

Design and implementation of a web
based PL/SQL debugger using

Oracle’s debug API

A L V A R O M A Y O R G A

Master of Science Thesis
Stockholm, Sweden 2005

IMIT/LECS-2005-42

Design and implementation of a web based
PL/SQL debugger using Oracle’s debug API

-
Alvaro Mayorga

alvaro@kth.se

May 2005

Industry advisor at Corus Technologies: Johan Palm.

Examiner and academic supervisor at KTH: Vladimir Vlassov

Department of Microelectronics and Information Technology

Royal Institute of Technology, Stockholm

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 2(78)

 2

Abstract

Corus Technologies is a company that has designed and developed Corus QL
(Corus QuickLink), a powerful and flexible integration tool aimed for system
integration and application integration. This integration tool generates
PL/SQL and Java code based on a general data model. Additions and
modifications to the generated code sometimes need to be done; therefore it is
important to be able to debug these programs within the framework of Corus
QL.

The objective of this Master Thesis is to investigate whether the
implementation of a PL/SQL debugger with a front end run on a web browser
and a tailor-made PL/SQL package based on Oracle’s DBMS_DEBUG debug
API is realizable or not. A market survey of PL/SQL debuggers and a study of
DBMS_DEBUG were carried out and their results noted. A package has been
implemented on top of DBMS_DEBUG and it has the requirement that this
PL/SQL package has to be able to be used as a command-line debugger,
directly from a SQL client. In addition, the implemented package must be able
to be used as a debug API for Java applications.

The difficulties encountered and their alternative solutions and decisions that
were made during the execution of this project are described and discussed in
this report. Decisions taken regarding system architecture, application and
control models, GUI design, strategies and technologies utilized to carry out
this project are presented as well as a number of conclusions obtained and
guidelines for future work.

Keywords: PL/SQL debugger, Corus Technologies, web based, servlet application,
CORUS_DEBUG, iCODE.

3(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

Preface

This Master’s Thesis is a result of my Degree Project performed at Corus Technologies in
Stockholm, Sweden between June and November 2000. It was reviewed on spring 2005
introducing some changes and improvements. It also concludes my Master of Science in
Electrical Engineering at the Royal Institute of Technology (KTH), in Stockholm.

Corus Technologies is a company that has designed and developed Corus QL (Corus
QuickLink), a powerful and flexible integration tool aimed for system integration and
application integration.

Using a developing tool, which is part of the Corus integration system, PL/SQL and Java
code is generated based on a general data model. Some additions and modifications to
this code need sometimes to be done. For this purpose it is of great importance to be able
to debug this generated code within the framework of the Corus system integration.

The conclusions and results obtained in this Master Thesis before the revision constitute
the base of a PL/SQL debugger developed and integrated in Corus QL in year 2001.

Acknowledgments

I want to thank Johan Palm at Corus Technologies, for the initial input and guidance to
start with the execution of this project. I also want to express my gratitude to Vladimir
Vlassov, associate professor at IMIT for his guidance and motivation to carry out this
project to its end despite that it sometimes appeared to be too overwhelming.

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 4(78)

 4

Table of contents
Table of contents... 4

Table of figures ... 6

1 Introduction... 7

1.1 Company profile and motivation .. 7

1.2 Specification of the project ... 7

1.3 Goal (The precise goal of this project) ... 8

1.4 Practical information about the project... 9

1.5 Structure of the thesis.. 9

2 Background ... 11

2.1 Related work ... 11
2.1.1 Debugging principles, features and techniques .. 11

2.1.1.1 What is a debugger and what is a debuggee? 11
2.1.1.2 Why and when are debuggers needed?... 12
2.1.1.3 Methods for debugging programs... 12
2.1.1.4 Types of debuggers. .. 12
2.1.1.5 How debuggers work .. 13
2.1.1.6 Basic principles of debugger design and development......................... 16
2.1.1.7 Principles for building remote debuggers ... 16
2.1.1.8 Functions provided by a debugger.. 17
2.1.1.9 Architecture and implementation of a debugger................................... 18

2.1.2 Relational Databases, SQL and Oracle’s PL/SQL.................................... 19
2.1.2.1 Relational databases.. 19
2.1.2.2 SQL... 20
2.1.2.3 Oracle’s PL/SQL... 21
2.1.2.4 Features of Oracle’s PL/SQL.. 21
2.1.2.5 DBMS_DEBUG: Oracles debug API package..................................... 23

2.1.3 Java Technologies used in this project.. 28
2.1.3.1 Preface... 28
2.1.3.2 Why does Corus use Java Technology and what is it actually? 28
2.1.3.3 JDBC vs. SQLJ ... 29
2.1.3.4 Java servlets .. 29
2.1.3.5 Applet – servlet communication and serialization in Java.................... 31

2.1.4 Applications models.. 32
2.1.4.1 Database applications, PL/SQL and Java ... 32

2.2 Market survey of third party Oracle PL/SQL debugger tools........................... 33

3 Design and implementation of the web based PL/SQL debugger 35

3.1 Developing plan. ... 35
3.1.1 Application model for CORUS_DEBUG... 36
3.1.2 Application model for iCODE, the web application................................. 37

5(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

3.2 Study and tests of the DBMS_DEBUG package.. 38

3.3 Requirements for the package and the final application................................... 41

3.4 Design and implementation of the CORUS_DEBUG API............................... 42
3.4.1 Procedure overloading and name giving: sync, syncF and syncJ 43
3.4.2 Debugger features implementation ... 43
3.4.3 Features and procedures provided by CORUS_DEBUG 50
3.4.4 Facts about CORUS_DEBUG API... 51

3.5 Design and Implementation of the web based PL/SQL debugger.................... 51
3.5.1 CORUS_DEBUG API - the base component... 51
3.5.2 Technologies (SQL, PL/SQL, JDBC, Java servlets) 52
3.5.3 User interface, control and interaction models ... 52
3.5.4 Gradually incremented GUIs. ... 53

3.5.4.1 The test version ... 53
3.5.4.2 The applet version... 54
3.5.4.3 Servlet version .. 55

3.5.5 Environment.. 59

3.6 System Architecture.. 59
3.6.1 Use cases... 60
3.6.2 System structure.. 60
3.6.3 Class diagrams .. 63
3.6.4 Modularity and functional extensibility.. 64
3.6.5 GUI design .. 65
3.6.6 Security and performance ... 66

3.7 Industry version of CORUS_DEBUG.. 66

4 Analysis... 67

4.1 Use Cases .. 67

4.2 Evaluation model .. 67

4.3 Component evaluation .. 67

4.4 Integration test .. 68

4.5 Results of evaluation... 68
4.5.1 Discussion ... 69

5 Discussion ... 70

6 Summary and Conclusion ... 71

6.1 Limitations .. 72

7 Further development ... 73

8 Acronyms and Abbreviations ... 74

9 References... 75

Appendices.. 78

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 6(78)

 6

Table of figures

Figure 2.1. Typical debugger architecture. Based on Figure 2.1 from [11], p.22. 19
Figure 2.2. Target control flow... 26
Figure 2.3. Debug session control flow. ... 27
Figure 2.5. Two-tier or Client-server model ... 32
Figure 2.6. Application models applied to this project. 2-tier and n-tier applications. 33
Figure 3.1. General application model for CORUS_DEBUG.. 37
Figure 3.2. General application model for iCODE. .. 38
Figure 3.3. Source code for function continueF in CORUS_DEBUG. 49
Figure 3.4. Interface for the debuggee logging servlet TgtLogginServlet. 56
Figure 3.5. Code example for execution of initialize.. 56
Figure 3.6. Output of DebuggeeServlet after executing initialize. 58
Figure 3.7. Output of DebuggerServlet after attaching to debuggee in Figure 3.6........... 59
Figure 3.8 System structure, applying the layered model... 61
Figure 3.9. Example of system control and program execution at the different layers by a
servlet client. ... 62
Figure 3.10. Entire system with the three types of clients accessing CORUS_DEBUG.. 63
Figure 3.11 Class diagram for the web based debugger using Java servlets. 64
Figure 3.12 Piece of code necessary to add a new function to the servlet debugger........ 65

7(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

1 Introduction
This report is the result of a Master’s thesis that presents a Degree project for Master of
Science in Electrical Engineering at the Royal Institute of Technology, Stockholm, at the
Department of Microelectronics and Information Technology. The degree project was
performed at Corus Technologies’ Developing Department in Stockholm, Sweden

1.1 Company profile and motivation
Corus Technologies is a company working with the development and sale of Corus
QuickLink1 (QL). Corus QL is an integration tool aimed for system integration and
application integration respectively known nowadays as Inter Enterprise Integration (IEI)
and Enterprise Application Integration (EAI). Corus QL has been designed and
implemented to make information exchange possible between any kind and any number
of computer systems over a network.

Corus Technologies has developed a tool for system integration that describes a general
data model for the systems to be integrated and generates all the necessary code to
perform the integration. The objects generated are database tables, triggers, views,
indexes and stored procedures and functions building PL/SQL packages. Eventually some
parts of these packages need to be added or modified. Therefore, it is of great importance
that the code generated can be debugged within the framework of the application. There
are several reasons for why third-party debuggers are not always suitable. For instance,
they require client installation, do not support the needs of Corus completely, increase the
cost for the end customers and some of them, at the date of start of this project, lacked the
functionality of getting and setting global package variables, which is of great importance
for Corus.

Consequently, the benefits of a web based debugger built in the environment of Corus QL
are:

• Client installation is not necessary.
• Reduced costs for the Corus’ Technologies customers, which in its turn may lead

to more customers.
• The generated code can be debugged within the same environment it was

generated.
• Access and manipulation of package variables which are important when systems

are integrated with Corus QL.
• A built in debugger in the same environment can easily be improved or modified.

1.2 Specification of the project
A market survey of the existing Oracle’s PL/SQL debugger tools on the market will be
carried out. Then the Oracle’s DBMS_DEBUG package will be studied in detail in order
to decide the functionality to be implemented in the final application. As a part goal a
callable Oracle package should be created on top of DBMS_DEBUG package.
Furthermore, a web-based application able to be run and be used within Corus QL’s

1 Corus QuickLink is the former Corus Application Linking System (ALS).

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 8(78)

 8

framework should be designed and implemented utilizing Java servlets Technology and
possibly JavaScript scripts. Finally, the web based application will be integrated into
Corus QL’s framework.

The package to be implemented on top of DBMS_DEBUG is a key part for the entire
project. One of the objectives of this package is to abstract and hide the details that are
not necessary for the end user. The user will be liberated of the task of declaring and
initializing variables of the data types defined in DBMS_DEBUG before being able to
call the procedures and functions of DBMS_DEBUG. Example of these variables and
record fields in DBMS_DEBUG are the values for namespaces, lib unit types, frame
numbers, current user name, break flags, info requested, program name, etc. One other
example is reading, traversing and displaying PL/SQL tables containing, for instance,
breakpoints information. Another objective is that this package will provide such
transparency from DBMS_DEBUG and be implemented in such way that the users shall
be able to use the package as a command-line debugger.

The integration of the web based application and the PL/SQL package might implicate
the creation, declaration and use of specific user-defined data types and tables in order to
be integrated into the core of Corus QL. Each integrated system created with Corus QL is
built by generated PL/SQL and Java code; this implies that the web based application and
the package will also be generated and perhaps with some adaptations for each client. The
web based debugger will be added as a new tool or a new feature in one of the existing
tools in Corus QL. Both the web based application and the PL/SQL package will need a
number of adjustments and changes in order to cooperate without interfering with the rest
of the integrated system generated by Corus QL.

1.3 Goal (The precise goal of this project)
Within the frame of this project the following points need to be fulfilled or completed in a
satisfactory manner for Corus Technologies, as well as fulfill the requirements for a
Master thesis project from the Department of Microelectronics and Information
Technology in Stockholm:

1. A market survey should be done to examine the functionality of third-party Oracle
PL/SQL debuggers on the market. Principally Quest Software’s TOAD debugger
tool and Compuware’s Xpediter/SQL Debugger tool will be studied and tested.

2. A detailed study of Oracle’s DBMS_DEBUG package should be done and

decisions regarding the functionality to be implemented taken.

3. A Java servlet should be created to implement the API created in the preceding

part goal.

4. A complete web application using the servlet/servlets made in the previous part

goal and this application should provide a state-of-the-art GUI.

9(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

5. Finally, both the PL/SQL package created and the web application should be
integrated into Corus’ framework. This will be done depending on the remaining
amount of time after the previous part goals are accomplished.

6. Furthermore, a report regarding the decided architecture and implementation

should be written for internal use at Corus Technol§ogies.

These points represent part goals of the project. There is though a central goal and that
can be formally formulated as follows:

1.4 Practical information about the project
This project was performed at Corus Technologies, Stockholm, Sweden, between June
2000 and December 2000. In spring 2005, the implemented package was reviewed with
some changes in the implementation resulting in what is referred to as review version.
The web based application was also reviewed and updated according to the reviewed
PL/SQL package. This project was though first presented at KTH in May 2005 due to
different reasons as the complexity and size of the project, lack of technical information
available about the API provided by Oracle and due to working commitments. The results
of the first version of this project and the first draft of this report were the base of a new
version of the PL/SQL package that has been integrated in Corus QL in 2001.

The persons involved with this project were:
My advisor at Corus Technologies, Johan Palm who has been working with the
development of Corus QL since the foundations of the company in 1997,
The examiner of this thesis project and my advisor at the Department of Microelectronics
and Information Technology in KTH was acting associate professor Vladimir Vlassov.

1.5 Structure of the thesis
Chapter 2. Gives a brief description of the theoretical background necessary for the
completion of this project. A debugger’s construction in general, SQL, Oracle’s PL/SQL,
Oracle’s DBMS_DEBUG package, database and Java applications models and Java
servlets technology are addressed in this chapter.

Chapter 3. The design, strategic decisions, models, methods and technologies utilized in
the realization of the project, the development of the callable package API and the final
web application are explained and discussed in this chapter.

Chapter 4. Presents an evaluation of the project, the use cases and evaluation model
utilized and discusses the obtained evaluation results.

The main goal of this project is to verify that the entire chain is realizable, from
the database using a tailor-made debug API on top of DBMS_DEBUG, via
servlets and eventually JavaScript scripts, to the graphical representation.

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 10(78)

 10

Chapter 5. Discusses the result of the project in general, the functionality and capability
of the CORUS_DEBUG API, the reasons of some decisions made in the project and of
some limitations of the web based debugger. It also compares the functionality between
the web application and the studied commercial debuggers.

Chapter 6. Summaries and concludes the project and makes an evaluation between the
initial goals and results obtained.

Chapter 7. Addresses some ideas for future work.

11(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

2 Background
This Chapter gives a brief introduction of what a debugger is, the different kinds of
debuggers and how they work. It also provides a short overview of the main features and
components of a debugger, how a debugger usually is constructed, relational databases
and more specifically Oracle’s Database, SQL and Oracle’s PL/SQL, some of Java-
programming technologies and techniques used in this project. This theoretical
background is necessary to understand and assimilate how the final application and the
callable package have been implemented, as well as why some decisions and strategies
have been taken.

2.1 Related work
In this Chapter the theoretical material necessary to know and understand this project will
be exposed. Some literature and link references are given whenever necessary.

2.1.1 Debugging principles, features and techniques
A debugger definition, different types of debuggers, why and when one needs a
debugger, how debuggers work, the required components for building a remote debugger
and the main and most common debugging facilities are assessed in this chapter.

2.1.1.1 What is a debugger and what is a debuggee?
A fundamental concept and a natural start point in the context of developing a debugger
is the basic definition of a debugger. Even though there is no official definition of a
debugger (in the meaning valid for this report), summarizing different definitions from
[11], [21], [26], [35] [36] and other sources and debug experience, an own definition is
presented:

When using a debugger the flow of the program execution can be followed and the
program execution stopped at certain points (strategically chosen) in order to inspect the
state of the program and of its components, which constitute the program context
information. Executing and stopping a program, and inspecting the state of the program
allow the programmer to see whether the program is behaving as expected or not. When
malfunction of a program is noticed, the features and functions of a debugger provide
with help to deduce or discover the reason and location of the program’s malfunction.

When using a debugging tool there are indeed two programs that will be executed, one of
them is the debugger itself, usually just addressed as the debugger; and the other one is
the target program to be debugged, usually called the debuggee.

A debugger is a programming tool, a program itself, developed for the purpose
of helping the programmer to locate run-time programming or logic errors,
also known as ‘bugs’.

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 12(78)

 12

2.1.1.2 Why and when are debuggers needed?
The motivation of why a debugger is needed for Corus QL is presented in Chapter 1.1,
but not why debuggers in general are needed, this is the subject of this Chapter.

In the programming process, a number of assumptions are made. Often it happens that
not all of the logical assumptions can be made at the modeling or at the specification
phase in a software development project, and not all of the made assumptions are always
correct [14]. These assumptions can for instance refer to data format, interactivity with a
user or other programs, communication mechanism with other programs, etc. Therefore,
programmers spend a lot of time debugging their programs, analyzing and tracking the
cause of why a program or part of a program doesn’t work as intended and expected.
The use of a debugger (a debugging tool) is not always necessary to debug, but
nevertheless is much more efficient. One alternative with limited efficiency is for
example, to have messages printed or logged that show the state of the program. Soon,
this debugging method is not useful, for example, when the program is a multithreaded or
concurrent program. Another example is when simply the program is too large or
complicated as explained in [11], or when the program crashes without output. Therefore,
both standalone and integrated debuggers (presented in Chapter 2.1.1.4) are very popular,
necessary and used for experienced programmers working with very complex software
development.

2.1.1.3 Methods for debugging programs
Methods of debugging neither refer to specific manners, nor to some specific order in
which to execute some debugging functions when using a debugger; these are rather
called debugging strategies. These debugging strategies vary depending on the type of
debugger used and the nature of the program being debugged.

What methods of debugging specify in general are the methods, techniques or tools (a
debugger for example) used in order to trace and locate the cause of why a program is not
working as expected or as intended. Besides using a debugger that is called interactive
source-level debugging, there are other techniques used to debug as e.g. using print
statements, log files, trace files, having programs that make functions call on termination
or that just log the state of the program.

2.1.1.4 Types of debuggers.
Rosenberg claims in [11], pp.11-12 that “Debugging is a very general activity, but each
specific application and bug require a special use of a debugger to locate and eliminate
the fault quickly and decisively”. This claim of Rosenberg reminds us of this project’s
background which is the need of Corus QL to develop a built-in debugger for PL/SQL
within its framework. What type of debugger the one in this project may be and other
types of debugger are listed below.

There are many types of debuggers, but they can be grouped in:

• Source-level (symbolic). Maps underlying machine representation back to source
code.

• Machine-level debuggers. Lack mapping between machine code and source code.

13(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

• Stand-alone debuggers. A program exclusively dedicated to debugging.
• Debuggers integrated in development environments.
• OS Kernel debuggers. Focused on operating systems components.
• Application-level debuggers. Focused on user-written applications.
• Application-specific debuggers. General purpose and high level debuggers.
• In-circuit emulation debuggers. Specifically for in-circuit emulators, see [23].
• Local debuggers. Both debugger and debuggee processes are local.
• Remote debuggers. The debuggee is remotely located.
• Mixed debuggers. Where interpreted and compiled code can be handled.
• Debuggers for single-threaded programs.
• Debuggers for multi-threaded programs.
• Multi-language debuggers. When more than one programming language can be

debugged with the same debugger.

A brief description of most of the types of debuggers listed above is found in [11] pp.12-
19.

The complete name of the type of debugger of this project is a locally and remotely run
interactive single-threaded source-level application GUI debugger. But usually it is just
referred to as a source-level symbolic GUI debugger.

2.1.1.5 How debuggers work
When studying debuggers in general a question is naturally raised, how do debuggers
work? This is a very tricky and difficult question to answer because on one hand there are
different types of debuggers and on the other hand the question doesn’t specify what level
of the debugger it refers to. In addition, there is the fact that even debuggers and their
algorithms, functionality and complexity develop in time, as well as programming
languages and the programs to be debugged do [11], [14].

First of all we should remind ourselves of the definition presented earlier in Chapter
2.1.1.1 that a debugger is a program itself. As other programming tools a debugger can be
integrated in a complex graphical environment, but this is not the issue at this level. We
will study a debugger at the lower levels as system signals, system and functions or
procedure calls, the memory stack, etc.

When debugging a program (or multiple programs) it is usually necessary to have two (at
least) sessions (or processes) in the runtime environment, whether it is a binary file to be
executed or byte-code to be interpreted. One of these sessions, the target program to be
studied or debugged, is the debuggee. The other session, the one that controls the
debuggee session, is the debugger session. To make possible controlling the debuggee
there are two mechanisms used. One mechanism is attaching the debugger process to the
process to be debugged. The other mechanism is letting the debugger process start a new
process, a child process to run the program to be debugged. The attaching mechanism is
the most popular [11].

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 14(78)

 14

Since debugging is the act of using a programming tool in some predetermined or
strategic manner, the most suitable way to explain the functionality and construction of a
debugger is by going through a number of steps during a debugging session and
explaining the different steps in it. A brief step by step explanation of a typical debugging
session follows here:

1. First of all, in order to make a program debuggable it must be debug compiled
(compiled in debug mode or with a debug option flag), usually done by compiling
the source code with a debug option. Debug compiling implicates that the
compiler inserts special instructions in the generated machine code that will make
it possible for the OS to provide the debugger with execution control over the
debuggee and to see the context information about the debuggee and the CPU.

2. Once the target program is debug compiled it can be run. There are two modalities

to do that, one is when the debugger attaches itself a running process (that will be
the debuggee) and the other is when the debugger starts a child process to run the
target program for debugging.

3. Usually the next step is to browse the source code of the debuggee; therefore, it is

very useful if the debugger has a code browsing utility. The code browsing is to
choose some strategic line or lines of code where the user wants the debuggee to
stop in order to examine the state of the program (meaning the value of its
variable and objects, memory allocated, etc) and/or the CPU and its registers.

4. Setting a (source-level or instruction-level) breakpoint implies that the debugger

inserts a special instruction in the executable image text of the debuggee that
causes it to halt when this instruction is executed. This instruction is usually a
general interrupt instruction or a special dedicated breakpoint instruction. This
and other instructions depend on the definition of the CPU architecture.
From the point of view of the user, there are two kinds of breakpoints conditional
and unconditional. The conditional breakpoints will stop the execution of the
debuggee when a condition is satisfied (for instance when a specific exception is
raised) and the unconditional ones will stop at the specific line of code each time
it is next to be executed.

5. Once breakpoints has been set on different lines in the source code, besides

deleting them, debuggers usually also provide the possibility of modifying them
in different ways (enabling, disabling, changing conditions, etc.). For more details
see [11], pp.107-133.

6. Running the program until the breakpoint previously set is usually the next

measure taken. It can be either executing the debuggee line by line or using some
function that runs the program until either an arbitrary or a specific breakpoint is
hit.

The execution of the debuggee stops and the programmer has some alternatives for the
next step.

15(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

7. One alternative, is to examine the back trace stack in order to see what functions,

programs, or procedures have been called an in which order. The back trace stack
is constructed by examining one or more hardware registers, which gives the
debugger enough data for this task. These CPU’s registers provide a stack pointer
that points to a location in memory for the current executing instruction that
becomes the return address when a new routine is called. For more details see
[11], pp.135-149.

8. Another alternative is to examine the current value of certain variable or objects in

the program. This implies that the debugger access the variables, objects and even
functions belonging to the debuggee in registers generated by the compiler, which
are known as symbol tables. These symbol tables are not the same as the one used
by the compiler. Another intricate issue that is handled by a debugger is scope
resolution, which is even more complicated for distributed, multi-threaded and
remote debugging. For more details see [11], pp.151-172.

9. One following action the programmer can take is to change the contents of a data

item. For this purpose a debugger must have an interpreter that handle expression
with a similar or equal syntax to the language of the debuggee. The main
difference in this interpreter is that it does not allocate an own storage for
variables, but use the variables of the debuggee.

10. Another strategy or functionality is the watchpoints. Some variable can be set as

watchpoints in order to make the debugger automatically read the values of these
variables. It is necessary for this functionality that the debugger has a built-in
polling function that reads the value for the watchpoints variables at least each
time the debuggee stops. Important here is that the debugger does not ‘lie’ to the
user showing bugs (or changes in variable values that appear to be bugs) where
they don’t exist. This is a risk that is common in debuggers [11] p. 157. When the
user thinks he has discovered a bug, it is in fact due to compiler-debug
information, or other issues out of the control of the developer of the debugger.

Hopefully the problem or bug has been found by the programmer, otherwise new
breakpoints and/or watchpoints can be set, more variable values, and stack information
can be read and possibly the debuggee executed some more times.

11. Furthermore, in the case of remote debugging there are other steps when setting
up the communication, the communication mechanisms used between the hosts
involved in the debugging session, how the different memory addressing and the
remote memory stacks has to be handled by the debugger. But sometimes this is
taken care of by other applications at lower level.

The scope of this thesis neither permits nor needs to go deeper into the details of the
construction of a debugger at a lower level. The API provided by Oracle abstracts most of

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 16(78)

 16

the functionality required and presented in the steps above. The interested of deepening in
the construction of debuggers are strongly suggested to consult [11] and [14].

2.1.1.6 Basic principles of debugger design and development

• An interpretation of The Heisenberg uncertainty principle (found at [18]) within
the context of debugging (and testing) is that a debugger or other debugging tools
should neither change nor affect the behavior or outcome of the debuggee. This
principle is though violated in a lot of ways in software debugging, as for
instance, by the fact that the debugger and debuggee share memory and are
controlled by the same operating system [11] p.7. Both programs affect each other
because of changed conditions in execution scheduling, context switch, delay
times, etc. Another aspect pointed by Telles in [14] is that compiling in debug
mode may introduce some behavior in the program that doesn’t appear in the
release version of the program.

• Truthful information must always be provided during debugging. This is a

principle originally stated by Zellweger in 1984 in [17] and discussed by
Rosenberg in [11]. This principle is to always provide truthful information in a
debugging process. Any misinformation will mislead the user when testing
theories of the location or cause of bugs and the effect can be devastating. This
principle is often violated by optimizing compilers and even by modern compilers
that “always do a certain amount of register allocation optimization”, as discussed
in [HDW, p. 9].

• Program context information: constitutes the most important information that a

programmer can retrieve during a debugging process. It can include different
types of information as source code, stack back-trace, variable values, thread
information, memory and CPU registers, counters, and more. Locating the bug
and how it manifests is essential to remove the bugs in a program. That is why it
is important to have a debugger that provides good and reliable program context
information, since bugs may manifest in other places than where they are located.
Seeing the source code that maps to where the program is stopped at each moment
is fundamental to start with bug location, followed by the stack back trace and
accessing variable values. Without all of these collaborating features it is hard to
locate the bug, and how it is caused.

• Another principle presented by Rosenberg in [11] states that “System

developments occur long before any corresponding strong debugging support for
the new systems developments is available”. He discusses the importance of the
applications developers to push not only for technologies they need, but also for
debuggers they will need to debug their ever increasingly complicated
applications.

2.1.1.7 Principles for building remote debuggers
A remote debugger is a debugger that is not run in the same physical place as the target
system. The main reason for constructing remote debuggers is to debug software on a

17(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

system that for some reasons cannot locally run a functional debugger. Though, this is not
the case in this project, instead it is the need to debug software located at a physical
remote place. In this case the strategy of remote logging can be used.

The necessary components for a remote debugger are a client, a server, a communication
mechanism and a debugger protocol. The client for this project (where the only
programming languages that can be used are Java, PL/SQL and JavaScript, and HTML as
markup language) could be a Java application, a Java applet or a dynamic HTML page
run in a web browser. The restriction of the Corus QL’s framework reduces the client to
be an HTML page or a set of HTML pages, probably reinforced with JavaScript scripts.

What could be seen as the server side of the application will then properly be a Java
servlet or a set of collaborating servlets and classes stored in a web server. But this is
only the server side of the web based part of the application. On the bottom of the
application lais a tailor-made debug API specially designed and constructed to
communicate with Java applications. This debug API is the application component that is
the real server side of the application.

The communication protocol in this project will probably be HTTP or HTTPS and
depends on the communication mechanism that probably will be a TCP connection over
the Internet. The debugger protocol, if any, will be decided during the implementation
phase.

