

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Shanker Sharma, IMIT/KTH, Stockholm, April 2004 i

Master Thesis IMIT/LECS/ 2004 - 16

Architectural and Programming
Support for Fine-Grain

Synchronization in Shared-
Memory Multiprocessors

Master of Science Thesis
 In Electronic System Design

By

HARI SHANKER SHARMA
MS (System-on-Chip Design)

IMIT/KTH
 Stockholm, Sweden, April 2004

Supervisor and Examiner: Assoc. Prof. Vlad Vlassov
 IMIT/KTH
 vlad@it.kth.se

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Shanker Sharma, IMIT/KTH, Stockholm, April 2004 ii

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Shanker Sharma, IMIT/KTH, Stockholm, April 2004 iii

Abstract
As the multiprocessors scale beyond the limits of a few tens of processors, we must look
beyond the traditional methods of synchronization to minimize serialization and achieve
high degrees of parallelism required to utilize large machines. Since synchronization is a
major performance parameter for such a level of parallelism, efficient support for
synchronization is therefore a major issue. By allowing synchronization at the level of
smallest unit of memory, fine-grain synchronization achieves this goal and it has
significant performance as compare to traditional coarse-grain synchronization.
It has already been proved that hardware support for fine-grain synchronization provides
significant improvement in the performance over coarse-grain synchronization
mechanisms like barriers. As demonstrated by the machine MIT Alewife, integrated
support for fine-grain synchronization can have significant performance benefits over
coarse-grain. The major goal of research is to evaluate the efficient way to support the
fine-grain synchronization mechanisms in multiprocessors. The best way of approaching
to this goal is based on the efficient combination of fine-grain synchronization with cache
coherence protocol with the full/empty tagged shared memory (EF-memory).

We propose to design a full/empty tagged memory hierarchy with aggressive hardware
support for fine-grain synchronization that is embedded in the cache coherence
mechanism of a SMP or NUMA multiprocessor. It is expected that handling
synchronization and coherence together can provide a more efficient platform of
execution, reducing the occupancy in memory controllers and the network bandwidth
consumed by the protocol messages. Our objective is to improve the performance of the
full/empty synchronization mechanism such as implemented in the MIT Alewife
machine, by integrating a cache coherency mechanism with the full/empty
synchronization. We uses the SimpleScalar simulator to simulate our propose design for
the verification and performance evaluation.

Keywords: FE-bits, Pending-bits, Fine-grain Synchronization (FGS), Shared Memory,
Cache Coherence Protocol

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Shanker Sharma, IMIT/KTH, Stockholm, April 2004 iv

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Shanker Sharma, IMIT/KTH, Stockholm, April 2004 v

Acknowledgements

During the course work and thesis work of my master studies at Royal Institute of
Technology, I have been very fortunate to work at such a great research oriented place
and all the time surrounded by my colleagues who have continually offered me their
moral support, encouragement, and help needed any time.

I would like to express special thank to my supervisor and examiner of my master thesis,
Prof. Vladimir Vlassov, for providing me the opportunity to work under his supervision.
I am grateful to him for giving his excellent supervision and having frequent discussions
with me in the related areas of my work and it made me very comfortable during my
entire thesis work. He has always patiently listened to my all doubts and came up with the
absolute solutions.

I would also like to thank to Prof Csaba Andras Moritz (Faculty, UMASS) and Raksit
Ashok for building up my knowledge in the beginning of my thesis work and it really
helped to get into the subject.

I would also like to mention some faculty names, Prof. Hannu Tenhunen, Dr. Elena
Dubrova and Dr. Johnny Öberg, whom I really admire in the academia field for their
excellence.

My friends also deserve a special mention here. Hearty thank to Vijay Kella, Neeraj
Gupta, Mayur Pal and others whom I have not mentioned here for making my stay in
Stockholm very pleasant.

Last but not the least; I would like to thank to my family for their patience, understanding
and moral support while my stay outside the home for long time. I dedicate my work to
them.

The list of names to be thanked is never ending here, thank to all who have given a bit
smile in my life at any moment.

Hari Shanker Sharma
IT University (KTH)
Stockholm, Sweden
28 April, 2004

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Shanker Sharma, IMIT/KTH, Stockholm, April 2004 vi

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Shanker Sharma, IMIT/KTH, Stockholm, April 2004 vii

Contents

Abstract………………………………………………………………………………...…iii

Acknowledgements………………………………………………………………..……...v

1. Introduction and Motivation………………………………………………………….1
2. Overview on Synchronization………………………………………………...……...3

 2.1. Programming Language Issues…………………………………………….….4

 2.1.1. Data level parallelism…………………………………………….….4

 i. I – Structure………………………………………………….….5

 ii. J – Structure………………………………………………….….6

 iii. L – Structure…………………………………………………….6

 2.1.2. Control parallelism…………………………………………………...6

 2.2. Semantics of synchronizing memory operations……………………………...7

3. Architectural support for Fine-Grain Synchronization (FGS)…………………........10

 3.1. Review of related work………………………………………………………10

 3.1.1. Alewife Machine……………………………………………………10

 3.1.2. Hardware vs Software approach in Alewife………………………..11

 3.1.3. Implementation of J and L - Structures in Alewife………………....11

 i. J – Structure………………………………………………........12

 ii. L – Structure…………………………………………………...12

3.1.4. Handling of failed synchronization on software……………………13

 3.2. Proposed Architecture………………………………………………………..14

3.2.1. Architectural Model………………………………………………...14

 3.3. Synchronized Cache coherence protocol…………………………………….18

4. FGS Snoopy coherence protocol……………………………………………………20

 4.1. Protocol description………………………………………………………….22

 4.2. Correspondence between processor instruction and bus transaction………...23

 4.3. Resuming of pending requests……………………………………………….24

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Shanker Sharma, IMIT/KTH, Stockholm, April 2004 viii

 4.4. Transition rules of Synchronized Snoopy-based protocol…………………...26

 4.4.1. Transition from the Invalid State…………………………………..26

 4.4.2. Transition from the Modified State….……………………………..27

 4.4.3. Transition from the Exclusive State………………………………..27

 4.4.4. Transition from the Shared State…………………………………..28

 4.5. Merging of pending requests…………………………………………….......29

4.6. Discussion………………………………………………………..……………….30

5. FGS directory-based protocol……………………………………………………….31

 5.1. Alewife directory-based coherence protocol…………………………...........32

 5.2. Directory modification to support FGS………………………………...........32

 5.3. Correspondence between processor instruction and network transaction…...33

 5.4. Transition rules of Synchronized directory-based protocol………………….35

 5.4.1. Transition from the Absent State…………………………………..35

 5.4.2. Transition from the Read - Only State………….………………….35

 5.4.3. Transition from the Read - Write State…………………………….37

 5.4.4. Transition from the Read Transaction State……………………….37

 5.4.5. Transition from the Write Transaction State………………………38

 5.5. Discussion……………………………………………………………………38

6. Evaluation Framework………………………………………………………………39

 6.1. SimpleScalar Simulator……………………………………………………...39

 6.2. SimpleScalar tool set overview………………………………………………40

 6.3. Simulation procedure………………………………………………………...44

 6.4. Simulation experiments……………………………………………………...45

 6.5. Application: MICCG3D……………………………………………………..46

7. Conclusions………………………………………………………………...………..48

8. Future work………………………………………………………………………….49

References………………………………………………………………………………..50

Abbreviations…………………………………………………………………………….53

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Shanker Sharma, IMIT/KTH, Stockholm, April 2004 ix

Table of Figures
 Figure 1: Classification of synchronizing memory operations…………………………...7

 Figure 2: Notation of synchronizing memory operations………………………………...8

 Figure 3: Alewife node, LimitLESS directory extension……………………………….10

 Figure 4: Architecture of modified cache……………………………………………….15

 Figure 5: Organization of FE-cache and FE-memory…………………………………...16

 Figure 6: Cache line containing both ordinary and synchronized data………………….17

 Figure 7: Snoopy cache-coherent multiprocessor with shared-memory………………...20

 Figure 8: MESI cache coherence protocol………………………………………………21

 Figure 9: Resuming of pending requests…………………………………………...…...25

 Figure 10: A scalable multiprocessor with directories…………………………………..31

 Figure 11: Modified directory and SMB…………...…………………………………...33

 Figure 12: SimpleScalar tool set for overview…………………………………………..41

 Figure 13: Input/Output sketch for simulator…………...………………………………43

 Figure 14: Pipelining for sim-outorder simulator of SimpleScalar……………………..43

Table of Tables

 Table 1: Notation of processor instructions……………………………………………..9

 Table 2: Information stored in MSHR…………………………………………………..16

 Table 3: Synchronized operation on synchronized data word based on FE and P-bits…18

 Table 4: Additional bus transaction in the MESI protocol……………………………...22

 Table 5: Correspondence between processor instructions and bus transactions………...23

 Table 6: Merging of pending requests with incoming requests…………………………29

 Table 7: Network transaction in the directory-based protocol………………………….34

 Table 8: Correspondence between processor instruction and network transaction……..34

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Shanker Sharma, IMIT/KTH, Stockholm, April 2004 x

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 1

1. Introduction and motivation

The last few years have seen the introduction of a number of parallel processing systems
with truly impressive maximum performance [3]. The performance in parallel and
distributed computing has emerged to be one of the promising developments. It has
extended the activity of human capabilities in many fields, such as numeric simulation
and modeling of physical phenomena and complex systems, and different form of
information processing on the internet.

Continuous advancement in the technology (i.e. improvement in logic density and clock
frequency) has resulted in highly capable and complex multiprocessors. More and more
parallelism has been exploited at different granularity levels (instructions, threads,
processes) in programs, to best utilize the increasing capability of multiprocessors. In
parallel and concurrent programming, synchronization of parallel processes is an
important mechanism. It ensures the true data dependency and timing constraints. True
data dependency implies that consumer should read the value only after it has been
produced by producer at the specific memory location.

Synchronization incurs an overhead because of a loss of parallelism and cost of
synchronization itself. For a program to execute efficiently on a multiprocessor the
serialization imposed by the synchronization structure of the program must be reduced as
much as possible and the overhead of the synchronization operations must be small
compared to real time computation. Multiprocessors have traditionally supported only
coarse-grain synchronization (for example barriers and mutual locks). Barriers divide the
program in several phases (production phase, consumption phase etc). The computation
or thread of next phase depends on the results of earlier phase; parallelism across the
phases is prevented due to barriers. Since coarse-grain synchronization is convenient to
the programmer but it’s not very much feasible on massive-parallel fine grained system.

It is known that fine-grain synchronization is an efficient way to enhance the performance
of many applications, provided it can be implemented efficiently. In the case of data
dependence, fine-grain synchronization allows the amount of data transferred from one
thread to other threads in one synchronization operation to be small (for example one
word or small cache block). The MIT Alewife architecture [1], [2], [3] is one that supports
the fine-grain synchronization and shows demonstrable benefits over a coarse-grain
approach. The Alewife multiprocessor [22] however, implements synchronization in a
software layer (with some hardware support) above the cache coherence layer. Keeping
these both layers separately and synchronize the computation incurs additional overhead.

So, the novel idea is to combine synchronization layer and coherence layer into one. This
work describes Synchronization Coherence, a novel architecture where fine-grained

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 2

synchronization and cache coherence are handled uniformly and efficiently. We propose
a full/empty tagged hierarchy with aggressive hardware support for fine-grain
synchronization embedded in cache coherence mechanism [26], [29]. This approach has
two major advantages: (1) Synchronization misses are treated as cache misses and are
resolved transparently. If we compare this with Alewife, where trap is fired on
synchronization misses. This trap keeps polling the location until synchronization is
satisfied, or context switches to another ready thread after a certain waiting period. This
is very expensive task along with associated complexity for thread scheduling and it can
avoid by utilizing above mentioned architecture. (2) Tighter integration between
synchronization and cache coherence layers results fewer network messages, translating
into lower network contention and improved performance.

