
i

An Investigation into Time
Management in COTS-based

Distributed Simulation
 using HLA

H E N R I K Å H L A N D E R

Master of Science Thesis
Stockholm, Sweden 2004

IMIT/LECS-2004-55

ii

An Investigation into Time Management in
COTS-based Distributed Simulation using HLA

Henrik Åhlander

Master of Science Thesis
Performed at Brunel University, London, UK

August 2004

Examiner

Prof. Rassul Ayani
Microelectronics and Information Technology
Royal Institute of Technology

Supervisor

Dr. Simon J. E. Taylor
Department of Information Systems and Computing
Brunel University

iii

Abstract

This report investigates time management in COTS based distributed simulation using
HLA. Discussions are limited to discrete event simulation and conservative
algorithms. The COTS Simulation Package Emulator (CSPE) is used as an
experimental tool. Its architecture is modified to use HLA as middleware.

A time management algorithm is designed and implemented in Java for an
asynchronous entity passing using the non-persistent object type interactions and
using the two different time management methods TimeAdvanceRequest (TAR) and
NextEventRequest (NER).

Experiments are carried out on an isolated local area network with seven computers.
The HLA RTI 1.3-NG Version 5 is used. Three variables, external/internal event
ratio, workload and lookahead, are varied in different experiments and tested in four
federate configurations. A middleware based on the Chandy-Misra-Bryant (CMB)
algorithm is also tested on the same hardware and under the same circumstances.

The results are compared and analysed. Both TAR and NER have the same results in
all experiments and the analysis shows that these methods are actually doing the same
in the developed algorithm. Their results are found to be equal or faster than CMB in
all federate configurations except the configuration that doesn’t have any feedback
loop, in which CMB is a little bit faster than HLA.

iv

Acknowledgements

First of all, I want to thank my supervisor Dr Simon J. E. Taylor at the Department of
Information Systems and Computing, Brunel University for his tremendous support
during my work with the thesis. He has encouraged me and given me advice during
my five months in England. I also want to thank my examiner Prof. Rassul Ayani at
the Department of Microelectronics and Information Technology, KTH for his
support.

I would like to express my gratitude to Brunel University in London for letting me
come and stay at the university. I want to give a special thank to Navonil Mustafee for
taking time to explain the CSPE architecture and for helping me with the verification
of the experiments. I also want to thank the PhD students in the Attic for the good
time we had together.

Thanks to Jacqueline Brodie, Mattias Krantz, my brother Magnus Åhlander, and my
sister Anna Åhlander for your help with reading the report and all the valuable
comments you have given me.

v

Table of Contents
1 Introduction..1

1.1 Preliminaries...1
1.2 Motivation..2
1.3 Aim and Objectives ..2
1.4 Research Approach...3
1.5 Organisation of the Report ..4

2 Background ..5
2.1 Simulation ..5

2.1.1 Introduction ..5
2.1.2 Discrete Event-based Simulations ...6
2.1.3 Execution Mechanisms ...6

2.2 Distributed Simulation..7
2.2.1 Introduction ..7
2.2.2 Parallel Simulation..7
2.2.3 Time Management ..7
2.2.4 The Chandy-Misra-Bryant (CMB) algorithm ..8
2.2.5 HLA ...9

2.3 COTS Distributed Simulation ...12
2.3.1 COTS Simulation Packages ..12
2.3.2 Access Internal Data Problems..12
2.3.3 Data Types and Attribute Names Problems ...13
2.3.4 Time Management Problems...13

3 Method..15
3.1 Analysis of CSP Interoperability...15

3.1.1 Asynchronous and synchronous entity passing......................................15
3.1.2 Shared Resources..16

3.2 Time management algorithms ...16
3.2.1 Event List Externalisation (EE)...16
3.2.2 Permission Request (PR)...16
3.2.3 Incremental Advance (IA)...17
3.2.4 External Control (EC) ...17
3.2.5 Discussion ..17

3.3 The CSP Emulator (CSPE) ...18
3.3.1 Architecture ..18
3.3.2 API Calls for CSPE Handler ...19

3.4 Methodology ..20

4 Design and Implementation ...22
4.1 CSPE-HLA Architecture...22
4.2 Object management ..22

4.2.1 Object Update or Interactions?..22
4.2.2 The Entity Transfer Specification..23
4.2.3 Design ..24
4.2.4 Implementation...24

4.3 Time management ..25
4.3.1 Which of the Time Advance Methods To Use?25
4.3.2 Time Update Cycle ...26

vi

4.4 Code Implementation..28
4.4.1 Class Structure..28
4.4.2 CSPE-Handler ..29
4.4.3 RTI ...29

5 Experimentation ...30
5.1 Benchmark ...30

5.1.1 Federate Configurations ..30
5.1.2 Experiments..32

5.2 Test Environment ...33
5.2.1 Computers and Network ...33
5.2.2 Automatic Tests..33
5.2.3 Program Execution Order..34

5.3 Results..34
5.3.1 Pipeline...35
5.3.2 Local Feedback...36
5.3.3 Client Server ...37
5.3.4 Fully Interconnected ...38

6 Analysis...39
6.1 Different CMB and RTI Implementations ...39
6.2 Similar Results for NER and TAR ..39
6.3 Differences Between HLA and CMB..39

6.3.1 Centralised and Decentralised Approaches..40
6.3.2 Comparison of Feedback Loop Handling Between CMB and HLA.......40

7 Conclusion ..43
7.1 Summary ..43
7.2 Conclusions ..43

7.2.1 HLA ...43
7.2.2 DMSO RTI 1.3-NG Version 5 ..44
7.2.3 CMB...44
7.2.4 CSPE..44

7.3 Future Research and Development..45
7.3.1 Other RTI Versions...45
7.3.2 Combination of External Control and Permission Request45
7.3.3 Other reference models ...46

References.. 48

Appendix A – Table of Acronyms .. 50

vii

List of Figures
Figure 1-1. Overhead in a distributed simulation divided into three parts....................2
Figure 2-1. The Three Phase Method..6
Figure 2-2. Model using the Chandy-Misra-Bryant algorithm....................................8
Figure 2-3. Different RTI components in a federation...10
Figure 2-4. Example with regulated and constrained federates..................................11
Figure 2-5. Architecture for Attribute Type Inconsistency..13
Figure 3-1. Example of distributed simulation with an asynchronous entity passing. 15
Figure 3-2. Example of distributed simulation with a shared resource.......................16
Figure 3-3. A general overview of a distributed COTS simulation.18
Figure 3-4. First Come First Served Pipeline Workflow Queuing Model.19
Figure 3-5. An overview of a distributed simulation using CSPE..............................19
Figure 4-1. An overview of a distributed COTS simulation using HLA.22
Figure 4-2. Interaction Class Hierarchy. ...24
Figure 4-3. Two federates sending entities to one another using interactions.24
Figure 4-4. Algorithm for CSPE-HLA..26
Figure 4-5. Sequence diagram of the time update cycle in CSPE-HLA.27
Figure 4-6. Class Structure for CSPE-HLA. ...29
Figure 5-1. Pipeline Federation Configuration. ...30
Figure 5-2. Local Feedback Federation Configuration. ...30
Figure 5-3. Client Server Federation Configuration. ...31
Figure 5-4. Fully Interconnected Federate Configuration..31
Figure 5-5. Execution order of PerformanceTests...34
Figure 5-6. Pipeline: Variable External / Internal Event Ratio35
Figure 5-7. Pipeline: Variable Workload ..35
Figure 5-8. Pipeline: Variable Lookahead ..35
Figure 5-9. Local Feedback: Variable External / Internal Event Ratio.......................36
Figure 5-10. Local Feedback: Variable Workload ..36
Figure 5-11. Local Feedback: Variable Lookahead...36
Figure 5-12. Client Server: Variable External / Internal Event Ratio.........................37
Figure 5-13. Client Server: Variable Workload ..37
Figure 5-14. Client Server: Variable Lookahead...37
Figure 5-15. Fully Interconnected: Variable External / Internal Event Ratio38
Figure 5-16. Fully Interconnected: Variable Workload...38
Figure 5-17. Fully Interconnected: Variable Lookahead ...38
Figure 6-1. Initial state for a feedback loop configuration. ..40
Figure 6-2. State after two null messages and one entity have been sent.41
Figure 6-3. State after two null messages and two entities have been sent.................41
Figure 6-4. Initial state for a feedback loop configuration. ..41
Figure 6-5. State after one entity has been sent. ..42
Figure 7-1. Sequence diagram of the time update cycle of the EC/PR algorithm.......46

viii

List of Tables
Table 2-1. Summary of methods for time requests..12
Table 3-1. Summary of API calls used by CSPE handler for input messages.20
Table 3-2. Summary of API calls used by CSPE handler for output messages.20
Table 5-1. Variable external/internal ratio. ...32
Table 5-2. Variable workload. ..32
Table 5-3. Variable lookahead..33

1

1 Introduction

The aim of this thesis is to investigate time management in Commercial Off The Shelf
(COTS) based distributed simulations using HLA. This chapter is divided into five
sections. The first section will give a short introduction. The second will motivate
why the aim is valuable. The third will describe the objectives that have been
identified to fulfil the aim. The fourth will describe how they will be carried out. The
last section will show the organisation of this report.

1.1 Preliminaries
Banks et al. (2001) define a simulation as “the imitation of the operation of a real-
world process or system over time” (p. 3). Computer simulations are useful when you
want to know something about how a real-world system works without actually
building the system. They are today used in many different areas, from manufacturing
and health care to business and military applications.

COTS simulation packages (CSPs) can be used to build simulations models (Swain
2003). These packages are often very user friendly with graphical user interfaces for
building and visualization of the model and with tools for statistical analysis and
reporting.

Distributed simulation is concerned with the execution of simulation on computers
that are geographically apart (Fujimoto 1999).

The High Level Architecture (IEEE 1516.2000) is an architecture developed for
reusability and interoperability of simulations. It was first developed by the Defense
Modeling and Simulation Office (DMSO) in the United States for military
applications but has become a de-facto standard for distributed simulation.

There have been many attempts to connect COTS simulations packages to each other
but the many approaches are currently not compatible (Taylor, et al., 2003). There are
even differences between the approaches that uses HLA. To unify research and
development the HLA-CSP Interoperability Forum (HLA-CSPIF) has been
established. The goal of the forum is to inform and to create standards.

Even though some COTS simulations packages support the possibility to link
externally written code in C++, VBA or Java to the simulation models, many of the
internal functions and variables needed to create a distributed simulation are not
available to the externally linked modules (Taylor, et al., 2003).

The COTS simulation packages and models involved in a distributed simulation must
agree on the format and manner data is passed between the models. The
representation of an object and its attributes must be equal at the sending and the
receiving models and they must also agree what mechanism for object transfer that
should be used since several exist. (Taylor, et al., 2003)

2

1.2 Motivation
The overhead in a distributed simulation can be split into three parts, see Figure 1-1.

The first part is the overhead in the CSP execution. This overhead is difficult to
reduce without access to the source code and must be reduced by the CSP
manufactures.

The second part is the overhead for the ordering of events and time management
between the models involved in the distributed simulation. This could be reduced
using smarter algorithms.

The last part is the overhead for the network and the hardware that is used. Faster
networks, network protocols and hardware could speed up the simulation.

Figure 1-1. Overhead in a distributed simulation divided into three parts.

As we can see, the ordering of events and time management is important for the
overall performance of the simulation. HLA supports several methods for this
management. It would be beneficial to see how these methods can be used in a COTS
based distributed simulation and how well they perform in comparison to other types
of middleware.