2.1.1.8 Functions provided by a debugger
Tracking and controlling the execution of a program, reading and manipulating the target
system memory, e.g. variables and constants, constitute the main and basic functions a
debugger must offer. Some standard functions are described below.

- Process attaching or process creation. In order to debug a program the debugger

must be able to attach to a running process or to create an own child process in which
the target program can be run.

- Run or execute. Perhaps the fundamental function to build in a debugger. Permit the

ability of starting and executing a target program from the debugger.

- Source code browsing. In order to find out where the bug(s) is/are located it is of

extreme importance that the user is provided with a source browsing functionality.
With this function the user can see the mapping between the source and where the
debuggee has been stopped.

- Step or next. Among all the facilities and functions a debugger can offer this is the

basic one. Step or next allows the user to advance in the execution of the target
program (debuggee) line by line, command instruction by command instruction, and
sometimes even at a such low-level as by machine instruction.

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 18(78)

 18

- Step- or trace-over, -out, -in. These functions are more refined and/or advanced
variations of single step. They permit the user to jump to and over break points, to
execute all the way out of the scope of a procedure, method, or function and finally to
step within the source code of a program all the way until the main function or the
beginning of the program.

- Get or read. This function allows reading the contents of the memory at different

points of time during the program execution. This information is invaluable, because
it helps the user to locate where the bug is located.

- Set, write or assign. This function allows the user to arbitrarily assign strategic

values in the target system memory, for example changing the value of a variable.
This ability of assigning different values during the program execution allows the
user to study the different behaviours and results that a program may have depending
on the changes made on the variables.

- Set and Remove a break point. This function allows the user to set a mark, usually

known as breakpoint, at a specific line of code or at a specific program instruction
where the execution of the program will be stopped. This is one of the most used
functions as the programs written are large and not only composed of a couple of
lines, but usually of many lines of code and often distributed over different modules
or packages located in different physical files.

- Enable and disable break points. Sometimes it is more adequate disabling a set

break point than removing it, and enabling a breakpoint instead of setting a new one.
This depends on the type of debugger and how it is implemented.

- Watch point or data break point: A watch point is used to stop execution whenever

the value of a variable or an expression changes, without having to predict a particular
place in your program where this may happen. This is an advanced function harder to
implement.

- Stack trace or back trace. Because during the execution of a program the execution

cursor jumps back and forth between different methods, procedures, functions and
packages or modules, it is of big help to the user to know in which part of the
program the execution cursor is, and which is the current valid scope. Execution
cursor is a logical point that shows exactly where the program executed is.

2.1.1.9 Architecture and implementation of a debugger
A typical debugger implementation has an underlying architecture similar to the one
illustrated in Figure 2.1, which is a modification of the one presented by Rosenberg in
[11], p22. In Figure 2.1 the three inner-most rings represent the CPU, the operating
system running on the CPU and a debug API that permits access and control at the OS
level. The second outer-most ring represents the core of the debugger, depicting the use
of the functionality provided by the OS debug API. The outer-most ring represents
graphical representations of the debugger.

19(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

Figure 2.1. Typical debugger architecture. Based on Figure 2.1
from [11], p.22.

Many of the fields in Figure 2.1 are not addressed in this project, either because of the
types of debugger that will be implemented, or the type of programs that will be
debugged. A more detailed presentation of debugger architecture, functionality, and
implementations details, as data types used at lower levels and algorithms, are well
described in [11].

2.1.2 Relational Databases, SQL and Oracle’s PL/SQL
This chapter briefly presents fundamental theory for the understanding of the project and
its realization.

2.1.2.1 Relational databases.
Although the history of the origin and developing of relational databases is quite exciting
and interesting it is left out of this report taking in account that it is in somehow out of the
scope and lack relevance for the core of the project. A definition is presented instead, and
since there is no official definition but different definitions from many books and article
writers, as in [3], p 98, one own definition had to be done.

Nowadays, the majority of databases are relational databases and almost all of them use a
de facto standard relational database query language, namely SQL.

 CPU

Operating system

OS Debug API

Process
Control

Expression
Evaluation

Execution
Engine

Symbol
Table
Mgmt Source

Stack

Bkpts

Control Disassem
HW Regs

Inspect

Variables

Graphical
representation

Permits control
of OS calls and
signals

The core of the
debugger

 User
 program

A relational database is a collection of stored operational data, perceived by its
users as in the form of tables and often related to each other by some key fields,
and that allows to its users to update, insert, and retrieve the data stored in these
tables.

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 20(78)

 20

2.1.2.2 SQL

Although SQL is not a general purpose programming language it provides the necessary
tools to create and maintain database objects and to provide security restrictions in a
relational database. Three different parts of SQL take care of these functionalities:

o Data Definition Language (DDL) – to create all the objects defined in a database,
to modify its structure after its creation and to destroy objects that no longer are
needed.
Ex: CREATE TABLE EMPLOYEES (

EMP_ID INTEGER NOT NULL,
EMP_FST_NAME CHARACTER (15),
EMP_LST_NAME CHARACTER (15),
EMP_DEPT CHARACTER (15),
EMP_SALARY INTEGER);

o Data Manipulation Language (DML) – provides the user with the necessary tools
to insert, change and retrieve data from the database, just as exactly as he wants.
Ex: UPDATE EMPLOYEES

SET SALARY = SALARY * 1.04,
WHERE EMP_FST_NAME = ‘John’
AND EMP_LST_NAME = ‘Doe’;

o Data Control Language (DCL) – provides with the necessary tools that, if

properly used, will prevent many of the typical security problems in a system.
Ex: GRANT SELECT, INSERT, UPDATE, DELETE
 ON EMPLOYEES
 TO PERSONNEL_MANAGER;

Some people state that with SQL’s DDL, DML and DCL a developer can build robust
applications of any required size, complexity and kind [4]. This is not entirely true
because since SQL is a non-procedural programming language, there are some tasks,
which are not possible to do just by using SQL [13]. For example: if a table needs to be
traversed and to execute an insert or an update for each row depending on some condition,
then at least two SQL statements are needed, but it can be done with just a call to a
PL/SQL program unit. Another example is the execution of more than just two SQL
statements with conditional parameters and where the parameters are probably obtained
by executing other PL/SQL programs; in this case the need of a procedural language is
more evident. Therefore SQL needs to be supplemented by a procedural programming
language. Here is where Oracle’s PL/SQL makes its entrance.

SQL that stands for Structured Query Language, is an ANSI and ISO standard,
and is the de facto standard database query language. It has many dialects but the
current standard is SQL-92 and there are two almost identical versions of it: ANSI
X3.135-1992, "Database Language SQL" and ISO/IEC 9075:1992,
"Information Technology --- Database Languages --- SQL" [13].

21(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

2.1.2.3 Oracle’s PL/SQL
Oracle’s relational database was in fact the first one in the world to support SQL, and is
now the world’s leading supplier of software for information management. Oracle also
developed PL/SQL that stands for Procedural Language/SQL.

Oracle supports the ANSI SQL standard “Database Language SQL”, most known as
SQL92 or SQL2, defined in the document X3.135-1995. Oracle’s PL/SQL has become a
sophisticated language with many features and with, by Oracle, added functionality in the
so called built-in packages. These built-in packages increase the functionality of an
already very robust, flexible and powerful programming language even more.

2.1.2.4 Features of Oracle’s PL/SQL
PL/SQL has many different features and capabilities. They would be illustrated by
example but since this report is not supposed to be an introduction to PL/SQL we will
limit us to just a couple of examples for the most relevant features that are good to know
for this project. From this point SQL will refer to Oracle’s PL/SQL.

Block Structure. The basic unit in PL/SQL is a block. It begins with the keywords
BEGIN and END. PL/SQL programs are built up by blocks, which can be nested
within other blocks. A block in PL/SQL has three sections a declarative (started
with DECLARE), an executable (started with BEGIN) and an exception-handling
section (started with EXCEPTION). Only the executable section is required.

Error-handling. The runtime-errors encountered in a program are captured and
handled in the exception-handling section of the block.

Variables and types. Variables, which are how information is transmitted between
PL/SQL and the database, are a storage location that can be read from and assigned
from the program. Each variable is associated with a specific predefined or user-
defined type that tells what kind of information this variable can hold. An important
and powerful capability provided by PL/SQL, is that – besides types as the database
columns (ex: VARCHAR2(25)) and additional types (ex: BOOLEAN) – it also
supports user-defined types such as tables and records.

index-by tables or PL/SQL tables. A type of special interest and that can’t be
found in SQL is pl/sql tables, or also known as index-by tables. They are one-
dimensioned, unbounded sparse collections of homogeneous elements or records.

Looping constructs. A loop permits us to execute a sequence of statements
repeatedly until some condition is satisfied. PL/SQL provides us with different

PL/SQL, that stands for Procedural Language/SQL, is a procedural
programming language that combines the power and flexibility of SQL with
the constructs found in procedural languages as variables, types, control
structures, procedures and functions [13].

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 22(78)

 22

kinds of loops: while-loop, the numeric for-loop, repeat-until emulated loop and the
cursor loop.

Conditional and sequential control. As expected, traditional constructs for
conditional control as if … then … or if …then…elsif … then… else… are provided.
For sequential control there is the goto statement that permits to jump to a labeled
part of the code that must in the same scope as the goto statement. However, the
case statement is unfortunately not provided.

The features mentioned above are basic ones, and are what every programmer surely
expects to find in a procedural language. But there are in fact advanced features that give
the power, robustness and flexibility that characterize PL/SQL and some of them will be
discussed now. All of them are presented and exemplified more extensively in [4], [5]
and [13].

Procedures and functions. Procedures and functions that are together known and
referred to as subprograms or stored procedures are a special kind of block. They
can be stored in the database in compiled form and are callable from other programs
or stored procedures.

Packages. Stored procedures, together with variables and types can be grouped and
stored into a package. A package is indeed composed of two parts; one part is the
package specification (a.k.a. package header) and the other part is the package
body. Packages allow storing related objects together in the database.

Dynamic SQL. Traditionally a programmer needs to know in advance exactly the
type, name, number and order of the columns from the tables needed to access in
the program. Through dynamic SQL, it is now possible to build and execute a SQL
statement at runtime. The two dynamic SQL methods existing are the DBMS_SQL
package and native dynamic SQL.

Object types. Like in object-oriented languages, an object type has attributes and
methods, and can be stored in the database. Object types in PL/SQL allow the
access and manipulation of not only relational data but object data as well.

Collections. Are the answer or correspondent construct to arrays in other 3GL-
languages. There are three kinds of collections: index-by tables, nested tables and so
called varrays.

Built-in packages. Additional functionality is provided by Oracle by a number of
built-in packages.

One of these built-in packages is of interest for this project, namely DBMS_DEBUG. A
more detailed presentation of this package is given in the next Chapter.

23(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

2.1.2.5 DBMS_DEBUG: Oracles debug API package.
As a definition of what the DBMS_DEBUG package is let us just use the one given by
Oracle in the official documentation for this package[2]: “DBMS_DEBUG is a PL/SQL
API to the PL/SQL debugger layer,’Probe’, in the Oracle server”.

As mentioned before a package can bundle together variable, types, procedures and
functions and DBMS_DEBUG has all of these components.

NOTE: Below are only the most relevant features of the DBMS_DEBUG package
presented. For a closer or more extensive study see [2] or [29]. The names given in
capitalized style in this Chapter denotes the name of procedures and functions in
DBMS_DEBUG. Ex: PRINT_BACKTRACE.

The term of program unit comprises: procedures, functions, triggers, packages, package
bodies and anonymous blocks.

Variables
The public variables are for timeout behavior and for tracing. These variables
permit to set and read the size of the timeout and the possible behavior which are:
retry, continue, nodebug and abort on timeout

Types
There are seven user-defined types in the package and their functions are on one
hand to read the program context information and on the other hand to permit
giving parameters to the programs. These types are described in Table 1.

Table 1. User defined types for DBMS_DEBUG.
Type Description
backtrace_table Used by PRINT_BACKTRACE to store the program stack.

breakpoint_info Gives information about a breakpoint, its current status and

where it is placed.

breakpoint_table Used by SHOW_BREAKPOINTS to store information about the
existing breakpoints in the current session.

index_table PL/SQL table used by GET_INDEXES to return available indexes
for an indexed table.

program_info Specifies a program location by giving the information for a line
in a program unit.

runtime_info Gives the current context information about the running program.

vc2_table Type meant to hold lines of code of the procedures to debug and
used by SHOW_SOURCE.

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 24(78)

 24

Constants
A large number of constants are necessary in a package like DBMS_DEBUG the
package the constants can be grouped by their function. The complete list of
variables can be found in [2] or [29]. In Table 2 below, the function of the constants
in DD are listed grouped by their function.

Table 2. Types of constants in DBMS_DEBUG grouped by their function.
Constant type Description
Breakpoint Describe the states of a breakpoint which are: active, unused,

disabled or remote.

Namespaces Constants for giving the type of the program units that on the
server reside in different namespaces. When setting a
breakpoint it is necessary to specify the desired namespace.

Libunit types Useful when presenting information about stack backtrace to
the user. Will replace namespaces in the future by
overloading. They are important in PROGRAM_INFO to
disambiguate among objects that share the same namespace.

Breakflags Very important constants that are passed to CONTINUE to tell
Probe what events are of interest. The Probe will then stop the
execution when these events are raised. They break execution
on: next line, any call, any return, return, exception, break
handler and execution.

Information
flags

These are flags that can be passed as parameter to CONTINUE,
SYNCHRONIZE and GET_RUNTIME_INFO to tell Probe what
information is of interest.

Reasons for
suspension

After CONTINUE is executed, the program will either run to
completion or break on some line or event, for example when
it reaches: a new line, a breakpoint, finish, kernel exit, etc.

Error codes These values are returned by the various functions that are
called in the debug session.

Exceptions Some exceptions are raised by SELF_CHECK and one if
INITIALIZE is called before DEBUG_ON.

Procedures and functions composing the DBMS_DEBUG package
The DBMS_DEBUG package is finally composed of a number of procedures and
functions. These procedures are to be executed either by the target or debug session or
both of them. Table 3 presents the public procedures and functions in DD and (C), (T)

25(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

and (D) shows whether they are common to both sessions, for the target session and for
the debug session respectively.

Table 3. Procedures and functions in DBMS_DEBUG. ‘C’-Common, ‘T’-Target and
‘D’-Debug denote in which session they can be executed.
Procedure/function Description
procedure PROBE_VERSION(C) Returns the version number of

DBMS_DEBUG on the server.
procedure SELF_CHECK (C) Performs an internal consistency check.
function SET_TIMEOUT(C) Sets the timeout value.
function INITIALIZE(T) Sets debugID in target session.
procedure DEBUG_ON (T) Turns debug-mode on.
procedure DEBUG_OFF (T) Turns debug-mode off.
procedure ATTACH_SESSION (D) Notifies the debug session about the target

debugID.
function SYNCHRONIZE (D) Waits for program to start running.
procedure SHOW_SOURCE (D) Fetches program source.
procedure PRINT_BACKTRACE (D) Prints a stack backtrace.
function CONTINUE (D) Continues execution of the target program.
function SET_BREAKPOINT (D) Sets a breakpoint in a program unit.
function DELETE_BREAKPOINT (D) Deletes a breakpoint.
function DISABLE_BREAKPOINT(D) Disables a breakpoint.
function ENABLE_BREAKPOINT (D) Activates an existing breakpoint.
procedure SHOW_BREAKPOINTS
(D)

Returns a listing of the current breakpoints.

function GET_VALUE(D) Gets a value from the currently-running
program.

function SET_VALUE(D) Sets a value in the currently-running
program.

procedure DETACH_SESSION (D) Stops debugging the target program.
function GET_RUNTIME_INFO (D) Returns information about the current

program.
function GET_INDEXES(D) Returns the set of indexes for an indexed

table.
procedure EXECUTE(D) Executes SQL or PL/SQL in the target

session.

Program flow for the target session (debuggee)
In the market survey there were some debuggers that hung up while debugging, either
already at synchronization or after start running the target program. It seems to be
because DD follows a strict program flow that must be followed.

Not following the program flow of DD or doing some calls in wrong order (or without
fulfilling some conditions) may cause the debugger or the debuggee to hang. Ex. calling
DEBUG_ON before calling INITIALIZE makes the debuggee session to hang.

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 26(78)

 26

The Figure 2.2 describes the order in which the debuggee must make the procedure calls.
The debuggee starts its execution by calling INITIALIZE that returns a unique debugID,
not necessarily the same as session ID. After that, to start debugging DEBUG_ON is
executed followed by the PL/SQL programs that need to be debugged. If the session is to
continue after the debugging has been done, DEBUG_OFF can be called to switch off the
debugging mode in the target session.

Figure 2.2. Target control flow.

There is one though one step that is skipped in this program flow which should be done
previous to INITIALIZE: the execution of the alter statement. There are two manners for
the alter statement, to alter the session or to alter each program unit to be debugged.

 alter session set plsql_debug = true;

This version instructs the compiler to generate debug information for the rest of the
session.

 alter [OBJECT_TYPE] [OBJECT_NAME] compile debug;
 or alter [OBJECT_TYPE] [OBJECT_NAME] compile debug body;

This second version generates debug information for procedures, functions, packages,
triggers and types and the last version for package and type bodies.

Program flow for the target session (debuggee)
Figure 2.3 describes the program flow for the debug session. Calling ATTACH_SESSION is
the first call the debugger session does to connect to the session that is to be debugged.
After attaching breakpoints can be set and manipulated. The next step is to synchronize
with the debuggee and tell the Probe which events are of interest. Next, if the execution
cursor is inside a running program: some program context information can be read as the
variable values, the program stack, the source code, and breakpoint manipulation in any
order. If the cursor is out of a running program, then continue should be called to execute
the target program. After executing CONTINUE the reason for why the debugger stopped
can be read in a variable of runtime_info.

Initialize session for debugging and
generate/specify unique debugID.
DBMS_DEBUG.initialize()

Start debugging.
DBMS_DEBUG.debug_on()

Stop debugging.
DBMS_DEBUG.debug_off()

Execute PL/SQL programs

27(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

If the target program has terminated one alternative is to debug another program unit.
Another alternative is to execute the target again in order to debug it again. In neither of
these cases is necessary for the debugger session to do attach_session again. A third
alternative is to detach the session. In this case the session can continue being used, for
instance to attach to a new debuggee session.

Figure 2.3. Debug session control flow.

M anip u la te b reakp o in ts
D B M S _ D E B U G .se t_ b reak p o in t()
D B M S _ D E B U G .d e le te_ b reakp o in t()
D B M S _ D E B U G .d isab le_ b reakp o in t()
D B M S _ D E B U G .en ab le_ b reak p o in t()
D B M S _ D E B U G .sh o w _ b reakp o in ts()

R ead first eve tn fro m ta rge t se ssio n
D B M S _ D E B U G .syn chro n ize ()

S ho w stack
D B M S _ D E B U G .p rin t_ b ack trace ()

M anip u la te b reakp o in ts

S ho w so u rce
D B M S _ D E B U G .sh o w _ so urce ()

C o n tin ue execu tio n and w a it fo r nex t
even t D B M S _ D E B U G .co n tin u e ()

P ro gram te rm in a ted ?
(even t is D B M S _ D E B U G .reaso n _ k n l_ ex it)

D e tach sessio n
D B M S _ D E B U G .d e tach _ sessio n ()

In itia lize
D B M S _ D E B U G .a ttach _ sessio n ()

G E T /S E T v a lues
D B M S _ D E B U G .g e t_ v a lu e ()
D B M S _ D E B U G .se t_ v a lue ()

Y es
N o

N ex t p rog ram to d eb u g

In pu t:
D eb u gID from
ta rge t sess io n

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 28(78)

 28

2.1.3 Java Technologies used in this project
This Chapter presents some of the Java technologies for database connectivity and
network programming, and some of their properties.

2.1.3.1 Preface
The main objective of this project and the framework in which it will be done, make it
necessary to know which platform or platforms it is intended to be run on, what
technologies should or will be used and why. The technology used in the base of Corus
QuickLink is an Oracle Database Server, and on top there are a number of smaller
programs that interact with the core of the system and handle the communication and
security within the system. These programs are implemented in Java, using what in
general we can call Java Technology.

An intermediate step in the project is to understand how the connectivity between a Java
application and the database is done. For this purpose JDBC and SQLJ, that are Java
technologies, will be shortly presented and compared.

The remaining object of study regarding possible technologies to use in the
implementation of the graphical web-application is to understand what servlets are, how
they work, what the advantages of using servlets are and to see some other adequate
alternative technologies.

2.1.3.2 Why does Corus use Java Technology and what is it actually?
The frame of this project allows us to naturally narrow the possible choices of
technologies to use or combine in the implementation phase. For instance, technologies
that expand the functionality of web servers such as Common Gateway Interface scripts
(CGI scripts) and FastCGI scripts can be directly discarded. The framework in which
Corus QL works is built upon an Oracle Database Server using Java as programming
language due to its portability and platform independency. Furthermore, the
communication between the clients and the core of the system is handled by servlets.

Talking about “Java” has become a wider and more abstract concept. In the early days of
Java it addressed the programming language itself, but nowadays it refers more and more
to the platform it constitutes. So, on one hand, whenever talking about “Java” nowadays,
it refers to the programming language, the platform, or both. On the other hand, talking
about specific “Java technologies” is more concrete and refers to a more narrowed area of
programming and techniques.

A question that is necessary to answer before digging into the details of different
technologies and alternative architecture models is to know why Corus uses Java. The
answer is pretty obvious: in short, Java is platform independent and the most important
feature is the network ability offered by Java providing security, modularity and
portability features.

Much, much more can be written about what Java is and the network related features,
and it has already been done in many books. Therefore and because to present and

29(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

explain the Java’s features is not the objective of this report the reader who is interested
in reading more about this subject can now see: http://java.sun.com/java2/whatis/.

2.1.3.3 JDBC vs. SQLJ
There is an ocean of written material addressing JDBC both in electronic and paper form.
Despite this, it is also important to have at least a brief knowledge of what JDBC and
SQLJ are. In this Chapter only the main ideas and features and the concept of what JDBC
and SQLJ are presented.

The JDBC, which should be addressed more properly as JDBC application program
interface (API) is a Java application program interface for executing SQL statements. On
the contrary to what most of the books say, JDBC is not an acronym for Java DataBase
Connectivity, but a trademarked name [6]. JDBC is the standard API used to access SQL
databases, and to interact with them via Java classes and methods contained in the Java
package java.sql. JDBC communicates with the databases using drivers. There are a lot
of standard drivers and the user is even able to write its own driver, though in almost all
of the cases one of the standard drivers will do just fine to satisfy most of the needs of the
user. The driver used in this project is Oracle’s JDBC Thin-driver.

What JDBC API offers is divided mainly in three features:

o Access: permits to login to a database in a secure manner.
o Queries: ability to send queries and procedure calls to the database.
o Results: the results can easily be handled in the Java application.

For more details see the official web page at http://java.sun.com/products/jdbc/.

SQLJ is a standard way to embed static SQL statements in Java programs. It can be seen
as a complementary role to JDBC. Although static SQL statements can be done in JDBC,
SQLJ offers several advantages over JDBC. For example: shorter syntax, type-checking
the static code, direct embedding of Java bind expressions within SQL statements and
compile-time type-checking. SQLJ applications are portable and able to communicate
with databases from multiple vendors using standard JDBC drivers.

Further details about the standard SQLJ can be found at
http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/Java.817/a83723/to
c.htm. Other good sources that were used in this project are found at [1], [6], [27], [30],
[32] and [38].

2.1.3.4 Java servlets
A Java technology that still is very popular and expanded is the servlet technology.
Despite this fact, nowadays other technologies as JSP [34], Java Beans and EJB are also
introduced, expanded and popular. Servlet technology is based, as its name sugges,t on
the use and implementation of servlets. Many books have covered how and in what type
of applications they are appropriate to be used and in this report only the most important
general issues are presented in short. Anyhow, some details are described and discussed

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 30(78)

 30

wherever it is appropriate in the Chapter 3 that presents the implementation part of this
project.

As applet is the name given by Sun to Java applications that can be run on or from a web
browser, a servlet is a service that can be run or called and resides in a web server.
A servlet is a small, platform independent web component; composed of a Java class and
that can be dynamically loaded into and run by a web server. A container that implements
a request response paradigm manages this Java class that the servlet communicates with
the web clients. Therefore, a servlet extends or enhances the functionality of a web
server.

A very important feature to know about is the life cycle of a servlet and how they work.
Figure 2.4 illustrates a servlet’s basic control flow:

 A client access and makes a request to the web server via HTTP.
 The Web server receives the request and forwards it to the servlet container.
 The servlet container determines which servlet to invoke
 The servlet is called with objects representing the request and the response.
 If is the servlet is not loaded, then it will be loaded into the Java virtual machine.
 The servlet get data about the user request from the request object, and some other

relevant or necessary data.
 The servlet performs the process it is being programmed to.
 The servlet returns a response back to the Web server via the response object.
 The Web server receives the response from the servlet and forwards it to the

client.

After the basic servlet flow, how a servlet works and having and idea of the life cycle of a
servlet have been understood, it remains to know why to use them.

Without a deep study or an extensive presentation of the properties and advantages of
using servlets (also presented in [7] and [10]), here are some of them presented:

Client
(Web browser)

Java-Servlet-based
Web Server

Servlet Container

 Servlet

Servlet

Servlet

Forward request to correct

servlet

HTTP Request

HTTP Response

Servlet
 Get requester data.

Perform some process.
Prepare result data.

Forward request

Servlet result

Figure 2.4. Servlet’s basic control flow.

31(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

 Persistent. Loaded by the Web server only once and able to maintain services (i.e.

database connections).

 Faster and efficient. Because they just need to be loaded once remaining usually

in the Web server as a single object instance.

 Highly scalable. Because multiple concurrent requests are handled each in

separate threads.

 Platform independent. To work on any client, a servlet only has to work in the

machine where it is deployed and tested, unless complete portability is desired.

 Powerful and extensible. Has the ability to use and exploit the full power given by

the core Java APIs, such as networking, database access, data compression,
internationalization, etc.

 Secure.

 Easy to use with different clients.

In the basic example above in Figure 2.4 the basic servlet flow is presented with a simple
request, but there are more examples or use areas in which other examples are applicable.
Typical examples of these types of uses are servlet chaining, background processes,
communication with applets. For example, in short, servlet chaining refers to the scenario
when after a user request is received on the Web server more than one servlet interact
sequentially or concurrently before sending back the response. In addition these
cooperating servlets doesn’t need to reside on the same host. This is of course a very
rough description of how servlets can be used and how they do work, but fortunately
there are many other sources for using and understanding the use of servlets. A good
point of start is at: http://java.sun.com/products/servlet/ and other sources used in this
project are found at [1], [7], [10], [12] and [19] are also recommended.

2.1.3.5 Applet – servlet communication and serialization in Java.
How servlets and applets interact and communicate is a very important feature to
understand in order to design and choose possible models for the final application in this
project. For that reason a somewhat more detailed presentation of this feature is given
here, though without going into unnecessary details.

In [10] we found that tunneling and serialization are two mechanisms used to achieve
applet-servlet communication and that the latter one is the one to use with preference.
The use of serialization implies that the internal state of an object is stored (serialized) on
one end of a client-server communication and on the other end this object is retrieved
(deserialized). This is an easy way for marshaling (packing and unpacking) data between
a server and a client.

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 32(78)

 32

2.1.4 Applications models
Reminding that the main objective for this project is to verify that the entire chain of the
parts or tiers or layers of a graphical web based debugger is realizable; the alternative
architecture models commonly used in this type of applications must be studied. The final
application is in fact a Java application that uses or communicates with a PL/SQL
package that can be seen as a database application, and that according to the requirements
for the project could also be used alone as a command-line debugger.

2.1.4.1 Database applications, PL/SQL and Java
Usually, database applications are divided into three parts:

o The user interface that handles the look and feel of the application and the
interaction with the user.

o The application logic, controlling the work executed by the user and that in some

cases stores the state of the program.

o The database, where the application data is persistently and reliably stored.

The Two-Tier Model
Also known as, the Client-Server model, is composed of a client side and a server side,
and is characterized for splitting the application logic between the server and the client.
The client side of the application handles in that manner the interface and a part of the
application logic. The server side principally stores the application data but it also can or
does handle some of the application logic. Figure 2.5 illustrates this type of application
model.