There is a need to extend the source of Simplescalar Simulator to model the proposed cc-
NUMA architecture to evaluate it performance. Evaluation of the aggressive hardware
support in fine-gain synchronization is the main goal of this project. Software
applications like MICCG3D from SPLASH 2 can be used to evaluate and compare the
performance of the proposed architecture with the existing Alewife Architecture.

The rest of the report is organized as follows. Chapter 2 gives a primer on the overview
of synchronization semantics from both the view: programming language issues and
memory operations. Chapter 3 deliberates on the description of Alewife machine and on
the proposed architecture. Chapter 4 describes the integration of fine-grain
synchronization (FGS) with snoop-based protocol. Chapter 5 presents the integration of
FGS with directory-based protocol. Chapter 6 gives the detail of evaluation framework.
Finally Chapter 7 and Chapter 8 describe the conclusion and future work.

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 3

2. Overview of Synchronization

A critical interplay of hardware and software in multiprocessors arises in supporting
synchronization operations: mutual exclusion, point-to-point events and global events.
There has been considerable debate over the years about how much hardware support
exactly and what hardware primitive should be provided to support these synchronization
operations [12]. Hardware support has the advantage of speed but the software has the
advantages of low cost, flexibility and adaptability to different situations.

Synchronization in shared-memory multiprocessors ensures correctness by enforcing two
conditions: read-after-write data dependency and mutual exclusion. Read-after-write data
dependency is a contract between a producer and a consumer of shared data. It ensures
that a consumer reads a value only after it has been written by a producer. Mutual
exclusion enforces atomicity. When a data object is accessed by multiple threads, mutual
exclusion allows accesses of specific thread to proceed without intervening accesses by
other threads.

A coarse-grain solution to enforcing read-after-write data dependency is barrier
synchronization. Barriers are typically used in programs involving several phase of
computation where the values produced by one phase are required in the computation of
subsequent phases. Parallelism is realized within a single phase, but between phases, a
barrier is imposed which requires that all work from one phase be completed before the
next phase is begun. Under the producer-consumer model, this means that all the
consumers in the system must wait for all the producers at a common synchronization
point. A fine-grain solution provides synchronization at the data level. Instead of waiting
on all the producers, fine-grain synchronization allows a consumer to wait only for the
data that it is trying to consume. Once the needed data is made available by the
producer(s), the consumer is allowed to continue processing. Fine-grain synchronization
provides two primary benefits over coarse-grain synchronization [32]:

• Unnecessary waiting is avoided because a consumer waits only for the data it
needs.

• Global communication is eliminated because consumers communicate only with

those producers upon which they depend.

The significance of the first benefit is that parallelism is not artificially limited. Barriers
impose false dependencies and thus inhibit parallelism because of unnecessary waiting.
The significance of the second benefit is that each fine-grain synchronization operation is
much less costly than a barrier. This means that synchronizations can occur more

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 4

frequently without incurring significant overhead. Following are three mechanisms to
support fine-grain synchronization:

• Language-level support for the expression of fine-grain synchronization.

• Memory hardware support to compactly store synchronization state.

• Processor hardware support to operate efficiently on synchronization state.

The first mechanism of support provides the programmer with a means to express
synchronization at a fine granularity resulting in increased parallelism. Another attractive
consequence is simpler, more elegant code [8]. The second mechanism of support
addresses the fact that an application using fine-grain synchronization will need a large
synchronization name space. Providing special synchronization state can lead to an
efficient implementation from the standpoint of the memory system. We refer to this
benefit as memory efficiency. Finally, the last mechanism of support addresses the fact
that synchronizations will occur frequently. Therefore, support for the manipulation of
synchronization objects can reduce the number of processor cycles incurred. We refer to
this benefit as cycle efficiency.

2.1. Programming Language Issues
It is desirable that fine-grain parallelism and synchronization be expressible at the
language level. Programmer has freedom to specify which parts of a program may be
executed in parallel. This does not preclude a compilation phase that converts sequential
to parallel code. It is up to the system which part to execute in parallel and to handle
proper synchronization. There are two ways a programmer may express parallelism in a
program [20]:

2.1.1. Data level parallelism
Data –level parallelism express the application of some function to all or some elements
of an aggregate data object, such as an array. Data-level parallelism is often expressed
using parallel do-loops. Synchronization with in parallel do-loop can be either coarse-
grain or fine-grain. For producer-consumer synchronization, coarse-grain synchronization
involves placing a barrier at the end of the loop. Elements of the aggregate are written
by threads using ordinary stores. At the end, each thread waits for all to complete. The
values can then be accessed with ordinary reads. Alternatively, in the case of mutual-
exclusion locks, coarse-grain synchronization will associate a lock with a large chunk of
data.

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 5

Fine-grain data-level synchronization is expressed using data structure with accessors that
implicitly synchronize. We call these structures J-structure and L-structure arrays. A J-
structure is inspired by I-structure.

i) I-structure
This is widespread agreement that only parallelism can bring significant improvement in
computing speed (several orders of magnitude faster than today’s supercomputers).
Functional languages have received much attention as appropriate vehicles for
programming parallel machines for several reasons. They are high-level, declarative
languages, insulating the programmer from architectural details. Their operational
semantics in terms of rewrite rules offer plenty of exploitable parallelism, freeing the
programmer from details of scheduling and synchronization of parallel activities.

Later it is realized that there are some difficulties in the treatment of data structures in
functional languages and then I-structure is proposed [8]. I-structure is an alternative way
to treat the data structures. We can compare the solutions of any test application using
functional data structure and I-structure and performance of the structure can be
evaluated on the basis of following points:

• efficiency (amount of unnecessary copying, speed of access, number of reads and
writes, overheads in construction etc)

• parallelism (amount of unnecessary sequentialization)
• ease of encoding

It has been already investigated that it is very difficult to achieve all three objectives
using functional data structures. Since the idea about I-structure evolved in the context of
scientific computing, most of the discussion is couched in terms of arrays. I-structure
grew out of a long-standing goal to have functional languages suitable for general-
purpose computation, which included scientific computations and the array data-
structures that are endemic to them. The term I-structure has been used for two separate
concepts. One is and architectural idea, that is the implementation of synchronization
mechanism in hardware. The other is a language construct, a way to express
incrementally constructed data structure.

Based on experiments at MIT, it has been observed that I-structures solve some of the
problems that arise with functional data structures, still there are another class of
problems for which they still do not lead to efficient solutions and require the greater
flexibility of I-structures.

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 6

ii) J-structure
A J-structure is a data structure for producer-consumer style synchronization inspired by
I-structures. A J-structure is like an array, but each element has additional state: full or
empty. The initial state of a J-structure element is empty. A reader of an element waits
until the element’s state is full before returning the value. A writer of a J-structure
element writes a value, sets the state to full, and release any waiting readers. An error
signaled if a write is attempted on a full element. The difference between J-structure and
I- structure is that, to enable efficient memory allocation and good cache performance, J-
structure elements can be reset to an empty (unbounded) state.

iii) L-structure
L-structures are arrays of “lock-able” elements that support three operations: a locking
read, a non-locking peek, and a synchronizing write. A locking read waits until an
element is full before emptying it (i.e. locking it) and returning the value. A non-locking
peek also waits until the element is full, but then returns the value without emptying the
element. A synchronizing write stores the value to an empty element, and sets the
location to full and release all read waiters, if any. As for J-structures, an error is signaled
if the location is already full. A L-structure therefore allows mutually exclusive access to
each of its elements. The synchronizing L-structure reads and writes can be used to
implement M-structures. However, L-structures are different from M-structures in that
they allow multiple non-locking readers, and a store to a full element signals as an error.

2.1.2. Control Parallelism
Using control parallelism, a programmer specifies that a given expression ‘E’ may be
executed in parallel with the current thread. Synchronization between these threads is
implicit and occurs when the current thread demands, or touches, the value of ‘E’. The
programmer does not have to explicitly specify each point in the program where a value
is being touched. A touch implicitly occurs anytime a value is used in an ALU operation
or as a pointer to be dereferenced, but not when a value is returned from a procedure or
passed as an argument to a procedure. Storing a value into a data structure also does not
touch the value.

In Alewife machine, the behavior that a given expression ‘E’ may be executed in parallel
with the current thread, is specified by wrapping future around an expression or statement
‘E’. The keyword future does not necessarily cause a new runtime thread to be created,
together with the consequent overhead. The system must, however, ensure that the
current thread and ‘E’ can be executed concurrently if necessary (e.g. to avoid deadlock),
when a new thread is created at runtime only for deadlock avoidance or load-balancing
purposes, it is called lazy task creation.

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 7

Using future provides a form of fine-grain synchronization because synchronization can
occur between the producer and consumers of an arbitrary expression, e.g. a producer call
can start executing while some of its arguments are still being computed

2.2. Semantics of synchronizing memory operations
Synchronization memory operation requires the use of tagged memory, in which each
location is associated to a state bit in addition to a 32-bit value. The state bit is known as
full/empty bit (FE-bit) and implements the semantics of synchronizing memory accesses.
This state bit basically controls the behavior of synchronized loads and stores. A set FE-
bit indicates that the corresponding memory reference has been written successfully by a
synchronized store and unset FE-bit means either that memory location has never been
written since it was initialized or that a synchronized load has read it.

A complete category of the different synchronizing memory operations is drawn in
Figure 1 [29]. These instructions are introduced as an extension of the instruction set of
SPARCLE [4], which is in turn based on SPARC [30]. The operations includes
unconditional load, unconditional store, setting of FE-bit and/or combination of all these.
As they do not depend upon the previous value of the state bit, unconditional operations
always succeed.

 FE-memory Operations

 Conditional Unconditional

 Non-waiting Waiting (Case considered in this project)

 Non-Faulting Faulting

 Figure 1: Classification of Synchronizing Memory operations

While (empty)
Wait;
Read operations & set to empty;

While (full)
Wait;
Write operation & set to full;

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 8

Conditional operations depend on the value of the FE-bit to complete successfully. For
instance, conditional write can only be performed if the state of FE-bit is unset and vice-
versa for conditional read operation. Conditional memory operation can be either waiting
or non-waiting. In Conditional waiting operation case, the operation remains pending
until the state miss is resolved. This requires that the memory keep track of outstanding
state misses (pending operations) in a way that is similar to keeping track of outstanding
cache misses. In this project work, we are only focusing on conditional waiting
operation.

Conditional non-waiting memory operations can be either faulting or non-faulting.
Faulting operation fire a trap on a state miss and trap handler may either retry the
operation immediately (spin) or switch to another context. A non-faulting operation does
not treat a state miss as an error and so does not require the miss to be resolved. Such
operation is dropped on a state miss.

All memory operations, described in figure 1 are further classified into two categories
altering and non-altering operations. Altering memory operations modify the state of FE-
bit after successful synchronizing event whereas non-altering memory operations do not.
According to this distinction, ordinary memory operations fall into unconditional non-
altering category.
 WNWr

 Rd read request

 Wr write request

 N non-altering

 A altering

 U unconditional
 W waiting
 N non-faulting
 T trapping
 S waiting, non-faulting or faulting

 Figure 2: Notation of synchronizing memory operations

The following table describes the notation used for each variant of memory operation and
its behavior in case of synchronization miss. These notations have been explained in
figure 2.

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 9

Table 1: Notation of synchronized operations

Notation Semantics Behavior on a
synchronized miss

UNRd Unconditional non-altering read
UNWr Unconditional non-altering write
UARd Unconditional altering read
UAWr Unconditional altering write

Never miss

WNRd Waiting and non-altering read from full
WNWr Waiting and non-altering read from write
WARd Waiting and altering read from full
WAWr Waiting and altering read from write

Placing on the list of
pending request until
resolved

NNRd Non-faulting and non-altering read from full
NNWr Non-faulting and non-altering read from write
NARd Non-faulting and altering read from full
NAWr Non-faulting and altering read from write

Silently discarded

TNRd Faulting and non-altering read from full
TNWr Faulting and non-altering read from write
TARd Faulting and altering read from full
TAWr Faulting and altering read from write

Signal trap

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 10

3. Architectural support for fine-grain Synchronization

3.1 Review of related work

3.1.1. Alewife Machine
The MIT Alewife machine [3] is a CC – NUMA multiprocessor with a full/empty tagged
distributed shared memory and hardware-supported block multithreading. The machine,
organized as shown in Figure 3. Memory is physically distributed over the processing
nodes, which use a cost-effective mesh network for communication.

