

Characterization and Evaluation of
the BEA WebLogic JRockit JVM on

the Itanium II platform

G U S T A V O Z A G O B A S I L I O

Master of Science Thesis
Stockholm, Sweden 2003

IMIT/LECS-2003-43

Inst för Mikroelektronik och
Informationsteknik
Kungl Tekniska Högskolan
100 44 STOCKHOLM

Dept of Microelectronics and
Information Technology

Royal Institute of Technology
SE-100 44 Stockholm, SWEDEN

Characterization and Evaluation of the BEA
WebLogic JRockit JVM on the Itanium II

platform

Master of Science Thesis

GUSTAVO ZAGO BASILIO

IMIT/LECS-2003-43

Master’s Thesis in Internetworking (20 credits)
at the Department of Microelectronics and Information Technology,

Royal Institute of Technology, December 2003

Supervisor is Isak Isacsson at R2Meton AB
Examiner is Vladmir Vlassov at Dept of Microelectronics and Information Technology

 i

Abstract

As Internet evolves toward a mature communication and data exchange medium, more
and more services migrate to its domain, giving users wider range of possibilities, but
also demanding higher performance from the servers, as these new services tend to be
more advanced and more complex than the ones previously available.

Over the years Java has become the language of choice for implementing server-side
Internet applications. However, Java was not initially designed for the specific demands
of server-side applications and its use as a server-side technology has put completely new
requirements on the JVMs.

Traditional JVMs were designed and optimized for desktop environments and were built
to support the single-user perspective. As time passed, they were modified to work better
with server-side applications. BEA WebLogic JRockit takes a new approach by being the
first commercial JVM built from the ground up to specifically meet the requirements of
server-side Java applications. For this reason, BEA WebLogic JRockit is a very
interesting subject of study, as it could imply in better performance for server-side
applications with no extra costs.

This master thesis project is focused on BEA WebLogic JRockit 8.1 and its behavior and
performance as a server-side JVM. The project thoroughly investigates JRockit and
compares it with other JVM’s available for the Itanium II platform. The internals of
JVMs in general and JRockit in particular are deeply studied, and issues like JRockit’s
performance, scalability, reliability and tuning options are tested, compared to other
JVMs and analyzed.

 ii

Acknowledgements

This master thesis project was without a doubt one of the best professional and academic
experiences I have ever had. For the first time since the start of my professional career I
had the opportunity to join academic research with company business. This new
experience of having research and business integrated as well as the technical knowledge
I acquired during the development of this master thesis made this project one of the most
enriching professional experiences I have ever had.

Most of all I would like to thank Ulf Börjesson, manager at R2M, for all the support he
gave me throughout the project. From books to hardware equipment he was always ready
to help when something was needed. And most important of all, he helped me to keep
motivation even when things went wrong and my moral was low.

I also would like to thank Isak Isacsson, my supervisor at R2M, for the help with
technical issues related to the project and Vladmir Vlassov, my examiner at KTH, for the
help with bureaucracy and academic issues as well as for guiding me when writing the
report.

At last I would like to thank some of my friends who spent part of their time discussing
issues related to my thesis and/or helped me to keep the motivation throughout the
project. Juan Mata Pavia, who helped me a lot to get started and keep motivation in the
early stages of the project, and also spent a lot of time discussing with me about JRockit
and JVMs. Konstantinos Avgeropoulos and Nrip Nihalani, who made me see things
under a new perspective due to their critical view on JVMs and Java. And finally, Dmitri
Shiplov, who gave me important hints on practical things as Oracle and EJBs.