1.3 Aim and Objectives
The aim of this thesis is to investigate time management in COTS based distributed
simulations using HLA. To achieve the aim six objectives have been defined. They
and their justifications (in italics) are presented below:

1. Perform a literature review

By reading relevant papers I will get background and better understanding of the
problem.

2. Create a framework in which time management in COTS based distributed
simulations using HLA can be investigated

By creating a framework based on the literature survey it will be possible to identify
which parts to implement later.

CSP execution

Event-ordering and time management

Network and hardware

3

3. Implement interesting areas of the framework

By implementing interesting areas of the framework it will be possible to do
experiments and get results.

4. Carry out experiments and evaluate the results

By doing experiments and evaluating the results it will be possible to find out which
mechanisms are most efficient.

5. Propose efficient mechanisms

By proposing the mechanisms that are found to be efficient the result of the work can
be beneficial for others.

6. Disseminate the research findings.

By presenting the research and the results in a report and in a presentation others
will be able to utilize the results in their research.

1.4 Research Approach
For each objective a method has been defined:

1. Perform a literature review

Relevant papers concerning simulation, distributed simulation and HLA will be read.

2. Create a framework in which time management in COTS based distributed
simulations using HLA can be investigated

Identify and explain which mechanisms for time management exist based on the
literature survey. Some interesting methods will be chosen for implementation and
experiments.

3. Implement interesting areas of the framework

Implementation will be made using the latest version available of Java to make it
compatible with the work earlier made at Brunel University by Mustafee (2003). HLA
RTI 1.3-NG Version 5 will be used since this is the RTI version the university has
access to.

4. Carry out experiments and evaluate the results

The benchmark proposed in Mustafee (2003) will be used since this is a desire from
my supervisor. The benchmark is specially developed for distributed simulations.
Experiments will be made on machines with equal hardware connected to each other
over a separated local area network.

4

5. Propose efficient mechanisms

Efficient mechanisms will be proposed and compared to the performance of another
middleware based on the Chandy-Misra-Bryant algorithm.

6. Disseminate the research findings

The work and the results will be presented in a report. A presentation will be held in
Sweden.

1.5 Organisation of the Report
The remaining six chapters of this report are each connected to one of the objectives
identified above. Each chapter is outlined below:

Chapter 2 gives a background to simulation, COTS packages, distributed simulation
and HLA. The purpose of this chapter is to present the relevant knowledge needed to
understand the report.

Chapter 3 offers a deeper understanding of the problem to be solved and why it is
interesting to solve it. Different methods to solve the problems are discussed.

Chapter 4 describes the design and implementation in general for the possible
different methods. Details will be presented for the method that will be implemented.

Chapter 5 describes the benchmark used and how the experimentation was done. The
equipment and programs used in the experimentation will be explained. The results
will be shown in graphs together with the results of the middleware using the Chandy-
Misra-Bryant algorithm.

Chapter 6 analyses the results and discusses advantages and disadvantages of the
experimental tool that has been used and HLA as middleware for COTS simulation
packages.

Chapter 7 summarizes the report and presents what conclusions that can be made
from the analysis of the results. Future work will also be discussed.

5

2 Background

This chapter will give a background to simulation, COTS packages, distributed
simulation and HLA. The purpose of this chapter is to give relevant knowledge
needed to understand the report.

2.1 Simulation

2.1.1 Introduction
As already noted in chapter one, Banks et al. (2001) define a simulation as “the
imitation of the operation of a real-world process or system over time”. Simulations
are useful when you want to know something about how a system works without
actually building the system.

This can increase knowledge of the system and save money since it is possible to test
different approaches and parameters to find the best solution(s). Sometimes is it also
dangerous to build the real system, as in the case of nuclear and weapon system.
Simulations are today used in many different areas, from manufacturing and health
care to business and military applications.

It is not always good to do a simulation. It can, for example, cost more money than it
saves since simulation modelling and analysis requires special training and takes time.
An analytical solution to the problem might also be possible and easier to do.

A simulation model breaks down into certain components. The objects in a system
are called entities and its properties are called attributes. An activity is a time period
with a specified length. All variables that are needed to describe the system at any
time are called the state variables and define the state of the system. An event is an
occurrence that may change the state of the system and occurs at an instant of time.
(Banks, et al., 2001)

As an example of this, if a factory production chain is being studied, different parts
might enter the factory, being put together and then exit the factory as finished
products. These parts can be some of the entities in the model. When a part is being
processed in a workstation this is an activity that takes a certain time. The number of
available workstations can be one of the state variables of the system. A simulation
can be a good idea if the company is considering buying a new workstation and wants
to know how much it will improve the factory’s total performance. This is good to
know before the decision to buy that workstation is taken.

Simulations can be built using different approaches but common for most of them is
that they have a simulation executive, a simulation clock and an event list. The
simulation executive has the overall control of the system. The simulation clock keeps
track of the current simulation time, which determines what events that should be
executed. The event list contains all known future events, often ordered by their time
stamp.

6

2.1.2 Discrete Event-based Simulations
Real-world systems can usually be divided into continuous and discrete systems (Law
and Kelton, 2000). In a continuous system the state of all variables is changed
continuously over time. For example, the level of water behind a dam and the
temperature in an electric component.

In a discrete system the state of all variables is only changed at specific points in time.
For instance, the case of the numbers of customers waiting in a queue and the
numbers of calls going on in a telephone network. Simulations of discrete systems are
called discrete event-based simulations.

This report will limit its discussions to discrete event-based simulations.

2.1.3 Execution Mechanisms
Several different mechanisms exist for the simulation execution. The most common in
discrete event-based simulations is the three phase method, but there are also different
activity based and event based methods. The three phase method is the only method
that will be described here, see Figure 2-1. The advantages of this method are that it is
a safe and effective method that reduces risk of error, especially in large and complex
models. (Paul and Balmer, 1998)

Figure 2-1. The Three Phase Method
(Paul and Balmer, 1998).

In the first phase (A) is the simulation clock is changed to the time of the next event in
the event list. Only events can change the state of the system and since there were no
events between the old time and the new time nothing could have happened with the
simulation there. In the second phase (B) all events at the new time are executed. In
the third and last phase (C) all conditional events are tested to see if any of these can
be executed. An example of a conditional event can be an entity waiting for a
workstation to be available.

Start simulation, initialization

A. Move simulation clock

B. Execute bound events

C. Execute conditional events

Interrupt or finish?

Stop simulation, report

Yes

No

7

2.2 Distributed Simulation

2.2.1 Introduction
Distributed simulation is concerned with the execution of simulation on computers
that are geographically apart (Fujimoto 1999). For example, it can be motivated to
distribute the simulation if a simulation model or some information used in the
simulation (e.g. databases) only exist on a specific location. It might also be motivated
if you want to use many models that already exist, maybe built using different CSPs,
to build a bigger one.

If factories are used as an example again, a distributed simulation can be useful if the
company wants to simulate a whole production chain where many factories are
involved. Suppose some of these factories are owned by other companies that do not
want to share information about how their factories are built. By using a distributed
simulation the factories’ simulation models can be kept secret at computers located at
the different companies. The only data that is shared over the network is entities
arriving and leaving the factories.

An important distinction between a sequential and a distributed simulation is that the
state variables and the system objects cannot be shared in a distributed simulation as
they can be in a simulation running on just one computer. This is also the case with
the simulation clock and the event list. How data is shared and what data that is
shared between the computers will dramatically affect the over-all performance of the
distributed simulation.

2.2.2 Parallel Simulation
Parallel simulation, an area closely related to distributed simulation, concerns the
execution of simulations on a tightly coupled computer system, e.g. a supercomputer
or a shared memory multiprocessor (Fujimoto 2003). Parallel simulation can be used
to reduce the length of the simulation execution time by letting more processors work
or to enable larger simulations since they may not be enough memory on one single
machine.

Distributed and parallel simulation have historically been differentiated as two
different areas but with new computer paradigms such as clusters of workstations and
grid computing there is no longer a clear border between these areas (Fujimoto 2003).
This report, however, limits its discussions to distributed simulations on computers
that are geographically apart and connected to each other over a network.

2.2.3 Time Management
Events sent in a distributed simulation can be classified as time stamp ordered (TSO)
events or receive order (RO) events among others. TSO events must be executed at
specific time stamps while RO events are executed in the order they are received.

To ensure that events are processed in the correct order and to make sure that a
repeated simulation with the same input produces the same result, synchronisation
between the computers involved in a distributed simulation is needed. This
synchronisation is called time management.

8

Time management algorithms can be classified as conservative or optimistic.
Conservative algorithms always makes sure events are “safe” to execute before they
are executed. An event is said to be safe when it can be guaranteed no other events
will arrive with a smaller time stamp. All events are always executed in the correct
order.

To know which events that are safe to execute each model, below referred as logical
process (LP), must know at what time stamps all other models earliest can produce
new events. To be able to do that the lookahead values are used. Fujimoto (1999)
defines lookahead as: “If LP is at simulation time T, and it can guarantee that any
message it will send in the future will have a time stamp of at least T+L regardless of
what message it may later receive, the LP is said to have a lookahead of L”. A
model’s lookahead value is set depending on the structure of the model and must be
well known by the other simulation models before the distributed simulation may
start.

Optimistic algorithms allow events to be executed out of order, but if this occurs a
recovery process will start to roll back time and to reset the state variables to their
values at the time where the wrong event was executed. This means an optimistic
algorithm must save information for this recovery during the execution. The two main
problems with this approach are I/O operations that cannot be undone and memory
resources.

Whether conservative or optimistic algorithms perform better, depends on the
application (Fujimoto 2003). This report limits its discussions to conservative
algorithms.

2.2.4 The Chandy-Misra-Bryant (CMB) algorithm
Synchronization problems and solutions were first developed in the late 1970’s.
Bryant (1977) and Chandy and Misra (1978) developed a conservative algorithm that
has been referred as the Chandy-Misra-Bryant (CMB) algorithm.

If a distributed simulation uses this algorithm, each LP establishes a direct link to all
other LPs it want to be able to send messages to. All messages must be sent with non-
decreasing time stamps and all LPs must have one buffer for each incoming link.
Figure 2-2 illustrates this with an example. LP A receives messages from the source.
It processes them and then sends them to either LP B or C. They are then sent to LP D
before they leave to model through the sink.

Figure 2-2. Model using the Chandy-Misra-Bryant algorithm

LP A

Source Sink

LP B

LP C

LP D

or

9

To know what message a LP should execute next, it scans all its buffers for the
message with the lowest time-stamp. If any buffer is empty it must wait until it
receives a message from that link since that message might have a lower time stamp
than any in the other buffers. As soon as the LP knows what message it should
execute next, it moves its simulation clock forward to this time, remove the message
from the buffer and execute it.

In the example above, LP A, B and C only have one buffer each, which mean they
will not have any problem with deciding what message to execute. If they have any
messages in their buffers they will execute the one with the lowest time stamp. LP D
has two buffers since it can receive messages from both LP B and C. It cannot
proceed until it has received a message from both B and C.

One problem with the simplest version of the CMB algorithm is that deadlock
situations can appear. Suppose LP A chooses to send all messages to LP B and none
to LP C. In this case LP C will never send anything to LP D. If that is the case, a
deadlock situation has occurred since LP D is waiting until it has received a message
from both B and C. To avoid situations like this null messages can be used. A null
message is an empty message with only a time-stamp.

