versions of the model matcher)
implement the OWLServiceMatcher interface, and hence provide the following
functions:

 public void addServices(Collection services): Adds a collection of services to
the knowledge base

 public void clearKb(): Clears the knowledge base
 public Vector match(OWLOntology request, Collection advertisements, int

minScore): returns a collection of services contained in advertisements, which
match request with a score greater or equal than minScore.

 public Vector match(OWLOntology request, Collection advertisements):
returns a collection of services contained in advertisements, which match
request with a score greater or equal than a default score specified in the
configuration file (see Section 6.3.2).

 public int match(OWLIndividual request, OWLIndividual advertisement):
matches request against advertisement, and returns the score obtained.

 public Vector matchCategory(OWLOntology request, Collection
advertisements): returns a collection of services contained in advertisements,
which category match request’s category.

The implementation of the profile matcher and of the model matchers follows

carefully the algorithms specified in Section 5.3.
Note: the model matcher could not be fully implemented, the authors of the

algorithms could not be contacted and we had to settle for two node algorithms
(Split, Sequence/Choice). Nonetheless, the few missing algorithms only need a trivial
transcription in Java and can then be easily inserted in the model matcher class.

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 46

6.2.2. reasoner

The reasoner package includes two interfaces defined to provide reasoning
mechanisms, to be used by the service matchers. The interface Reasoner proposes
methods necessary to infer new information from an ontology, whereas the interface
Matching proposes functions meant to use the Reasoner interface, in order to
perform concept match, property match, and score assignment.

Reasoner

boolean subsumes(URI conceptA, URI conceptB)
boolean isSubClass(URI conceptA, URI conceptB)
boolean isEquivalentClass(URI conceptA, URI conceptB)
boolean isSuperProperty(URI propertyA, URI propertyB)
boolean isSubProperty(URI propertyA, URI propertyB
boolean isEquivalentProperty(URI propertyA, URI propertyB)
boolean isUnclassified(URI property)

Table 6-4 Reasoner interface

Matching
int conceptMatch(URI conceptA, URI conceptB)

int propertyMatch(URI propertyA, URI propertyB)

int scoreMatch(Parameter req, Parameter adv)

Table 6-5 Matching interface

6.2.3. storage

The storage interfaces define methods to manage services (OWLOntology type)
storage. We can encounter two types of storage: collection or map storage. The
classes implementing collection storage needs to present the following functions:

 add one service
 add a collection of services
 remove a service
 remove several services
 get all the services

The class VectorStorage implements this interface with vectors. Databases are

presurmised to present a good version of collection storage, but were not
implemented.

The class implementing the map storage needs to present the following
functions:

 public void add(Object key, Object value): adds a couple <Key, Value>
 public void add(Collection keys, Object value): adds couples <Key, Value>

with several keys having the same value
 public Object get(Object key): gets the value associated to the key
 public Collection getFiltered(OWLOntology filterService): Values are

interpreted as Services: gets Services whose category match the filter service
filterService category.

 public Object remove(Object key): removes the key and its value

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 47

 public void removeValue(Object key, Object value): removes the couple
<key, value>

 public void removeValues(Object value): removes all keys associated to the
value value

 public Map getAll(): gets the underlying map
 public Collection getValues(): gets the collections of values
 public Collection getKeys(): gets the collection of keys

The class MultiHashMapStorage implements this interface with multimaps, i.e.

maps having keys associated with a list of values.

6.2.4. content

The content package includes classes for managing the content carried in the ACL
messages. The package has been divided into three sub packages:

 lang: contains the structure of ACL messages (see Section 4.3.1 in [1])
 owls: contains static functions used to read and write OWL-S files. The

reading functions return OWL Services (of type OWLOntology) (translated to
OWL-S 1.1 if necessary) from an input URI where a service is located, or from
a String containing an OWL Service. The writing functions write OWLOntology
objects (OWL Services in the OWL-S API) into Strings (basically so that the
service can be sent on the wire).

 Strings: contains functions used to translate vector to strings and vice-versa,
so that vectors can be passed as arguments in ACL messages. Note: the
serialization of Java Vectors cannot be used in an ACL message as it contains
forbidden characters for XML’s CDATA elements. Vectors are hence translated
into strings the following way: Vector: <elem1, elem2, elem3>
“elem1^elem2^elem3”, where ‘^’ is considered as a delimiter between
elements.

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 48

6.3. Manual

6.3.1. Required software and libraries

As explained in the beginning of the chapter,
the prototype (OWLS-1.1) is meant to work
under a Java 1.4 JVM (the prototype version
OWL-S 1.0 has to work under a Java 1.5 JVM).
The prototype runs on top of the JADE platform.

So, in order to run the agents a JADE
container must be initialized and all the libraries
dependencies have to be included in the
classpath. All the required libraries are shown in
Figure 6-3, and are all contained in the “lib/”
folder of the project. Beware of not creating
libraries version conflicts, when upgrading one of
the dependencies, as those libraries interlace
each other and need precise versions to work
properly at execution. The typical command used
to launch an SPA, with its GUI, would be:

A windows batch file is provided to simply
launch any agents by the syntax:

>launchAgent Agent_Type Agent_Name

Where Agent_Type is amongst: SPA, SSA or

EDF.