Figure 2.5. Two-tier or Client-server model

Three-tier model
The three-tier model is a specialization of the more general n-tier model and that is
common in many real live examples because many systems have in fact more than three
well defined tiers.

In this architecture model the user interface, the application logic and the database
storage are split into (whenever possible) well-defined different parts. Usually the first
tier is referred as the presentation layer, consisting of a graphical user interface. The
middle tier is referred as business layer and usually contains the application logic. Data
layer is the third layer where the data for the application is stored.

Application
DB

Server Client

33(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

For some type of applications the middle tier, the business layer, is split into two layers
one that takes care of the presentation logic and the other handles business logic. Figure
2.6 illustrates an adapted model for Java applications that apply to this project.

Figure 2.6. Application models applied to this project. 2-tier and n-tier applications.

There are two important elements to know about when addressing model architecture: the
PL/SQL Engine and the SQL Statement Executor. PL/SQL blocks are executed in a
PL/SQL engine; if a PL/SQL block has a call to a stored procedure in the server then the
call to the procedure is sent to the server. Standalone SQL statements and SQL statements
within PL/SQL blocks are sent to and executed in the database server. In addition to the
PL/SQL engine in the database server, some applications have their own PL/SQL
engines. Communication between different PL/SQL engines and the server are done
through database links.

2.2 Market survey of third party Oracle PL/SQL debugger tools.
The objective of this market survey was to see what kind of functionality was
implemented in third-party vendors’ debuggers. The market survey should also help to
decide what functionality is required and wished to be implemented in CORUS_DEBUG.
It was also done to get some inspiration, to get some knowledge about what is possible to
do and what not, and possibly to see some difficulties that might appear in the
implementation phase of this project. The objective was not to compare these debuggers
with each other and make a rank order of any kind. Therefore the results and insights
obtained in this market survey are just summarized in this Chapter.

The tested debuggers are listed below and trial versions of them could be downloaded
from the Internet.

• TOAD and SQL Navigator from Quest Software2
• Xpediter/SQL from Compuware3

2 A trial version can be downloaded at: http://www.quest.com
3 A trial version can be downloaded at: http://www.compuware.com/

Java Applet
(Web Browser)

HTML form
(Web Browser)

Java Servlets

SQLPlus enabled
client

 DB

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 34(78)

 34

• SQL Programmer from SFI-Software4
• Rapid SQL from Embarcadero5

The results and conclusions obtained from this market survey are in no particular order:

• Initializing and starting a debugging session is not always easy and might require
a schema or object browser in order to do this smoothly.

• Synchronization between the target and debug session can be done transparently

but it might be difficult to do so. Some of the tested programs just hanged when
debugging a program. This hanging-problem was so hard that the process of the
application had to be killed from the operating system to continue.

• It should not be so difficult to debug depending programs automatically. A

depending program is for example a procedure or package called from another
procedure or package.

• Not all the debuggers could read package variables and less set them; only some

of them and not in all cases.

• Reading and setting procedure variables is possible.

• Implementing watchpoints is possible but it might be hard to implement as not all

the applications have this function.

• Handling breakpoints is easy, but none of the debuggers offers the functionality of

setting a breakpoint in a procedure just by pointing at it either graphically or in
some input text area. The source code must be displayed and the breakpoint set at
a specific line.

• Switching between debug mode and execution mode is difficult to do. Some

programs tend to hang or interrupt some windows when switching between debug
and executing mode.

• Finally, though it was not the objective of this market survey it must be said that

TOAD was the best, most user-friendly and powerful among all the debuggers
tested. Unfortunately, not even TOAD is adapted to work in the framework that
Corus QL has.

4 A trial version can be downloaded at: http://www.sfi-software.com
5 A trial version can be downloaded at: http://www.embarcadero.com/

35(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

3 Design and implementation of the web based PL/SQL
debugger

Having studied or reviewed the components necessary to develop a debugger and a web
application, able to be run over a network and with the conclusions obtained from the
market survey, the next step is to put all these pieces together. This must be done in a
convenient order, permitting iteration and this is done through a developing plan.

This developing plan, in this case, must first include, a deep understanding of the
functionality and capability of Oracle’s DBMS_DEBUG package; second, design,
implementation and testing of the own debug API in PL/SQL; finally the design of the
highest layer of the implementation that consists of the interaction with the database and
the network-related features for this application.

Recall that the objective of this project is to design and implement a web based debugger
and that a key part goal is the implementation of a PL/SQL package on top of Oracle’s
DBMS_DEBUG (DD). This package should hide, abstract and facilitate the use of DD
for the user who should be able to use the package as a command-line debugger.
Furthermore, the details concerning the declaration, initialization and use of the complex
variables of the defined data types in DD should need to be hidden and simplified for the
user. The web application should implement a user interface for a web browser using this
package and probably handle some of the application logic. The design of the web
application will permit easy or smooth extensibility of functionality. Finally, both the
package and the web application must be designed and implemented in such manner so
that they can be integrated into Corus QL’s framework with as few changes as possible.

The integration of the PL/SQL package and the web based debugger into Corus QL will
add an important, necessary and requested feature: to debug the generated code in Corus
QL within the same environment it was created in. They will also reduce the cost for the
end-users of Corus QL since licensing for external debuggers will be eliminated.

3.1 Developing plan.
The product of the design and implementation part of this project is a web application
called iCODE6. iCODE is based on the tailor-made PL/SQL package CORUS_DEBUG
(CD) which in turn is based on Oracle’s DBMS_DEBUG API (DD). Here follows the
intended developing plan to carry out the implementation part of the project.

The milestones to follow in the developing process of this project are:

 Test and deeply study the DBMS_DEBUG package.

6 iCODE is an acronym for i Code Online Debugger, in accordance to the name giving for applications in
Corus QuickLink.

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 36(78)

 36

 Creation of a plan of what functionality to implement and in which order of
preference or convenience, probably in form of a list of requirements.

 Design and implementation of an own package/API on top of DBMS_DEBUG.

 Design and implementation of graphical application using own debug

API/package.

 Tests for verification and evaluation.

The results and conclusions of the tests and study of DBMS_DEBUG are presented in
Chapter 3.2. Implementation and design decisions taken regarding the CORUS_DEBUG
API, are presented in detail in a sort of chronological order in Chapter 3.4. Finally the
design and implementations details and technical and strategic decisions related to the
graphical application are discussed in Chapters 3.5.2-3.5.4.

In a developing plan it is appropriate to have an application model that give guidance for
the design and implementations phases. The next chapters present two guideline models
used in the implementation of CORUS_DEBUG and iCODE.

3.1.1 Application model for CORUS_DEBUG
CORUS_DEBUG was intended to be implemented in such a way that it could be used
straight away as a console debugger from a SQL client, like as SQLPlus.

In Figure 3.1, there is a client that executes calls to DBMS_DEBUG which is the API to
the debugger layer in the Oracle server. This is done transparently through
CORUS_DEBUG. The client doesn’t need to know anything about the presence of
DBMS_DEBUG which is the base component of the debugger.

How the client controls the console debugger was implemented according to the control
model that Sommerville describes in [15] as the call-return model. The control starts at
the top of a subroutine hierarchy and continues down in the hierarchy all the way until
DBMS_DEBUG.

Figure 3.1 shows two hosts and two databases. One host can hold two database
connections: one for the debugger session and one for the debuggee’s session. However,
the debuggee and the debugger don’t need to reside on the same host, or even in the same
database. In the case when the debuggee resides in other database, the target programs
should be executed via db-links.

37(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

Figure 3.1. General application model for CORUS_DEBUG.

3.1.2 Application model for iCODE, the web application
The graphical web based debugger could be run either from an applet or from dynamic
HTML pages that are generated by servlets. The figure below depicts a general model for
how this could be implemented.

Figure 3.2 presents two kinds of clients, one is running an applet directly from a web
browser, and the other is running the debugger via HTML pages that make requests to
servlets stored in a Java enabled web server.

In the first case the applet is loaded to the user’s web browser and then it can be run from
the browser, keeping the database connection objects within the applet context. In the
second case, the database connection objects for the servlets are stored in the web server
during the entire debugging process.

In both application models depicted in Figure 3.2 DBMS_DEBUG is at the bottom of the
chain of the application. Therefore the next step, as formulated in the developing plan, is
the study of this package.

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 38(78)

 38

Figure 3.2. General application model for iCODE.

Having these two models presented the next step was to dig into the details, problems,
strengths and functionality of Oracle’s DBMS_DEBUG.

3.2 Study and tests of the DBMS_DEBUG package
Before going into details of how the DBMS_DEBUG package was tested and what
conclusions were obtained out of this study, it is very important to stress the fact that this
API was done for third-part vendors. Hence, there was no information available
anywhere about this API and how to use it, neither in the open Internet nor in Oracle’s
web sites: Technet7 and Metalink8. All that was found regarding DD was questions with
no answers in different forums on the Internet. Hence, all the conclusions obtained are
based in the official documentation for DBMS_DEBUG9 package and the tests done.
This document can be found on [2] or online at [29]:
http://download-west.oracle.com/docs/cd/B10501_01/appdev.920/a96612/ d_debug.htm

To start with, the first thing to do was to study the data types defined inside
DBMS_DEBUG and some of the procedures and their parameters. Being familiar with
the data types defined in DD was important in order to decide whether these data types
were enough to create an own API, or if additional data types were necessary.

The method used for testing DD was not very advanced; each procedure was tested, one
at a time. First, they were tested with their default values, if any, and then with alternative
valid and invalid values to study and note the behavior of both sessions. The program

7 Oracle Technology Network, Technet can be found at: http://technet.oracle.com/
8 Oracles’s Metalink, can be found at: http://metalink.oracle.com/
9 Documentation for DBMS_DEBUG API is found in ch.7 of Oracle8i Supplied Packages Reference,
Release 8.1.5

Database Server

 CORUS DEBUG

 DBMS DEBUG

Client browser
running an applet

Client browser running
servlets via html pages Java enabled

web server

(Holds both database
connection objects)

(Holds both database
connection objects for
the servlets)

39(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

context information and how it changes was carefully observed. It permitted to find out
among other things another bug in DD (the listed values for break_any_return and
break_return are backwards), which later on showed to be already reported and well-
known but not noted in [2] or [29]. This procedural testing was necessary to make
qualified guesses or deductions of what Oracle’s engineers and designers intended to do
and had in mind when defining certain data types and procedures. Even if it might appear
to be inappropriate in a report of this kind it has to be said that it was difficult, very time-
and patience-demanding.

Fortunately, after a number of attempts, one could notice a sort of silver thread when
studying some procedures. One could see that some procedures absolutely needed some
other procedure to be executed first in order to create some automatic and transparency
between procedure calls. For instance, it is sometimes necessary to execute
get_program_info before setting a breakpoint, and so forth.

The only way to test DD efficiently was by creating an own package with calls to the
different procedures in DD and test them for the different cases such are single
procedures, packages and triggers. This package became the base for CORUS_DEBUG.

After doing these procedures calls and tests, almost all hard-coded, the following could
be noted about DBMS_DEBUG:

Initialization and termination
o The first important conclusion is that, for the nature of a debugging session and

the way this API is done, there is no way to make undo procedures as the
execution is run and stopped in the Probe (the debugger layer in Oracle Server).

o Initializing and synchronizing are very sensitive parts in any debugging session

and probably will be in CORUS_DEBUG as well

o It is not possible to create a database session that creates and controls two sessions

at the same time. Two different sessions must always be created.

o Detecting the termination or finalization of a program that is being debugged is

also complicated if this is to be done transparently and smoothly.

o It is not possible to make initialization of both the target and the debug session

simple, as we need the debugID returned by dbms_debug.initalize in the target
session in order to attach the debug session to the target session.

Synchronization and execution
o Synchronization showed to be a very sensitive function necessary to do every

time a program is going to be debugged.

o There is a warning in the documentation, but it covers only one case, namely

when the target session has terminated. In reality, the debug session hangs every

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 40(78)

 40

time it calls dbms_debug.synchronize unless there is a program waiting to be run
in the target session or when a program has just finished its execution and the
execution cursor is inside the interpreter.

o Stepping through the program execution and stopping at some events are

controlled by dbms_debug.continue. The break flag given to this procedure is a
mask that with preference would be created dynamically in an intelligent manner
or hard-coded for each debugging function.

Breakpoints
o Deferred breakpoints can’t be easily done. It is required to scan the source code to

debug to get the line number at which the breakpoint will be set. Thus, some
strategy to support deferred breakpoints might be needed to implement this
functionality.

o There is a bug, because the debug session hangs if dbms_debug.show_breakpoints

is called before synchronizing and if the target session releases the debug session.
The pipe connection between the two sessions then breaks.

Source Browsing
o Procedures to handle source-related functionality must be implemented taking in

consideration these three cases: procedures, packages and triggers. The
procedures in DD are note enough and produce faulty errors when called from a
Java program.

o One difficulty writing a source code parser to facilitate the setting of deferred

breakpoints is that the source code stored in the database doesn’t match the source
code in the file system. The comment lines in the beginning of a file are removed
in the database.

Program context information
o Reading and setting variable values must be taken care of in different ways

depending of if the execution cursor is in the scope of a procedure, a trigger or a
package. Holding track of namespaces and lib unit types is important for these
functions.

o A proper manner to read the program stack and runtime information must be done

as the information returned by get_runtime_info and print_backtrace is good and
compounds of many parameters, but this information must be user-friendly
formatted.

Other observations
o There are some bugs in DD. If some of the difficulties met with synchronization,

program execution and termination are caused by bugs in DD, or are caused by
misuse of the continue and synchronize procedures was at this point unclear.

41(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

After summarizing the facts obtained studying and testing the DD API, what can be said
is that initializing, synchronization with and termination of a program that is or will be
debugged are very sensitive; there are fundamental differences in the namespace, lib unit
types, and how the source code is stored in the database between procedures, triggers and
packages; there is no additional information besides API’s official document, so
deductions and assumptions and even guesses must be noted and have a very important
role; pending or deferred breakpoints must be handled separately and to do this a strategy
must be made up; finally, some own defined data types probably might be needed for
setting deferred breakpoints and for automated source browsing.

3.3 Requirements for the package and the final application
With the results obtained by the market survey two lists of requirements have been
established. One list is for the PL/SQL package and the other is for the web application
and its front-end graphical user interface. The requirements will be gradually fulfilled,
probably through a number of iterations implicating changes in design, strategies and
implementation.

Requirements for CORUS_DEBUG
The following points will be implemented in the PL/SQL package CORUS_DEBUG,
which is based on DBMS_DEBUG. With help of the package the user must, directly or
through an application, be able to:

 Establish a connection between the target and the debug session.
 Run a program in debug mode.
 Control the execution of the program by stepping the execution or the program,

line by line.
 Read the code that is being debugged. If not wrapped.
 Set breakpoints at a specific line and jump in the execution to that line.
 Step and stop the execution at different events as going out of a procedure, out of

a program.
 Set breakpoints by giving the program name as parameter.
 See the program stack and runtime information.
 Read and set variables in single or standalone procedures and functions and in

triggers.
 Read and set package variables.
 Debugging of single procedures and functions as well as packages and triggers.

By debugging triggers means the PL/SQL programs called from a trigger and the
logic that might exist within a trigger.

 Smooth finalization of the debugging session.
 Traditional help functionality.

Requirements for the web based PL/SQL debugger
This list is for the features to be implemented in the graphical web application.

 The call ability properties of CORUS_DEBUG must be demonstrated using
JDBC. A set of methods showing that a debugging session can be done via JDBC
using the CORUS_DEBUG API.

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 42(78)

 42

 As a middle step an applet or a set of applets can be implemented. This applet or
applets will be able – if necessary – to collaborate with an object that provides
persistent database connections during the debugging session.

 The solution on the preceding point will be lifted up and implemented with
servlets.

 The servlet implementation must permit modularity and extensibility in
functionality, meaning that if not all the typical functions or all functions that a
typical debugger gives, this design will permit to add more functionality in future
development.

 A dynamic call to procedures might be done if there is enough time, or at least a
study of how this can be implemented resulting in some proposals.

 Finally, the servlet implementation might be adapted for integration to Corus
QL’s framework. As this point might require a lot of work to have a good design,
an implementation of it will be done only if there is enough time, otherwise some
outlines of some design alternatives will be enough.

There are no specific requirements regarding security for the entire project. The
CORUS_DEBUG API will allow debugging and accessing the files that the user is
granted to access. Another security limitation is when the source code of the program to
debug has been wrapped, which means the user won’t be able to neither read the code nor
debug the program. Security in the graphical application will have two layers when
introduced in Corus QL. One layer is the same as for the package, which means the
security grant properties in the database, and the other is handled by a logging system
above some database applications, this logging system is called NAVAJO as is part of
Corus QL. Navajo handles a connection pool of database connections, the security
features for Corus QL regarding access grant properties, timeouts, etc.

3.4 Design and implementation of the CORUS_DEBUG API.
In the designing phase of CORUS_DEBUG API there were some points kept in mind:

• CD is sort of a wrapper package for DBMS_DEBUG. CD has to be able to be
used by different user interfaces.

• CORUS_DEBUG has to provide an interface that implements a standalone

command-line debugger.

• A Java-adapted interface is to be implemented as well at the same time.

• Accessing package variable is very important in the Corus environment.

• The system structure for the debugger will be in a layered fashion.

In order to achieve the property of permitting different kinds of user interfaces to access a
common API a name giving convention had to be taken.

43(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

3.4.1 Procedure overloading and name giving: sync, syncF and
syncJ

The name of the procedures in CD follows two strategies. One of the main requirements
with this package was that it could be used directly for debugging. Therefore it was
necessary to make procedures of all functions in DD to facilitate the procedure calling for
debugging functions. It is tedious to create bind variables or even more complicated user-
defined variables mapping DD’s defined types and then use these variables as parameters.
There are function-procedure pairs composed of a procedure that the user easily can call
and of a function that returns either a return value or some information text as return
value. For example: the procedure sync maps syncF, syncF can be called either by the
procedure sync and displayed to the user in a console screen or by a Java class and
displayed to the user in an applet, a HTML page, probably after reformatting the result.

Another strategy that has been taken is to have a function that returns to Java objects
VARRAYs, because the results are sometimes composed of <key, value> tuples. It is
much easier to return results in this way than implementing parsers that should parse a
complicated result. Ex. print_stack is mapped with print_stackJ.

A number of the procedures in CD are help functions done to facilitate the
implementation and debugging processes and to enhance the display formatting.

3.4.2 Debugger features implementation
The order in which the procedures in CORUS_DEBUG were implemented was quite
natural because it mainly followed the requirements for this API listed in Chapter 3.3.
The final version of each procedure and function is the result of several iterations and
changes due to certain dependencies between procedures, and due to the differences when
debugging the different kinds of program units (procedures, packages and triggers).

Note: The final version of CORUS_DEBUG is the result of a revision done in 2005. The
description below describes the problems and decisions taken in both the first and the
reviewed version of CORUS_DEBUG. In the final version the BPT_HANDLER package,
which was implemented to handle deferred breakpoints, has been removed. Therefore CD
is now composed of only one package.

Before discussing what, how and why certain functionality has been implemented in
CORUS_DEBUG a couple of points must be noted.

 It is always necessary to open two database sessions: a debug session and a
target session in order to debug a program unit. These two sessions working
together to debug a program unit is in this report called a debugging session.

 There is no manner to handle and control two database sessions (for the

debugger and the debuggee) from only one database session. Pipe
functionality to communicate between two sessions exists, but it does not have
the functionality necessary to have a debugging session. Another package
provided by Oracle with the name DBMS_PIPE was studied and tested.

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 44(78)

 44

 Since Corus QL’s integration engine and repository have own-defined data

types, the functionality to read and set variables of these types was desired
that. However, focus should be put on standard PL/SQL and SQL data types.

 The main requirement was that the user could easily and intuitively use the

package or set of packages that CORUS_DEBUG would be composed of.
This package would also be adapted to be called from Java methods.

With all this requirements in mind, the conclusions obtained by studying the
DBMS_DEBUG API, and having learned the programming features available in Oracle’s
PL/SQL and SQL, finally the implementation of the package started. To begin with
initialize, attach_session, synchronize and debug_on were implemented, almost without
changes when using the mapping procedures and functions in DBMS_DEBUG. The
procedures and functions in CORUS_DEBUG here set the value of some global
variables. In addition, certain default parameters, that have been strategically chosen,
were set.

The next step was to implement procedures to display the source code. These procedures
display both the entire source code and just part of it. Here, it must be mentioned that the
final version of these procedures are the result of many iterations of CORUS_DEBUG.
The source codes for packages, procedures are stored in all_source and/or user_source
tables in the database and they are in fact views, and the source code for a trigger is
stored in a field of type long in the user_triggers table. show_source_trigger parses this
field, recreating the source code in the same fashion as procedures or functions. In
addition to the difference between procedures, packages and triggers, there is the fact that
a package is composed of its specification and of its body. This fact makes it necessary to
have a further separation when reading the source code and when reading and setting
variables, which is discussed further in the document.

At the beginning a copy of the last read source code was stored in global PL/SQL tables
of type dbms_debug.vc2_table, which holds strings of type varchar2(90). The type of
these PL/SQL tables was changed and a new user-defined data type defined as below:

TYPE source_vc2_table IS TABLE OF VARCHAR2(500)
INDEX BY BINARY_INTEGER;

This type was introduced, and all the changes this new type caused took place when the
debugger in Java was being done. The reason is, namely, that the field in which
procedures and packages source code is stored is of type varchar2(4000) and the
corresponding type in DBMS_DEBUG is varchar2(90) causing an exception when called
from a Java program. The length of 500 was chosen assuming that no typical line of code
is larger than 300 or 400 characters. But if it is shown that there are some code lines
longer than 500 characters it is only necessary to change, in principle, the length of the
field in the type definition. Handling triggers source code was reduced to access and

Source
browsing

45(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

parse the code for each trigger, which was stored in a variable of type long in
user_triggers table. The use of this code was removed in the revision version.

The procedures show_source_procfcn, show_source_pkgbody and show_source_trigger
do all the work now. These procedures are called internally by show_curr_source and the
source browsing functionality was improved. The source code is shown in what is
referred to as a window, letting the user to set width and height for the source to be
returned or shown. It is done with set_win_width and set_win_height. The height
parameter determines the number of lines to show before and after the current line. In
addition, if the user wants to see all the source code or just the ‘window’, it can be
changed with set_win_mode.

Enabling, disabling and deleting breakpoints that have been set were not difficult to
implement, only the breakpoint number is needed and it can be obtained by listing the
breakpoints that are set. The hard task was to set breakpoints. And setting what was
called pending-breakpoints was the hardest part of it, which will be discussed later in this
Chapter.

When the line number in the code is not an executable line, usually, debuggers stop at the
preceding or posterior executable line. Even though there is a parameter to use and the
purpose determined in dbms_debug.set_breakpoint to accomplish this functionality. This
functionality of automatically setting a breakpoint to a previous or posterior executable
line has not been implemented yet. This is a common feature in modern debuggers and it
was assumed that the future users of CORUS_DEBUG would expect the same feature.
Parsing and recognition within the source code that enables finding an executable line can
solve this problem. Though, parsing usually tends to be a time-demanding task and after a
number of attempts to implement such a parser it has been postponed for future work.

In order to set a breakpoint in CORUS_DEBUG, the line number must be given, but there
is a procedure in where you can set a breakpoint in a program that has not yet been
accessed by the interpreter, set_breakpoint_fullinfo*10. This procedure permits to set a
deferred or pending breakpoint that is hold by the interpreter and set at synchronization.

In the final version a breakpoint can be easiest be set with, for example:

set_break(11) or set_break(11, ‘PROC_NAME’);

The experienced programmer will find it unnecessary and time demanding looking for
the line in a source code in order to set a breakpoint. He or she is probably used to set
breakpoints by just giving the name of the procedure, function, method, package or
module where he or she wants to stop the execution. Thus, when debugging in PL/SQL
setting a breakpoint at a procedure or nested procedure is necessary. Thinking of that fact,
another solution was implemented. This functionality is accomplished by several

10 The procedure and function names marked with a * have been removed from the final version of
CORUS_DEBUG.

Pending
breakpoints

Breakpoints

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 46(78)

 46

cooperating procedures and functions. These cooperating procedures store the necessary
information for breakpoints in an index-table, ‘listen’ if the execution cursor is inside of a
program corresponding to any pending breakpoint, and finally update the rows of this
table after have set a real breakpoint. This scanning for pending breakpoints is done each
time a ‘step-function’ is executed. This function still needs parsing improvement. This
functionality was initially implemented in an own package called BPT_HANDLER*.

Two types have been defined in order to achieve this functionality:

TYPE bpt_rec is RECORD(line# number(4),
 pkg_name varchar2(30),
 proc_name varchar2(30),
 proc_type varchar2(12),
 namespace binary_integer,
 owner varchar2(30),
 dblink varchar2(30));
TYPE bpt_table_type is TABLE OF bpt_rec INDEX BY BINARY_INTEGER;

Until the next version of DBMS_DEBUG API is released the best manner of setting a
breakpoint if the execution cursor is not in the program where the breakpoint is, still is to
scan the code. It is necessary to find an executable line appropriated to be set as a
breakpoint, and use this line’s number in set_breakpoint_fullinfo* or set_breakpoint_at*.
Yet, the parsing done in this procedure or more exactly in get_first_exec_line* (called by
set_breakpoint_at*), has to be reviewed and improved. In the meanwhile it has been put
aside because there are too many cases to handle, and the size of this project doesn’t
leave space to solve this parsing problem.

When debugging a program, a very useful function is the ability to get information about
the runtime, the current program and especially information about the program stack. In
the API for CORUS_DEBUG all of these functions are implemented, and even the ability
to set the value for the global variable l_program_info (removed in the reviewed
version). This was shown to be useful, for instance to call some procedures or functions
that depend on this information, e.g. to call get_pvalue, set_breakpoint, etc.

dbms_debug.print_stack is a procedure that let the user see the program stack, referred to
in this project also as back trace. The program stack is stored in an index-table in CD,
namely the g_backtrace_table*. From this table the frame number can also be read
became important when reading and setting the values of variables.

What is important in order to access and read variables, is to keep track of the frame
number and of the namespace when the variable is a package variable. The default frame
number for where the execution cursor is located is 0, which is a copy of the frame
number that can be read from the back trace table. This did not turn out to be as simple as
one could initially think, in order to make this functionality transparent to the user.
Therefore the user has to read the frame number from the back trace table.

-- The default case for current program
cd.get_value(‘var_nr’);

 -- Returns
 var_nr is 4711
 4711

Local
variables

Program
context

47(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

A variable that is in a program unit that is not the current one

cd.get_value(‘var_nr’);

 -- Returns
 no such var/parm

-- The frame number is needed.
-- The frame number is the same as the entry number

 cd.stack;
 -- Read the frame number out of the stack table
 cd.get_value(‘var_nr’, 2);

Setting the values of variables has the same problem. It requires that the user must be
careful if he or she wants to set the value of a variable and to see whether the name of this
variable exists somewhere else in the scope of the programs in the back trace tables.
Thanks to the implementation of dbms_debug.set_value, the assignment of a value for a
variable is just like an ordinary PL/SQL statement, for example for the variables var and
txt:

var := 10; or txt := ‘Hello’;

The assignment statement is a parameter that has to be set as a string, which means
between apostrophes, as in this other example to set a field in a record type:

‘my_rec.some_fld := “new value”; or
‘my_rec.some_fld := ‘new value’;

Handling package variables was a challenge since some of the tested debuggers couldn’t
show or set the value for this kind of variables. After studying and understanding how
DBMS_DEBUG is built and how it works, it is near at hand to guess that the cause of
why these products lack this functionality is that they have missed something in doing
this study, either for having to little resources or the patience and perseverance this study
requires. This functionality was of special importance because Corus QL uses package
variables, also called global variables, in the integration engine. This is a very important
and fundamental feature for this project. Fortunately in the CORUS_DEBUG API
accessing, reading and setting package variables is possible.

The crucial part to achieve the capability of accessing, reading and setting package
variables is the namespace. This parameter is silently set by CORUS_DEBUG, so the
user doesn’t need to hold track of it. However, there is a problem that might occur. It is
caused by the fact that not all the developers declare package variables only in the
package specification file, but also in the package body. Then it is necessary to set the
namespace value manually, like in the following examples:

cd.get_pvalue(x_in_body); -- declare in the package body
 or
 cd.get_pvalue(x_in_body, 1); -- declare in the package spec.