There are several ways to use null messages. One simple solution is to send a null
message to all outgoing links every time the simulation clock has changed in a LP.
This will allow other LPs to proceed. In our case, LP A would also send a null
message to LP C when it is sending something to LP B. As soon as LP C executes
that null messages it would send a null message to LP D.

The problem with a lot of null messages being used is that they might slow down the
overall performance of the simulation. More optimised algorithms exist that uses
fewer null messages (Fujimoto 1990). Other solutions are constructed to detect and
recover from deadlock situations (Chandy and Misra 1981).

The CMB algorithm will be further studied in Section 6.3.2.

2.2.5 HLA
An architecture developed for the reusability and interoperability of simulations is the
High Level Architecture (IEEE 1516.2000). It was originally created by the Defense
Modeling and Simulation Office in United States for military applications but has
during the latest few years become a de-facto standard for distributed simulation.

The HLA consists of a set of rules and an interface specification but does not
prescribe any specific implementation and computer language. Below follows a short
introduction to HLA, its terms and components.

The Run-Time Infrastructure

All LPs that are involved in the distributed simulation are called federates. Federates
are connected to each other in a federation through the Run-Time Infrastructure
(RTI). The RTI makes sure simulation time advances correctly in every federate and
also handles object updates and message passing between federates.

10

The RTI is divided into three components. The RTI Executive (RtiExec) creates and
manages multiple federations within a network. For every new federation a Federation
Executive (FedExec) is created that manages joining and resigning of federates. The
RTI Library (libRTI) is built-in in all federates and provides HLA services to
federates. (DMSO)

The RTI Library has two classes, the RTI Ambassador and the Federation
Ambassador, that are used for communication between the federate and the RTI. The
RTI Ambassador is used when the federate wants to use a service provided by the
RTI. This is done with function calls. The Federation Ambassador, an abstract class
that must be implemented in federates’ code, is used for the call-back functions each
federate is obliged to provide. This is illustrated in Figure 2-3.

Figure 2-3. Different RTI components in a federation.

Object Management

HLA supports an advanced object management. All objects that can exist in the
federation are declared in the FED file. After a federate has joined a federation it
informs what objects and attributes it can publish (i.e., generate) and what objects and
attributes it wants to subscribe to (i.e., receive).

Objects can be wholly owned by one federate or shared between many federates. If an
object is shared, only one federate can own a specific attribute at any time. The owner
of an attribute is responsible for updates of the values. An attribute can be static or
dynamic. A static attribute is owned by the same federate throughout its life time and
no other federate can update its value. The ownership of a dynamic attribute can be
moved from one federate to another using the push and pull methods.

The push method is used when a federate informs RTI that it does not want to own the
object any more. RTI will then inform all other federates that this object is available
and those who are interested can request ownership.

The pull method is used when a federate asks RTI if it can receive ownership of an
object owned by another federate. The RTI will then ask the current owner or owners,
if they can release their ownership. After this is done the RTI will inform the
requester that it has gained ownership.

Interactions are a special type of objects that can be sent between federates. They are
non-persistent. After an interaction has been received by the receiving federate it is

Federate Ambassador

RTI Ambassador

Federate code

Various RTI Objects

Federate Ambassador

RTI Ambassador

Federate code

Various RTI Objects

Federation Executive

11

removed from the RTI. It is not possible for a federate to publish or subscribe only
some of the object’s attributes. They have to choose between “all” or “nothing”.

Time Management

The RTI handles the time management within the federation. Different federates in a
federation can use different time management policies. The time in a federate always
moves forward but the current time in all federates may not be the same.

A regulating federate is a federate that regulates the time for federates that are
constrained. A federate can be regulating and/or constrained or neither regulating nor
constrained. A regulating federate may associate its activities (e.g. updating objects
and sending interaction) with a specific time stamp. A constrained federate
subscribing these objects and interactions will receive them at the specified times.

This can be illustrated with an example. Suppose we have four federates in the
distributed simulation, see Figure 2-4. The first one is only regulating, the second one
is only constrained, the third is both regulating and constrained and the last one is
neither regulating nor constrained. The two regulating federates (1 and 3) may not
generate any TSO events with a time stamp lower than their current time + their
lookahead. The two constrained (2 and 3) may not advance further than the Lower
Bound Time Stamp (LBTS). The LBTS is the earliest time a regulating can generate
an event. Federate D may advance to any time.

Figure 2-4. Example with regulated and constrained federates.
The federates time axes are shown together with their current time and scheduled events.

All federates that are regulating or constrained must continually request new times
from the RTI. A call-back will occur to the federate ambassador when the request is
granted. A federate that is only regulating will get this call-back directly while a
federate that is constrained will have to wait until the RTI can guarantee that no
regulating federate will send anything with a time stamp smaller than the time that
will be granted.

The HLA mainly has three different methods that can be used for time requests. The
timeAdvanceRequest method will grant a time equal to the time requested, as soon as
the RTI can guarantee that all TSO events with a lower or equal time stamp to the
time requested has been delivered to the federate. The nextEventRequest method will

1) Regulating federate

2) Constrained federate

Current time Scheduled TSO event

Lookahead

4) Neither regulating nor constrained federate

3) Regulating and constrained federate Lookahead

Lower Bound
Time Stamp (LBTS)

12

grant a time equal to the lowest of the requested time and the time stamp of the next
TSO event. The call-back will occur as soon as all events with a time stamp equal to
the time that will be granted has been delivered. The flushQueueRequest method is
used for optimistic simulations and will not be discussed in this report.

All federates must specify their lookahead values (see section 2.2.3) when they
become regulating. When a regulating federate requests a new time with the time-
AdvanceRequest method it promises that it will not send any time stamp ordered
events with a time stamp lower than the requested time + lookahead. If the federate
instead requests the new time with the nextEventRequest method it promises that it
will not send any time stamp ordered events with a time stamp lower than the granted
time + lookahead. A regulating federate can have a zero-lookahead but this is not
desirable since constrained federates have to wait more and it can also invoke design
problems.

Table 2-1 shows a summary of the methods that can be used for time requests.

Method The time that will be granted is…
The federate promise it will not
generate any TSO events before…

timeAdvanceRequest the requested time requested time + lookahead
nextEventRequest what is lowest of the requested time

and the next TSO event.
granted time + lookahead

Table 2-1. Summary of methods for time requests.

2.3 COTS Distributed Simulation

2.3.1 COTS Simulation Packages
Commercial Off the Shelf (COTS) simulation packages (CSPs) can be used to build
and execute computer simulations. There are over twenty packages (Swain 2001), e.g.
Arena, Automod, Sigma, Simul8 and Witness.

Typically they allow the user to build, visualize, save and reuse simulation models,
often using a user-friendly graphical user interface. They may also have tools for
statistical analysis and reporting. Furthermore, they usually have built-in support for
various random distributions that can be used for arrival and service times of entities.

2.3.2 Access Internal Data Problems
Before data can be transferred from one model to another, the data must be accessed.
The problem is that CSPs hide access to internal functions and variables that is needed
in the distributed simulation. While almost all CSPs have some possibility to access
the internal data there is no standardized approach. (Boer and Verbraeck 2003;
Taylor, et al., 2003).

Some CSPs support the possibility to link an external program (e.g. Excel and Visual
Basic) to stop and start the simulation, to introduce entities or to alter a parameter in
the model. Other CSPs use DLL “plug-ins” programmed in for example C++ or Java
to do this. The CSPs can also have a COM interface or a dedicated interface library
that can be used by an external program. (Taylor, et al., 2003).

13

2.3.3 Data Types and Attribute Names Problems
Which data types CSPs support may differ from package to package. Some CSPs
support many attribute types such as string, real, integer, etc. (e.g. eM-Plant), while
others only support the type real (e.g. Arena) (Boer and Verbraeck 2003). Even the
names of an entity’s attributes may be different in two models.

If two models created in different CSPs should be linked together in a distributed
simulation there is a need to translate data when it is passed from one model to
another. By using a wrapper it is possible to map original attribute values to new
translated values (Boer and Verbraeck 2003). The original and new attribute values
are saved in a temporal instance table.

Figure 2-5 shows an architecture for attribute type inconsistency with two simulation
models. Each model has a wrapper with a table of mapped attributes.

Figure 2-5. Architecture for Attribute Type Inconsistency
(Boer and Verbraeck 2003)

Suppose, as an example, Simulation Model 1 produces a car entity with the attribute
colour set to ‘blue’ and send this entity to Simulation Model 2. The second model is
limited compared to the first one in the way that it only supports attribute types that
are numbers. Wrapper 2 must translate the colour to a number. It checks in its
temporal instance table if it has ever received an entity with this colour and what
number is has been mapped to. If not, a new number is mapped to this colour and the
old and new attribute values are saved in the table. If entities later are passed back to
the first model their attributes will first be translated back to their original values.

2.3.4 Time Management Problems
A sequential simulation, executing on one computer, often uses the three-phase
algorithm and moves its clock to the time of the next scheduled event in the A phase,
as seen in section 2.1.3. In a distributed simulation, however, all federates have their
own current simulation time and events passed between federates.

Events that are scheduled by a COTS simulation package’s simulation executive are
called internal events. Time stamped event messages that are received from another
model are called external events. Internal events are ordered by the package’s event
list (see section 2.1.1) whereas external events are ordered by the time management

Simulation Model 1

Simulation Model 2

Distributed Simulation Architecture

Wrapper 2

Wrapper 1

Attribute Attr.
Value

Mapping
Attr. Value

Temporal Entity Instance

Mapping attribute types

colour blue 0
..

14

middleware, for example by the RTI if HLA is used as middleware. (Taylor, Sharpe
and Ladbrook 2003)

The problem is how the COTS simulation package should determine the next event to
process. Should it be the next internal one taken from the event list or the next
external one offered from the middleware? Four different approaches will be
described in section 3.2.

15

3 Method

This chapter will present the problem to be solved in detail and why it is interesting to
solve it. Different methods that can be used will be discussed.

3.1 Analysis of CSP Interoperability
Even though HLA has become a de facto standard for distributed simulation there is
still a need to specify the format and manner objects are passed between the CSP’s
involved in the simulation. The HLA-CSP Interoperability Forum has therefore
defined six reference models (Taylor 2003) that can be used to illustrate this:

Type I. Asynchronous Entity Passing
Type II. Synchronous Entity Passing
Type III. Shared Resources
Type IV. Shared Events
Type V. Shared Data Structure
Type VI. Shared Conveyor

To illustrate the CSP Interoperability problems that exist some of the reference
models will be described below. Type I and II will be described in section 3.1.1 and
Type III will be described in section 3.1.2.

3.1.1 Asynchronous and synchronous entity passing
If there is no intermediate or direct feedback when an entity is passed from one model
to another this is called asynchronous entity passing. Figure 3-1 shows two factories
F1 and F2 that each consists of an arrival source Soi, a queue Qi, a workstation Wi, a
resource Ri and an exit sink Sii (where i is the factory identifier).

Figure 3-1. Example of distributed simulation with an asynchronous entity passing.
Adopted from (Taylor 2003)

When parts arrive from the arrival source they are put in the queue to wait for the
workstation to be available. When the workstation is free a new part will be loaded
from the queue (if any is in the queue), and then processed. If the workstation is
broken down, a repairman must fix it before the processing can continue. The
repairman is depicted with the resource. When the workstation has finished the part
will exit the factory via the exit sink and instantly arrive at the arrival source of the
next factory.