Figure 6-3 Required libraries

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 49

6.3.2. Configuration

A configuration class is provided which is used to

hold all the constants or default parameters, so that
everything can easily be modified. For instance, the
weight of the outputs in the profile matcher (Section
5.3.1) is in:
 “Config.Matching.Profile_Matcher.outputs_weight”.

To get the default Timeout (Section 6.1.2) for
services search in the SSA:

 “Config.SSA_Search.Timeout.Default”

Figure 6-4 Configuration class

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 50

6.3.3. GUIs & Application example

The prototype includes two user interfaces, one for the providers, and one for the

requesters. The interface for requesters is more for a testing purpose as this side of
the system is more to be used by automats (e.g. in a composite service building
process), and the user interface can hence be shortcut to directly start a search by
the function:

public void search(OWLOntology service, int maxResults, int timeout,
 boolean secure, boolean advanced);

located in the SSA class. Let us explain the parameters:
 service: the requested service (OWLOntology class with owl-s 1.1 api or

Service class with owl-s 1.0 api).
 maxResults: indicates the maximum numbers of SPAs to probe.
 Timeout: the time, in milliseconds, to spend collecting requests (after that

timeout, the agent will not receive any replies sent by SPAs).
 Secure: set to true if the search has to be done in “secure” mode, false

otherwise.
 Advanced: set to true if the search has to be done in “Filter SPAs” mode, false

otherwise.

On the other hand, we encourage user to use the GUI for the Service Provision

Agent, but if not wished, one could simply start the agent and add services with the
function

public void addService(URI EPR);

located in the SPA class. EPR is the URI of the service to add. Service can be

removed by:
public void removeServices(Collection EPRs);

EPRs is a collection of services to remove. Adding and removing are the sole

actions a user can undertake with an SPA, all others (matching …) are automatically
triggered when a request is received.

Next is shown an application example, where the request is the file “request.owl”

and where the only SPA running is advertising the service “BNPPrice.owl” existing at
the address: http://www.mindswap.org/2004/owl-s/1.1/BNPrice.owl (The SPA is also
provisioning two other services that will not match, for brevity sake, we will only
show the significative part of their profile in Appendix B). The listings of both OWL-
Services are shown in Appendix, and Figure 6-7 and Figure 6-8 show and explain
how to handle the user interfaces, using the application example.

Below are also shown the parts of the profiles relevant in the profile matchmaker
(Figure 6-5and Figure 6-6), and are used to explain the obtained results. Let us
compute the result “by hand” before seeing what the application will give us:

 Outputs score: the advertisement (Figure 6-5) presents one output named
“BookPrice”, which can be found in the ontology
http://www.mindswap.org/2004/owl-s/concepts.owl. The request (Figure 6-6)
also presents one output, which is exactly the same. The concept match score
should hence be 3 (perfect match). Their properties are both “Output”,
meaning they are both unclassified and obtain 0 at the property match score.
The final Outputs score is hence 3 (= 3+0).

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 51

 Inputs score: the advertisement presents one input named BookInfo, of type
“Book”, as found in the ontology http://purl.oclc.org/NET/nknouf/ns/bibtex.
The request presents one input named “Publication”, as found in the ontology
http://purl.oclc.org/NET/nknouf/ns/bibtex. In this ontology (shown in
Appendix), we can see that “Publication” is a super-class of “Book”. The final
score for the outputs should hence be 2 (= 2 + 0, as the inputs are also
unclassified).

 Profile score: The advertisement has classified its profile (seldom), and its
class is “BookInformationService” and can be found at the ontology:
http://www.mindswap.org/2004/owl-s/1.1/MindswapProfileHierarchy.owl
(cannot be seen in Figure 6-5, see Appendix instead). However, the request
has not classified its profile (“Profile” class), the matchmaker cannot
adjudicate a match or mismatch, and should declare the profile match as
“unclassified” (score 1)

With default parameters (weight of the outputs score equals to 100, inputs 10,

and profile 1), the global score of these two matched services should hence be 321.

Figure 6-5 Excerpt of the advertisement's profile

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 52

Figure 6-6 Excerpt of the request's profile

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 53

Explained snapshot of the SSA when running the example:

Open a file
explorer to select
the request file

Path of the request owl
document

Working mode
selection

Maximum
number of SPAs

to contact

Log window

Initiate a search

Reply from one
agent

Timeout occured,
prints all the

results from all
agents

Figure 6-7 Service Selection Agent GUI

With the default settings of the Configuration class (see Section 6.3.2) the score

obtained from the only result (321) can be interpreted as follows:
 3 is the score obtained from the output match (output weight is set to 100 by

default). ‘3’ means that all the outputs of both services perfectly match, but
that the property of at least one of the outputs is unspecified (3 = 3 + 0)

 2 is the score obtained from the input match (input weight is set to 10 by
default). ‘2’ means that at least one input of the request subsumes its
corresponding input in the advertisement, and that the other inputs (if any)
match perfectly. Here again, the property of at least one input is unspecified
(2 = 2 + 0)

 1 is the score obtained from the profile match (profile weight is set to 1 by
default). ‘1’ means that at least one profile was unclassified.