 iii

Table of Contents

1 INTRODUCTION... 1
2 THE PROJECT .. 3

2.1 PROJECT PARTICIPANTS ... 3

2.2 BACKGROUND.. 4

2.3 MOTIVATION.. 6

2.4 GOALS.. 8

2.5 LIMITATIONS.. 8

3 INSIDE THE JVM.. 9
3.1 THE JVM IN THE JAVA ARCHITECTURE.. 9

3.2 SERVER JVMS...10

3.3 JVM ARCHITECTURE ..10

3.3.1 Class Loader..11

3.3.2 Execution Engine...12

3.3.3 Garbage Collection ...13

3.3.4 Thread Management..15

4 INSIDE BEA WEBLOGIC JROCKIT..17
4.1 INITIAL CONSIDERATIONS..17

4.2 THE DESIGN OF BEA WEBLOGIC JROCKIT...17

4.2.1 Code Generation Package...18

4.2.2 Memory Management Package ...20

4.2.3 Thread Management Package ...21

4.2.4 Native Package ..23

5 PROBLEM DEFINITION AND ANALYSIS..24
5.1 SCOPE OF THE PROJECT ...24

5.2 PERFORMANCE, SCALABILITY AND RELIABILITY...24

5.3 COMPARING JVMS..25

5.4 EVALUATION PROCESS ..25

 iv

6 METHOD ...27
6.1 ECPERF ...27

6.1.1 Introduction to ECperf...27

6.1.2 ECperf Domains ..27

6.1.3 ECperf application design ...28

6.2 SOFTWARE AND HARDWARE PLATFORMS ..29

6.3 TESTS ..33

6.3.1 Performance and scalability tests..33

6.3.2 Reliability tests ..33

6.3.3 JVM tuning tests ..34

7 RESULTS AND ANALYSIS...38
7.1 SETUP 1...38

7.1.1 Performance ..38

7.1.1.1 Throughput... 39

7.1.1.2 Response Time... 42

7.1.2 Scalability ..45

7.1.3 Reliability ..47

7.1.4 Tuning..47

7.2 SETUP 2...50

7.2.1 Performance ..50

7.2.1.1 Throughput... 52

7.2.1.2 Response Time... 54

7.2.2 Scalability ..57

7.2.3 Reliability ..58

7.2.4 Tuning..58

8 CONCLUSIONS AND RECOMMENDATIONS ...63
9 FURTHER WORK..65
10 REFERENCES...66
11 APPENDICES..69

 v

11.1 APPENDIX I – JROCKIT VS SUN’S JVM RAMPUP TIME..69

11.1.1 Sun’s JVM...69

11.1.1.1 JDK 1.4.1 ... 69

11.1.1.2 JDK 1.4.2 ... 71

11.1.2 JRockit ..73

11.2 APPENDIX II - INVESTIGATING THE LOAD BALANCE ALGORITHM ON THE WEBLOGIC SERVER
CLUSTER...76

 vi

Table of Figures

Figure 1: Time spent by the JVM on different tasks for different application types.......... 7

Figure 2: The JVM in the Java Architecture... 9

Figure 3: Inside the JVM .. 11

Figure 4: JRockit code optimization paths [21].. 19

Figure 5: Native threads and Thin threads.. 22

Figure 6: application server and DBMS on the same machine (setup 1).......................... 31

Figure 7: application server and DBMS on separate machines (setup 2) 32

Figure 8: Throughput of the ECperf application on the IA64x1 machine (setup 1)
according to the injection rate and JVM used... 40

Figure 9: CPU utilization on the IA64x1 machine (setup 1) during the steady execution of
the ECperf application (after the RampUp time) according to the injection rate and
JVM used. ... 41

Figure 10: Time taken for a WorkOrder to complete in the Manufacturing Domain
(IA64x1 – setup 1), according to the injection rate and JVM used. 42

Figure 11: Time taken for a NewOrder Transaction to complete in the Customer Domain
(IA64x1 - setup 1), according to the injection rate and JVM used. 43

Figure 12: Time taken for a ChangeOrder Transaction to complete in the Customer
Domain (IA64x1 - setup 1), according to the injection rate and JVM used. 43

Figure 13: Time taken for an OrderStatus Transaction to complete in the Customer
Domain (IA64x1 - setup 1), according to the injection rate and JVM used. 44

Figure 14: Time taken for a CustomerStatus Transaction to complete in the Customer
Domain (IA64x1 - setup 1), according to the injection rate and JVM used. 44

Figure 15: JVMs throughput on the IA64x4 machine of setup 2 53

Figure 16: CPU utilization on the IA64x4 machine (setup 2) according to the injection
rate, JVM used and application server configuration (non-clustered/clustered). 53

Figure 17: Time taken for a WorkOrder to complete in the Manufacturing Domain
(IA64x4 – setup 2) .. 54

Figure 18: Time taken to complete a NewOrder Transaction in the Customer Domain
(IA64x4 - setup 2)... 55

 vii

Figure 19: Time taken to complete a ChangeOrder Transaction in the Customer Domain
(IA64x4 - setup 2)... 55

Figure 20: Time taken to complete an OrderStatus Transaction in the Customer Domain
(IA64x4 - setup 2)... 56

Figure 21: Time taken to complete a CustomerStatus Transaction in the Customer
Domain (IA64x4 - setup 2) ... 56

Figure 22: Relation Throughput x Time in 1 minute steps for JDK 1.4.1........................ 69

Figure 23: Relation Throughput x Time in 3 minutes steps for JDK 1.4.1 70

Figure 24: CPU utilization (JDK 1.4.1) .. 70

Figure 25: Relation Throughput x Time in 1 minute steps for JDK 1.4.2........................ 71

Figure 26: Relation Throughput x Time in 3 minutes steps for JDK 1.4.2 72

Figure 27: CPU utilization (JDK 1.4.2) .. 72

Figure 28: Relation Throughput x Time in 1 minute steps (JRockit) 73

Figure 29: Relation Throughput x Time in 3 minutes steps (JRockit) 74

Figure 30: CPU utilization (JRockit) .. 74

Figure 31: Throughput x load-balance algorithm measured in the WebLogic cluster in the
IA64x4 machine of setup 2. .. 77

 viii

Table of Tables

Table 1: List of the software used to perform the tests, their versions and descriptions. . 30

Table 2: List of the JVMs tested, their versions and descriptions. 31

Table 3: JRockit non-standard startup options.. 36

Table 4: command line for starting the JVM in each of the application server
configurations used in setup 1... 39

Table 5: Highest injection rate used with the JVMs without degrading the performance
and service quality and the throughput measured in each case (setup 1). 47

Table 6: Values used in the ECperf driver to run the tests for investigating tuning
techniques for JRockit on setup 1 ... 48

Table 7: tuning JRockit with the singlecon garbage collector.. 48

Table 8: tuning JRockit with the parallel garbage collector ... 49

Table 9: command line for starting the JVM in each of the application server
configurations used in setup 2... 51

