

AGENT BASED MATCHMAKING

 MASTER OF SCIENCE THESIS
 IMIT/KTH 2003-2004

 BY

 NITIN PANCHANATHAN

Agent Based Matchmaking Thesis report 2004 July 1st 2004

Acknowledgements

The completion of this thesis has been highly dependent on the good will and support of
many people. Words cannot express how much I want to thank the following people who
have put in valuable time and effort in guiding me despite their hectic schedule and other
responsibilities.

Thomas Sjöland: My Examiner at KTH(Sweden).
Luc Onana Alima: My Supervisor at KTH(Sweden).
Koen Bertels: CEO Upsilon Research and Professor at the department of Computer
Engineering at Delft and my supervisor too.
Elth Ogston: Doctoral Student at Vrije Universitat Netherlands.

Agent Based Matchmaking Thesis report 2004 July 1st 2004

Abstract

This thesis presents some suitable mechanisms to solve the centralized matchmaking
problem. Matchmaking is done in order to fulfill the needs of agents, trading in the market
place or in a grid-based environment. Agents have a particular task to accomplish for
which they need resources. In our case, producer agents provide the resources and
consumer agents want to perform tasks. With the help of suitable mechanisms the market
matches resources and tasks. We have developed a simulation environment to evaluate
the mechanisms we have built. We have also studied how efficient these mechanisms are
in terms of matching time and resources allocated. We found first match to be the simplest
and fastest in terms of matching time. Minimum difference was the most efficient of them
all, in terms of resource allocation. Minimum distance was the slowest in terms of
matching time. We performed further experiments to move towards the peer-to-peer
approach using partitioning. We found that the efficiency plots for first match and minimum
difference indicate that centralized approach always results in better efficiency compared
to partitioning approach. The minimum distance approach is the most suitable one when
partitioning was used, as the efficiency is almost the same when compared to centralized
approach.

Table of Contents

ACKNOWLEDGEMENT
ABSTRACT

INTRODUCTION………………………………………………………………………….1
PROBLEM STATEMENT AND RELATED RESEARCH……………………………….2
OUR APPROACH………………………………………………………………………….3
EXPERIMENTS PERFORMED AND EMPIRICAL RESULTS…………………………23
EXTENSION TO THE EXPERIMENT…………………………………………………...31
COMMERCIAL APPLICATIONS………………………………………………………..40
CONCLUSION AND FUTURE WORK…………………………………………………..40
REFERENCES……………………………………………………………………………. 42
APPENDIX…………………………………………………………………………………44

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 1 -

1. Introduction

“True knowledge exists in knowing that you know nothing and in knowing that you know
nothing, that makes you the smartest of all”.
 - Socrates

How do we match resources and tasks of agents trading in the market? The answer to this
is to write some complex programs that would solve the above problem. The procedural
approach is used to solve such a problem. In procedural approach the problem is first
decomposed in order to simplify it so that it can be solved. Such decomposition is not
always possible because matchmaking problems are too intricate, widely distributed and
have a lot of ambiguity in them. We use a simple agent based approach in order to tackle
this problem. In this approach each of these agents are assigned small problems so that
they can on their own coordinate and then a solution for the complex problem can be
found. Two things have been considered while using agent-based approach, first, the
individual complexity of the agents and second, the amount of centralized control in the
system. The agents that participate in the matchmaking are simple and use up minimum
resources. These kinds of agents are also called minimal agents. Minimal agents perform
matchmaking either at the centralized directory or market place. Much care needs to be
taken for the design of centralized directory and minimal agents to see that it is kept as
simple as possible.

1.1 Structure of report

The report is structured as follows.

In this chapter we discuss the motivations behind using the agent based approach over
procedural approach. In chapter 2 we specify clearly what the matchmaking problem is
and also talk about work done by others and how it is similar or dissimilar to what we have
done. In Chapter 3 we discuss the model, which would suitably solve this problem. Having
built the model, we then proceed further and build a simulation based on the model and
perform some experiments. Chapter 4 discusses the experiments done and also the
extensions that we have made to the basic experiment. Many more additions could be
done to the model to make it more robust and realistic. We provide suggestions and also
conclude by providing the results, which we obtained. Chapter 5 discusses these issues.
Chapter 6 provides all the references that were used.

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 2 -

1.2 Motivation for using agent based approach over procedure based

approach

The usual approach towards handling complex tasks is the procedure-based approach.
But agent based approach has its advantages over the procedure based approach. One of
the advantages is that code can be maintained easily [1]. When we think in terms of
parallel and distributed computing this plays an important role in making these possible [1].
We also have robustness and increased performance on using this approach [1]. When
interactivity is needed it is best to use this approach [1]. Each of the agents can be
assigned a role and better co-operation is seen on using this approach. They also provide
services of different kinds to a particular community [2]. These are some of the factors that
motivate one to follow an agent-based approach.

2 Problem statement and related research

2 .1 Problem statement

We are looking into resource allocation and task distribution in a grid based environment.
Grids are a set of interconnected nodes. Agents run on these nodes. Nodes could have
either resources or tasks available with them. Allocation of resources and tasks need to be
done using agents. In such a scenario we encounter sub-optimal allocation of resources
and tasks. This happens because some nodes have too many tasks and some nodes may
have extra resources. What is needed is task re-distribution and proper resource
allocation. We don’t need certain nodes with extra resources not having any tasks that
would use up the resources. Similarly there should not be too many tasks are at one node
overburdening it. We investigate matchmaking functions that are suitable for solving such
problems in the centralized scenario .We then move towards the partitioning approach and
finally compare both these approaches in terms of their efficiency.

2.2 Related research

Resource allocation is needed when there are many tasks, which are not accomplished
due to the lack of resources. Similarly task allocation is needed when there is abundance
of idling resources with no tasks to use them up. Allocation is also useful in grid like
environments where access to grid based components is needed[3]. Matchmaking is done
to rebalance the workload. The question now arises as to how matchmaking has to be
done. There are basically three methods to aid in matchmaking. First scheme uses middle
agents providing some kind of central directory[8][4][3]. An alternative approach is to use
market bidding mechanisms where bids and offers are broadcasted to all agents[14][6][7].
A third possibility is to allow peer–peer communication that includes communication cost
but using only local information [10][13]. We extend the work on matchmaking of minimal
agents with and without a facilitator as described in [10][11][12].

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 3 -

It investigated matchmaking with and without a centralized facilitator by using an auction
based mechanism matchmaking achieves 93% success rate for population upto 32k
agents. To achieve such a success rate it might need upto 300 bidding rounds.
The advantage of this is that the communication overhead is considerably reduced. This
happens because no broadcasting is required. However the time required to find a match
increases considerably.

The main contribution in this thesis is as follows.

• The simplest matchmaking function is the most efficient one both in terms of
resource usage, task execution and matching time.

