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Abstract 
 
This thesis presents some suitable mechanisms to solve the centralized matchmaking 
problem. Matchmaking is done in order to fulfill the needs of agents, trading in the market 
place or in a grid-based environment. Agents have a particular task to accomplish for 
which they need resources. In our case, producer agents provide the resources and 
consumer agents want to perform tasks. With the help of suitable mechanisms the market 
matches resources and tasks. We have developed a simulation environment to evaluate 
the mechanisms we have built. We have also studied how efficient these mechanisms are 
in terms of matching time and resources allocated. We found first match to be the simplest 
and fastest in terms of matching time. Minimum difference was the most efficient of them 
all, in terms of resource allocation. Minimum distance was the slowest in terms of 
matching time. We performed further experiments to move towards the peer-to-peer 
approach using partitioning. We found that the efficiency plots for first match and minimum 
difference indicate that centralized approach always results in better efficiency compared 
to partitioning approach. The minimum distance approach is the most suitable one when 
partitioning was used, as the efficiency is almost the same when compared to centralized 
approach. 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
Table of Contents 
 
ACKNOWLEDGEMENT 
ABSTRACT  
 
INTRODUCTION………………………………………………………………………….1 
PROBLEM STATEMENT AND RELATED RESEARCH……………………………….2 
OUR APPROACH………………………………………………………………………….3 
EXPERIMENTS PERFORMED AND EMPIRICAL RESULTS…………………………23 
EXTENSION TO THE EXPERIMENT…………………………………………………...31 
COMMERCIAL APPLICATIONS………………………………………………………..40 
CONCLUSION AND FUTURE WORK…………………………………………………..40 
REFERENCES……………………………………………………………………………. 42 
APPENDIX…………………………………………………………………………………44 
 



Agent Based Matchmaking Thesis report 2004            July 1st 2004 

 - 1 - 

 
1. Introduction 
 
 
“True knowledge exists in knowing that you know nothing and in knowing that you know 
nothing, that makes you the smartest of all”. 
  - Socrates 
 
How do we match resources and tasks of agents trading in the market? The answer to this 
is to write some complex programs that would solve the above problem. The procedural 
approach is used to solve such a problem. In procedural approach the problem is first 
decomposed in order to simplify it so that it can be solved. Such decomposition is not 
always possible because matchmaking problems are too intricate, widely distributed and 
have a lot of ambiguity in them. We use a simple agent based approach in order to tackle 
this problem. In this approach each of these agents are assigned small problems so that 
they can on their own coordinate and then a solution for the complex problem can be 
found. Two things have been considered while using agent-based approach, first, the 
individual complexity of the agents and second, the amount of centralized control in the 
system. The agents that participate in the matchmaking are simple and use up minimum 
resources. These kinds of agents are also called minimal agents. Minimal agents perform 
matchmaking either at the centralized directory or market place. Much care needs to be 
taken for the design of centralized directory and minimal agents to see that it is kept as 
simple as possible. 
  
 
 
1.1 Structure of report 
 
The report is structured as follows. 
 
In this chapter we discuss the motivations behind using the agent based approach over 
procedural approach. In chapter 2 we specify clearly what the matchmaking problem is 
and also talk about work done by others and how it is similar or dissimilar to what we have 
done. In Chapter 3 we discuss the model, which would suitably solve this problem. Having 
built the model, we then proceed further and build a simulation based on the model and 
perform some experiments. Chapter 4 discusses the experiments done and also the 
extensions that we have made to the basic experiment. Many more additions could be 
done to the model to make it more robust and realistic. We provide suggestions and also 
conclude by providing the results, which we obtained. Chapter 5 discusses these issues. 
Chapter 6 provides all the references that were used. 
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1.2 Motivation for using agent based approach over procedure based 

approach 
 
The usual approach towards handling complex tasks is the procedure-based approach. 
But agent based approach has its advantages over the procedure based approach. One of 
the advantages is that code can be maintained easily [1]. When we think in terms of 
parallel and distributed computing this plays an important role in making these possible [1]. 
We also have robustness and increased performance on using this approach [1]. When 
interactivity is needed it is best to use this approach [1]. Each of the agents can be 
assigned a role and better co-operation is seen on using this approach. They also provide 
services of different kinds to a particular community [2]. These are some of the factors that 
motivate one to follow an agent-based approach. 
 
 
2 Problem statement and related research 
 
2 .1 Problem statement 
 
We are looking into resource allocation and task distribution in a grid based environment. 
Grids are a set of interconnected nodes. Agents run on these nodes. Nodes could have 
either resources or tasks available with them. Allocation of resources and tasks need to be 
done using agents. In such a scenario we encounter sub-optimal allocation of resources 
and tasks. This happens because some nodes have too many tasks and some nodes may 
have extra resources. What is needed is task re-distribution and proper resource 
allocation. We don’t need certain nodes with extra resources not having any tasks that 
would use up the resources. Similarly there should not be too many tasks are at one node 
overburdening it. We investigate matchmaking functions that are suitable for solving such 
problems in the centralized scenario .We then move towards the partitioning approach and 
finally compare both these approaches in terms of their efficiency. 
 
 
2.2 Related research 
 
Resource allocation is needed when there are many tasks, which are not accomplished 
due to the lack of resources. Similarly task allocation is needed when there is abundance 
of idling resources with no tasks to use them up. Allocation is also useful in grid like 
environments where access to grid based components is needed[3]. Matchmaking is done 
to rebalance the workload. The question now arises as to how matchmaking has to be 
done. There are basically three methods to aid in matchmaking. First scheme uses middle 
agents providing some kind of central directory[8][4][3]. An alternative approach is to use 
market bidding mechanisms where bids and offers are broadcasted to all agents[14][6][7]. 
A third possibility is to allow peer–peer communication that includes communication cost 
but using only local information [10][13]. We extend the work on matchmaking of minimal 
agents with and without a facilitator as described in [10][11][12].  
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It investigated matchmaking with and without a centralized facilitator by using an auction 
based mechanism matchmaking achieves 93% success rate for population upto 32k 
agents. To achieve such a success rate it might need upto 300 bidding rounds.  
The advantage of this is that the communication overhead is considerably reduced. This 
happens because no broadcasting is required. However the time required to find a match 
increases considerably.  
 
 
The main contribution in this thesis is as follows. 
 

• The simplest matchmaking function is the most efficient one both in terms of 
resource usage, task execution and matching time. 

 
• More computationally expensive functions only yield 

           a marginal improvement in the order of 1% as far as 
           the resource usage and task execution are concerned. 
 

• Centralized matchmaking is scalable in the range of 
           (studied) 5 to 50K agents interacting on the market.  
 

• Multiple matchmakers can be introduced to reduce 
      substantially the communication overhead. It is empirically 
      shown that a population size should never be 
      lower than 10K or larger than 20K. 
 
 

 
3 Our approach 
  
Having seen some of the approaches used by others in the area of agent based 
matchmaking we now explain our model and also justify why we chose the centralized 
approach over other approaches. We start with the description of the model. 
 