Factory F1

So1 Q1 W1 Si1

R1
Factory F2

So2 Q2 W2

R2

Si2

16

The federate containing factory F1 must publish the parts leaving the model in a
manner and format so that the federate containing factory F2 can understand. The
object and attribute names and the data format of all attributes must be identical.

If instead synchronous entity passing is used, the models that are involved in the
simulation must be synchronized with each other. In the example shown above, this is
for example needed if the receiving factory F2 has a bounded queue Q2. If the queue
is full, factory F1 must delay the passing of new entities. To know when factory F1 is
allowed to send entities the two models need to be synchronized.

3.1.2 Shared Resources
Another form of interoperability between CSP’s can be two models that share a
resource. Figure 3-2 shows two factories sharing one resource R, for example one
repairman that serves both workstations in the two factories. He can only fix one
workstation at the same time.

Figure 3-2. Example of distributed simulation with a shared resource.
Adopted from (Taylor 2003)

3.2 Time management algorithms
As seen in section 2.3.4 it is a problem how a COTS simulation package should
determine the next event to process. This problem concerns the ordering of external
and internal events. Four different approaches will be described below, based on the
discussion by Taylor, Sharpe and Ladbrook (2003). All approaches are based on the
conservative time management method.

3.2.1 Event List Externalisation (EE)
A simple solution is to treat all events as external events. Each event that is scheduled
within the simulation package is externalised and sent through the middleware to
itself. The middleware will in this way always offer the next event. The problem with
this approach is that it will need redevelopment of the COTS simulation packages.

3.2.2 Permission Request (PR)
In this approach the simulation executive asks the middleware for permission to do
the A phase in the three phase algorithm. Phase A moves the simulation clock to the
time of the next scheduled event (see also section 2.1.3). The middleware will then
answer by either (a) granting permission to advance, (b) passing an event with a
timestamp or (c) requesting the simulation executive to wait.

If the middleware is sure that no external event will arrive to this model with a time
stamp lower than the time stamp of the next internal event it will grant permission to

Factory F1

So1 Q1 W1 Si1

R
Factory F2

So2 Q2 W2

R

Si2

17

advance. If it knows that there is such an external event, it will pass this event to the
model and the simulation clock will be moved to the time of this event and Phases B
and C will be performed as normal. If the middleware cannot be sure whether an
external event will arrive, it will request the simulation executive to wait until further
notice.

3.2.3 Incremental Advance (IA)
If it is not possible to obtain the next event time from the event list, the time must be
advanced by the smallest possible time unit of the federate. At each new time any
internal events are first executed. The simulation executive will then ask the
middleware if there is any safe external event to execute.

Even in this approach, three answers are possible. If there is an external event and the
time stamp of this is higher than the current simulation time, the simulation executed
will be allowed to do another cycle. If there is an external event with a time stamp
equal to the current simulation time, this will be passed to the federate. If the
middleware cannot identify the next safe external event, the simulation executive will
be requested to wait until further notice.

3.2.4 External Control (EC)
In the last approach the control of the time advancement is moved from the simulation
package to the middleware. The middleware can order the simulation executive to (a)
advance to a given time, (b) advance to a given time and then execute a new external
event, and (c) wait. As with incremental advance there is no need to obtain the next
event in the event list.

If the middleware has found it safe to advance to a certain time, it will inform the
simulation executive about that time. Any internal events with a time stamp lower
than or equal to this time will be executed as normal. After that the simulation
executive will stop executing until it receives a new order.

If the middleware has instead identified a new external event it will pass the event and
its time stamp to the simulation executive. Any internal events with a time stamp less
than this time will first be executed. After that the external event and any other
internal event scheduled at this time will be executed. The simulation will then stop
until new orders arrive.

3.2.5 Discussion
Advantages and disadvantages of the four algorithms are discussed by Taylor, Sharpe
and Ladbrook (2003). They suggest considering two factors in the discussion of
which algorithm that is the best: technological intervention (affects the
implementation cost) and performance. Below is a summary of their discussion about
the different algorithms.

Event list externalisation can be immediately discounted since this will mean too
many changes of the COTS simulations packages. The event lists are implemented in
various ways to improve efficiency and this approach will also be too package
specific.

18

Permission request and incremental advance both require an interaction with the
middleware before each time advance. External control needs less interaction as it can
execute many events before it has reached the time it has been instructed to advance
to. Both permission request and external control require that new events can be placed
in the event list.

Incremental advance adds a major overhead of step by step time advance and has no
advantage compared to permission request, which except from the time-step part,
would have a similar implementation.

Permission request has been compared against external control in a performance test
(Taylor, et al., 2002). The results shows that external control is much faster than
permission request if the ratio of internal to external events is high, i.e. few external
events. They perform equally for a lower ratio.

The conclusion of the discussion is that external control appears to be the best option
both in terms of technological intervention and performance.

3.3 The CSP Emulator (CSPE)
The CSP Emulator (CSPE) is a tool developed to investigate how different
middleware perform in a COTS based distributed simulation (Mustafee 2003). This
section will describe what CSPE is and what it can be used for.

3.3.1 Architecture
A distributed COTS simulation can be divided into three different parts, see Figure
3-3: The COTS simulation package with its model, the distributed simulation
middleware and a CSP handler that communicates with both the CSP and the
middleware.

Figure 3-3. A general overview of a distributed COTS simulation.
The simulation is divided into three different parts: CSP, CSP handler and middleware.

The CSP handler is needed to create a common interface for all CSPs in a distributed
simulation. The different packages today have various solutions for how external code
can interact with the simulation model (OLE Automation, COM, Active X interfaces

COTS simulation package

Model

CSP handler

Distributed simulation
middleware

Entity passing

Object transfer, time
synchronization

COTS simulation package

Model

CSP handler

Distributed simulation
middleware

19

etc.). It would be preferable if all kinds of middleware could communicate with the
CSP in the same way.

The CSPE consists of a simulation executive, an event list, a simulation clock and an
event generator. CSPE is deterministic, which means that there is no randomisation
within the simulation that is performed. CSPE is also limited to only simulate the
behaviour of one assembly line.

The assembly line uses the First Come First Served Pipeline Workflow Queuing
Model, see Figure 3-4, and consists of a variable number of machines that all have
variable setup and processing times. The machine queues have unbounded buffers and
the machines start to work as soon as there is an entity waiting in their queue. The
configuration of the machines is specified in a file.

Figure 3-4. First Come First Served Pipeline Workflow Queuing Model.

Mustafee’s implementation of CSPE is programmed in Java. CSPE communicates
with the CSPE handler through sockets connections, see Figure 3-5. The CSPE listens
to port X02 and the handler listens to port X01 (where X is a federate number). The
socket connections are setup before the simulation is started.

Figure 3-5. An overview of a distributed simulation using CSPE.
The simulation is divided into three different parts: CSPE, CSPE handler and middleware.

3.3.2 API Calls for CSPE Handler
CSPE uses external control (EC), see section 3.2.4, as synchronizing algorithm. It has
three API calls for input messages to the CSPE and three API calls for output
messages from the CSPE.

The API calls used for input messages to the CSPE are advance(time), advance(time,
entity) and start(). See Table 3-1. The first one is used if the middleware has
determined a safe time for the CSPE to advance to. Any event in the internal event list
with a time stamp lower or equal to this time will be executed. The second one is used

Entity passing

Object transfer, time
synchronization

CSPE

CSPE handler

Distributed simulation
middleware

102

101

CSPE

CSPE handler

Distributed simulation
middleware

202

201

M1

Q1

M2

Q2

M3

Q3

M4

Q4

20

if the middleware has determined a safe external event which is passed to the CSPE.
Any internal event in the event list with a time stamp lower or equal to this time will
be executed before the external event is executed. The last API call is used to signal
the start of the simulation.

advance(time) Safe for the CSPE to advance to this time.
advance(time, entity) Safe for the CSPE to advance to this time. Then executed

the entity being passed.
start() Signals the start of simulation.

Table 3-1. Summary of API calls used by CSPE handler for input messages.

The API calls used for output messages from the CSPE are output(time), output(time,
entity) and terminate(), see Table 3-2. The first one is used for the CSPE to inform the
middleware of its current time. The second one is used to send an entity to another
federate and the last one is used to inform the middleware that the CSPE has executed
a certain amount of entities specified at start-up.

output(time) The current simulation time of CSPE.
output(time, entity) An entity for transfer to another federate and the time when

it should arrive.1
terminate() Signals the end of simulation.

Table 3-2. Summary of API calls used by CSPE handler for output messages.

The variable entity is as a string containing the following data (separated with an “*”):

• Names of the federates to send the entity to
• Names of all federates that has processed this entity
• Entity name
• Event type

3.4 Methodology
As seen in section 1.2, the ordering of events and time management is important for
the overall performance of a distributed simulation. The overhead of the CSP
execution is not possible to reduce without redevelopment of the CSP software.
Better network and hardware can be used for better performance, but of more interest
is to investigate how the overhead of the middleware could be reduced.

By using CSPE it will be possible to concentrate this work to how HLA can be used
for time management in a COTS based distributed simulation. CSPE is created to be a
benchmarking tool with possibilities to use different federate configurations and
different variable settings. It has support for the external control synchronization
algorithm and Reference Model I (for asynchronous entity transfers).

1 The version of CSPE that is specified in (Mustafee 2003) has a slightly different use of output(time,
entity). The time is there the current simulation time. The time when the entity should arrive is then
calculated by the handler by taking the current time and add the federate’s lookahead. This is however
a limited method that has been changed in later versions.

21

The fact that CSPE only supports one synchronization algorithm and one reference
model can of course been seen as a limitation and a disadvantage for the use of CSPE.
External control has however been found to be the best synchronization algorithm, as
seen in section 3.2.5. It would also be interesting to investigate the performance of
HLA in all reference models but this is not possible within the time space of this work

An advantage of CSPE is that it during the simulation saves information that makes it
possible to trace an entity to a particular position of a particular workstation queue
through its lifetime. This could be useful in the verification of the middleware, to see
that object and time management works correctly.

To investigate time management in COTS distributed simulation using HLA and
CSPE I will first transform the CSPE architecture to an architecture that is using
HLA. I will then choose which methods that are best for object management. An
algorithm for the time management will be designed.

Implementation of the design will be made using the latest version available of Java,
that is 1.4.2, and the HLA RTI 1.3-NG Version 5. Experiments using the benchmark
proposed in Mustafee (2003) will be used and the result will be compared to the
performance of another middleware based on the Chandy-Misra-Bryant algorithm.
Analysis of the results will show if HLA is good for COTS distributed simulation.

22

4 Design and Implementation
This chapter will describe the design and implementation in general for the different
methods discussed in the previous chapter. Details will be given for the method that
will be implemented.

4.1 CSPE-HLA Architecture
Figure 4-1 shows the architecture of a distributed simulation of CSPE using HLA as
middleware (CSPE-HLA). CSPE-HLA consists of two parts, the CSP handler and the
HLA code, that both are integrated into the same program. Communication between
CSPE and CSPE handler is done with socket connections.

Figure 4-1. An overview of a distributed COTS simulation using HLA.
The simulation is divided into three parts: CSP, CSP handler and HLA middleware.

For the HLA integration version 5 of the RTI 1.3-NG has been used. It supports for
both C++ and Java. The federate part of the HLA code is unique for each program
using HLA and has to be programmed while the RTI part is general and is included as
a Java or C++ library.

4.2 Object management

4.2.1 Object Update or Interactions?
As mentioned in the section 2.2.5, different methods exist to send object updates
between federates in HLA: dynamic object update with push and pull methods, static
object update and the non-persistent method with interactions.