Table 10: Highest injection rate used with the JVMs without degrading the performance
and service quality and the throughput measured in each case (setup 2). 58

Table 11: Values used in the ECperf driver to run the tests for investigating tuning
techniques for JRockit on setup 2 ... 59

Table 12: On the first test no parameters were given, that is, JRockit tries to optimize the
execution automatically. ... 60

Table 13: Startup options and results for the singlecon garbage collector. The startup
options used were the ones which achieved the best performance on setup 1 (75% of
the available RAM for the heap and 0.5% for the thread stack)............................... 60

Table 14: Startup options and results for the parallel garbage collector. The startup
options used were the ones which achieved the best performance on setup 1 (small
min heap, 75% RAM max heap and default thread stack size 128kb). 60

Table 15: Startup options and results for the gencopy garbage collector. Several sizes for
the heap, thread stack and nursery were tested on the search for the best
performance. ... 61

 ix

Table 16: Startup options and results for the gencon garbage collector. Several sizes for
the heap, thread stack and nursery were tested on the search for the best
performance. ... 61

Table 17: Values used in the ECperf driver to run the tests for investigating the best load-
balance algorithm for the WebLogic server cluster on the IA64x4 machine of setup
2... 76

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 1

1 Introduction
This report is the main document produced as the result of the master thesis project
developed by me at R2Meton AB as a mandatory step toward a master degree at the
Royal Institute of Technology (KTH). Its focus is on BEA WebLogic JRockit JVM, a
server side JVM developed especially for meeting the requirements of Java enterprise
applications, and the Itanium II platform, the latest server side processor from the Intel
and HP cooperation. Performance, scalability and reliability of this JVM on the Itanium
II platform are deeply studied on this document, as well as its comparison with Sun’s
JVM running on the same platform. Moreover, a thorough study of JRockit tuning is
performed, analyzing the most representative JVM startup options available and how they
affect the performance of the application being executed.

This thesis is roughly divided in 2 parts: theoretical study of JVMs and JRockit, covered
in chapters 1 to 4, and practical evaluation of JRockit and comparison to Sun’s JVM on
the Itanium II platform, covered in chapters 5 to 7. Chapter 8 presents the conclusion of
the work developed and possible suggestions for improving JRockit and JVMs in general
and chapter 9 presents suggestions of further work that can be done within the field of
study of this master thesis project. To finalize, chapter 10 presents the references used
while developing this projects and chapter 11 contains the appendices, everything related
to the project but that does not fit the main body of the report. A brief description of each
of the chapters follows:

Chapter 1, Introduction, introduces the project and presents the organization of the report.

Chapter 2, The Project, presents the project, project participants, background information,
motivation for developing the project, goals and limitations.

Chapter 3, Inside the JVM, presents the JVM under a technical point of view. A deep
explanation of the JVM internals is presented here.

Chapter 4, Inside BEA WebLogic JRockit, presents the main focus of this project, the
JRockit JVM, providing details about its ins and outs and trying to investigate where and
how a better performance could be achieved when using it.

Chapter 5, Problem definition and analysis, presents the problem to be solved, that is,
how to evaluate JRockit JVM.

Chapter 6, Method, presents the method used to evaluate JRockit, detailing software
programs, platform and tools used in this process.

Chapter 7, Results and Analysis, presents the results of the tests and a thorough analysis
of them.

Chapter 8, Conclusions and recommendations, presents the conclusions of this project.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 2

Chapter 9, Further work, presents suggestions of further work that could be developed in
the field of study of this master thesis project.

Chapter 10, References, presents a list of references to documents used during the
development of this project.

Chapter 11, Appendices, presents everything related to the project but that does not fit the
body of the report

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 3

2 The Project
This chapter presents the master thesis project, providing information about the parties
involved and the work developed. It starts by describing the project participants, detailing
the role and the responsibilities of each of them. Then it presents some background
information regarding the project and the motivations behind such research. It finalizes
by describing the goals to be achieved and the limitations imposed to the project.

2.1 Project Participants
This master thesis project was only made possible due to the support provided by and the
interaction between R2Meton AB and the Royal Institute of Technology.

• R2Meton AB is the company which proposed the project and provided all the
infrastructure and technical support that made it feasible;

• Royal Institute of Technology, KTH, is the university responsible for the master
program in Internetworking and for the academic supervision of this master thesis
project.

R2Meton AB, also known as R2M is a Swedish IT company located in Kista, Sweden’s
“silicon valley”. R2M focus is on business optimization, providing customers with
solutions to improve their business activities and strengthen their position in the market.

Business optimization is achieved by R2M through several different channels, the most
important ones being project management, modeling (R2M is an active contributing
member of the DSDM Consortium, a growing international organization for systems
development with a business utility and user focus), tools (by the use of tools that support
iterative and incremental development methods) and training (R2M provides training
courses, teachers and course material in all areas of competence).

R2M main areas of expertise are:

Process mapping

• By process mapping one can create literacy of core business activities,
understanding better ones activity and creating conditions to improve business
performance. Process mapping is essential for an effective use of IT resources.

Enterprise Application Integration (EAI)

• EAI combines distinct applications, generally hosted in heterogeneous
environments, in a set of cooperating applications. It improves business activities
by allowing companies to integrate their systems.