Until this point, what has been discussed is the implementation of the procedures and
functions for: preparing and starting a debugging session, reading and scanning the

Package
variables

Execution
control

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 48(78)

 48

source code, setting breakpoints, reading and setting variable values, reading runtime and
program information. The remaining parts are very important for any debugger, namely,
the procedures and functions that actually control the execution of the program being
debugged. In addition, it remains to discuss about watchpoints and some help procedures
that make CORUS_DEBUG capable to be used by a Java application.

The central parts of the ‘execution control’ procedures (also called as step-procedures):
step, step_in, step_over step_out, trace_out and finish are the break and information flags
that are forwarded as parameters to the continue function in dbms_debug. The
information flag has been set to 14 as default in order to request all the information that
can be retrieved when calling dbms_debug.continue function (gives stack depth,
breakpoint and line data). There is no need founded to request just part of this
information, so it has been assumed that these three different flags must exist for
consistency reasons. These ‘step-procedures’ are consequently a sort of alias for different
calls to the corus_debug.continue procedure. corus_debug.continue forwards the
procedure calls to dbms_debug.continue with the right parameters, and makes some
control of changes in the runtime information. It then takes some measures depending of
these changes, e.g. returning a message telling the user that the program execution has
ended and the finish procedure can be called to get out of the Probe.

When a user attempts to execute step, for instance, the procedures described above set the
proper breakflags and pass the call forward to continue, which in its turn forwards the
call to the function continueF. The purpose of having a function doing this is that it also
can be directly called by a Java application. Figure 3.3 below shows the source code for
the reviewed version of this function.

49(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

Figure 3.3. Source code for function continueF in CORUS_DEBUG.

As expected, there are a number of help procedures in CD. Most of these procedures and
functions are aimed to make data accessible from a Java application, for instance to
retrieve the entries in the index-tables. There are also several procedure-function pairs,
which consist of a procedure and a function, called for instance continue and continueF,
that mostly do the same thing but differs in how they return or show the result. A function
of this type usually returns some message telling whether the execution succeeded or not.
The corresponding procedure displays the result information to the user that is using the
package. Having this set of procedures and functions gives the flexibility and callability
required to use CD straight away and to build some applications on top of it.

User support is given by the procedure help. It gets a procedure name as parameter and
displays or returns a description of the function provided, a usage-style description and an
example.

function continueF(breakflags in binary_integer,
 ret_msg out varchar2)--,
 --info_req_in in binary_integer default 14)
 return binary_integer as

--! To be called by java methods.
--! See also : 'procedure continue'

 l_ret_code binary_integer;
 v_reason binary_integer;
 v_reason_str varchar2(40);
begin
 if g_is_attached = true then
 -- info_req_in replaced by mask of breakflags
 l_ret_code := dbms_debug.continue(l_runtime_info, breakflags,

 0 + LineInfo + Breakpoint +
 StackDepth + OerInfo);

 v_reason_str := get_reason;
 if(l_ret_code = Success) then
 print_msg('Reason of stop: ' || v_reason_str);
 end if;
 return l_ret_code;
 else -- when not attached
 ret_msg := 'Debug session is not attached to any target
session.';
 return -1;
 end if;
exception
 when others then
 declare
 error_code NUMBER := SQLCODE;
 error_msg VARCHAR2(250) := SQLERRM;
 begin
 print_msg('Exception raised in continue');
 show_error(error_code, error_msg);
 ret_msg := ('Exception raised while executing:continueF. '
 || SQLCODE || ':' || SQLERRM);
 return -2;
 end; -- end of exception handling
end continueF;

User
support

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 50(78)

 50

The last feature to discuss is watchpoints which is a much desired feature in any
debugger, it is also one of the most difficult to implement because of all the background
work necessary. It has been skipped in CORUS_DEBUG for two reasons, the first one is
the short time for the project, and the second one is that the coming DD version will
possibly have some functionality for this. A possible approach is to implement a pooling
procedure, that executes pooling over the programs in the stack looking for changes in the
variables listed or marked as watchpoints.

3.4.3 Features and procedures provided by CORUS_DEBUG
As mentioned earlier in 3.4 CD is a wrapper package hiding the implementation and
functionality of DD. The features provided in the command-line debugger are listed in
Table 4. The public user-friendly procedures are grouped by the features they implement.

Table 4. Features implemented in the standalone debugger and mapping procedures.
Feature Mapping procedures
Initialization
and
synchronization

initialize (initialize the target session)
attach_session (attach the debugger session to the target session)
detach (detachs debugger session from the target session)
sync (synchronizes the debugger and target sessions)

Breakpoint set_bp or set_breakpoint (sets a breakpoint)
list_breaks or bpts (lists available breakpoints)
del_break (delete a given breakpoint)
disable_break (disable a given breakpoint)
enable_break (enables a given breakpoint)

Execution
control

step (executes to next line)
step_in (steps into the next called program unit)
step_over (executes to next breakpoint or to next return)
step_out (executes to next return)
trace_out (executes to next return, to leave the interpreter)
abort (aborts target execution)

Variable access
and
manipulation

get_value (gets the value of a local variable)
get_pvalue (gets the value of a package variable)
set_value (sets the value of a local variable)
set_pvalue (sets the value of a package variable)

Source
browsing

curr_source_line (prints source code of the current line)
show_curr_source (prints a portion of source code around the
current line)
show_source_procfcn (prints source code of a given procedure)
show_source_pkgbody (prints source code of a given function)
show_source_trigger (prints source code of a trigger)

Program
context

print_stack (prints the program stack)
print_runtime (prints the current runtime info)

Support help (prints usage for a given command, or a list of commands)

Watchpoints

51(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

The complete CORUS_DEBUG API with the parameters lists for each procedure in the
standalone debugger and the web application is found in Appendix A. For further details
about CORUS_DEBUG contact Corus Technologies11.

3.4.4 Facts about CORUS_DEBUG API.
The CORUS_DEBUG API was first composed of two packages, one that maps most of
the procedures in DD and one that handles deferred breakpoints called BPT_HANDLER
(BPT). The latter package was discarded during the reviewing of the project. The user-
defined type source_vc2_table created and used in the first version of CD (the package
that resulted of the study of DD) has been replaced with the procedures
show_source_procfcn, show_source_pkgbody and show_source_trigger.

The final version of CORUS_DEBUG contains 72 procedures and functions out of which
35 are in the public API. The public procedures are intended to be used directly as a
command-line debugger.

The features implemented in CORUS_DEBUG are:

• Initialization
• Session attaching
• Turning on and off the debug mode of a session
• Setting, deleting, enabling, disabling and listing of breakpoints
• Step, step in, step over, step out, trace out and abort execution
• Access and ability to set local variables
• Access and ability to set package variables
• Source code browsing of current executing program, procedures, functions,

package specifications and package bodies and triggers
• Stack information
• Runtime and program information
• Usage help with examples

3.5 Design and Implementation of the web based PL/SQL
debugger

The final application, the graphical debugger, have grown up in mainly three steps or
three versions. In each of these versions improvements has been done in comparison to
the prior version. The denominations for these versions are test version, applet version
and servlet version.

3.5.1 CORUS_DEBUG API - the base component
The basic component of the final and the intermediate versions of the graphical debugger
is the CORUS_DEBUG API. The complete package specification is found in Appendix
A and the public procedures in Appendix B.

11 Corus Technologies web site: www.corustechnologies.com

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 52(78)

 52

3.5.2 Technologies (SQL, PL/SQL, JDBC, Java servlets)
For consistency reasons, the technologies and programming languages utilized in the
development and implementation of the web based debugger must be listed and their
selection motivated.

SQL was used among other motives to formulate and execute queries on the database.
For instance, to read the source code of the program units, to create the command help
table, to give the right grants to users, etc.

PL/SQL is an obvious element used to create CORUS_DEBUG and test program units.

JDBC was chosen as the only technology to connect to the database because the other
alternative, SQLJ, is not appropriate since the latter technology is for static calls.

The choice of using Java applets has probably caused some readers of this report to ask
themselves: why use applets if the goal is to make a graphical implementation with
servlets? The answer is that the choice to implement an applet debugger was first based
on the fact that once the user’s browser has loaded the applet the user will remain in the
same page during the remaining time of the debugging session. On the other hand,
applets offer a wider gamma of elements to use than HTML, they are easier to
implement, and the look and feel of the GUI can easier be changed and improved later
on.

The requirement of using Java servlets is mainly for the possibility of integrating the
debugger into Corus QL’s framework. Besides, the users browsers only need to
understand HTML and don’t need to have a JRE (Java Runtime Environment) installed
on his or her machine, which is a requisite in order to run applets. Furthermore, the
probable need to make some static adaptations (for example of global variables, etc) in
the servlets codes may be done at installation time of Corus QL.12

Javascript was supposed to be used, among other functions, to generate a linkable
dynamic tree of objects. This object tree was supposed to improve source browsing.

3.5.3 User interface, control and interaction models
As an ambition, a state-of-the-art final graphical user interface using most of the adequate
graphical elements available was the goal. Though, due to constraints of time for the
project more modest GUIs were implemented.

The principles for user interface design recalled in [15] were taken in consideration when
decisions were taken about the layout and what graphical components to use. For
example in the servlet version, user familiarity was followed by trying to imitate the
toolbar that some GUIs in most of IDEs provide. In the applet version, the use of pop-up
windows (modal windows) was used for parameter reading, etc. The other principles that

12 Corus QL which is used for system integration generates PL/SQL and Java code base on a general data
model of the participating systems of the integration.

53(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

have been followed with different but acceptable grades of success were: consistency
(operations are activated in same alternative ways), user guidance (help function
available) and user diversity (support command line and buttons). Though, the principle
of minimal surprise couldn’t be followed due to the problems with synchronization
between debugger and debuggee. The user has to know previous to the use of the
debugger, when, why a session should hang, and how to make them running again.

Regarding the user interaction model used, two styles were applied: form fill-in (with the
forms in the servlet, and in the popup windows in the applet) and command language.
Both versions have the ability to parse and execute code according to a SQL client, in a
similar way that it is done from a console client.

3.5.4 Gradually incremented GUIs.
The strategy chosen for implementing the graphical application was to use a gradual
incrimination approach. Starting with a very simple Java application with just some
commands, followed by an applet holding both connections (debugger and debuggee
connections) was the next step, which if successful was accorded to probably be the last
version. The final version should be a single servlet, if possible, holding both connections
and at the same time offering an acceptable user interface as similar as possible to a state-
of-the-art debugger. If necessary, which was understood at an early stage but accepted
and adopted first when reviewing the project, a set of two or more servlets are acceptable.

A database connection obtained with JDBC corresponds or is equivalent to a database
session. This equivalency implies that in the descriptions below these concepts are used
as synonyms.

3.5.4.1 The test version
The first deployed program’s purposes were:

 To demonstrate and test the “call-ability” of the CORUS_DEBUG API from a
Java application

 To test if debugging of PL/SQL programs by using CORUS_DEBUG was
possible to do from a Java program.

To demonstrate these two assertions it was decided to be enough to do a program that
could create a database connection (having this way a database session) and that could
call some procedures from the CORUS_DEBUG. With a set of two instances of this
program opened, one corresponding to the target session and one to the debug session, a
debugging session could then take place. One of these database connections or sessions
(target session) should be able to make an initialization to be debugged, and the other
(debug session) should be able to attach itself to the first one (target session).
Furthermore, at least one program might be executable in the target session. And in the
debug session reading the source code, doing single-steps should be possible to do and
maybe even setting breakpoints. A command parser was not required for this test version.

This ‘alpha’ version confirmed the assertions above

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 54(78)

 54

3.5.4.2 The applet version
The purpose of this implementation was principally to test some different graphical
interfaces and to implement methods to make the procedure calls necessary to debug a
PL/SQL program using CORUS_DEBUG in the base. If possible, these methods should
be transformed into classes, making it possible to achieve extensibility and modularity by
writing new classes for new commands or functions for debugging. Even other types of
non-debugging functionality could be added to the GUI.

The Swing API13, was chosen for implementing the applet version, due to its properties
over the almost deprecated AWT14 API. Both are part of the Java Foundation Classes
(JFC) -- the standard API for providing graphical user interfaces.

First, an applet should be done to have the same behavior as when debugging from
SQLPlus15 and – as contrary to the test version – should permit the usage of all the
debugging functions implemented in CORUS_DEBUG. An applet following this
requirement was deployed. This applet can run either a debugger or a debuggee session
and the counter-session is run from a console using SQLPlus. This applet shows that the
use of CORUS_DEBUG can be accessed and combined from different type of SQL
clients, i.e. having the debuggee in the applet being debugged from a database session in
SQLPlus.

Second, an applet with the capability of holding and handling both sessions from within
the same graphical interface was implemented. This second implementation of a
debugger-applet was supposed to hide the initialization, attaching, and synchronization
steps between the debug and the target session. After this initialization procedure the user
should be able to continue the debugging session as he prefers.

A command parser could also be done in this part of the implementation phase, but
testing the interactivity with help of buttons, menus, lists, dialog windows, etc should be
the main target when designing and implementing this type of debugger interface.

A great part of the time for this project was dedicated to do this second applet. The
problem that emerged was that once the debuggee started to hang (which, of course was
expected), there was no way to get to the debugger connection or, in other words, to get
to the graphical elements that affect the debugger session (connection). Swing was used
as the graphical package to implement the GUI. Different approaches were taken to
tackle this problem:

• One single GUI that contained all the graphical elements (TextAreas, Labels and
Buttons). This GUI didn’t have any structure of subclasses or components
containing other components. It was a simple and straight ahead approach.

13 “Swing” was the code name of the project that developed new components for the Java Foundations
Classes (JFC)
14 AWT stands for Abstract Window Toolkit. The AWT is part of the Java Foundations Classes (JFC).
15 SQLPLUS is an interface program to execute sql statements and pl/sql procedures.

55(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

• Another approach was to have two threaded Panels, each of them holding a
connection. The main class started both panels’ threads and they were expected to
be run concurrently and independently of each other. That was not the case. The
entire applet already hung when the debuggee was trying to execute debug_on.
These panels contained a TextArea for output to the user, and a TextField and
Buttons combined with popup or ModalWindows for user input.

• The next approach was implemented with four threaded objects. Two threads for
the panels, and two for the database connections. The same behavior occurred.

• The last approach was to have each query execution in JDBC executed within a

thread. Even this approach ended without success.

After several weeks deploying and testing the approaches listed above a set of three
articles regarding Swing and Threads were discovered. This article series is available
online in [20], [24] and [25]. Then, a few numbers of attempts were done.

• This time, the SwingWorker class described and exemplified in the articles just
mentioned was used. Unfortunately even these versions without success.
Because the project was running out of time it was decided not to make more
attempts to solve this concurrency problem. Nevertheless, the idea that this
problem can be solved still remains.

Two different applets that can be run from within the same HTML page or from two
different HTML pages was the next step. This step was though skipped in order to
continue with the remaining parts of the project. It was decided that if wished or
necessary these new approaches could be done in a posterior project based on this one.

3.5.4.3 Servlet version
Recall that the main goal is to confirm and demonstrate whether the entire chain from DD
through CD and with a front-end GUI implemented with servlets is possible or not. Most
of the implementation of the servlet version for the GUI was done during the revision of
the project. The technique called refactoring was applied as well as modularity by reusing
and rewriting parts of the code used in the applet versions.

The same model and the same principles for designing user interfaces that were applied
in the applet were applied here. The difference is the difficulty of having popup windows
for getting the parameters for the functions that are to be executed. In addition it was
decided that using a toolbar with descriptive icons for the different debugging functions
was much better than having a lot of labeled buttons as it was done in the applets.

A major difference is that at this point of the project it was accepted to have two browser
windows open for the debugging process; one for the debugger and one for the debuggee.
It is accepted because running an application from a web browser has a lot of limitations
and since CORUS_DEBUG is also used as a standalone console debugger, the target

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 56(78)

 56

users are or will be used to have two different windows when debugging. In addition this
measure is consequent with the principle of user familiarity.

Figure 3.4 shows TgtLoginServlet which permits giving as parameters username,
database name, port nummer used by the database for connections and password.

Figure 3.4. Interface for the debuggee logging servlet TgtLogginServlet.

Figure 3.5 below shows the part of code that generates the output illustrated in Figure 3.6
and illustrates the easy accomplished manner for setting together commands.
commandLine which is central in DebuggeeServlet is manipulated to let three other
objects to actually execute the command version, selfcheck and initialize. The first of
those command objects display directly their outputs via a DbmsOutputToServlet which
is a modification of the example found in [9]. Finding a way in which the output of stored
procedures could be accessed in a Java object took long time without success;
fortunately, during the revision of the project the mentioned example given by Thomas
Kyte, who is a guru in Oracle databases, was found. It permitted to directly access and
retrieve the output results of the procedures in CD whenever wanted or necessary. The
last command’s result is displayed by DebuggeeServlet.

Figure 3.5. Code example for execution of initialize.

}else if(command.equalsIgnoreCase(CMD INIT)){
 commandLine = new String[1];
 commandLine[0] = "version";
 executeCommandAndDisplay(commandLine, out, connection);
 commandLine[0] = "selfcheck";
 executeCommandAndDisplay(commandLine, out, connection);
 commandLine[0] = command;
 executeCommand(commandLine, out, connection);

 // Save target session id in session object
 if(queryResultVector.elementAt(1)!= null){
 this.targetID = (String)queryResultVector.elementAt(1);
 session.setAttribute(ATTR_TGTSESSIONID, this.targetID);
 }

57(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

Figure 3.6 shows DebuggeeServlet after the user has logged into the system and has
pressed the init button. The command init can be given by pressing the init button or by
typing init in SQL stmt text area and then pressing the Execute button.

Figure 3.6 also depicts the interface provided by the servlet for the debuggee, called
DebuggeeServlet. On the top is the output of TgtBannerServlet showing the name of
the user and the database to which the user is connected. Below there are some icons for
executing alter session, alter [object], initialize, debug_on and for three test programs.
There is also a button for executing alter session, initialize and debug_on, all at once. The
icons are kept to demonstrate CORUS_DEBUG; in a release version alter session and
initialize will be done automatically and transparently when logging in.

Two strategies have been implemented for parameter reading. One strategy is to have a
number of textfields. Each textfield maps to one argument of the debugging functions.
The second strategy is to have a textarea in which commands can be written just in the
same way as in a console. A parser takes care of these parameters and creates a
commandLine array. This command line array is a String array which is passed to
command objects, each of them handling one debugging function. Each new function to
be added to this interface has to have the ability of receiving its parameters in a String
array. This model for passing parameters to objects that will execute some query on the
database was chosen because handling an array is a pretty straight forward way to pass
indexed parameters. In addition if some additional parsing is to be done, it is easier to
have an array with String objects to do that. Other alternatives as passing tuples of
type=value has been considerated and are a good option. This alternative is noted for
future development where knowing the types of the parameters is crucial.

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 58(78)

 58

Figure 3.6. Output of DebuggeeServlet after executing initialize.

The result of initialize is the target session id which in the example illustrated in Figure
3.6 has the value of 0099003A0001 and it will be used in the DebuggerServlet
(debugger) in order to attach it to the DebuggeeServlet (debuggee). Figure 3.7 shows the
result of DebuggerServlet after is has been attached to the debuggee. This servlet has two
rows with icons for each command and four textfields for the parameters. It also has a
text area for typing the commands just like in a console. The way in which
DebuggerServlet and DebuggeeServlet are designed is similar. The difference is the
composed commands inside them (without knowledge for the user) and the number of
commands that can be executed in each of them.

59(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

Figure 3.7. Output of DebuggerServlet after attaching to debuggee in Figure 3.6.

In a similar way the results of the other commands are either directly displayed by the
command objects or by the servlet.

3.5.5 Environment
For the tests, deployment and evaluation in this project the following software has been
used: an Oracle Database Server v.8.1.6, some other database administrating and
programming tools from Oracle as SQLPlus and DBA Assistant, an Apache Web Server,
the Java Development Kit (jdk) v.1.2.2 with Java Servlet Development Kit (jsdk) v 2.0 in
the first version. The test and trial versions of the different debugging tools that were
used in the market survey are the ones in the accompanying CD to [13].

During the project’s revision the main used tools and programs are an Oracle Server 10g,
the Java Development Kit Standard Edition (j2se) v.1.4.2_04 and the web server used is
the built-in server in the Oracle Server. A Mozilla web browser v 1.7 was used for testing
the functionality and layout during the revision.

3.6 System Architecture
After presenting the details of the web based debugger at a lower level, it remains to
present a general description of the system, which models that have been adapted for
designing and implementing system control, user interaction, user interfaces, user
support, model pattern for achieving modularity and extensibility and others.

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 60(78)

 60

It is suitable to start by listing some use cases which will be a complement to the
requirements listed in Chapter 3.3.

3.6.1 Use cases
The use of use cases is adequate to develop an understanding of the dynamic relationship
between a system and its external environment as exposed in [15]. Use cases help to
achieve understanding of the system usage and this is also the case in this project.

Table 5 lists five use cases. The use cases A-C are fundamental and sufficient for this
project, they permit to determine whether the project’s main goal is attainable or not. Use
case E is used to demonstrate the availability of CD and the web based debugger.

Table 5. Table of use cases.
Case Program unit Description
A Procedure A standalone procedure or function.
B Package A package with global and local variables.
C Trigger A trigger.
D Composed Several program units that are called from each other.
E Database linked Debugging of a program unit through a database link.

These use cases was also used for the verification phase of the system.

3.6.2 System structure
The web based debugger is a client-server application having DD at the bottom of the
server side. On the client side there are three alternatives provided: dynamic HTML
pages (generated with servlets, or another technologies such as JSP and Java Beans); a
Java applet and a console client that is enable to execute stored procedures and SQL
statements. In between there is CD that is a wrapping component around DD. This
package comprises the interface towards the different clients. The clients are composed of
a set of Java servlets, or a set of Java objects for the applet, or a SQL enabled client that
execute a subset of CD which builds a standalone console client. This system structure, of
which the OSI model16 is a good example, is better described with a model that
Sommervile call the abstract machine model but could also be called layered model in
[15].

Figure 3.8 illustrates the structure that now has been described. In the middle of the
model is the database that has the debug layer, Probe.

16 The OSI model (Open Systems Interconnect) model describes seven defined layers in a network
operating system. It was created by the International Standards Organization (ISO)

61(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

Figure 3.8 System structure, applying the layered model

How the system is controlled is given by the call-return model for many reasons. The
whole system is sequential; the control starts by a subroutine call at the top of a
subroutine hierarchy (by a command line, or a button press), through subroutine calls in
the lower layers, all the way to the lowest layer where data and Probe reside.

The entire system is composed of, or can be seen as divided into modules. Each of these
modules represents a sort of a “white-box” in which we expect a certain output as
response to a determinate input. An example illustrating the control of the system is given
in Figure 3.9 below.

DB

CORUS_DEBUG

iCODE

DBMS_DEBUG

”Probe”

Console Debugger Applet Debugger

DEBUG LAYER

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 62(78)

 62

Figure 3.9. Example of system control and program execution at the different layers by a
servlet client.

Figure 3.9 also illustrates the data-flow of the system when a command is executed from
a HTML page via a Java servlet and other Java objects all the way to DBMS_DEBUG.
The input in this example can also be created in an applet and the data-flow is almost the
same.

Figure 3.10 shows the complete system with the three types of clients. Type 1 is a
console client that utilizes CD as a command-line debugger. Type 2 is an applet. The
latter client downloads the applet from a web browser at start, and then it opens two
connections to the database and proceeds with debugging from the web browser directly
to the database. Type 3 is conformed by servlet generated HTML pages. The user sends a
request to a web server and the URL that is sent corresponds to a servlet. The servlet then
makes the connection to the database and sends back an HTML page to the user. The
debugging process follows the same request-response paradigm. The difference against
type 2 is that the debugging process is actually done from within the web server, where
the database connection objects reside.

DebuggerServlet:
Create a command line (set_break(14))
and pass it to a SetBreak object.

User input:
set break button is pressed, 14 is the
parameter given.

SetBreak object:
Executes through a JDBC connection
cd.set_breakpoint(14).

CORUS_DEBUG:
Adapts the call to cd.set_breakpoint and
forwards it to v_result := set_breakpointF(14,
fuzzy, iterations).

set_breakpointF makes the actual call to
DBMS_DEBUG with:
l_ret_code := dbms_debug.set_breakpoint
(l_program_info, 14, l_bpt_nr, fuzzy,
iterations).

DBMS_DEBUG:
Executes the call interacting with the debuggee session and the interpreter and returns a constant
value as result and if successful sets l_bpt_nr the number of the breakpoint just set.

CORUS_DEBUG:
Receives the result of the call to
dbms_debug.set_breakpoint.

Sends the result to the object that made the call,
or displays the result if it was called by a SQL
client.

SetBreak object:
Receives the result of the call to CD and passes
it to DebuggerServlet

DebuggerServlet:
Prints the result that SetBreak object stored in
queryResultVector.

User output:
A new HTML page was generated displaying
the breakpoint number or an error message.

63(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

Figure 3.10. Entire system with the three types of clients accessing CORUS_DEBUG.

3.6.3 Class diagrams
Figure 3.11 shows a general class diagram for iCODE. The Command class is an abstract
class that has two abstract methods to be implemented: performCommand and
performCommandAndDisplay. By implementing these methods new subclasses can easily
add functionality to iCODE either by using CORUS_DEBUG for calls to stored
procedures or executing independent SQL queries without using CORUS_DEBUG.
TgtBannerServlet and DbgBannerServlet classes include information about the user and
the database that he or she is connected to. These objects can also be used to implement
filtering if necessary. Instances of the DbmsOutputToServlet class are instantiated by all
subclasses to Command class and by DebuggerServlet and DebuggeeServlet.
It is necessary to have access to the database output generated by stored procedures that
use the DBMS_OUTPUT. This is the only way to display output from the database server.
Most of the presentation logic of the application is located and implemented in
DebuggerServlet as well as some of the business logic.

Database server

 CORUS DEBUG

 DBMS DEBUG

Client browser
running an applet

Client browser
running servlets
via html pages Web server

(Holds both database
connection objects)

(Holds both database
connection objects for
the servlets)

The applet is downloaded

Web server

The applet run the debugger
holding both sessions

A Request to a servlet is send

The servlet thread is started
a new html page is send

The servlets threads are
started and new HTML pages
are send back to the client
with the debugging results.

DB Server

 CORUS_DEBUG

 1

 2

 3

Request a html page
containing an applet

SQL>

SQL enabled client

debugger session

debuggee session

debuggee session connected via a database link (alternative)

The debugger and debuggee sessions may be opened in different DB servers.

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 64(78)

 64

Figure 3.11 Class diagram for the web based debugger using Java servlets.

Documentation about the classes in the web application implemented with servlets is
found in Appendix C in the well-known javadoc style.

3.6.4 Modularity and functional extensibility
One of the requirements was that the servlet should permit modularity and extensibility in
functionality. As seen in Figure 3.11, the strategy or implementing a Command model
where each sub class to the Command class takes independently care of a function,
permits to easily extend or change the functionality of the web application. For example,
to add the functionality of browsing the source code of procedures or functions
cd.show_source_procfcn can be executed. The necessary steps to introduce new
functionality into the web application are described below.

A new class that extends the Command class must be implemented. This class should
completely implement at least one but preferably both of the methods
performCommandAndDisplay and performCommand depending on the function of the
command. To introduce a new command at least steps 1-3 in Figure 3.12 must be
followed. Step 4 is optional for inserting an icon that executes the command. It is also
optional but advisable to add a constant variable in iCODEdefinitions interface to be
directly used in the servlet and other classes, and to avoid mistyping. It also may facilitate
a way to hold track of all new commands. In the example below, CMD_SOURCE_PROC has
been inserted in iCODEdefinitions.

TgtBannerServlet

TgtLoginServlet DebuggeeServlet

DbgBannerServlet

TgtLoginServlet DebuggerServlet

Command

Alter

Init

DebugOn

Attach

Stack

SetBreak

GetValue

.....

.....

logg in the
debuggee

logg in the
debugger

Includes
connection
info

Includes
connection
info

+ checkValidity: boolean
+ performCommand: Vector
+ performCommandAndDisplay:
Vector

DbmsOutputToServlet
display database output

Executes

Executes

65(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

Figure 3.12 Piece of code necessary to add a new function to the servlet debugger.