• More computationally expensive functions only yield

 a marginal improvement in the order of 1% as far as
 the resource usage and task execution are concerned.

• Centralized matchmaking is scalable in the range of
 (studied) 5 to 50K agents interacting on the market.

• Multiple matchmakers can be introduced to reduce
 substantially the communication overhead. It is empirically
 shown that a population size should never be
 lower than 10K or larger than 20K.

3 Our approach

Having seen some of the approaches used by others in the area of agent based
matchmaking we now explain our model and also justify why we chose the centralized
approach over other approaches. We start with the description of the model.

3.1 Model

The goal of this experiment is to evaluate different ways of redistributing tasks to different
processing nodes, given some constraints. We consider a grid like environment where
some nodes might fall idle whereas others are still overloaded. The latter category wants
to delegate some of the tasks in their local queue to other nodes in order to decrease the
overall computing time. We assume 2 categories of agents, producers and consumers.
Producers have processing power to provide resources and consumers are looking for
additional processing power to execute the tasks in their queue. The goal is to facilitate the
match making process in such a way that the maximum number of tasks is executed,
given the available resources. This implies that a consumer has to find a producer that can
provide sufficient processing time to execute the task.

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 4 -

The matchmaking mechanism involves a centralized mechanism (similar to, but different
from a market) that will receive from producers the resources offered and from the
consumers the requested tasks. No subsequent bidding or negotiation is then required.

We make the following assumptions:

• We assume that each agent is directly and with the same average latency
connected to the matchmaker and that the cost for this connection is the same for
each agent. This simplifies the problem and even allows us to exclude it from the
analysis.

• Tasks are atomic by nature and cannot be divided. Each task has a particular

complexity which is represented by an integer value. This value indicates the
amount of resources required in order to be executed. Resources are represented
in a similar way. Whether or not a particular task can be executed by an available
resource is then simply determined by comparing these integer values.

• One consumer can match with only one producer who has sufficient resources to
execute the task. This means that we currently do not look at collaborative issues.

• We generate randomly the initial task and resource allocation from a uniform

distribution.

• We are currently using a simulation model in which the agent requests are treated
in a pure sequential way. In a realistic setting, the match making would occur
in an asynchronous way where the different offers and bids are treated as they are
submitted.

• We assume that there are an equal number of consumers and producers. This is

not restrictive as the random generation of tasks and resources can result in a zero
value which is similar to taking the agent out of the population.

• When referring to ’population’, we mean the number of agents that use the

matchmaker to buy or sell processing time. They represent only a fraction of the
actual population.

In our environment, we have N agents: A = {a1……an}.Some of these agents, called
consumers, has tasks to perform Ta = {t1….. tk} for which they are looking for additional
resources and others, called producers, have resources to sell, Ra = {r1…… rk}. There is
a matchmaker to which both consumers and producers announce their requests.
Consumers will send to the matchmaker the number of tasks they want to delegate and
the producer will announce in the same way how much processing time it has available.

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 5 -

The matchmaker then uses that information to match consumer requests to producer bids.

The basic matching goes as follows: f : C * P-> [0:1] with
f(ci: pj) = 1: if (ci; pj) is a matching pair
 0: otherwise.

We define 4 matching functions that vary in complexity and information used for matching.
Evidently, one can define any number of matching functions taking for instance taking into
account the Quality of Service into account or any other relevant factor. The choice of our
functions is justified in the sense that we want to compare an extremely simple one
(FirstMatch) with functions that are more complicated as they take more information into
account to compute a match. The chosen functions are defined as follows.

Sorting:

Sort the producer requests and consumer requests as and when they arrive in descending
order and matches the consumers and producers respectively by processing the queue
sequentially.

FirstMatch :

For each consumer request, the matchmaker matches the consumer to the first producer
that has enough resources to execute the consumer’s request.

MinDifference :

The consumer is matched with that producer that has enough resources but also that
yields the lowest difference between the requested task and available resources. This
approach attempts to minimize the unused resources. We emphasize that we do not sort
the producers or consumers data.

MinDistance :

The consumer is matched not only when enough resources are available but also tries to
minimize the distance between the two paired nodes. This is to minimize as much as
possible the distance that has to be traveled between the two paired nodes. As
each node has an (x,y)-coordinate, we compute the Euclidean distance between two
nodes. Similar to Min-Difference, the producers or consumers are not sorted using their
(x,y)-coordinates.

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 6 -

3.3 Justifications for centralized matchmaking

Having seen the model one may wonder as to why we chose to use the centralized
approach and not other approaches that were discussed in the previous section. We
provide a few convincing reasons as to why centralized match making was used.

Agent properties:

 In [11], agents are actively bidding in an auction. This implies that they react to bids and
offers made by other agents. On the basis of past experiences, the agents learn to
optimize their bidding strategies and require a learning algorithm. In the context of minimal
agents, we do not want to include such bidding or learning mechanisms as it creates too
much overhead. In [10], peer to peer local interaction was induced by allowing agents to
interact locally with neighboring agents. These interaction patterns can be changed
whenever no match is occurring. This induces quite some overhead and multiple searches
before a good match occurs. Our agent is simpler as its only communication means (as far
as matchmaking is concerned) is directly with the matchmaker.

Bidding rounds and messages transmitted:

An important aspect is the number of messages that need to be transmitted over the
network in order to reach a particular allocation state. Our approach requires that we need
only a minimum of 2 messages per agent where tasks are requested and resources are
allocated. Similar to [11], this implies that the time complexity of our approach is O(N).
By introducing multiple matchmakers or auctions, this message distribution is reduced to
O(log(N)). In [10], a related albeit different problem of agent collaboration is investigated.
Agents have to produce an optimal solution given some global objective. The general
distributed constraint optimization assumes that each agent is sending information
to all of its linked descendants. Such an approach is known to have exponential
time(O(2^N)) and is only feasible for a very low number of agents. In conclusion, we
wanted to avoid bidding or any other form of message passing other than submitting a
request (bid or offer) to the matchmaker. This avoids additional message broadcasting that
need to be sent to all other agents informing them of the bid made by any of the other
agents.

Matchmaking:

A third aspect of our approach involves the actual match making process. In [10][12],
localized random search is used to find a match. In [11], sorting is required for
matchmaking as the highest bid is matched to the lowest offer, etc. Given the large
population sizes we are interested in, we avoid the use of such expensive mechanisms.
Sorting for instance involves queuing and searching also requires resources or tasks to be
stored before hand.

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 7 -

Time complexity:

 Since we avoid as much as possible expensive operations, the theoretical estimation of
the best case complexity is O(log N), the average case is O(N) and the worst case is
O(N^2). From our experiments which will be discussed later in the paper, we arrive at the
conclusion that for smaller population i.e up to 20000 we have O(log N) behavior, which
implies that the approach is potentially scalable. Beyond 20000 population we have
complexities varying between O(log N) to O(N^2).