 
3.1 Model 
 
The goal of this experiment is to evaluate different ways of redistributing tasks to different 
processing nodes, given some constraints. We consider a grid like environment where 
some nodes might fall idle whereas others are still overloaded. The latter category wants 
to delegate some of the tasks in their local queue to other nodes in order to decrease the 
overall computing time. We assume 2 categories of agents, producers and consumers. 
Producers have processing power to provide resources and consumers are looking for 
additional processing power to execute the tasks in their queue. The goal is to facilitate the 
match making process in such a way that the maximum number of tasks is executed, 
given the available resources. This implies that a consumer has to find a producer that can 
provide sufficient processing time to execute the task.  
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The matchmaking mechanism involves a centralized mechanism (similar to, but different 
from a market) that will receive from producers the resources offered and from the 
consumers the requested tasks. No subsequent bidding or negotiation is then required.  
 
We make the following assumptions: 
 

• We assume that each agent is directly and with the  same average latency 
connected to the matchmaker and that the cost for this connection is the same for 
each agent. This simplifies the problem and even allows us to exclude it from the 
analysis. 

 
• Tasks are atomic by nature and cannot be divided. Each task has a particular 

complexity which is represented by an integer value. This value indicates the 
amount of resources required in order to be executed. Resources are represented 
in a similar way. Whether or not a particular task can be executed by an available 
resource is then simply determined by comparing these integer values. 

 
  

• One consumer can match with only one producer who has sufficient resources to 
execute the task. This means that we currently do not look at collaborative issues. 

 
• We generate randomly the initial task and resource allocation from a uniform 

distribution. 
 

• We are currently using a simulation model in which the agent requests are treated 
in a pure sequential way. In a realistic setting, the match making would occur 
in an asynchronous way where the different offers and bids are treated as they are  
submitted. 

 
• We assume that there are an equal number of consumers and producers. This is 

not restrictive as the random generation of tasks and resources can result in a zero 
value which is similar to taking the agent out of the population. 

 
• When referring to ’population’, we mean the number of agents that use the 

matchmaker to buy or sell processing time. They represent only a fraction of the 
actual population. 

 
In our environment, we have N agents: A = {a1……an}.Some of these agents, called 
consumers, has tasks to perform Ta = {t1….. tk} for which they are looking for additional 
resources and others, called producers, have resources to sell, Ra = {r1…… rk}. There is 
a matchmaker to which both consumers and producers announce their requests. 
Consumers will send to the matchmaker the number of tasks they want to delegate and 
the producer will announce in the same way how much processing time it has available.  
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The matchmaker then uses that information to match consumer requests to producer bids.  
 
The basic matching goes as follows:  f : C * P-> [0:1] with 
f(ci: pj) = 1: if (ci; pj) is a matching pair 
               0: otherwise. 
 
 
 
 
We define 4 matching functions that vary in complexity and information used for matching. 
Evidently, one can define any number of matching functions taking for instance taking into 
account the Quality of Service into account or any other relevant factor. The choice of our 
functions is justified in the sense that we want to compare an extremely simple one 
(FirstMatch) with functions that are more complicated as they take more information into 
account to compute a match. The chosen functions are defined as follows. 
 
 
Sorting:  
 
Sort the producer requests and consumer requests as and when they arrive in descending 
order and matches the consumers and producers respectively by processing the queue 
sequentially. 
 
 
FirstMatch :  
 
For each consumer request, the matchmaker matches the consumer to the first producer 
that has enough resources to execute the consumer’s request. 
 
 
MinDifference :  
 
The consumer is matched with that producer that has enough resources but also that 
yields the lowest difference between the requested task and available resources. This 
approach attempts to minimize the unused resources. We emphasize that we do not sort 
the producers or consumers data. 
 
MinDistance :  
 
The consumer is matched not only when enough resources are available but also tries to 
minimize the distance between the two paired nodes. This is to minimize as much as 
possible the distance that has to be traveled between the two paired nodes. As 
each node has an (x,y)-coordinate, we compute the Euclidean distance between two 
nodes. Similar to Min-Difference, the producers or consumers are not sorted using their 
(x,y)-coordinates. 
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3.3 Justifications for centralized matchmaking 
 
Having seen the model one may wonder as to why we chose to use the centralized 
approach and not other approaches that were discussed in the previous section. We 
provide a few convincing reasons as to why centralized match making was used. 
 
 
Agent properties: 
 
 In [11], agents are actively bidding in an auction. This implies that they react to bids and 
offers made by other agents. On the basis of past experiences, the agents learn to 
optimize their bidding strategies and require a learning algorithm. In the context of minimal 
agents, we do not want to include such bidding or learning mechanisms as it creates too 
much overhead. In [10], peer to peer local interaction was induced by allowing agents to 
interact locally with neighboring agents. These interaction patterns can be changed 
whenever no match is occurring. This induces quite some overhead and multiple searches 
before a good match occurs. Our agent is simpler as its only communication means (as far 
as matchmaking is concerned) is directly with the matchmaker. 
 
Bidding rounds and messages transmitted: 
 
An important aspect is the number of messages that need to be transmitted over the 
network in order to reach a particular allocation state. Our approach requires that we need 
only a minimum of 2 messages per agent where tasks are requested and resources are 
allocated. Similar to [11], this implies that the time complexity of our approach is O(N). 
By introducing multiple matchmakers or auctions, this message distribution is reduced to 
O(log(N)). In [10], a related albeit different problem of agent collaboration is investigated. 
Agents have to produce an optimal solution given some global objective. The general 
distributed constraint optimization assumes that each agent is sending information 
to all of its linked descendants. Such an approach is known to have exponential 
time(O(2^N)) and is only feasible for a very low number of agents. In conclusion, we 
wanted to avoid bidding or any other form of message passing other than submitting a 
request (bid or offer) to the matchmaker. This avoids additional message broadcasting that 
need to be sent to all other agents informing them of the bid made by any of the other 
agents. 
 
Matchmaking: 
 
A third aspect of our approach involves the actual match making process. In [10][12], 
localized random search is used to find a match. In [11], sorting is required for 
matchmaking as the highest bid is matched to the lowest offer, etc. Given the large 
population sizes we are interested in, we avoid the use of such expensive mechanisms. 
Sorting for instance involves queuing and searching also requires resources or tasks to be 
stored before hand. 
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Time complexity: 
 
 Since we avoid as much as possible expensive operations, the theoretical estimation of 
the best case complexity is O(log N), the average case is O(N) and the worst case is 
O(N^2). From our experiments which will be discussed later in the paper, we arrive at the 
conclusion that for smaller population i.e up to 20000 we have O(log N) behavior, which 
implies that the approach is potentially scalable. Beyond 20000 population we have 
complexities varying between O(log N) to O(N^2). 
 
 
3.4 Why build matchmaking functions based on some optimization criteria? 
 
When matchmaking needs to be done between a set of producers and consumers no 
suitable general solution exists to find all possible solutions for the given sets. This is 
illustrated with the help of suitable example. 
 
We are given sets 
 
C: non empty non zero and non negative set of consumers. Each consumer has a need.  
This could be a need from any arbitrary consumer.  
 
P: non empty non zero and non negative set of producers. Each producer has a need.  . 
this could be a need from any arbitrary producer 
 
 
Constraints: 
 
The basic criteria are that no two consumers should be paired with the same producer and 
no two producers should be paired with the same consumer. The other criteria are that the 
producer resource should be always greater than and equal to the consumer resource.  
Otherwise the pairing between the producer and consumer cannot be done 
 
Objective: 
 
We need to find a set of pairs of all producers and consumers such that producers satisfy 
the constraints put forward by the consumers.  
 