3.6.5 GUI design
Regarding the technologies chosen to implement the GUIs for the clients in this project,
the reasons for having chosen Java applets and Java servlets are explained in Chapter
3.5.2. The parameters taken into consideration when deciding whether a GUI in
command line fashion, or a GUI with buttons, menus and forms should be chosen, are

Part of the source code for method performCommandAndDisplay in SourceProc class:

performCommandAndDisplay(String[] cmdArrayin, java.sql.Connection
connection, java.io.PrintWriter out) {
 String query = "{call dbg.show_source_procfcn(?)}";
 String procName = cmdArray[1].toUpperCase();
 …………………
 if(checkValidity(cmdArray)){
 try{
 deb.DbmsOuputToServlet dout = new
deb.DbmsOuputToServlet(connection);
 dout.enable(1000);
 cstmt = connection.prepareCall(query);
 cstmt.setString(1, procName);
 cstmt.execute ();
 cstmt.execute();
 dout.show(out);
 dout.disable();
 dout.close();
 }catch (SQLException e) {
 vector.addElement(“SQLException in “ + className");
 vector.addElement(e.getMessage());
 }finally {
 if (cstmt != null) try{ cstmt.close();}
 catch(SQLException ignore) {}
 }
 }
The method has performCommand also to be implemented

--
In DebuggerServlet three methods are modified (total: 7 lines).

In method initcommandTable
 commandTable.put(CMD_SOURCE_PROC, new SourceProc());

part of the code inserted in doRealProcessRequest
 if(command.equalsIgnoreCase(CMD_SOURCE_PROC)){
 executeCommandAndDisplay(commandLine, out, connection);
 displayResultsOnScreen = false;
 }

Edited code inserted in printControlForm. This part is optional if an icon is wanted in the
toolbar.

 out.println("<input name=\"command\" type=\"image\"
value=\""+CMD_SOURCE_PROC+"\" title=\"Show Current Source code\"");
 out.println("src=\"../icode/images/sourceproc.gif\" alt=\"[Show
PROCEDUREs Source code]\" width=\"32\" height=\"32\" border=\"0\" >");

 2

 1

 3

 4

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 66(78)

 66

already described in Chapter 3.5.4. An incremental implementation and evolution of the
GUI is also described in Chapter 3.5.4.

3.6.6 Security and performance
Neither security nor performance was an issue in this project. One of Corus QL’s
components is a web application called NAVAJO. This application is designed and
designated to handle data access and granted roles and properties. Therefore the aspect of
security in the scope of this project has been limited to the user granted roles.

3.7 Industry version of CORUS_DEBUG
The execution of this Master Thesis project provided Corus Technologies with a lot of
knowledge about how DBMS_DEBUG can be used and how a web based debugger can
be built. This knowledge, the difficulties encountered and alternative solutions, the
application and control models, the first version of CORUS_DEBUG, the different
approaches of the applet debugger and mode, were noted and documented in the first
draft of this thesis report.

Based on these notes, the report’s first draft and a study of how a PL/SQL debugger can
be built in the core of Corus QL, a completely new version of CORUS_DEBUG was
implemented in 2001. This version, which properly can be called industry version, was
integrated into Corus QL. This integration, as expected, implied the creation of new
database objects in order to interact and cooperate with the rest of a Corus generated
environment. A complete user manual with details of how to use the debugger within a
Corus generated system was written, as well as an online version.

There are differences between the first version and the industry version. Most of the
dependencies between procedures were removed. Source parsing, abstraction to the user
and error report were improved. The help package for handling pending breakpoints was
removed, because parsing was improved. Alias procedures for most of the procedures
were added to simplify the use of the package. Database objects were created. Finally, a
new function was added to one of Corus QL’s tools in order to use the debugger, since
the alter statement changes the mode of the current session, which is an important detail.

67(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

4 Analysis
Once the design, implementation and system architecture has been exposed an evaluation
of CORUS_DEBUG and especially of the web based debugger must be presented. Even
though testing has been continually done during the different phases of the project, a final
evaluation has to be carried out.

4.1 Use Cases
The use cases presented in Chapter 3.6.1 have been shortened to just four cases since
database links have not been covered in the implementation in the final version of
CORUS_DEBUG.

Table 6. Test use cases focused in the evaluation phase
Case Program unit Description
A Procedure A standalone procedure or function.
B Package A package with global and local variables.
C Trigger A trigger.
D Composed Collaborating program units.

4.2 Evaluation model
The technique used in the verification and validation (V&V) phase was software testing.
Use case based testing is the appropriate testing model for this project because the target
users of the applications of this project are very specific, namely developers using Corus
QL, and that the known target program units are procedures, packages and triggers
written in PL/SQL.

Defect testing was applied in order to carry out a component evaluation and integration
evaluation. The objective was to see whether the goals of this project were achieved or
not and to get a qualitative measuring of how well the requirements listed in Chapter 3.3
were fulfilled. The deployed web based debugger is not fully complete and has not been
integrated into Corus QL’s framework, therefore necessary acceptance tests has been left
until a later phase in the project.

4.3 Component evaluation
The final application is the result of collaborating components of which the basic and
most important is CORUS_DEBUG. The other results are the AppletDebugger and
DebuggerServlet.

The first type of test to carry out is structural defect testing. Therefore, each procedure in
CORUS_DEBUG has been tested with satisfactory results in the use cases. The test
programs used were simple programs that easily permit the demonstration of control
execution and the access and manipulation of program context information. The obtained
results have resulted in changes in CORUS_DEBUG and new iterations of the testing
phase. The final test results have been noted for further development and improvement.

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 68(78)

 68

Unfortunately, the final tests for the AppletDebugger could not be run since the applet
use the first version of CORUS_DEBUG done in spring 2000. Nevertheless the results
noted from that date show that the applet hung with no manner for the user to interrupt
this state or retake program control when both the debugger and debuggee sessions were
handled by the applet. On the other hand if the debuggee was run in a console client, the
applet was able to control the target session and to show the results for the user. The
reason for why the applet hangs and the user loose control of the debugging is apparently
some issues that Swing has handling threads. Despite different approaches to solve the
concurrency problem handling the debugger and debuggee sessions, and the information
found in [20], [24] and [25], this problem could not be solved within the stipulated
timeframe.

iCODE, which is the name for the application composed of a set of servlets of which
DebuggerServlet and DebuggeeServlet are the central ones, has also been tested with the
same use cases listed in Chapter 4.1. The results were also satisfactory with this type of
client. The behavior of the iCODE differs from the way CORUS_DEBUG behaves when
used directly from a console. The main differences are that the output is not as clear as in
an SQL environment and that the feeling of having a web window that hangs is not as
natural as in a console window. When using a graphical interface with a window there is
always a feeling that something is wrong if a window just hangs, but it is assumed that
the users will get used to this behavior.

4.4 Integration test
How the AppletDebugger and iCODE work together with CORUS_DEBUG has also
been tested. The integration testing was down according to the top-down model.

Since the final GUI has been gradually incremented it wasn’t necessary to run special
tests for the integration testing phase. The first GUI version from a simple Java
application already showed the connectivity between a Java application and
CORUS_DEBUG.

The results were negative with the AppletDebugger due to problems handling threads that
are caused by the implementation in the javax.swing package. With the servlets
compounding iCODE the results were, on the other hand, satisfactory and positive. What
have been tested later on were the different ways of interaction between iCODE and
CORUS_DEBUG. Accessing directly the output generated by DBMS_OUTPUT
package, retrieving single results in ResultSets and retrieving complex results from
VARRAYs were also tested.

4.5 Results of evaluation
A good overview of the results for the final web based debugger is provided in Table 7.
The results are organized according to the requirements of the application and the
features/functionality desired.

69(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

Table 7. Results of the evaluation
Feature/function Result description
Initialization Achieved.
Smooth termination Ambiguous. Not completely clear but realizable.
Synchronization Achieved. Necessary even to get out of the interpreter.
Control execution Achieved, may introduce some ambiguity due to different

behavior compared to other debuggers.
Breakpoints Achieved. Setting and managing of breakpoints at specified

valid line achieved. Breakpoint setting with program unit name
as parameter left for future work; parsing improvement
necessary.

Source browsing Achieved.
Local variable
accessing

Achieved. Local variables can be accessed and set. Though
:new and :old cannot be accessed.

Package variable
accessing

Achieved. Package variables can be accessed and set.

Program context Achieved. Runtime, stack info accessible.
Easy of use Achieved. Applied user familiarity, fill-in form and command

line control.
User support Built in help functionality was implemented. Error messages for

procedure/function failure without further instructions.
Components
connectivity

Achieved. CORUS_DEBUG can easily be called and used by
Java applications.

Extensibility Achieved. Easy extension of functionality.

4.5.1 Discussion
In the tests no response-time or resource allocation measuring has been done. The type of
performance tests realized in [16] - and that might be expected when testing a debugger -
were not done in this project. Performance tests have not been run because performance
is neither an issue nor are needed or applicable in the scope of this project. Response-time
and memory allocation are not important when debugging the type of programs that will
be debugged with iCODE or CORUS_DEBUG. Acceptance tests have been left to a later
phase in the development of iCODE.

The results of the evaluation tests show that most of the goals have been achieved. They
also show that improvements might still be necessary and that iCODE even though it can
be used for debugging at the current stage, should more appropriately be seen as a
prototype.

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 70(78)

 70

5 Discussion
The decisions made during the execution of this project and the development resulting
web application must be discussed and exposed as well as the choices done in the design
and implementation.

Overloading most of the procedures in CORUS_DEBUG was necessary in order to
implement call-ability and usability of the package from both types of target clients: a
console client like SQLPlus and Java applications. This property could be implemented in
separate packages, one for each type of client, or having a standard way to handle input
and output to and from the procedures. For instance, using the IN and IN OUT
properties of the parameters, but it could also cause the implementation to be more
complex and tedious, it would also affect the usage of the package from a console client.

A number of similarities and a major difference were noted between the functionality
provided by iCODE and CORUS_DEBUG, and the commercial debuggers used in the
market survey. The commercial debuggers are integrated in state-of-the-art IDEs
providing a lot more of functionality via their GUIs than iCODE does. But, on the other
hand, iCODE provides easy extensibility of functionality. Starting the debugging process
is easier and safer with iCODE than with some of the other debuggers; iCODE doesn’t
hang in a way that the user is forced to close the web browser or kill some process at OS
level. Killing processes at OS level was shown to be necessary with some other
debuggers. The major difference, which was one of the requirements, is the ability to
access and manipulate package variables which was not implemented by all the other
debuggers.

The conviction that all the advantages of using a graphical interface package like Swing’s
(javax.swing) could compensate all the time and energy invested will pay off at the end,
caused that the servlet application didn’t have enough resting time for its implementation.
Reusing the strategy of having separate classes for each command call, saved though
some time, demonstrating also that easy extensibility was achieved.

The final web based debugger run by cooperating servlets and command classes, has a
graphical interface with limited functionality and poor layout. It is due to limitations in
HTML. But the layout can be enhanced greatly with Javascripts or other techniques for
dynamic HTML pages. There was no time for making these enhancements in the layout.

A GUI design providing a layout as similar as possible to state-of-the-art graphical
interfaces, and at the same time providing a command-line control may not appear to be
necessary at first sight. It was implemented anyway for holding the user familiarity
property and to be consequent with the use of CORUS_DEBUG from a console client.

User support, which is a fundamental feature for any type of application, according to the
author of this project, was achieved and implemented in a similar manner as Java’s
command-line debugger jdb. Help functionality was implemented even though it wasn’t
really required from the beginning.

71(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

6 Summary and Conclusion
In this Chapter the difficulties, results and conclusions obtained during the
development of this Master Thesis are presented in short.

The verification of the thesis - as stated as the main goal of this Master Thesis
project- “the entire chain is realizable, from the database using a tailor-made debug
API on top of DBMS_DEBUG, via servlets and eventually JavaScript scripts, to the
graphical representation (in Chapter 1.3)” makes the main objective of this Master
Thesis achieved.

The market survey which was the first phase of the project resulted in ideas and
insights that later on, during the development phase, were proved and experienced.
They showed that the implementation of a debugger for PL/SQL would be a
challenge.

During the study of DBMS_DEBUG, which was very time and patience demanding,
an insight was gained: the main goal and part goals of this project needed much more
time and even more human resources than the available for this Master Thesis.
Therefore, due to the actual size and complexity of the project some limitations in
the required debugger features were done. Based on the studied material, the market
survey and the study of DBMS_DEBUG a list of requirements was produced for the
PL/SQL package and for the web application.

A PL/SQL package was implemented on top of DBMS_DEBUG, called
CORUS_DEBUG. This package hides the details concerning the variable and data
types necessary for a debugging session, holding the state and program context
information and controlling the debuggee program. The use of DBMS_DEBUG,
which is at the very bottom layer of this application is facilitated by
CORUS_DEBUG; resulting in a command-line debugger. It also provides functions
and procedures to be called by a Java application.

A web based application was finally implemented using Java servlets. This web
application provides a user interface for using CORUS_DEBUG. It’s has limited
functionality at its current state, but is designed in such manner that new
functionality can easily be added or modified.

A GUI can be provided with Java servlets, but in that case it needs enhancements, for
example with Javascript scripts to make a more state-of-the-art user interface.
Despite, the failed attempts of implementing a GUI with applets the idea that it is a
better alternative than servlets from the graphic point of view still remains.

API documentation of selected classes of the debugger is provided in Appendix C.

The complete documentation and the source code of the debugger can be requested
from the Corus Technologies or from the author.

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 72(78)

 72

Positive results were obtained in the evaluation phase of the project in which simple
programs were used for component and integration testing and to illustrate the
different features provided by the web based application and by CORUS_DEBUG.
Defect testing was performed in the evaluation tests.

Based on the difficulties, results and conclusions summarized above, the following
final conclusion is presented:

6.1 Limitations
The major limitation for this thesis project is the relative short amount of available time.
A project of this magnitude requires much more time and with preference more human
resources in order to produce a fancy professional state-of-the-art web based debugger.

Some limitations were done during the implementation phase of this project due to the
limited time for the project when it was carried out at Corus. Prioritizations in favor of
the most common features in debugger were done. Other limitations were done due to
lack of implementation in DBMS_DEBUG, as for example: access to:OLD, :NEW in
triggers, watchpoints functionality and access to bind variables. It has to be mentioned
and stressed one more time that the major limitation is the poor amount of available
information about DBMS_DEBUG.

Among the limitations due lack of time assigned for this thesis project, the following can
be mentioned: implementation of watchpoints, implementation of breakpoints set just by
program unit names, a better error messaging, and the most important was the integration
of iCODE into Corus QL’s framework. The latter limitation requires a deep study of
Corus QL and especially of some of its tools, in order to integrate iCODE in the core of
it. This study may also take some considerable time.

The size and complexity in designing and building an application as the one in this
project; the relative short time for this thesis project; and finally, the poor information
available about DBMS_DEBUG, are the cause for some of the limitations introduced in
this project.

Another limitation that has to be mentioned here is the difficulty that the Swing package
has with threads. There is, though, the possibility that the problem in this case is not
Swing but JWM working together with JDBC and hanging database sessions, as in the
case of the debuggee.

A web based debugger for PL/SQL programs based on Oracle’s debug API
(DBMS_DEBUG) is realizable with help of a wrapping package (CORUS_DEBUG)
which on one hand provides transparency from DBMS_DEBUG and on the other
hand provide full functionality to be used as a command-line debugger and that can
also be used as a debug API for java applications.

73(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

7 Further development
Design and implementation of a debugger requires a lot of resources. The complexity of
this task was experienced in this project. Porting over the functionality of a debugger to a
web application requires at an early stage decisions made regarding the architecture
model and technologies to utilize.

The web based debugger implemented in this Master Thesis can be used in different ways
in its current state. It can be used as it is, because despite its limited functionality and
simple GUI, it provides the necessary and enough functionality to debug PL/SQL
programs. It can be also used as a prototype together with the conclusions obtained and
the difficulties noted in order to build a new web based debugger in, with preference, a
development team with an application architect, and a couple of implementers and a
tester.

It may also be improved. Here follow some ideas for the next steps for improvement of
iCODE:

A source parser that returns the first execution line in the executable block of a
PL/SQL program unit is necessary. It should handle the special cases of triggers and
nested procedure inside PL/SQL packages. This parser makes possibly to set
breakpoint by giving the name of a program unit as parameter. For instance for a
procedure called break_at.

CORUS_DEBUG should be reviewed and tested to implement the access of
program units via database links. Working with different user schemas in the
database may also be improved. Handling user-defined exceptions and common
exceptions for setting breakpoints and for execution control are in the list of desired
features.

In order to implement watchpoints, pooling of the context program information and
of the program units listed in the program stack can be used.

A new model or pattern for concurrent execution that especially handles
asynchronous messaging when using the Swing package could enhance the GUI by
having an applet instead of generated HTML pages. In addition this applet can be
adapted to be also used as a Java application, implementing the debugger interface
in this way gives two applications instead of only one. The look and feel would also
be easier to improve and change.

Finally the ability to browse the code with clickable lines that permit to set and
delete breakpoints will be a great improvement for the GUI.

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 74(78)

 74

8 Acronyms and Abbreviations

ALS Application Linking System
AWT Abstract Window Toolkit
BPT Short name for BPT_HANDLER, package for deferred breakpoints.
CD CORUS_DEBUG
CGI Common Gateway Interface
CPU Central Process Unit
DBMS Database Management System
DBA Database Administration
DCL Data Control Language
DD DBMS_DEBUG
DDL Data Description Language
DML Data Manipulation Language
EAI Enterprise Application Integration
EJB Enterprise Java Beans
IDE Integrated Development Environment
IEI Inter Enterprise Integration
JDBC Unofficial acronym for Java Database Connectivity. It is a trademarked

name.
JFC Java Foundation Classes
JSP Java Server Pages
GUI Graphical User Interface
HTTP Hypertext Transfer Protocol
HTTPS Secure Hypertext Transfer Protocol
iCODE iCorus Online Debugger
ISO International Organization for Standardization
QL QuickLink, as in Corus QuickLink.
OS Operating System
OSI Open Standards Interconnect
RDBMS Relational Database Management System
SQL Structured Query Language
TCP Transport Control Protocol
UML Unified Modeling Language
V&V Validation and verification

75(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

9 References

[1] Bales, Donald. Java Programming with Oracle JDBC. ISBN 0-596-00088-X,

O’Reilly & Associates, Inc, 2002.

[2] Cyran, Michele. Supplied Packages Reference. Release 8.1.5,Part No. A68001-

01 Chapter 7.DBMS_DEBUG.. Oracle Corporation, February 1999.

[3] Date, C. J. An Introduction to Database Systems, 6th Edition. ISBN 0-201-

54329-X, Addison-Wesley Publishing Company, Inc, 1995.

[4] Feuerstein, Steven & Pribyl, Bill. Oracle PL/SQL Programming, Second

Edition. ISBN 1-56592-335-9E, O’Reilly & Associates, Inc.,1997.

[5] Feuerstein, Steven. Advanced Oracle PL/SQL Programming with Packages.

ISBN 1-56592-238-7E, O’Reilly & Associates, Inc., 2000.

[6] Graham, Hamilton et al. JDBC Database Access with Java: A Tutorial and
Annotated Reference. ISBN 0201309955, Addison Wesley Publishing Company,
1997.

[7] Harold, Elliotte Rusty. Java Network Programming, 2nd Edition. ISBN

1565928709, O’Reilly & Associates, Inc, 2000.

[8] Kamkar M. AADEBUG'97. Third International Workshop on Automatic

Debugging. Linköping, Sweden, UniTryck, 1997, pp.103-122.

[9] Kyte, Thomas, Expert One-On-One Oracle, USA, Apress, 2003

[10] Moss, Karl. Java Servlets, Second Edition. ISBN 0-07-135188-4, The McGraw-

Hill Companies, Inc., 1999.

[11] Rosenberg, J. B. How debuggers work?. Algorithms, Data Structures and

Architecture. ISBN 0-471-14966-7, John Wiley & Sons, Inc. 1996.

[12] Subrahmanyam, Allamaraju et al. Professional Java Server Programming, 1.3

Edition. ISBN 1-861005-37-7, Wrox Press Ltd, 2001.

[13] Urman, Scott. Oracle 8i Advanced PL/SQL Programming. ISBN 0-07-212146-7,

The McGraw-Hill Companies, Inc., 2000.

[14] Telles M. & Hsieh Y. The Science of debugging. ISBN 1-57610-917-8, The

Coriolis Group, 2001.

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 76(78)

 76

[15] Sommerville I. Software Engineering, 6th edition. ISBN 0-201-39815-X,
Addison-Wesley Publishing Company, Inc, Imprint of Pearson Education
Limited, 2001.

[16] Säteri, Mattias. Design and performance analysis of a system level debugger for

a real time operating system. ISSN 1401-5757, Uppsala University School of
Engineering, 1999.

[17] Zellweger, Polle T. Interactive source-level debugging. Ph.D. Diss, Xevox Parc

Palo Alto Research Center, Technical Report CSL-84-5, 1984

Web Resources

[18] American Institute of Physics & Cassidy, David. Heisenberg - Quantum

Mechanics, 1925-1927: The Uncertainty Principle,
http://www.aip.org/history/heisenberg/p08.htm, last visited on 2005-03-29.

[19] Bodoff, Stephanie. Java Servlet Technology,

http://java.sun.com/webservices/docs/1.0/tutorial/doc/Servlets.html

[20] Bowbeer, Joseph. The Last Word in Swing Threads, article,

http://java.sun.com/products/jfc/tsc/articles/threads/threads3.html. Retrieved,
april 2005.

[21] Brevard’s users group, BUG Club. What is Debug? Debuggers MS-DOS

Assembly Source Break Points what is a debug?,
http://bugclub.org/beginners/dos/debug.html

[22] Digital Equipment Corporation

Maynard, Massachusetts. Digital UNIX, Ladebug Debugger Manual,
http://discovery.cc.vt.edu/dec/APZ7EETE/TITLE.HTM

[23] iSYSTEM AG, Munich, Germany. In-circuit emulator and debugging tools for

microprocessors and microcontrollers, http://www.isystem.com/in-circuit-
emulator, last visited 2005.

[24] Muller, Hans & Walrath, Kathy. Threads and Swing, article,

http://java.sun.com/products/jfc/tsc/articles/threads/threads1.html. Last retrieved,
april 2005.

[25] Muller, Hans & Walrath, Kathy. Using a Swing Worker Thread, article,

http://java.sun.com/products/jfc/tsc/articles/threads/threads2.html. Retrieved,
april 2005.

[26] Network Security Resource (NSR). NSRP: Glossary,

http://www.gslis.utexas.edu/~netsec/gloss.html

77(78) Design and implementation of a web based PL/SQL debugger using Oracle’s debug API

[27] Oracle Corporation. JDBC,
http://www.oracle.com/technology/tech/java/sqlj_jdbc/index.html

[28] Oracle Corporation. Oracle Corporation. http://www.oracle.com/

[29] Oracle Corporation. Oracle9i Supplied PL/SQL Packages and Types Reference

Release 2 (9.2) Part Number A96612-01 Chapter 10, DBMS_DEBUG
http://download-west.oracle.com/docs/cd/B10501_01/appdev.920/a96612/ d_debug.htm

[30] Pfaeffle, Thomas. Oracle8i JDBC Developer's Guide and Reference. Release

8.1.5 Part Number A64685-01
http://www.csee.umbc.edu/help/oracle8/Java.815/a64685/title.htm (new)

[31] Randy, Kath. “The Win32 Debugging Application Programming Interface”

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dndebug/html/msdn_debugEH.asp, 2004

[32] Sun Microsystems, Inc. JDBC API Documentation,

http://java.sun.com/j2se/1.3/docs/guide/jdbc/index.html

[33] Sun Microsystems, Inc. J2EE Java Servlet Technology,

http://java.sun.com/products/servlet/

[34] Sun Microsystems, Inc. J2EE JavaServer Pages Technology,

http://java.sun.com/products/jsp/

[35] Sun Microsystems, Inc. Sun global glossary collection,

http://docs.sun.com/app/docs/coll/417.1

[36] Tics Realtime. Tics Realtime Kernel Definitions,

http://www.cris.com/~Tics/ticsdef.htm

[37] Winterbottom, Phil. “Acid: A Debugger Built From A Language”,

http://plan9.bell-labs.com/sys/doc/acidpaper.html, Winter 1994.

[38] Wright, Brian et al. Oracle8i SQLJ Developer's Guide and Reference. Release

8.1.5 Part Number A64685-01,
http://www.csee.umbc.edu/help/oracle8/java.815/a64684/title.htm

 Design and implementation of a web based PL/SQL debugger using Oracle’s debug API 78(78)

 78

Appendices

A. corus_debug_h.sql
Outprint of package specification for CORUS_DEBUG PL/SQL package

B. CORUS_DEBUG API

The public procedures of CORUS_DEBUG.

C. Java documentation
Java documentation for the web application’s classes, generated with javadoc.

Appendix A. corus_debug_h.sql

Outprint of package specification for CORUS_DEBUG PL/SQL
package

/* CORUS_DEBUG is a wrapping PL/SQL package on top of DBMS_DEBUG. It is
 * aimed to be used as a command-line debugger.
 * It was implemented as part of a Master Thesis project at IMIT,
 * Department of Microelectronics and Information Technology, KTH, Sweden.
 *
 * The project was realized at Corus Technologies AB.
 * Author: Alvaro Mayorga
 */
CREATE OR REPLACE package corus_debug as
 -- Can be deleted. just for get_source_between. Deleter afterwards.
 -- TYPE source_vc2_table IS TABLE OF VARCHAR2(500) INDEX BY BINARY_INTEGER;

 -- VARIABLES --

 g_tgt_target_session_id varchar2(12);-- default null; -- For target session
 g_attached_session_id varchar2(12);-- default null; -- For debug session
 g_is_attached boolean;
 g_trace_out_flag boolean := true;-- Used in step_to and trace_out.When a
 -- bpt is set in order to jump to this bpt.
 g_breakpoint binary_integer := 0;
 g_is_javaapp boolean := false;

 -- record variables
 l_program_info dbms_debug.program_info;
 l_runtime_info dbms_debug.runtime_info;
 l_breakpoint_info dbms_debug.breakpoint_info;

 g_breakpoint_table dbms_debug.breakpoint_table;

 -- CONSTANTS --

 StackDepth CONSTANT PLS_INTEGER := dbms_debug.info_getStackDepth;-- 2;
 Breakpoint CONSTANT PLS_INTEGER := dbms_debug.info_getBreakpoint;-- 4;
 LineInfo CONSTANT PLS_INTEGER := dbms_debug.info_getLineinfo; -- 8;
 OerInfo CONSTANT PLS_INTEGER := dbms_debug.info_getOerInfo; -- 32;

 BreakException CONSTANT PLS_INTEGER := dbms_debug.break_exception ;-- 2;
(step over calls).
 BreakAnyCall CONSTANT PLS_INTEGER := dbms_debug.break_any_call ;-- 12;
-- 4 | 8 (step into calls).
 BreakReturn CONSTANT PLS_INTEGER := dbms_debug.break_return ;-- 16;
-- Indeed 512.
 BreakNextLine CONSTANT PLS_INTEGER := dbms_debug.break_next_line ;-- 32;
 BreakAnyReturn CONSTANT PLS_INTEGER := dbms_debug.break_any_return;-- 512;
-- Indeed 16.
 BreakHandler CONSTANT PLS_INTEGER := dbms_debug.break_handler ;-- 2048;
 BreakExecution CONSTANT PLS_INTEGER := dbms_debug.abort_execution ;-- 8192;

 BreakStep CONSTANT PLS_INTEGER := dbms_debug.break_next_line ;-- 32;
 BreakStepIn CONSTANT PLS_INTEGER := dbms_debug.break_any_call ;-- 12;
-- 4 | 8 (step into calls)
 BreakStepOut CONSTANT PLS_INTEGER := dbms_debug.break_return ;-- 16;
-- Indeed 512.

 BreakStepOver CONSTANT PLS_INTEGER := dbms_debug.break_exception ;-- 2;
(step over calls).
 BreakTraceOut CONSTANT PLS_INTEGER := dbms_debug.break_any_return;-- 512;
-- Indeed 16.