Figure 3: Alewife node, LimitLESS directory extension [9].

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 11

An Alewife node consists of a 33MHz SPARCLE processor, 64K bytes of direct-mapped
cache, 4M bytes of globally-shared main memory, 2M bytes of directory (to support a
4M byte portion of shared memory), 2M bytes of unshared memory and a floating-point
co-processor.

Alewife machine is internally implemented with efficient message-passing mechanism. It
provides an abstraction of a global shared memory to programmers. The most relevant
part of its nodes regarding coherency and synchronization protocol is the communication
and memory management unit (CMMU), which deals with the memory request from the
processor and determines whether a remote access is needed, it also manage the cache
filling and replacements. Cache coherency is achieved through LimitLESS [9], a directory
based protocol. The home node is responsible for the coordination of all coherence
operations for that line.

3.1.2. Hardware vs. Software approach in Alewife
In Alewife implementation, hardware support has been provided for the automatic
detection of failure whereas actual handling of the failure is supported by the software.
This technique gives an efficient CPU pipelining and register set in place, thus retaining
good single thread performance

There are two ways to express parallelism in Alewife: Data level and Control parallelism
[20]. While implementing data-level parallelism, it’s necessary to synchronize at the
defined granularity level. L-structure and J-structure are example of fine-grain
synchronizing loads and stores. Such an operation reads or writes a data word while
testing and/or setting a synchronizing condition. If operation succeeds, it doesn’t take
longer than a normal load or store to complete. In the event of failure, the processor fires
the trap.

For the implementation of control parallelism it is necessary to know when a value
produced by a future expression is being touched. This might happen anytime a value is
used as an argument to an ALU operation or dereferenced as a pointer. The processor
traps if the value being touched is not ready.

3.1.3. Hardware support for J-structure and L-structure in Alewife
Full/empty bits are used to represent the state of synchronized data in J-structures and L-
structures. A full/empty bit is referenced and/or modified by a set of special load and store
instructions. References and assignments to J and L-structures use the following special
load, store and swap instructions depending on whether detection through traps is desired
or not:

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 12

LDN Read location
LDEN Read location and set to empty
LDT Read location if full, else trap
LDET Read location and set to empty if full, else trap.
STN Write location
STFEN Write location and set to full
STT Write location if empty, else trap
STFT Write location and set to full if empty, else trap
SWAPN Swap location and register
SWAPEN Swap location with register and set to full
SWAPT Swap location with register if empty, else trap
SWAPET Swap location with register if full, else trap

In addition to possible trapping behavior, each of these instructions sets a condition code
to the state of the full/empty bit at the time the instruction starts execution. The complier
has choice to use traps or tests of this condition code. When a trap occurs, the trap
handling software decides what action needs to take. These synchronization J- and L-
structures provide for data-dependency and mutual exclusion, and are primitives upon
which other synchronization operations can be built. Failed synchronizations are
completely handled in software. In Alewife machine, failure is detected in hardware, and
the trap dispatch mechanism passes control to the appropriate handler.

i) J-structure
Each J-structure element has been associated with a full/empty state bit. Allocating a J-
structure is implemented by allocating a block of memory with the full/empty bit for each
word. Resetting a J-structure element involves setting the full/empty bit for that element
to empty. Implementing a J-structure read is also straightforward; it is a memory read,
which fire the trap, if the full/empty bit is empty.

If the full/empty bit is empty, the reading thread may need to suspend execution and
queue itself on a wait queue associated with the empty element. Now the question is,
where this queue be stored? A possible implementation is to represent each J-structure
element with two memory locations, one for the value of the element and other for a
queue of waiters.

ii) L-structure
The implementation of L-structure is similar to that J-structure. The main differences are
that L-structure elements are initialized to full with some initial value, and an L-structure
read of an element sets the associated full/empty bit to empty and the element to the null
queue. An L-structure peek, which is non-locking, is implemented in the same way as a J-
structure read.

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 13

On an L-structure write, there may be multiple readers requesting mutually exclusive
access to the L-structure slot. Therefore, it is wise to release only one reader instead of all
readers. Here the potential problem is that if the released reader remains unscheduled for
some significant length of time after being released. It is not clear what method of
releasing of waiter is best, and in current implementation it releases all waiters.

3.1.4. Handling of failed synchronization in software
Due to full/empty bits and signaling failures via traps, successful synchronization incurs
very little overhead. But in case of synchronization miss, machine fires a trap and
provides enough hardware support to rapidly dispatch processor execution to a trap
handler. A failed synchronization implies that the synchronizing thread has to wait until
synchronization condition is satisfied. There are two fundamental ways for a thread to
wait: polling and blocking [20].

Polling involves repeatedly checking the value of a memory location, returning control to
the waiting thread when the location changes to the desired value. No special hardware
support is needed for the polling. Once the trap handler has determined the memory
location to poll, it can poll on behalf of the synchronizing thread by using non-trapping
memory instructions, and return control to the thread when the synchronization condition
is satisfied.

Blocking is more expensive because of the need to save and restore registers. Saving and
restoring registers is particularly expensive in SPARCLE because loads take two cycles
and stores three. If all registers need to be saved and restored, the cost of blocking can be
several hundreds of cycles, more or less depending on cache hits.

In Alewife machine, the compiler informs the synchronization trap handler to execute in
case of synchronization misses. This trap handler is basically known as a waiting
algorithm. If there are other threads to execute in parallel, then appropriate waiting
algorithm is to block the memory location for barrier synchronization, and to poll for a
while before blocking for fine-grain producer-consumer synchronization. Since fine-grain
synchronization leads to shorter wait times, this reduces the probability that a waiting
thread gets blocked.

To control hardware complexity, thread scheduling is also done entirely in software.
Once a thread is blocked, it is placed on a software queue associated with the failed
synchronization condition. When the condition is satisfied, the thread is placed on the
queue on runnable tasks at the processor on which it last run. A distributed thread
scheduler that runs on all idle processors checks these queues to reschedule runnable
tasks.

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 14

3.2 Proposed architecture
The main aim of this research is to design and evaluate the performance of a Full/Empty
tagged memory hierarchy with the aggressive hardware support for the implementation of
fine-grain synchronization embedded in a cache coherency mechanism of an SMP or a
NUMA multiprocessor.

The objective here is to develop the efficient way to support the fine-grain
synchronization in multiprocessor. The methodology used is to merge the fine-grain
synchronization with the cache coherence protocol [26], [27], [29]. At this end, some
changes are required in the existing architecture of cc-NUMA machines. This section is
dealing with the architectural modifications that need to make to support the
synchronization coherence protocol.

Assume that each memory word is associated with full/empty bit (FE-bit). We call such a
memory full/empty tagged memory or simply FE-memory. This FE-bit indicates the
binary state of that memory location. If this bit is set (means logical value is 1), location
is full otherwise location is empty (means it is in reset state and its logical value is 0). The
full state of the memory location can be interpreted as bound, defined and containing
some meaningful value. The empty state of the memory location can be interpreted as
unbound, undefined and containing some meaningless value. In general FE-memory can
be considered as the composition of three logical parts [29]:

i) Data memory (DM) that holds the defined data.
ii) State memory (SM) that holds the state bit means FE-bit.
iii) State miss memory (SMM) that holds the pending access requests.

3.2.1 Architectural model

In earlier work [20], it is stated that if new synchronized read/writes come to such a
memory location that is already empty/full (means FE-bit is reset/set), then these
read/writes are considered as synchronization misses and interpreted as an error. To
resolve this error exception is raised and it is handled differently.

In the suggested architecture, synchronized read/write misses are not interpreted as an
error, whereas we assume that full/empty memory operations suspends on a synchronized
read/write miss (by analogy to a cache miss), waiting in a memory while the miss is
resolved. In this way, a queue of waiting threads (pending operations) will be maintained
as a queue outstanding misses. These pending operations are stored in state miss memory.
When an appropriate synchronizing operation is performed, the relevant pending requests
stored in the list are resumed.

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 15

Each cache is also tagged with two pending bits with each word to provide full hardware
support for completing the synchronized pending read/write memory operations.

i) Pr-bit, if this bit is set, it means there is/are pending synchronized read for the
corresponding word. This information is required for the synchronized write
to satisfy immediately the pending synchronized read after completing the
write operation into the specified memory location.

ii) Pw-bit, if this bit is set, it means there is/are pending synchronized write for

the corresponding memory location. This information is required for the
synchronized read to satisfy immediately the pending synchronized write after
completing all the read operations from the specified memory location.

A FE-memory operation might access only data (e.g. read/write), or data and state (e.g.
read/write and set to empty/full), or only state (e.g. set to empty). We assume that a
memory operation that accesses both, data and state is atomic. An operation is called
altering if it sets a new state for the target location. Altering read sets the location empty
and read the data and altering write sets the location full and writes the data.

 Tag Pw-bits Data bits
 Array

 Pr-bits FE-bits

Figure 4: Architecture of Modified Cache

The Figure 4 illustrates the changes in Cache. Considering the example of 4-processor
system with 32-byte memory blocks (4 words), the cache block have a storage overhead
of 9% - 12 bits (4 FE-bits, 4 Pr-bits, 4 Pw-bits) extra than 256 bits data block plus tag
bits.

Figure 5 illustrates a possible logical organization of a full/empty memory and full/ empty
cache in a bus based shared memory multiprocessor (only one node is shown). Empty bits
and pending bits can be stored together with tags in the tag-directory of the FE-cache.

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 16

Figure 5: Organization of FE-cache and FE-memory

We assume that state misses can be treated in the same was as cache misses and the
information that keeps track of outstanding misses (state and cache) is stored in Miss
State Holding Registers (MSHR).

Some modifications have to be made to the cache architecture in case synchronization
misses are to be kept in MSHR. More specifically, MSHR in lockup free caches stores the
information listed in Table 2 [11], [21]. In order to store synchronization misses in these
registers, two more fields have to be added containing the slot’s index accessed by the
operation and the specific variant of synchronized that will be performed.

Table 2: Information Stored in MSHR

Field Semantics
Cache buffer address Location where data retrieved from memory is stored
Input request address Address of the requested data in main memory
Identification tags Each request is marked with a unique identification label
Send-to-CPU flags If set, returning memory data is sent to CPU
In-input stack Data can be directly read from input stack if indicated
Number of blocks Number of received words for a block
Valid flag When all words have been received the register is freed
Obsolete flag Data is not valid for cache update, so it is disposed

CPU

Address (& State)

Data (& State)

 Memory

Data
MSHR
 &
Logic
(State
and
Cache
Misses)

 Cache
 Tags

FE –State
 & Pr,
Pw-Bits

Cached
Data

Cache
Controller

FE
and P
State

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 17

When a memory word is cached, its full/empty bit along with pending bits must also be
cached. As a result, not only data but full/empty and pending bits must also need to keep
coherent. An efficient option is to store the full/empty bits and pending bits as an extra
field in cache tag, allowing the checking of synchronization state in the same step as the
cache lookup. Hence the coherence protocol has two logical parts, one for data and other
for synchronization bits.

This cache design coupling with fine-grain synchronization, the smallest synchronization
element is a word. Since cache line is usually longer, so it may contains multiple
elements, including both synchronized and ordinary data. [26] (Refer figure 6). A tag
contains the full/empty bits and pending bits for all synchronized words that are stored in
that line. Usually state information refers to complete cache line whereas full/empty bit
and pending bit refer to single word in that cache line.

 Synchronized data Synchronized data
FE-bit (empty, no pending (full, no pending-read,
 Read/write) pending-write)

0 0 0 Word0 Word1 Word2 1 0 1 Word3 State information

Pr-bit Pw-bit Ordinary data

 Figure 6: Cache line containing both ordinary and synchronized data.

The following table 3 explains the synchronization operation of read/writes on the
synchronized memory location depending on the status of FE-bit and pending-bits.