Producers 
 
P1   P2  P3  P4  P5 
 
5     2     3    2    1 
 
Consumers 
 
C1  C2  C3 C4  C5 
1     2     2    1    1 
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Solution 1 
 
(P1,C1),(P2,C2),(P3,C3),(P4,C4),(P5,C5) 
 
Solution 2 
 
(P1,C2),(P2,C1),(P3,C3),(P4,C4),(P5,C5) 
 
Solution 3 
 
(P1,C3),(P2,C1),(P3,C2),(P4,C4),(P5,C5) 
 
Solution 4 
………………………………………………. 
 
Solution 5 
………………………………………………. 
 
There are many such solutions possible. 
 
I made an attempt to write an algorithm to accomplish the task as specified above. I was 
able to find a solution by generating all possible combinations of consumer for each 
producer. But this was not scalable and was of the exponential type (2^n) by nature. This 
had become a combinatorial problem, which I had to solve using some suitable 
optimization criteria. We decided to choose some simple optimization criteria, which 
motivated us to create first match, minimum difference and minimum distance. All these 
algorithms scale well and find suitable solutions if not all possible solutions. 
 
3.5 Matchmaking mechanisms 
 
To aid in the matchmaking processes between suitable producers and consumers there 
have been many criteria to decide which of the consumers should be paired with which of 
the producers.  The basic criteria are that no two consumers should be paired with the 
same producer and no two producers should be paired with the same consumer. The 
other criteria are that the producer resource should be always greater than and equal to 
the consumer resource.  Otherwise the pairing between the producer and consumer 
cannot be done. There are three schemes, which have been used to do this.  They are 
namely firstmatch, minimum difference function and minimum distance function.  Each of 
these functions are explained in detail.  
 
Though we have discussed sorting in brief we don’t choose to use that approach because 
it involves an additional overhead before matchmaking is actually done which we feel is 
unnecessary. 
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First Match function: 
 
 
We are given sets 
 
C: non empty non zero and non negative set of consumers. Each consumer has a need.  
This could be a need from any arbitrary consumer.  
 
P: non empty non zero and non negative set of producers. Each producer has a need.  . 
this could be a need from any arbitrary producer 
 
 
 
Objective: 
 
We need to find a set of pairs of producers and consumers such that producers satisfy the 
constraints put forward by the consumers.  
 
 
Principle: 
 
We take each consumer and check with each producer in the producer list if match occurs 
or not. As soon as a match occurs we remove the matched producer and consumer pair 
and continue to iterate over the new producer list and consumer list to find the next match. 
If there is no match we choose the next consumer and check with the producer list. This 
process is repeated till either of these lists are empty.  
 
 
Example: 
 
Suppose we have a set of producers and consumers say 5 producers and Consumers. Let 
us represent Producers as P1,P2,P3,P4 and P5. Let us represent Consumers as 
C1,C2,C3,C4, and C5. We will randomly assign values to both of them as follows.  
 
 
Producers 
 
P1   P2  P3  P4  P5 
 
5     2     3    2    1 
 
 
Consumers 
 
C1  C2  C3 C4  C5 
1     2     2    1    1 
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The possible matches for each consumer is listed below.  
 
For C1: The possible matches are P1, P2, P3, P4 and P5.  
As soon as we find a match which is P1. We assign it to C1. We remove the 
corresponding producer and consumer from the list.  
 
For C2: The possible matches are P2, P3, P4 and P5.  
As soon as we find a match which is P2. We assign it to C2. We remove the 
corresponding producer and consumer from the list.  
 
For C3: The possible matches are P3, P4 and P5.  
As soon as we find a match which is P3. We assign it to C3. We remove the 
corresponding producer and consumer from the list.  
 
For C4: The possible matches are P4 and P5.  
As soon as we find a match which is P4. We assign it to C4. We remove the 
corresponding producer and consumer from the list.  
 
For C5: The possible matches are P5.  
As soon as we find a match which is P5. We assign it to C5. We remove the 
corresponding producer and consumer from the list.  
 
 
The Allocation, which was achieved using this scheme, was 
 
(P1,C1), (P2,C2), (P3,C3), (P4,C4), (P5,C5).  
 
 
ALGORITHM FOR FIRST MATCH: 
 
DEFINITIONS OF THE VARIABLES USED IN THE ALGORITHM 
 
 
Match: 
 
A mapping that takes the consumer c, then returns the producer that is allocated 
to c. This mapping is actually the output of the algorithm. Initially this mapping is 
an empty set of pairs. 
 
 
 R: 
 
A mapping that takes the producer p, then returns the resources at producer p. 
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T: 
 
A mapping that takes the consumer c, then returns the tasks of consumer c. 
 
C: 
 
A variable used to the capture the CURRENT set of customers, Initially this variable 
is set to all consumers. 
 
P: 
 
A variable used to the capture the CURRENT set of producers, Initially this variable 
is set to all producers. 
 
The function SelectOneFrom: 
 
This takes current set of customers then returns one consumer selected evenly 
At random. 
 
 
FirstCandidateFor: 
 
A mapping that takes a consumer c, then returns first producer that satisfy the needs of 
consumer c. 
 
 
Given a Set A,I use the notation A\(x) to mean that the element x is removed from the set 
A. 
 
 
FIRST MATCH ALGORITHM 
 
While C!=emptyset do  
                               c:=SelectOneFrom(C) 
While P!=emptyset do 
                                p:=SelectOneFrom(P) 
Match(c):=c in FirstCandidatesFor(P) such that {R(p) >=T(c)} 
 
C:=C\{c} 
 
P=P\{Match(c)} 
 
 
end while {P} 
end while{C} 
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TIME COMPLEXITY: 
 
Worst case: 
 
O(N^2) 
 
Best case: 
 
O(log N) 
 
Average case: 
 
O(N) 
 
 
Difference function: 
 
 
Given an input of non negative non zero producers and consumers the function evaluates 
for every consumer the possible producer matches. It then finds the difference between 
the single consumer and possible producer matches. The producer with the lowest 
difference is selected and paired with the corresponding consumer.  
 
 
Principle: 
 
We take each consumer and check with each producer in the producer list, the difference 
in their values and then find the minimum difference between the consumer and producer. 
We find the producer-consumer pair that satisfies the minimum difference between their 
value criteria and also the condition that the producer value should be greater than equal 
to the consumer value. As soon this criterion is satisfied we remove the matched 
producer-consumer pair from their respective lists and continue with the same procedure. 
In case there was no match we take the next consumer and start matching with the 
available producer list. This process is repeated till either of these lists are empty.  
 
 
Example: 
 
Suppose we have a set of producers and consumers say 5 producers and Consumers. Let 
us represent Producers as P1,P2,P3,P4 and P5. Let us represent Consumers as 
C1,C2,C3,C4, and C5. We will randomly assign values to both of them as follows.  
 
 
Producers 
 
P1   P2  P3  P4  P5 
 
5     2     3    2    1 
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Consumers 
 
C1  C2  C3 C4  C5 
1     2     2    1    1 

 
 
The possible matches for each consumer are listed below.  
 
