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Abstract 
As the multiprocessors scale beyond the limits of a few tens of processors, we must look 
beyond the traditional methods of synchronization to minimize serialization and achieve 
high degrees of parallelism required to utilize large machines. Since synchronization is a 
major performance parameter for such a level of parallelism, efficient support for 
synchronization is therefore a major issue. By allowing synchronization at the level of 
smallest unit of memory, fine-grain synchronization achieves this goal and it has 
significant performance as compare to traditional coarse-grain synchronization. 
It has already been proved that hardware support for fine-grain synchronization provides 
significant improvement in the performance over coarse-grain synchronization 
mechanisms like barriers. As demonstrated by the machine MIT Alewife, integrated 
support for fine-grain synchronization can have significant performance benefits over 
coarse-grain. The major goal of research is to evaluate the efficient way to support the 
fine-grain synchronization mechanisms in multiprocessors. The best way of approaching 
to this goal is based on the efficient combination of fine-grain synchronization with cache 
coherence protocol with the full/empty tagged shared memory (EF-memory). 

We propose to design a full/empty tagged memory hierarchy with aggressive hardware 
support for fine-grain synchronization that is embedded in the cache coherence 
mechanism of a SMP or NUMA multiprocessor. It is expected that handling 
synchronization and coherence together can provide a more efficient platform of 
execution, reducing the occupancy in memory controllers and the network bandwidth 
consumed by the protocol messages. Our objective is to improve the performance of the 
full/empty synchronization mechanism such as implemented in the MIT Alewife 
machine, by integrating a cache coherency mechanism with the full/empty 
synchronization. We uses the SimpleScalar simulator to simulate our propose design for 
the verification and performance evaluation.      

 
Keywords: FE-bits, Pending-bits, Fine-grain Synchronization (FGS), Shared Memory, 
Cache Coherence Protocol 
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1. Introduction and motivation 
 
The last few years have seen the introduction of a number of parallel processing systems 
with truly impressive maximum performance [3]. The performance in parallel and 
distributed computing has emerged to be one of the promising developments. It has 
extended the activity of human capabilities in many fields, such as numeric simulation 
and modeling of physical phenomena and complex systems, and different form of 
information processing on the internet. 
 
Continuous advancement in the technology (i.e. improvement in logic density and clock 
frequency) has resulted in highly capable and complex multiprocessors. More and more 
parallelism has been exploited at different granularity levels (instructions, threads, 
processes) in programs, to best utilize the increasing capability of multiprocessors. In 
parallel and concurrent programming, synchronization of parallel processes is an 
important mechanism. It ensures the true data dependency and timing constraints. True 
data dependency implies that consumer should read the value only after it has been 
produced by producer at the specific memory location.  
 
Synchronization incurs an overhead because of a loss of parallelism and cost of 
synchronization itself. For a program to execute efficiently on a multiprocessor the 
serialization imposed by the synchronization structure of the program must be reduced as 
much as possible and the overhead of the synchronization operations must be small 
compared to real time computation. Multiprocessors have traditionally supported only 
coarse-grain synchronization (for example barriers and mutual locks). Barriers divide the 
program in several phases (production phase, consumption phase etc). The computation 
or thread of next phase depends on the results of earlier phase; parallelism across the 
phases is prevented due to barriers. Since coarse-grain synchronization is convenient to 
the programmer but it’s not very much feasible on massive-parallel fine grained system. 
 
It is known that fine-grain synchronization is an efficient way to enhance the performance 
of many applications, provided it can be implemented efficiently. In the case of data 
dependence, fine-grain synchronization allows the amount of data transferred from one 
thread to other threads in one synchronization operation to be small (for example one 
word or small cache block). The MIT Alewife architecture [1], [2], [3] is one that supports 
the fine-grain synchronization and shows demonstrable benefits over a coarse-grain 
approach. The Alewife multiprocessor [22] however, implements synchronization in a 
software layer (with some hardware support) above the cache coherence layer. Keeping 
these both layers separately and synchronize the computation incurs additional overhead. 
 
So, the novel idea is to combine synchronization layer and coherence layer into one. This 
work describes Synchronization Coherence, a novel architecture where fine-grained 
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synchronization and cache coherence are handled uniformly and efficiently. We propose 
a full/empty tagged hierarchy with aggressive hardware support for fine-grain 
synchronization embedded in cache coherence mechanism [26], [29]. This approach has 
two major advantages: (1) Synchronization misses are treated as cache misses and are 
resolved transparently. If we compare this with Alewife, where trap is fired on 
synchronization misses. This trap keeps polling the location until synchronization is 
satisfied, or context switches to another ready thread after a certain waiting period. This 
is very expensive task along with associated complexity for thread scheduling and it can 
avoid by utilizing above mentioned architecture. (2) Tighter integration between 
synchronization and cache coherence layers results fewer network messages, translating 
into lower network contention and improved performance. 
 
There is a need to extend the source of Simplescalar Simulator to model the proposed cc-
NUMA architecture to evaluate it performance. Evaluation of the aggressive hardware 
support in fine-gain synchronization is the main goal of this project. Software 
applications like MICCG3D from SPLASH 2 can be used to evaluate and compare the 
performance of the proposed architecture with the existing Alewife Architecture. 
 
The rest of the report is organized as follows. Chapter 2 gives a primer on the overview 
of synchronization semantics from both the view: programming language issues and 
memory operations. Chapter 3 deliberates on the description of Alewife machine and on 
the proposed architecture. Chapter 4 describes the integration of fine-grain 
synchronization (FGS) with snoop-based protocol. Chapter 5 presents the integration of 
FGS with directory-based protocol. Chapter 6 gives the detail of evaluation framework. 
Finally Chapter 7 and Chapter 8 describe the conclusion and future work. 
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2. Overview of Synchronization 
 
A critical interplay of hardware and software in multiprocessors arises in supporting 
synchronization operations: mutual exclusion, point-to-point events and global events. 
There has been considerable debate over the years about how much hardware support 
exactly and what hardware primitive should be provided to support these synchronization 
operations [12]. Hardware support has the advantage of speed but the software has the 
advantages of low cost, flexibility and adaptability to different situations. 
 
Synchronization in shared-memory multiprocessors ensures correctness by enforcing two 
conditions: read-after-write data dependency and mutual exclusion. Read-after-write data 
dependency is a contract between a producer and a consumer of shared data. It ensures 
that a consumer reads a value only after it has been written by a producer. Mutual 
exclusion enforces atomicity. When a data object is accessed by multiple threads, mutual 
exclusion allows accesses of specific thread to proceed without intervening accesses by 
other threads. 
 
A coarse-grain solution to enforcing read-after-write data dependency is barrier 
synchronization. Barriers are typically used in programs involving several phase of 
computation where the values produced by one phase are required in the computation of 
subsequent phases. Parallelism is realized within a single phase, but between phases, a 
barrier is imposed which requires that all work from one phase be completed before the 
next phase is begun. Under the producer-consumer model, this means that all the 
consumers in the system must wait for all the producers at a common synchronization 
point. A fine-grain solution provides synchronization at the data level. Instead of waiting 
on all the producers, fine-grain synchronization allows a consumer to wait only for the 
data that it is trying to consume. Once the needed data is made available by the 
producer(s), the consumer is allowed to continue processing. Fine-grain synchronization 
provides two primary benefits over coarse-grain synchronization [32]: 
 

• Unnecessary waiting is avoided because a consumer waits only for the data it 
needs. 

 
• Global communication is eliminated because consumers communicate only with 

those producers upon which they depend. 
 
The significance of the first benefit is that parallelism is not artificially limited. Barriers 
impose false dependencies and thus inhibit parallelism because of unnecessary waiting. 
The significance of the second benefit is that each fine-grain synchronization operation is 
much less costly than a barrier. This means that synchronizations can occur more  
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frequently without incurring significant overhead. Following are three mechanisms to 
support fine-grain synchronization: 
 

• Language-level support for the expression of fine-grain synchronization. 
 

• Memory hardware support to compactly store synchronization state. 
 

• Processor hardware support to operate efficiently on synchronization state. 
 
The first mechanism of support provides the programmer with a means to express 
synchronization at a fine granularity resulting in increased parallelism. Another attractive 
consequence is simpler, more elegant code [8]. The second mechanism of support 
addresses the fact that an application using fine-grain synchronization will need a large 
synchronization name space. Providing special synchronization state can lead to an 
efficient implementation from the standpoint of the memory system. We refer to this 
benefit as memory efficiency. Finally, the last mechanism of support addresses the fact 
that synchronizations will occur frequently. Therefore, support for the manipulation of 
synchronization objects can reduce the number of processor cycles incurred. We refer to 
this benefit as cycle efficiency. 
 
 
2.1. Programming Language Issues 
It is desirable that fine-grain parallelism and synchronization be expressible at the 
language level. Programmer has freedom to specify which parts of a program may be 
executed in parallel. This does not preclude a compilation phase that converts sequential 
to parallel code. It is up to the system which part to execute in parallel and to handle 
proper synchronization. There are two ways a programmer may express parallelism in a 
program [20]:   
 
2.1.1. Data level parallelism  
Data –level parallelism express the application of some function to all or some elements 
of an aggregate data object, such as an array. Data-level parallelism is often expressed 
using parallel do-loops.  Synchronization with in parallel do-loop can be either coarse-
grain or fine-grain. For producer-consumer synchronization, coarse-grain synchronization 
involves placing a barrier at the end of the loop. Elements of the aggregate are written 
by threads using ordinary stores. At the end, each thread waits for all to complete. The 
values can then be accessed with ordinary reads. Alternatively, in the case of mutual-
exclusion locks, coarse-grain synchronization will associate a lock with a large chunk of 
data. 
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Fine-grain data-level synchronization is expressed using data structure with accessors that 
implicitly synchronize. We call these structures J-structure and L-structure arrays. A J-
structure is inspired by I-structure. 
 
i) I-structure  
This is widespread agreement that only parallelism can bring significant improvement in 
computing speed (several orders of magnitude faster than today’s supercomputers). 
Functional languages have received much attention as appropriate vehicles for 
programming parallel machines for several reasons. They are high-level, declarative 
languages, insulating the programmer from architectural details. Their operational 
semantics in terms of rewrite rules offer plenty of exploitable parallelism, freeing the 
programmer from details of scheduling and synchronization of parallel activities. 
 
Later it is realized that there are some difficulties in the treatment of data structures in 
functional languages and then I-structure is proposed [8]. I-structure is an alternative way 
to treat the data structures. We can compare the solutions of any test application using 
functional data structure and I-structure and performance of the structure can be 
evaluated on the basis of following points: 
 

• efficiency (amount of unnecessary copying, speed of access, number of reads and 
writes, overheads in construction etc) 

• parallelism (amount of unnecessary sequentialization) 
• ease of encoding 
 

It has been already investigated that it is very difficult to achieve all three objectives 
using functional data structures. Since the idea about I-structure evolved in the context of 
scientific computing, most of the discussion is couched in terms of arrays. I-structure 
grew out of a long-standing goal to have functional languages suitable for general-
purpose computation, which included scientific computations and the array data-
structures that are endemic to them. The term I-structure has been used for two separate 
concepts. One is and architectural idea, that is the implementation of synchronization 
mechanism in hardware. The other is a language construct, a way to express 
incrementally constructed data structure. 
  