We can see that the two other services the SPA advertised (http://zill.free.fr/FD.owl
and http://zill.free.fr/BF.owl, as seen in next page) were not selected as they did not
match the request sufficiently.

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 54

Explained snapshot of the SPA when running the example:

Figure 6-8 Service Provision Agent GUI

We can notice the time spent at different step of the application:
The SPA sent its request at 16:34:52, which is received one second later at

16:34:53 by the SPA, which immediately starts computing the results. The results
are then received by the SSA at 16:35:31, 39 seconds later. At 16:37:01, the SSA
computes its results, meaning that its timeout for receiving results has expired (129
seconds after the search was initiated, which corresponds to the timeout value
indicated by the slide bar of the SSA’s GUI).

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 55

Chapter 7. Proposed Solution – Evaluation

In this chapter we will evaluate the performances of the application, essentially to

locate bottlenecks and pinpoint sensitive points using most of the application time.
This should be useful for future improvements of the system. All these tests were
made with a Pentium IV (mobile), 1.2Ghz and 512Mb DDR-Ram. We can notice that
these evaluations are relevant for both OWL-S 1.0 and OWL-S 1.1 prototypes (the
reasoning, independent from the OWL-S API, is essentially evaluated).

7.1. Time performances

7.1.1. Matchmaking

We are first going to study the matchmaking case. To evaluate the time needed,

we decomposed the process into its elementary steps:

 Reading (parsing) services at a given URI (i.e. Reader.read(uri)):

We read ten ontologies of different sizes to assess the time needed in function of

their size, the times obtained are presented in Table 7-1 below:

Time
(ms) URIs of services Size

(Kb)
511 http://www.mindswap.org/2004/owl-s/1.1/MindswapProfileHierarchy.owl 4.9
550 http://www.mindswap.org/2004/owl-s/1.1/BNPrice.owl 5.7
561 http://www.mindswap.org/2004/owl-s/1.1/GoogleSpelling.owl 5.0
1042 http://www.mindswap.org/2004/owl-s/1.1/ZipCodeDistance.owl 7.2
1072 http://www.mindswap.org/2004/owl-s/1.1/GoogleSearch.owl 5.3
4056 http://www.mindswap.org/2004/owl-s/1.1/BabelFishTranslator.owl 12
4366 http://www.mindswap.org/2004/owl-s/1.1/FindLatLong.owl 6.8

5077 http://www.mindswap.org/2004/owl-s/1.1/CurrencyConverter.owl 7.6
8292 http://www.mindswap.org/2004/owl-s/1.1/FrenchDictionary.owl 8.7
20449 http://www.mindswap.org/2004/owl-s/1.1/FindCheaperBook.owl 16

Table 7-1 List of services used for testing purposes

The times obtained are represented in the chart in Figure 7-1 below

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 56

0

5000

10000

15000

20000

25000

4,9 5 5,3 5,7 6,8 7,2 7,6 8,7 12 16

Service Size (Kb)

Ti
m

e
(m

s)

Figure 7-1 Services parsing time chart

As we can see, the time needed to parse services increases exponentially with

the ontologies size.
 Adding ontologies to the reasoner

Once the ontology has been parsed to an OWLOntology Object, the time needed

to add it to the knowledge base is constantly equal to 0ms.

 Getting a class in the ontology (kb.getOntClass(uri))

When the reasoner has to compute the relation between two concepts, it has to

first get the concepts, given by their URIs, from the ontology. This time is similar to
getting a property in the ontology (kb.getOntProperty(uri)). From our experiences,
this time does not vary much depending on the size of the ontology. Yet, much
bigger ontologies can make getting the class take a bit longer. To stress that point,
instead of inserting each ontology one by one, we cumulated the ontologies in the
knowledge base until nine ontologies were inserted. We obtained the times shown in
Figure 7-2 below:

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9

Number of ontologies

Ti
m

e
(m

s)

Figure 7-2 Class getting time chart

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 57

As we can see, even with bigger ontologies, the time needed to get the class still

does not vary much, but is still quite long (~3 sec) for an operation that will be done
a certain amount of times.

 Determining relationships between elements (e.g. subsumes(uriA, uriB))

Once two classes have been obtained in the ontology, the reasoner can infer new

relationships between them two. The time needed depend on the size of the ontology
probed. To get the times from Figure 7-3 we inserted the ontology
http://www.aktors.org/ontology/portal, and then added one to nine more ontologies
in the knowledge base. The times given are the times needed to evaluate always the
same relationship: subsumes(“Book”, “Publication”). The concepts “Book” and
“Publication” are found in the mentioned portal ontology and the result of the request
is voluntarily false (“Publication” subsumes “Book”), so that the worst time is
assessed. The times obtained are shown in Figure 7-3 below

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9

Number of ontologies

Ti
m

e
(s

ec
)

Figure 7-3 Relationships inferring time chart

NB: The order of insertion of the ontologies is the order of their ascending size
NB2: When one ontology is inserted, all its imports are also inserted.

Obviously, the time is way too long as soon as the knowledge base gets bigger

(more than one minute as soon as more than two ontologies are inserted), but
progresses linearly/logarithmically with the size of the knowledge base.