For C1: The possible matches are P1, P2, P3, P4 and P5.  
We then calculate the difference between C1 and all the corresponding matched 
producers. They are (P1-C1), (P2-C1), (P3-C1), (P4-C1), (P5-C1). Out of these 
differences the one with the minimum difference is selected so we select (P5,C1). We 
removed the selected producer, consumer pair.  
 
For C2: The possible matches are P1, P2, P3 and P4 
We then calculate the difference between C2 and all the corresponding matched 
producers.  They are (P1-C2), (P2-C2), (P3-C2), (P4-C2), Out of these differences the one 
with the minimum difference is selected so we select (P2,C2). Though (P4,C2) pair  also 
results in the minimum difference we select the pair that results in the first match.  
We removed the selected producer, consumer pair.  
 
 
For C3: The possible matches are P1, P3 and P4.  
We then calculate the difference between C3 and all the corresponding matched 
producers. That is (P1-C3), (P3-C3), (P4-C3). Out of these differences the one with the 
minimum difference is selected so we select (P4,C3). We removed the selected producer, 
consumer pair.  
 
For C4: The possible matches are P1 and P3.  
We then calculate the difference between C4 and all the corresponding matched 
producers. That is (P1-C4), (P3-C4). Out of these distances the one with the minimum 
difference is selected so we select (P3,C4). We removed the selected producer, consumer 
pair.  
 
 
For C5: The possible matches are P1 
We then calculate the difference between C5 and all the corresponding matched 
producers. That is (P1-C5). We removed the selected producer, consumer pair.  
 
 
The Allocation, which was achieved using this scheme, was 
 
(P1,C5), (P2,C2), (P3,C4), (P4,C3), (P5,C1).  
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ALGORITHM FOR MINIMUM DIFFERENCE: 
 
DEFINITIONS OF THE VARIABLES USED IN THE ALGORITHM: 
 
Match: 
 
A mapping that takes a consumer c, then returns the producer that is allocated 
To C. This mapping is actually the output of the algorithm, initially this mapping 
Is an empty set of pairs. 
 
 
 
R: 
 
A mapping that takes a producer p, then returns the resources at producer p. 
 
T: 
 
A mapping that takes a consumer c, then returns the tasks at consumer c. 
 
C: 
 
A variable used to capture the CURRENT set of consumers. Initially this is set of all 
consumers. 
 
P: 
 
A variable used to capture the CURRENT set of producers. Initially this is set of all 
producers. 
 
The Function CandidatesFor: 
 
A mapping that takes a consumer c, then returns the set of producers that satisfy the 
needs of the consumer. 
 
 
The Function SelectOneFrom: 
 
A mapping that takes the current set of consumers and returns one consumer selected 
evenly and randomly chosen. 
 
Given a set A,I use the notation A\{x} to mean that the element x is removed from the set 
A. 
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RULES FOR NEED SATISFACTION: 
 
Find all Match(c):=p in p such that {R(p)>=T(c)} 
Find best match from all matches such that {R(p)-T(c)} is minimum 
 
 
MINIMUM DIFFERENCE ALGORITHM 
 
While C!=emptyset do 
                                c:=SelectOneFrom(C) 
 
While P!=emptyset do 
                                p:=SelectOneFrom(P) 
 
 
 
CandidatesFor(C):={p in P: R(p) >=T(c)} 
 
 
 
Match(c):=p in CandidatesFor(c) such that  
R(p)=Minimum{r(q):q in CandidatesFor(C)} 
 
C=C\{c} 
 
P=P\{Match(c)} 
 
End while {P} 
End while{C} 
 
TIME COMPLEXITY: 
 
Worst case: 
 
O(N^2) 
 
 
Best case: 
 
O(N^2) 
 
Average case: 
 
O(N^2) 
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Weights function: 
 
 
Given an input of non negative non zero producers and consumers the function evaluates 
for every consumer the possible producer distance given the cartesian coordinate values 
for X and Y assigned to all the consumers and producers.  For every consumer the 
possible producer match is selected. The Euclidian distance between the respective 
coordinates is found out.  From all possible suitable matches the pair is selected which 
has the lowest Euclidean distance.  
 
Euclidean distance formula: 
If we have two points (X1,Y1) and (X2,Y2). The distance is calculated by using the formula  
squareroot((X2-X1)^2 + (Y2-Y1)^2)).  
 
Principle: 
 
We take each consumer and check with each producer in the producer list the difference 
in their values and then find the minimum distance between the consumer and producer 
coordinate values. We find the producer-consumer pair that satisfies the minimum  
distance between their coordinate value criteria and also the condition that the producer 
value should be greater than equal to the consumer value.  
 
 
 
As soon this criterion is satisfied we remove the matched producer-consumer pair from 
their respective lists and continue.  
 
 
In case there was no match we take the next consumer and start matching with the 
available producer list. This process is repeated till either of these lists are empty.  
 
 
Example: 
 
Suppose we have a set of producers and consumers say 5 producers and Consumers.  
Let us represent Producers as P1, P2, P3, P4 and P5. Let us represent Consumers as C1, 
C2, C3, C4, and C5. We will randomly assign values to both of them as follows. We also 
assign random values to x and y cartesian coordinates to the producers and consumers 
respectively.  
 
Producers 
 
P1   P2  P3  P4  P5 
 
5     2     3    2     1 
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X-Coordinates 
 
X1  X2  X3  X4  X5 
2      3    2    1     4 
 
Y-Coordinates 
 
Y1  Y2  Y3  Y4  Y5 
1     3    3    4     1 
 
Consumers 
 
C1  C2  C3 C4  C5 
1     2     2    1    1 

X-Coordinates 
 
X1  X2  X3  X4  X5 
3     4     2    1    1  
 
 
Y-Coordinates 
 
Y1  Y2  Y3  Y4  Y5 
2     1    1     1    1 
 
 
 
The possible match for each consumer is listed below.  
 
For C1: The possible matches are P1, P2, P3, P4 and P5.  
 
 
We calculate the Euclidean distance between all the matches and C1. They are 
respectively (1. 4), (1. 0), (1. 41), (2. 82), (1. 41). From this list (1. 0) is the minimum 
distance and this corresponds to (P2,C1) distance. So this chosen pair is removed.  
 
For C2: The possible matches are P1, P3, P4 and P5.  
We calculate the Euclidean distance between all the matches and C2. They are  
respectively (2. 0), (2. 8) and (4. 24). From the list (2. 0) is the minimum distance and this 
corresponds to (P1,C2) distance. So this chosen pair is removed.  
 
For C3: The possible matches are P3,P4 and P5.  
We calculate the Euclidean distance between all the matches and C3. They are  
respectively (2. 0), (3. 16). From the list (2. 0)  is the minimum distance and this   
corresponds to (P3,C3) distance. So this chosen pair is removed.   
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For C4: The possible matches are  P4 and P5.  
We calculate the Euclidean distance between all the matches and C4. They are  
respectively (3. 0), (3. 0). From the list (3. 0)  is the minimum distance and this   
corresponds to (P4,C4) distance. The first match is taken into consideration. So the other 
matches with similar distance is not taken into consideration when making use of minimum 
distance criteria. So this chosen pair is removed  
 
For C5: The possible matches are  P5. From the list (3. 0) is the minimum distance and 
this corresponds to (P5,C5) distance. So this chosen pair is removed.  
 