3.4 Why build matchmaking functions based on some optimization criteria?

When matchmaking needs to be done between a set of producers and consumers no
suitable general solution exists to find all possible solutions for the given sets. This is
illustrated with the help of suitable example.

We are given sets

C: non empty non zero and non negative set of consumers. Each consumer has a need.
This could be a need from any arbitrary consumer.

P: non empty non zero and non negative set of producers. Each producer has a need. .
this could be a need from any arbitrary producer

Constraints:

The basic criteria are that no two consumers should be paired with the same producer and
no two producers should be paired with the same consumer. The other criteria are that the
producer resource should be always greater than and equal to the consumer resource.
Otherwise the pairing between the producer and consumer cannot be done

Objective:

We need to find a set of pairs of all producers and consumers such that producers satisfy
the constraints put forward by the consumers.

Producers

P1 P2 P3 P4 P5

5 2 3 2 1

Consumers

C1 C2 C3 C4 C5
1 2 2 1 1

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 8 -

Solution 1

(P1,C1),(P2,C2),(P3,C3),(P4,C4),(P5,C5)

Solution 2

(P1,C2),(P2,C1),(P3,C3),(P4,C4),(P5,C5)

Solution 3

(P1,C3),(P2,C1),(P3,C2),(P4,C4),(P5,C5)

Solution 4
……………………………………………….

Solution 5
……………………………………………….

There are many such solutions possible.

I made an attempt to write an algorithm to accomplish the task as specified above. I was
able to find a solution by generating all possible combinations of consumer for each
producer. But this was not scalable and was of the exponential type (2^n) by nature. This
had become a combinatorial problem, which I had to solve using some suitable
optimization criteria. We decided to choose some simple optimization criteria, which
motivated us to create first match, minimum difference and minimum distance. All these
algorithms scale well and find suitable solutions if not all possible solutions.

3.5 Matchmaking mechanisms

To aid in the matchmaking processes between suitable producers and consumers there
have been many criteria to decide which of the consumers should be paired with which of
the producers. The basic criteria are that no two consumers should be paired with the
same producer and no two producers should be paired with the same consumer. The
other criteria are that the producer resource should be always greater than and equal to
the consumer resource. Otherwise the pairing between the producer and consumer
cannot be done. There are three schemes, which have been used to do this. They are
namely firstmatch, minimum difference function and minimum distance function. Each of
these functions are explained in detail.

Though we have discussed sorting in brief we don’t choose to use that approach because
it involves an additional overhead before matchmaking is actually done which we feel is
unnecessary.

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 9 -

First Match function:

We are given sets

C: non empty non zero and non negative set of consumers. Each consumer has a need.
This could be a need from any arbitrary consumer.

P: non empty non zero and non negative set of producers. Each producer has a need. .
this could be a need from any arbitrary producer

Objective:

We need to find a set of pairs of producers and consumers such that producers satisfy the
constraints put forward by the consumers.

Principle:

We take each consumer and check with each producer in the producer list if match occurs
or not. As soon as a match occurs we remove the matched producer and consumer pair
and continue to iterate over the new producer list and consumer list to find the next match.
If there is no match we choose the next consumer and check with the producer list. This
process is repeated till either of these lists are empty.

Example:

Suppose we have a set of producers and consumers say 5 producers and Consumers. Let
us represent Producers as P1,P2,P3,P4 and P5. Let us represent Consumers as
C1,C2,C3,C4, and C5. We will randomly assign values to both of them as follows.

Producers

P1 P2 P3 P4 P5

5 2 3 2 1

Consumers

C1 C2 C3 C4 C5
1 2 2 1 1

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 10 -

The possible matches for each consumer is listed below.

For C1: The possible matches are P1, P2, P3, P4 and P5.
As soon as we find a match which is P1. We assign it to C1. We remove the
corresponding producer and consumer from the list.

For C2: The possible matches are P2, P3, P4 and P5.
As soon as we find a match which is P2. We assign it to C2. We remove the
corresponding producer and consumer from the list.

For C3: The possible matches are P3, P4 and P5.
As soon as we find a match which is P3. We assign it to C3. We remove the
corresponding producer and consumer from the list.

For C4: The possible matches are P4 and P5.
As soon as we find a match which is P4. We assign it to C4. We remove the
corresponding producer and consumer from the list.

For C5: The possible matches are P5.
As soon as we find a match which is P5. We assign it to C5. We remove the
corresponding producer and consumer from the list.

The Allocation, which was achieved using this scheme, was

(P1,C1), (P2,C2), (P3,C3), (P4,C4), (P5,C5).

ALGORITHM FOR FIRST MATCH:

DEFINITIONS OF THE VARIABLES USED IN THE ALGORITHM

Match:

A mapping that takes the consumer c, then returns the producer that is allocated
to c. This mapping is actually the output of the algorithm. Initially this mapping is
an empty set of pairs.

 R:

A mapping that takes the producer p, then returns the resources at producer p.

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 11 -

T:

A mapping that takes the consumer c, then returns the tasks of consumer c.

C:

A variable used to the capture the CURRENT set of customers, Initially this variable
is set to all consumers.

P:

A variable used to the capture the CURRENT set of producers, Initially this variable
is set to all producers.

The function SelectOneFrom:

This takes current set of customers then returns one consumer selected evenly
At random.

FirstCandidateFor:

A mapping that takes a consumer c, then returns first producer that satisfy the needs of
consumer c.

Given a Set A,I use the notation A\(x) to mean that the element x is removed from the set
A.

FIRST MATCH ALGORITHM

While C!=emptyset do
 c:=SelectOneFrom(C)
While P!=emptyset do
 p:=SelectOneFrom(P)
Match(c):=c in FirstCandidatesFor(P) such that {R(p) >=T(c)}

C:=C\{c}

P=P\{Match(c)}

end while {P}
end while{C}

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 12 -

TIME COMPLEXITY:

Worst case:

O(N^2)

Best case:

O(log N)

Average case:

O(N)

Difference function:

Given an input of non negative non zero producers and consumers the function evaluates
for every consumer the possible producer matches. It then finds the difference between
the single consumer and possible producer matches. The producer with the lowest
difference is selected and paired with the corresponding consumer.

Principle:

We take each consumer and check with each producer in the producer list, the difference
in their values and then find the minimum difference between the consumer and producer.
We find the producer-consumer pair that satisfies the minimum difference between their
value criteria and also the condition that the producer value should be greater than equal
to the consumer value. As soon this criterion is satisfied we remove the matched
producer-consumer pair from their respective lists and continue with the same procedure.
In case there was no match we take the next consumer and start matching with the
available producer list. This process is repeated till either of these lists are empty.