Entity passing

Object transfer, time
synchronization

Federation Executive

Federate Ambassador

RTI Ambassador

Various RTI Objects

Federate code

CSPE handler

CSPE

102

101

Federate Ambassador

RTI Ambassador

Various RTI Objects

Federate code

CSPE handler

CSPE

202

201

C
SP

E
-H

L
A

Federate A Federate B

23

It has by experimentation been shown that sending interactions is eventually more
efficient for passing entities between federates than updating a static attribute value
and that both those methods are faster than the dynamic update techniques (Yen
2003). Since I cannot see any other advantages for any of the other methods in the use
with CSPE-HLA I have chosen to use interactions for entity passing in CSPE-HLA.

4.2.2 The Entity Transfer Specification
A specification for how entities could be transferred between COTS simulatation
packages using interactions has been proposed by HLA-CSPIF (Taylor, Turner, Low
2003). The specification first makes some definitions before the interaction classes
use is described. A summary of the specification is given below.

An entity has a name and zero or more attributes and is defined as follows.

entity = {entityName, attributes*}

An entity that is sent from one model to another has a source, the model the entity
leaves, and a destination, the model at which it arrives. When an entity leaves a CSP
the CSP must be able to provide the following information to the CSP handler:

 output(entity, time, source, destination)

When the CSP handler at the receiving federate passes the entity to the CSP it must
provide the following information to the CSP:

 input(entity, time, source)

Time is defined as the time when an entity exits a source model and instantaneously
arrives at the destination model. It is assumed that both models use time in the same
way (considering resolution etc.). Source and destination are used to determine the
appropriate entry point at the destination model.

The specification suggests an interaction class hierarchy with three levels, see Figure
4-2. Each destination has one interaction class named transferEntityToFedDest where
“transferEntity” is unique for each type of entity and “FedDest” is the name of the
destination. Each of these classes also has one subclass for each federate that can send
entities to this federate, named transferEntityFedSoToFedDest, where “FedSo” is the
name of the source. There is also one super class, named transferEntity, that a
federate can subscribe to receive all entities (for purposes of monitoring,
visualization, etc.).

During initializing a federate will indicate what federates it is capable of sending
entities to by publishing various transerEntityFedSoToFedDest interaction classes. It
will also subscribe to all transferEntityToFedDest interaction classes to indicate it is
capable of receiving entity from other federates.

When a CSP later wants to send an entity to another federate the CSP handler will use
the correct interaction class for this transfer.

24

Figure 4-2. Interaction Class Hierarchy.
Adopted from (Taylor, Turner, Low 2003).

4.2.3 Design
Even though the full Transfer Entity Specification provides a good solution for how
entities can be transferred between COTS simulation packages I have found the class
hierarchy and interaction use to be unnecessary complex for the entity transfers
needed by CSPE. Instead I have used a simpler approach to pass entities.

Only one interaction class exists for each federate named after the federate. A federate
that wants to receive entities from other federates subscribes to the interaction with its
name at initialisation. All federates that want to send entities to this federate publishes
that interaction. See Figure 4-3.

Figure 4-3. Two federates sending entities to one another using interactions.
Federate B and C want to send entities to Federate A and are publishing the interaction class named

“A”. Federate A is subscribing to this class.

The interaction classes have one parameter, named message, that is used for the entity
(source and destination included) in the same data format that is used by CSPE
handler for the output and advance methods, see section 3.3.2.

4.2.4 Implementation
CSPE and CSPE-CMB uses a Federate Definition File to specify what other federates
a federate is connected to. Each federate has its own file. The file consists of a list of
federates that can send entities to the federate and a list of federates the federate can

transferEntity

transferEntityToFedDestX

transferEntityFedSoA
ToFedDestX

transferEntityToFedDestY

transferEntityFedSoB
ToFedDestX

transferEntityFedSoC
ToFedDestY

transferEntityFedSoD
ToFedDestY

Federate A

Federate B Federate C

Interaction “A”

25

send entities to. For compatibility reasons with CSPE and CSPE-CMB, the same file
format is used even for CSPE-HLA.

A federate that wants to use an interaction class to send or receive objects must use
the interaction class’s handle that is a unique number. The handle is requested from
the RTI by calling the method getInteractionClassHandle(name) where name is the
name of the interaction class. CSPE-HLA stores all handles to classes it publishes in a
hash table with the class names as keys for fast access since they are needed every
time an entity is sent.

To publish and subscribe to an interaction class a federate uses the methods
publishInteractionClass(handle) and subscribeInteractionClass(handle). To send and
receive objects the methods sendInteraction(handle, parameters, time, tag) and
receiveInteraction(handle, parameters, time, tag, eventRetractionHandle) are used.
handle is the interaction class’s handle, parameters is the parameters of the
interaction class (in this case only message, see section 0), time is the time stamp of
the object, tag is used for user-specified messages (not used in CSPE-HLA) and
eventRetractionHandle is a unique identity for each TSO event in the federation (used
in optimistic simulations for the retraction of objects, but not used in CSPE-HLA).

4.3 Time management

4.3.1 Which of the Time Advance Methods To Use?
As mentioned in section 2.2.5, HLA has mainly three methods for time advancement:
timeAdvanceRequest, nextEventRequest and flushQueueRequest. There are also two
variants, timeAdvanceRequestAvailable and nextEventRequestAvailable, that are used
for federations with zero-lookahead but that is out of the scope for this thesis. This
section will discuss what methods that can be used for the time synchronization
algorithms Permission Request and External Control.

The method flushQueueRequest can directly be sorted out for all algorithms, at least
for the approaches described in section 3.2, since it doesn’t guarantee that it will
deliver all events in time stamp order. When flushQueueRequest is invoked, all events
that exist in the receive queue will be delivered to the federate. If this method should
be used with any of the synchronization algorithms, they must first be modified to be
able to pass external events without giving the simulation executive permission to
advance to the time of the passed event. Except from what events that are released to
the federate this method is similar to the timeAdvanceRequest method and will not be
discussed further.

The methods timeAdvanceRequest and nextEventRequest are very similar except
from what the federate that uses them promises. Recall from section 2.2.5 and Table
2-1 that a federate that calls timeAdvanceRequest promises it will not generate any
TSO events with a time stamp lower than the requested time + lookahead. A federate
that calls nextEventRequest promises it will not generate any TSO events with a time
stamp lower than the granted time + lookahead.

For Permission Request the method timeAdvanceRequest cannot be used. The reason
is that by calling this method, events that are buffered in the receive queue can be

26

delivered to the federate. Suppose one of these events has a time stamp, tevent, that is
smaller than the time that is requested by the simulation executive, trequested, (equal to
the time of the next internal event). If this event, when it is executed, generates a new
external event this new external event can be sent with a time stamp not smaller than
tevent + lookahead. This time can however be smaller than the time the federate had
promised not to generate any TSO events before, that is trequested + lookahead for
timeAdvanceRequest.

For External Control both timeAdvanceRequest and nextEventRequest can be used.

4.3.2 Time Update Cycle
This section will propose an approach how CSPE-HLA can use External Control for
time and object management when CSPE uses HLA as middleware. The approach can
be described as a cycle that goes on and on until the simulation is ended. Figure 4-4
shows an algorithm for this and the approach is also illustrated with a sequence
diagram, see Figure 4-5.

While simulation not ended do
 Query minimum next event time from RTI
 Pass time to CSPE if not equal to last time sent
 Receive events from CSPE and pass to RTI
 Wait until new simulation time is received from CSPE
 Request RTI to advance to new time
 Receive events from RTI and pass to CSPE
 Wait until time advance is granted
End while

Figure 4-4. Algorithm for CSPE-HLA.

The time update cycle starts with that the CSPE-HLA middleware asks RTI for the
minimum time when a message could arrive to this federate, using the method
queryMinNextEventTime(). The answer will depend on the current time and
lookahead values of the other federates and whether any messages are queued in the
receive-buffer. CSPE-HLA will inform CSPE what simulation time it could advance
to since it can be guaranteed that no messages will arrive earlier than this time by
calling advance(time).

CSPE will now execute all events in its event list that has a time stamp lower or equal
to the received time. If outgoing messages are generated these will be passed to
CSPE-HLA by calling output(time, entity), which, in turn, passes them on using
interactions with the method sendInteraction(entity, time). After each time the
simulation clock is changed in CSPE it will inform CSPE-HLA about its new time by
calling output(time). After CSPE has executed all events it could, it will inform
CSPE-HLA this by returning the time that it was allowed to advance to.

CSPE-HLA will request this new time from the RTI with either
timeAdvanceRequest(time) or nextEventRequest(time). If any messages are queued in
the receive-buffer with a time equal to this time they will be received with the method
receiveInteraction(entity, time) and passed to CSPE using advance(time, entity). After
all messages have been received and RTI knows that no more messages will come at
the requested time, the new time will be granted with timeAdvanceGrant() and
advance(time).

27

A new time update cycle now begins with CSPE-HLA asking for the minimum time
when a message could arrive.

Figure 4-5. Sequence diagram of the time update cycle in CSPE-HLA.

Pseudo Code

Below follows a pseudo code implementation of the time update cycle in CSPE-HLA:

Double lastCSPETime = 0.0
Double lastGrantedTime = 0.0
Double lastTimeSentToCSPE = 0.0
Boolean simulationEnded = false

queryMinNextEventTime()

RTI CSPE-HLA CSPE-Handler

advance(time)

output(time, entity)
sendInteraction(entity, time)

connect to RTI and initialize
 federate, set lookahead start()

Se
nd

 e
nt

iti
es

advance(time)

timeAdvanceRequest(time)
output(time)

queryMinNextEventTime()

advance(time, entity)
receiveInteraction(entity, time)

R
ec

ei
ve

 e
nt

iti
es

 a
nd

up

da
te

 ti
m

e

disconnect from RTI
terminate()

E
nd

 s
im

ul
at

io
n

St
ar

t s
im

ul
at

io
n

START

timeAdvanceGrant()

28

Method run()

Connect to RTI and set lookahead, timeRegulated and timeConstrained. Connect to CSPE.
Start simulation by calling start() in Handler
While simulationEnded == false Do

Query minimum next event time from RTI by calling queryMinNextEventTime(). Set
minNextEventTime = received time
If minNextEventTime > lastTimeSentToCSPE Then

Let CSPE advance to the new time by calling advance(minNextEventTime)
End If
While lastCSPETime <= lastGrantedTime And simulationEnded == false Do
 Sleep thread for a short time
End While
If simulationEnded == false Then

Ask RTI to advance to lastCSPETime by calling timeAdvanceRequest(lastCSPETime) in
RTI and await callback to timeAdvanceGrant. Set lastGrantedTime = time granted.

End If
End While
Disconnect from federation and CSPE

End Method

Method output(time)

Current simulation time is received from CSPE-Handler. Set lastCSPETime = time
End Method

Method output(time, entity)

Send entity as a TSO event by calling sendInteraction(..). The time is the time the event should be
received.

End Method

Method terminate()

Set simulationEnded = true
End Method

Method receiveInteraction(time, entity)

Send entity to CSPE by calling advance(time, entity) in CSPE-Handler.
Set lastTimeSentToCSPE = time

End Method

4.4 Code Implementation

4.4.1 Class Structure
Figure 4-6 shows a class structure for CSPE-HLA. To make it easier to understand,
the classes are put in the same way as the different parts of the overview of a
distributed COTS simulation using HLA in Figure 4-6.