J2EE

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 4

• J2EE has been adopted worldwide as a reliable platform for application servers in
the last years. It provides an ideal environment to integrate different domains,
architectures, and technologies in order to create scalable and secure enterprise
applications.

This master thesis project relates to R2M business by being focused on the J2EE
technology framework. The deep study of JVM technologies and the evaluation of BEA
WebLogic JRockit on the Itanium II platform will give R2M a better understanding on
how application performance is related to the JVM and the underlying operating system
and hardware platform. It will also provide them means to improve application
performance by JVM tuning and a clear idea on how is the behavior of BEA WebLogic
JRockit in comparison to other JVMs available for the Itanium II platform. The thesis
supervisor at R2M is Isak Isacsson.

Royal Institute of Technology, also know as KTH (Kungliga Tekniska Högskolan), is the
largest university of technology in Sweden. It is responsible for one-third of Sweden’s
capacity for engineering studies and technical research at post-secondary level. KTH is
the university responsible for the master program in Internetworking and for the
academic supervision and examination of this thesis. The thesis examiner at KTH is
Vladimir Vlassov, associate professor in computer systems at the Department of
Microelectronics and Information Technology (IMIT).

2.2 Background
When Java technology is mentioned concepts as platform-independence, object-oriented
programming, security and network-mobility are remembered. Many of these concepts
are made possible only because of a very important player in the Java architecture: the
Java Virtual Machine (JVM). The JVM is the component that enables platform-
independence, is responsible for great part of the security and provides a neat and easy
way to integrate heterogeneous systems in a networked fashion. Before getting deeper
into the ins and outs of JVMs let’s take a look at the concept of Virtual Machines.

A Virtual Machine (VM), as the name says, is an abstract computer capable of executing
a specific instruction set. Like a real computer, the VM has its own instruction set and
memory where code and data are stored, and sometimes a set of registers. It is exactly
like any other computer, except for the fact that it does not have to be necessarily
implemented in hardware. It can be a software only, a combination of software and
hardware or a hardware only VM. No matter the way chosen to implement it, its
functioning is quite the same: it will read a program written on its instruction set and
execute it. From the point of view of the program being executed the VM is a real
computer, and it makes no difference if the memory and instruction set are really part of a
hardware system or only a software layer on the top of another system.

VMs are sometimes defined as being stack-oriented or register-oriented. Register-
oriented VMs have a set of global locations (registers) that is used for evaluating
expressions. Expressions are evaluated by copying values to registers and performing
operations on them. Stack-oriented VMs on the other hand, do not have a set of registers,
and all expressions are evaluated on a single stack. In these VMs operands are pushed

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 5

onto the top of the stack and operations are always performed on the values on the top of
the stack.

The Java Virtual Machine (JVM) is a stack-oriented virtual machine whose instruction
set is specifically designed for the implementation of the Java language. It executes Java
binary code, called bytecode. After a Java program is written, it is compiled by the Java
compiler into Java bytecode (instead of machine and operating system specific code) and
this bytecode is run in the JVM. Since the bytecode is the input for the Java Virtual
Machine, a compiled Java program can be run wherever a JVM is present, guaranteeing
the platform independence of the Java language.

Two other important Java concepts that depend on the JVM are network mobility and
security. The JVM guarantees network mobility by providing means of transferring
bytecode through a network. That implies that a JVM in location A could execute
bytecode stored in location B, as far as there is a network connection between them.
Security, on its turn, is enforced by the JVM by means of restricted running environments
for the bytecodes. Bytecodes running in a restricted environment do not have access to
anything outside their environment.

The JVM specification is rather loose as far as its implementation is concerned. It
specifies how the JVM should behave and defines certain features all JVMs must have,
but it leaves many implementation details and choices to the JVM designers. This implies
that JVMs can assume very different forms, and implementations can greatly vary. As
any other VM, the JVM can be implemented in any manner ranging from software only
to hardware only. And within each of these categories they can be still very different. For
instance, software only JVMs can be implemented in completely different ways and have
different memory and CPU requirements. The most common type of JVM is the one
completely implemented in software, on the top of a computer and operating system
platform. It is also the type this document will focus on.

JVMs, once called Java interpreters can nowadays execute bytecode in a myriad of ways.
The code can be simply interpreted, instruction by instruction, one at a time. This is the
simplest type of JVM but also the one with the poorest performance. Another execution
method is just-in-time compiling (also known as JIT-compiling). In this scheme, the
bytecodes of a method are compiled to native machine code the first time the method is
invoked. Later references to this method will execute the native machine code instead of
the bytecode, achieving a better performance. A third type of execution method, which
makes use of JIT-compiling, is called adaptive optimization. In this scheme the JVM
starts by interpreting all the code (or uses a fast JIT-compiler to first compile the methods
without many optimizations), but keeps monitoring the behavior of the application,
looking for the most heavily used areas of the code. After some time the JVM compiles
(or re-compiles) these most used code pieces to native code, performing heavy
optimization on them. As only 10% to 20% of the code go through the optimized JIT-
compiling process, the JVM has more time to perform code optimization than when using
the pure JIT-compiling approach, achieving sometimes much better results.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 6

Another way of classifying JVMs is according to the target application type of the JVM.
Server-side and client-side applications have very different behavior and requirements,
and JVMs can be optimized to deal with each of these types. Client-side JVMs (also
called client JVMs) are optimized for client applications, having a quick startup and a
higher priority to low resources usage than high execution performance. Server-side
JVMs (also called server JVMs) are designed to optimize the execution of server-side
applications. The economical usage of resources in this case has a lower priority than
application performance, and long running times and high reliability are preferred over a
quick startup.