Based on experiments at MIT, it has been observed that I-structures solve some of the 
problems that arise with functional data structures, still there are another class of 
problems for which they still do not lead to efficient solutions and require the greater 
flexibility of I-structures. 
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ii) J-structure 
A J-structure is a data structure for producer-consumer style synchronization inspired by 
I-structures. A J-structure is like an array, but each element has additional state: full or 
empty. The initial state of a J-structure element is empty. A reader of an element waits 
until the element’s state is full before returning the value. A writer of a J-structure 
element writes a value, sets the state to full, and release any waiting readers. An error 
signaled if a write is attempted on a full element. The difference between J-structure and 
I- structure is that, to enable efficient memory allocation and good cache performance, J-
structure elements can be reset to an empty (unbounded) state.  
 
iii) L-structure 
L-structures are arrays of “lock-able” elements that support three operations: a locking 
read, a non-locking peek, and a synchronizing write. A locking read waits until an 
element is full before emptying it (i.e. locking it) and returning the value. A non-locking 
peek also waits until the element is full, but then returns the value without emptying the 
element. A synchronizing write stores the value to an empty element, and sets the 
location to full and release all read waiters, if any. As for J-structures, an error is signaled 
if the location is already full. A L-structure therefore allows mutually exclusive access to 
each of its elements. The synchronizing L-structure reads and writes can be used to 
implement M-structures. However, L-structures are different from M-structures in that 
they allow multiple non-locking readers, and a store to a full element signals as an error. 
 
2.1.2. Control Parallelism 
Using control parallelism, a programmer specifies that a given expression ‘E’ may be 
executed in parallel with the current thread. Synchronization between these threads is 
implicit and occurs when the current thread demands, or touches, the value of ‘E’. The 
programmer does not have to explicitly specify each point in the program where a value 
is being touched. A touch implicitly occurs anytime a value is used in an ALU operation 
or as a pointer to be dereferenced, but not when a value is returned from a procedure or 
passed as an argument to a procedure. Storing a value into a data structure also does not 
touch the value. 
 
In Alewife machine, the behavior that a given expression ‘E’ may be executed in parallel 
with the current thread, is specified by wrapping future around an expression or statement 
‘E’. The keyword future does not necessarily cause a new runtime thread to be created, 
together with the consequent overhead. The system must, however, ensure that the 
current thread and ‘E’ can be executed concurrently if necessary (e.g. to avoid deadlock), 
when a new thread is created at runtime only for deadlock avoidance or load-balancing 
purposes, it is called lazy task creation. 
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Using future provides a form of fine-grain synchronization because synchronization can 
occur between the producer and consumers of an arbitrary expression, e.g. a producer call 
can start executing while some of its arguments are still being computed 
 
2.2. Semantics of synchronizing memory operations 
Synchronization memory operation requires the use of tagged memory, in which each 
location is associated to a state bit in addition to a 32-bit value. The state bit is known as 
full/empty bit (FE-bit) and implements the semantics of synchronizing memory accesses. 
This state bit basically controls the behavior of synchronized loads and stores. A set FE-
bit indicates that the corresponding memory reference has been written successfully by a 
synchronized store and unset FE-bit means either that memory location has never been 
written since it was initialized or that a synchronized load has read it. 
 
A complete category of the different synchronizing memory operations is drawn in 
Figure 1 [29]. These instructions are introduced as an extension of the instruction set of 
SPARCLE [4], which is in turn based on SPARC [30]. The operations includes 
unconditional load, unconditional store, setting of FE-bit and/or combination of all these. 
As they do not depend upon the previous value of the state bit, unconditional operations 
always succeed.  
 

    FE-memory Operations 
                                                
  
 
 
                                          Conditional                  Unconditional 
                   
 
 
 
                            Non-waiting            Waiting (Case considered in this project) 
                                                                       
                                                                       
 
                  Non-Faulting        Faulting  
 
 
 
 
 
                      Figure 1: Classification of Synchronizing Memory operations 

While (empty) 
Wait; 
Read operations & set to empty; 
 
While (full) 
Wait; 
Write operation & set to full; 
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Conditional operations depend on the value of the FE-bit to complete successfully.  For 
instance, conditional write can only be performed if the state of FE-bit is unset and vice-
versa for conditional read operation.  Conditional memory operation can be either waiting 
or non-waiting. In Conditional waiting operation case, the operation remains pending 
until the state miss is resolved. This requires that the memory keep track of outstanding 
state misses (pending operations) in a way that is similar to keeping track of outstanding 
cache misses. In this project work, we are only focusing on conditional waiting 
operation. 
 
Conditional non-waiting memory operations can be either faulting or non-faulting. 
Faulting operation fire a trap on a state miss and trap handler may either retry the 
operation immediately (spin) or switch to another context. A non-faulting operation does 
not treat a state miss as an error and so does not require the miss to be resolved. Such 
operation is dropped on a state miss. 
 
All memory operations, described in figure 1 are further classified into two categories 
altering and non-altering operations. Altering memory operations modify the state of FE-
bit after successful synchronizing event whereas non-altering memory operations do not. 
According to this distinction, ordinary memory operations fall into unconditional non-
altering category. 
                                                  WNWr 
 
                                                                                 
                                                                                Rd read request                      
                                                                                 
                                                                                Wr write request 
                                                                                   
                                                                                N non-altering 
 
                                                                                A altering 
 
                                                                                U unconditional 
              W waiting  
              N non-faulting 
              T trapping 
              S waiting, non-faulting or faulting  
 
                                Figure 2: Notation of synchronizing memory operations 
 
The following table describes the notation used for each variant of memory operation and 
its behavior in case of synchronization miss. These notations have been explained in 
figure 2. 
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Table 1: Notation of synchronized operations 

Notation  Semantics Behavior on a 
synchronized miss 

UNRd Unconditional non-altering read 
UNWr Unconditional non-altering write 
UARd Unconditional altering read 
UAWr Unconditional altering write 

 
Never miss 

WNRd Waiting and non-altering read from full 
WNWr Waiting and non-altering read from write 
WARd Waiting and altering read from full 
WAWr Waiting and altering read from write 

Placing on the list of 
pending request until 
resolved 

NNRd Non-faulting and non-altering read from full 
NNWr Non-faulting and non-altering read from write 
NARd Non-faulting and altering read from full 
NAWr Non-faulting and altering read from write 

 
Silently discarded 

TNRd Faulting and non-altering read from full 
TNWr Faulting and non-altering read from write 
TARd Faulting and altering read from full 
TAWr Faulting and altering read from write 

 
Signal trap 
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3. Architectural support for fine-grain Synchronization 
 
3.1 Review of related work 
 
3.1.1. Alewife Machine 
The MIT Alewife machine [3] is a CC – NUMA multiprocessor with a full/empty tagged 
distributed shared memory and hardware-supported block multithreading. The machine, 
organized as shown in Figure 3. Memory is physically distributed over the processing 
nodes, which use a cost-effective mesh network for communication.  
 

 
Figure 3: Alewife node, LimitLESS directory extension [9]. 
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An Alewife node consists of a 33MHz SPARCLE processor, 64K bytes of direct-mapped 
cache, 4M bytes of globally-shared main memory, 2M bytes of directory (to support a 
4M byte portion of shared memory), 2M bytes of unshared memory and a floating-point 
co-processor.  
 
Alewife machine is internally implemented with efficient message-passing mechanism. It 
provides an abstraction of a global shared memory to programmers. The most relevant 
part of its nodes regarding coherency and synchronization protocol is the communication 
and memory management unit (CMMU), which deals with the memory request from the 
processor and determines whether a remote access is needed, it also manage the cache 
filling and replacements. Cache coherency is achieved through LimitLESS [9], a directory 
based protocol.  The home node is responsible for the coordination of all coherence 
operations for that line. 
 
3.1.2. Hardware vs. Software approach in Alewife 
In Alewife implementation, hardware support has been provided for the automatic 
detection of failure whereas actual handling of the failure is supported by the software. 
This technique gives an efficient CPU pipelining and register set in place, thus retaining 
good single thread performance 
 
There are two ways to express parallelism in Alewife: Data level and Control parallelism 
[20]. While implementing data-level parallelism, it’s necessary to synchronize at the 
defined granularity level. L-structure and J-structure are example of fine-grain 
synchronizing loads and stores. Such an operation reads or writes a data word while 
testing and/or setting a synchronizing condition. If operation succeeds, it doesn’t take 
longer than a normal load or store to complete. In the event of failure, the processor fires 
the trap. 
 
For the implementation of control parallelism it is necessary to know when a value 
produced by a future expression is being touched. This might happen anytime a value is 
used as an argument to an ALU operation or dereferenced as a pointer. The processor 
traps if the value being touched is not ready. 
 
3.1.3. Hardware support for J-structure and L-structure in Alewife 
Full/empty bits are used to represent the state of synchronized data in J-structures and L-
structures. A full/empty bit is referenced and/or modified by a set of special load and store 
instructions. References and assignments to J and L-structures use the following special 
load, store and swap instructions depending on whether detection through traps is desired 
or not: 
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LDN                Read location 
LDEN  Read location and set to empty 
LDT  Read location if full, else trap 
LDET  Read location and set to empty if full, else trap. 
STN    Write location 
STFEN Write location and set to full 
STT  Write location if empty, else trap 
STFT  Write location and set to full if empty, else trap 
SWAPN  Swap location and register  
SWAPEN Swap location with register and set to full 
SWAPT Swap location with register if empty, else trap 
SWAPET Swap location with register if full, else trap 
 
In addition to possible trapping behavior, each of these instructions sets a condition code 
to the state of the full/empty bit at the time the instruction starts execution. The complier 
has choice to use traps or tests of this condition code. When a trap occurs, the trap 
handling software decides what action needs to take. These synchronization J- and L-
structures provide for data-dependency and mutual exclusion, and are primitives upon 
which other synchronization operations can be built. Failed synchronizations are 
completely handled in software. In Alewife machine, failure is detected in hardware, and 
the trap dispatch mechanism passes control to the appropriate handler. 
 
i) J-structure 
Each J-structure element has been associated with a full/empty state bit. Allocating a J-
structure is implemented by allocating a block of memory with the full/empty bit for each 
word. Resetting a J-structure element involves setting the full/empty bit for that element 
to empty. Implementing a J-structure read is also straightforward; it is a memory read, 
which fire the trap, if the full/empty bit is empty.  
 