CspeHla is a super class that different HLA approaches can extend. It contains all
methods and variables that the different approaches have in common. I have
implemented two approaches that, except from the what time advance method they
use, are very similar. CspeHlaTar uses TimeAdvanceRequest and CspeHlaNer uses
NextEventRequest.

29

Figure 4-6. Class Structure for CSPE-HLA.

4.4.2 CSPE-Handler
For compatibility with CSPE and CSPE-CMB I have based CSPE-Handler on code
from the implementation in (Mustafee 2003). The main change in the new version of
CSPE-Handler is that the handler and the middleware have been completely
separated. The handler’s API calls for output messages from CSPE has been put in an
interface that classes that wants to use the handler must implement.

The new version of CSPE-Handler consists of the following classes: CspeHandler
(main class), CspeHanderMiddleware (interface mentioned above),
CspeHandlerClient (used to send messages to CSPE), CspeHandlerServer and
CspeHandlerServerThread (both used to receive messages from CSPE).

4.4.3 RTI
CspeHla uses RTIAmbassador in the RTI library as an object to send messages to the
RTI. When the RTI wants to do a call-back, for example to say that a new time is
granted or to pass a new interaction, it makes a function call to the
FederateAmbassador. To have support for API calls the RTI can do it therefore
extends the NullFederateAmbassador found in the RTI library. Only the methods that
the middleware wants to use are overridden in FederateAmbassador.

RTI library

CSPE-HLA

CSPE-Handler

CspeHla

CspeHlaTar CspeHlaNer

extends extends

Interface
CspeHandlerMiddleware

implements

NullFederateAmbassador

FederateAmbassador

object

CspeHandler

object

RTIAmbassador

object

extends

30

5 Experimentation
This chapter will describe the benchmark that was used and how the experimentation
was done. The equipment and programs that were used in the experimentation will be
explained. The results will be shown in graphs together with the results of the
middleware using the Chandy-Misra-Bryant algorithm.

5.1 Benchmark
The benchmark proposed by Mustafee (2003) has been used. It uses three different
experiments that are performed using four different federate configurations. The
federate configurations will be described below in section 5.1.1 and the experiments
will be described in section 5.1.2.

5.1.1 Federate Configurations

Pipeline

The pipeline federate configuration is the simplest of the configurations. It consists of
six federates connected to each other as a pipeline, see Figure 5-1. Entities are
generated in federate A (source) and are then passed in one direction through all
federates until they finally are removed after been processed in federate F (sink). This
can for example be a model of production chain.

Figure 5-1. Pipeline Federation Configuration.
Adopted from (Mustafee 2003)

Local Feedback

The local feedback federate configuration is almost designed as the pipeline federate
configuration but makes it possible for entities to be returned to the previous federate,
see Figure 5-2. This can be a model of a production chain where entities can be
returned if they are found to be incorrect.

Figure 5-2. Local Feedback Federation Configuration.
Adopted from (Mustafee 2003)

In this benchmark half of the entities are returned. All entities are also forwarded to
the next federate to avoid a situation where federates in the beginning of the chain

Q-W-Q-W..

Federate A

Q-W-Q-W..

Federate B

Q-W-Q-W..

Federate C

Q-W-Q-W..

Federate D

Q-W-Q-W..

Federate E

Q-W-Q-W..

Federate F

Q-W-Q-W..

Federate A

Q-W-Q-W..

Federate B

Q-W-Q-W..

Federate C

Q-W-Q-W..

Federate D

Q-W-Q-W..

Federate E

Q-W-Q-W..

Federate F

31

stop the simulation before later federates has received the number of entities that has
been specified.

Client Server

The client server federate configuration consists of the five federates A-E (sources)
that generates entities and then passes them to federate F (sink), see Figure 5-3.
Federate F will return half of the entities to the federate that created them, a form of
local feedback, and remove the rest of them.

Figure 5-3. Client Server Federation Configuration.

Fully Interconnected

The fully interconnected federate configuration consists of six federates (sources) that
each generates new entities, processes, and passes them in a round-robin fashion to
other federates, see Figure 5-4. Every federate can send and receive entities to and
from every other federate.

Figure 5-4. Fully Interconnected Federate Configuration.

Q-W-Q-W.. Federate B

Q-W-Q-W.. Federate A

Q-W-Q-W.. Federate D

Q-W-Q-W.. Federate C

Q-W-Q-W.. Federate E

Q-W-Q-W.. Federate F

Q-W-Q-W.. Federate E

Q-W-Q-W.. Federate F

Q-W-Q-W..
Federate A

Q-W-Q-W.. Federate B

Q-W-Q-W.. Federate C

Q-W-Q-W..
Federate D

32

5.1.2 Experiments
The benchmark has three experiments: variable internal/external ratio, variable
workload and variable lookahead.

Variable External/internal Event Ratio

As seen in section 3.2, the ratio of external and internal events can be important as it
for some time synchronization approaches can affect the performance for distributed
simulations. It would therefore be interesting to see how different middleware
perform at different external/internal event ratios.

The test varies the number of federates in the pipeline workflow each CSPE simulates
to change the external/internal event ratio. This method to change the ratio is easy to
implement but the drawback is that the experiments execute different amount of
events in total and cannot easily be compared with each other. There are, however, no
problems to compare the results from one experiment with one middleware with the
results from the same experiment with other types of middleware.

Table 5-1 shows the setup for the experiments with variable external/internal ratio.

Experiment Entities Federates
External
events

Internal
events

External/
internal

ratio

Machine
Setup
time

Machine
Processing

time Lookahead
1 1000 1 1 1 1 5 5 10
2 1000 2 1 2 0.5 5 5 10
3 1000 5 1 5 0.2 5 5 10
4 1000 10 1 10 0.1 5 5 10
5 1000 20 1 20 0.05 5 5 10

Table 5-1. Variable external/internal ratio.

Variable Workload

This test varies the workload by varying the number of entities each federate must
process. Table 5-2 shows the setup for the experiments with variable workload.

Experiment Entities Federates
External
events

Internal
events

External/
internal

ratio

Machine
Setup
time

Machine
Processing

time Lookahead
1 1 5 1 5 0.2 5 5 10
2 10 5 1 5 0.2 5 5 10
3 100 5 1 5 0.2 5 5 10
4 250 5 1 5 0.2 5 5 10
5 500 5 1 5 0.2 5 5 10
6 1000 5 1 5 0.2 5 5 10

Table 5-2. Variable workload.

Variable Lookahead

The lookahead federates can affect how far in time other federates can proceed before
they must wait for each other, see also section 2.2.5 and 4.3. This can affect the

33

overall performance of the distributed simulation and it is therefore interesting to see
how different types of middleware perform with different lookahead values.

This test varies the lookahead each federate has. Table 5-3 shows the setup for the
experiments with variable lookahead.

Experiment Entities Federates
External
events

Internal
events

External/
internal

ratio

Machine
Setup
time

Machine
Processing

time Lookahead
1 1000 5 1 5 0.2 5 5 2
2 1000 5 1 5 0.2 5 5 4
3 1000 5 1 5 0.2 5 5 6
4 1000 5 1 5 0.2 5 5 8
5 1000 5 1 5 0.2 5 5 10

Table 5-3. Variable lookahead.

5.2 Test Environment

5.2.1 Computers and Network
The performance tests have been carried out on seven computers connected through a
isolated local area network. Six computers run one federate each and the last
computer run the RTI Executive (only for HLA tests). All computers also run
programs used for test automation, see section 5.2.2 for details. Version 5 of RTI 1.3-
NG has been used. The speed of the network was 10 Mbit.

Setup for the 6 computers running federates:
Intel Pentium III 650 MHz, 256 mb RAM
Windows 2000/Windows XP

Setup for the computer running the RTI executive:
Intel Pentium III 950 MHz, 256 mb RAM
Windows XP

5.2.2 Automatic Tests
Before each test software had to initialised and started with correct settings. This
setup took approximately 1-3 minutes. Each test had an execution time between 1
second and 16 minutes depending on the settings. If every time advance algorithm,
federate configuration and variable setting should be executed one single time almost
200 tests were needed. To be able to do all tests, I had to develop software that
automates the tests.

The software, named PerformanceTests, consists of six servers, one for each federate
machine, and one client. The servers listen for incoming socket connections. The
client connects to each machine and transmits the commands needed to start CSPE
and CSPE-HLA/CSPE-CMB with the correct settings for a specific test. In the code
of the client it is possible to set some variables to choose what tests that should be
performed.

34

Performance Evaluator, a program that measures the simulation execution time
developed by Mustafee (2003), has been integrated into the client of
PerformanceTests. PerformanceTests gets all the results from the Performance
Evaluator and saves them in a comma-separated log file that easily can be imported
into Microsoft Excel.

5.2.3 Program Execution Order
The servers of PerformanceTests are first started at all federate machines. Then the
client is started. It connects to all servers. For HLA tests, it will also launch RTI
Executive and wait for it to initialise. The client sends out commands how to start
CSPE and CSPE-CMB/CSPE-HLA to all servers.

After all programs has initialised and established the right connections to each other,
every federate has informed the Performance Evaluator that they were ready. The
Performance Evaluator has then started a timer and informed all federates to start the
simulation. When all federates has reported back that they have finished the
simulation the timer has been stopped. The time has been saved in a log file.

After both CSPE and CSPE-HLA/CSPE-CMB have exited on a federate machine the
server will report back to the client. The client will either exit or start a new test by
sending news command to the servers. Figure 5-5 shows the execution order of
PerformanceTests.

Figure 5-5. Execution order of PerformanceTests

5.3 Results
Below follow the results of the experiments performed in the form of graphs. For
comparison the results from the Chandy-Misra-Bryant algorithm are also illustrated in
all graphs. They were obtained using the same hardware. Every different test was run
three times. Since the tests were run on an isolated network the deviation was very
small. The values presented in the graphs are the mean values.

Client Server A Server B

connect and initialize

“ready”

connect and initialize

“ready”

start simulation
start simulation

“finished”
“finished”