The following chart of Figure 7-4 shows how a matchmaking process shares its

time between the different activities. We took for each activity the average time
obtained and multiplied it by the number of times it was done in a matchmaking
process. The function scoreMatch(…), assigning a score for two parameters (see
5.3.1) includes five calls to “Determining relationships” at worst, ten to “getting a
class” (2 times for each relationships inferring) at worst and “parsing services” is
done 2 times in total. scoreMatch(…) is then called (nb_Outputs_adv x
nbOutputs_req + nb_Inputs_Req x nb_Inputs_Adv) times. Regular services have in
general 2 inputs and 1 output, we can then estimate the call to scoreMatch(…) will be

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 58

done 5 times. Moreover we have 3 more calls to “Determining relationships” and 6
more for “getting a class” (profile match). Thus, we finally have to count:

--- 5*5 + 3 = 28 calls to “Determining relationships”
--- 10*5 + 6 = 56 calls to “getting a class”
--- 2 calls to “Parsing service”

72%

25%

3%
0%

Determining
relationships between
elements
Getting a class in the
ontology

parsing services

Others

Figure 7-4 Time repartition in a matchmaking process

We can see that the reasoner takes 97% of the time spent by the matchmaker.

Among that 97%, 25% is spent by the class getting operation which effectuates a
huge number of redundant calls. Indeed, in our example, 56 calls are made to
getOntClass(…), whereas we are getting only 3 different classes in total (two inputs
parameters and one output parameter, as chosen in the example). Such an
optimization is easily doable, but would not make big profits anyway, “getting a class
in the ontology” would shrink down to 3%, but “determining relationships” would still
represent 93% (1% of time won). One big effort is thus to choose a better reasoner
capable of inferring much faster.

7.1.2. Application

To evaluate the performances of the application as a whole we only need to
assess the time needed for communicating between agents and some other minor
algorithmic processes (Vector-String translations …). However, we cannot evaluate
the time needed to communicate as it is not dependant of our application but of the
quality of the connection and of the physical distance between agents. Moreover, the
other notable operations, apart from matchmaking: building/parsing ACL messages
and translating Vectors to String and vice-versa (see Section 6.2.4) are operations
needing negligible time (less than 100ms). We can hence consider that the
performances of the application are the performances of the matchmaker (which
includes OWL-Services parsing). In a case where the held knowledge base is quite
large (more than 10 different 10Kb ontologies), matching two services can take up to
five minutes, and should be imperatively improved.

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 59

7.2. Evaluating accuracy

There are no practical ways of quantifying the accuracy of the matchmakers, yet
we estimate that the model matchmakers specified in Section 5.3.2 should be used
as a reference in terms of accuracy. Indeed, they respond perfectly to our needs and
cannot be faulted, by opposition to the profile matchmaker. Here is a case where the
profile matchmaker can be wrong (taken from [9]). Let us envision a simple choice
process which produces two outputs, say o1 and o2. If a request for a service
providing both these outputs were to be matched by simply comparing the Service
Profile outputs, the result would be a positive match. In reality however, the process
is not capable of providing both these outputs. As a result, we can only quantify the
accuracy by saying that the model matchmaker is our reference, and that the profile
can – in certain cases – be wrong.

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 60

Chapter 8. Conclusion & Future Works

In this report we have described our approach to upgrade the system “An agent-
based system for Grid-services provision and selection”. The system is based on
communicating agents which negotiate services on behalf of providers and
requestors of services.

In order to provision a service, i.e. to assign it to a Service Provision Agent (SPA),
the provider only has to indicate the URL where the OWL-S description is, using
either the GUI or by calling the appropriate Java function of the agent. When a
service requestor wants to initiate a search for services, he has to create a synthetic
service description representing the requested service in OWL-S and to specify the
location of that created service to its Service Selection Agent (SSA), once again via
the GUI or via the appropriate function of the agent. Using the synthetic service the
SSA sends messages, requesting search to be carried out at some SPAs. When a
search request is received at an SPA, the SPA extracts all its advertised services (i.e.
the provisioned ones) from its local storage and matches them against the requested
one, using a matching algorithm. The best matching services (i.e obtaining a score
greater or equal than the score specified by the requester) are returned to the SSA.
If a requester wishes to preserve its privacy, he can also choose to send only a
fragment of his desiderata to the SPAs and match himself the list of services replied.

 This system is implemented as a prototype in Java under the JADE multi-agent
platform. It was validated, in regular mode, with services found on the website
http://www.mindswap.org, in a full utilization case. This prototype was evaluated in
order to assess the time needed by the different parts of the system, and to assess
which part uses most of the application time. It showed that when working with
regular small ontologies, not numerous in the SPA’s knowledge base, the time
needed to match two services is about one minute. This appears to be quite slow as
in regular cases a matching process involves the matchmaking of more than two
services. Moreover, the time taken increases linearly with the size of the knowledge
base (i.e. with the number of provided services), and it can take up to more than five
minutes for a single match. When running tests, we saw that 72% of this time is
taken by the reasoner to infer relationships, and that 25% was also taken by the
reasoner to get concepts in the ontologies. We also made the observation that the
code could be factorized to reduce this 25% down to a few percents, but that it
would not solve the problem of sluggishness. In conclusion, it becomes obvious that
the reasoner chosen is not adequate and not efficient enough and needs to be
changed imperatively. We also came across the idea that a reasoner specifically
designed for our application could be built up, as we do not require lots of advanced
functionalities. A personal reasoner should be faster as it would be stripped off from
all useless features.