If the full/empty bit is empty, the reading thread may need to suspend execution and 
queue itself on a wait queue associated with the empty element. Now the question is, 
where this queue be stored? A possible implementation is to represent each J-structure 
element with two memory locations, one for the value of the element and other for a 
queue of waiters. 
 
ii) L-structure 
The implementation of L-structure is similar to that J-structure. The main differences are 
that L-structure elements are initialized to full with some initial value, and an L-structure 
read of an element sets the associated full/empty bit to empty and the element to the null 
queue. An L-structure peek, which is non-locking, is implemented in the same way as a J-
structure read. 
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On an L-structure write, there may be multiple readers requesting mutually exclusive 
access to the L-structure slot. Therefore, it is wise to release only one reader instead of all 
readers. Here the potential problem is that if the released reader remains unscheduled for 
some significant length of time after being released. It is not clear what method of 
releasing of waiter is best, and in current implementation it releases all waiters. 
 

3.1.4. Handling of failed synchronization in software 
Due to full/empty bits and signaling failures via traps, successful synchronization incurs 
very little overhead. But in case of synchronization miss, machine fires a trap and 
provides enough hardware support to rapidly dispatch processor execution to a trap 
handler. A failed synchronization implies that the synchronizing thread has to wait until 
synchronization condition is satisfied. There are two fundamental ways for a thread to 
wait: polling and blocking [20]. 
 
Polling involves repeatedly checking the value of a memory location, returning control to 
the waiting thread when the location changes to the desired value. No special hardware 
support is needed for the polling. Once the trap handler has determined the memory 
location to poll, it can poll on behalf of the synchronizing thread by using non-trapping 
memory instructions, and return control to the thread when the synchronization condition 
is satisfied. 
 
Blocking is more expensive because of the need to save and restore registers. Saving and 
restoring registers is particularly expensive in SPARCLE because loads take two cycles 
and stores three. If all registers need to be saved and restored, the cost of blocking can be 
several hundreds of cycles, more or less depending on cache hits. 
 
In Alewife machine, the compiler informs the synchronization trap handler to execute in 
case of synchronization misses. This trap handler is basically known as a waiting 
algorithm. If there are other threads to execute in parallel, then appropriate waiting 
algorithm is to block the memory location for barrier synchronization, and to poll for a 
while before blocking for fine-grain producer-consumer synchronization. Since fine-grain 
synchronization leads to shorter wait times, this reduces the probability that a waiting 
thread gets blocked. 
 
To control hardware complexity, thread scheduling is also done entirely in software. 
Once a thread is blocked, it is placed on a software queue associated with the failed 
synchronization condition. When the condition is satisfied, the thread is placed on the 
queue on runnable tasks at the processor on which it last run. A distributed thread 
scheduler that runs on all idle processors checks these queues to reschedule runnable 
tasks. 
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3.2 Proposed architecture 
The main aim of this research is to design and evaluate the performance of a Full/Empty 
tagged memory hierarchy with the aggressive hardware support for the implementation of 
fine-grain synchronization embedded in a cache coherency mechanism of an SMP or a 
NUMA multiprocessor.  
 
The objective here is to develop the efficient way to support the fine-grain 
synchronization in multiprocessor. The methodology used is to merge the fine-grain 
synchronization with the cache coherence protocol [26], [27], [29]. At this end, some 
changes are required in the existing architecture of cc-NUMA machines. This section is 
dealing with the architectural modifications that need to make to support the 
synchronization coherence protocol.  
 
Assume that each memory word is associated with full/empty bit (FE-bit). We call such a 
memory full/empty tagged memory or simply FE-memory. This FE-bit indicates the 
binary state of that memory location. If this bit is set (means logical value is 1), location 
is full otherwise location is empty (means it is in reset state and its logical value is 0). The 
full state of the memory location can be interpreted as bound, defined and containing 
some meaningful value. The empty state of the memory location can be interpreted as 
unbound, undefined and containing some meaningless value. In general FE-memory can 
be considered as the composition of three logical parts [29]: 
 

i) Data memory (DM) that holds the defined data. 
ii) State memory (SM) that holds the state bit means FE-bit. 
iii) State miss memory (SMM) that holds the pending access requests. 
 
 

3.2.1 Architectural model 
 
In earlier work [20], it is stated that if new synchronized read/writes come to such a 
memory location that is already empty/full (means FE-bit is reset/set), then these 
read/writes are considered as synchronization misses and interpreted as an error. To 
resolve this error exception is raised and it is handled differently.   
 
In the suggested architecture, synchronized read/write misses are not interpreted as an 
error, whereas we assume that full/empty memory operations suspends on a synchronized 
read/write miss (by analogy to a cache miss), waiting in a memory while the miss is 
resolved. In this way, a queue of waiting threads (pending operations) will be maintained 
as a queue outstanding misses. These pending operations are stored in state miss memory. 
When an appropriate synchronizing operation is performed, the relevant pending requests 
stored in the list are resumed. 
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Each cache is also tagged with two pending bits with each word to provide full hardware 
support for completing the synchronized pending read/write memory operations. 
 

i) Pr-bit, if this bit is set, it means there is/are pending synchronized read for the 
corresponding word. This information is required for the synchronized write 
to satisfy immediately the pending synchronized read after completing the 
write operation into the specified memory location. 

 
ii) Pw-bit, if this bit is set, it means there is/are pending synchronized write for 

the corresponding memory location. This information is required for the 
synchronized read to satisfy immediately the pending synchronized write after 
completing all the read operations from the specified memory location.    

    
A FE-memory operation might access only data (e.g. read/write), or data and state (e.g. 
read/write and set to empty/full), or only state (e.g. set to empty). We assume that a 
memory operation that accesses both, data and state is atomic. An operation is called 
altering if it sets a new state for the target location. Altering read sets the location empty 
and read the data and altering write sets the location full and writes the data.  
 
 
    Tag                                                Pw-bits                                                    Data bits 
   Array 
 
 
 
 
 
 
                                                                                                  
        Pr-bits                                                                                                                FE-bits 
 
 

Figure 4: Architecture of Modified Cache 
 
The Figure 4 illustrates the changes in Cache. Considering the example of 4-processor 
system with 32-byte memory blocks (4 words), the cache block have a storage overhead 
of 9% - 12 bits (4 FE-bits, 4 Pr-bits, 4 Pw-bits) extra than 256 bits data block plus tag 
bits. 
 
Figure 5 illustrates a possible logical organization of a full/empty memory and full/ empty 
cache in a bus based shared memory multiprocessor (only one node is shown). Empty bits 
and pending bits can be stored together with tags in the tag-directory of the FE-cache.  
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Figure 5: Organization of FE-cache and FE-memory  

 
We assume that state misses can be treated in the same was as cache misses and the 
information that keeps track of outstanding misses (state and cache) is stored in Miss 
State Holding Registers (MSHR).  
 
Some modifications have to be made to the cache architecture in case synchronization 
misses are to be kept in MSHR. More specifically, MSHR in lockup free caches stores the 
information listed in Table 2 [11], [21]. In order to store synchronization misses in these 
registers, two more fields have to be added containing the slot’s index accessed by the 
operation and the specific variant of synchronized that will be performed. 
 

 

Table 2: Information Stored in MSHR 

Field Semantics 
Cache buffer address Location where data retrieved from memory is stored 
Input request address Address of the requested data in main memory 
Identification tags Each request is marked with a unique identification label 
Send-to-CPU flags If set, returning memory data is sent to CPU 
In-input stack Data can be directly read from input stack if indicated  
Number of blocks Number of received words for a block 
Valid flag When all words have been received the register is freed  
Obsolete flag Data is not valid for cache update, so it is disposed 
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When a memory word is cached, its full/empty bit along with pending bits must also be 
cached. As a result, not only data but full/empty and pending bits must also need to keep 
coherent. An efficient option is to store the full/empty bits and pending bits as an extra 
field in cache tag, allowing the checking of synchronization state in the same step as the 
cache lookup. Hence the coherence protocol has two logical parts, one for data and other 
for synchronization bits. 
 
This cache design coupling with fine-grain synchronization, the smallest synchronization 
element is a word.  Since cache line is usually longer, so it may contains multiple 
elements, including both synchronized and ordinary data. [26] (Refer figure 6). A tag 
contains the full/empty bits and pending bits for all synchronized words that are stored in 
that line. Usually state information refers to complete cache line whereas full/empty bit 
and pending bit refer to single word in that cache line.  
 
                                                                      
                              Synchronized data                                           Synchronized data 
FE-bit                    (empty, no pending                                         (full, no pending-read,                 
                              Read/write)                                                       pending-write) 
  
0 0 0 Word0 Word1 Word2 1 0 1 Word3 State information 
 
 
Pr-bit         Pw-bit                 Ordinary data 
 
 
                  Figure 6: Cache line containing both ordinary and synchronized data. 
 
The following table 3 explains the synchronization operation of read/writes on the 
synchronized memory location depending on the status of FE-bit and pending-bits. 
 
A complete description of a cache coherence protocol includes the states, transition rules, 
protocol message specification and the description of a cache line organization and 
memory management of pending requests. The suggested architecture is based on 
following assumptions: 
 

• The smallest synchronized data element is a word; 
• CPU implements out – of – order execution of instructions; 
• Each processing node has a miss-under-miss lockup-free cache and supporting 

multiple outstanding memory requests. 
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Table 3:  Synchronized operation on synchronized data word Based on FE and P-Bits 

FE-
bit 

Pr-
bit 

Pw- 
bit 

Synchronized operation on synchronized data word 

0 0 0 No pending Read/Write operation for the memory location, New 
synchronized write can be performed and set the FE-bit 

0 0 1 More than one synchronized writes are pending and next 
synchronized write can be resumed from the pending write queue 
and set the FE-bit 

0 1 0 Only pending-read, no pending-write, new synchronized write 
can be performed and set the FE-bit to resume the pending-read. 

0 1 1 Pending read as well as more than one synchronized writes are 
pending for that location and next synchronized can be resumed 
from the pending write queue and set the FE-bit to resume the 
pending-read. 

1 0 0 No pending read/write, new synchronized read can be performed 
to read or FE-bit can be reset to reuse of that memory location 

1 0 1 Only pending-write, new synchronized read can process or FE-bit 
can be reset to reuse of that memory location and resume the 
pending-write. 

1 1 0 Discarded combination 
1 1 1 Discarded combination 
 

 
 
3.3 Synchronization cache coherence protocol 
In a multiprocessor system, cache memory to each processing node is used to speed up 
the memory operations. It is necessary to keep the cache in coherency [10] by ensuring 
that modifications to data that is resident in cache are seen in the rest of the node that 
share a copy of the data. Cache coherence can be achieved in several ways depending 
upon the system architecture.  
 
[12] In Bus-Based System, cache coherency is implemented by snooping mechanism, 
where each cache is continuously monitoring the system bus and updating its state 
according to the relevant transactions seen on the bus. On the other hand mesh network-
based system use a directory structure to ensure cache coherency. Both snoopy and 
directory based mechanisms can be further classifieds into invalidate and update 
protocols. When a cache modifies shared data, all other copies are set as invalid in case 
of Invalidate Protocol, whereas in Update Protocol all copies sets to new value in all 
cache during modification of shared data in one cache instead of making them invalid. 
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The performance of multiprocessor is partially limited by cache miss and node 
interconnects traffic [11]. Another performance issue is the overhead imposed by 
synchronizing data operations; this overhead is due to the fact that synchronization is 
implemented as a separate layer over the cache coherence protocol. If synchronization 
and coherence protocols are more tightly coupled by merging them into one, increased 
performance and reduced network traffic can be achieved.  
 