 
The Allocation, which was achieved using this scheme, was 
 
(P1,C2), (P2,C1), (P3,C3), (P4,C4) and (P5,C5).  
 
 
 
ALGORITHM FOR MINIMUM DISTANCE: 
 
DEFINITIONS OF THE VARIABLES USED IN THE ALGORITHM: 
 
 
Match: 
 
A mapping that takes a consumer c, then returns the producer that is allocated 
To C. This mapping is actually the output of the algorithm, initially this mapping 
Is an empty set of pairs. 
 
 
R: 
 
A mapping that takes a producer p, then returns the resources at producer p. 
 
 
T: 
 
A mapping that takes a consumer c, then returns the tasks at consumer c. 
 
C: 
 
A variable used to capture the CURRENT set of consumers. Initially this is set of all 
consumers. 
 
P: 
 
A variable used to capture the CURRENT set of producers. Initially this is set of all 
producers. 
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Coor(x): 
 
A function that takes a producer p or a consumer c,then returns the coordinate values for 
it. 
 
EuclideanDistance: 
 
This takes a pair of co-ordinates for eg P(x1,y1) and C(x2,y2) and computes 
The distance using the formula squareroot((x2-x1)^2+(y2-y1)^2)) 
 
The Function CandidatesFor: 
 
A mapping that takes a consumer c, then returns the set of producers that satisfy the 
needs of the consumer. 
 
 
The Function SelectOneFrom: 
 
A mapping that takes the current set of consumers and returns one consumer selected 
evenly and randomly chosen. 
 
Given a set A,I use the notation A\{x} to mean that the element x is removed from the set 
A. 
 
 
 
RULES FOR NEED SATISFACTION: 
 
Find all Match(c):=p in p such that {R(p)>=T(c)} 
Find best match from all matches such that Euclidean distance is minimum. 
 
 
MINIMUM DISTANCE ALGORITHM 
 
While C!=emptyset do 
                                c:=SelectOneFrom(C) 
 
 
While P!=emptyset do 
                                p:=SelectOneFrom(P) 
 
CandidatesFor(C):={p in P: R(p) >=T(c)} 
 
Match(c):=p in CandidatesFor(c) such that R(p)=Eucledian distance{Coor(p),Coor{r(q):q in 
CandidatesFor(C)}} 
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C=C\{c} 
 
P=P\{Match(c)} 
 
End while {P} 
End while{C} 
 
TIME COMPLEXITY: 
 
Worst case: 
 
O(N^2) 
 
Best case: 
 
O(N^2) 
 
Average case: 
 
O(N^2) 
 
 
Psuedocode explained: 
 
The pseudo-code for all the match making mechanisms are listed in the appendix section. 
The readers can refer to it there. The explanation is given here to ensure continuity for the 
user.  
 
 
 
We read the values into producer array and consumer vector. We initialize the state. This 
producer makes use of a small state machine. There are two states.  
 
 
The states are -1 and  2 respectively.  When the state is -1 always make sure that we go 
on parsing the consumer array and storing the parsed element from the consumer array at 
the zero'th location of the vector.  Having selected the consumer we call the method 
find_best_match. This method takes 3 parameters the count, which is nothing but the 
number of agents in each run, consumers and set of producers. This returns the index 
where the match has taken place. This method in turn makes use of the does_match.  
 
The does_match method actually has the criteria, which determines when a true match 
has occurred.  This does_match method is called till all the producer elements have been 
checked with the consumer elements. This means checking needs to be done till end of 
producer vector.  
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The method sizeof(p) returns the size or the number of elements it currently holds. The 
while loop makes use of this within which the call to does_match is made.  When the state 
is -2 which means we have found a match and we print it. 
We keep toggling between both these states till all the consumers are compared with the 
set of producer arrays. When the toggling should be done is determined by the index 
parameter. When the index has reached the size of the producer array this means that we 
need to take the next consumer and check with all the producers. That is when state value 
is changed to -1.  
 
 
3.6 Simulation 
 
Architecture: 
 
The simulation architecture is as shown in the diagram1. As soon as user decides on the 
number of agents that need to be used on the simulation, he can start the simulation. The 
control is transferred to the Finite state machine which is common for both the centralized 
approach and partition based approach (Will be discussed in the next chapter).The user 
can choose to run each of them separately or both of them together in order to compare 
the results. 
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                                                      SIMULATION ARCHITECTURE  
                                                             (diagram 1) 
 
 
 
 
 
 
 
Platform: 
 
The simulation is built to be run on java platform. Any standard java compiler can be used 
to compile the source. We used jbuilder as an IDE to build the code and javac compiler 
was used for compilation: 
 
 
Influence of the platform over test results: 
 
The entire simulation architecture was built using java and the tests where performed on a 
standalone system. We chose an Intel Pentium IV System for all the tests. The results 
would not be any different on using any system that supported java. Since we measured 
parameters like matching time which is architecture dependent it would be interesting to 
see how the results would be on building a similar architecture using C language or in 
assembly language. This is left as future work. Since memory access and optimization can 
be performed to a greater extent using assembly and C language some of the parameters 
we measured here could vary. To what extent it would vary would be interesting to 
observe. 
 
 
 
Parameters that user can change: 
 
Centralized approach: 
 
The number of agents that will be involved in the matchmaking [1..50000] for first match 
and [1..20000] for minimum difference and minimum difference. 
 
Partition based approach: 
 
Number of clusters e.g. 2,4,6. 
Partitioning ll to X-axis or Y-axis. 
 
Output: 
 
The result will be stored in .txt files. The users can then use it to plot results. 
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4 Experiments performed and empirical results: 
 
 
4.1 First Match experiment: 
 
 
What we wanted to investigate: 
 

• Task execution efficiency: 
Percentage of allocated tasks of the different workloads.  

 
• Resource usage efficiency: 

Percentage of available resources that are used up by the consumers.  
 

• Matching time. 
 
 
Set up of experiment: 
 
We start performing the simulation starting at 5 agents and move towards the 50000 
range. The number of agents increases by a factor of 10 with each run. Values assigned 
for resources and tasks. These values are generated randomly between an interval of [0. 
.10],[0. . 100] respectively.  
 
 
 
Results: 
 
A population of 5-50000 agents is used in the simulation. We then find out how many 
matches actually occurred. Then we plot a graph with the number of agents on the X-axis 
and time in milliseconds on Y-Axis. From figure 3 we can conclude that the matching time 
is proportional with the number of agents. There is a slow increase seen up to 20k. For 
this range the time taken lies between 0.2 milliseconds to 0.9 milliseconds. On going 
beyond the 20K boundary there is a rapid increase in the matching time. But this increase 
is less proportion. The allocation rate is less for very small population like 6K. The 
allocation percentage increases beyond 20k where it reaches the peak of 99. But for less 
than 20k it remains at 97-98. We have also used first difference, which would help us in 
calculating the variance. The variance is about 0.244 for a population size that is less than 
20k. For sizes above 20k the variance is 11. 992. This can be observed from figure 4. 
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Graphs: 
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Figure1: Matching time and resource allocation for first match experiment taking into  
consideration 5-20000 agents. 
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Figure2: Resource allocation for first match experiment taking into consideration 5-50000 
agents. 
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Figure 3: Matching time for first match experiment taking into consideration 5-50000 
agents. 
 