A complete description of a cache coherence protocol includes the states, transition rules,
protocol message specification and the description of a cache line organization and
memory management of pending requests. The suggested architecture is based on
following assumptions:

• The smallest synchronized data element is a word;
• CPU implements out – of – order execution of instructions;
• Each processing node has a miss-under-miss lockup-free cache and supporting

multiple outstanding memory requests.

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 18

Table 3: Synchronized operation on synchronized data word Based on FE and P-Bits

FE-
bit

Pr-
bit

Pw-
bit

Synchronized operation on synchronized data word

0 0 0 No pending Read/Write operation for the memory location, New
synchronized write can be performed and set the FE-bit

0 0 1 More than one synchronized writes are pending and next
synchronized write can be resumed from the pending write queue
and set the FE-bit

0 1 0 Only pending-read, no pending-write, new synchronized write
can be performed and set the FE-bit to resume the pending-read.

0 1 1 Pending read as well as more than one synchronized writes are
pending for that location and next synchronized can be resumed
from the pending write queue and set the FE-bit to resume the
pending-read.

1 0 0 No pending read/write, new synchronized read can be performed
to read or FE-bit can be reset to reuse of that memory location

1 0 1 Only pending-write, new synchronized read can process or FE-bit
can be reset to reuse of that memory location and resume the
pending-write.

1 1 0 Discarded combination
1 1 1 Discarded combination

3.3 Synchronization cache coherence protocol
In a multiprocessor system, cache memory to each processing node is used to speed up
the memory operations. It is necessary to keep the cache in coherency [10] by ensuring
that modifications to data that is resident in cache are seen in the rest of the node that
share a copy of the data. Cache coherence can be achieved in several ways depending
upon the system architecture.

[12] In Bus-Based System, cache coherency is implemented by snooping mechanism,
where each cache is continuously monitoring the system bus and updating its state
according to the relevant transactions seen on the bus. On the other hand mesh network-
based system use a directory structure to ensure cache coherency. Both snoopy and
directory based mechanisms can be further classifieds into invalidate and update
protocols. When a cache modifies shared data, all other copies are set as invalid in case
of Invalidate Protocol, whereas in Update Protocol all copies sets to new value in all
cache during modification of shared data in one cache instead of making them invalid.

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 19

The performance of multiprocessor is partially limited by cache miss and node
interconnects traffic [11]. Another performance issue is the overhead imposed by
synchronizing data operations; this overhead is due to the fact that synchronization is
implemented as a separate layer over the cache coherence protocol. If synchronization
and coherence protocols are more tightly coupled by merging them into one, increased
performance and reduced network traffic can be achieved.

Each memory is associated with a full/empty bit (FE-bit). This FE-bit indicated the state
of memory location. If the bit is set, location is full, otherwise the location is empty. Each
cache is also tagged with pending bits (P-bits) – if a Pr-bit is set, it means there is a
pending synchronized read for the corresponding word and if Pw-bit is set, it means there
is a pending synchronized write for the corresponding word. The cache controller not
only match the tag bit also state bits depending on the instruction and take decision based
on the state of the associated FE-bit and P-bits.

The defining feature of the Synchronization Coherence Protocol is that synchronization
misses are treated as a cache misses in the individual nodes. It thus kept in the Miss
Information Holding Registers of a remote node to be subsequently resolved by explicitly
messages from the home node (directory). The home nodes contains Synchronization
Miss Buffer (SMB), that holds the information regarding which node have pending
synchronized read/write for a given word in case of directory-based protocol..

In order to evaluate the performance improvement of this proposed architecture with
respect to existing architecture, appropriate workloads must be tested on the machine. We
must find the suitable application that show the result in meaningful way, so that the
effects of the synchronization overhead such as the cost of additional bit storage,
execution latency or extra network traffic can be studied in detail.

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 20

4. FGS Snoopy Coherence Protocol

 ….
 List of pending
 Requests

System Bus
 Bus snoop Cache-memory
 I/O devices Transaction

Figure 7: Snoopy cache-coherent multiprocessor with Shared-Memory

Bus-based system architecture, figure 7, illustrates the bus connection of processing
nodes with their private caches placed on a shared bus. Each processing node’s cache
controller continuously snoops on the bus watching for relevant transaction and updates
its state suitably to keep its local cache coherent [12]. The dashed-line and arrows shows
the transaction being placed on the bus and accepted by main memory as in uniprocessor
system. The continuous line shows the snoop. The key properties of the bus that support
coherence are the following:

• All transactions that appear on the bus are visible to all cache controllers.
• They are visible to all controller in the same order (the order in which they appear

on the bus)

A coherence protocol must guarantee that all the “necessary” transactions appear on the
bus, in response to memory operations, the controllers should take the appropriate actions
when they see a relevant transaction. The protocol described here is based on the MESI
protocol, also knows as Illinois protocol. It is a four-state write-back invalidation
protocol with the following state semantics [12]:

Cache Cache

 Shared
 Memory

P1 Pn

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 21

• Modified – cache has the valid copy of the block and location in main memory is
invalid.

• Exclusive clean – cache has a copy of the block and main memory is up-to-date.
A signal is available to the controller in order to determine on a BusRd if any
other cache currently holds the data.

• Shared – the block is present in an unmodified state in the cache and zero or more
caches may also have a shared copy, main memory is up-to-date

• Invalid – no valid data is present in the block.

The state transition diagram of MESI protocol without fine-grain synchronization support
is shown in Figure 8. The notation A/B means that ‘A’ indicates an observed event
whereas ‘B’ is an event generated as a consequence of A. Dashed lines show state
transitions due to observed bus transactions, while continuous lines indicate state
transitions due to local processor actions.

Figure 8: MESI cache coherence protocol

Finally, the notation Flush means that data is supplied only by the corresponding cache.
Also this diagram does not consider the transient states used for bus acquisition.

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 22

4.1 Protocol Description
The state transitions needed to integrate fine-grain synchronization in MESI can be done
by splitting the ordinary MESI sates into two groups: empty state transitions and full state
transitions. In the protocol description, we consider only waiting non-altering reads and
waiting altering writes. Altering reads can be achieved by issuing non-altering reads in
combination with an operation that clears the FE-bit without retrieving data. This
operation is called as unconditional altering clear (PrUACl) and it operates on a FE-bit
without accessing or altering the data corresponding to that state bit. In order to reuse
synchronized memory locations, clearing of FE- bits is necessary (this is described in
detail in [20]). This operation can be initialized as soon as there is no pending read for
that location (Pr-bit is clear) and FE-bit need to be reset to reuse that memory location.

The most complex synchronizing operations in cache are the waiting read/write
operations because they require additional hardware in order to manage deferred list and
resume pending synchronization requests. The rest of the synchronizing operations are
simpler version of waiting read/write operations with the only difference being in the
behavior of operations, when a synchronization miss is detected. Instead of adding the
rest of these synchronizing operations in pending list, either an exception is raised or the
operation is discarded.

Two additional bus transactions have been introduced in order to integrate fine-grain
synchronization with cache coherence in the MESI protocol [27], which ensures the
coherence of FE-bits and Pending-bits. Table 4 describes in more details.

Table 4: Additional bus transactions in the MESI protocol

Bus
Transaction

Description

BusSWr A node has performed an altering waiting write and reset the Pr-bit.
The effect of this operation in observing nodes is to set the FE-bit and
reset the Pr-bit of the referring memory location to resume the
relevant pending-read requests. If more than one pending-write is
there for that memory location then Pw-bit need to set again after
completing the altering waiting write.

BusSCl A node has performed an altering read or an unconditional clear
operation. The effect of this operation in observing nodes is to clear
the FE-bit and reset the Pw-bit of the referring memory location, thus
making it reusable.

The new bus signal ‘C’ is introduced to determine the condition of synchronized
operation miss, named shared-word signal and indicates if there is any other node sharing
to the specified word. This signal can be implemented as a wired-OR controller line,

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 23

which is asserted by each cache that contains the copy of the relevant word with the FE-
bit set.

It is necessary to specify the particular data word on which synchronization operation is
performed because cache line may contain several synchronized data words. A negated
signal (C’) causes a requesting read to be appended to the list of pending reads in MSHR,
sets the Pr-bit (if not set) and resets the Pw-bit to resume pending-writes (if any),
otherwise perform the new incoming requesting writes. If the synchronization signal ‘C’
is asserted, then it resets the Pr-bit to resume the pending-reads (if any), otherwise new
synchronized read is processed and requesting write is appended to the list of pending
writes in MSHR and the Pw-bit is set.

Along with shared-word signal which is already introduced, three more wired-OR signals
are required for the protocol to operate correctly [12]. The first signal (named S) is
asserted if any processor different than the requesting processor has a copy of the cache
line. The second signal is asserted if any cache has the block in a dirty state. This signal
modifies the meaning of the ‘S’ signal in the sense that an existing copy of a cache line
has been modified and then all the copies in other nodes are invalid. A third signal is
necessary in order to predict whether all the caches have completed their snoop, which
means, it is reliable to read the value of the first two signals.

4.2. Correspondence between processor instructions and
bus transactions

When a processing node issues any memory operation, the local cache first interprets the
request and then performs accordingly, if required it also issues the bus transaction. The
correspondence between the different processor instructions and the memory requests
seen on the bus is shown in following Table 5.

Table 5: Correspondence between processor instructions and memory requests

Request from
processor

Bus transaction

PrUNRd BusRd (Ordinary read)
PrUNWr BusWr (Ordinary write)
PrUARd BusRd + BusSCl
PrUAWr BusAWr (Not specified in protocol definition)
PrWNRd BusRd (C) (Bus transaction with shared-word signal)
PrWNWr BusWr (C)
PrWARd BusRd (C) + BusSCl
PrWAWr BusSWr (C)

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 24

From Table 5, it can be inferred that unconditional read/write requests from the processor
generates the ordinary read/write transaction on the bus. Unconditional altering read
PrUARd, requires BusRd transaction followed by BusSCl transaction, therefore this
request retrieves the data from the corresponding memory location and as well clears the
FE-bit. Clearing the FE-bit is performed by the BusSCl transaction, which does not
access nor modifies the data. Finally unconditional write request PrUAWr, generates the
bus transaction, namely BusAWr, which unconditionally sets the FE-bit after writing the
corresponding data to the specified memory location.

Table 5 shows that the behavior of all the conditional memory operation depends on the
shared-word bus signal. A conditional non-altering read operation generates an ordinary
read bus transaction after checking the status of shared-word signal, if it is asserted. A
conditional altering read operation generates ordinary read transaction in addition to the
BusSCl transaction. Finally, a conditional altering write causes a BusSWr transaction to
be initiated on the bus. This transaction sets the FE-bit and resets the Pr-bit after writing
the corresponding data to the referred memory location to resume the pending-read
operations, if any exists.

4.3. Resuming of pending requests
It is very crucial to specify how the resuming of pending requests is done. In the snoop-
based systems, coherence of FE-bit and Pending-bits is ensured by the proper bus
transactions. It means that all caches those have pending read/write requests for a given
memory location will get to know when the synchronization condition is met by snooping
into the bus and monitoring for the BusSWr or BusSCl transactions to occur.

When any bus transaction occurs, a comparator in a cache checks if there is any entry in
MSHR matching with the received bus transaction. If incoming transaction matched with
any MSHR entry and bus transaction is BusSWr, then the observing node will perform
altering-write operation, it will set the FE-bit and reset the Pr-bit to resume the pending
read for the referred location. On the other hand, if bus transaction is BusSCl then the
observing node will perform altering-read or unconditional clear operation, it will reset
the FE-bit and Pw-bit to resume the pending write for the referred location.

It is also possible to have pending requests for the memory location that is not cached or
is in invalid state. The location will be cached in the cache as soon as the synchronization
miss is resolved to make it available for the processing at the desired node.