Each memory is associated with a full/empty bit (FE-bit). This FE-bit indicated the state 
of memory location. If the bit is set, location is full, otherwise the location is empty. Each 
cache is also tagged with pending bits (P-bits) – if a Pr-bit is set, it means there is a 
pending synchronized read for the corresponding word and if Pw-bit is set, it means there 
is a pending synchronized write for the corresponding word. The cache controller not 
only match the tag bit also state bits depending on the instruction and take decision based 
on the state of the associated FE-bit and P-bits.  
 
The defining feature of the Synchronization Coherence Protocol is that synchronization 
misses are treated as a cache misses in the individual nodes. It thus kept in the Miss 
Information Holding Registers of a remote node to be subsequently resolved by explicitly 
messages from the home node (directory). The home nodes contains Synchronization 
Miss Buffer (SMB), that holds the information regarding which node have pending 
synchronized read/write for a given word in case of directory-based protocol.. 
 
In order to evaluate the performance improvement of this proposed architecture with 
respect to existing architecture, appropriate workloads must be tested on the machine. We 
must find the suitable application that show the result in meaningful way, so that the 
effects of the synchronization overhead such as the cost of additional bit storage, 
execution latency or extra network traffic can be studied in detail. 
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4. FGS Snoopy Coherence Protocol 
 

                                                 …. 
                              List of pending                                                                 
                               Requests 

                                                         
System Bus                                                                                      
                    Bus snoop                                  Cache-memory                    
                                                                                              I/O devices     Transaction   
             
 
 
                                                                                                       
 
                                                                                                  

 
Figure 7:  Snoopy cache-coherent multiprocessor with Shared-Memory 

 
Bus-based system architecture, figure 7, illustrates the bus connection of processing 
nodes with their private caches placed on a shared bus. Each processing node’s cache 
controller continuously snoops on the bus watching for relevant transaction and updates 
its state suitably to keep its local cache coherent [12]. The dashed-line and arrows shows 
the transaction being placed on the bus and accepted by main memory as in uniprocessor 
system. The continuous line shows the snoop. The key properties of the bus that support 
coherence are the following: 
 

• All transactions that appear on the bus are visible to all cache controllers. 
• They are visible to all controller in the same order (the order in which they appear 

on the bus) 
 

A coherence protocol must guarantee that all the “necessary” transactions appear on the 
bus, in response to memory operations, the controllers should take the appropriate actions 
when they see a relevant transaction. The protocol described here is based on the MESI 
protocol, also knows as Illinois protocol.  It is a four-state write-back invalidation 
protocol with the following state semantics [12]: 

Cache Cache 

 
   Shared 
  Memory 

P1 Pn 
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• Modified – cache has the valid copy of the block and location in main memory is 
invalid. 

• Exclusive clean – cache has a copy of the block and main memory is up-to-date.  
A signal is available to the controller in order to determine on a BusRd if any 
other cache currently holds the data. 

• Shared – the block is present in an unmodified state in the cache and zero or more 
caches may also have a shared copy, main memory is up-to-date 

• Invalid – no valid data is present in the block. 
 
The state transition diagram of MESI protocol without fine-grain synchronization support 
is shown in Figure 8. The notation A/B means that ‘A’ indicates an observed event 
whereas ‘B’ is an event generated as a consequence of A. Dashed lines show state 
transitions due to observed bus transactions, while continuous lines indicate state 
transitions due to local processor actions.  
 

 
Figure 8: MESI cache coherence protocol  

 
Finally, the notation Flush means that data is supplied only by the corresponding cache. 
Also this diagram does not consider the transient states used for bus acquisition.  
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4.1 Protocol Description 
The state transitions needed to integrate fine-grain synchronization in MESI can be done 
by splitting the ordinary MESI sates into two groups: empty state transitions and full state 
transitions.  In the protocol description, we consider only waiting non-altering reads and 
waiting altering writes. Altering reads can be achieved by issuing non-altering reads in 
combination with an operation that clears the FE-bit without retrieving data. This 
operation is called as unconditional altering clear (PrUACl) and it operates on a FE-bit 
without accessing or altering the data corresponding to that state bit.  In  order  to  reuse  
synchronized  memory  locations, clearing  of  FE- bits  is  necessary  (this is described in 
detail in [20] ). This operation can be initialized as soon as there is no pending read for 
that location (Pr-bit is clear) and FE-bit need to be reset to reuse that memory location. 
 
The most complex synchronizing operations in cache are the waiting read/write 
operations because they require additional hardware in order to manage deferred list and 
resume pending synchronization requests. The rest of the synchronizing operations are 
simpler version of waiting read/write operations with the only difference being in the 
behavior of operations, when a synchronization miss is detected. Instead of adding the 
rest of these synchronizing operations in pending list, either an exception is raised or the 
operation is discarded.   
 
Two additional bus transactions have been introduced in order to integrate fine-grain 
synchronization with cache coherence in the MESI protocol [27], which ensures the 
coherence of FE-bits and Pending-bits. Table 4 describes in more details.  
 

Table 4: Additional bus transactions in the MESI protocol 

Bus 
Transaction 

Description 

BusSWr A node has performed an altering waiting write and reset the Pr-bit. 
The effect of this operation in observing nodes is to set the FE-bit and 
reset the Pr-bit of the referring memory location to resume the 
relevant pending-read requests. If more than one pending-write is 
there for that memory location then Pw-bit need to set again after 
completing the altering waiting write.  

BusSCl A node has performed an altering read or an unconditional clear 
operation. The effect of this operation in observing nodes is to clear 
the FE-bit and reset the Pw-bit of the referring memory location, thus 
making it reusable. 

 
The new bus signal ‘C’ is introduced to determine the condition of synchronized 
operation miss, named shared-word signal and indicates if there is any other node sharing 
to the specified word. This signal can be implemented as a wired-OR controller line, 
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which is asserted by each cache that contains the copy of the relevant word with the FE-
bit set. 
 
It is necessary to specify the particular data word on which synchronization operation is 
performed because cache line may contain several synchronized data words. A negated 
signal (C’) causes a requesting read to be appended to the list of pending reads in MSHR, 
sets the Pr-bit (if not set) and resets the Pw-bit to resume pending-writes (if any), 
otherwise perform the new incoming requesting writes. If the synchronization signal ‘C’ 
is asserted, then it resets the Pr-bit to resume the pending-reads (if any), otherwise new 
synchronized read is processed and requesting write is appended to the list of pending 
writes in MSHR and the Pw-bit is set. 
 
Along with shared-word signal which is already introduced, three more wired-OR signals 
are required for the protocol to operate correctly [12]. The first signal (named S) is 
asserted if any processor different than the requesting processor has a copy of the cache 
line. The second signal is asserted if any cache has the block in a dirty state. This signal 
modifies the meaning of the ‘S’ signal in the sense that an existing copy of a cache line 
has been modified and then all the copies in other nodes are invalid. A third signal is 
necessary in order to predict whether all the caches have completed their snoop, which 
means, it is reliable to read the value of the first two signals. 
 
 

4.2. Correspondence between processor instructions and 
bus transactions 
 
When a processing node issues any memory operation, the local cache first interprets the 
request and then performs accordingly, if required it also issues the bus transaction. The 
correspondence between the different processor instructions and the memory requests 
seen on the bus is shown in following Table 5. 
 

Table 5: Correspondence between processor instructions and memory requests 

Request from 
processor 

Bus transaction 

PrUNRd BusRd (Ordinary read) 
PrUNWr BusWr ( Ordinary write) 
PrUARd BusRd + BusSCl 
PrUAWr BusAWr (Not specified in protocol definition) 
PrWNRd BusRd (C) (Bus transaction with shared-word signal) 
PrWNWr BusWr (C)  
PrWARd BusRd (C) + BusSCl 
PrWAWr BusSWr (C)  



 
 

 
Architectural and programming support for FGS in Shared-Memory Multiprocessors 

 
 

 

Hari Sharma/IMIT/KTH/Stockholm/2004 24

 
From Table 5, it can be inferred that unconditional read/write requests from the processor 
generates the ordinary read/write transaction on the bus. Unconditional altering read 
PrUARd, requires BusRd transaction followed by BusSCl transaction, therefore this 
request retrieves the data from the corresponding memory location and as well clears the 
FE-bit. Clearing the FE-bit is performed by the BusSCl transaction, which does not 
access nor modifies the data. Finally unconditional write request PrUAWr, generates the 
bus transaction, namely BusAWr, which unconditionally sets the FE-bit after writing the 
corresponding data to the specified memory location. 
 
Table 5 shows that the behavior of all the conditional memory operation depends on the 
shared-word bus signal. A conditional non-altering read operation generates an ordinary 
read bus transaction after checking the status of shared-word signal, if it is asserted. A 
conditional altering read operation generates ordinary read transaction in addition to the 
BusSCl transaction. Finally, a conditional altering write causes a BusSWr transaction to 
be initiated on the bus. This transaction sets the FE-bit and resets the Pr-bit after writing 
the corresponding data to the referred memory location to resume the pending-read 
operations, if any exists. 
 
 
4.3. Resuming of pending requests 
It is very crucial to specify how the resuming of pending requests is done. In the snoop-
based systems, coherence of FE-bit and Pending-bits is ensured by the proper bus 
transactions. It means that all caches those have pending read/write requests for a given 
memory location will get to know when the synchronization condition is met by snooping 
into the bus and monitoring for the BusSWr or BusSCl transactions to occur.  
 
When any bus transaction occurs, a comparator in a cache checks if there is any entry in 
MSHR matching with the received bus transaction. If incoming transaction matched with 
any MSHR entry and bus transaction is BusSWr, then the observing node will perform 
altering-write operation, it will set the FE-bit and reset the Pr-bit to resume the pending 
read for the referred location. On the other hand, if bus transaction is BusSCl then the 
observing node will perform altering-read or unconditional clear operation, it will reset 
the FE-bit and Pw-bit to resume the pending write for the referred location.  
 
It is also possible to have pending requests for the memory location that is not cached or 
is in invalid state. The location will be cached in the cache as soon as the synchronization 
miss is resolved to make it available for the processing at the desired node. 
 
Considering the example of three node bus system shown in Figure 9, and assume that 
every node has pending requests for location ‘X’ in their respective MSHR. Suppose 
nodes A and B have invalid copies in their caches along with Pr-bit is set (means read 
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request is pending for the location ‘X’), whereas node C has the exclusive ownership of 
the referred location ‘X’, whose FE-state bit and Pw-bit is unset. After node C 
successfully performs a conditional altering write to location ‘X’ and unset the Pr-bit to 
resume pending read, if any available at this node for the location ‘X’ as well this event is 
notified on the bus by a BusSWr transaction.  
 
This transaction informs nodes A and B that they can reset their Pr-bit corresponding to 
the location ‘X’ to resume the pending read requests, which happens to be a conditional 
altering read. As a consequence, only one of these nodes will be able to successfully issue 
the operation at this point. This is imposed by bus order. For instance, if node B gets the 
bus ownership before node A, the pending request from the node B will be resumed first 
and the operation at node A will stay pending in the MSHR. 
 