 VERSION_MAJOR CONSTANT BINARY_INTEGER := 1;
 VERSION_MINOR CONSTANT BINARY_INTEGER := 0;
 WIN_SIZE_MIN CONSTANT BINARY_INTEGER := 1;
 WIN_SIZE BINARY_INTEGER := 3;
 WIN_MODE BINARY_INTEGER := 1; -- 1:to see part of the code
 -- 0:to see the entire code
 WIN_WIDTH BINARY_INTEGER := 70;
 WIN_WIDTH_MIN CONSTANT BINARY_INTEGER := 50;
 Success CONSTANT BINARY_INTEGER := dbms_debug.success; -- 0.

 --- COMMOM SESSION ---

 procedure version;
 procedure self_check(timeout IN binary_integer := 60);
 function set_timeout(timeout BINARY_INTEGER)
 return varchar2;-- BINARY_INTEGER;
 procedure set_diagnostic_level(dlevel IN BINARY_INTEGER);

 --- TARGET SESSION ---

 procedure initialize;--(session_id_in in varchar2 default null,
 -- diagnostics in binary_integer default 0);
 function initializeF(session_id_in in varchar2 default null,
 diagnostics in binary_integer default 0)
 return varchar2;
 procedure debug_on(no_client_side_plsql_engine in boolean default true,
 immediate in boolean default false);
 function debug_onF(no_client_side_plsql_engine in boolean default true,
 immediate in boolean default false)
 return varchar2;
 procedure debug_off;
 function debug_offF return varchar2;

 --- DEBUG SESSION ---

 procedure is_javaapp;
 procedure attach_session(debug_session_id in varchar2,
 diagnostics in binary_integer := 0);
 function attach_sessionF(debug_session_id in varchar2,
 diagnostics in binary_integer default 0)
 return varchar2;
 procedure attach_sessionJ(debug_session_id in varchar2);
 procedure sync(info_requested_in in binary_integer default null);
 function syncF(info_requested in binary_integer default null)
 return varchar2;

 --- STEP PROCEDURES AND FUNCTIONS
 procedure continue(breakflags in binary_integer := 12);--,
 --info_req_in in binary_integer default 14);
 function continueF(breakflags in binary_integer,
 ret_msg out varchar2)
 return binary_integer;

 procedure step;
 procedure step_in;
 procedure step_over;-- (To step until a breakpoint)

 procedure step_out;
 procedure step_to;
 procedure trace_out;
 procedure abort;

 -- SOURCE PROCEDURES AND FUNCTIONS
 procedure show_source_line;
 procedure show_curr_source;
 procedure source(first_line in binary_integer,
 last_line in binary_integer,
 win_size in binary_integer);
 procedure show_source_procfcn(name_in in varchar2,
 line_in in binary_integer default 0);
 procedure show_source_pkgbody(name_in in varchar2,
 line_in in binary_integer default 0);
 procedure show_source_trigger(name_in in varchar2,
 line_in in binary_integer default 0);
 procedure set_win_size(size_in in binary_integer);
 procedure set_win_width(width_in in binary_integer);
 procedure set_win_mode(mode_in in binary_integer);

 -- VARIABLE ACCESSING AND SETTING.
 procedure get_value(variable_name in varchar2,
 frame# in binary_integer default 0,
 format in varchar2 := null);
 function get_valueF(variable_name in varchar2,
 frame# in binary_integer default 0,
 format in varchar2 := null)
 return varchar2;
 procedure set_value(assignment_statement in varchar2,
 frame# in binary_integer := 0);

 function set_valueF(assignment_statement in varchar2,
 frame# in binary_integer := 0,
 res_msg out varchar2)
 return binary_integer;
 procedure get_pvalue(variable_name in varchar2,
 name_space_in in BINARY_INTEGER default 2,
 progname_in in varchar2 default null,
 format in varchar2 default null);

 --frame# in binary_integer default 0,
 --format in varchar2 default null);
 function get_pvalueF(variable_name in varchar2,
 name_space_in IN BINARY_INTEGER default 2,
 progname_in IN varchar2 default null,
 format in varchar2 default null)
 return varchar2;
 procedure set_pvalue(assignment_statement in varchar2);
 function set_pvalueF(assignment_statement in varchar2)
 return binary_integer;

 --- BREAKPOINTS ---

 procedure set_break(line# in binary_integer,
 progname in varchar2 default NULL,
 username in varchar2 default USER,
 fuzzy in binary_integer := 1,
 iterations in binary_integer := 0);
 procedure set_breakpoint(line# in binary_integer,
 fuzzy in binary_integer := 1,
 iterations in binary_integer := 0);
 function set_breakpointF(line# in binary_integer,
 fuzzy in binary_integer := 1,

 iterations in binary_integer := 0)
 return varchar2;
 procedure del_break(breakpoint_nr_in in binary_integer);
 procedure delete_breakpoint(breakpoint_nr_in in binary_integer);
 procedure breaks;
 procedure show_breakpoints;
 function get_type_of(name_in in varchar2,
 owner_in in varchar2 default USER) return varchar2;
 procedure break_info(line#_in in binary_integer,
 prog_name_in in varchar2,
 prog_owner_in in varchar2 default USER,
 prog_dblink_in in varchar2 default null,
 fuzzy in binary_integer default 1,
 iterations in binary_integer default 0);
 function break_infoF(line#_in in binary_integer,
 prog_name_in in varchar2,
 prog_owner_in in varchar2 default USER,
 prog_dblink_in in varchar2 default null,
 fuzzy in binary_integer default 1,
 iterations in binary_integer default 0)
 return varchar2 ;

 -- STACK, RUNTIME AND PROGRAM INFO.
 procedure print_stack; -- print_backtrace;
 function stackJ return varray; -- print_backtrace;
 procedure print_runtime_info(runinfo_in IN dbms_debug.runtime_info default
null);
 procedure print_program_info;
 procedure update_program_info;

 --- COMMON PART AND HELP FUNCTIONS ---

 function get_reason return varchar2;
 function predefined_reasons(reason_nr in binary_integer) return varchar2;
 function predefined_errors(error_nr in binary_integer) return varchar2;
 function predef_libs(type_in in binary_integer) return varchar2;
 function predef_names(name_in in binary_integer) return varchar2;
 function predefined_namespaces(name_in in varchar2) return binary_integer;
 function predefined_libunittypes(name_in in varchar2) return binary_integer;
 procedure help(cmd in varchar2 default null);
 procedure print_msg(msg_in in varchar2);
 procedure show_error(error_code in number, error_msg in varchar2);
 function newline return varchar2;

 --- ALIAS TO SOME PROCEDURES ---

 -- shortcut for attach_session
 procedure attach(debug_session_id in varchar2,
 diagnostics in binary_integer := 0);
 -- shortcut for print_runtime_info.
 procedure runtime(r_in IN dbms_debug.runtime_info default null);
 procedure stack; -- shortcut for print_stack.
 procedure program; -- shortcut for print_program_info.
 procedure s; -- shortcut for step
 procedure to; -- shortcut for trace_out
end corus_debug;
/

Appendix B. CORUS_DEBUG API

The public procedures of CORUS_DEBUG.

/* CORUS_DEBUG is a wrapping PL/SQL package on top of DBMS_DEBUG. It is
 * aimed to be used as a command-line debugger.
 * It was implemented as part of a Master Thesis project at IMIT,
 * Department of Microelectronics and Information Technology, KTH, Sweden.
 *
 * The project was realized at Corus Technologies AB.
 * Author: Alvaro Mayorga
 */
CREATE OR REPLACE package corus_debug as

 -- VARIABLES --

 g_tgt_target_session_id varchar2(12);-- default null; -- For target session
 g_attached_session_id varchar2(12);-- default null; -- For debug session
 g_is_attached boolean;
 g_breakpoint binary_integer := 0;

 -- record variables
 l_program_info dbms_debug.program_info;
 l_runtime_info dbms_debug.runtime_info;
 l_breakpoint_info dbms_debug.breakpoint_info;

 g_breakpoint_table dbms_debug.breakpoint_table;

 -- CONSTANTS --

 StackDepth CONSTANT PLS_INTEGER := dbms_debug.info_getStackDepth;-- 2;
 Breakpoint CONSTANT PLS_INTEGER := dbms_debug.info_getBreakpoint;-- 4;
 LineInfo CONSTANT PLS_INTEGER := dbms_debug.info_getLineinfo; -- 8;
 OerInfo CONSTANT PLS_INTEGER := dbms_debug.info_getOerInfo; -- 32;

 BreakException CONSTANT PLS_INTEGER := dbms_debug.break_exception ;
 BreakAnyCall CONSTANT PLS_INTEGER := dbms_debug.break_any_call ;
 BreakReturn CONSTANT PLS_INTEGER := dbms_debug.break_return ;
 BreakNextLine CONSTANT PLS_INTEGER := dbms_debug.break_next_line ;
 BreakAnyReturn CONSTANT PLS_INTEGER := dbms_debug.break_any_return;
 BreakHandler CONSTANT PLS_INTEGER := dbms_debug.break_handler ;
 BreakExecution CONSTANT PLS_INTEGER := dbms_debug.abort_execution ;

 WIN_SIZE_MIN CONSTANT BINARY_INTEGER := 1;
 WIN_SIZE BINARY_INTEGER := 3;
 WIN_MODE BINARY_INTEGER := 1; -- 1:to see part of the code
 -- 0:to see the entire code
 WIN_WIDTH BINARY_INTEGER := 70;
 WIN_WIDTH_MIN CONSTANT BINARY_INTEGER := 50;
 Success CONSTANT BINARY_INTEGER := dbms_debug.success; -- 0.

 --- COMMOM SESSION ---

 procedure version;
 procedure self_check(timeout IN binary_integer := 60);
 procedure set_diagnostic_level(dlevel IN BINARY_INTEGER);

 --- TARGET SESSION ---

 procedure initialize;--(session_id_in in varchar2 default null,

 -- diagnostics in binary_integer default 0);
 procedure debug_on(no_client_side_plsql_engine in boolean default true,
 immediate in boolean default false);
 procedure debug_off;

 --- DEBUG SESSION ---

 procedure attach_session(debug_session_id in varchar2,
 diagnostics in binary_integer := 0);
 procedure sync(info_requested_in in binary_integer default null);

 --- STEP PROCEDURES AND FUNCTIONS
 procedure continue(breakflags in binary_integer := 12);
 procedure step;
 procedure step_in;
 procedure step_over;-- (To step until a breakpoint)
 procedure step_out;
 procedure step_to;
 procedure trace_out;
 procedure abort;

 -- SOURCE PROCEDURES AND FUNCTIONS
 procedure show_source_line;
 procedure show_curr_source;
 procedure source(first_line in binary_integer,
 last_line in binary_integer,
 win_size in binary_integer);
 procedure show_source_procfcn(name_in in varchar2,
 line_in in binary_integer default 0);
 procedure show_source_pkgbody(name_in in varchar2,
 line_in in binary_integer default 0);
 procedure show_source_trigger(name_in in varchar2,
 line_in in binary_integer default 0);
 procedure set_win_size(size_in in binary_integer);
 procedure set_win_width(width_in in binary_integer);
 procedure set_win_mode(mode_in in binary_integer);

 -- VARIABLE ACCESSING AND SETTING.
 procedure get_value(variable_name in varchar2,
 frame# in binary_integer default 0,
 format in varchar2 := null);
 procedure set_value(assignment_statement in varchar2,
 frame# in binary_integer := 0);
 procedure get_pvalue(variable_name in varchar2,
 name_space_in in BINARY_INTEGER default 2,
 progname_in in varchar2 default null,
 format in varchar2 default null);
 procedure set_pvalue(assignment_statement in varchar2);

 --- BREAKPOINTS ---

 procedure set_break(line# in binary_integer,
 progname in varchar2 default NULL,
 username in varchar2 default USER,
 fuzzy in binary_integer := 1,
 iterations in binary_integer := 0);
 procedure set_breakpoint(line# in binary_integer,
 fuzzy in binary_integer := 1,
 iterations in binary_integer := 0);
 procedure del_break(breakpoint_nr_in in binary_integer);
 procedure delete_breakpoint(breakpoint_nr_in in binary_integer);
 procedure breaks;

 procedure show_breakpoints;
 procedure break_info(line#_in in binary_integer,
 prog_name_in in varchar2,
 prog_owner_in in varchar2 default USER,
 prog_dblink_in in varchar2 default null,
 fuzzy in binary_integer default 1,
 iterations in binary_integer default 0);

 -- STACK, RUNTIME AND PROGRAM INFO.
 procedure print_stack; -- print_backtrace;
 procedure print_runtime_info(runinfo_in IN dbms_debug.runtime_info := null);
 procedure print_program_info;
 procedure update_program_info;

 --- COMMON PART AND HELP FUNCTIONS ---

 procedure help(cmd in varchar2 default null);
 procedure print_msg(msg_in in varchar2);
 procedure show_error(error_code in number, error_msg in varchar2);

 --- ALIAS TO SOME PROCEDURES ---

 procedure attach(debug_session_id in varchar2,
 diagnostics in binary_integer := 0);
 procedure runtime(r_in IN dbms_debug.runtime_info default null);
 procedure stack; -- shortcut for print_stack.
 procedure program; -- shortcut for print_program_info.
 procedure s; -- shortcut for step
 procedure to; -- shortcut for trace_out
end corus_debug;

Appendix C. Java documentation for the web application with servlets.

Debug and implementation ofa web based PL/SQL debugger
using Oracle's debug API

Package deb

deb
Interface ICODEdefinitions

All Known Implementing Classes:
DbgLogin, DbgUserBanner, DebuggeeServlet, DebuggerServlet, TgtLogin, TgtUserBanner

 Overview Package Class Tree Deprecated Index Help Debug and implementation of a web based PL/SQL debugger
using Oracle's debug API PREV NEXT FRAMES NO FRAMES All Classes

Packages
deb

deb.command

 Overview Package Class Tree Deprecated Index Help And this is the footer
 PREV NEXT FRAMES NO FRAMES All Classes

Overview Package Class Tree Deprecated Index Help Debug and implementation of a web based PL/SQL debugger
using Oracle's debug API PREV PACKAGE NEXT PACKAGE FRAMES NO FRAMES All Classes

Interface Summary
ICODEdefinitions

Class Summary
DbgLogin Class that handles the loggin of the user as a debugger.

DbgUserBanner Class to display user and connection information for the debugger session.

DbmsOuputToServlet Class that retrieves and displays the output of the DBMS_OUTPUT package in an Oracle Database.

DebuggeeServlet Handles the start, control and finalization of debuggee session.

DebuggerServlet Handles the start, control and finalization of debugger session as well that controlls the debuggee session.

TgtLogin Class that handles the loggin of the user as a debuggee.

TgtUserBanner Class to display user and connection information for the debugger session.

Overview Package Class Tree Deprecated Index Help And this is the footer
 PREV PACKAGE NEXT PACKAGE FRAMES NO FRAMES All Classes

Overview Package Class Tree Deprecated Index Help Debug and implementation of a web based PL/SQL debugger
using Oracle's debug API

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All
Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

public interface ICODEdefinitions

Author:
Alvaro Mayorga

Field Summary
static java.lang.String ATTR_DBG_DBMS_OUTPUT

static java.lang.String ATTR_DBGATTACHED_TO

static java.lang.String ATTR_DBGCOMMAND

static java.lang.String ATTR_DBGCONNECTION

static java.lang.String ATTR_DBGDATABASE

static java.lang.String ATTR_DBGUSER

 SESSION ATTRIBUTES
static java.lang.String ATTR_TGTCOMMAND

static java.lang.String ATTR_TGTCONNECTION

static java.lang.String ATTR_TGTDATABASE

static java.lang.String ATTR_TGTSESSIONID

static java.lang.String ATTR_TGTUSER

static int BYTEBUFF_LEN

static java.lang.String CMD_ABORT

static java.lang.String CMD_ABOUT

static java.lang.String CMD_ALTER_PROC

static java.lang.String CMD_ATTACH

 COMMANDS DEBUG
static java.lang.String CMD_DEBUG_ON

static java.lang.String CMD_DEL_BREAK

static java.lang.String CMD_DETACH

static java.lang.String CMD_EXECUTE

static java.lang.String CMD_EXECUTE_QUERY

 COMMANDS COMMON
static java.lang.String CMD_EXEMPEL

static java.lang.String

CMD_GET_PKG_VALUE

static java.lang.String CMD_GET_VALUE

static java.lang.String CMD_HELP

static java.lang.String CMD_INIT

static java.lang.String CMD_LIST_BREAK

static java.lang.String CMD_PKG_TEST

static java.lang.String CMD_PROC_TEST

static java.lang.String CMD_PROGRAM

static java.lang.String CMD_SELF_CHECK

static java.lang.String CMD_SET_BREAK

static java.lang.String CMD_SET_PKG_VALUE

static java.lang.String CMD_SET_VALUE

static java.lang.String CMD_SOURCE_CURRENT

static java.lang.String CMD_SOURCE_PKG

static java.lang.String CMD_SOURCE_PROC

static java.lang.String CMD_SOURCE_TRIG

static java.lang.String CMD_STACK

static java.lang.String CMD_START_DEBUGGEE

 COMMANDS TARGET
static java.lang.String CMD_STEP

static java.lang.String CMD_STEP_IN

static java.lang.String CMD_STEP_OUT

static java.lang.String CMD_STEP_OVER

static java.lang.String CMD_SYNC

static java.lang.String CMD_TRACE_OUT

static java.lang.String CMD_TRIG_TEST

static java.lang.String CMD_VERSION

static java.lang.String DEFAULT_BACKGROUND

static java.lang.String DEFAULT_BGCOLOR

static java.lang.String DEFAULT_CONTENT
 CONFIGURATION PARAMETERS

static java.lang.String DEFAULT_JDBC_DRIVER

static java.lang.String DEFAULT_PROPERTIES

static java.lang.String DEFAULT_PROPERTIES_FILE

static java.lang.String DEFAULT_TCOLOR

static java.lang.String FRAME_BROWSE

static java.lang.String FRAME_HELP

static java.lang.String FRAME_MAIN

static java.lang.String FRAME_MENU

static java.lang.String GIF_ABORT

static java.lang.String GIF_ALTER

static java.lang.String GIF_ATTACH

static java.lang.String GIF_CURR_SOURCE

static java.lang.String GIF_DEBUG_OFF

static java.lang.String GIF_DEBUG_ON

static java.lang.String GIF_DEL_BREAK

static java.lang.String GIF_GET_PVALUE

static java.lang.String GIF_GET_VALUE

static java.lang.String GIF_HELP

static java.lang.String GIF_INIT

static java.lang.String GIF_LINK_CORUS_ICON

static java.lang.String GIF_LINK_ICODE_ICON

static java.lang.String GIF_LIST_BREAK

static java.lang.String GIF_MENU

static java.lang.String GIF_PROG_INFO

static java.lang.String GIF_ROOT
 IMAGE FILE NAMES

static java.lang.String GIF_SET_BREAK

static java.lang.String
GIF_SET_PVALUE

static java.lang.String GIF_SET_VALUE

static java.lang.String GIF_SOURCE_PKG_BODY

static java.lang.String GIF_SOURCE_PROC

static java.lang.String GIF_SOURCE_TRIGGER

static java.lang.String GIF_STACK

static java.lang.String GIF_START_DEBUGGEE

static java.lang.String GIF_STEP

static java.lang.String GIF_STEP_IN

static java.lang.String GIF_STEP_OUT

static java.lang.String GIF_STEP_OVER

static java.lang.String GIF_SYNC

static java.lang.String GIF_TEST_PKG

static java.lang.String GIF_TEST_PROC

static java.lang.String GIF_TEST_TRIG

static java.lang.String GIF_TRACE_OUT

static java.lang.String MENU_BACKGROUND

 COLORS FOR BACK-, FOREGROUND and OTHERS
static java.lang.String MENU_BGCOLOR

static java.lang.String MENU_TCOLOR

static java.lang.String MULTI_BACKGROUND

static java.lang.String MULTI_BGCOLOR

static java.lang.String MULTI_TCOLOR

static java.lang.String NAV_BACKGROUND

static java.lang.String NAV_BGCOLOR

static java.lang.String NAV_TCOLOR

static java.lang.String NOTHING_TO_DO

static int NUMBER_OF_DBG_ARGUMENTS

static int NUMBER_OF_TGT_ARGUMENTS

static java.lang.String PAR_DBGCOMMAND

static java.lang.String PAR_DBGDATABASE

static java.lang.String PAR_DBGPASSWORD

static java.lang.String PAR_DBGPORT

static java.lang.String PAR_DBGSQL_STMT

static java.lang.String PAR_DBGUSER
 FORM PARAMETERS

static java.lang.String PAR_DEF_DBGDATABASE

static java.lang.String PAR_DEF_DBGPASSWORD

static java.lang.String PAR_DEF_DBGPORT

static java.lang.String PAR_DEF_DBGUSER
 DEFAULT VALUES FOR FORM PARAMETERS

static java.lang.String PAR_DEF_TGTDATABASE

static java.lang.String PAR_DEF_TGTPASSWORD

static java.lang.String PAR_DEF_TGTPORT

static java.lang.String PAR_DEF_TGTUSER

static java.lang.String PAR_LOGOUT

static java.lang.String PAR_TGTCOMMAND

static java.lang.String PAR_TGTDATABASE

static java.lang.String PAR_TGTPASSWORD

static java.lang.String PAR_TGTPORT

static java.lang.String PAR_TGTSQL_STMT

static java.lang.String PAR_TGTUSER

static int STRBUFF_LEN

static java.lang.String URL_BROWSE_DIR_SERVLET

static java.lang.String URL_BROWSE_OBJ_SERVLET

static java.lang.String URL_DEBUG_BANNER_SERVLET

static java.lang.String URL_DEBUG_LOGIN_SERVLET
 SERVLETS, URLS AND FRAME NAMES

static java.lang.String URL_DEBUG_SERVLET

static java.lang.String
URL_HELP_DIR_SERVLET

deb
Class DbgLogin

java.lang.Object

 javax.servlet.GenericServlet

 javax.servlet.http.HttpServlet

 deb.DbgLogin

All Implemented Interfaces:
ICODEdefinitions, java.io.Serializable, javax.servlet.Servlet, javax.servlet.ServletConfig

public class DbgLogin
extends javax.servlet.http.HttpServlet
implements ICODEdefinitions

See Also:
Serialized Form

static java.lang.String URL_HELP_OBJ_SERVLET

static java.lang.String URL_TARGET_BANNER_SERVLET

static java.lang.String URL_TARGET_LOGIN_SERVLET

static java.lang.String URL_TARGET_SERVLET

Overview Package Class Tree Deprecated Index Help And this is the footer
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Overview Package Class Tree Deprecated Index Help Debug and implementation of a web based PL/SQL debugger
using Oracle's debug API

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All
Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Field Summary

Fields inherited from interface deb.ICODEdefinitions

ATTR_DBG_DBMS_OUTPUT, ATTR_DBGATTACHED_TO, ATTR_DBGCOMMAND, ATTR_DBGCONNECTION, ATTR_DBGDATABASE,
ATTR_DBGUSER, ATTR_TGTCOMMAND, ATTR_TGTCONNECTION, ATTR_TGTDATABASE, ATTR_TGTSESSIONID,
ATTR_TGTUSER, BYTEBUFF_LEN, CMD_ABORT, CMD_ABOUT, CMD_ALTER_PROC, CMD_ATTACH, CMD_DEBUG_ON,
CMD_DEL_BREAK, CMD_DETACH, CMD_EXECUTE, CMD_EXECUTE_QUERY, CMD_EXEMPEL, CMD_GET_PKG_VALUE,
CMD_GET_VALUE, CMD_HELP, CMD_INIT, CMD_LIST_BREAK, CMD_PKG_TEST, CMD_PROC_TEST, CMD_PROGRAM,
CMD_SELF_CHECK, CMD_SET_BREAK, CMD_SET_PKG_VALUE, CMD_SET_VALUE, CMD_SOURCE_CURRENT,
CMD_SOURCE_PKG, CMD_SOURCE_PROC, CMD_SOURCE_TRIG, CMD_STACK, CMD_START_DEBUGGEE, CMD_STEP,
CMD_STEP_IN, CMD_STEP_OUT, CMD_STEP_OVER, CMD_SYNC, CMD_TRACE_OUT, CMD_TRIG_TEST, CMD_VERSION,
DEFAULT_BACKGROUND, DEFAULT_BGCOLOR, DEFAULT_CONTENT, DEFAULT_JDBC_DRIVER, DEFAULT_PROPERTIES,
DEFAULT_PROPERTIES_FILE, DEFAULT_TCOLOR, FRAME_BROWSE, FRAME_HELP, FRAME_MAIN, FRAME_MENU,
GIF_ABORT, GIF_ALTER, GIF_ATTACH, GIF_CURR_SOURCE, GIF_DEBUG_OFF, GIF_DEBUG_ON, GIF_DEL_BREAK,
GIF_GET_PVALUE, GIF_GET_VALUE, GIF_HELP, GIF_INIT, GIF_LINK_CORUS_ICON, GIF_LINK_ICODE_ICON,
GIF_LIST_BREAK, GIF_MENU, GIF_PROG_INFO, GIF_ROOT, GIF_SET_BREAK, GIF_SET_PVALUE, GIF_SET_VALUE,
GIF_SOURCE_PKG_BODY, GIF_SOURCE_PROC, GIF_SOURCE_TRIGGER, GIF_STACK, GIF_START_DEBUGGEE, GIF_STEP,
GIF_STEP_IN, GIF_STEP_OUT, GIF_STEP_OVER, GIF_SYNC, GIF_TEST_PKG, GIF_TEST_PROC, GIF_TEST_TRIG,
GIF_TRACE_OUT, MENU_BACKGROUND, MENU_BGCOLOR, MENU_TCOLOR, MULTI_BACKGROUND, MULTI_BGCOLOR,
MULTI_TCOLOR, NAV_BACKGROUND, NAV_BGCOLOR, NAV_TCOLOR, NOTHING_TO_DO, NUMBER_OF_DBG_ARGUMENTS,
NUMBER_OF_TGT_ARGUMENTS, PAR_DBGCOMMAND, PAR_DBGDATABASE, PAR_DBGPASSWORD, PAR_DBGPORT,

DbgLogin

public DbgLogin()

init

public void init(javax.servlet.ServletConfig config)
 throws javax.servlet.ServletException

Specified by:
init in interface javax.servlet.Servlet

Throws:
javax.servlet.ServletException

PAR_DBGSQL_STMT, PAR_DBGUSER, PAR_DEF_DBGDATABASE, PAR_DEF_DBGPASSWORD, PAR_DEF_DBGPORT,
PAR_DEF_DBGUSER, PAR_DEF_TGTDATABASE, PAR_DEF_TGTPASSWORD, PAR_DEF_TGTPORT, PAR_DEF_TGTUSER,
PAR_LOGOUT, PAR_TGTCOMMAND, PAR_TGTDATABASE, PAR_TGTPASSWORD, PAR_TGTPORT, PAR_TGTSQL_STMT,
PAR_TGTUSER, STRBUFF_LEN, URL_BROWSE_DIR_SERVLET, URL_BROWSE_OBJ_SERVLET, URL_DEBUG_BANNER_SERVLET,
URL_DEBUG_LOGIN_SERVLET, URL_DEBUG_SERVLET, URL_HELP_DIR_SERVLET, URL_HELP_OBJ_SERVLET,
URL_TARGET_BANNER_SERVLET, URL_TARGET_LOGIN_SERVLET, URL_TARGET_SERVLET

Constructor Summary
DbgLogin()

Method Summary
 void doGet(javax.servlet.http.HttpServletRequest request,

javax.servlet.http.HttpServletResponse response)

 void doPost(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)

 void init(javax.servlet.ServletConfig config)

protected
 void

mylog(java.lang.String str)

 void processRequest(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)

Methods inherited from class javax.servlet.http.HttpServlet
doDelete, doHead, doOptions, doPut, doTrace, getLastModified, service, service

Methods inherited from class javax.servlet.GenericServlet
destroy, getInitParameter, getInitParameterNames, getServletConfig, getServletContext,
getServletInfo, getServletName, init, log, log

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

Method Detail

doGet

public void doGet(javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)
 throws java.io.IOException,
 javax.servlet.ServletException

Throws:
java.io.IOException
javax.servlet.ServletException

doPost

public void doPost(javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)
 throws java.io.IOException,
 javax.servlet.ServletException

Throws:
java.io.IOException
javax.servlet.ServletException

processRequest

public void processRequest(javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)
 throws java.io.IOException,
 javax.servlet.ServletException