2.3 Motivation
As Internet evolves toward a mature communication and data exchange medium, more
and more services migrate to its domain, giving users wider range of possibilities, but
also demanding higher performance from the servers, as these new types of services tend
to be more advanced and more complex than the ones previously available.

Over the years Java has become the language of choice for implementing these server-
side Internet applications. J2EE (Java 2 Enterprise Edition) technology provides an
optimized framework for developing and deploying enterprise applications, giving
developers the tools and run-time capabilities needed to build applications meeting strict
security, stability and maintainability requirements.

However, Java was not initially designed for the specific demands of server-side
applications and its use as a server-side technology has put completely new requirements
on the JVMs. Traditional JVMs were designed and optimized for desktop environments
and were built to support the single-user perspective. As time passed, they were modified
to work better with server-side applications, giving rise to the concept of server and client
JVMs.

Server JVMs are the ones studied in this thesis. They are designed to meet specific
requirements of server-side applications. These applications have similar behavior, and
their main characteristics are:

• Generally deployed in distributed environments

• High amounts of network and I/O communication

• A great number of threads where each of them do a small amount of work before
it has to wait for a resource

• Long running times

• Similar behavior over long periods of time

In addition to the previously discussed characteristics of server-side applications, server
JVMs’ design takes into account the time spent by the JVM on different tasks on server-
side applications. JVMs executing client-side applications spend about 75% of their time

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 7

translating and executing bytecode, 20% in garbage collection and the rest with threads
and I/O related activities. JVMs executing server-side applications, on the other hand,
spend about 25% of the time translating and executing bytecode, 15% garbage collecting
and 60% on threads and I/O related activities[15]. It is clear then that different areas of
the JVM must be optimized for achieving best performance for client-side and server-side
applications.

Figure 1: Time spent by the JVM on different tasks for different application types

Server JVMs are optimized for the best performance of server-side applications.
Important things for client JVMs as quick startup and small memory utilization are not a
big issue for server JVMs. Servers tend to have huge amounts of memory available and,
as applications run for a long time, better performance over time is preferred over a quick
startup. In addition, the long running time of server side applications creates a good field
for adaptive optimization. The performance of the application is likely increase
considerably in the long run if some minutes are spent at the beginning of the execution
to analyze where the bottlenecks are and how the application behaves.

BEA WebLogic JRockit, the focus of this thesis, is a JVM developed from the scratch
specifically to meet the requirements of server-side applications and to address the unique
enterprise-class performance demands of today's web applications. It is also the only
commercial JVM available today that is optimized for the Intel Itanium II architecture.
The JVM version to be studied in this thesis is 8.1. The goal of the thesis is to elaborate a
deep study on JRockit 8.1, and compare it with other server JVMs available for the
Itanium II platform.

As a JVM developed from ground up to meet the requirements of server-side
applications, BEA WebLogic JRockit is an interesting topic for study, as it could possibly
bring better performance for enterprise applications. In addition to that, being the first
JVM uniquely optimized for the Intel Itanium II platform makes the study of JRockit
economically interesting, as it could imply on applications being run on lower-cost
hardware with increased reliability and performance. These characteristics make JRockit
a very convenient piece on enterprise solutions, and a hot topic for study, research and
analysis.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 8

2.4 Goals
The primary goal of this thesis is to characterize and evaluate the BEA Weblogic JRockit
JVM on the Itanium II platform and compare it with other server JVMs currently
available for this platform. The evaluation will be done on the fields of performance,
reliability and scalability and the comparison with other JVMs will provide means to rank
JRockit and to assess its possible benefits.

Among secondary goals of the thesis one can mention the deep study of JRockit JVM and
the identification of its key characteristics, the evaluation of the maturity of the Itanium II
platform and the study of tuning techniques and parameters for JRockit.

2.5 Limitations
The limited amount of resources and time implies some restrictions on the work to be
developed on this master thesis project. Some of the limitations are stated below.

BEA Weblogic JRockit will be evaluated only for enterprise class applications, that is,
applications that are commonly used in the enterprise world and have some common
characteristics as mentioned on section 2.3.

As application servers have become the most usual environment for enterprise
applications, the evaluation of JRockit will be done through the use of one. In our case,
BEA WebLogic will be used as the application server supporting the enterprise
applications.

The application/benchmark used to evaluate JRockit must simulate a complete enterprise
application and must be free of charge. Preferably a standardized benchmark should be
used.

Security and implementation details of JRockit will not be evaluated on this thesis.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 9

3 Inside the JVM
This chapter gives a deeper view about JVMs in general. It starts by locating the JVM in
the Java architecture, explaining why it is used and how it works. Then it presents the
server JVM and discusses what are the main characteristics of them. Afterwards, it breaks
into the JVM internals and presents its architecture, providing detailed information about
the class loader, execution engine, garbage collection and thread synchronization
systems.