 
 

Figure 9: Resuming of pending requests.  

While handling multiple pending write requests for a single memory location, the cache 
controller analyzes the tag along with FE-bit and pending read/write bits for the new 
synchronized write operation and if write miss occurs and Pw-bit is already set (means 
already there is a pending write for that location). In this case, the later synchronized 
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write miss will be added to the deferred list of MSHR and it will be linked with the 
former synchronized write miss to the same location. As soon as all the synchronized 
read misses will be resolved for this memory location, the cache controller will reset the 
FE-bit and Pw-bit to resume the pending write miss. The very first pending synchronized 
write miss will be activated and will perform the write operation  It will set the FE-bit, 
reset the Pr-bit to resume the pending reads and at the same time sets the Pw-bit again to 
take care the write misses for the same location, those are still pending to resolve.  
 
4.4. Transition rules of Synchronized Snoopy-based protocol 
Transition rules from each coherence state are presented in the following sections for the 
four state MESI protocol. These transition rules are similar to those described in [27] but 
each rule is modified in order to capture the handling of synchronized pending read/write 
operations and their deferred list. A description made here is in the form of C-styled 
pseudo-code for the each state. It explains how transition happens from one state to other. 
It is noted that the ordering of all kind of misses (cache misses and synchronized misses) 
from different processors is maintained by the bus order.  
 

4.4.1. Transition from the Invalid State 
 SWITCH (IncomingRequest) { 

     //Processor Requests 
     CASE PrUNRd : Send (BusRd); 
                IF (S) { 
       FlushFromOtherCache(); NextState = Shared; 
    }  ELSE {   

   ReadMemory( );NextState = Exclusive; 
         }  Break; 
          CASE PrUNWr: Send (BusRdX); NextState = Modified; Break; 
     CASE PrWNRd: Send (BusRd); 
                       IF (S && C) { 
            FlushFromOtherCache(); NextState = Shared;  
         }  ELSE IF(!S && C) { 
       ReadMemory(); NextState = Exclusive; 
                      }  ELSE { 
       AddToDeferredList();  //Wait to resolve. 
       SetPrBit ( ); NextState = Invalid; 
         }  Break; 
     CASE PrWAWr : Send ( BusWr ); 
              IF (S && !C) {  
            WriteToBus(); NextState = Shared;//To resolve 
         }  ELSE IF (!S && !C) {      
            WriteToCache(); NextState = Modified;   
    }  Else {                      
                           AddToDeferredList(); // Wait to Resolve. 
       SetPwBit ( ); NextState = Invalid; 
         }  Break; 
          CASE PrUACl : IF (C){ 
                 Send ( BusSCl ); NextState = Invalid; 
    }  Break; 
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4.4.2 Transition from the Modified State 
       SWITCH (IncomingRequest)  
         { 
    //Processor Requests 
    CASE PrUNRd: ReadCache(); NextState = Modified; Break; 
         CASE PrUNWr: WriteToCache(); NextState = Modified; Break; 
         CASE PrWNRd: IF(Full) { 
                         ReadCache(); NextState = Modified; 
                      }  ELSE { 
     AddToDeferredList();         // Wait to Resolve 
          SetPrBit(); NextState = Modified; 
            }  Break; 
    CASE PrWAWr: Send(BusSWr);  
                      IF(Empty) {  
     WriteToCache();NextState = Modified; 
                         ResetPrBit();            //Resume pending reads  
       }  ELSE {      
          AddToDeferredList();         // Wait to resolve 
                         SetPwBit();NextState = Modified;                       
                 }  Break; 
         CASE PrUACl: IF (Full) { 

       ReSetFE();NextState = Modified;    
                         ReSetPwBit();            //Resume pending write 

    }  Break; 
      

         ---- Bus Signals                  
         CASE BusRd:  flush(); NextState = Shared; Break; 
    CASE BusRdX: flush(); NextState = Invalid; Break; 
    CASE BusSWr: IF(Empty) { 
     WriteToCache(); NextState = Shared; 
     UnSetPrBit();            //Resume pending reads 
            }  Break; 
    CASE BusSCl: IF(Full) { 
          ReSetFE(); NextState = Shared; 
     ReSetPwBit();            //Resume pending write 
       }  Break;                       
         } 
 

4.4.3 Transition from the Exclusive State 
      SWITCH (IncomingRequest)  
        { 
   //Processor Requests 
   CASE PrUNRd: ReadCache(); NextState = Exclusive; Break; 
        CASE PrUNWr: WriteToCache(); NextState = Modified; Break; 
        CASE PrWNRd: IF(Full) { 
                        ReadCache();NextState = Exclusive;  
                     }  ELSE { 
         AddToDeferredList();          // wait to resolve 
         SetPrBit(); NextState = Exclusive; 
           }  Break; 
   CASE PrWAWr: Send(BusSWr);  
                     IF(Empty) {  
         WriteToCache(); 

ReSetPrBit();             //resume pending reads  
         NextState = Shared;       // need to evaluate 
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      } ELSE {                                                    
              AddToDeferredList();      //wait to resolve 
                        SetPwBit();NextState = Exclusive;                               
                     }  Break; 
   CASE PrUACl: IF(Full) { 

      ReSetFE(); NextState = Modified;    
      ReSetPwBit();   //resume pending write 

           }  Break; 
      
        //// Bus Signals                  
        CASE BusRd:  flush(); NextState = Shared; Break; 
   CASE BusRdX: flush(); NextState = Invalid; Break; 
   CASE BusSWr: IF(Empty) { 
         WriteToCache(); NextState = Shared; 
    ReSetPrBit();             //resume pending reads 
      }  Break; 
   CASE BusSCl: IF(Full) { 
         ReSetFE();NextState = Shared; 
         ReSetPwBit();             //resume pending write 
      }  Break;                       
        } 
 
 

4.4.4 Transition from the Shared State 
       SWITCH (IncomingRequest)  
         { 
    //// Processor Requests 
    CASE PrUNRd: ReadCache();NextState = Shared; Break; 
         CASE PrUNWr: Send(BusRdX); WriteToCache();NextState = Modified; 
       Break; 
         CASE PrWNRd: IF(Full) { 
                         ReadCache();NextState = Shared; 
                      }  ELSE { 
                         AddToDeferredList();          //wait to resolve 
          SetPrBit(); NextState = Shared; 
       }  Break; 
         CASE PrWAWr: Send(BusSWr);  
                      IF(Empty){  
          WriteToCache();  
                    ReSetPrBit();            //resume pending reads  
               NextState = Shared;         // need to evaluate 
                       }  ELSE {                                               
                AddToDeferredList();        //wait to resolve 
                          SetPwBit(); NextState = Shared;   
                       }  Break; 
    CASE PrUACl:  IF(Full){ 

        ReSetFE(); 
        ReSetPwBit();           //resume pending write 
        Send(BusSCl); NextState = Shared;    

        }  Break;      
          
         ///// Bus Signals                  
         CASE BusRd:   Flush(); NextState = Shared; Break; 
    CASE BusRdX:  Flush(); NextState = Invalid; Break;                             
    CASE BusSWr:  IF(Empty){ 
           WriteToCache();NextState = Shared; 
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           ReSetPrBit();           //resume pending reads 
        }  Break; 
    CASE BusSCl:  IF(Full){ 
      ReSetFE(); NextState = Shared; 
           ReSetPwBit();           //resume pending write 
                  }  Break;                       
         } 
 
 
4.5. Merging of pending requests 
Each processing node maintains its local deferred list. This list contains both cache 
misses and synchronization misses.  It can happen that both types of misses are for the 
same location. So in this case, not only cache line is present but also synchronization state 
is not met at the location where the copy of word is present. After a relevant change in the 
synchronization state of the memory location, any operation that matches with the present 
synchronized state is resumed at the appropriate processing node. 
 
Table 6 shows how the management of the deferred list is done at a local node. More 
precisely, this table specifies the action taken by cache controller when a new request is 
received with respect to a pending request already present in the list of deferred 
operations. This merging of requests is basically a optimization in coherence protocol. It 
is noted that a pending write is always conflicting with any incoming requests, so it can 
never be merged and required separate entry in list of pending requests. Since write 
operations are always conflicting, all write requests have not shown in the Table 6. 
 

Table 6: Merging of requests with incoming requests. 

Incoming requests Can be merged with  
PrUNRd 
PrUARd 

 Any previous pending read request referred to the same  
location. 

PrWNRd 
PrWARd 
PrNNRd 
PrNARd 
PrTNRd 
PrTARd 

 
Only non-altering pending read request referred to the same 
location. 
 

 
From the table 6, it can be observed that incoming unconditional read operations can be 
merged with any pending reads requests whereas incoming conditional reads can be 
merged with only non-altering pending read requests. 
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4.6. Discussion 
A bus based snoopy coherence protocol integrated with fine-grain synchronization 
support has been introduced. This implementation considers only waiting non-altering 
reads, waiting altering writes and unconditional clearing FE-bits memory operations. A 
systematic protocol description is made here in the form of state transitions and their 
corresponding C-styled pseudo-code. 
 
In the snoopy-protocol the coherence of FE-state bits and Pending- bits is maintained by 
bus transactions defined for this purpose, namely BusSWr and BusSCl. An additional bus 
signal ‘C’ called shared-word along with three more bus signals are also introduced in 
order to implement the conditional behavior of synchronizing operations. 
 
A drawback of integrating fine-grain synchronization with cache coherence at the cache 
level is the complexity of managing and resuming of pending synchronization requests. 
This complexity can be over come by the use of aggressive and efficient hardware 
support in the system in terms of FE-bits and Pending-bits, which can exploit the 
efficiency of fine-grain synchronization to achieve high degree of parallelism and 
improve its performance.  
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5. FGS directory-based coherency protocol 
 
Scalable cache coherence is typically based on the concept of a directory. Since the state 
of a block in a cache can no longer be determined implicitly by placing a request on a 
shared bus and having it snooped by the cache controllers, the idea is to maintain the state 
explicitly in a place – called a directory. It can be imagine that each cache-line-sized 
block of main memory has associated with it a record of the caches that currently contain 
a copy and the state of the block in those caches. This record is called the directory entry 
for that block. 
 
Figure 10, shows a system of a scalable multiprocessor with directories. ‘CA’ works as 
communication assist between cache, main memory and interconnection network. All the 
endpoint processing at the destination of the transaction (invalidating blocks, retrieving 
and replying with data) is typically done by the communication assist rather than the 
main processor. 
 
 
 
 
 
 
 
 
Directory                                          Directory 
   
   
       Memory                                                                                  Memory 
 
 
 

 
 

Figure 10: A scalable multiprocessor system with directories 
 

 
Since directory schemes rely on point-to-point network transactions, they can be used 
with any interconnection network.  In a scalable multiprocessor based system, shown 

Scalable interconnection network 

  Cache1   Cache2 

P2 

CA CA 

P1 
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below in Figure 10, each shared memory block has a directory entry that lists the nodes 
that have a cached copy of the data [12]. FE-bit and Pending-bits are stored as an extra 
field on the coherence directory entry to implement efficiently the synchronization 
conditions. Point-to-point messages are used to keep the directory up-to-date and to 
request permissions for a load and store to a particular location. 
 