Apart from changing the Pellet reasoner, several features still need to be changed
or implemented. For instance, the model matchmaker still has to be implemented
fully, easy task once the exact algorithms are known. Then, we did not implement
the functionality allowing users to add registries of services directly to the system.
The previous system used Globus Virtual Organizations (VO Registry, [15]), but since
the system is to be upgraded to WS-RF, the VOs are to be considered obsolete, as
are Grid-services. Nevertheless, the latest version of Globus Toolkit (Version 4) still
proposes index services which constitute a good equivalent to VOs. We also omitted
to let the requester specify a minimal score, and as a consequence a default score is
systematically used. Changing this detail is rather trivial (the only need is to pass a

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 61

score along with the requested service), but involves a few changes in the
application. Next, it would be a good idea to investigate other information to provide
to SPAs in the case of the “secure” mode. Indeed, the profile classification is not
widely used yet and thus does not appear as the most relevant information to use
when pre-selecting services. Moreover, despite the security mode provided, it is still
crucial to investigate other security aspects of the system before taking it into use. If
the future architecture is implemented on top of Jade one can with rather small
means enforce user-to-agent authentication as well as message integrity and
confidentiality. The permissions granted for each users of the Jade platform can also
be specified in a policy file. Except for the agent platform it might be necessary to
have some security regarding interacting with the UDDI registry and the invocation
of the provisioned Web services.

We hope that the system presented, still very effective in favorable conditions,
will be useful for advanced services selection purposes, and will offer great guidance
for the future overall project working towards a novel solution for Agent-Enabled
Logic-Based Web Services Selection and Composition [22].

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 62

A. Bibliography

[1] G. Nimar, "An Agent based system for Grid Services provision and selection”, 2004
[2] J. Rao. "Semantic Web Service Composition via Logic-based Program Synthesis",

Department of Computer and Information Science, Norwegian University of Science
and Technology, December 10, 2004.

[3] Czajkowski, Ferguson, Foster, Frey, Graham, Maguire, Snelling, Tuecke, "From
Open Grid Services Infrastructure to WSResource Framework: Refactoring &
Evolution", 2004

[4] Martin, "OWL-S: Semantic Markup for Web Services", 2005
[5] Mithun Sheshagiri and Marie desJardins and Tim Finin, “A Planner for Composing

Services Described in DAML-S” In Proceedings of the AAMAS Workshop on Web
Services and Agent-based Engineering, 2003

[6] Sheila A. McIlraith, Ronald Fadel: “Planning with complex actions”, NMR 2002: 356-364
[7] Jaeger, Rojec-Goldmann, Liebetruth, Kurt Geihs “Ranked Matching for Service

Descriptions Using OWL-S”, KiVS 2005: 91-102
[8] Stefan Tang, “Matching of Web Service Specifications Using DAML-S Descriptions”,

Thesis, 18Mar-2004
[9] Sharad Bansal, José M. Vidal, “Matchmaking of Web Services Based on the DAMLS

Service Model”, AAMAS’03, July 14–18, 2003, Melbourne, Australia
[10] Paolucci, Kawamura, Paine, Sycara, "Semantic matching of Web-Services capabilities",

Int. Semantic Web Conference 2001
[11] Czajkowski, Ferguson, Foster, Frey, Graham, Maguire, Snelling, Tuecke, “Open Grid

Services Infrastructure (OGSI)", 2003
[12] Frank Leymann, Dieter Roller, and Satish Thatte, "Goals of the BPEL4WS Specification",

Working document submitted to the OASIS Web, August 25, 2003
[13] http://www.daml.org/services/owl-s/1.1/ProfileHierarchy.html. Profile-based Class Hierarchies
[14] Terry R. Payne, Massimo Paolucci, and Katia Sycara, “Advertising and matching daml-s

service descriptions”, In Position Papers for SWWS’ 01, pages 76–78, Stanford, USA, July
2001. Stanford University

[15] The Globus Alliance, http://www.globus.org.
[16] S. Miles , et al., "Personalized Grid Service Discovery", IEE Proc., vol. 150, no. 4, Aug.