3.1 The JVM in the Java architecture
The JVM is the heart of the Java architecture and is the piece responsible for the platform
independence, security and network mobility defined by the Java platform. The JVM is
also the piece that transforms all the concepts and abstractions of the Java architecture
into reality. The applications written in the Java language will run on the JVM, and the
concepts defined by the Java platform will be supported by the JVM. The JVM is shown
in Figure 2 in the context of the Java architecture.

JVM

Class A Class B Class Z

Java API

Hardware + Operating System

. . .

Figure 2: The JVM in the Java Architecture

The JVM and the Java API form the Java Runtime Environment, and are responsible for
running the class files. The class files are bytecode files, that is, they are files in the Java
binary format and are the result of compiling Java source files. Java programs are written
in the Java language, compiled to class files and then run in the Java Runtime
Environment. Because the programs written in the Java language run on the Java
Runtime Environment rather than on the underlying hardware and operating system, they
can be run anywhere where a JVM and Java API can be found.

As JVMs interface directly with the underlying system they are hardware and operating
system dependent (as is the Java API). For each different combination of hardware and

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 10

operating system a distinct JVM (and API) must be developed. This characteristic makes
JVMs very different from each other. A JVM developed for a mobile phone will not have
the same resources available as a JVM developed for a J2EE server for instance. In
addition to this, JVMs can be targeted for a certain type of application (as mentioned in
section 2.2), and can be optimized for server-side or client-side applications. The focus of
this master thesis project is on server-side JVMs and some attention will be paid now to
their inner workings.

3.2 Server JVMs
Server JVMs optimize the execution of server-side applications. They do this by
optimizing the operations that are most commonly executed by server-side applications.
Just reminding what was mentioned in section 2.3, JVMs executing server-side
applications spend about 25% of the time translating and executing bytecode, 15%
garbage collecting and 60% on threads and I/O related activities. From this picture it is
clear that the sheer improvement of the bytecode execution is not enough for
substantially improving the overall performance of the server-side applications.

The optimization of the code in server JVMs is done by JIT-compiling the class files into
native machine instructions. This improves the performance of the code execution as Java
methods will not be interpreted by the JVM anymore, but executed directly by the
underlying system. Pure JIT-compiling or adaptive optimization can be used in this
process. In addition, the JIT-compiled methods are generally cached in the memory for
subsequent reuse throughout the lifetime of the JVM instance.

Although garbage collection does not represent a substantial amount of time spent by
JVMs executing server-side applications it is of utmost importance because it affects the
behavior of the applications being executed. Server-side applications generally have very
strict response-time requirements thus they cannot be halted for some time while the
JVM is garbage collecting. For this reason, server JVMs make use of garbage collection
schemas that minimize the time spent garbage collecting and do not hamper the
application performance.

The most important field of improvement for server JVMs is without a doubt thread and
I/O handling as JVMs executing server-side applications spend on the average 60% of
their time on these activities. Increased performance is achieved within these areas by
means of schemas for diminishing lock contention and the need for synchronization.

3.3 JVM Architecture
The JVM, shown up to this point as one block, is actually composed by 2 sub systems:
the class loader and the execution engine. Figure 3 shows the JVM as a piece composed
of these 2 parts and the relation between them. The class loader’s main responsibility is to
load classes from both the program and the Java API. Only the classes that are actually
needed by the running program are loaded by the class loader into the JVM. After the
classes are loaded the bytecodes are executed in the execution engine. The execution
engine is the part of the JVM that vary greatly among different JVM implementations. It
can interpret the bytecodes, JIT-compile it or make use of adaptive optimization to

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 11

optimize the program execution. It can be also implemented in hardware, and be actually
embedded in a chip. Other subsystems of the JVM not shown in this picture are the
garbage collection, type checking, exception handling, as well as thread and memory
management subsystems. The garbage collection and thread and memory management
subsystems are further described in sections 3.3.3 and 3.3.4 respectively.

Class Loader

Execution Engine

Operating System

Hardware

JVM

Java API
Program’s
class files

Native methods
invocation

Figure 3: Inside the JVM

Under the JVM in Figure 3 one can notice the native methods invocations. As depicted,
the native methods are not executed in the JVM, they are only invoked by the JVM.
Native methods are accessed through the use of the Java Native Interface (JNI). Native
methods are a powerful way to access system resources, but render the Java program
platform specific and are thus not to be widely used as they go against Java’s paradigm of
platform independence.

3.3.1 Class Loader
The class loader is a piece that plays an important role in security and network-mobility
in the Java architecture. In Figure 3 the class loader is depicted as a single box inside the
JVM but actually many class loaders can be present within a single JVM. Thus, the class
loader box of Figure 3 depicts a subsystem that can be formed by many class loaders.

A Java application can use two types of class loaders: a bootstrap class loader (or default
class loader) and a user defined class loader. The bootstrap class loader is a part of the
JVM and is present in all JVM implementations. It is the default class loader, the one that
is used by the JVM in case no class loader has been specified by the application. User
defined class loaders, on the other hand, are not part of the JVM, but Java code executed
in the JVM. They are written in the Java language, compiled to class files, loaded into the
heap and instantiated as any other object. Java applications can install user defined class

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 12

loaders at run-time, providing means to load classes in customized ways, as downloading
from the network or reading from a database.