 
 

 
 
 
Figure 4: First difference of FirstMatch matching time. 
 
 
 
4.2 Minimum difference: 
 
 
What we wanted to investigate: 
 
Task execution efficiency: 
Percentage of allocated tasks of the different workloads.  
 
Resource usage efficiency: 
Percentage of available resources that are used up by the consumers.  
 
Matching time. 
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Set up of experiment: 
 
We start performing the simulation starting at 5 agents and move towards the 20000 
range. The number of agents increases by a factor of 10 with each run. Values assigned 
for resources and tasks.These values are generated randomly between an interval of [0. . 
10],[0. . 100] respectively.  
 
 
Results: 
 
In this case there is substantial time required to produce a match. This can be seen from 
figure 8.This is because for each consumer task that needs to be done we need to pick up 
a producer such that the difference between them is minimum. Even in this case the 
match time is proportional to the size and stability is observed on looking into first 
difference graph(figure 8).We can make a similar observation as for FirstMatch. For 
populations smaller than 5K, the matching is not very efficient with allocation percentages 
ranging around 90%. This allocation percentage rises to reach 96% for a 20K population 
size. Increasing the population from 15K to 20K, only increases the efficiency by 1% but 
requiring 50% more time to produce the match. Because of the very low improvement for 
either task or resources, we do not simulate beyond the 20K boundary. Shown in the 
same figure, we also plotted its first difference. From that graph, we can again observe 
that as the population size increases, the variance of the matching time goes up, 
introducing more uncertainty in the matching process. As far as the resource usage is 
concerned, and also shown in Figure 5,the same conclusion as for FirstMatch holds, it 
improves as population size increases and then saturates at 99%. 
 
Graphs: 
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Figure 5: Minimum difference efficiency and first difference of matching time 
 
 
 
4.3 Minimum distance: 
 
 
What we want to investigate: 
 
Task execution efficiency: 
Percentage of allocated tasks of the different workloads.  
 
Resource usage efficiency: 
Percentage of available resources that are used up by the consumers.  
 
Matching time. 
 
Set up of experiment: 
 
We start performing the simulation starting at 5 agents and move towards the 20000 
range. The number of agents increases by a factor of 10 with each run. Values assigned 
for resources and tasks. These values are generated randomly between an interval of [0. . 
10],[0. . 100] respectively.  
 
 
Results: 
 
The last matching function that was used is the minimal distance between two agents. The 
minimum distance function computes the eucledian distance between each consumer 
and a given set of producers which is more expensive in terms of computing cycles than 
MinDifference and Firstmatch. We can clearly observe from figure 8 that the matching 
time of MinDifference is less than MinDistance. This is a direct consequence of the 
structure of the MinDistance function. Looking at the MinDistance efficiency plotted in 
Figure 7, a similar observation as for the other 2 functions can be made. The task 
execution efficiency does not increase substantially as we approach the 20k boundary. 
The first difference plot shows as similar behavior as the MinDifference. As far as the 
resource utilization is concerned, the same observations as above hold. 
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Graphs: 
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Figure 6: Minimum distance efficiency and first difference of matching time. 
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Figure 8: Comparisons in matching time between minimum difference  and minimum 
distance functions. 
 
 
4.4 Comparison between all the 3 functions: 
 
 
Putting the results together and comparing the task allocation efficiency for the 3 functions, 
as plotted in Figure 7, we observe that MinDifference is the most efficient approach based 
on resource allocation. First match is the fastest function among them all taking matching 
time into consideration. MinDistance is slowest and also least efficient. We are looking for 
a function that is not only fast but also efficient. First match is simple and fast but not very 
efficient. On the other hand minDifference shows a trade off between efficiency and match 
time. Though it is slower than First match, it is the most efficient of them all. 
 
 
Graphs: 
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Figure 7: Allocation efficiency for the 3 functions 
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5 Extension of the experiment 
 
We had used the centralized approach and used all the three functions that were built for 
matchmaking. As an extension to this experiment we applied partitioning techniques and 
then used each of these functions in the respective partitions. 
 
5.1 Why partitioning? 
 
In the centralized approach from the global view point all consumer agents and all 
producer agents participated in the match making process. Then we wanted to examine 
the behavior of these agents by having a local view. We restrict the scope of the producers 
and consumers that participate in the partitioning. One of the main criteria, which were 
used to restrict the view, was to build partitions and allow match making possible only 
between the consumer agents and producer agents that lie in the same partition. For e.g. 
if we have say partition 1 and partition 2. An agent in partition1 can match with another 
agent in partition 1 only and not in partition 2. 
 
 
Plot of producer (X,Y) and consumer (X,Y)   
 
The figures 9 and 10 indicate how uniformly the producers and consumers are placed in a 
centralized scenario before match making and partitioning is involved. 
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Figure 9: Diagram represents plot of producer co-ordinates 
 

 
 
 
  
 Figure 10: Diagram represents plot of consumer co-ordinates 
 
 
5.2 Partitioning technique used: 
 
We used a very simple partitioning technique based on the co-ordinates. Partitioning 
technique was based on cartesian co-ordinates. The co-ordinates were generated 
randomly. The number of partitions was taken as a user input. For our experiments we 
have used 4,8 and 16 partitions to examine the behavior. This can be extended to as 
many partitions as the user wants. A section of a given size is chosen and it is divided into 
many parts depending on how many partitions are needed. The floor operation was used 
so that points would lie in the particular partitioned section. Diagram 1 shows how this is 
done. Nx=2,Ny=2 indicate this scenario where a line Nx partitions x plane of diagram 1 
into 2 equal halves and Ny partitions the y plane of the figure into 2 equal halves. Blue 
dots and yellow dots indicate the producers and consumers that lie in each of these 
partitions. The same approach is used for 8 partitions and 16 partitions.  For e.g we can 
have 8 partitions using Nx=2,Ny=4 or Nx=4 ,Ny=2 etc. Many such combinations could be 
used to generate 8 partitions. But in our simulation we use Nx=4,Ny=2.Similarly for 16 
partitions we use Nx=4,Ny=4. 
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5.3 Relation between this experiment and peer-peer scenario: 
 
We wanted to move from the centralized scenario to peer-to-peer scenario. The 
partitioning based scenario gives us a view, which is close to the peer-to-peer scenario. 
Since our simulation, which is completely centralized, this wouldn’t be strictly peer-to-peer. 
One of the major assumptions done was that there were be no message passing possible 
between agents. All our experiments are related to minimal agents. As mentioned before, 
in case of minimal agents, the constraint on the memory requirement is pretty high and the 
agents need to be as simple as possible. This was the main reason why we didn’t build a 
protocol for exchange of messages. Making message passing possible can be a further 
extension to this experiment. This is left as future work. 
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5.4 Reasons for performing the experiment: 
 
Our focus is on studying the behavior of matchmaking process on the local level in 
addition to what was already done on the global level. Some of the parameters, which 
would be seen to vary at the local level, are task execution efficiency, resource usage 
efficiency and matching time. There may be some partitions where there would be more 
consumer agents compared to producer agents and vice versa. The efficiency is such 
partitions would be less. This would give us idea about how these parameters are affected 
on partitioning. 
 