Example:

Suppose we have a set of producers and consumers say 5 producers and Consumers. Let
us represent Producers as P1,P2,P3,P4 and P5. Let us represent Consumers as
C1,C2,C3,C4, and C5. We will randomly assign values to both of them as follows.

Producers

P1 P2 P3 P4 P5

5 2 3 2 1

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 13 -

Consumers

C1 C2 C3 C4 C5
1 2 2 1 1

The possible matches for each consumer are listed below.

For C1: The possible matches are P1, P2, P3, P4 and P5.
We then calculate the difference between C1 and all the corresponding matched
producers. They are (P1-C1), (P2-C1), (P3-C1), (P4-C1), (P5-C1). Out of these
differences the one with the minimum difference is selected so we select (P5,C1). We
removed the selected producer, consumer pair.

For C2: The possible matches are P1, P2, P3 and P4
We then calculate the difference between C2 and all the corresponding matched
producers. They are (P1-C2), (P2-C2), (P3-C2), (P4-C2), Out of these differences the one
with the minimum difference is selected so we select (P2,C2). Though (P4,C2) pair also
results in the minimum difference we select the pair that results in the first match.
We removed the selected producer, consumer pair.

For C3: The possible matches are P1, P3 and P4.
We then calculate the difference between C3 and all the corresponding matched
producers. That is (P1-C3), (P3-C3), (P4-C3). Out of these differences the one with the
minimum difference is selected so we select (P4,C3). We removed the selected producer,
consumer pair.

For C4: The possible matches are P1 and P3.
We then calculate the difference between C4 and all the corresponding matched
producers. That is (P1-C4), (P3-C4). Out of these distances the one with the minimum
difference is selected so we select (P3,C4). We removed the selected producer, consumer
pair.

For C5: The possible matches are P1
We then calculate the difference between C5 and all the corresponding matched
producers. That is (P1-C5). We removed the selected producer, consumer pair.

The Allocation, which was achieved using this scheme, was

(P1,C5), (P2,C2), (P3,C4), (P4,C3), (P5,C1).

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 14 -

ALGORITHM FOR MINIMUM DIFFERENCE:

DEFINITIONS OF THE VARIABLES USED IN THE ALGORITHM:

Match:

A mapping that takes a consumer c, then returns the producer that is allocated
To C. This mapping is actually the output of the algorithm, initially this mapping
Is an empty set of pairs.

R:

A mapping that takes a producer p, then returns the resources at producer p.

T:

A mapping that takes a consumer c, then returns the tasks at consumer c.

C:

A variable used to capture the CURRENT set of consumers. Initially this is set of all
consumers.

P:

A variable used to capture the CURRENT set of producers. Initially this is set of all
producers.

The Function CandidatesFor:

A mapping that takes a consumer c, then returns the set of producers that satisfy the
needs of the consumer.

The Function SelectOneFrom:

A mapping that takes the current set of consumers and returns one consumer selected
evenly and randomly chosen.

Given a set A,I use the notation A\{x} to mean that the element x is removed from the set
A.

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 15 -

RULES FOR NEED SATISFACTION:

Find all Match(c):=p in p such that {R(p)>=T(c)}
Find best match from all matches such that {R(p)-T(c)} is minimum

MINIMUM DIFFERENCE ALGORITHM

While C!=emptyset do
 c:=SelectOneFrom(C)

While P!=emptyset do
 p:=SelectOneFrom(P)

CandidatesFor(C):={p in P: R(p) >=T(c)}

Match(c):=p in CandidatesFor(c) such that
R(p)=Minimum{r(q):q in CandidatesFor(C)}

C=C\{c}

P=P\{Match(c)}

End while {P}
End while{C}

TIME COMPLEXITY:

Worst case:

O(N^2)

Best case:

O(N^2)

Average case:

O(N^2)

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 16 -

Weights function:

Given an input of non negative non zero producers and consumers the function evaluates
for every consumer the possible producer distance given the cartesian coordinate values
for X and Y assigned to all the consumers and producers. For every consumer the
possible producer match is selected. The Euclidian distance between the respective
coordinates is found out. From all possible suitable matches the pair is selected which
has the lowest Euclidean distance.

Euclidean distance formula:
If we have two points (X1,Y1) and (X2,Y2). The distance is calculated by using the formula
squareroot((X2-X1)^2 + (Y2-Y1)^2)).

Principle:

We take each consumer and check with each producer in the producer list the difference
in their values and then find the minimum distance between the consumer and producer
coordinate values. We find the producer-consumer pair that satisfies the minimum
distance between their coordinate value criteria and also the condition that the producer
value should be greater than equal to the consumer value.

As soon this criterion is satisfied we remove the matched producer-consumer pair from
their respective lists and continue.

In case there was no match we take the next consumer and start matching with the
available producer list. This process is repeated till either of these lists are empty.

Example:

Suppose we have a set of producers and consumers say 5 producers and Consumers.
Let us represent Producers as P1, P2, P3, P4 and P5. Let us represent Consumers as C1,
C2, C3, C4, and C5. We will randomly assign values to both of them as follows. We also
assign random values to x and y cartesian coordinates to the producers and consumers
respectively.

Producers

P1 P2 P3 P4 P5

5 2 3 2 1

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 17 -

X-Coordinates

X1 X2 X3 X4 X5
2 3 2 1 4

Y-Coordinates

Y1 Y2 Y3 Y4 Y5
1 3 3 4 1

Consumers

C1 C2 C3 C4 C5
1 2 2 1 1

X-Coordinates

X1 X2 X3 X4 X5
3 4 2 1 1

Y-Coordinates

Y1 Y2 Y3 Y4 Y5
2 1 1 1 1

The possible match for each consumer is listed below.

For C1: The possible matches are P1, P2, P3, P4 and P5.

We calculate the Euclidean distance between all the matches and C1. They are
respectively (1. 4), (1. 0), (1. 41), (2. 82), (1. 41). From this list (1. 0) is the minimum
distance and this corresponds to (P2,C1) distance. So this chosen pair is removed.

For C2: The possible matches are P1, P3, P4 and P5.
We calculate the Euclidean distance between all the matches and C2. They are
respectively (2. 0), (2. 8) and (4. 24). From the list (2. 0) is the minimum distance and this
corresponds to (P1,C2) distance. So this chosen pair is removed.

For C3: The possible matches are P3,P4 and P5.
We calculate the Euclidean distance between all the matches and C3. They are
respectively (2. 0), (3. 16). From the list (2. 0) is the minimum distance and this
corresponds to (P3,C3) distance. So this chosen pair is removed.