5.1. Alewife directory based coherence protocol 
The following directory states are defined in  Alewife machine for the coherence protocol: 
 

• Read-only: One or more caches have a read-only copy of the block 
• Read-write: Only one cache has a read-write copy of the block 
• Read Transaction: Cache is holding a read request (update is progress) 
• Write transaction: Cache is holding a write request (invalidation is in progress) 

 

5.2. Directory modification to support FGS 
All the caches and directory blocks contain an array of the FE-bits – one for each word. 
Each cache and directory block is also tagged with pending bits (Pr-bit and Pw-bit). If a 
Pr-bit is set, it means there is pending synchronized read for the corresponding word. 
This information is required so that synchronized write can immediately resume the 
pending read after it has completed writing at the corresponding memory location.  
 
On the contrary, if Pw-bit is set, it means there is a pending synchronized write and this 
information is required so that synchronized read can immediately resume the pending 
write after finishing the reading to the corresponding memory location. If more than one 
synchronized write are pending for the same location, then will have separate entries for 
each pending write and Pw-bit will remain set until all writes resolved. This will be taken 
care by the directory controller, which will keep observing the pending list of 
synchronized write misses. 
 
The home node (directory) also contains a Synchronization Miss Buffer (SMB), which 
holds information regarding which node has pending synchronized read/write for a given 
word. Figure 11 shows the modified directory and SMB organization for a 4 processor 
system with 32 byte memory blocks (4 words, a example). 
 
It has been already mentioned that SMB contains entries of nodes which suffered from 
synchronization read/write miss and entry is indexed by the word address. But how many 
entries should this SMB contain? For hit-under-miss architecture with ‘n’ nodes, there 
can be utmost ‘n–1’ pending operations [26]. For very large configuration or for miss-
under-miss architecture, the requisite number of entries can be very large. 
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Write back from cache                                                                             reply to respective 
                nodes  
            Pr-bits                           Pw-bits                                    SMB 
       (one bit per word)      (one bit per word) 
 
                     
 
 
 
 
  
                                   FE-bits 
Full Bit Vector             (one bit per word) 
 (one bit per node)                                   

                                     Figure 11:  Modified directory and SMB 
 
In such cases, an overflow mechanism can be employed – if entries are running out of 
SMB entries, an overflow bit can be set and the directory controller would treat this 
situation differently. Either directory controller would assume that all nodes are pending 
[26] or it will replace any cache randomly with upcoming cache [27]. In former method, 
controller will send reply to all of them accordingly depending on the kind of request. 
During this time processor will be stalled and directory controller will not accept 
anymore request until it would not get any SMB entry free.   
 
All synchronization misses are kept in MSHR of the remote node to be subsequently 
resolved by the explicit messages from the home node (directory). The cache controller 
has to match not only tag but also the state bits depending upon the instruction and take 
decision based on the state of the cached line as well as the associated FE-bit and 
Pending read/write bits. The directory controller is very complicated because of the FSM, 
which implements the synchronization coherence protocol in the directory. It has to send 
data asynchronously to resolve synchronization misses on write backs by looking up SMB 
and so on. 
 
5.3. Correspondence between processor instructions and 
network transaction 
 
The network transactions used in the proposed protocol are described in Table 7. It shows 
the requests sent from cache to memory and requests sent from memory to cache. Six 
new messages are introduced in order to implement fine-grain synchronization at the 
cache level. These messages are SRREQ, SWREQ, SCREQ from cache to memory and 
SRDENY, SWDENY and ACKSC from memory to cache. 

 
                        
      
 
 

            
     
  Word address           Pending nodes   
                                   full bit vector  
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Table 7: Network transactions in the directory-based protocol 

Type of Message Symbol Semantics 
RREQ Request to read a word that is not in the cache 
WREQ Request to write a word 
SRREQ Waiting and non-altering read request 
SWREQ Waiting and altering write request 
SCREQ Request to clear FE-bit 
UPDATE Returns modified data to memory 

 
 
 
Cache to Memory 

ACKC Acknowledges that a word has been invalidated 
RDATA Contains a copy of data in memory (response to 

RREQ) 
 
 
Memory to Cache WDATA Contains a copy of data in memory (response to 

WREQ) 
SRDENY Sent if a SRREQ misses and request is appended 

to pending list at directory 
SWDENY Sent if a SWREQ misses and request is 

appended to pending list at directory 
INV Invalidates the cache words 
ACKSC Acknowledges that the FE-bit has been unset in 

all the copies of the block 

 
 
 
Memory to Cache 

BUSY Response to any RREQ or WREQ while 
invalidation are in progress 

 
SRDENY and SWDENY transaction issues from the memory when synchronization miss 
occurs, directory controller creates and entry at SMB corresponding to the miss and 
controller resolves it when synchronization condition meets for the specified memory 
location. Following Table 8 shows that how cache interprets the request from processor 
and translates it into one or more network transactions.  
 

Table 8: Correspondence between processor instructions and network transaction 

Instruction from 
Processor 

Initiated network 
transaction 

PrUNRd RREQ 
PrUNWr WREQ 
PrUARd RREQ + SCREQ 
PrUAWr - 
PrSNRd SRREQ 
PrSNWr CWREQ 
PrSARd SRREQ + SCREQ 
PrSAWr SWREQ 
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5.4. Directory transition rules 
The following description of transition states is based on the Alewife coherence protocol 
[9]. The rules defined here are similar to those described in [26], [27]. But each rule is 
modified and extended in order to manage pending bits for synchronized read/write and 
SMB entries. Transition rules in each coherence state are presented with their C-styled 
pseudo-code for the directory-based protocols. The protocol is completely defined in 
following five states. In this description, directory controller will replace any cache 
randomly with the new upcoming cache in case of overflow at SMB entries. 
 

5.4.1. Transition from the Absent State 
               SWITCH (IncomingRequest) { 
       CASE RREQ(i): addNodeToDirectory(i); //"i" is the sending node id       
                     Send (RDATA, i);      //send requested data to node 
                     NextState = ReadOnly; BREAK; 
      CASE WREQ(i): IF (ackCounter == 0) { 
                        addNodeToDirectory(i); Send (WDATA,i); 
                        NextState = ReadWrite; 
                     }  ELSE { 
                        addNodeToDirectory(i); 
                        NextState = WriteTransaction; 
        }  BREAK; 
      CASE SRREQ(i): IF(FULL) { 
                        addNodeToDirectory (i); Send (RDATA, i); 
                        NextState = ReadOnly; 
                     }  ELSE { 
                        Send (RDENY,i); AddToDeferredList(); 
                        SetPrBit ( ); NextState =Absent; 
                     }  BREAK; 
      CASE SWREQ(i): IF(EMPTY && deferredListEmpty()){ 
                        addNodeToDirectory (i); Send (WDATA, i); 
                        NextState = ReadOnly; 
                     }  ELSE IF (EMPTY &&! deferredListEmpty()){ 
                        addNodeToDirectory(i); Send (WDATA,i); 
                        ResetPrBit(); NextState = ReadOnly; 
                     }  ELSE { 
                        Send (WDENY,i); addToDeferredList(); 
                        SetPwBit(); NextState = Absent; 
                     }  BREAK; 
       CASE SCREQ(i): ResetFE(); Send (ACKSC,i); ResetPwBit(); 
                      NextState = Absent; BREAK;  
       CASE ACKC(i):  ackCounter--; NextState = Absent; BREAK; 
      } 
 
5.4.2. Transition from the Read-only state 
               SWITCH (IncomingRequest) { 
        CASE RREQ(i): IF(hasPointerInDirectory(i)) { 
                         Send (RDATA, i); // "i" is the sending node id. 
                      }  ELSE IF(!directoryFull( )) { 
                         addNodeToDirectory(); Send(RDATA,i); 
                      }  ELSE { 
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                         ++ackCounter; j = evictRandomDirectoryEntry();                
                         Send(INV,j); addNodeToDirectory(); 
                         Send (RDATA, i); 
        }  NextState = ReadOnly; BREAK; 
    CASE WREQ(i): IF(hasPointerInDirectory(i) && (numberOfEntries()>1)){ 

       ackCounter += numberOfEntries() - 1; 
 FOR(j = 0; j < numberOfEntries(); j++) { 
 IF (i != j) Send (INV, j); 

       } clearDirectory ( ); addNodeToDirectory (i); 
 NextState = WriteTransaction; 

    }  ELSE IF(hasPointerInDirectory(i) &&         
              (numberOfEntries () == 1) &&  
              (ackCounter != 0)) { 

                         NextState = WriteTransaction; 
    }  ELSE IF(hasPointerInDirectory(i) &&  
              (ackCounter == 0)) { 

 Send(WDATA, i); NextState = ReadWrite; 
    }  ELSE {   // if the line is not in the directory 

 ackCounter += n; 
 FOR(j = 0; j < numberOfEntries(); j++) { 

                         Send (INV, j); 
                      }  clearDirectory ( ); addNodeToDirectory (i); 

    }  BREAK; 
    CASE SRREQ(i: IF(FULL && hasPointerInDirectory(i)) { 

 Send (RDATA, i); 
                      }  ELSE IF(full && ! directoryFull()) { 
                         addNodeToDirectory(); Send (RDATA,i); 
                      }  ELSE IF(FULL && directoryFull()) { 
                         ++ackCounter;j = evictRandomDirectoryEntry();                 
                                               // j is the evicted line. 
                         Send(INV,j); addNodeToDirectory();  
                         Send(RDATA,i); 
                      }  ELSE(EMPTY) { 
                         Send(RDENY,i); addToDeferredList(); 
                         SetPrBit();            //synchronized read miss 
                      }  NextState = ReadOnly; BREAK; 
    CASE SWREQ(i): IF(EMPTY && deferredListEmpty()) { 
                         addNodeToDirectory (i); Send (WDATA, i); 
                      }  ELSE IF(EMPTY && ! deferredListEmpty()) { 
                         addNodeToDirectory(i); Send(WDATA,i); 

 ResetPrBit();             //resume pending read 
                      }  ELSE { 
                         Send(WDENY,i); addToDeferredList(); 
                         SetPwBit();           //synchronized write miss 
                      }  NextState = ReadOnly; BREAK; 
    CASE SCREQ(i):  IF(numberOfEntries() > 1) { 

 ackCounter += numberOfEntries() - 1; 
 FOR(j = 0; j < numberOfEntries();j++) { 

   IF(i != j) Send(SCREQ,j); 
                         } clearDirectory(); 

 addNodeToDirectory(); 
 NextState = WriteTransaction; 