Throws:
java.io.IOException
javax.servlet.ServletException

mylog

protected void mylog(java.lang.String str)

deb
Class DbgUserBanner

java.lang.Object

 javax.servlet.GenericServlet

 javax.servlet.http.HttpServlet

 deb.DbgUserBanner

All Implemented Interfaces:

Overview Package Class Tree Deprecated Index Help And this is the footer
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Overview Package Class Tree Deprecated Index Help Debug and implementation of a web based PL/SQL debugger
using Oracle's debug API

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All
Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

ICODEdefinitions, java.io.Serializable, javax.servlet.Servlet, javax.servlet.ServletConfig

public class DbgUserBanner
extends javax.servlet.http.HttpServlet
implements ICODEdefinitions

Author:
Alvaro Mayorga

See Also:
Serialized Form

Field Summary

Fields inherited from interface deb.ICODEdefinitions
ATTR_DBG_DBMS_OUTPUT, ATTR_DBGATTACHED_TO, ATTR_DBGCOMMAND, ATTR_DBGCONNECTION, ATTR_DBGDATABASE,
ATTR_DBGUSER, ATTR_TGTCOMMAND, ATTR_TGTCONNECTION, ATTR_TGTDATABASE, ATTR_TGTSESSIONID,
ATTR_TGTUSER, BYTEBUFF_LEN, CMD_ABORT, CMD_ABOUT, CMD_ALTER_PROC, CMD_ATTACH, CMD_DEBUG_ON,
CMD_DEL_BREAK, CMD_DETACH, CMD_EXECUTE, CMD_EXECUTE_QUERY, CMD_EXEMPEL, CMD_GET_PKG_VALUE,
CMD_GET_VALUE, CMD_HELP, CMD_INIT, CMD_LIST_BREAK, CMD_PKG_TEST, CMD_PROC_TEST, CMD_PROGRAM,
CMD_SELF_CHECK, CMD_SET_BREAK, CMD_SET_PKG_VALUE, CMD_SET_VALUE, CMD_SOURCE_CURRENT,
CMD_SOURCE_PKG, CMD_SOURCE_PROC, CMD_SOURCE_TRIG, CMD_STACK, CMD_START_DEBUGGEE, CMD_STEP,
CMD_STEP_IN, CMD_STEP_OUT, CMD_STEP_OVER, CMD_SYNC, CMD_TRACE_OUT, CMD_TRIG_TEST, CMD_VERSION,
DEFAULT_BACKGROUND, DEFAULT_BGCOLOR, DEFAULT_CONTENT, DEFAULT_JDBC_DRIVER, DEFAULT_PROPERTIES,
DEFAULT_PROPERTIES_FILE, DEFAULT_TCOLOR, FRAME_BROWSE, FRAME_HELP, FRAME_MAIN, FRAME_MENU,
GIF_ABORT, GIF_ALTER, GIF_ATTACH, GIF_CURR_SOURCE, GIF_DEBUG_OFF, GIF_DEBUG_ON, GIF_DEL_BREAK,
GIF_GET_PVALUE, GIF_GET_VALUE, GIF_HELP, GIF_INIT, GIF_LINK_CORUS_ICON, GIF_LINK_ICODE_ICON,
GIF_LIST_BREAK, GIF_MENU, GIF_PROG_INFO, GIF_ROOT, GIF_SET_BREAK, GIF_SET_PVALUE, GIF_SET_VALUE,
GIF_SOURCE_PKG_BODY, GIF_SOURCE_PROC, GIF_SOURCE_TRIGGER, GIF_STACK, GIF_START_DEBUGGEE, GIF_STEP,
GIF_STEP_IN, GIF_STEP_OUT, GIF_STEP_OVER, GIF_SYNC, GIF_TEST_PKG, GIF_TEST_PROC, GIF_TEST_TRIG,
GIF_TRACE_OUT, MENU_BACKGROUND, MENU_BGCOLOR, MENU_TCOLOR, MULTI_BACKGROUND, MULTI_BGCOLOR,
MULTI_TCOLOR, NAV_BACKGROUND, NAV_BGCOLOR, NAV_TCOLOR, NOTHING_TO_DO, NUMBER_OF_DBG_ARGUMENTS,
NUMBER_OF_TGT_ARGUMENTS, PAR_DBGCOMMAND, PAR_DBGDATABASE, PAR_DBGPASSWORD, PAR_DBGPORT,
PAR_DBGSQL_STMT, PAR_DBGUSER, PAR_DEF_DBGDATABASE, PAR_DEF_DBGPASSWORD, PAR_DEF_DBGPORT,
PAR_DEF_DBGUSER, PAR_DEF_TGTDATABASE, PAR_DEF_TGTPASSWORD, PAR_DEF_TGTPORT, PAR_DEF_TGTUSER,
PAR_LOGOUT, PAR_TGTCOMMAND, PAR_TGTDATABASE, PAR_TGTPASSWORD, PAR_TGTPORT, PAR_TGTSQL_STMT,
PAR_TGTUSER, STRBUFF_LEN, URL_BROWSE_DIR_SERVLET, URL_BROWSE_OBJ_SERVLET, URL_DEBUG_BANNER_SERVLET,
URL_DEBUG_LOGIN_SERVLET, URL_DEBUG_SERVLET, URL_HELP_DIR_SERVLET, URL_HELP_OBJ_SERVLET,
URL_TARGET_BANNER_SERVLET, URL_TARGET_LOGIN_SERVLET, URL_TARGET_SERVLET

Constructor Summary
DbgUserBanner()

Method Summary
protected

 void
doGet(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)
 Handles the HTTP GET method.

protected
 void

doPost(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)
 Handles the HTTP POST method.

protected
 void

processRequest(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)
 Processes requests for both HTTP GET and POST methods.

Methods inherited from class javax.servlet.http.HttpServlet
doDelete, doHead, doOptions, doPut, doTrace, getLastModified, service, service

Methods inherited from class javax.servlet.GenericServlet

destroy, getInitParameter, getInitParameterNames, getServletConfig, getServletContext,

DbgUserBanner

public DbgUserBanner()

processRequest

protected void processRequest(javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)
 throws javax.servlet.ServletException,
 java.io.IOException

Processes requests for both HTTP GET and POST methods.
Parameters:

request - servlet request
response - servlet response

Throws:
javax.servlet.ServletException
java.io.IOException

doGet

protected void doGet(javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)
 throws javax.servlet.ServletException,
 java.io.IOException

Handles the HTTP GET method.
Parameters:

request - servlet request
response - servlet response

Throws:
javax.servlet.ServletException
java.io.IOException

doPost

protected void doPost(javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)
 throws javax.servlet.ServletException,
 java.io.IOException

Handles the HTTP POST method.
Parameters:

request - servlet request
response - servlet response

Throws:
javax.servlet.ServletException
java.io.IOException

getServletInfo, getServletName, init, init, log, log

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

Method Detail

deb
Class DbmsOuputToServlet

java.lang.Object

 deb.DbmsOuputToServlet

public class DbmsOuputToServlet
extends java.lang.Object

Author:
Alvaro Mayorga

DbmsOuputToServlet

public DbmsOuputToServlet(java.sql.Connection conn,
 java.io.PrintWriter out_in)
 throws java.sql.SQLException

Creates a new instance of DbmsOuput

Overview Package Class Tree Deprecated Index Help And this is the footer
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Overview Package Class Tree Deprecated Index Help Debug and implementation of a web based PL/SQL debugger
using Oracle's debug API

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All
Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Constructor Summary
DbmsOuputToServlet(java.sql.Connection conn)

DbmsOuputToServlet(java.sql.Connection conn, java.io.PrintWriter out_in)
 Creates a new instance of DbmsOuput

Method Summary
 void close()

 void disable()

 void enable(int size)

 void show(java.io.PrintWriter out)

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

DbmsOuputToServlet

public DbmsOuputToServlet(java.sql.Connection conn)
 throws java.sql.SQLException

enable

public void enable(int size)
 throws java.sql.SQLException

Throws:
java.sql.SQLException

disable

public void disable()
 throws java.sql.SQLException

Throws:
java.sql.SQLException

show

public void show(java.io.PrintWriter out)
 throws java.sql.SQLException

Throws:
java.sql.SQLException

close

public void close()
 throws java.sql.SQLException

Throws:
java.sql.SQLException

deb
Class DebuggeeServlet

Method Detail

Overview Package Class Tree Deprecated Index Help And this is the footer
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Overview Package Class Tree Deprecated Index Help Debug and implementation of a web based PL/SQL debugger
using Oracle's debug API

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All
Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang.Object

 javax.servlet.GenericServlet

 javax.servlet.http.HttpServlet

 deb.DebuggeeServlet

All Implemented Interfaces:
ICODEdefinitions, java.io.Serializable, javax.servlet.Servlet, javax.servlet.ServletConfig

public class DebuggeeServlet
extends javax.servlet.http.HttpServlet
implements ICODEdefinitions

See Also:
Serialized Form

Field Summary
protected

 java.util.Hashtable
commandTable

 DbmsOuputToServlet dout

protected
 java.lang.String

dummyResult

protected Alter myAlter

protected
 AttachSession

myAttach

protected Help myHelp

protected Initialize myInitialize

protected RunProc1 myRunProc1

protected Sync mySync

protected
 java.lang.StringBuffer

queryResultText

protected
 java.util.Vector

queryResultVector

protected
 java.lang.String

stmtString

Fields inherited from interface deb.ICODEdefinitions

ATTR_DBG_DBMS_OUTPUT, ATTR_DBGATTACHED_TO, ATTR_DBGCOMMAND, ATTR_DBGCONNECTION, ATTR_DBGDATABASE,
ATTR_DBGUSER, ATTR_TGTCOMMAND, ATTR_TGTCONNECTION, ATTR_TGTDATABASE, ATTR_TGTSESSIONID,
ATTR_TGTUSER, BYTEBUFF_LEN, CMD_ABORT, CMD_ABOUT, CMD_ALTER_PROC, CMD_ATTACH, CMD_DEBUG_ON,
CMD_DEL_BREAK, CMD_DETACH, CMD_EXECUTE, CMD_EXECUTE_QUERY, CMD_EXEMPEL, CMD_GET_PKG_VALUE,
CMD_GET_VALUE, CMD_HELP, CMD_INIT, CMD_LIST_BREAK, CMD_PKG_TEST, CMD_PROC_TEST, CMD_PROGRAM,
CMD_SELF_CHECK, CMD_SET_BREAK, CMD_SET_PKG_VALUE, CMD_SET_VALUE, CMD_SOURCE_CURRENT,
CMD_SOURCE_PKG, CMD_SOURCE_PROC, CMD_SOURCE_TRIG, CMD_STACK, CMD_START_DEBUGGEE, CMD_STEP,
CMD_STEP_IN, CMD_STEP_OUT, CMD_STEP_OVER, CMD_SYNC, CMD_TRACE_OUT, CMD_TRIG_TEST, CMD_VERSION,
DEFAULT_BACKGROUND, DEFAULT_BGCOLOR, DEFAULT_CONTENT, DEFAULT_JDBC_DRIVER, DEFAULT_PROPERTIES,
DEFAULT_PROPERTIES_FILE, DEFAULT_TCOLOR, FRAME_BROWSE, FRAME_HELP, FRAME_MAIN, FRAME_MENU,
GIF_ABORT, GIF_ALTER, GIF_ATTACH, GIF_CURR_SOURCE, GIF_DEBUG_OFF, GIF_DEBUG_ON, GIF_DEL_BREAK,
GIF_GET_PVALUE, GIF_GET_VALUE, GIF_HELP, GIF_INIT, GIF_LINK_CORUS_ICON, GIF_LINK_ICODE_ICON,
GIF_LIST_BREAK, GIF_MENU, GIF_PROG_INFO, GIF_ROOT, GIF_SET_BREAK, GIF_SET_PVALUE, GIF_SET_VALUE,
GIF_SOURCE_PKG_BODY, GIF_SOURCE_PROC, GIF_SOURCE_TRIGGER, GIF_STACK, GIF_START_DEBUGGEE, GIF_STEP,

GIF_STEP_IN, GIF_STEP_OUT, GIF_STEP_OVER, GIF_SYNC, GIF_TEST_PKG, GIF_TEST_PROC, GIF_TEST_TRIG,
GIF_TRACE_OUT, MENU_BACKGROUND, MENU_BGCOLOR, MENU_TCOLOR, MULTI_BACKGROUND, MULTI_BGCOLOR,
MULTI_TCOLOR, NAV_BACKGROUND, NAV_BGCOLOR, NAV_TCOLOR, NOTHING_TO_DO, NUMBER_OF_DBG_ARGUMENTS,
NUMBER_OF_TGT_ARGUMENTS, PAR_DBGCOMMAND, PAR_DBGDATABASE, PAR_DBGPASSWORD, PAR_DBGPORT,
PAR_DBGSQL_STMT, PAR_DBGUSER, PAR_DEF_DBGDATABASE, PAR_DEF_DBGPASSWORD, PAR_DEF_DBGPORT,
PAR_DEF_DBGUSER, PAR_DEF_TGTDATABASE, PAR_DEF_TGTPASSWORD, PAR_DEF_TGTPORT, PAR_DEF_TGTUSER,
PAR_LOGOUT, PAR_TGTCOMMAND, PAR_TGTDATABASE, PAR_TGTPASSWORD, PAR_TGTPORT, PAR_TGTSQL_STMT,
PAR_TGTUSER, STRBUFF_LEN, URL_BROWSE_DIR_SERVLET, URL_BROWSE_OBJ_SERVLET, URL_DEBUG_BANNER_SERVLET,
URL_DEBUG_LOGIN_SERVLET, URL_DEBUG_SERVLET, URL_HELP_DIR_SERVLET, URL_HELP_OBJ_SERVLET,
URL_TARGET_BANNER_SERVLET, URL_TARGET_LOGIN_SERVLET, URL_TARGET_SERVLET

Constructor Summary
DebuggeeServlet()

Method Summary
 void doGet(javax.servlet.http.HttpServletRequest request,

javax.servlet.http.HttpServletResponse response)

protected void doLogout(javax.servlet.http.HttpServletResponse response,
javax.servlet.http.HttpSession session)

 void doPost(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)

protected void doRealProcessRequest(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response,
javax.servlet.http.HttpSession session)

protected void executeCommand(java.lang.String[] commandString, java.io.PrintWriter out,
java.sql.Connection conn)

protected void executeCommandAndDisplay(java.lang.String[] commandString, java.io.PrintWriter out,
java.sql.Connection conn)

 void init(javax.servlet.ServletConfig config)

protected void loadParameters(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response,
javax.servlet.http.HttpSession session)

protected void mylog(java.lang.String str)

protected
 java.lang.String

[]

parseStmtString(java.lang.String cmdin)

protected void printControlForm(java.io.PrintWriter out)

protected void processRequest(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)

Methods inherited from class javax.servlet.http.HttpServlet
doDelete, doHead, doOptions, doPut, doTrace, getLastModified, service, service

Methods inherited from class javax.servlet.GenericServlet
destroy, getInitParameter, getInitParameterNames, getServletConfig, getServletContext,
getServletInfo, getServletName, init, log, log

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

dout

public DbmsOuputToServlet dout

queryResultVector

protected java.util.Vector queryResultVector

queryResultText

protected java.lang.StringBuffer queryResultText

stmtString

protected java.lang.String stmtString

dummyResult

protected java.lang.String dummyResult

commandTable

protected java.util.Hashtable commandTable

myHelp

protected Help myHelp

myAlter

protected Alter myAlter

myInitialize

protected Initialize myInitialize

Field Detail

myRunProc1

protected RunProc1 myRunProc1

myAttach

protected AttachSession myAttach

mySync

protected Sync mySync

DebuggeeServlet

public DebuggeeServlet()

init

public void init(javax.servlet.ServletConfig config)
 throws javax.servlet.ServletException

Specified by:
init in interface javax.servlet.Servlet

Throws:
javax.servlet.ServletException

processRequest

protected void processRequest(javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)
 throws javax.servlet.ServletException,
 java.io.IOException

Throws:
javax.servlet.ServletException
java.io.IOException

loadParameters

protected void loadParameters(javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response,
 javax.servlet.http.HttpSession session)
 throws java.io.IOException,
 javax.servlet.ServletException

Throws:
java.io.IOException
javax.servlet.ServletException

Constructor Detail

Method Detail

doGet

public void doGet(javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)
 throws java.io.IOException,
 javax.servlet.ServletException

Throws:
java.io.IOException
javax.servlet.ServletException

doPost

public void doPost(javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)
 throws java.io.IOException,
 javax.servlet.ServletException

Throws:
java.io.IOException
javax.servlet.ServletException

doLogout

protected void doLogout(javax.servlet.http.HttpServletResponse response,
 javax.servlet.http.HttpSession session)
 throws java.io.IOException,
 javax.servlet.ServletException

Throws:
java.io.IOException
javax.servlet.ServletException

doRealProcessRequest

protected void doRealProcessRequest(javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response,
 javax.servlet.http.HttpSession session)
 throws java.io.IOException,
 javax.servlet.ServletException

Throws:
java.io.IOException
javax.servlet.ServletException

printControlForm

protected void printControlForm(java.io.PrintWriter out)
 throws java.io.IOException,
 javax.servlet.ServletException

Throws:
java.io.IOException
javax.servlet.ServletException

parseStmtString

protected java.lang.String[] parseStmtString(java.lang.String cmdin)

executeCommand

protected void executeCommand(java.lang.String[] commandString,
 java.io.PrintWriter out,
 java.sql.Connection conn)

executeCommandAndDisplay

protected void executeCommandAndDisplay(java.lang.String[] commandString,
 java.io.PrintWriter out,
 java.sql.Connection conn)

mylog

protected void mylog(java.lang.String str)
 throws java.util.MissingResourceException

Throws:
java.util.MissingResourceException

deb
Class DebuggerServlet

java.lang.Object

 javax.servlet.GenericServlet

 javax.servlet.http.HttpServlet

 deb.DebuggerServlet

All Implemented Interfaces:
ICODEdefinitions, java.io.Serializable, javax.servlet.Servlet, javax.servlet.ServletConfig

public class DebuggerServlet
extends javax.servlet.http.HttpServlet
implements ICODEdefinitions

See Also:
Serialized Form

Overview Package Class Tree Deprecated Index Help And this is the footer
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Overview Package Class Tree Deprecated Index Help Debug and implementation of a web based PL/SQL debugger
using Oracle's debug API

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All
Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Field Summary
protected

 java.util.Hashtable
commandTable

 DbmsOuputToServlet dout

protected
 java.lang.String

dummyResult

protected Alter myAlter

protected
 AttachSession

myAttach

protected Help myHelp

protected Initialize myInitialize

protected RunProc1 myRunProc1

protected Sync mySync

protected
 java.lang.StringBuffer

queryResultText

protected
 java.util.Vector

queryResultVector

protected
 java.lang.String

stmtString

Fields inherited from interface deb.ICODEdefinitions
ATTR_DBG_DBMS_OUTPUT, ATTR_DBGATTACHED_TO, ATTR_DBGCOMMAND, ATTR_DBGCONNECTION, ATTR_DBGDATABASE,
ATTR_DBGUSER, ATTR_TGTCOMMAND, ATTR_TGTCONNECTION, ATTR_TGTDATABASE, ATTR_TGTSESSIONID,
ATTR_TGTUSER, BYTEBUFF_LEN, CMD_ABORT, CMD_ABOUT, CMD_ALTER_PROC, CMD_ATTACH, CMD_DEBUG_ON,
CMD_DEL_BREAK, CMD_DETACH, CMD_EXECUTE, CMD_EXECUTE_QUERY, CMD_EXEMPEL, CMD_GET_PKG_VALUE,
CMD_GET_VALUE, CMD_HELP, CMD_INIT, CMD_LIST_BREAK, CMD_PKG_TEST, CMD_PROC_TEST, CMD_PROGRAM,
CMD_SELF_CHECK, CMD_SET_BREAK, CMD_SET_PKG_VALUE, CMD_SET_VALUE, CMD_SOURCE_CURRENT,
CMD_SOURCE_PKG, CMD_SOURCE_PROC, CMD_SOURCE_TRIG, CMD_STACK, CMD_START_DEBUGGEE, CMD_STEP,
CMD_STEP_IN, CMD_STEP_OUT, CMD_STEP_OVER, CMD_SYNC, CMD_TRACE_OUT, CMD_TRIG_TEST, CMD_VERSION,
DEFAULT_BACKGROUND, DEFAULT_BGCOLOR, DEFAULT_CONTENT, DEFAULT_JDBC_DRIVER, DEFAULT_PROPERTIES,
DEFAULT_PROPERTIES_FILE, DEFAULT_TCOLOR, FRAME_BROWSE, FRAME_HELP, FRAME_MAIN, FRAME_MENU,
GIF_ABORT, GIF_ALTER, GIF_ATTACH, GIF_CURR_SOURCE, GIF_DEBUG_OFF, GIF_DEBUG_ON, GIF_DEL_BREAK,
GIF_GET_PVALUE, GIF_GET_VALUE, GIF_HELP, GIF_INIT, GIF_LINK_CORUS_ICON, GIF_LINK_ICODE_ICON,
GIF_LIST_BREAK, GIF_MENU, GIF_PROG_INFO, GIF_ROOT, GIF_SET_BREAK, GIF_SET_PVALUE, GIF_SET_VALUE,
GIF_SOURCE_PKG_BODY, GIF_SOURCE_PROC, GIF_SOURCE_TRIGGER, GIF_STACK, GIF_START_DEBUGGEE, GIF_STEP,
GIF_STEP_IN, GIF_STEP_OUT, GIF_STEP_OVER, GIF_SYNC, GIF_TEST_PKG, GIF_TEST_PROC, GIF_TEST_TRIG,
GIF_TRACE_OUT, MENU_BACKGROUND, MENU_BGCOLOR, MENU_TCOLOR, MULTI_BACKGROUND, MULTI_BGCOLOR,
MULTI_TCOLOR, NAV_BACKGROUND, NAV_BGCOLOR, NAV_TCOLOR, NOTHING_TO_DO, NUMBER_OF_DBG_ARGUMENTS,
NUMBER_OF_TGT_ARGUMENTS, PAR_DBGCOMMAND, PAR_DBGDATABASE, PAR_DBGPASSWORD, PAR_DBGPORT,
PAR_DBGSQL_STMT, PAR_DBGUSER, PAR_DEF_DBGDATABASE, PAR_DEF_DBGPASSWORD, PAR_DEF_DBGPORT,
PAR_DEF_DBGUSER, PAR_DEF_TGTDATABASE, PAR_DEF_TGTPASSWORD, PAR_DEF_TGTPORT, PAR_DEF_TGTUSER,
PAR_LOGOUT, PAR_TGTCOMMAND, PAR_TGTDATABASE, PAR_TGTPASSWORD, PAR_TGTPORT, PAR_TGTSQL_STMT,
PAR_TGTUSER, STRBUFF_LEN, URL_BROWSE_DIR_SERVLET, URL_BROWSE_OBJ_SERVLET, URL_DEBUG_BANNER_SERVLET,
URL_DEBUG_LOGIN_SERVLET, URL_DEBUG_SERVLET, URL_HELP_DIR_SERVLET, URL_HELP_OBJ_SERVLET,
URL_TARGET_BANNER_SERVLET, URL_TARGET_LOGIN_SERVLET, URL_TARGET_SERVLET

Constructor Summary
DebuggerServlet()

Method Summary
 void

doGet(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)

dout

public DbmsOuputToServlet dout

queryResultVector

protected java.util.Vector queryResultVector

protected void doLogout(javax.servlet.http.HttpServletResponse response,

javax.servlet.http.HttpSession session)

 void doPost(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)

protected void doRealProcessRequest(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response,
javax.servlet.http.HttpSession session)

protected void executeCommand(java.lang.String[] commandString, java.io.PrintWriter out,
java.sql.Connection conn)

protected void executeCommandAndDisplay(java.lang.String[] commandString, java.io.PrintWriter out,
java.sql.Connection conn)

 void init(javax.servlet.ServletConfig config)

protected void loadParameters(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response,
javax.servlet.http.HttpSession session)

protected void mylog(java.lang.String str)

protected
 java.lang.String

[]

parseStmtString(java.lang.String cmdin)

protected void printControlForm(java.io.PrintWriter out)

protected void processRequest(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)

Methods inherited from class javax.servlet.http.HttpServlet
doDelete, doHead, doOptions, doPut, doTrace, getLastModified, service, service

Methods inherited from class javax.servlet.GenericServlet
destroy, getInitParameter, getInitParameterNames, getServletConfig, getServletContext,
getServletInfo, getServletName, init, log, log

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Field Detail

queryResultText

protected java.lang.StringBuffer queryResultText

stmtString

protected java.lang.String stmtString

dummyResult

protected java.lang.String dummyResult

commandTable

protected java.util.Hashtable commandTable

myHelp

protected Help myHelp

myAlter

protected Alter myAlter

myInitialize

protected Initialize myInitialize

myRunProc1

protected RunProc1 myRunProc1

myAttach

protected AttachSession myAttach

mySync

protected Sync mySync

DebuggerServlet

public DebuggerServlet()

init

public void init(javax.servlet.ServletConfig config)
 throws javax.servlet.ServletException

Specified by:
init in interface javax.servlet.Servlet

Throws:
javax.servlet.ServletException

processRequest

protected void processRequest(javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)
 throws javax.servlet.ServletException,
 java.io.IOException

Throws:
javax.servlet.ServletException
java.io.IOException

loadParameters

protected void loadParameters(javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response,
 javax.servlet.http.HttpSession session)
 throws java.io.IOException,
 javax.servlet.ServletException

Throws:
java.io.IOException
javax.servlet.ServletException

doGet

public void doGet(javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)
 throws java.io.IOException,
 javax.servlet.ServletException

Throws:
java.io.IOException
javax.servlet.ServletException

doPost

Constructor Detail

Method Detail

public void doPost(javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)
 throws java.io.IOException,
 javax.servlet.ServletException

Throws:
java.io.IOException
javax.servlet.ServletException

doLogout

protected void doLogout(javax.servlet.http.HttpServletResponse response,
 javax.servlet.http.HttpSession session)
 throws java.io.IOException,
 javax.servlet.ServletException

Throws:
java.io.IOException
javax.servlet.ServletException

doRealProcessRequest

protected void doRealProcessRequest(javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response,
 javax.servlet.http.HttpSession session)
 throws java.io.IOException,
 javax.servlet.ServletException

Throws:
java.io.IOException
javax.servlet.ServletException

printControlForm

protected void printControlForm(java.io.PrintWriter out)
 throws java.io.IOException,
 javax.servlet.ServletException

Throws:
java.io.IOException
javax.servlet.ServletException

parseStmtString

protected java.lang.String[] parseStmtString(java.lang.String cmdin)

executeCommand

protected void executeCommand(java.lang.String[] commandString,
 java.io.PrintWriter out,
 java.sql.Connection conn)

executeCommandAndDisplay

protected void executeCommandAndDisplay(java.lang.String[] commandString,
 java.io.PrintWriter out,
 java.sql.Connection conn)

mylog

protected void mylog(java.lang.String str)
 throws java.util.MissingResourceException

Throws:
java.util.MissingResourceException

deb
Class TgtLogin

java.lang.Object

 javax.servlet.GenericServlet

 javax.servlet.http.HttpServlet

 deb.TgtLogin

All Implemented Interfaces:
ICODEdefinitions, java.io.Serializable, javax.servlet.Servlet, javax.servlet.ServletConfig

public class TgtLogin
extends javax.servlet.http.HttpServlet
implements ICODEdefinitions

See Also:
Serialized Form

Overview Package Class Tree Deprecated Index Help And this is the footer
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Overview Package Class Tree Deprecated Index Help Debug and implementation of a web based PL/SQL debugger
using Oracle's debug API

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All
Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Field Summary