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 18 -

For C4: The possible matches are P4 and P5.
We calculate the Euclidean distance between all the matches and C4. They are
respectively (3. 0), (3. 0). From the list (3. 0) is the minimum distance and this
corresponds to (P4,C4) distance. The first match is taken into consideration. So the other
matches with similar distance is not taken into consideration when making use of minimum
distance criteria. So this chosen pair is removed

For C5: The possible matches are P5. From the list (3. 0) is the minimum distance and
this corresponds to (P5,C5) distance. So this chosen pair is removed.

The Allocation, which was achieved using this scheme, was

(P1,C2), (P2,C1), (P3,C3), (P4,C4) and (P5,C5).

ALGORITHM FOR MINIMUM DISTANCE:

DEFINITIONS OF THE VARIABLES USED IN THE ALGORITHM:

Match:

A mapping that takes a consumer c, then returns the producer that is allocated
To C. This mapping is actually the output of the algorithm, initially this mapping
Is an empty set of pairs.

R:

A mapping that takes a producer p, then returns the resources at producer p.

T:

A mapping that takes a consumer c, then returns the tasks at consumer c.

C:

A variable used to capture the CURRENT set of consumers. Initially this is set of all
consumers.

P:

A variable used to capture the CURRENT set of producers. Initially this is set of all
producers.

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 19 -

Coor(x):

A function that takes a producer p or a consumer c,then returns the coordinate values for
it.

EuclideanDistance:

This takes a pair of co-ordinates for eg P(x1,y1) and C(x2,y2) and computes
The distance using the formula squareroot((x2-x1)^2+(y2-y1)^2))

The Function CandidatesFor:

A mapping that takes a consumer c, then returns the set of producers that satisfy the
needs of the consumer.

The Function SelectOneFrom:

A mapping that takes the current set of consumers and returns one consumer selected
evenly and randomly chosen.

Given a set A,I use the notation A\{x} to mean that the element x is removed from the set
A.

RULES FOR NEED SATISFACTION:

Find all Match(c):=p in p such that {R(p)>=T(c)}
Find best match from all matches such that Euclidean distance is minimum.

MINIMUM DISTANCE ALGORITHM

While C!=emptyset do
 c:=SelectOneFrom(C)

While P!=emptyset do
 p:=SelectOneFrom(P)

CandidatesFor(C):={p in P: R(p) >=T(c)}

Match(c):=p in CandidatesFor(c) such that R(p)=Eucledian distance{Coor(p),Coor{r(q):q in
CandidatesFor(C)}}

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 20 -

C=C\{c}

P=P\{Match(c)}

End while {P}
End while{C}

TIME COMPLEXITY:

Worst case:

O(N^2)

Best case:

O(N^2)

Average case:

O(N^2)

Psuedocode explained:

The pseudo-code for all the match making mechanisms are listed in the appendix section.
The readers can refer to it there. The explanation is given here to ensure continuity for the
user.

We read the values into producer array and consumer vector. We initialize the state. This
producer makes use of a small state machine. There are two states.

The states are -1 and 2 respectively. When the state is -1 always make sure that we go
on parsing the consumer array and storing the parsed element from the consumer array at
the zero'th location of the vector. Having selected the consumer we call the method
find_best_match. This method takes 3 parameters the count, which is nothing but the
number of agents in each run, consumers and set of producers. This returns the index
where the match has taken place. This method in turn makes use of the does_match.

The does_match method actually has the criteria, which determines when a true match
has occurred. This does_match method is called till all the producer elements have been
checked with the consumer elements. This means checking needs to be done till end of
producer vector.

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 21 -

The method sizeof(p) returns the size or the number of elements it currently holds. The
while loop makes use of this within which the call to does_match is made. When the state
is -2 which means we have found a match and we print it.
We keep toggling between both these states till all the consumers are compared with the
set of producer arrays. When the toggling should be done is determined by the index
parameter. When the index has reached the size of the producer array this means that we
need to take the next consumer and check with all the producers. That is when state value
is changed to -1.

3.6 Simulation

Architecture:

The simulation architecture is as shown in the diagram1. As soon as user decides on the
number of agents that need to be used on the simulation, he can start the simulation. The
control is transferred to the Finite state machine which is common for both the centralized
approach and partition based approach (Will be discussed in the next chapter).The user
can choose to run each of them separately or both of them together in order to compare
the results.

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 22 -

 SIMULATION ARCHITECTURE
 (diagram 1)

Platform:

The simulation is built to be run on java platform. Any standard java compiler can be used
to compile the source. We used jbuilder as an IDE to build the code and javac compiler
was used for compilation:

Influence of the platform over test results:

The entire simulation architecture was built using java and the tests where performed on a
standalone system. We chose an Intel Pentium IV System for all the tests. The results
would not be any different on using any system that supported java. Since we measured
parameters like matching time which is architecture dependent it would be interesting to
see how the results would be on building a similar architecture using C language or in
assembly language. This is left as future work. Since memory access and optimization can
be performed to a greater extent using assembly and C language some of the parameters
we measured here could vary. To what extent it would vary would be interesting to
observe.

Parameters that user can change:

Centralized approach:

The number of agents that will be involved in the matchmaking [1..50000] for first match
and [1..20000] for minimum difference and minimum difference.

Partition based approach:

Number of clusters e.g. 2,4,6.
Partitioning ll to X-axis or Y-axis.

Output:

The result will be stored in .txt files. The users can then use it to plot results.

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 23 -

4 Experiments performed and empirical results:

4.1 First Match experiment:

What we wanted to investigate:

• Task execution efficiency:
Percentage of allocated tasks of the different workloads.

• Resource usage efficiency:

Percentage of available resources that are used up by the consumers.

• Matching time.

Set up of experiment:

We start performing the simulation starting at 5 agents and move towards the 50000
range. The number of agents increases by a factor of 10 with each run. Values assigned
for resources and tasks. These values are generated randomly between an interval of [0.
.10],[0. . 100] respectively.

Results:

A population of 5-50000 agents is used in the simulation. We then find out how many
matches actually occurred. Then we plot a graph with the number of agents on the X-axis
and time in milliseconds on Y-Axis. From figure 3 we can conclude that the matching time
is proportional with the number of agents. There is a slow increase seen up to 20k. For
this range the time taken lies between 0.2 milliseconds to 0.9 milliseconds. On going
beyond the 20K boundary there is a rapid increase in the matching time. But this increase
is less proportion. The allocation rate is less for very small population like 6K. The
allocation percentage increases beyond 20k where it reaches the peak of 99. But for less
than 20k it remains at 97-98. We have also used first difference, which would help us in
calculating the variance. The variance is about 0.244 for a population size that is less than
20k. For sizes above 20k the variance is 11. 992. This can be observed from figure 4.

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 24 -

Graphs:

FirstMatch

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 5000 10000 15000 20000 25000

#agents

M
S

-%

%resources used

%tasks completed

Matching time

Figure1: Matching time and resource allocation for first match experiment taking into
consideration 5-20000 agents.