2003
[17] D. Kuokka and L.Harrada. “On using kqml for matchmaking”, In CIKM-95 3rd Conf. on

Information and Knowledge Management. AAAI/MIT Press, 1995
[18] R.J. Glushko, J.M. Tenenbaum, and B. Meltzer, “An XML framework for agent-based e-

commerce”, Communications of the ACM, 42(3), March 1999
[19] CDL. Capability Description Language. http://www.aiai.ed.ac.uk/oplan/cdl.
[20] The RETE Algorithm. http://www.cis.temple.edu/~ingargio/cis587/readings/rete.html
[21] Clement, Hately, von Riegen, Rogers, "UDDI Spec Technical Committee Draft",

2004
[22] M Matskin and V Vlassov, “Agent-Enabled Logic-Based Web Services Selection and

Composition”, Research Project Proposal 2004.
[23] F. Baader, W. Nutt. “Basic Description Logics” In the Description Logic Handbook

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 63

B. Abbreviations

API Application Programming Interface
BPEL Business Process Execution Language

CORBA Common Object Request Broker Architecture
DAML DARPA Agent Mark Up Language

DAML-S DARPA Agent Mark Up Language for Services
DCOM Distributed Component Object Model

DF Directory Facilitator
DIG Description logics Interface
DL Description Logics

EDF Extended Directory Facilitator
GSH Grid Service Handle
GSR Grid Service Reference
GT4 Globus Toolkit 4
GUI Graphical User Interface

GWSDL Web Services Description Language for Grid
IDL Interface Definition Language

IOPE Inputs-Outputs-Preconditions-Effects
KIF Knowledge Interchange Format
MAS Multi-Agent Systems
MDS Monitoring and Discovery System
OGSA Open Grid Services Architecture
OGSI Open Grid Services Infrastructure
OIL Ontology Inference Layer
OWL Web Ontology Language

OWL-S Ontology Web Language for Services
RDF Resource Description Framework

RDFS Resource Description Framework Schema
RDQL RDF Data Query Language
RPC Remote Procedure Call
SDE Service Data Element

SOAP Simple Object Access Protocol
SPA Service Provision Agent
SSA Service Selection Agent

TF-IDF Term Frequency-Inverse Document Frequency
tModel Technical Model
UDDI Universal Discovery Description and Integration

VO Virtual Organization
W3C World Wide Web Consortium

WSDL Web Services Description Language
WSMO Web Service Modeling Ontology
WS-RF WS-Resource Framework

XML eXtensible Markup Language

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 64

C. OWL services used in the application
example of Section 6.3.3

 Request.owl: application example’s request file:

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
 xmlns:owl= "http://www.w3.org/2002/07/owl#"
 xmlns:rdfs= "http://www.w3.org/2000/01/rdf-schema#"
 xmlns:rdf= "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:service= "http://www.daml.org/services/owl-s/1.0/Service.owl#"
 xmlns:process= "http://www.daml.org/services/owl-s/1.0/Process.owl#"
 xmlns:profile= "http://www.daml.org/services/owl-s/1.0/Profile.owl#"
 xmlns:grounding= "http://www.daml.org/services/owl-s/1.0/Grounding.owl#"
 xml:base= "file:/D:/Documents%20and%20Settings/Will/Desktop/aze.xml"
>

<owl:Ontology rdf:about="">
 <owl:imports rdf:resource="http://www.aktors.org/ontology/portal"/>
 <owl:imports rdf:resource="http://www.mindswap.org/2004/owl-
s/concepts.owl"/>
</owl:Ontology>

<!-- Service description -->
<service:Service rdf:ID="BNPriceService">
 <service:presents rdf:resource="#BNPriceProfile"/>

 <service:describedBy rdf:resource="#BNPriceProcessModel"/>

 <service:supports rdf:resource="#BNPriceGrounding"/>
</service:Service>

<!-- Profile description -->
<profile:Profile rdf:ID="BNPriceProfile">
 <service:isPresentedBy rdf:resource="#BNPriceService"/>

 <profile:serviceName xml:lang="en">BN Price Check</profile:serviceName>
 <profile:textDescription xml:lang="en">This service returns the price of a book
as advertised in Barnes and Nobles web site given the ISBN
Number.</profile:textDescription>

 <profile:hasInput rdf:resource="#Publication"/>

 <profile:hasOutput rdf:resource="#BookPrice"/>
</profile:Profile>

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 65

<!-- Process Model description -->
<process:ProcessModel rdf:ID="BNPriceProcessModel">
 <service:describes rdf:resource="#BNPriceService"/>
 <process:hasProcess rdf:resource="#BNPriceProcess"/>
</process:ProcessModel>

<process:AtomicProcess rdf:ID="BNPriceProcess">
 <process:hasInput rdf:resource="#Publication"/>
 <process:hasOutput rdf:resource="#BookPrice"/>
</process:AtomicProcess>

<process:Input rdf:ID="Publication">
 <process:parameterType
rdf:resource="http://www.aktors.org/ontology/portal#Publication"/>
 <rdfs:label>Publi</rdfs:label>
</process:Input>

<process:Output rdf:ID="BookPrice">
 <process:parameterType rdf:resource="http://www.mindswap.org/2004/owl-
s/concepts.owl#Price"/>
 <rdfs:label>Book Price</rdfs:label>
</process:Output>

<!-- Grounding description -->
<grounding:WsdlGrounding rdf:ID="BNPriceGrounding">
 <service:supportedBy rdf:resource="#BNPriceService"/>
 <grounding:hasAtomicProcessGrounding
rdf:resource="#BNPriceProcessGrounding"/>
</grounding:WsdlGrounding>

<grounding:WsdlAtomicProcessGrounding rdf:ID="BNPriceProcessGrounding">
 <grounding:owlsProcess rdf:resource="#BNPriceProcess"/>
 <grounding:wsdlDocument>http://www.xmethods.net/sd/2001/BNQuoteService.
wsdl</grounding:wsdlDocument>
 <grounding:wsdlOperation>
 <grounding:WsdlOperationRef>