5.5 Empirical Results: 
 
We plotted the graphs for the matchmaking done using centralized approach and then 
using partitioning approach. As expected the partitioning based approach always results in 
lower efficiency when compared to the centralized approach. This is seen from figures 1,2 
and 3.We have used 4,8,16 partitions in the extension to the basic experiment. One may 
be curious as to why the efficiencies of the original experiment and partitioning experiment 
seen in the minimum distance extension lie close to each other. The main reasons for this 
is that the minimum distance makes use of coordinate points in order to measure the 
distance. On partitioning the points lie very close to each other. This reduces the distance 
between the points in their respective partitions. This is the key factor, which influences 
the efficiency as a whole. This is observed from figures 7, 8 and 9. 
 
5.6 First Match experiment extension: 
 
Graphs: 
 
We have figures (1,2,3) which are the graphs representing the first match experiment. 
The number of agents over allocation efficiency is taken into consideration. 
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Figure 1: Allocation efficiency for first match using centralized approach and 4 partitions  
approach 
 
 

 
 
 
Figure 2: Allocation efficiency for first match using centralized approach and 8 partitions 
approach 
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Figure 3: Allocation efficiency for first match using centralized approach and 16 partitions 
approach 
 
 
5.7 Minimum Difference experiment extension: 
 
We have figures (4,5,6) which are the graphs representing the minimum difference 
experiment. The number of agents over allocation efficiency is taken into consideration. 
 
 

 
 
Figure 4: Allocation efficiency for minimum difference using centralized approach and 4 
partitions approach 
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Figure 5: Allocation efficiency for minimum difference using centralized approach and 8 
partitions approach 
 
 
 

 
 
 
 
 
 
Figure 6: Allocation efficiency for minimum difference using centralized approach and 16 
partitions approach 
 
 
 
 
 
5.8 Minimum Distance experiment extension: 
 
We have figures (7,8,9) which are the graphs representing the minimum difference 
experiment. The number of agents over allocation efficiency is taken into consideration. 
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Figure 7: Allocation efficiency for minimum difference using centralized approach and 4 
partitions approach 
 
 

 
 
 
 
 
Figure 8: Allocation efficiency for minimum distance using centralized approach and 8 
partitions approach 
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Figure 9: Allocation efficiency for minimum distance using centralized approach and 16 
partitions approach 
 
 
6 Commercial applications of matchmaking  
 
There are several commercial applications for matchmaking experiments we performed. 
These simulations further strengthen the usage of such functions in real applications e.g. 
grid like environments, System on chip applications and in telecommunication networks. 
Matchmaking functions play an important role in matching resources in grid like 
environments. A grid consists of many interconnected systems with a few systems having 
sufficient resources and a few systems lacking such resources. Such simple matchmaking 
functions would be useful in overcoming complicated negotiations that would be needed 
during matchmaking. They are useful in network on chip applications where matching of 
memory and processes need to be done. This happens when there are some processes 
needing more memory and few processes having abundant memory in them. The memory 
can be suitable matched to the processes. The algorithms that are embedded in the chip 
perform such matching work. Other applications are seen in the area of telecommunication 
networks. Whenever resource allocation needs to be done in telecommunication networks 
simple matchmaking functions such as these are used. When we talk of resource it is 
bandwidth, it may always happen that some users may be using lot of bandwidth and 
other users may be starved of bandwidth. The network degrades due to this.  
Matchmaking aids in maintaining proper Quality of service(QOS) in telecommunication 
environments.  
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7 Conclusion and Future work 
 
We have studied the resource allocation and matchmaking in single partition systems by 
giving a simple approach for matchmaking. We introduced a centralized matching 
mechanism that requires very little information to produce a good matching. In addition, 
the number of messages required to be broadcasted over the network is limited and in 
the order of O(N). When introducing multiple matchmakers, this can even be reduced to 
O(log N). We furthermore evaluated more complicated matching functions, as they 
incorporated more information for the actual matchmaking, by looking at task allocation 
efficiency, resource usage efficiency and matching time. 
 
The main findings are: 
 

• First-Match is the simplest and fastest in terms of matchmaking time. 
• MinDifference is the most efficient of them all. 
• Centralized matching mechanism easily scales up to 20K. For 
      FirstMatch this even goes to 50K. 
• It seems that there exists some kind of population size beyond or below which 

either no improvement can be generated or the matching efficiency goes down 
respectively. This allows the introduction of multiple matchmakers, reducing the 
number of messages to O(log N). 

 
 
 
 
Issues which remain unsolved are how efficient this approach is when resources and tasks 
are unevenly distributed. It might be that more information intensive approaches 
will outperform these functions. It also remains to be seen if this approach remains 
feasible when introducing asynchronous, rather than batch-like, sequential, matchmaking. 
We further tried the clustering approach to see effect of clustering on matchmaking using 
this approach we always see lower efficiencies. 
 
 
 
The main findings are: 
 

• The efficiency plots for first match and minimum difference indicate that centralized 
approach always results in better efficiency compared to partitioning approach. 

 
• The minimum difference approach is most suitable for clustered approach as the 

efficiency is almost the same as compared to partitioning approach. 
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The Partitioning based approach can be further extended to peer-to-peer approach, which 
is left for future work. We can have actual messages being sent between agents and this 
will help us determine which of the approaches the centralized approach or the peer to 
approach performs well under the given conditions.  
 
 
 
 
 
 
 



Agent Based Matchmaking Thesis report 2004            July 1st 2004 

 - 42 - 

 
 
8 References 
 
[1]http://www-iiuf.unifr.ch/~brugger/papers/95_cidre/cidre/node26.html 
 
[2]http://www.ai.sri.com/~oaa/main.html 
 
[3] Kasselman C. Czajkowksi., Foster  I. Resource Co-Allocation in Computational Grids. 
In proceedings of IEEE HDPC-8 August 1999. 
 
[4] Epema D. Bucher A. Local versus global queues with processor 
co-allocation in multicluster systems. In EighthWorkshop 
on Job Scheduling Strategies for Parallel Processing (in 
conjunction with HPDC-11), pages 184–204. 2002. 
 
[5] Karonis N. Kesselman C Martin S. SmithW. Tuecke S. Czajkowski 
K., Foster I. A resource management architecture 
for metacomputing systems. In The 4th workshop on Job 
Scheduling Strategies for Parallel Processing, pages 62–82. 
1998. 
 
[6] Ch.Weinhardt D. Veit, J.P. Muller. Multidimensional matchmaking 
for electronic markets. Journal of Applied Artificial 
Intelligence, 16(9-10):853–869, 2002. 
 
[7] Klusch M. Widoff S. K. Sycara, Lu J. Matchmaking among 
heterogeneous agents on the internet. In Proceedings. AAAI 
Spring Symposium on Intelligent Agents in Cyberspace. 
1999. 
 
[8] Harada L. Kuokka, D. Matchmaking for information agents. 
In Proceedings of the 14th International Joint Conference on 
Artificial Intelligence, pages 672–678, 1995. 
 
[9] Jennings N. On agent-based software engineering. Artificial 
Intelligence, 117:277–296, 2000. 
 