                      }  ELSE IF(hasPointerInDirectory(i)) { 
              ResetFE();                //clearing the FE-bit 
          ResetPwBit();             //clearing the Pw-bit 
                         Send (ACKSC, i);NextState = ReadOnly; 
                      }  BREAK; 
    CASE ACKC(i):   ackCounter--; NextState = ReadOnly; BREAK; 
    } 
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5.4.3. Transition from the Read-write state 
      SWITCH(IncomingRequest) { 
        CASE RREQ(j): IF(!hasPointerInDirectory(j)){ //there is only one  
                        ++ackCounter;              // node in directory 
                        Send (INV, i);       //(the owner ,namely ’i’)               
                        ClearDirectory(); addNodeToDirectory(j); 
                        NextState = ReadTransactoin; 
                      } BREAK; 
        CASE WREQ(j): IF(!hasPointerInDirectory(j)) { 
                        ++ackCounter; Send (INV,i); clearDirectory(); 
                        addNodeToDirectory (j); 
                        NextState = WriteTransaction; 
                      } BREAK; 
       CASE SRREQ(j): IF(!hasPointerInDirectory(j) && FULL) {                   
                        ++ackCounter; Send(INV,i); clearDirectory(); 
                        addNodeToDirectory(j); 
                        NextState = ReadTransaction; 
                      } ELSE IF(EMPTY) { 
                        Send (RDENY,j); addToDeferredList();  
                        SetPrBit();             //synchronized read mis 
                        NextState = ReadWrite; 
                      } BREAK; 
       CASE SWREQ(j): IF(!hasPointerInDirectory(j) && EMPTY) { 
                        ++ackCounter; Send(INV,i); clearDirectory(); 
                        addNodeToDirectory(j);                                         
                        ResetPwBit();             //resume pending write 
    NextState = WriteTransaction; 
                      } ELSE IF(FULL) { 
                        Send(WDENY,j); addToDeferredList(); 
                        SetPwBit();             //synchronize write miss 
                        NextState = ReadWrite; 
                      } BREAK; 
       CASE SCREQ(j): Send(SCFWD,i); NextState = ReadWrite; BREAK; 
       CASE ACKC(j):  ackCounter--; NextState = ReadOnly; BREAK; 
       CASE UPDATE(i,Dpack): addToDeferredList(Dpack); 
                             ResetPrBit();         //resume pending read 
                             NextState = ReadOnly; BREAK; 
       } 

 
5.4.4. Read transaction state 
      SWITCH(IncomingRequest) { 
        CASE RREQ(i):  Send(BUSY,i); NextState = ReadTransaction; BREAK; 
        CASE WREQ(i):  Send(BUSY,i); NextState = ReadTransaction; BREAK; 
        CASE SRREQ(i): Send(BUSY,i); NextState = ReadTransaction; BREAK; 
        CASE SWREQ(i): Send(BUSY,i); NextState = ReadTransaction; BREAK; 
        CASE SCREQ(i): Send(BUSY,1); NextState = ReadTransaction; BREAK; 
        CASE ACKC(i):  ackCounter--; NextState = ReadOnly; BREAK; 
        CASE UPDATE(i): --ackCounter; Send(RDATA,i);  
                        NextState = ReadOnly; BREAK; 
       } 
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5.4.5. Write transaction 
      SWITCH (IncomingRequest) { 
       CASE RREQ(i):  Send(BUSY,i); NextState = WriteTransaction; BREAK;                
       CASE WREQ(i):  Send(BUSY,i); NextState = WriteTransaction; BREAK; 
       CASE SRREQ(i): Send(BUSY,i); NextState = WriteTransaction; BREAK; 
       CASE SWREQ(i): Send(BUSY,i); NextState = WriteTransaction; BREAK; 
       CASE SCREQ(i): Send(BUSY,i); NextState = WriteTransaction; BREAK; 
       CASE ACKC(i):  IF(ackCounter == 1) { 
                         ackCounter = 0; Send(WDATA,cacheInDirectory());             
                                                            NextState = ReadWrite; 
                      }  ELSE { 
                         --ackCounter; NextState = WriteTransaction; 
                      }  BREAK; 
       CASE ACKSC(i): IF(ackCounter == 1) { 
                         ackCounter = 0; Send(ACKSC,cacheInDirectory(); 
                         NextState = ReadWrite; 
                      }  ELSE { 
                         --ackCounter; NextState = WriteTransaction; 
                      }  BREAK; 
       CASE UPDATE(i): IF(ackCounter == 1) { 
                         ackCounter = 0; Send(WDATA,cacheInDirectory()); 
     NextState = ReadWrite; 
                      }  ELSE { 
                          --ackCounter; NextState = WriteTransaction; 
                       }  BREAK; 
   } 

 
 
5.5. Discussion 
A directory based protocol has been defined to integrate fine-grain synchronization with 
cache coherence protocol, and aggressive and efficient hardware approach has been 
discussed to support this protocol. The protocol has been systematically specified in the 
form or C-styled pseudo code for each state. Only waiting non-altering read, waiting 
altering-write and unconditional clearing FE-bit operations have been discussed whereas 
waiting altering read can be produced in the combination with non-altering read and 
unconditional clearing FE-bit operation. 
 
Six new network messages are introduced in the protocol to integrate fine-grain 
synchronization with cache coherence. In the proposed protocol definition, synchronized 
write is not suspended upon synchronization miss, whereas it is treated as ordinary cache 
miss and appended to deferred list. This miss is resolved accordingly when the 
synchronization condition is met. Multiple synchronized write misses for the same 
location are stored as a linked list at the home directory and resolved one by one in a 
sequence. We suggest that a deferred list management scheme in which list of pending 
requests can be either at home directory or distributed between home and caches. Trade 
off between centralized design and distributed approach can be done to get optimized 
protocol definition. 
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6. Evaluation Framework 
 
Refer [27], the evaluation of the proposed ideas, in particular directory-based protocol is 
done via simulation of a multiprocessor system supporting the fine-grain synchronization. 
In previous work [27], simulation was done using RSIM, an event drive simulator [17], 
[18] and some simple applications were used in simulation experimentation. 
 
In this project, we use SimpleScalar Simulator to evaluate the performance of proposed 
architecture along with the proposed protocol definition in bus-based and directory-based 
model.  Since the source code of simulator does not support the proposed protocol 
definition and the features of the suggested architectural model of the system so it is 
needed to modify accordingly to support the suggested features.  
 
It is also necessary to simulate the standard application like MICCG3D from SPLASH 2 
using SimpleScalar. After the modifying in the source code of simulator, evaluate the 
performance and compare the obtained results with the standard results available from 
MIT Alewife Machine for the corresponding application. That will demonstrate the 
performance of proposed architectural model which is very much based on hardware 
approach against the software approach adopted in Alewife Machine.  
 
 
6.1. SimpleScalar Simulator 
The SimpleScalar tool set [23] is a system software infrastructure used to build modeling 
applications for program performance analysis, detailed micro-architectural modeling, 
and hardware-software co-verification. Using the SimpleScalar tools, users can build 
modeling applications that simulate real programs running on a range of modern 
processors and systems [14].   
 
The tool set includes sample simulators ranging from a fast functional simulator to a 
detailed, dynamically scheduled processor model that supports non-blocking caches, 
speculative execution, and state-of-the-art branch prediction. In addition to simulators, 
the SimpleScalar tool set includes performance visualization tools, statistical analysis 
resources, and debug and verification infrastructure.  

SimpleScalar simulators can emulate the Alpha, PISA, ARM, and x86 instruction sets.  
The tool set includes a machine definition infrastructure that permits most architectural 
details to be separated from simulator implementations. The current release of 
SimpleScalar can run programs from any of the above listed instruction sets.  Complex 
instruction set emulation (e.g., x86) can be implemented with or without microcode, 
making the SimpleScalar tools particularly useful for modeling CISC instruction sets. 
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The PISA instruction set (Portable Instruction Set Architecture) is a simple MIPS-like 
instruction set maintained primarily for instructional use. A GNU GCC-based cross-
compiler and pre-built libraries are also available for this target.  The PISA target is 
particularly useful for computer engineering instruction as the tools can be built on a 
wide range of host platforms, including Linux/x86, Win2000, SPARC Solaris, and others. 

SimpleScalar builds on most 32-bit and 64-bit flavors of UNIX and Windows NT-based 
operating systems.  The internal software architecture of the tool set includes a host 
interface module, permitting fast porting to other host platforms.  The host interface 
module permits cross-endian emulation, thus it is possible to use emulate a target on a 
host platform with a different endian, e.g., running Alpha ISA emulation on a SPARC 
Solaris host platform. 

6.2. SimpleScalar tool set overview 
Figure 12 shows the graphical overview of SimpleScalar tool set [14]. Benchmarks 
written in FORTRAN are converted to C using Bell Labs’ f2c converter. Benchmarks, 
one written in ‘C’ and other converted from FORTRAN into ‘C’ are complied using the 
SimpleScalar version of GCC, which generates SimpleScalar assembly. The 
SimpleScalar assembler and loader, along with the necessary ported libraries, produce 
SimpleScalar executables that can then be fed directly into one of the provided 
simulators. (The simulator themselves are complied with the host platform’s native 
compiler, for example ANSI C). To compile own benchmark, its need to install GCC and 
GNU binutils. FORTRON and C benchmarks source can be compiled in the following 
way using the SimpleScalar tool set [24]: 
 

• Compiling a C program, e.g., 
         SS<endian> -na – sstrix –gcc –o <output> <file.C> -lm 

• Compiling a FORTRON program, e.g., 
         SS<endian> -na – sstrix –f77 –o <output> <file.f> -lm 

• Compiling a SS assembly program, e.g., 
   SS<endian> -na – sstrix –gas –o <output> <file.f> -lm 

• Disassembling a program, e.g., 
               SS<endian> -na – sstrix –objdump –{s, d} <input> 
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                                                                                                          Simulator Source 
        FORTRAN        (e.g., sim-outorder.c) 
            Benchmark Source               ‘C’ Benchmark Source             
 
 
 
 
 
 

          SimpleScalar       Result 
          Assembly 
 
 
 
        
             Object files  
 
             SimpleScalar 
     

                 Executables                Precompiled SS 
                 Binaries (test, SPEC95) 

                                
Figure 12: SimpleScalar tool set for overview 

 
 
The internal simulators available in the SimpleScalar are categorized in following two 
sections depending upon their functionality [24]: 
 

i) Execution and trace driven simulators 

• sim-fast             functional simulation 

• sim-safe            sim-fast with error detection 

• sim-profile        program profiling tool 

• sim-cache         functional cache simulator 

• sim-cheetah      cache simulator (multiple configurations) 

• sim-outorder     performance out-of-order execution 

ii) Trace generator 
• sim-eio            i/o-tracing & checkpoint 

     f2c 
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   GLD 

  GAS 

  GCC 

SS libm.a 
SS libF77.a 

     ’C’  
 Compiler 
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The following command-line arguments are available in the simulator to perform 
simulations as well user can configure the command line: 
 

• Running a simulator 
sim-any { -options } executable {arguments} 

• General configuration (options) 
-config     <string>  -run with own configuration 

-dumpconfig      <string>  -write configuration to file 

-h     <true/false>  -help message  

-v     <true/false>  -verbose operation 

-d     <true/false>  -enable debug messages 

-i     <true/false>  -start Dlite (debugger) 

-seed     <int>   -random generator 

-q     <true/false>  -quit immediately 

• Input and output  

• Program/Trace  

            ---Test-fmath, floating point test program 

• Configuration 

--- Simulator dependent 

• Program output and performance (Figure 13 shows the graphical 

overview at the simulator with respect to Input/output and 

configuration) 

 
Out of all the simulators, those mentioned in the section Execution and trace driven 
simulators, the most complicated and detailed is sim-outorder [14].  This simulator 
supports out-of-order issues and execution, based on the Register Update unit (RUU). 
The RUU scheme uses a reorder buffer to automatically rename registers and hold the 
results of pending instructions. It supports configurable architecture and generates timing 
statistics of execution during simulation. It also makes use caches and branch prediction. 