For each class it loads the JVM keeps track of which class loader loaded it. When a
loaded class refers to another class the JVM requests the referenced class from the same
class loader that loaded the referencing class. Because of this characteristic of the JVM
classes can by default only see other classes that were loaded by the same class loader.
This allows the creation of different name-spaces within the same Java application. Each
class loader in a running Java application has its own name-space, which is formed by the
name of all the classes it loaded. Classes loaded by different class loaders are in different
name-spaces and cannot gain access to each other unless the application explicitly allows
that. This gives developers the possibility of separating classes in different name-spaces
the way they want. One can, for instance, segregate network downloaded classes from
different sources in different name-spaces and avoid malicious code to interfere with
friendly code. For this reason the class loader plays an important role in security, giving
developers the possibility to tightly control the scope of classes. And by allowing the
developers to define class loaders that could download classes from a network it is also
an important piece in enforcing the network-mobility paradigm.

3.3.2 Execution Engine
The execution engine is the part of the JVM responsible for the actual execution of the
Java code. It is responsible for reading the bytecodes and translating them into platform
specific binary code.

In the Java virtual machine specification, the behavior of the execution engine is defined
in terms of an instruction set. For each instruction, the specification provides a detailed
description of what the execution engine should do when it encounters the instruction as
it executes bytecodes, but says very little about how to do that. As already mentioned, the
execution of bytecodes can be done in a myriad of different ways, including pure
interpretation, JIT-compiling, by the use of adaptive optimization or even in hardware.
Each of these methods has its own advantages and drawbacks, and influence the
execution of the Java program.

Pure interpretation of the bytecodes was the method used when the first JVM came into
the scene. It is the simplest way to execute bytecodes and also provides an easy way to
ensure portability and platform independence. It works by translating every bytecode to
the machine native code, and then executing the native machine code. This translation is
generally done bytecode by bytecode, thus resulting in a poor performance.

JIT-compiling the application code proved to be a good solution for the performance
limitations of Java interpreters. The Java code is compiled into native code the first time
the JVM encounters it and saved in the RAM for future use. All subsequent calls to the
same method will execute the cached native code instead of the bytecodes. The main
drawbacks of this approach is that the application execution is hampered while the Java
code has not been completely translated into native code and it consumes a lot of memory
as the native methods are stored in the RAM.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 13

As a way to optimize the execution performance (and in some cases the memory
utilization), adaptive optimization was developed. Adaptive optimization works by
probing the application behavior for some time, identifying the most used methods and
possible bottlenecks and then heavily optimizing and JIT-compiling them. This approach
reduces the amount of time spent on optimizations as only the most used pieces of code
will be heavily optimized, and can also reduce the amount of memory used if the
translation to native code is performed only on these methods (in the case the less used
methods are kept as bytecodes).

Each thread of a running Java application is a distinct instance of the virtual machine's
execution engine. From the beginning of its lifetime to the end, a thread is either
executing bytecodes or native methods. A JVM implementation may use other threads
invisible to the running application, such as a thread that performs garbage collection.
Such threads do not have to be "instances" of the execution engine. All threads that
belong to the running application, however, are execution engines in action.

Execution engines implemented in hardware are out of the scope of this thesis and will
not be covered in any way on this document.

3.3.3 Garbage Collection
One of the most remarkable features of Java is the garbage collection. Although Java is
not the only language that makes use of garbage collection it is without a doubt the most
popular one. Garbage collection is also called automatic dynamic memory management,
as its main task is to automatically manage the use of memory by Java applications.
Garbage collection helps ensure program integrity by intentionally not allowing the Java
application developer to free memory that was not previously allocated.

The Java virtual machine specification does not define any type of garbage collection
technique to be used. As a matter of fact, it does not even require JVM implementations
to make use of any kind of garbage collection. But as far as I know there is no
commercially available JVM without a garbage collector.

The JVM makes use of 3 main types of memory:

• Global or static: this memory is allocated at class load time, and has no change in
size after that.

• Stack allocated: allocated when a declaration is encountered within the scope of a
method, routine or function. It is released when the execution leaves the method,
routine or function.

• Heap: this is the area that holds all the objects that are dynamically allocated
during execution.

Garbage collection is performed only in the heap.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 14

In Java, while a program is running space is allocated in the heap by the use of the new
operator. The application never explicitly free the memory allocated, instead Java does
automatic garbage collection. All the objects are garbage collected, when the application
developer makes a null reference to the object. For this reason, it is a good policy to
always assign null to a variable after you have finished using it.

Any garbage collection algorithm must do two basic things. First, it must detect garbage
objects. Second, it must reclaim the heap space used by the garbage objects and make the
space available again to the program. The two main algorithm families for garbage
collection are reference counting algorithms and tracing algorithms.

Reference counting algorithms work by counting how many references (that is, pointers)
there are to a particular memory block from other blocks. In a simple reference counting
system, a reference count is kept for each object. This count is incremented for each new
reference, and is decremented if a reference is overwritten, or if the referring object is
recycled. If a reference count falls to zero, then the object is no longer required and can
be recycled.

Reference counting algorithms are, however, difficult to implement efficiently due to the
cost of updating the reference counts and their inability of detecting loops (two or more
objects that refer to one another). Because of the disadvantages of this technique it is
currently not widely used. It is more likely that JVMs will use some kind of tracing
algorithm instead.

Tracing algorithms follow pointers to determine which blocks of memory are reachable
from program variables (known as the root set). It starts by examining the variables of the
running Java program and the objects referenced by these variables. Then the objects
referenced by these objects. And so forth, until it reaches all the objects accessible
through the variables of the Java program.