[10] E. Ogston and S. Vassiliadis. Matchmaking among minimal 
agents without a facilitator. In Proceedings. 5th International 
Conference on Autonomous Agents, pages 608–615. 
May 2001. 
 
 
 
 
 
 
 
 
 



Agent Based Matchmaking Thesis report 2004            July 1st 2004 

 - 43 - 

 
 
 
 
 
[11] E. Ogston and S. Vassiliadis. A peer-to-peer agent auction. 
In Proceedings of the first international joint conference 
on Autonomous agents and multiagent systems Part I, 
pages 151–159, July 2002. 
 
[12] E. Ogston and S. Vassiliadis. Unstructured agent matchmaking: 
experiments in timing and fuzzy matching. In Proceedings 
of the 2002 ACM symposium on applied computing, 
pages 300–306, March 2002. 
 
[13] Milind Tambe Makoto Yokoo Pragnesh Jay Modi, Wei- 
Min Shen. Asynchronous complete method for general distributed 
constraint optimization. In Proceedings of the first 
international joint conference on Autonomous agents and 
multiagent systems Part I, July 2002. 
 
[14] Jennings N.R. Vulkan, N. Efficient mechanisms for the supply 
of services in multi-agent environments. Journal of Decision 
Support Systems, 28(1-2):5–19, 2000. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Agent Based Matchmaking Thesis report 2004            July 1st 2004 

 - 44 - 

 
 
Appendix 
 
Pseudocode for all three match making functions  
 
 
First Match 
 
 
start : 
 
outer : = minimum_num_of agents; 
 
while (outer < maximum_num_of_agents) { 
   
count: = outer; 
 i: = 0; 
 
  /*Reading elements into producer vector */ 
   
while (i < count) { 
    read_values(producer); 
    i: = i + 1; 
  } 
 
  /*Reading elements into consumer vector*/ 
 
while (i < count) { 
    read_values(consumer); 
    i: = i + 1; 
  } 
 
  /* Initialize the state */ 
   
  state: = -1; 
 
 while (count > 0) { 
 
    if (state = = -1) { 
      c: = consumer_element_at_index(0); 
      con_remove: = remove_consumer_element_at(0); 
      index: = findBestProducer(c, producerinfo, count); 
      count: = count - 1; 
      state: = 2; 
    } 
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if (index == sizeof(p)) { 
      state= -1; 
    } 
 
else { 
      state = 2;: 
    } 
 
if (state = = 2) { 
      pro_remove: = remove_producer_element_at(index); 
      print(“Match found at p and con); 
      state: = -1; 
    } 
 
  } 
 
outer = outer + 1; 
 
} 
 
/*end of outer loop */ 
 
: end 
 
  
 Procedure calls : 
 
 /* This procedure returns an integer value  */ 
 
Integer : findBestProducer(Consumer con, Producer p, int count) { 
 
count: = c; 
 j: = 0;  
 
 while (j < sizeof(p)) { 
 
    if (doesMatch(pro, co)) { 
      return j; 
    } 
 
  } 
 
} 
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/* This procedure returns a boolean value */ 
 
boolean : doesMatch(Producer p, Consumer c) { 
  if (c <= p) { 
    return (true); 
  } 
 
else { 
    return (false); 
  } 
} 
 
 
 
 
 
Minimum Difference 
 
 
start: 
 
outer:=minimum_num_of agents; 
 
while (outer < maximum_num_of_agents) { 
   
count: = outer; 
 i: = 0; 
 
  /*Reading elements into producer vector*/ 
 
 while (i < count) { 
    read_values(producer); 
    i: = i + 1; 
  } 
 
  /*Reading elements into consumer vector*/ 
  
while (i < count) { 
    read_values(consumer); 
    i: = i + 1; 
  } 
 
  /* Initialize the state */ 
   
state: = -1; 
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while (count > 0) { 
 
    if (state == -1) { 
      c: = consumer_element_at_index(0); 
      con_remove: = remove_consumer_element_at(0); 
      index: = findBestProducer(c, p, count); 
      count: = count - 1; 
      state: = 2; 
    } 
 
    if (index == sizeof(p)) { 
      state:= -1;: 
    } 
      
 else { 
    state:= 2;: 
    } 
     
     
if (state == 2) { 
      pro_remove: = remove_producer_element_at(index); 
 
      state: = -1; 
    } 
 
  } 
 
  outer: = outer + 1; 
 
} 
/*end of outer loop */ 
 
: end 
 
     
Procedure calls : 
 
/* This procedure returns an integer value  */ 
 
Integer : findBestProducer(Consumer con, Producer p, int count) { 
 
count: = c; 
 j: = 0;  
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while (j < sizeof(p)) { 
 
    if (j == doesMatch(pro, co)) { 
      return j; 
    } 
 
  } 
 
} 
 
 
 
/* This procedure returns a boolean value */ 
 
double : doesMatch(Producer p, Consumer c) { 
  if (c <= p) { 
    return (value(p) - value(c)); 
  } 
  else { 
    return ( -1); 
  } 
} 
 
 
 
 
 
Minimum distance 
 
 
 
start: 
 
outer:=minimum_num_of agents; 
 
while (outer < maximum_num_of_agents) { 
   
count: = outer; 
 i: = 0; 
 
 
  /*Reading elements into producer vector */ 
 
while (i < count) { 
    read_values(producer); 
    i: = i + 1; 
  } 
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  /*Reading elements into consumer vector*/ 
 
while (i < count) { 
    read_values(consumer); 
    i: = i + 1; 
  } 
 
  /* Initialize the state */ 
  
state: = -1; 
 
 
while (count > 0) { 
 
    if (state == -1) { 
      c: = consumer_element_at_index(0); 
      con_remove: = remove_consumer_element_at(0); 
      index: = findBestProducer(c, p, count); 
      count: = count - 1; 
      state: = 2; 
    } 
 
    if (index == sizeof(p)) { 
      state: = -1; 
        } 
     
    else { 
      state: = 2; 
    } 
          
 
if (state == 2) { 
      p: = producer_element_at_index(index); 
      pro_remove: = remove_producer_element_at(index); 
      print(“Match found at p and con); 
      state: = -1; 
    } 
 
  } 
 
 
 
  outer: = outer + 1; 
 
} 
/*end of outer loop */ 
 
: end 
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Procedure calls : 
 
 
 /* This procedure returns an integer value  */ 
 
Integer : findBestProducer(Consumer con, Producer p, int count) { 
 
count: = c; 
j: = 0;  
 
while (j < sizeof(p)) { 
 
if (doesMatch(pro, co)) { 
      return j; 
    } 
 
  } 
 
} 
 
 
 
/* This procedure returns a double value  */ 
 
double : doesMatch(Producer p, Consumer c) { 
  
 if (c <= p) { 
    diff_x_value: = pro_x_coordinate - con_x_coordinate; 
    diff_x_value: = diff_x_value ^ 2; 
    
    diff_y_value: = pro_y_coordinate - con_y_coordinate; 
    diff_y_value: = diff_x_value ^ 2; 
    
    diff_total_value: = sqrt(diff_x_value + diff_y_value); 
    return diff_total_value; 
  } 
  
 else { 
    return -1; 
  } 
 
} 
 