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 25 -

Figure2: Resource allocation for first match experiment taking into consideration 5-50000
agents.

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 26 -

Figure 3: Matching time for first match experiment taking into consideration 5-50000
agents.

Figure 4: First difference of FirstMatch matching time.

4.2 Minimum difference:

What we wanted to investigate:

Task execution efficiency:
Percentage of allocated tasks of the different workloads.

Resource usage efficiency:
Percentage of available resources that are used up by the consumers.

Matching time.

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 27 -

Set up of experiment:

We start performing the simulation starting at 5 agents and move towards the 20000
range. The number of agents increases by a factor of 10 with each run. Values assigned
for resources and tasks.These values are generated randomly between an interval of [0. .
10],[0. . 100] respectively.

Results:

In this case there is substantial time required to produce a match. This can be seen from
figure 8.This is because for each consumer task that needs to be done we need to pick up
a producer such that the difference between them is minimum. Even in this case the
match time is proportional to the size and stability is observed on looking into first
difference graph(figure 8).We can make a similar observation as for FirstMatch. For
populations smaller than 5K, the matching is not very efficient with allocation percentages
ranging around 90%. This allocation percentage rises to reach 96% for a 20K population
size. Increasing the population from 15K to 20K, only increases the efficiency by 1% but
requiring 50% more time to produce the match. Because of the very low improvement for
either task or resources, we do not simulate beyond the 20K boundary. Shown in the
same figure, we also plotted its first difference. From that graph, we can again observe
that as the population size increases, the variance of the matching time goes up,
introducing more uncertainty in the matching process. As far as the resource usage is
concerned, and also shown in Figure 5,the same conclusion as for FirstMatch holds, it
improves as population size increases and then saturates at 99%.

Graphs:

EFFICIENCY AND FIRST DIFFERENCE OF MATCHING TIME

-1

-0.5

0

0.5

1

1.5

0 5000 10000 15000 20000

AGENTS

%
,F

IR
S

T
D

IF
FE

R
E

N
C

E

%resources used
%tasks completed
First Diff

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 28 -

Figure 5: Minimum difference efficiency and first difference of matching time

4.3 Minimum distance:

What we want to investigate:

Task execution efficiency:
Percentage of allocated tasks of the different workloads.

Resource usage efficiency:
Percentage of available resources that are used up by the consumers.

Matching time.

Set up of experiment:

We start performing the simulation starting at 5 agents and move towards the 20000
range. The number of agents increases by a factor of 10 with each run. Values assigned
for resources and tasks. These values are generated randomly between an interval of [0. .
10],[0. . 100] respectively.

Results:

The last matching function that was used is the minimal distance between two agents. The
minimum distance function computes the eucledian distance between each consumer
and a given set of producers which is more expensive in terms of computing cycles than
MinDifference and Firstmatch. We can clearly observe from figure 8 that the matching
time of MinDifference is less than MinDistance. This is a direct consequence of the
structure of the MinDistance function. Looking at the MinDistance efficiency plotted in
Figure 7, a similar observation as for the other 2 functions can be made. The task
execution efficiency does not increase substantially as we approach the 20k boundary.
The first difference plot shows as similar behavior as the MinDifference. As far as the
resource utilization is concerned, the same observations as above hold.

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 29 -

Graphs:

.

Figure 6: Minimum distance efficiency and first difference of matching time.

-2

0

2

4

6

8

10

12

14

0 5000 10000 15000 20000

AGENTS

M
S MinDiff

MinDistance

EFFICIENCY AND FIRST DIFFERENCE OF MATCHING TIME

-1

-0.5

0

0.5

1

1.5

0 5000 10000 15000 20000

AGENTS

%
,F

IR
S

T
D

IF
FE

R
E

N
C

E

%resources used
%tasks completed
First Difference

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 30 -

Figure 8: Comparisons in matching time between minimum difference and minimum
distance functions.

4.4 Comparison between all the 3 functions:

Putting the results together and comparing the task allocation efficiency for the 3 functions,
as plotted in Figure 7, we observe that MinDifference is the most efficient approach based
on resource allocation. First match is the fastest function among them all taking matching
time into consideration. MinDistance is slowest and also least efficient. We are looking for
a function that is not only fast but also efficient. First match is simple and fast but not very
efficient. On the other hand minDifference shows a trade off between efficiency and match
time. Though it is slower than First match, it is the most efficient of them all.

Graphs:

COMPARISON OF ALLOCATION EFFICIENCY

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 5000 10000 15000 20000 25000

AGENTS

%

Firstmatch

MinDiff

MinWeight

Figure 7: Allocation efficiency for the 3 functions

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 31 -

5 Extension of the experiment

We had used the centralized approach and used all the three functions that were built for
matchmaking. As an extension to this experiment we applied partitioning techniques and
then used each of these functions in the respective partitions.

5.1 Why partitioning?

In the centralized approach from the global view point all consumer agents and all
producer agents participated in the match making process. Then we wanted to examine
the behavior of these agents by having a local view. We restrict the scope of the producers
and consumers that participate in the partitioning. One of the main criteria, which were
used to restrict the view, was to build partitions and allow match making possible only
between the consumer agents and producer agents that lie in the same partition. For e.g.
if we have say partition 1 and partition 2. An agent in partition1 can match with another
agent in partition 1 only and not in partition 2.

Plot of producer (X,Y) and consumer (X,Y)

The figures 9 and 10 indicate how uniformly the producers and consumers are placed in a
centralized scenario before match making and partitioning is involved.

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 32 -

Figure 9: Diagram represents plot of producer co-ordinates

 Figure 10: Diagram represents plot of consumer co-ordinates

5.2 Partitioning technique used:

We used a very simple partitioning technique based on the co-ordinates. Partitioning
technique was based on cartesian co-ordinates. The co-ordinates were generated
randomly. The number of partitions was taken as a user input. For our experiments we
have used 4,8 and 16 partitions to examine the behavior. This can be extended to as
many partitions as the user wants. A section of a given size is chosen and it is divided into
many parts depending on how many partitions are needed. The floor operation was used
so that points would lie in the particular partitioned section. Diagram 1 shows how this is
done. Nx=2,Ny=2 indicate this scenario where a line Nx partitions x plane of diagram 1
into 2 equal halves and Ny partitions the y plane of the figure into 2 equal halves. Blue
dots and yellow dots indicate the producers and consumers that lie in each of these
partitions. The same approach is used for 8 partitions and 16 partitions. For e.g we can
have 8 partitions using Nx=2,Ny=4 or Nx=4 ,Ny=2 etc. Many such combinations could be
used to generate 8 partitions. But in our simulation we use Nx=4,Ny=2.Similarly for 16
partitions we use Nx=4,Ny=4.