Considering the example of three node bus system shown in Figure 9, and assume that
every node has pending requests for location ‘X’ in their respective MSHR. Suppose
nodes A and B have invalid copies in their caches along with Pr-bit is set (means read

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 25

request is pending for the location ‘X’), whereas node C has the exclusive ownership of
the referred location ‘X’, whose FE-state bit and Pw-bit is unset. After node C
successfully performs a conditional altering write to location ‘X’ and unset the Pr-bit to
resume pending read, if any available at this node for the location ‘X’ as well this event is
notified on the bus by a BusSWr transaction.

This transaction informs nodes A and B that they can reset their Pr-bit corresponding to
the location ‘X’ to resume the pending read requests, which happens to be a conditional
altering read. As a consequence, only one of these nodes will be able to successfully issue
the operation at this point. This is imposed by bus order. For instance, if node B gets the
bus ownership before node A, the pending request from the node B will be resumed first
and the operation at node A will stay pending in the MSHR.

Figure 9: Resuming of pending requests.

While handling multiple pending write requests for a single memory location, the cache
controller analyzes the tag along with FE-bit and pending read/write bits for the new
synchronized write operation and if write miss occurs and Pw-bit is already set (means
already there is a pending write for that location). In this case, the later synchronized

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 26

write miss will be added to the deferred list of MSHR and it will be linked with the
former synchronized write miss to the same location. As soon as all the synchronized
read misses will be resolved for this memory location, the cache controller will reset the
FE-bit and Pw-bit to resume the pending write miss. The very first pending synchronized
write miss will be activated and will perform the write operation It will set the FE-bit,
reset the Pr-bit to resume the pending reads and at the same time sets the Pw-bit again to
take care the write misses for the same location, those are still pending to resolve.

4.4. Transition rules of Synchronized Snoopy-based protocol
Transition rules from each coherence state are presented in the following sections for the
four state MESI protocol. These transition rules are similar to those described in [27] but
each rule is modified in order to capture the handling of synchronized pending read/write
operations and their deferred list. A description made here is in the form of C-styled
pseudo-code for the each state. It explains how transition happens from one state to other.
It is noted that the ordering of all kind of misses (cache misses and synchronized misses)
from different processors is maintained by the bus order.

4.4.1. Transition from the Invalid State
 SWITCH (IncomingRequest) {

 //Processor Requests
 CASE PrUNRd : Send (BusRd);
 IF (S) {
 FlushFromOtherCache(); NextState = Shared;
 } ELSE {

 ReadMemory();NextState = Exclusive;
 } Break;
 CASE PrUNWr: Send (BusRdX); NextState = Modified; Break;
 CASE PrWNRd: Send (BusRd);
 IF (S && C) {
 FlushFromOtherCache(); NextState = Shared;
 } ELSE IF(!S && C) {
 ReadMemory(); NextState = Exclusive;
 } ELSE {
 AddToDeferredList(); //Wait to resolve.
 SetPrBit (); NextState = Invalid;
 } Break;
 CASE PrWAWr : Send (BusWr);
 IF (S && !C) {
 WriteToBus(); NextState = Shared;//To resolve
 } ELSE IF (!S && !C) {
 WriteToCache(); NextState = Modified;
 } Else {
 AddToDeferredList(); // Wait to Resolve.
 SetPwBit (); NextState = Invalid;
 } Break;
 CASE PrUACl : IF (C){
 Send (BusSCl); NextState = Invalid;
 } Break;

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 27

4.4.2 Transition from the Modified State
 SWITCH (IncomingRequest)
 {
 //Processor Requests
 CASE PrUNRd: ReadCache(); NextState = Modified; Break;
 CASE PrUNWr: WriteToCache(); NextState = Modified; Break;
 CASE PrWNRd: IF(Full) {
 ReadCache(); NextState = Modified;
 } ELSE {
 AddToDeferredList(); // Wait to Resolve
 SetPrBit(); NextState = Modified;
 } Break;
 CASE PrWAWr: Send(BusSWr);
 IF(Empty) {
 WriteToCache();NextState = Modified;
 ResetPrBit(); //Resume pending reads
 } ELSE {
 AddToDeferredList(); // Wait to resolve
 SetPwBit();NextState = Modified;
 } Break;
 CASE PrUACl: IF (Full) {

 ReSetFE();NextState = Modified;
 ReSetPwBit(); //Resume pending write

 } Break;

 ---- Bus Signals
 CASE BusRd: flush(); NextState = Shared; Break;
 CASE BusRdX: flush(); NextState = Invalid; Break;
 CASE BusSWr: IF(Empty) {
 WriteToCache(); NextState = Shared;
 UnSetPrBit(); //Resume pending reads
 } Break;
 CASE BusSCl: IF(Full) {
 ReSetFE(); NextState = Shared;
 ReSetPwBit(); //Resume pending write
 } Break;
 }

4.4.3 Transition from the Exclusive State
 SWITCH (IncomingRequest)
 {
 //Processor Requests
 CASE PrUNRd: ReadCache(); NextState = Exclusive; Break;
 CASE PrUNWr: WriteToCache(); NextState = Modified; Break;
 CASE PrWNRd: IF(Full) {
 ReadCache();NextState = Exclusive;
 } ELSE {
 AddToDeferredList(); // wait to resolve
 SetPrBit(); NextState = Exclusive;
 } Break;
 CASE PrWAWr: Send(BusSWr);
 IF(Empty) {
 WriteToCache();

ReSetPrBit(); //resume pending reads
 NextState = Shared; // need to evaluate

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 28

 } ELSE {
 AddToDeferredList(); //wait to resolve
 SetPwBit();NextState = Exclusive;
 } Break;
 CASE PrUACl: IF(Full) {

 ReSetFE(); NextState = Modified;
 ReSetPwBit(); //resume pending write

 } Break;

 //// Bus Signals
 CASE BusRd: flush(); NextState = Shared; Break;
 CASE BusRdX: flush(); NextState = Invalid; Break;
 CASE BusSWr: IF(Empty) {
 WriteToCache(); NextState = Shared;
 ReSetPrBit(); //resume pending reads
 } Break;
 CASE BusSCl: IF(Full) {
 ReSetFE();NextState = Shared;
 ReSetPwBit(); //resume pending write
 } Break;
 }

4.4.4 Transition from the Shared State
 SWITCH (IncomingRequest)
 {
 //// Processor Requests
 CASE PrUNRd: ReadCache();NextState = Shared; Break;
 CASE PrUNWr: Send(BusRdX); WriteToCache();NextState = Modified;
 Break;
 CASE PrWNRd: IF(Full) {
 ReadCache();NextState = Shared;
 } ELSE {
 AddToDeferredList(); //wait to resolve
 SetPrBit(); NextState = Shared;
 } Break;
 CASE PrWAWr: Send(BusSWr);
 IF(Empty){
 WriteToCache();
 ReSetPrBit(); //resume pending reads
 NextState = Shared; // need to evaluate
 } ELSE {
 AddToDeferredList(); //wait to resolve
 SetPwBit(); NextState = Shared;
 } Break;
 CASE PrUACl: IF(Full){

 ReSetFE();
 ReSetPwBit(); //resume pending write
 Send(BusSCl); NextState = Shared;

 } Break;

 ///// Bus Signals
 CASE BusRd: Flush(); NextState = Shared; Break;
 CASE BusRdX: Flush(); NextState = Invalid; Break;
 CASE BusSWr: IF(Empty){
 WriteToCache();NextState = Shared;

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 29

 ReSetPrBit(); //resume pending reads
 } Break;
 CASE BusSCl: IF(Full){
 ReSetFE(); NextState = Shared;
 ReSetPwBit(); //resume pending write
 } Break;
 }

4.5. Merging of pending requests
Each processing node maintains its local deferred list. This list contains both cache
misses and synchronization misses. It can happen that both types of misses are for the
same location. So in this case, not only cache line is present but also synchronization state
is not met at the location where the copy of word is present. After a relevant change in the
synchronization state of the memory location, any operation that matches with the present
synchronized state is resumed at the appropriate processing node.

Table 6 shows how the management of the deferred list is done at a local node. More
precisely, this table specifies the action taken by cache controller when a new request is
received with respect to a pending request already present in the list of deferred
operations. This merging of requests is basically a optimization in coherence protocol. It
is noted that a pending write is always conflicting with any incoming requests, so it can
never be merged and required separate entry in list of pending requests. Since write
operations are always conflicting, all write requests have not shown in the Table 6.

Table 6: Merging of requests with incoming requests.

Incoming requests Can be merged with
PrUNRd
PrUARd

 Any previous pending read request referred to the same
location.

PrWNRd
PrWARd
PrNNRd
PrNARd
PrTNRd
PrTARd

Only non-altering pending read request referred to the same
location.

From the table 6, it can be observed that incoming unconditional read operations can be
merged with any pending reads requests whereas incoming conditional reads can be
merged with only non-altering pending read requests.

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 30

4.6. Discussion
A bus based snoopy coherence protocol integrated with fine-grain synchronization
support has been introduced. This implementation considers only waiting non-altering
reads, waiting altering writes and unconditional clearing FE-bits memory operations. A
systematic protocol description is made here in the form of state transitions and their
corresponding C-styled pseudo-code.

In the snoopy-protocol the coherence of FE-state bits and Pending- bits is maintained by
bus transactions defined for this purpose, namely BusSWr and BusSCl. An additional bus
signal ‘C’ called shared-word along with three more bus signals are also introduced in
order to implement the conditional behavior of synchronizing operations.

A drawback of integrating fine-grain synchronization with cache coherence at the cache
level is the complexity of managing and resuming of pending synchronization requests.
This complexity can be over come by the use of aggressive and efficient hardware
support in the system in terms of FE-bits and Pending-bits, which can exploit the
efficiency of fine-grain synchronization to achieve high degree of parallelism and
improve its performance.

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 31

5. FGS directory-based coherency protocol

Scalable cache coherence is typically based on the concept of a directory. Since the state
of a block in a cache can no longer be determined implicitly by placing a request on a
shared bus and having it snooped by the cache controllers, the idea is to maintain the state
explicitly in a place – called a directory. It can be imagine that each cache-line-sized
block of main memory has associated with it a record of the caches that currently contain
a copy and the state of the block in those caches. This record is called the directory entry
for that block.

Figure 10, shows a system of a scalable multiprocessor with directories. ‘CA’ works as
communication assist between cache, main memory and interconnection network. All the
endpoint processing at the destination of the transaction (invalidating blocks, retrieving
and replying with data) is typically done by the communication assist rather than the
main processor.

Directory Directory

 Memory Memory

Figure 10: A scalable multiprocessor system with directories

Since directory schemes rely on point-to-point network transactions, they can be used
with any interconnection network. In a scalable multiprocessor based system, shown

Scalable interconnection network

 Cache1 Cache2

P2

CA CA

P1

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 32

below in Figure 10, each shared memory block has a directory entry that lists the nodes
that have a cached copy of the data [12]. FE-bit and Pending-bits are stored as an extra
field on the coherence directory entry to implement efficiently the synchronization
conditions. Point-to-point messages are used to keep the directory up-to-date and to
request permissions for a load and store to a particular location.

5.1. Alewife directory based coherence protocol
The following directory states are defined in Alewife machine for the coherence protocol:

• Read-only: One or more caches have a read-only copy of the block
• Read-write: Only one cache has a read-write copy of the block
• Read Transaction: Cache is holding a read request (update is progress)
• Write transaction: Cache is holding a write request (invalidation is in progress)

5.2. Directory modification to support FGS
All the caches and directory blocks contain an array of the FE-bits – one for each word.
Each cache and directory block is also tagged with pending bits (Pr-bit and Pw-bit). If a
Pr-bit is set, it means there is pending synchronized read for the corresponding word.
This information is required so that synchronized write can immediately resume the
pending read after it has completed writing at the corresponding memory location.

On the contrary, if Pw-bit is set, it means there is a pending synchronized write and this
information is required so that synchronized read can immediately resume the pending
write after finishing the reading to the corresponding memory location. If more than one
synchronized write are pending for the same location, then will have separate entries for
each pending write and Pw-bit will remain set until all writes resolved. This will be taken
care by the directory controller, which will keep observing the pending list of
synchronized write misses.