Measured time

35

5.3.1 Pipeline

Figure 5-6. Pipeline: Variable External / Internal Event Ratio

Figure 5-7. Pipeline: Variable Workload

Figure 5-8. Pipeline: Variable Lookahead

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

1 0,5 0,2 0,1 0,05

EXTERNAL EVENT DENSITY

E
X

E
C

U
T

IO
N

 T
IM

E
 /

M
IL

LI
S

E
C

O
N

D
S

NER

TAR

CMB

0

5000

10000

15000

20000

25000

1 10 100 250 500 1000

ENTITIES TO BE PROCESSED

E
X

E
C

U
T

IO
N

 T
IM

E
 /

M
IL

LI
S

E
C

O
N

D
S

NER

TAR

CMB

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

2 4 6 8 10

LOOKAHEAD

E
X

E
C

U
T

IO
N

 T
IM

E
 /

M
IL

LI
S

E
C

O
N

D
S

NER

TAR

CMB

36

5.3.2 Local Feedback

Figure 5-9. Local Feedback: Variable External / Internal Event Ratio

Figure 5-10. Local Feedback: Variable Workload

Figure 5-11. Local Feedback: Variable Lookahead

0

50000

100000

150000

200000

250000

300000

1 0,5 0,2 0,1 0,05

EXTERNAL EVENT DENSITY

E
X

E
C

U
T

IO
N

 T
IM

E
 /

M
IL

LI
S

E
C

O
N

D
S

NER

TAR

CMB

0

50000

100000

150000

200000

250000

1 10 100 250 500 1000

ENTITIES TO BE PROCESSED

E
X

E
C

U
T

IO
N

 T
IM

E
 /

M
IL

LI
S

E
C

O
N

D
S

NER

TAR

CMB

0

200000

400000

600000

800000

1000000

1200000

2 4 6 8 10

LOOKAHEAD

E
X

E
C

U
T

IO
N

 T
IM

E
 /

M
IL

LI
S

E
C

O
N

D
S

NER

TAR

CMB

37

5.3.3 Client Server

Figure 5-12. Client Server: Variable External / Internal Event Ratio

Figure 5-13. Client Server: Variable Workload

Figure 5-14. Client Server: Variable Lookahead

0

50000

100000

150000

200000

250000

300000

1 0,5 0,2 0,1 0,05

EXTERNAL EVENT DENSITY

E
X

E
C

U
T

IO
N

 T
IM

E
 /

M
IL

LI
S

E
C

O
N

D
S

NER

TAR

CMB

0

50000

100000

150000

200000

250000

1 10 100 250 500 1000

ENTITIES TO BE PROCESSED

E
X

E
C

U
T

IO
N

 T
IM

E
 /

M
IL

LI
S

E
C

O
N

D
S

NER

TAR

CMB

0

200000

400000

600000

800000

1000000

1200000

2 4 6 8 10

LOOKAHEAD

E
X

E
C

U
T

IO
N

 T
IM

E
 /

M
IL

LI
S

E
C

O
N

D
S

NER

TAR

CMB

38

5.3.4 Fully Interconnected

Figure 5-15. Fully Interconnected: Variable External / Internal Event Ratio

Figure 5-16. Fully Interconnected: Variable Workload

Figure 5-17. Fully Interconnected: Variable Lookahead

0

50000

100000

150000

200000

250000

1 0,5 0,2 0,1 0,05

EXTERNAL EVENT DENSITY

E
X

E
C

U
T

IO
N

 T
IM

E
 /

M
IL

LI
S

E
C

O
N

D
S

NER

TAR

CMB

0

50000

100000

150000

200000

250000

1 10 100 250 500 1000

ENTITIES TO BE PROCESSED

E
X

E
C

U
T

IO
N

 T
IM

E
 /

M
IL

LI
S

E
C

O
N

D
S

NER

TAR

CMB

0

200000

400000

600000

800000

1000000

1200000

2 4 6 8 10

LOOKAHEAD

E
X

E
C

U
T

IO
N

 T
IM

E
 /

M
IL

LI
S

E
C

O
N

D
S

NER

TAR

CMB

39

6 Analysis
This chapter will analyse the results and discuss advantages and disadvantages of
using CSPE as an experimental tool and HLA as middleware for CSPs.

6.1 Different CMB and RTI Implementations
When we analyse the results we must consider, as seen in Section 2.2.5, that HLA
does not prescribe any specific implementation. In this report we have used a HLA
RTI 1.3-NG Version 5 developed by DMSO for the experiments. Other
implementations of RTI exist and how they perform is of course not possible to
discuss using the results in this report.

We must also consider, as seen in Section 2.2.4, that several versions of the CMB
algorithm exist. The version that has been used in the experiments uses null messages
to avoid deadlock situations. Null messages are sent to all outgoing links of a federate
after an event has been executed. However, it is a little bit optimised since it never
sends a null message to an outgoing link if a message or a null message with the same
time stamp already has been sent through that link.

When NER, TAR, HLA and CMB are mentioned in the following sections, we mean
the versions that have been used in the experiments.

6.2 Similar Results for NER and TAR
The first we can note is that both NextEventRequest (NER) and TimeAdvance-
Request (TAR) in every experiment give almost the same results. Any differences can
in fact depend on normal divergences in the measurement.

The similar results can be explained if we study the algorithms that have been used,
see section 4.3.2. The time update cycle in a federate always starts with a query to the
RTI for the minimum next event time. This is the time when an event earliest can
arrive to this federate. The time is passed to the simulation executive, the simulation
advances and a new current simulation time is returned. The returned time is used to
request a new time from the RTI. This value is always equal or lower than the time of
the next event and NER and TAR will therefore execute in the same way.

Other algorithms may give other results. See also the discussion in section 7.2. The
results from the two methods are below mentioned as HLA.

6.3 Differences Between HLA and CMB
HLA is faster than or equal to CMB in all configurations except the Pipeline. HLA
has more or less similar results for the all configurations while CMB is much slower
on Local Feedback, Client Server and Fully Interconnected compared to its results on
the Pipeline.

40

6.3.1 Centralised and Decentralised Approaches
The implementation of DMSO's RTI is not well known but from the results it is
reasonable to believe that at least the time advance procedure use a centralised
approach since the different federate configurations show so similar results.

CMB is totally decentralised. Every federate knows which other federates that can
send messages to it and will stop the execution until it has received a message from
each of these federates. To avoid deadlock situations a lot of null messages are sent to
other federates to inform about the current simulation time.

The Pipeline is the only configuration where there is no feedback loop. All entities are
generated in federate A, passed through all federates in one direction and then finally
removed in federate F. In this configuration every federate only has to wait for one
other federate and as soon a new message arrives it can be processed.

6.3.2 Comparison of Feedback Loop Handling Between CMB and HLA
In this section we will see how feedback loop is handled by CMB and HLA. We will
use an example to show the differences in the way they work.

Example with CMB

Figure 6-1 shows the initial state for a feedback loop configuration with the three
federates A, B and C. Federate A is the source and federate C is the sink. The current
simulation time is 0 in all federates (shown inside each federate’s square). No
messages are stored in any of the receive queues (shown with N/A in the figure). All
federates has a process time and lookahead of 10 time units. Federate B and C does
not have any internal events scheduled.

Figure 6-1. Initial state for a feedback loop configuration.
Three federates A, B and C. The current simulation time is shown inside each federate's square.

At time 0 federate A will start to process entity E1. Federate A will now send a
message to federate B that it can start process entity E1. This message must be sent
now since the lookahead is equal to the process time (10 time units).

Since the receive queues at federate B and C are empty they will send null messages
to federate A and C to avoid a possible deadlock. These messages will arrive at time
10. Both federate A and C can only receive messages from federate B and can
therefore safely advance to time 10 when the null messages are received. Figure 6-2
shows the current state.

A: 0 B: 0 C: 0

N/A N/A

N/A N/A

41

Figure 6-2. State after two null messages and one entity have been sent.

Federate A can now stop the processing of entity E1 and start with entity E2 instead.
By the same reason as before federate A must immediately send a message with entity
E2 to federate B that will arrive at time 20.

When federate B has received the null message from federate C it knows it is safe to
process the message from federate A received at time 10. Federate B will now start to
process entity E1 and the current simulation time in B will advance to 10. This will
result in a new null message sent to federate A and a message with entity E1 to
federate C. Both these message will arrive at time 20.

When federate C receives the first null message from federate B it will send a new
null message to federate B that will arrive at time 20.

Figure 6-3 shows the current state.

Figure 6-3. State after two null messages and two entities have been sent.

Considering this example it is not difficult to see that an increasing number of number
of federates or a smaller lookahead value will increase the number of deadlock
situations and null messages needed in the system.

Example with HLA

The same model is used in this example with HLA as middleware. No null messages
are sent when HLA is used. Each of the federates must instead frequently ask RTI for
time advancements. Figure 6-4 shows the initial state. The current simulation time is 0
in all federates.

Figure 6-4. Initial state for a feedback loop configuration.
Three federates A, B and C. The current simulation time is shown inside each federate's square.

All federates have declared their lookahead when they initialised with RTI. As seen in
the algorithm from Chapter 4, see Figure 4-4, the first step is in the time update cycle

A: 10 B: 0 C: 10

10 null 10 null

10 E1 10 null

A: 10 B: 10 C: 10

20 null 20 null

20 E2 20 E1

A: 0 B: 0 C: 10

42

to query RTI for the time when an event earliest can arrive to the federate. Since the
lookahead is 10, all federates will get 10 as response. All federates are now allowed to
advance to this time and perform any internal events with a time stamp lower or equal
to this time.

Federate A is the only federate with an internal event at this stage. At time 0 it will
start to process entity E1. It will also send this entity to federate B with an interaction.
The interaction will be received at time 10. At time 10 it will stop the processing of
entity E1 and start with E2. E2 will also be sent to federate B. It will arrive at time 20.
Figure 6-5 shows the current state.

Figure 6-5. State after one entity has been sent.

The next step is to request RTI to advance the time. Each federate will request the
time they were allowed to advanced to, in this case 10 for all. All federates requests
will be granted as soon as RTI knows it is safe to advance to the requested times and
each federate has received any external events waiting in the receive queue with a
time equal to the requested time. Federate B will receive the first interaction with
entity E1 but entity E2 will remain in the queue. It will directly send entity E1 to
federate C to be received at time 20.

All federates will now once again query the RTI for the minimum time of the next
event. Since all federates have requested time 10 this mean no events can arrive
earlier than at time 20 because of the lookahead of 10.

As can be seen, there is no need for null messages but the federates must wait for each
other when they make a time advance request. More federates mean more federates to
wait for and smaller lookahead values means more loops in the time update cycle.
How the federates interconnected is, however, not that important which the similar
results for HLA from the different federate configurations show.

A: 10 B: 10 C: 10
10 E1
20 E2

43

7 Conclusion
This chapter will summarize the report and present what conclusions that can be made
from the analysis of the results. Future work will also be discussed.

7.1 Summary
The aim of the work was to investigate time management in COTS based distributed
simulation using HLA. Discussions were limited to discrete event simulation and
conservative algorithms.

The CSPE “experimental methodology” was derived from Mustafee (2003). It was
found to be a useful tool for the performance testing of different types of middleware.
The CSPE architecture was modified to use HLA as middleware. A time update cycle
algorithm was designed and implemented in Java. Version 5 of RTI 1.3-NG
developed by DMSO was used.

Reference Model I (Taylor 2003) with asynchronous entity passing was implemented
using the non-persistent object type interactions and the two different time
management methods TimeAdvanceRequest (TAR) and NextEventRequest (NER).

The experiments were carried out on an isolated local area network with seven
computers. The three variables external/internal event ratio, workload and lookahead
was varied in different experiments and tested in four federate configurations. The
Chandy-Misra-Bryant (CMB) middleware derived from Mustafee (2003) was also
tested on the same hardware and under the same circumstances.

A special program was developed to automate the testing since there were many tests
to perform. With five-six variable settings in three different experiments, four federate
configurations and three types of middleware there was almost 200 tests that all
needed to be run several times.

The results were compared and analysed. Both TAR and NER gave the same results
and the analysis showed that these methods were actually doing the same in the
algorithm used. Their results, mentioned as just HLA now, were found to be equal or
faster than CMB in the three federate configurations with feedback loop. CMB was
found to be a little bit faster than HLA in the Pipeline federate configuration.

7.2 Conclusions
This section will discuss the insights I gained about HLA, CMB and CSPE during the
work.

7.2.1 HLA
I have found HLA to be very useful for distributed simulation. In fact it can be used
for other forms of distributed computing as well with its advanced object and time
management, its support for other features such as synchronization barriers and data
distribution management.

44

HLA has become a de-facto standard for distributed simulation. A lot of research is
carried out on how to use HLA in different areas and applications. As seen in section
2.2.5, it doesn’t prescribe any specific implementation and computer language. This
means different techniques can be used to implement the distributed services as long
as the developers follow the HLA rules and interface specification. This construction
and the fact that many are using the standard make HLA future-safe for new computer
languages and new distributed algorithms.