 

 



 
 

 
Architectural and programming support for FGS in Shared-Memory Multiprocessors 

 
 

 

Hari Sharma/IMIT/KTH/Stockholm/2004 43

 

    
 

  

 

 
Figure 13: Input/Output sketch for Simulator 

 
 
Figure 14 depicts the simulated pipeline of sim-outorder. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14: Pipeline for sim-outorder simulator of SimpleScalar 
 

The key features of simulated system are listed below: 

• Multiple instruction issue 

• Out-of-order scheduling 

• Branch prediction 

• Blocking and Non-blocking loads and stores 

     Simulator 

 Program output 
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 program 
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• Optimized memory consistency implementation 

• Relevant cache hierarchy 

• Multiple outstanding requests 

• CC-NUMA shared-memory system 

• Snoop-based or directory-based cache coherence protocol with fine-grain 

synchronization 

• Bus network for Snoop-based system or Mesh Network for Directory-based 

system 

 

6.3. Simulation procedure 
Suppose MICCG3D application source file is available for the simulation. There are two 
related benchmarks source files (new_vector.c and new_micBarrier.c) available for this 
application. Following is the procedure to carry out simulation: 

1. Compile the source file using GCC compiler to generate assembly files 

             gcc –S new_micBarrier.c 

             gcc –S new_vector.c 

2. Now we have the assembly files, then we need to modify the assembly files 

because of the way modified LOAD and STORE instruction in source file. From 

the assembly file these modified LOAD/STORE instructions can be easily find out 

and mark them to convey the message to SimpleScalar that these are special 

synchronized LOAD/STORE instructions 

3. The marking instructions are chosen (Modified simulator is configured to 

recognize these marker instructions) as follows: 

            xor  $31, 1, $31   for LOAD 

            xor  $31, 2,  $31  for STORE 

            These marker instructions do nothing but just to indicate to the simulator. 

4. Now we have modified assembly files and can generate to binary compiled file        

using the SMP (synchronizing memory protocol) file new_libssmp.s as follows: 

    gcc –static –o new_miccg3d new_micBarrier.s new_vector.s new_libssmp.s –lm 
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5. Now we got binary compiled file new_miccg3d, compile and simulate the       

binary file as follows to get the results: 

            ./ simWhatever new_miccg3d  {-options} 

             In the options field, we can provide number of processors and X,Y,Z dimensions    

             used in this application.  Option can be changed as per given in section 6.2, 

            ‘General preferences (options)’. For command line help, run the following  

             instruction: 

            ./simWhatever new_miccg3d –h 

6. Finally, we have the result from the simulator of the proposed architecture and 

these  results can be compared with the existing results of the Alewife Machine  to 

notice the performance  of the modified architecture and coherence protocol. 

 
6.4. Simulation experiments 
Initial simulations have been done by our collaborators at the University of 
Massachusetts (UMASS), USA using MICCG3D application in evaluation experiments 
[26]. They have done the modification for one of the synchronization primitives 
supported by the Alewife Machine, namely, J-structure. The simulation experiments have 
also been done at KTH, Sweden and results are reproduced within this master thesis 
project for the same J-structure.  
 
Modification supports the management of FE-bit along with Pending bit for synchronized 
read miss in the cache, and it has been combined with directory-based protocol. The 
directory has also been modified to support the modification done in cache, SMB has 
been maintained to keep list of pending-read miss. To support all these modification in 
the structure and protocol, simulator has also been modified. 
 
They simulated the application on the base simulator, software managed (SW) and those 
corresponding to their new proposed synchronization coherence protocol (SC).  As the 
multiprocessor size is increased, and the data size is decreased, performance gets larger. 
It shows upto 15% performance improvement, 15% fewer network messages, and 30% 
fewer cache accesses [26].   
   
More precisely in author’s research work, proposed architecture also supports the 
pending bit for synchronized write miss and directory modification with pending-write 
bit. This work also supports the integration of proposed architecture with directory-based 
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and snoop-based coherence protocol. It is need to modify the SimpleScalar [23] to 
support all the modification suggested in this work and then perform the simulation using 
simulator. From the work done at UMASS and benefits of hardware approach, it is 
expected to get improved performance from proposed architecture. 
 
 
6.5 Application: MICCG3D 
MICCG3D is the preconditioned conjugate gradient (CG) method knows as Modified 
Incomplete Cholesky Factorization Conjugate in 3-Dimensions [32]. The Conjugate 
Gradient algorithm is a semi-iterative method for solving a system of linear equations 
expressed in the form of matrix as Ax = b. The rate of convergence of CG method can be 
improved by preconditioning the system equation with a matrix K¯¹ and then applying 
the CG method to the preconditioned system.  
 
The idea of using the preconditioner such that   K¯¹ A is close to identity matrix I [32]. 
Mathematically it can be expressed as follows: 
                                          Ax = b                                 (1) 

                                  K¯¹ A x = K¯¹ b                          (2) 

                                            w = K¯¹ b - K¯¹ A x         (3)  (Solver equation) 

But implementing the preconditioned techniques in the system, preconditioner steps 
involve recurrence relations which do not vectorize or parallelize easily. So, it addresses 
the issue of parallel performance in the system, which occurs due to recurrence relations 
in the preconditioned steps.   
 
MICCG3D is difficult to parallelize because the recurrence relations in the solver 
operation impose data dependencies which are numerous and complex [32]. There are 
two ways to parallelizing MICCG3D. One uses coarse-grain barrier synchronization and 
other uses fine-grain data level synchronization.   
 
In coarse-grain MICCG3D, barriers are placed in between vector operations to ensure 
that results are fully completed before being sued in subsequent computation. Barriers 
ensure the synchronization in the coarse-grain MICCG3D. For all but the solver operation 
this is sufficient to guarantee correctness. Dependencies arising from the recurrence 
relation in the solver require further use of barriers.  
 
But on the other hand, in fine-grain MICCG3D, synchronization is done at word-level. 
Word-level synchronization automatically enforces the recurrence dependencies in the 
solver equation. In fine-grain version of solver equation, each processor can compute 
results as fast as possible. If a thread tries to read such a value that has not been computed 
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yet, the semantics of data level synchronization force the execution of thread to stop and 
wait until the value becomes available. Therefore, processor never waits unnecessarily. 
 
Our project collaborators at UMASS, USA have used the fine-grain version of 
MICCG3D from [32] to evaluate the performance of modified J-structure (one of the 
synchronized primitive of Alewife Machine) integrated with directory-based protocol. 
These evaluations/simulations have been done to analyze the performance improvement 
of the system which supports the tighter integration of fine-grain synchronization with 
cache coherence protocol.  
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7. Conclusions 
 
This work has presented how the fine-grain synchronization could be incorporated in the 
multiprocessor systems with efficient hardware support. The implementation has been 
described here in the context of Alewife Machine and keeping it as a base line so that 
architectural modification could be compared with it. However, the implementation of 
fine-grain synchronization has introduced some extra complexity at both hardware and 
software level. It incorporates sophisticated cache controllers because of the increased 
complexity of FSM implemented with in it to handle the fine-grain synchronization. 
 
A novel cache architecture that supports the fine-grain synchronization has been 
proposed. This architecture contains the full/empty bits along with pending bits for both 
synchronized read and synchronized write misses. The extra hardware required by this 
architecture is not increasing excessively and it can be compensated by the improved 
performance. 
  
New cache coherence protocols combined with fine-grain synchronization have been 
discussed for the snoop-based and directory-based shared memory multiprocessors. Here 
the description includes all the transitions rules required to express the state of the 
protocol. We have given very strong attention in the handling of synchronized write miss 
along synchronized read miss. Optimization of protocol has also been explained in terms 
of merging and resuming of pending read/write operations.  
 
Although the proposed architecture and its integration with fine-grain synchronization on 
both snoop-based and directory based protocols has not been modeled in full scale in this 
project work. Part of this project based on J-structure has been implemented in 
SimpleScalar by our collaborator [26] at UMASS to model a cc-NUMA multiprocessor 
with its hardware support for fine-grain synchronization. However, the simulator models 
only the part of synchronized memory operations needed for J-structures. The simulator 
should be extended and modified [16], [23]to support the complete set of FE-memory 
operations proposed in this project work and need to simulate on the SimpleScalar 
simulator and analyze its performance improvement and compared with Alewife Machine.  
 
Evaluation experiments with the simulator using the MICCG3D application from 
SPLASH 2 has been initially done at UMASS.  Also simulations have been done for this 
project at KTH and same results have been reproduced. Results show up to 15% 
performance improvement, 15% fewer network messages, and 30% fewer cache accesses 
[26]. 
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8. Future work 
 
Future work includes the developing of model, which will incorporate all features of the 
architecture proposed in this work. Sophisticated cache controller, complex FSM used in 
cache controller to handle the complexity increased by integrating fine-grain 
synchronization, optimized message passing in both snoop-based and directory-based 
protocol are need to model. This model is needed to simulate on the SimpleScalar to 
examine its performance benefits.  
 
Since the available version of SimpleScalar does not incorporate the above proposed 
features so simulator platform should be modified so that the cost of including extra 
hardware and performance can be analyzed. Other important parameters to be measured 
are extra traffic caused by extra message passing and extra signals and saturation 
condition that may be different at different level of cache hierarchy. 
 
Also, it is advisable to include optimization as much as possible in the different transition 
states of the protocols as some of them are already suggested in this proposed work. It 
can give more efficient network topology. This would definitely enable us to introduce 
more scalability in multiprocessor systems 
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Abbreviations  
 
ALU   Arithmetic Logic Unit 
CA   Communication Assistant 
cc-NUMA  cache coherent-Non Uniform Memory Access 
CMMU  Communication and Memory Management Unit 
CPU   Central Processing Unit 
DM   Data Memory 
FSM   Finite State Machine 
SM   State Memory 
SMM   State Miss Memory 
FE-bit   Full/Empty-bit 
FGS    Fine-Grain Synchronization 
MSHR   Miss-State Holding Register 
Pw-bit   Pending-write bit 
Pr-bit   Pending-read bit 
SMP   Shared-Memory Multiprocessor 
SMB   Synchronizing Miss Buffer 
SPLASH 2  Stanford Parallel Applications for Shared Memory 
 