The home node (directory) also contains a Synchronization Miss Buffer (SMB), which
holds information regarding which node has pending synchronized read/write for a given
word. Figure 11 shows the modified directory and SMB organization for a 4 processor
system with 32 byte memory blocks (4 words, a example).

It has been already mentioned that SMB contains entries of nodes which suffered from
synchronization read/write miss and entry is indexed by the word address. But how many
entries should this SMB contain? For hit-under-miss architecture with ‘n’ nodes, there
can be utmost ‘n–1’ pending operations [26]. For very large configuration or for miss-
under-miss architecture, the requisite number of entries can be very large.

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 33

Write back from cache reply to respective
 nodes
 Pr-bits Pw-bits SMB
 (one bit per word) (one bit per word)

 FE-bits
Full Bit Vector (one bit per word)
 (one bit per node)

 Figure 11: Modified directory and SMB

In such cases, an overflow mechanism can be employed – if entries are running out of
SMB entries, an overflow bit can be set and the directory controller would treat this
situation differently. Either directory controller would assume that all nodes are pending
[26] or it will replace any cache randomly with upcoming cache [27]. In former method,
controller will send reply to all of them accordingly depending on the kind of request.
During this time processor will be stalled and directory controller will not accept
anymore request until it would not get any SMB entry free.

All synchronization misses are kept in MSHR of the remote node to be subsequently
resolved by the explicit messages from the home node (directory). The cache controller
has to match not only tag but also the state bits depending upon the instruction and take
decision based on the state of the cached line as well as the associated FE-bit and
Pending read/write bits. The directory controller is very complicated because of the FSM,
which implements the synchronization coherence protocol in the directory. It has to send
data asynchronously to resolve synchronization misses on write backs by looking up SMB
and so on.

5.3. Correspondence between processor instructions and
network transaction

The network transactions used in the proposed protocol are described in Table 7. It shows
the requests sent from cache to memory and requests sent from memory to cache. Six
new messages are introduced in order to implement fine-grain synchronization at the
cache level. These messages are SRREQ, SWREQ, SCREQ from cache to memory and
SRDENY, SWDENY and ACKSC from memory to cache.

 Word address Pending nodes
 full bit vector

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 34

Table 7: Network transactions in the directory-based protocol

Type of Message Symbol Semantics
RREQ Request to read a word that is not in the cache
WREQ Request to write a word
SRREQ Waiting and non-altering read request
SWREQ Waiting and altering write request
SCREQ Request to clear FE-bit
UPDATE Returns modified data to memory

Cache to Memory

ACKC Acknowledges that a word has been invalidated
RDATA Contains a copy of data in memory (response to

RREQ)

Memory to Cache WDATA Contains a copy of data in memory (response to

WREQ)
SRDENY Sent if a SRREQ misses and request is appended

to pending list at directory
SWDENY Sent if a SWREQ misses and request is

appended to pending list at directory
INV Invalidates the cache words
ACKSC Acknowledges that the FE-bit has been unset in

all the copies of the block

Memory to Cache

BUSY Response to any RREQ or WREQ while
invalidation are in progress

SRDENY and SWDENY transaction issues from the memory when synchronization miss
occurs, directory controller creates and entry at SMB corresponding to the miss and
controller resolves it when synchronization condition meets for the specified memory
location. Following Table 8 shows that how cache interprets the request from processor
and translates it into one or more network transactions.

Table 8: Correspondence between processor instructions and network transaction

Instruction from
Processor

Initiated network
transaction

PrUNRd RREQ
PrUNWr WREQ
PrUARd RREQ + SCREQ
PrUAWr -
PrSNRd SRREQ
PrSNWr CWREQ
PrSARd SRREQ + SCREQ
PrSAWr SWREQ

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 35

5.4. Directory transition rules
The following description of transition states is based on the Alewife coherence protocol
[9]. The rules defined here are similar to those described in [26], [27]. But each rule is
modified and extended in order to manage pending bits for synchronized read/write and
SMB entries. Transition rules in each coherence state are presented with their C-styled
pseudo-code for the directory-based protocols. The protocol is completely defined in
following five states. In this description, directory controller will replace any cache
randomly with the new upcoming cache in case of overflow at SMB entries.

5.4.1. Transition from the Absent State
 SWITCH (IncomingRequest) {
 CASE RREQ(i): addNodeToDirectory(i); //"i" is the sending node id
 Send (RDATA, i); //send requested data to node
 NextState = ReadOnly; BREAK;
 CASE WREQ(i): IF (ackCounter == 0) {
 addNodeToDirectory(i); Send (WDATA,i);
 NextState = ReadWrite;
 } ELSE {
 addNodeToDirectory(i);
 NextState = WriteTransaction;
 } BREAK;
 CASE SRREQ(i): IF(FULL) {
 addNodeToDirectory (i); Send (RDATA, i);
 NextState = ReadOnly;
 } ELSE {
 Send (RDENY,i); AddToDeferredList();
 SetPrBit (); NextState =Absent;
 } BREAK;
 CASE SWREQ(i): IF(EMPTY && deferredListEmpty()){
 addNodeToDirectory (i); Send (WDATA, i);
 NextState = ReadOnly;
 } ELSE IF (EMPTY &&! deferredListEmpty()){
 addNodeToDirectory(i); Send (WDATA,i);
 ResetPrBit(); NextState = ReadOnly;
 } ELSE {
 Send (WDENY,i); addToDeferredList();
 SetPwBit(); NextState = Absent;
 } BREAK;
 CASE SCREQ(i): ResetFE(); Send (ACKSC,i); ResetPwBit();
 NextState = Absent; BREAK;
 CASE ACKC(i): ackCounter--; NextState = Absent; BREAK;
 }

5.4.2. Transition from the Read-only state
 SWITCH (IncomingRequest) {
 CASE RREQ(i): IF(hasPointerInDirectory(i)) {
 Send (RDATA, i); // "i" is the sending node id.
 } ELSE IF(!directoryFull()) {
 addNodeToDirectory(); Send(RDATA,i);
 } ELSE {

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 36

 ++ackCounter; j = evictRandomDirectoryEntry();
 Send(INV,j); addNodeToDirectory();
 Send (RDATA, i);
 } NextState = ReadOnly; BREAK;
 CASE WREQ(i): IF(hasPointerInDirectory(i) && (numberOfEntries()>1)){

 ackCounter += numberOfEntries() - 1;
 FOR(j = 0; j < numberOfEntries(); j++) {
 IF (i != j) Send (INV, j);

 } clearDirectory (); addNodeToDirectory (i);
 NextState = WriteTransaction;

 } ELSE IF(hasPointerInDirectory(i) &&
 (numberOfEntries () == 1) &&
 (ackCounter != 0)) {

 NextState = WriteTransaction;
 } ELSE IF(hasPointerInDirectory(i) &&
 (ackCounter == 0)) {

 Send(WDATA, i); NextState = ReadWrite;
 } ELSE { // if the line is not in the directory

 ackCounter += n;
 FOR(j = 0; j < numberOfEntries(); j++) {

 Send (INV, j);
 } clearDirectory (); addNodeToDirectory (i);

 } BREAK;
 CASE SRREQ(i: IF(FULL && hasPointerInDirectory(i)) {

 Send (RDATA, i);
 } ELSE IF(full && ! directoryFull()) {
 addNodeToDirectory(); Send (RDATA,i);
 } ELSE IF(FULL && directoryFull()) {
 ++ackCounter;j = evictRandomDirectoryEntry();
 // j is the evicted line.
 Send(INV,j); addNodeToDirectory();
 Send(RDATA,i);
 } ELSE(EMPTY) {
 Send(RDENY,i); addToDeferredList();
 SetPrBit(); //synchronized read miss
 } NextState = ReadOnly; BREAK;
 CASE SWREQ(i): IF(EMPTY && deferredListEmpty()) {
 addNodeToDirectory (i); Send (WDATA, i);
 } ELSE IF(EMPTY && ! deferredListEmpty()) {
 addNodeToDirectory(i); Send(WDATA,i);

 ResetPrBit(); //resume pending read
 } ELSE {
 Send(WDENY,i); addToDeferredList();
 SetPwBit(); //synchronized write miss
 } NextState = ReadOnly; BREAK;
 CASE SCREQ(i): IF(numberOfEntries() > 1) {

 ackCounter += numberOfEntries() - 1;
 FOR(j = 0; j < numberOfEntries();j++) {

 IF(i != j) Send(SCREQ,j);
 } clearDirectory();

 addNodeToDirectory();
 NextState = WriteTransaction;

 } ELSE IF(hasPointerInDirectory(i)) {
 ResetFE(); //clearing the FE-bit
 ResetPwBit(); //clearing the Pw-bit
 Send (ACKSC, i);NextState = ReadOnly;
 } BREAK;
 CASE ACKC(i): ackCounter--; NextState = ReadOnly; BREAK;
 }

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 37

5.4.3. Transition from the Read-write state
 SWITCH(IncomingRequest) {
 CASE RREQ(j): IF(!hasPointerInDirectory(j)){ //there is only one
 ++ackCounter; // node in directory
 Send (INV, i); //(the owner ,namely ’i’)
 ClearDirectory(); addNodeToDirectory(j);
 NextState = ReadTransactoin;
 } BREAK;
 CASE WREQ(j): IF(!hasPointerInDirectory(j)) {
 ++ackCounter; Send (INV,i); clearDirectory();
 addNodeToDirectory (j);
 NextState = WriteTransaction;
 } BREAK;
 CASE SRREQ(j): IF(!hasPointerInDirectory(j) && FULL) {
 ++ackCounter; Send(INV,i); clearDirectory();
 addNodeToDirectory(j);
 NextState = ReadTransaction;
 } ELSE IF(EMPTY) {
 Send (RDENY,j); addToDeferredList();
 SetPrBit(); //synchronized read mis
 NextState = ReadWrite;
 } BREAK;
 CASE SWREQ(j): IF(!hasPointerInDirectory(j) && EMPTY) {
 ++ackCounter; Send(INV,i); clearDirectory();
 addNodeToDirectory(j);
 ResetPwBit(); //resume pending write
 NextState = WriteTransaction;
 } ELSE IF(FULL) {
 Send(WDENY,j); addToDeferredList();
 SetPwBit(); //synchronize write miss
 NextState = ReadWrite;
 } BREAK;
 CASE SCREQ(j): Send(SCFWD,i); NextState = ReadWrite; BREAK;
 CASE ACKC(j): ackCounter--; NextState = ReadOnly; BREAK;
 CASE UPDATE(i,Dpack): addToDeferredList(Dpack);
 ResetPrBit(); //resume pending read
 NextState = ReadOnly; BREAK;
 }

5.4.4. Read transaction state
 SWITCH(IncomingRequest) {
 CASE RREQ(i): Send(BUSY,i); NextState = ReadTransaction; BREAK;
 CASE WREQ(i): Send(BUSY,i); NextState = ReadTransaction; BREAK;
 CASE SRREQ(i): Send(BUSY,i); NextState = ReadTransaction; BREAK;
 CASE SWREQ(i): Send(BUSY,i); NextState = ReadTransaction; BREAK;
 CASE SCREQ(i): Send(BUSY,1); NextState = ReadTransaction; BREAK;
 CASE ACKC(i): ackCounter--; NextState = ReadOnly; BREAK;
 CASE UPDATE(i): --ackCounter; Send(RDATA,i);
 NextState = ReadOnly; BREAK;
 }

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 38

5.4.5. Write transaction
 SWITCH (IncomingRequest) {
 CASE RREQ(i): Send(BUSY,i); NextState = WriteTransaction; BREAK;
 CASE WREQ(i): Send(BUSY,i); NextState = WriteTransaction; BREAK;
 CASE SRREQ(i): Send(BUSY,i); NextState = WriteTransaction; BREAK;
 CASE SWREQ(i): Send(BUSY,i); NextState = WriteTransaction; BREAK;
 CASE SCREQ(i): Send(BUSY,i); NextState = WriteTransaction; BREAK;
 CASE ACKC(i): IF(ackCounter == 1) {
 ackCounter = 0; Send(WDATA,cacheInDirectory());
 NextState = ReadWrite;
 } ELSE {
 --ackCounter; NextState = WriteTransaction;
 } BREAK;
 CASE ACKSC(i): IF(ackCounter == 1) {
 ackCounter = 0; Send(ACKSC,cacheInDirectory();
 NextState = ReadWrite;
 } ELSE {
 --ackCounter; NextState = WriteTransaction;
 } BREAK;
 CASE UPDATE(i): IF(ackCounter == 1) {
 ackCounter = 0; Send(WDATA,cacheInDirectory());
 NextState = ReadWrite;
 } ELSE {
 --ackCounter; NextState = WriteTransaction;
 } BREAK;
 }

5.5. Discussion
A directory based protocol has been defined to integrate fine-grain synchronization with
cache coherence protocol, and aggressive and efficient hardware approach has been
discussed to support this protocol. The protocol has been systematically specified in the
form or C-styled pseudo code for each state. Only waiting non-altering read, waiting
altering-write and unconditional clearing FE-bit operations have been discussed whereas
waiting altering read can be produced in the combination with non-altering read and
unconditional clearing FE-bit operation.