 <grounding:portType>http://www.xmethods.net/sd/2001/BNQuoteService.wsdl#
BNQuotePortType</grounding:portType>

 <grounding:operation>http://www.xmethods.net/sd/2001/BNQuoteService.wsdl#
getPrice</grounding:operation>
 </grounding:WsdlOperationRef>
 </grounding:wsdlOperation>

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 66

 <grounding:wsdlInputMessage>http://www.xmethods.net/sd/2001/BNQuoteServi
ce.wsdl#getPriceRequest</grounding:wsdlInputMessage>
 <grounding:wsdlInputMessageParts rdf:parseType="Collection">
 <grounding:WsdlMessageMap>
 <grounding:owlsParameter rdf:resource="#Publication"/>

 <grounding:wsdlMessagePart>http://www.xmethods.net/sd/2001/BNQuoteServic
e.wsdl#isbn</grounding:wsdlMessagePart>
 <grounding:xsltTransformation>
 <![CDATA[
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:portal="http://www.aktors.org/ontology/portal#">
 <xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"/>
 <xsl:template match="/ ">
 <xsl:value-of select="rdf:RDF/portal:Book/portal:has-publication-
reference/portal:Book-Reference/portal:has-ISBN-number"/>
 </xsl:template>
</xsl:stylesheet>
]]>
 </grounding:xsltTransformation>
 </grounding:WsdlMessageMap>
 </grounding:wsdlInputMessageParts>

 <grounding:wsdlOutputMessage>http://www.xmethods.net/sd/2001/BNQuoteSer
vice.wsdl#getPriceResponse</grounding:wsdlOutputMessage>
 <grounding:wsdlOutputMessageParts rdf:parseType="Collection">
 <grounding:wsdlMessageMap>
 <grounding:owlsParameter rdf:resource="#BookPrice"/>

 <grounding:wsdlMessagePart>http://www.xmethods.net/sd/2001/BNQuoteServic
e.wsdl#return</grounding:wsdlMessagePart>
 <grounding:xsltTransformation>
 <![CDATA[
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <xsl:variable name="X1" select="/"/>
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:concepts="http://www.mindswap.org/2004/owl-s/concepts.owl#">
 <concepts:Price>
 <concepts:currency
rdf:resource="http://www.daml.ecs.soton.ac.uk/ont/currency.owl#USD"/>
 <concepts:amount>
 <xsl:value-of select="$X1"/>
 </concepts:amount>
 </concepts:Price>

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 67

 </rdf:RDF>
 </xsl:template>
</xsl:stylesheet>
]]>
 </grounding:xsltTransformation>
 </grounding:wsdlMessageMap>
 </grounding:wsdlOutputMessageParts>
</grounding:WsdlAtomicProcessGrounding>

</rdf:RDF>

 BNPPrice.owl (matching) advertisement’s file:

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
 xmlns:owl= "http://www.w3.org/2002/07/owl#"
 xmlns:rdfs= "http://www.w3.org/2000/01/rdf-schema#"
 xmlns:rdf= "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:service= "http://www.daml.org/services/owl-s/1.0/Service.owl#"
 xmlns:process= "http://www.daml.org/services/owl-s/1.0/Process.owl#"
 xmlns:profile= "http://www.daml.org/services/owl-s/1.0/Profile.owl#"
 xmlns:grounding= "http://www.daml.org/services/owl-s/1.0/Grounding.owl#"
 xml:base= "http://zill.free.fr/BNPrice.xml"
>

<owl:Ontology rdf:about="">
 <owl:imports rdf:resource="http://www.aktors.org/ontology/portal"/>
 <owl:imports rdf:resource="http://www.mindswap.org/2004/owl-
s/concepts.owl"/>
</owl:Ontology>

<!-- Service description -->
<service:Service rdf:ID="BNPriceService">
 <service:presents rdf:resource="#BNPriceProfile"/>

 <service:describedBy rdf:resource="#BNPriceProcessModel"/>

 <service:supports rdf:resource="#BNPriceGrounding"/>
</service:Service>

<!-- Profile description -->
<profile:Profile rdf:ID="BNPriceProfile">
 <service:isPresentedBy rdf:resource="#BNPriceService"/>

 <profile:serviceName xml:lang="en">BN Price Check</profile:serviceName>

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 68

 <profile:textDescription xml:lang="en">This service returns the price of a book
as advertised in Barnes and Nobles web site given the ISBN
Number.</profile:textDescription>

 <profile:hasInput rdf:resource="#BookInfo"/>

 <profile:hasOutput rdf:resource="#BookPrice"/>
</profile:Profile>

<!-- Process Model description -->
<process:ProcessModel rdf:ID="BNPriceProcessModel">
 <service:describes rdf:resource="#BNPriceService"/>
 <process:hasProcess rdf:resource="#BNPriceProcess"/>
</process:ProcessModel>

<process:AtomicProcess rdf:ID="BNPriceProcess">
 <process:hasInput rdf:resource="#BookInfo"/>
 <process:hasOutput rdf:resource="#BookPrice"/>
</process:AtomicProcess>