Fields inherited from interface deb.ICODEdefinitions

ATTR_DBG_DBMS_OUTPUT, ATTR_DBGATTACHED_TO, ATTR_DBGCOMMAND, ATTR_DBGCONNECTION, ATTR_DBGDATABASE,
ATTR_DBGUSER, ATTR_TGTCOMMAND, ATTR_TGTCONNECTION, ATTR_TGTDATABASE, ATTR_TGTSESSIONID,
ATTR_TGTUSER, BYTEBUFF_LEN, CMD_ABORT, CMD_ABOUT, CMD_ALTER_PROC, CMD_ATTACH, CMD_DEBUG_ON,
CMD_DEL_BREAK, CMD_DETACH, CMD_EXECUTE, CMD_EXECUTE_QUERY, CMD_EXEMPEL, CMD_GET_PKG_VALUE,
CMD_GET_VALUE, CMD_HELP, CMD_INIT, CMD_LIST_BREAK, CMD_PKG_TEST, CMD_PROC_TEST, CMD_PROGRAM,
CMD_SELF_CHECK, CMD_SET_BREAK, CMD_SET_PKG_VALUE, CMD_SET_VALUE, CMD_SOURCE_CURRENT,
CMD_SOURCE_PKG, CMD_SOURCE_PROC, CMD_SOURCE_TRIG, CMD_STACK, CMD_START_DEBUGGEE, CMD_STEP,
CMD_STEP_IN, CMD_STEP_OUT, CMD_STEP_OVER, CMD_SYNC, CMD_TRACE_OUT, CMD_TRIG_TEST, CMD_VERSION,
DEFAULT_BACKGROUND, DEFAULT_BGCOLOR, DEFAULT_CONTENT, DEFAULT_JDBC_DRIVER, DEFAULT_PROPERTIES,
DEFAULT_PROPERTIES_FILE, DEFAULT_TCOLOR, FRAME_BROWSE, FRAME_HELP, FRAME_MAIN, FRAME_MENU,
GIF_ABORT, GIF_ALTER, GIF_ATTACH, GIF_CURR_SOURCE, GIF_DEBUG_OFF, GIF_DEBUG_ON, GIF_DEL_BREAK,

TgtLogin

public TgtLogin()

init

public void init(javax.servlet.ServletConfig config)
 throws javax.servlet.ServletException

Specified by:
init in interface javax.servlet.Servlet

GIF_GET_PVALUE, GIF_GET_VALUE, GIF_HELP, GIF_INIT, GIF_LINK_CORUS_ICON, GIF_LINK_ICODE_ICON,
GIF_LIST_BREAK, GIF_MENU, GIF_PROG_INFO, GIF_ROOT, GIF_SET_BREAK, GIF_SET_PVALUE, GIF_SET_VALUE,
GIF_SOURCE_PKG_BODY, GIF_SOURCE_PROC, GIF_SOURCE_TRIGGER, GIF_STACK, GIF_START_DEBUGGEE, GIF_STEP,
GIF_STEP_IN, GIF_STEP_OUT, GIF_STEP_OVER, GIF_SYNC, GIF_TEST_PKG, GIF_TEST_PROC, GIF_TEST_TRIG,
GIF_TRACE_OUT, MENU_BACKGROUND, MENU_BGCOLOR, MENU_TCOLOR, MULTI_BACKGROUND, MULTI_BGCOLOR,
MULTI_TCOLOR, NAV_BACKGROUND, NAV_BGCOLOR, NAV_TCOLOR, NOTHING_TO_DO, NUMBER_OF_DBG_ARGUMENTS,
NUMBER_OF_TGT_ARGUMENTS, PAR_DBGCOMMAND, PAR_DBGDATABASE, PAR_DBGPASSWORD, PAR_DBGPORT,
PAR_DBGSQL_STMT, PAR_DBGUSER, PAR_DEF_DBGDATABASE, PAR_DEF_DBGPASSWORD, PAR_DEF_DBGPORT,
PAR_DEF_DBGUSER, PAR_DEF_TGTDATABASE, PAR_DEF_TGTPASSWORD, PAR_DEF_TGTPORT, PAR_DEF_TGTUSER,
PAR_LOGOUT, PAR_TGTCOMMAND, PAR_TGTDATABASE, PAR_TGTPASSWORD, PAR_TGTPORT, PAR_TGTSQL_STMT,
PAR_TGTUSER, STRBUFF_LEN, URL_BROWSE_DIR_SERVLET, URL_BROWSE_OBJ_SERVLET, URL_DEBUG_BANNER_SERVLET,
URL_DEBUG_LOGIN_SERVLET, URL_DEBUG_SERVLET, URL_HELP_DIR_SERVLET, URL_HELP_OBJ_SERVLET,
URL_TARGET_BANNER_SERVLET, URL_TARGET_LOGIN_SERVLET, URL_TARGET_SERVLET

Constructor Summary
TgtLogin()

Method Summary
 void doGet(javax.servlet.http.HttpServletRequest request,

javax.servlet.http.HttpServletResponse response)

 void doPost(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)

 void init(javax.servlet.ServletConfig config)

protected
 void

mylog(java.lang.String str)

 void processRequest(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)

Methods inherited from class javax.servlet.http.HttpServlet
doDelete, doHead, doOptions, doPut, doTrace, getLastModified, service, service

Methods inherited from class javax.servlet.GenericServlet
destroy, getInitParameter, getInitParameterNames, getServletConfig, getServletContext,
getServletInfo, getServletName, init, log, log

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

Method Detail

Throws:
javax.servlet.ServletException

doGet

public void doGet(javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)
 throws java.io.IOException,
 javax.servlet.ServletException

Throws:
java.io.IOException
javax.servlet.ServletException

doPost

public void doPost(javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)
 throws java.io.IOException,
 javax.servlet.ServletException

Throws:
java.io.IOException
javax.servlet.ServletException

processRequest

public void processRequest(javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)
 throws java.io.IOException,
 javax.servlet.ServletException

Throws:
java.io.IOException
javax.servlet.ServletException

mylog

protected void mylog(java.lang.String str)
 throws java.util.MissingResourceException

Throws:
java.util.MissingResourceException

deb

Overview Package Class Tree Deprecated Index Help And this is the footer
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Overview Package Class Tree Deprecated Index Help Debug and implementation of a web based PL/SQL debugger
using Oracle's debug API

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All
Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Class TgtUserBanner

java.lang.Object

 javax.servlet.GenericServlet

 javax.servlet.http.HttpServlet

 deb.TgtUserBanner

All Implemented Interfaces:
ICODEdefinitions, java.io.Serializable, javax.servlet.Servlet, javax.servlet.ServletConfig

public class TgtUserBanner
extends javax.servlet.http.HttpServlet
implements ICODEdefinitions

Author:
Alvaro Mayorga

See Also:
Serialized Form

Field Summary

Fields inherited from interface deb.ICODEdefinitions
ATTR_DBG_DBMS_OUTPUT, ATTR_DBGATTACHED_TO, ATTR_DBGCOMMAND, ATTR_DBGCONNECTION, ATTR_DBGDATABASE,
ATTR_DBGUSER, ATTR_TGTCOMMAND, ATTR_TGTCONNECTION, ATTR_TGTDATABASE, ATTR_TGTSESSIONID,
ATTR_TGTUSER, BYTEBUFF_LEN, CMD_ABORT, CMD_ABOUT, CMD_ALTER_PROC, CMD_ATTACH, CMD_DEBUG_ON,
CMD_DEL_BREAK, CMD_DETACH, CMD_EXECUTE, CMD_EXECUTE_QUERY, CMD_EXEMPEL, CMD_GET_PKG_VALUE,
CMD_GET_VALUE, CMD_HELP, CMD_INIT, CMD_LIST_BREAK, CMD_PKG_TEST, CMD_PROC_TEST, CMD_PROGRAM,
CMD_SELF_CHECK, CMD_SET_BREAK, CMD_SET_PKG_VALUE, CMD_SET_VALUE, CMD_SOURCE_CURRENT,
CMD_SOURCE_PKG, CMD_SOURCE_PROC, CMD_SOURCE_TRIG, CMD_STACK, CMD_START_DEBUGGEE, CMD_STEP,
CMD_STEP_IN, CMD_STEP_OUT, CMD_STEP_OVER, CMD_SYNC, CMD_TRACE_OUT, CMD_TRIG_TEST, CMD_VERSION,
DEFAULT_BACKGROUND, DEFAULT_BGCOLOR, DEFAULT_CONTENT, DEFAULT_JDBC_DRIVER, DEFAULT_PROPERTIES,
DEFAULT_PROPERTIES_FILE, DEFAULT_TCOLOR, FRAME_BROWSE, FRAME_HELP, FRAME_MAIN, FRAME_MENU,
GIF_ABORT, GIF_ALTER, GIF_ATTACH, GIF_CURR_SOURCE, GIF_DEBUG_OFF, GIF_DEBUG_ON, GIF_DEL_BREAK,
GIF_GET_PVALUE, GIF_GET_VALUE, GIF_HELP, GIF_INIT, GIF_LINK_CORUS_ICON, GIF_LINK_ICODE_ICON,
GIF_LIST_BREAK, GIF_MENU, GIF_PROG_INFO, GIF_ROOT, GIF_SET_BREAK, GIF_SET_PVALUE, GIF_SET_VALUE,
GIF_SOURCE_PKG_BODY, GIF_SOURCE_PROC, GIF_SOURCE_TRIGGER, GIF_STACK, GIF_START_DEBUGGEE, GIF_STEP,
GIF_STEP_IN, GIF_STEP_OUT, GIF_STEP_OVER, GIF_SYNC, GIF_TEST_PKG, GIF_TEST_PROC, GIF_TEST_TRIG,
GIF_TRACE_OUT, MENU_BACKGROUND, MENU_BGCOLOR, MENU_TCOLOR, MULTI_BACKGROUND, MULTI_BGCOLOR,
MULTI_TCOLOR, NAV_BACKGROUND, NAV_BGCOLOR, NAV_TCOLOR, NOTHING_TO_DO, NUMBER_OF_DBG_ARGUMENTS,
NUMBER_OF_TGT_ARGUMENTS, PAR_DBGCOMMAND, PAR_DBGDATABASE, PAR_DBGPASSWORD, PAR_DBGPORT,
PAR_DBGSQL_STMT, PAR_DBGUSER, PAR_DEF_DBGDATABASE, PAR_DEF_DBGPASSWORD, PAR_DEF_DBGPORT,
PAR_DEF_DBGUSER, PAR_DEF_TGTDATABASE, PAR_DEF_TGTPASSWORD, PAR_DEF_TGTPORT, PAR_DEF_TGTUSER,
PAR_LOGOUT, PAR_TGTCOMMAND, PAR_TGTDATABASE, PAR_TGTPASSWORD, PAR_TGTPORT, PAR_TGTSQL_STMT,
PAR_TGTUSER, STRBUFF_LEN, URL_BROWSE_DIR_SERVLET, URL_BROWSE_OBJ_SERVLET, URL_DEBUG_BANNER_SERVLET,
URL_DEBUG_LOGIN_SERVLET, URL_DEBUG_SERVLET, URL_HELP_DIR_SERVLET, URL_HELP_OBJ_SERVLET,
URL_TARGET_BANNER_SERVLET, URL_TARGET_LOGIN_SERVLET, URL_TARGET_SERVLET

Constructor Summary
TgtUserBanner()

Method Summary
protected

 void
doGet(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)
 Handles the HTTP GET method.

protected
 void

doPost(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)
 Handles the HTTP POST method.

protected
 void processRequest(javax.servlet.http.HttpServletRequest request,

javax.servlet.http.HttpServletResponse response)

TgtUserBanner

public TgtUserBanner()

processRequest

protected void processRequest(javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)
 throws javax.servlet.ServletException,
 java.io.IOException

Processes requests for both HTTP GET and POST methods.
Parameters:

request - servlet request
response - servlet response

Throws:
javax.servlet.ServletException
java.io.IOException

doGet

protected void doGet(javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)
 throws javax.servlet.ServletException,
 java.io.IOException

Handles the HTTP GET method.
Parameters:

request - servlet request
response - servlet response

Throws:
javax.servlet.ServletException
java.io.IOException

doPost

protected void doPost(javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)
 throws javax.servlet.ServletException,

 Processes requests for both HTTP GET and POST methods.

Methods inherited from class javax.servlet.http.HttpServlet
doDelete, doHead, doOptions, doPut, doTrace, getLastModified, service, service

Methods inherited from class javax.servlet.GenericServlet
destroy, getInitParameter, getInitParameterNames, getServletConfig, getServletContext,
getServletInfo, getServletName, init, init, log, log

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

Method Detail

 java.io.IOException

Handles the HTTP POST method.
Parameters:

request - servlet request
response - servlet response

Throws:
javax.servlet.ServletException
java.io.IOException

Package deb.command

Overview Package Class Tree Deprecated Index Help And this is the footer
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Overview Package Class Tree Deprecated Index Help Debug and implementation of a web based PL/SQL debugger
using Oracle's debug API PREV PACKAGE NEXT PACKAGE FRAMES NO FRAMES All Classes

Class Summary

Alter This class is altered alter a session as in alter session set plsql_debug = true alter
{OBJECT_TYPE} {OBJECT_NAME} Exempel: alter procedure myProc compile debug

AttachSession

Command Abstract Command Class. Base class to extend in order to implement a function in iCODE.

DebugOn Sets the session's debug mode on. It uses corus_debug.debug_on

Exempel

GetValue Gets the value of a variable. It uses corus_debug.get_value

Help Displays help information about command in iCODE and the corus_debug package. It uses
corus_debug.help.

Initialize Initializes the debugee session retrieving and displaying the obtained debugID from the database. It uses
corus_debug.initialize.

Log

NullCommand

RunPkg1

RunProc1

SelfCheck

SetBreak Set a breakpoint at given line.. It uses corus_debug.set_break.

SetValue

ShowSource

SourceProc Displays the source code of a given procedure. It uses corus_debug.show_source_proc.

Stack

Step

StepIn

StepOut

StepOver

Sync

TraceOut

Version

And this is the footer

deb.command
Class Alter

java.lang.Object

 deb.command.Command

 deb.command.Alter

public class Alter
extends Command

This class is altered alter a session as in alter session set plsql_debug = true alter {OBJECT_TYPE} {OBJECT_NAME}
Exempel: alter procedure myProc compile debug

Author:
Alvaro Mayorga

Overview Package Class Tree Deprecated Index Help
 PREV PACKAGE NEXT PACKAGE FRAMES NO FRAMES All Classes

Overview Package Class Tree Deprecated Index Help Debug and implementation of a web based PL/SQL debugger
using Oracle's debug API

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All
Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Field Summary
protected

 java.sql.CallableStatement
cstmt

protected java.lang.String help

protected java.lang.String info

protected
 java.sql.Statement

stmt

protected java.util.Vector vector

Fields inherited from class deb.command.Command
logFile

Constructor Summary
Alter()

Method Summary
protected
 boolean

checkValidity(java.lang.String[] cmdArray)
 Should perform data control of parameters to the command.

protected void mylog(java.lang.String str)

 java.util.Vector performCommand(java.lang.String[] cmdArrayin, java.sql.Connection myCon)
 The actual command execution.

 java.util.Vector

performCommandAndDisplay(java.lang.String[] cmdArrayin,

info

protected java.lang.String info

help

protected java.lang.String help

vector

protected java.util.Vector vector

stmt

protected java.sql.Statement stmt

cstmt

protected java.sql.CallableStatement cstmt

Alter

public Alter()

mylog

protected void mylog(java.lang.String str)
 throws java.util.MissingResourceException

Overrides:
mylog in class Command

Throws:

java.sql.Connection connection, java.io.PrintWriter out)
 The actual command execution.

Methods inherited from class deb.command.Command
ifValidThenPerformCommand, info

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Field Detail

Constructor Detail

Method Detail

java.util.MissingResourceException

checkValidity

protected boolean checkValidity(java.lang.String[] cmdArray)

Description copied from class: Command
Should perform data control of parameters to the command.
Specified by:

checkValidity in class Command
Parameters:

cmdArray - Array containing command keyword, modifier(s) and , parameters
Returns:

Returns true if valid else false.

performCommand

public java.util.Vector performCommand(java.lang.String[] cmdArrayin,
 java.sql.Connection myCon)

Description copied from class: Command
The actual command execution.
Specified by:

performCommand in class Command
Parameters:

cmdArrayin - Array with command keyword, modifier(s) and , parameters
myCon - A Connection to execute stored procedures in the database within the correct session.

Returns:
Returns a java.util.Vector containing the results of executions as objects

performCommandAndDisplay

public java.util.Vector performCommandAndDisplay(java.lang.String[] cmdArrayin,
 java.sql.Connection connection,
 java.io.PrintWriter out)

Description copied from class: Command
The actual command execution. Displays also the output generated by DBMS_OUTPUT on the DB.
Overrides:

performCommandAndDisplay in class Command
Parameters:

cmdArrayin - Array with command keyword, modifier(s) and , parameters
connection - A Connection to execute stored procedures in the database within the correct session.

Returns:
Returns a java.util.Vector containing the results of executions as objects

deb.command
Class AttachSession

Overview Package Class Tree Deprecated Index Help And this is the footer
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Overview Package Class Tree Deprecated Index Help Debug and implementation of a web based PL/SQL debugger
using Oracle's debug API

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All
Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.lang.Object

 deb.command.Command

 deb.command.AttachSession

public class AttachSession
extends Command

info

protected java.lang.String info

Field Summary
protected

 java.sql.CallableStatement
cstmt

protected java.lang.String help

protected java.lang.String info

protected
 java.sql.Statement

stmt

protected java.util.Vector vector

Fields inherited from class deb.command.Command
logFile

Constructor Summary
AttachSession()

Method Summary
protected
 boolean

checkValidity(java.lang.String[] cmdArray)
 Returns true in order to display an error message

 java.util.Vector performCommand(java.lang.String[] cmdArray, java.sql.Connection myCon)
 The actual command execution.

 java.util.Vector performCommandAndDisplay(java.lang.String[] cmdArray, java.sql.Connection connection,
java.io.PrintWriter out)
 The actual command execution.

Methods inherited from class deb.command.Command
ifValidThenPerformCommand, info, mylog

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Field Detail

help

protected java.lang.String help

stmt

protected java.sql.Statement stmt

cstmt

protected java.sql.CallableStatement cstmt

vector

protected java.util.Vector vector

AttachSession

public AttachSession()

checkValidity

protected boolean checkValidity(java.lang.String[] cmdArray)

Returns true in order to display an error message
Specified by:

checkValidity in class Command
Parameters:

cmdArray - Array containing command keyword, modifier(s) and , parameters
Returns:

Returns true if valid else false.

performCommand

public java.util.Vector performCommand(java.lang.String[] cmdArray,
 java.sql.Connection myCon)

Description copied from class: Command
The actual command execution.
Specified by:

performCommand in class Command
Parameters:

cmdArray - Array with command keyword, modifier(s) and , parameters
myCon - A Connection to execute stored procedures in the database within the correct session.

Returns:
Returns a java.util.Vector containing the results of executions as objects

Constructor Detail

Method Detail

performCommandAndDisplay

public java.util.Vector performCommandAndDisplay(java.lang.String[] cmdArray,
 java.sql.Connection connection,
 java.io.PrintWriter out)

Description copied from class: Command
The actual command execution. Displays also the output generated by DBMS_OUTPUT on the DB.
Overrides:

performCommandAndDisplay in class Command
Parameters:

cmdArray - Array with command keyword, modifier(s) and , parameters
connection - A Connection to execute stored procedures in the database within the correct session.

Returns:
Returns a java.util.Vector containing the results of executions as objects

deb.command
Class Command

java.lang.Object

 deb.command.Command

Direct Known Subclasses:
Alter, AttachSession, DebugOn, Exempel, GetValue, Help, Initialize, NullCommand, RunPkg1, RunProc1, SelfCheck,
SetBreak, SetValue, ShowSource, SourceProc, Stack, Step, StepIn, StepOut, StepOver, Sync, TraceOut, Version

public abstract class Command
extends java.lang.Object

Abstract Command Class. Basic implementation of a Command superclass.

Overview Package Class Tree Deprecated Index Help And this is the footer
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Overview Package Class Tree Deprecated Index Help Debug and implementation of a web based PL/SQL debugger
using Oracle's debug API

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All
Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Field Summary
protected

 java.lang.String
className

protected
 java.lang.String

help

protected
 java.lang.String

info

protected
 java.lang.String

logFile

Constructor Summary
protected Command()

 Sole constructor.

className

protected java.lang.String className

info

protected java.lang.String info

help

protected java.lang.String help

logFile

protected java.lang.String logFile

Command

protected Command()

Sole constructor.

mylog

Method Summary
protected

abstract boolean
checkValidity(java.lang.String[] cmdArray)
 Should perform data control of parameters to the command.

protected
 java.util.Vector

ifValidThenPerformCommand(java.lang.String[] cmdArray, java.sql.Connection con)
 If parameters are valid then perform the command execution.

 java.lang.String info()
 Returns info

protected void mylog(java.lang.String str)

abstract
 java.util.Vector

performCommand(java.lang.String[] cmdArray, java.sql.Connection con)
 The actual command execution.

 java.util.Vector performCommandAndDisplay(java.lang.String[] cmdArray, java.sql.Connection connection,
java.io.PrintWriter out)
 The actual command execution.

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Field Detail

Constructor Detail

Method Detail

protected void mylog(java.lang.String str)
 throws java.util.MissingResourceException

Throws:
java.util.MissingResourceException

info

public java.lang.String info()

Returns info
Returns:

Returns info

checkValidity

protected abstract boolean checkValidity(java.lang.String[] cmdArray)

Should perform data control of parameters to the command.
Parameters:

cmdArray - Array containing command keyword, modifier(s) and , parameters
Returns:

Returns true if valid else false.

performCommand

public abstract java.util.Vector performCommand(java.lang.String[] cmdArray,
 java.sql.Connection con)

The actual command execution.
Parameters:

cmdArray - Array with command keyword, modifier(s) and , parameters
con - A Connection to execute stored procedures in the database within the correct session.

Returns:
Returns a java.util.Vector containing the results of executions as objects

performCommandAndDisplay

public java.util.Vector performCommandAndDisplay(java.lang.String[] cmdArray,
 java.sql.Connection connection,
 java.io.PrintWriter out)

The actual command execution. Displays also the output generated by DBMS_OUTPUT on the DB.
Parameters:

cmdArray - Array with command keyword, modifier(s) and , parameters
connection - A Connection to execute stored procedures in the database within the correct session.

Returns:
Returns a java.util.Vector containing the results of executions as objects

ifValidThenPerformCommand

protected java.util.Vector ifValidThenPerformCommand(java.lang.String[] cmdArray,
 java.sql.Connection con)

If parameters are valid then perform the command execution.
Parameters:

cmdArray - Array containig command keyword, modifiers and parameters for command execution
con - Database connection in which the command should be performed

deb.command
Class DebugOn

java.lang.Object

 deb.command.Command

 deb.command.DebugOn

public class DebugOn
extends Command

Author:
Alvaro Mayorga

Overview Package Class Tree Deprecated Index Help And this is the footer
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Overview Package Class Tree Deprecated Index Help Debug and implementation of a web based PL/SQL debugger
using Oracle's debug API

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All
Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Field Summary
protected

 java.lang.String
help

protected
 java.lang.String

info

Fields inherited from class deb.command.Command
logFile

Constructor Summary
DebugOn()

Method Summary
protected
 boolean

checkValidity(java.lang.String[] cmdArray)
 Returns true in order to display an error message

 java.util.Vector performCommand(java.lang.String[] cmdArray, java.sql.Connection myCon)
 The actual command execution.

 java.util.Vector performCommandAndDisplay(java.lang.String[] cmdArray, java.sql.Connection connection,
java.io.PrintWriter out)
 The actual command execution.

Methods inherited from class deb.command.Command
ifValidThenPerformCommand, info, mylog

info

protected java.lang.String info

help

protected java.lang.String help

DebugOn

public DebugOn()

checkValidity

protected boolean checkValidity(java.lang.String[] cmdArray)

Returns true in order to display an error message
Specified by:

checkValidity in class Command
Parameters:

cmdArray - Array containing command keyword, modifier(s) and , parameters
Returns:

Returns true if valid else false.

performCommand

public java.util.Vector performCommand(java.lang.String[] cmdArray,
 java.sql.Connection myCon)

Description copied from class: Command
The actual command execution.
Specified by:

performCommand in class Command
Parameters:

cmdArray - Array with command keyword, modifier(s) and , parameters
myCon - A Connection to execute stored procedures in the database within the correct session.

Returns:
Returns a java.util.Vector containing the results of executions as objects

performCommandAndDisplay

public java.util.Vector performCommandAndDisplay(java.lang.String[] cmdArray,
 java.sql.Connection connection,

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Field Detail

Constructor Detail

Method Detail

 java.io.PrintWriter out)

Description copied from class: Command
The actual command execution. Displays also the output generated by DBMS_OUTPUT on the DB.
Overrides:

performCommandAndDisplay in class Command
Parameters:

cmdArray - Array with command keyword, modifier(s) and , parameters
connection - A Connection to execute stored procedures in the database within the correct session.

Returns:
Returns a java.util.Vector containing the results of executions as objects

deb.command
Class Command

java.lang.Object

 deb.command.Command

Direct Known Subclasses:
Alter, AttachSession, DebugOn, Exempel, GetValue, Help, Initialize, NullCommand, RunPkg1, RunProc1, SelfCheck,
SetBreak, SetValue, ShowSource, SourceProc, Stack, Step, StepIn, StepOut, StepOver, Sync, TraceOut, Version

public abstract class Command
extends java.lang.Object

Abstract Command Class. Basic implementation of a Command superclass.

Overview Package Class Tree Deprecated Index Help And this is the footer
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Overview Package Class Tree Deprecated Index Help Debug and implementation of a web based PL/SQL debugger
using Oracle's debug API

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All
Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Field Summary
protected

 java.lang.String
className

protected
 java.lang.String

help

protected
 java.lang.String

info

protected
 java.lang.String

logFile

Constructor Summary
protected Command()

 Sole constructor.

Method Summary
protected

className

protected java.lang.String className

info

protected java.lang.String info

help

protected java.lang.String help

logFile

protected java.lang.String logFile

Command

protected Command()

Sole constructor.

mylog

protected void mylog(java.lang.String str)
 throws java.util.MissingResourceException

abstract boolean checkValidity(java.lang.String[] cmdArray)
 Should perform data control of parameters to the command.

protected
 java.util.Vector

ifValidThenPerformCommand(java.lang.String[] cmdArray, java.sql.Connection con)
 If parameters are valid then perform the command execution.

 java.lang.String info()
 Returns info

protected void mylog(java.lang.String str)

abstract
 java.util.Vector

performCommand(java.lang.String[] cmdArray, java.sql.Connection con)
 The actual command execution.

 java.util.Vector performCommandAndDisplay(java.lang.String[] cmdArray, java.sql.Connection connection,
java.io.PrintWriter out)
 The actual command execution.

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Field Detail

Constructor Detail

Method Detail

Throws:
java.util.MissingResourceException

info

public java.lang.String info()

Returns info

Returns:
Returns info

checkValidity

protected abstract boolean checkValidity(java.lang.String[] cmdArray)

Should perform data control of parameters to the command.

Parameters:
cmdArray - Array containing command keyword, modifier(s) and , parameters

Returns:
Returns true if valid else false.

performCommand

public abstract java.util.Vector performCommand(java.lang.String[] cmdArray,
 java.sql.Connection con)

The actual command execution.

Parameters:
cmdArray - Array with command keyword, modifier(s) and , parameters
con - A Connection to execute stored procedures in the database within the correct session.

Returns:
Returns a java.util.Vector containing the results of executions as objects

performCommandAndDisplay

public java.util.Vector performCommandAndDisplay(java.lang.String[] cmdArray,
 java.sql.Connection connection,
 java.io.PrintWriter out)

The actual command execution. Displays also the output generated by DBMS_OUTPUT on the DB.

Parameters:
cmdArray - Array with command keyword, modifier(s) and , parameters
connection - A Connection to execute stored procedures in the database within the correct session.

Returns:
Returns a java.util.Vector containing the results of executions as objects

ifValidThenPerformCommand

protected java.util.Vector ifValidThenPerformCommand(java.lang.String[] cmdArray,
 java.sql.Connection con)

If parameters are valid then perform the command execution.

Parameters:
cmdArray - Array containig command keyword, modifiers and parameters for command execution
con - Database connection in which the command should be performed

Overview Package Class Tree Deprecated Index Help And this is the footer
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Note: The remaining javadoc documents of the deb.command package has
mainly the same class documentation as the AttachSession and the DebugOn
classes.
All of them extends the Command class.
These documents have not been inserted in this appendix because the
information they provide is mostly repetitive.

The full documentation can be requested from the author.