Six new network messages are introduced in the protocol to integrate fine-grain
synchronization with cache coherence. In the proposed protocol definition, synchronized
write is not suspended upon synchronization miss, whereas it is treated as ordinary cache
miss and appended to deferred list. This miss is resolved accordingly when the
synchronization condition is met. Multiple synchronized write misses for the same
location are stored as a linked list at the home directory and resolved one by one in a
sequence. We suggest that a deferred list management scheme in which list of pending
requests can be either at home directory or distributed between home and caches. Trade
off between centralized design and distributed approach can be done to get optimized
protocol definition.

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 39

6. Evaluation Framework

Refer [27], the evaluation of the proposed ideas, in particular directory-based protocol is
done via simulation of a multiprocessor system supporting the fine-grain synchronization.
In previous work [27], simulation was done using RSIM, an event drive simulator [17],
[18] and some simple applications were used in simulation experimentation.

In this project, we use SimpleScalar Simulator to evaluate the performance of proposed
architecture along with the proposed protocol definition in bus-based and directory-based
model. Since the source code of simulator does not support the proposed protocol
definition and the features of the suggested architectural model of the system so it is
needed to modify accordingly to support the suggested features.

It is also necessary to simulate the standard application like MICCG3D from SPLASH 2
using SimpleScalar. After the modifying in the source code of simulator, evaluate the
performance and compare the obtained results with the standard results available from
MIT Alewife Machine for the corresponding application. That will demonstrate the
performance of proposed architectural model which is very much based on hardware
approach against the software approach adopted in Alewife Machine.

6.1. SimpleScalar Simulator
The SimpleScalar tool set [23] is a system software infrastructure used to build modeling
applications for program performance analysis, detailed micro-architectural modeling,
and hardware-software co-verification. Using the SimpleScalar tools, users can build
modeling applications that simulate real programs running on a range of modern
processors and systems [14].

The tool set includes sample simulators ranging from a fast functional simulator to a
detailed, dynamically scheduled processor model that supports non-blocking caches,
speculative execution, and state-of-the-art branch prediction. In addition to simulators,
the SimpleScalar tool set includes performance visualization tools, statistical analysis
resources, and debug and verification infrastructure.

SimpleScalar simulators can emulate the Alpha, PISA, ARM, and x86 instruction sets.
The tool set includes a machine definition infrastructure that permits most architectural
details to be separated from simulator implementations. The current release of
SimpleScalar can run programs from any of the above listed instruction sets. Complex
instruction set emulation (e.g., x86) can be implemented with or without microcode,
making the SimpleScalar tools particularly useful for modeling CISC instruction sets.

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 40

The PISA instruction set (Portable Instruction Set Architecture) is a simple MIPS-like
instruction set maintained primarily for instructional use. A GNU GCC-based cross-
compiler and pre-built libraries are also available for this target. The PISA target is
particularly useful for computer engineering instruction as the tools can be built on a
wide range of host platforms, including Linux/x86, Win2000, SPARC Solaris, and others.

SimpleScalar builds on most 32-bit and 64-bit flavors of UNIX and Windows NT-based
operating systems. The internal software architecture of the tool set includes a host
interface module, permitting fast porting to other host platforms. The host interface
module permits cross-endian emulation, thus it is possible to use emulate a target on a
host platform with a different endian, e.g., running Alpha ISA emulation on a SPARC
Solaris host platform.

6.2. SimpleScalar tool set overview
Figure 12 shows the graphical overview of SimpleScalar tool set [14]. Benchmarks
written in FORTRAN are converted to C using Bell Labs’ f2c converter. Benchmarks,
one written in ‘C’ and other converted from FORTRAN into ‘C’ are complied using the
SimpleScalar version of GCC, which generates SimpleScalar assembly. The
SimpleScalar assembler and loader, along with the necessary ported libraries, produce
SimpleScalar executables that can then be fed directly into one of the provided
simulators. (The simulator themselves are complied with the host platform’s native
compiler, for example ANSI C). To compile own benchmark, its need to install GCC and
GNU binutils. FORTRON and C benchmarks source can be compiled in the following
way using the SimpleScalar tool set [24]:

• Compiling a C program, e.g.,
 SS<endian> -na – sstrix –gcc –o <output> <file.C> -lm

• Compiling a FORTRON program, e.g.,
 SS<endian> -na – sstrix –f77 –o <output> <file.f> -lm

• Compiling a SS assembly program, e.g.,
 SS<endian> -na – sstrix –gas –o <output> <file.f> -lm

• Disassembling a program, e.g.,
 SS<endian> -na – sstrix –objdump –{s, d} <input>

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 41

 Simulator Source
 FORTRAN (e.g., sim-outorder.c)
 Benchmark Source ‘C’ Benchmark Source

 SimpleScalar Result
 Assembly

 Object files

 SimpleScalar

 Executables Precompiled SS
 Binaries (test, SPEC95)

Figure 12: SimpleScalar tool set for overview

The internal simulators available in the SimpleScalar are categorized in following two
sections depending upon their functionality [24]:

i) Execution and trace driven simulators

• sim-fast functional simulation

• sim-safe sim-fast with error detection

• sim-profile program profiling tool

• sim-cache functional cache simulator

• sim-cheetah cache simulator (multiple configurations)

• sim-outorder performance out-of-order execution

ii) Trace generator
• sim-eio i/o-tracing & checkpoint

 f2c

SS libc.a
 GLD

 GAS

 GCC

SS libm.a
SS libF77.a

 ’C’
 Compiler

 Simulator

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 42

The following command-line arguments are available in the simulator to perform
simulations as well user can configure the command line:

• Running a simulator
sim-any { -options } executable {arguments}

• General configuration (options)
-config <string> -run with own configuration

-dumpconfig <string> -write configuration to file

-h <true/false> -help message

-v <true/false> -verbose operation

-d <true/false> -enable debug messages

-i <true/false> -start Dlite (debugger)

-seed <int> -random generator

-q <true/false> -quit immediately

• Input and output

• Program/Trace

 ---Test-fmath, floating point test program

• Configuration

--- Simulator dependent

• Program output and performance (Figure 13 shows the graphical

overview at the simulator with respect to Input/output and

configuration)

Out of all the simulators, those mentioned in the section Execution and trace driven
simulators, the most complicated and detailed is sim-outorder [14]. This simulator
supports out-of-order issues and execution, based on the Register Update unit (RUU).
The RUU scheme uses a reorder buffer to automatically rename registers and hold the
results of pending instructions. It supports configurable architecture and generates timing
statistics of execution during simulation. It also makes use caches and branch prediction.

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 43

Figure 13: Input/Output sketch for Simulator

Figure 14 depicts the simulated pipeline of sim-outorder.

Figure 14: Pipeline for sim-outorder simulator of SimpleScalar

The key features of simulated system are listed below:

• Multiple instruction issue

• Out-of-order scheduling

• Branch prediction

• Blocking and Non-blocking loads and stores

 Simulator

 Program output

 Performance

Config

 trace

 program

 Fetch Dispatech Schedular

Memory
schedular

Mem

Exec Writeback

Commit

I-Cache

Virtual Memory
D-TLB D-Cache

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 44

• Optimized memory consistency implementation

• Relevant cache hierarchy

• Multiple outstanding requests

• CC-NUMA shared-memory system

• Snoop-based or directory-based cache coherence protocol with fine-grain

synchronization

• Bus network for Snoop-based system or Mesh Network for Directory-based

system

6.3. Simulation procedure
Suppose MICCG3D application source file is available for the simulation. There are two
related benchmarks source files (new_vector.c and new_micBarrier.c) available for this
application. Following is the procedure to carry out simulation:

1. Compile the source file using GCC compiler to generate assembly files

 gcc –S new_micBarrier.c

 gcc –S new_vector.c

2. Now we have the assembly files, then we need to modify the assembly files

because of the way modified LOAD and STORE instruction in source file. From

the assembly file these modified LOAD/STORE instructions can be easily find out

and mark them to convey the message to SimpleScalar that these are special

synchronized LOAD/STORE instructions

3. The marking instructions are chosen (Modified simulator is configured to

recognize these marker instructions) as follows:

 xor $31, 1, $31 for LOAD

 xor $31, 2, $31 for STORE

 These marker instructions do nothing but just to indicate to the simulator.

4. Now we have modified assembly files and can generate to binary compiled file

using the SMP (synchronizing memory protocol) file new_libssmp.s as follows:

 gcc –static –o new_miccg3d new_micBarrier.s new_vector.s new_libssmp.s –lm

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 45

5. Now we got binary compiled file new_miccg3d, compile and simulate the

binary file as follows to get the results:

 ./ simWhatever new_miccg3d {-options}

 In the options field, we can provide number of processors and X,Y,Z dimensions

 used in this application. Option can be changed as per given in section 6.2,

 ‘General preferences (options)’. For command line help, run the following

 instruction:

 ./simWhatever new_miccg3d –h

6. Finally, we have the result from the simulator of the proposed architecture and

these results can be compared with the existing results of the Alewife Machine to

notice the performance of the modified architecture and coherence protocol.

6.4. Simulation experiments
Initial simulations have been done by our collaborators at the University of
Massachusetts (UMASS), USA using MICCG3D application in evaluation experiments
[26]. They have done the modification for one of the synchronization primitives
supported by the Alewife Machine, namely, J-structure. The simulation experiments have
also been done at KTH, Sweden and results are reproduced within this master thesis
project for the same J-structure.

Modification supports the management of FE-bit along with Pending bit for synchronized
read miss in the cache, and it has been combined with directory-based protocol. The
directory has also been modified to support the modification done in cache, SMB has
been maintained to keep list of pending-read miss. To support all these modification in
the structure and protocol, simulator has also been modified.

They simulated the application on the base simulator, software managed (SW) and those
corresponding to their new proposed synchronization coherence protocol (SC). As the
multiprocessor size is increased, and the data size is decreased, performance gets larger.
It shows upto 15% performance improvement, 15% fewer network messages, and 30%
fewer cache accesses [26].

More precisely in author’s research work, proposed architecture also supports the
pending bit for synchronized write miss and directory modification with pending-write
bit. This work also supports the integration of proposed architecture with directory-based

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 46

and snoop-based coherence protocol. It is need to modify the SimpleScalar [23] to
support all the modification suggested in this work and then perform the simulation using
simulator. From the work done at UMASS and benefits of hardware approach, it is
expected to get improved performance from proposed architecture.

6.5 Application: MICCG3D
MICCG3D is the preconditioned conjugate gradient (CG) method knows as Modified
Incomplete Cholesky Factorization Conjugate in 3-Dimensions [32]. The Conjugate
Gradient algorithm is a semi-iterative method for solving a system of linear equations
expressed in the form of matrix as Ax = b. The rate of convergence of CG method can be
improved by preconditioning the system equation with a matrix K¯¹ and then applying
the CG method to the preconditioned system.