The weak side of HLA is that it is very complex even if you often only need to use
parts of all methods defined in the API. When I implemented support for Reference
Model I with unbounded buffers (described in section 3.1) I only had to use a limited
number of HLA’s all methods. This complexity can indicate that HLA is very
“heavyweight” standard with a lot of unnecessary functions for COTS distributed
simulations.

The experiments in this report show, however, that the performance of HLA is
comparable with the “lightweight” middleware CMB and also in models with
feedback loops it is much faster. It is also not unlikely that the implementation of
more complicated reference models will need to use more of HLA’s methods.

The complexity makes the learning curve high and it takes a long time before you
have learned everything.

7.2.2 DMSO RTI 1.3-NG Version 5
The RTI version I used in my experiments seemed to be buggy. The RTI software
could deadlock, and it often did, when federates were resigning from a federation. I
spent many days to find a solution to this problem. Finally I had to implement a
feature in the automatic test program that killed processes at the client and the servers
if the RTI had deadlocked.

Another bad thing with the RTI version I used was a method called tick() that is not a
part of the HLA standard. It must, however, be called frequently to give process time
to the RTI ambassador. The method can be called with or without two arguments that
specifies the lower and upper bound of the time being allocated to tick(). How tick() is
used in the program was found to be extremely important for the overall performance.
Not well-chosen values could mean double execution time or even worse. The values
I found to be best and that I used in my experiments was tick(0.0, 0.0).

7.2.3 CMB
The Chandy-Misra-Bryant (CMB) algorithm was fast for the federate configuration
without feedback loop but slow for the other configurations tested. The algorithm is
simple and easy to understand. The CMB middleware doesn’t have any built-in
support for any advanced distributed computing methods, only message passing, and
is alone not developed enough for future interoperability issues.

7.2.4 CSPE
I found the CSPE “experimental methodology” to be very useful for distributed
simulation experiments. CSPE makes it possible to investigate different kinds of
middleware and vary federate configurations and variable settings. The architecture
consist of the three parts CSPE, CSPE handler and the middleware. This dividing

45

separates the simulation’s internal implementation from the middleware in a very
good way. The handler also has a good API for communication with CSPE.

Since the structure of CSPE is well known (see Mustafee 2003), it is possible to
implement more functionality to investigate new COTS interoperability problems. For
example, if you want to do experiments on bounded buffers, you can implement
support for this into CSPE, add new function calls to the API and then develop
middleware that can provide this functionality. You will have full control of all parts
and it will be possible to try different solutions.

Without a tool such as CSPE, distributed simulation experiments with COTS
simulation packages would be limited to the API calls that the software developers
implement in their packages. It is also reasonable to believe that it will take a lot more
time to try different solutions if real CSP packages would be used in the experiments.

CSPE however, needs further development to support more reference models when
these will be designed, implemented and tested. The version of CSPE I used (and the
only one that currently exists) can also be improved a little bit in future versions if the
number of classes is reduced.

7.3 Future Research and Development

7.3.1 Other RTI Versions
It is difficult to compare HLA to other middleware when the implementation is not
standardized and can differ in different RTI implementations. It would therefore be
interesting to compare the results I got using DMSO RTI 1.3-NG Version 5 with
results from experiments, carried out using the same circumstances, with other RTI
implementations. It would also be interesting to compare these results to a simple
centralized approach since the results is similar for the different federate
configurations.

7.3.2 Combination of External Control and Permission Request
In the end of my work I found that it is probably possible to combine the external
control (EC) and permission request (PR) synchronization algorithms in a new
algorithm.

EC was used in this work to control CSPE. The middleware defined a safe time that
the simulation executive was allowed to advance to. When this time was reached, it
returned the time to the middleware to let it know the current simulation time. This
time was then used to request time advancement from the RTI. If, instead, the time of
the next scheduled internal event should be returned, it sometimes would be possible
to request a higher time and in this way speed up the simulation since other federate
may have to wait less.

This is, however, only possible if the NextEventRequest method is used since the
federate in this case only promise that it will not send any external events earlier than
the granted time + lookahead, see section 2.2.5. The granted time will be equal what
is lowest of the time of the next event that will received and the requested time.

46

This is a form of PR since CSPE requests to advance to its next internal event. If no
external event arrives it will be allowed to do that. If a higher safe time can be defined
by the middleware CSPE will be allowed to advance to this higher time instead.

Figure 7-1 shows the sequence diagram for the time update cycle of this algorithm.

Figure 7-1. Sequence diagram of the time update cycle of the EC/PR algorithm

7.3.3 Other reference models
In this work only Reference Model I was implemented and performance tested. Other
more reference models, for example bounded buffers, can demand more of the
middleware and maybe give other results. It would be interesting to investigate how
HLA can be used with these reference models.

queryMinNextEventTime()

RTI CSPE-HLA CSPE-Handler

advance(time)

output(time, entity)
sendInteraction(entity, time)

connect to RTI and initialize
 federate, set lookahead start()

Se
nd

 e
nt

iti
es

advance(time)

nextEventRequest(time)
request(time)

queryMinNextEventTime()

advance(time, entity)
receiveInteraction(entity, time)

R
ec

ei
ve

 e
nt

iti
es

 a
nd

up

da
te

 ti
m

e

disconnect from RTI
terminate()

E
nd

 s
im

ul
at

io
n

St
ar

t s
im

ul
at

io
n

START

timeAdvanceGrant()

time = nextInternalEventTime

47

I think it is difficult or maybe even impossible to implement Reference Model II
(synchronous entity passing with bounded buffer) in a middleware that is using HLA,
if the distributed simulation should be conservative and if the lookahead value should
not be set to 0. The receiver of an entity must be able to respond that the buffer is full
and that the entity cannot be sent yet. This response must, however, arrive at the same
time as the entity is sent if the sending federate should not start processing the next
entity. This demands a lookahead of 0.

An alternative to a lookahead of 0 is maybe that sender always is aware of the status
of the receiver’s buffer. This assumes that processing times at the receiver is known
and that only one federate can send entities to the receiving federate. This alternative
seems to be very complicated and a lookahead of 0 is presumably the only real
solution. The problem with a lookahead of 0 is that is will probably give bad overall
performance.

An optimistic approach would not have this problem. In any cases more reference
models must be investigated to be able to answer which middleware that is best for
COTS based distributed simulations.

CSPE needs further development if more reference models should be implemented
and tested. It would also be interesting to see if the middleware performance changes
if the processing times of the workstations are randomised. Today all processing times
are fixed values that can be specified.

48

References

Banks, J., J. S. Carson II, B. L. Nelson, and D. Nicol (2001). Discrete-Event System
Simulation, 3d ed., Prentice-Hall, New Jersey. 3-22.

Boer, C. A., and A. Verbraeck (2003). Distributed Simulation with COTS Simulations
Packages. In Proceedings of the 2003 Winter Simulation Conference. S. Chick, P. J.
Sánchez, D. Ferrin, and D. J. Morrice (eds.). Institute for Electrical and Electronics
Engineers, New Jersey. 829-837.

Bryant, R. E. (1977). Simulation of packet communications architecture computer
systems. MIT-LCS-TR-188.

Chandy, K. M. and J. Misra (1978). Distributed Simulation: A Case Study in Design
and Verification of Distributed Programs. IEEE Transactions on Software
Engineering SE-5(5). 440-452.

Chandy, K. M. and Misra, J. (1981). Asynchronous Distributed Simulation via a
Sequence of Parallel Computations. Communications of the ACM. 24(11). 198 - 206.

DMSO. RTI 1.3-Next Generation Programmer’s Guide Version 5. Department of
Defense. Defense Modeling and Simulation Office.

Fujimoto, R. M. (1990). Parallel Discrete Event Simulation. Communications of the
ACM. 33(10). 30-53.

Fujimoto, R. M. (1999). Parallel and Distributed Simulation. In Proceedings of the
1999 Winter Simulation Conference. P. A. Farrington, H. B. Nembhard, D. T.
Sturrock, and G. W. Evans (eds.). Association for Computing Machinery Press, New
York, NY. 122-131.

Fujimoto, R. M. (2003). Distributed Simulation Systems. In Proceedings of the 2003
Winter Simulation Conference. S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice
(eds.). Institute for Electrical and Electronics Engineers, New Jersey. 124-134.

Law, A. M., and W. D. Kelton (2000). Simulation Modeling and Analysis, 3d ed.,
McGraw-Hill, New York.

Mustafee, N. (2003). Performance Evaluation of Interoperability Methods for
Distributed Simulation. Department of Information Systems and Computing, Brunel
University, England.

Paul, R. J. and D. W. Balmer (1998). Simulation Modelling. Brunel University,
England. 1-25, 102-108

Ryde, M. D. and S. J. E. Taylor (2003). Issues using COTS Simulation Software
Packages for the Interoperation of Models. In Proceedings of the 2003 Winter
Simulation Conference. S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice (eds.).
Institute for Electrical and Electronics Engineers, New Jersey. 772-777.

49

Swain, J. J. (2001). Power tools for visualization and decision making: 2001
simulation software survey. OR/MS Today 28(1). Baltimore, Maryland: Institute for
Operations Research and Management Science.

Taylor, S. J. E., R. Sudra, T. Janahan, G. Tan and J. Ladbrook (2002). GRIDS-SCF:
An Infrastructure for Distributed Supply Chain Simulation. In SIMULATION, Vol.
78, Issue 5, May 2002. The Society for Modeling and Simulation International. 312-
320.

Taylor, S. J. E., S. J. Turner and M. Y. H. Low (2004). A Proposal for an Entity
Transfer Specification Standard for COTS Simulation Package Interoperation.
European Simulation Interoperability Workshop 2004. 04E-SIW-081

Taylor, S. J. E., J. Sharpe and J. Ladbrook (2003). Time Management Issues in COTS
Distributed Simulation: A Case Study. In Proceedings of the 2003 Winter Simulation
Conference. S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice (eds.). Institute for
Electrical and Electronics Engineers, New Jersey. 838-846.

Taylor, S. J. E. (2003). HLA-CSPIF: The High Level Architecture – COTS
Simulation Package Interoperation Forum. In Proceedings of the Fall 2003 Simulation
Interoperability Workshop. Simulation Interoperability Standards Organisation,
Institute for Simulation and Training. Florida. 03F-SIW-126.

Taylor, S., B. Gan, S. Straßburger, A. Verbraeck (2003). HLA-CSPIF Panel on
Commercial Off-the-Shelf Distributed Simulation. In Proceedings of the 2003 Winter
Simulation Conference. S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice (eds.).
Institute for Electrical and Electronics Engineers, New Jersey. 881-887.

50

Appendix A – Table of Acronyms

API Application Programming Interface
CMB Chandy-Misra-Byrant
COTS Commercial Off the Shelf
CSP COTS Simulation Package
CSPE COTS Simulation Package Emulator
CSPE-CMB CSPE using CMB for time management
CSPE-HLA CSPE using HLA for time management
DLL Dynamic Link Library
DMSO Defense Modeling and Simulation Office in US
EC External Control
EE External List Externalisation
FED Federation Execution Details
FedExec Federation Executive
HLA High Level Architecture
HLA-CSPIF HLA-CSP Interoperability Forum
IA Incremental Advance
IEEE Institute of Electrical and Electronics Engineers
LBTS Lower Bound Time Stamp
libRTI RTI Library
LP Logical Process
NER Next Event Request
PR Permission Request
RO Receive Order
RTI Run-Time Infrastructure
RtiExec RTI Executive
TAR Time Advance Request
TSO Time Stamp Order