<process:Input rdf:ID="BookInfo">
 <process:parameterType
rdf:resource="http://www.aktors.org/ontology/portal#Book"/>
 <rdfs:label>ISBN Number</rdfs:label>
</process:Input>

<process:Output rdf:ID="BookPrice">
 <process:parameterType rdf:resource="http://www.mindswap.org/2004/owl-
s/concepts.owl#Price"/>
 <rdfs:label>Book Price</rdfs:label>
</process:Output>

<!-- Grounding description -->
<grounding:WsdlGrounding rdf:ID="BNPriceGrounding">
 <service:supportedBy rdf:resource="#BNPriceService"/>
 <grounding:hasAtomicProcessGrounding
rdf:resource="#BNPriceProcessGrounding"/>
</grounding:WsdlGrounding>

<grounding:WsdlAtomicProcessGrounding rdf:ID="BNPriceProcessGrounding">
 <grounding:owlsProcess rdf:resource="#BNPriceProcess"/>
 <grounding:wsdlDocument>http://www.xmethods.net/sd/2001/BNQuoteService.
wsdl</grounding:wsdlDocument>
 <grounding:wsdlOperation>
 <grounding:WsdlOperationRef>

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 69

 <grounding:portType>http://www.xmethods.net/sd/2001/BNQuoteService.wsdl#
BNQuotePortType</grounding:portType>

 <grounding:operation>http://www.xmethods.net/sd/2001/BNQuoteService.wsdl#
getPrice</grounding:operation>
 </grounding:WsdlOperationRef>
 </grounding:wsdlOperation>

 <grounding:wsdlInputMessage>http://www.xmethods.net/sd/2001/BNQuoteServi
ce.wsdl#getPriceRequest</grounding:wsdlInputMessage>
 <grounding:wsdlInputMessageParts rdf:parseType="Collection">
 <grounding:WsdlMessageMap>
 <grounding:owlsParameter rdf:resource="#BookInfo"/>

 <grounding:wsdlMessagePart>http://www.xmethods.net/sd/2001/BNQuoteServic
e.wsdl#isbn</grounding:wsdlMessagePart>
 <grounding:xsltTransformation>
 <![CDATA[
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:portal="http://www.aktors.org/ontology/portal#">
 <xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"/>
 <xsl:template match="/ ">
 <xsl:value-of select="rdf:RDF/portal:Book/portal:has-publication-
reference/portal:Book-Reference/portal:has-ISBN-number"/>
 </xsl:template>
</xsl:stylesheet>
]]>
 </grounding:xsltTransformation>
 </grounding:WsdlMessageMap>
 </grounding:wsdlInputMessageParts>

 <grounding:wsdlOutputMessage>http://www.xmethods.net/sd/2001/BNQuoteSer
vice.wsdl#getPriceResponse</grounding:wsdlOutputMessage>
 <grounding:wsdlOutputMessageParts rdf:parseType="Collection">
 <grounding:wsdlMessageMap>
 <grounding:owlsParameter rdf:resource="#BookPrice"/>

 <grounding:wsdlMessagePart>http://www.xmethods.net/sd/2001/BNQuoteServic
e.wsdl#return</grounding:wsdlMessagePart>
 <grounding:xsltTransformation>
 <![CDATA[
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <xsl:variable name="X1" select="/"/>

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 70

 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:concepts="http://www.mindswap.org/2004/owl-s/concepts.owl#">
 <concepts:Price>
 <concepts:currency
rdf:resource="http://www.daml.ecs.soton.ac.uk/ont/currency.owl#USD"/>
 <concepts:amount>
 <xsl:value-of select="$X1"/>
 </concepts:amount>
 </concepts:Price>
 </rdf:RDF>
 </xsl:template>
</xsl:stylesheet>
]]>
 </grounding:xsltTransformation>
 </grounding:wsdlMessageMap>
 </grounding:wsdlOutputMessageParts>
</grounding:WsdlAtomicProcessGrounding>

</rdf:RDF>

 http://www.aktors.org/ontology/portal ontology selected excerpts:

<owl:Class rdf:ID="Book">
 <rdfs:subClassOf rdf:resource="#Publication"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#has-publication-reference"/>
 <owl:allValuesFrom rdf:resource="#Book-Reference"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#has-publication-reference"/>
 <owl:minCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:isDefinedBy rdf:resource="&base;"/>
</owl:Class>

<owl:Class rdf:ID="Publication">
 <rdfs:comment>A publication is something which has one or more publication

references. A publication can be both an article in a journal or a journal itself. The
distinction between publication and publication-reference makes it possible to distinguish

An agent-based system for Web Services provision and selection, using semantic markups

William Groleau – IMIT/KTH – 2005 71

between multiple occurrences of the sam publication, for instance in different
media</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Information-Bearing-Object"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#has-publication-reference"/>
 <owl:allValuesFrom rdf:resource="#Publication-Reference"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#has-publication-reference"/>
 <owl:minCardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#cites-publication-reference"/>
 <owl:allValuesFrom rdf:resource="#Publication-Reference"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:isDefinedBy rdf:resource="&base;"/>

 </owl:Class>