The idea of using the preconditioner such that K¯¹ A is close to identity matrix I [32].
Mathematically it can be expressed as follows:
 Ax = b (1)

 K¯¹ A x = K¯¹ b (2)

 w = K¯¹ b - K¯¹ A x (3) (Solver equation)

But implementing the preconditioned techniques in the system, preconditioner steps
involve recurrence relations which do not vectorize or parallelize easily. So, it addresses
the issue of parallel performance in the system, which occurs due to recurrence relations
in the preconditioned steps.

MICCG3D is difficult to parallelize because the recurrence relations in the solver
operation impose data dependencies which are numerous and complex [32]. There are
two ways to parallelizing MICCG3D. One uses coarse-grain barrier synchronization and
other uses fine-grain data level synchronization.

In coarse-grain MICCG3D, barriers are placed in between vector operations to ensure
that results are fully completed before being sued in subsequent computation. Barriers
ensure the synchronization in the coarse-grain MICCG3D. For all but the solver operation
this is sufficient to guarantee correctness. Dependencies arising from the recurrence
relation in the solver require further use of barriers.

But on the other hand, in fine-grain MICCG3D, synchronization is done at word-level.
Word-level synchronization automatically enforces the recurrence dependencies in the
solver equation. In fine-grain version of solver equation, each processor can compute
results as fast as possible. If a thread tries to read such a value that has not been computed

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 47

yet, the semantics of data level synchronization force the execution of thread to stop and
wait until the value becomes available. Therefore, processor never waits unnecessarily.

Our project collaborators at UMASS, USA have used the fine-grain version of
MICCG3D from [32] to evaluate the performance of modified J-structure (one of the
synchronized primitive of Alewife Machine) integrated with directory-based protocol.
These evaluations/simulations have been done to analyze the performance improvement
of the system which supports the tighter integration of fine-grain synchronization with
cache coherence protocol.

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 48

7. Conclusions

This work has presented how the fine-grain synchronization could be incorporated in the
multiprocessor systems with efficient hardware support. The implementation has been
described here in the context of Alewife Machine and keeping it as a base line so that
architectural modification could be compared with it. However, the implementation of
fine-grain synchronization has introduced some extra complexity at both hardware and
software level. It incorporates sophisticated cache controllers because of the increased
complexity of FSM implemented with in it to handle the fine-grain synchronization.

A novel cache architecture that supports the fine-grain synchronization has been
proposed. This architecture contains the full/empty bits along with pending bits for both
synchronized read and synchronized write misses. The extra hardware required by this
architecture is not increasing excessively and it can be compensated by the improved
performance.

New cache coherence protocols combined with fine-grain synchronization have been
discussed for the snoop-based and directory-based shared memory multiprocessors. Here
the description includes all the transitions rules required to express the state of the
protocol. We have given very strong attention in the handling of synchronized write miss
along synchronized read miss. Optimization of protocol has also been explained in terms
of merging and resuming of pending read/write operations.

Although the proposed architecture and its integration with fine-grain synchronization on
both snoop-based and directory based protocols has not been modeled in full scale in this
project work. Part of this project based on J-structure has been implemented in
SimpleScalar by our collaborator [26] at UMASS to model a cc-NUMA multiprocessor
with its hardware support for fine-grain synchronization. However, the simulator models
only the part of synchronized memory operations needed for J-structures. The simulator
should be extended and modified [16], [23]to support the complete set of FE-memory
operations proposed in this project work and need to simulate on the SimpleScalar
simulator and analyze its performance improvement and compared with Alewife Machine.

Evaluation experiments with the simulator using the MICCG3D application from
SPLASH 2 has been initially done at UMASS. Also simulations have been done for this
project at KTH and same results have been reproduced. Results show up to 15%
performance improvement, 15% fewer network messages, and 30% fewer cache accesses
[26].

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 49

8. Future work

Future work includes the developing of model, which will incorporate all features of the
architecture proposed in this work. Sophisticated cache controller, complex FSM used in
cache controller to handle the complexity increased by integrating fine-grain
synchronization, optimized message passing in both snoop-based and directory-based
protocol are need to model. This model is needed to simulate on the SimpleScalar to
examine its performance benefits.

Since the available version of SimpleScalar does not incorporate the above proposed
features so simulator platform should be modified so that the cost of including extra
hardware and performance can be analyzed. Other important parameters to be measured
are extra traffic caused by extra message passing and extra signals and saturation
condition that may be different at different level of cache hierarchy.

Also, it is advisable to include optimization as much as possible in the different transition
states of the protocols as some of them are already suggested in this proposed work. It
can give more efficient network topology. This would definitely enable us to introduce
more scalability in multiprocessor systems

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 50

References

[1] Agarwal, A.: “The MIT Alewife Machine: Architecture and Performance”, 25
years of the International Symposia on Computer Architecture (selected papers),
Association for Computing Machinery, August 1998, pages 103-110.

[2] Agarwal, A.; Bianchini, R.; Chaiken, D.; Chong, F.T.; Johnson, K.L.; Kranz, D.;
Kubiatowicz, J.D.; Beng-Hong Lim; Mackenzie, K. and Yeung, D.: “The MIT Alewife
Machine: Architecture and Performance”, Laboratory for Computer Science,
Massachusetts Institute of Technology, 1999.

[3] Agarwal, A.; Bianchini, R.; Chaiken, D.; Johnson, K.; Kranz, D.; Kubiatowicz, J.;
Lim, B.H.; Mackenzie, K. and Yeung, D.: “The MIT Alewife Machine: Architecture and
Performance”, Proceedings of the 22nd Annual International Symposium on Computer
Architecture (ISCAí95), June 1995, pages 2-13.

[4] Agarwal, A.; Kubiatowicz, J.D.; Kranz, D.; Lim, B.H.; Yeung, D.; DíSouza, G. and
Parkin, M.: “Sparcle: An Evolutionary Processor Design for Large-Scale
Multiprocessors”, Laboratory for Computer Science, Massachusetts Institute of
Technology, 1993.

[5] Agarwal, A.; Beng-Hong Lim: “Waiting Algorithm for synchronization in large-
Scale Multiprocessors”, Massachussets Institute of Technology, ACM Transactions on
Computer Systems, August 1993.

[6] Agarwal, A.; Nussbaum, Dan: “Scalability of Parallel Machine”, Alewife Systems
Memo # 9, Laboratory of Computer Science, MIT, November 1991.

[7] Agarwal, A.: “Overview of the Alewife Project”, Alewife Systems Memo # 10,
Laboratory of Computer Science, MIT, June 1990.

[8] Arvind, Rishiyur S. Nikhil: “I – Structure: Data Structure for Parallel Computing”,
ACM transaction on programming languages and Systems, October 1989.

[9] Chaiken, D.; Kubiatowicz, J.; Agarwal, A.: "LimitLESS Directories: A Scalable
Cache Coherence Scheme", Laboratory for Computer Science, Massachusetts Institute of
Technology, 1991.

[10] Chaiken, David: “Cache Coherence Protocol Specification”, Alewife Systems
Memo #5, Laboratory of Computer Science, MIT, April 1990.

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 51

[11] C. Scheurich, M. Dubois: “Lookup-free Caches in High-Performance
Multiprocessors”, Journal of Parallel and Distributed Computing 11, 25 – 36 (1991)

[12] David E. Culler, Jaswinder Pal Singh: "Parallel Computer Architecture: A
hardware/software approach", Morgan Kaufmann
Publishers, 1999

[13] David E. Culler, William J. Dally, Ellen Spertus, Seth Copen Goldstein, Klaus
Erik Schauser: “Evaluation of Mechanisms for Fine-Grained Parallel Programs in the J-
Machine and the CM – 5”, IEEE proceeding 1993.

[14] Doug Burger, Todd M. Austin: “The SimpleScalar Tool Set, Version 2.0”

[15] Farnaz Mounes – Toussi, David J. Lilija: “Write Buffer Design for cache-Coherent
Shared-Memory Multiprocessor”, International Conference on Computer design, October
1995.

[16] James laudon, Daniel Lenoski: “The SGI origin: A cc-NUMA Highly Scalable
Server”, ACM Proceeding (ICSA 97).

[17] Johnson, K.: “Semi-C Reference Manual”, Alewife Systems Memo #20, MIT
Laboratory for Computer Science, version 0.6, Feb. 1992

[18] Jump, J. R.: “YACSIM Reference Manual”, Rice University Electrical and
Computer Engineering Department, March 1993. Available at http://www-
ece.rice.edu/~rsim/rppt.html (accessed November 2001)

[19] Kourosh Gharachorlo, Anoop Gupta, John Henessy: “Performance Evaluation of
Memory Consistency Models for Shared Memory Multiprocessors”, ACM, 1991.

 [20] Kranz, D.; Lim, B.H.; Agarwal, A. and Yeung, D.: “Low-cost Support for Fine-
Grain Synchronization in Multiprocessors”, in Multithreaded Computer Architecture: A
Summary of the State of the Art, Kluwer Academic Publishers, 1994, pages 139ñ166

[21] Kroft, D.: “Lockup-Free Instruction Fetch/Prefetch Cache Organization”, 25 years
of the International Symposia on Computer Architecture (selected papers), Association
for Computing Machinery, August 1998, pages 20-21

[22] Kubiatowicz, J.: “Users Manual for the Alewife 1000 Controller”, Alewife
Systems Memo #19, MIT Laboratory for Computer Science, version 0.69, Dec. 1991

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 52

[23] Manjikian, Naraig: “Multiprocessor Enhancements of the SimpleScalar Tool Set”,
Department of Electrical and Computer Engineering, Queen’s University, Canada.

[24] Mikael Collin, Malden Nikitovic: “SimpleScalar: A flexible tool for architectural
research”, Power Point Presentation at Royal Institute of Technology (KTH), Sweden.

[25] Norman P.: “WRL Research Report 91/12: Cache Write Policies”, December
1991.

[26] Raksit Ashok, Csaba Andras Moritz: “Synchronization Coherence Protocol:
Unifying Synchronization and Caching in Multiprocessors”, Department of Electrical and
Computer Engineering, UMASS, Amherst, MA, USA.

[27] Oscar Sierra Merino, Vladimir Vlassov, Csaba Andras Moritz: “Performance
Implication of Fine-Grained Synchronization in Multiprocessors”, Master Thesis Report,
Royal Institute of Technology (KTH), Sweden.

[28] Per Stenstrom, Fredrik Dahlgren, Lars Lundberg: “A Lookup-free Multiprocessor
Cache Design, Department of Computer Engineering, Lund University, Sweden.

 [29] Vlassov, V. and Moritz, C.A.: “Efficient Fine Grained Synchronization Support
Using Full/Empty Tagged Shared Memory and Cache Coherency”, Technical Report
TRITA-IT-R 00:04, Dept. of Teleinformatics, Royal Inst. of Technology, Dec. 2000

[30] Weaver, D.L. and Germond, T.: “The SPARC Architecture Manual”, PTR Prentice
Hall, version 9, 1994

[31] Xiaowei, Shen and Boon, S. Ang: "Implementing I-structures at Cache Level
Coherence Level", MIT Laboratory for Computer Science, 1995

[32] Yeung, D. and Agarwal, A.: “Experience with Fine-Grain Synchronization in
MIMD Machines for Preconditioned Conjugate Gradient”, Principles and Practice of
Parallel Programming, 1993, pages 187-197

[33] http:// www.simplescalar.com

Architectural and programming support for FGS in Shared-Memory Multiprocessors

Hari Sharma/IMIT/KTH/Stockholm/2004 53

Abbreviations

ALU Arithmetic Logic Unit
CA Communication Assistant
cc-NUMA cache coherent-Non Uniform Memory Access
CMMU Communication and Memory Management Unit
CPU Central Processing Unit
DM Data Memory
FSM Finite State Machine
SM State Memory
SMM State Miss Memory
FE-bit Full/Empty-bit
FGS Fine-Grain Synchronization
MSHR Miss-State Holding Register
Pw-bit Pending-write bit
Pr-bit Pending-read bit
SMP Shared-Memory Multiprocessor
SMB Synchronizing Miss Buffer
SPLASH 2 Stanford Parallel Applications for Shared Memory