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 33 -

5.3 Relation between this experiment and peer-peer scenario:

We wanted to move from the centralized scenario to peer-to-peer scenario. The
partitioning based scenario gives us a view, which is close to the peer-to-peer scenario.
Since our simulation, which is completely centralized, this wouldn’t be strictly peer-to-peer.
One of the major assumptions done was that there were be no message passing possible
between agents. All our experiments are related to minimal agents. As mentioned before,
in case of minimal agents, the constraint on the memory requirement is pretty high and the
agents need to be as simple as possible. This was the main reason why we didn’t build a
protocol for exchange of messages. Making message passing possible can be a further
extension to this experiment. This is left as future work.

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 34 -

5.4 Reasons for performing the experiment:

Our focus is on studying the behavior of matchmaking process on the local level in
addition to what was already done on the global level. Some of the parameters, which
would be seen to vary at the local level, are task execution efficiency, resource usage
efficiency and matching time. There may be some partitions where there would be more
consumer agents compared to producer agents and vice versa. The efficiency is such
partitions would be less. This would give us idea about how these parameters are affected
on partitioning.

5.5 Empirical Results:

We plotted the graphs for the matchmaking done using centralized approach and then
using partitioning approach. As expected the partitioning based approach always results in
lower efficiency when compared to the centralized approach. This is seen from figures 1,2
and 3.We have used 4,8,16 partitions in the extension to the basic experiment. One may
be curious as to why the efficiencies of the original experiment and partitioning experiment
seen in the minimum distance extension lie close to each other. The main reasons for this
is that the minimum distance makes use of coordinate points in order to measure the
distance. On partitioning the points lie very close to each other. This reduces the distance
between the points in their respective partitions. This is the key factor, which influences
the efficiency as a whole. This is observed from figures 7, 8 and 9.

5.6 First Match experiment extension:

Graphs:

We have figures (1,2,3) which are the graphs representing the first match experiment.
The number of agents over allocation efficiency is taken into consideration.

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 35 -

Figure 1: Allocation efficiency for first match using centralized approach and 4 partitions
approach

Figure 2: Allocation efficiency for first match using centralized approach and 8 partitions
approach

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 36 -

Figure 3: Allocation efficiency for first match using centralized approach and 16 partitions
approach

5.7 Minimum Difference experiment extension:

We have figures (4,5,6) which are the graphs representing the minimum difference
experiment. The number of agents over allocation efficiency is taken into consideration.

Figure 4: Allocation efficiency for minimum difference using centralized approach and 4
partitions approach

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 37 -

Figure 5: Allocation efficiency for minimum difference using centralized approach and 8
partitions approach

Figure 6: Allocation efficiency for minimum difference using centralized approach and 16
partitions approach

5.8 Minimum Distance experiment extension:

We have figures (7,8,9) which are the graphs representing the minimum difference
experiment. The number of agents over allocation efficiency is taken into consideration.

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 38 -

Figure 7: Allocation efficiency for minimum difference using centralized approach and 4
partitions approach

Figure 8: Allocation efficiency for minimum distance using centralized approach and 8
partitions approach

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 39 -

Figure 9: Allocation efficiency for minimum distance using centralized approach and 16
partitions approach

6 Commercial applications of matchmaking

There are several commercial applications for matchmaking experiments we performed.
These simulations further strengthen the usage of such functions in real applications e.g.
grid like environments, System on chip applications and in telecommunication networks.
Matchmaking functions play an important role in matching resources in grid like
environments. A grid consists of many interconnected systems with a few systems having
sufficient resources and a few systems lacking such resources. Such simple matchmaking
functions would be useful in overcoming complicated negotiations that would be needed
during matchmaking. They are useful in network on chip applications where matching of
memory and processes need to be done. This happens when there are some processes
needing more memory and few processes having abundant memory in them. The memory
can be suitable matched to the processes. The algorithms that are embedded in the chip
perform such matching work. Other applications are seen in the area of telecommunication
networks. Whenever resource allocation needs to be done in telecommunication networks
simple matchmaking functions such as these are used. When we talk of resource it is
bandwidth, it may always happen that some users may be using lot of bandwidth and
other users may be starved of bandwidth. The network degrades due to this.
Matchmaking aids in maintaining proper Quality of service(QOS) in telecommunication
environments.

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 40 -

7 Conclusion and Future work

We have studied the resource allocation and matchmaking in single partition systems by
giving a simple approach for matchmaking. We introduced a centralized matching
mechanism that requires very little information to produce a good matching. In addition,
the number of messages required to be broadcasted over the network is limited and in
the order of O(N). When introducing multiple matchmakers, this can even be reduced to
O(log N). We furthermore evaluated more complicated matching functions, as they
incorporated more information for the actual matchmaking, by looking at task allocation
efficiency, resource usage efficiency and matching time.

The main findings are:

• First-Match is the simplest and fastest in terms of matchmaking time.
• MinDifference is the most efficient of them all.
• Centralized matching mechanism easily scales up to 20K. For
 FirstMatch this even goes to 50K.
• It seems that there exists some kind of population size beyond or below which

either no improvement can be generated or the matching efficiency goes down
respectively. This allows the introduction of multiple matchmakers, reducing the
number of messages to O(log N).

Issues which remain unsolved are how efficient this approach is when resources and tasks
are unevenly distributed. It might be that more information intensive approaches
will outperform these functions. It also remains to be seen if this approach remains
feasible when introducing asynchronous, rather than batch-like, sequential, matchmaking.
We further tried the clustering approach to see effect of clustering on matchmaking using
this approach we always see lower efficiencies.

The main findings are:

• The efficiency plots for first match and minimum difference indicate that centralized
approach always results in better efficiency compared to partitioning approach.

• The minimum difference approach is most suitable for clustered approach as the

efficiency is almost the same as compared to partitioning approach.

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 41 -

The Partitioning based approach can be further extended to peer-to-peer approach, which
is left for future work. We can have actual messages being sent between agents and this
will help us determine which of the approaches the centralized approach or the peer to
approach performs well under the given conditions.

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 42 -

8 References

[1]http://www-iiuf.unifr.ch/~brugger/papers/95_cidre/cidre/node26.html

[2]http://www.ai.sri.com/~oaa/main.html

[3] Kasselman C. Czajkowksi., Foster I. Resource Co-Allocation in Computational Grids.
In proceedings of IEEE HDPC-8 August 1999.

[4] Epema D. Bucher A. Local versus global queues with processor
co-allocation in multicluster systems. In EighthWorkshop
on Job Scheduling Strategies for Parallel Processing (in
conjunction with HPDC-11), pages 184–204. 2002.

[5] Karonis N. Kesselman C Martin S. SmithW. Tuecke S. Czajkowski
K., Foster I. A resource management architecture
for metacomputing systems. In The 4th workshop on Job
Scheduling Strategies for Parallel Processing, pages 62–82.
1998.

[6] Ch.Weinhardt D. Veit, J.P. Muller. Multidimensional matchmaking
for electronic markets. Journal of Applied Artificial
Intelligence, 16(9-10):853–869, 2002.

[7] Klusch M. Widoff S. K. Sycara, Lu J. Matchmaking among
heterogeneous agents on the internet. In Proceedings. AAAI
Spring Symposium on Intelligent Agents in Cyberspace.
1999.

[8] Harada L. Kuokka, D. Matchmaking for information agents.
In Proceedings of the 14th International Joint Conference on
Artificial Intelligence, pages 672–678, 1995.

[9] Jennings N. On agent-based software engineering. Artificial
Intelligence, 117:277–296, 2000.

[10] E. Ogston and S. Vassiliadis. Matchmaking among minimal
agents without a facilitator. In Proceedings. 5th International
Conference on Autonomous Agents, pages 608–615.
May 2001.

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 43 -

[11] E. Ogston and S. Vassiliadis. A peer-to-peer agent auction.
In Proceedings of the first international joint conference
on Autonomous agents and multiagent systems Part I,
pages 151–159, July 2002.

[12] E. Ogston and S. Vassiliadis. Unstructured agent matchmaking:
experiments in timing and fuzzy matching. In Proceedings
of the 2002 ACM symposium on applied computing,
pages 300–306, March 2002.

[13] Milind Tambe Makoto Yokoo Pragnesh Jay Modi, Wei-
Min Shen. Asynchronous complete method for general distributed
constraint optimization. In Proceedings of the first
international joint conference on Autonomous agents and
multiagent systems Part I, July 2002.

[14] Jennings N.R. Vulkan, N. Efficient mechanisms for the supply
of services in multi-agent environments. Journal of Decision
Support Systems, 28(1-2):5–19, 2000.

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 44 -

Appendix

Pseudocode for all three match making functions

First Match

start :

outer : = minimum_num_of agents;

while (outer < maximum_num_of_agents) {

count: = outer;
 i: = 0;

 /*Reading elements into producer vector */

while (i < count) {
 read_values(producer);
 i: = i + 1;
 }

 /*Reading elements into consumer vector*/

while (i < count) {
 read_values(consumer);
 i: = i + 1;
 }

 /* Initialize the state */

 state: = -1;

 while (count > 0) {

 if (state = = -1) {
 c: = consumer_element_at_index(0);
 con_remove: = remove_consumer_element_at(0);
 index: = findBestProducer(c, producerinfo, count);
 count: = count - 1;
 state: = 2;
 }

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 45 -

if (index == sizeof(p)) {
 state= -1;
 }

else {
 state = 2;:
 }

if (state = = 2) {
 pro_remove: = remove_producer_element_at(index);
 print(“Match found at p and con);
 state: = -1;
 }

 }

outer = outer + 1;

}

/*end of outer loop */

: end

 Procedure calls :

 /* This procedure returns an integer value */

Integer : findBestProducer(Consumer con, Producer p, int count) {

count: = c;
 j: = 0;

 while (j < sizeof(p)) {

 if (doesMatch(pro, co)) {
 return j;
 }

 }

}

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 46 -

/* This procedure returns a boolean value */

boolean : doesMatch(Producer p, Consumer c) {
 if (c <= p) {
 return (true);
 }

else {
 return (false);
 }
}

Minimum Difference

start:

outer:=minimum_num_of agents;

while (outer < maximum_num_of_agents) {

count: = outer;
 i: = 0;

 /*Reading elements into producer vector*/

 while (i < count) {
 read_values(producer);
 i: = i + 1;
 }

 /*Reading elements into consumer vector*/

while (i < count) {
 read_values(consumer);
 i: = i + 1;
 }

 /* Initialize the state */

state: = -1;

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 47 -

while (count > 0) {

 if (state == -1) {
 c: = consumer_element_at_index(0);
 con_remove: = remove_consumer_element_at(0);
 index: = findBestProducer(c, p, count);
 count: = count - 1;
 state: = 2;
 }

 if (index == sizeof(p)) {
 state:= -1;:
 }

 else {
 state:= 2;:
 }

if (state == 2) {
 pro_remove: = remove_producer_element_at(index);

 state: = -1;
 }

 }

 outer: = outer + 1;

}
/*end of outer loop */

: end

Procedure calls :

/* This procedure returns an integer value */

Integer : findBestProducer(Consumer con, Producer p, int count) {

count: = c;
 j: = 0;

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 48 -

while (j < sizeof(p)) {

 if (j == doesMatch(pro, co)) {
 return j;
 }

 }

}

/* This procedure returns a boolean value */

double : doesMatch(Producer p, Consumer c) {
 if (c <= p) {
 return (value(p) - value(c));
 }
 else {
 return (-1);
 }
}

Minimum distance

start:

outer:=minimum_num_of agents;

while (outer < maximum_num_of_agents) {

count: = outer;
 i: = 0;

 /*Reading elements into producer vector */

while (i < count) {
 read_values(producer);
 i: = i + 1;
 }

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 49 -

 /*Reading elements into consumer vector*/

while (i < count) {
 read_values(consumer);
 i: = i + 1;
 }

 /* Initialize the state */

state: = -1;

while (count > 0) {

 if (state == -1) {
 c: = consumer_element_at_index(0);
 con_remove: = remove_consumer_element_at(0);
 index: = findBestProducer(c, p, count);
 count: = count - 1;
 state: = 2;
 }

 if (index == sizeof(p)) {
 state: = -1;
 }

 else {
 state: = 2;
 }

if (state == 2) {
 p: = producer_element_at_index(index);
 pro_remove: = remove_producer_element_at(index);
 print(“Match found at p and con);
 state: = -1;
 }

 }

 outer: = outer + 1;

}
/*end of outer loop */

: end

Agent Based Matchmaking Thesis report 2004 July 1st 2004

 - 50 -

Procedure calls :

 /* This procedure returns an integer value */

Integer : findBestProducer(Consumer con, Producer p, int count) {

count: = c;
j: = 0;

while (j < sizeof(p)) {

if (doesMatch(pro, co)) {
 return j;
 }

 }

}

/* This procedure returns a double value */

double : doesMatch(Producer p, Consumer c) {

 if (c <= p) {
 diff_x_value: = pro_x_coordinate - con_x_coordinate;
 diff_x_value: = diff_x_value ^ 2;

 diff_y_value: = pro_y_coordinate - con_y_coordinate;
 diff_y_value: = diff_x_value ^ 2;

 diff_total_value: = sqrt(diff_x_value + diff_y_value);
 return diff_total_value;
 }

 else {
 return -1;
 }

}