The most basic tracing algorithm is called "mark and sweep." Its name refers to the two
phases of the garbage collection process (this algorithms is also known as 2-phase
collector). In the mark phase, the garbage collector traverses the tree of references and
marks each object it encounters. In the sweep phase, unmarked objects are freed, and the
resulting memory is made available to the executing program. In the Java virtual
machine, the sweep phase must include finalization of objects.

In addition to freeing space by removing unreferenced objects, a garbage collector should
also avoid heap fragmentation. Heap fragmentation is the natural consequence of normal
program execution and spaces being freed time after time. After many memory blocks
have been allocated and recycled, there are two problems that typically occur. First, the
memory being used by the heap is widely scattered, causing low performance due to the
poor locality of reference. Second, it is difficult to allocate large blocks because free
memory is divided into small pieces, separated by blocks in use (known as external
fragmentation). For solving these problems the JVM generally performs heap
compaction, that is, it rearranges valid objects in the heap so that they are located next to

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 15

each other. This increases locality of reference and makes large chunks of free memory
available for future object allocation.

3.3.4 Thread Management
The term thread management, as it is used in this document, refers to the synchronization
of multiple threads or multithreading. The Java language provides multithreading support
at the language level, giving developers an easy and powerful framework to control the
application’s threads. The main piece of this framework is the monitor, the mechanism
used by Java to ensure thread synchronization.

Java monitors support two types of thread synchronization: mutual exclusion and
cooperation. Mutual exclusion is supported in the JVM by object locks, and allows
threads to work independently whereas still sharing data. Cooperation is supported by the
wait and notify methods of class Object (the parent class of all classes) and allows
threads to work together towards a common goal.

Mutual exclusion, the first type of thread synchronization mentioned above, refers to the
mutually exclusive execution of monitor regions by multiple threads. At any particular
time only one thread can execute a mutually exclusive region of a monitor. This type of
thread synchronization is important when threads share data or some other resource. If
two or more threads do not share any data or other resource they cannot interfere with
each other and no mutual exclusion is needed.

The second type of thread synchronization mentioned, cooperation, works by allowing
threads to communicate to each other by the use of the wait and notify methods in order
to accomplish a common task. In this kind of monitor, a thread that currently owns the
monitor can suspend itself inside the monitor by executing a wait command. When a
thread executes a wait, it releases the monitor and enters a wait set. The thread will stay
suspended in the wait set until some time after another thread executes a notify command
inside the monitor. When a thread executes a notify, it continues to own the monitor until
it releases the monitor of its own accord, either by executing a wait or by completing the
monitor region. After the notifying thread has released the monitor, the waiting thread
will be resurrected and will reacquire the monitor.

How a JVM handles synchronization plays an extremely important role in performance.
The best way to handle a lock is to avoid locks all together, and it is good for the
application developer to avoid unnecessary synchronized methods and blocks of code. In
the event that such unnecessary synchronized code does exist, JVMs can possess
techniques to detect them and eliminate the locks.

JVMs handle contended (many threads try to enter the same synchronized block at once)
and uncontended (only one thread tries to enter the synchronized block at once) locks
differently, optimizing such that the uncontended lock operations go faster. The choices
the JVM makes as to how it handles uncontended and contended locks can all impact
performance.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 16

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 17

4 Inside BEA WebLogic JRockit
This chapter presents BEA WebLogic JRockit under a technical point of view. It starts by
giving an overview of the design of JRockit and then it thoroughly describes each of the
packages that form the JVM, providing detailed information about the ins and outs of
each of them.

4.1 Initial considerations
As shown in Figure 1 (Time spent by the JVM on different tasks for different application
types, page 7), the amount of time spent on different tasks differs radically when
comparing client-side and server-side Java applications. For this reason, client and server
JVMs have a very different approach to optimize application execution. BEA WebLogic
JRockit, as a JVM built from the scratch specifically to meet the requirements of server-
side Java applications, makes use of some server-side optimization techniques, which
will be studied in this chapter.

At this point it is worth mentioning that although the content of this chapter is intended to
be as technical as possible and give a sound idea about the ins and outs of JRockit JVM,
it does not go deep into algorithms used by the designers of JRockit to achieve better
performance or JVM implementation details. The first reason for this is that this project is
focused on the performance, scalability and reliability of JRockit at application level, not
on JVM implementation details. The second reason is that since JRockit is a commercial
JVM, neither its source code nor documentation about its internals is publicly available.
This makes it difficult to obtain good technical documentation about the way it works.
Said that, the content of this chapter can be described as an explanation of the techniques
used by the JRockit JVM to try to achieve better performance and how they actually
affect the running of server-side Java applications.

4.2 The Design of BEA WebLogic JRockit
BEA Weblogic JRockit is made of four different parts or packages, each of them being
responsible for a specific task. The Code Generation package is responsible for
generating the code for the methods encountered during startup and for the performance
analysis and optimization of frequently used methods. The Memory Management
package is responsible for memory/object allocation and for garbage collection. The
Thread Management package is responsible for handling threads, thread synchronization,
etc. The Native package provides support for native methods (e.g. java.lang, java.io and
java.net, JVM-support methods, JNI, and exception handling).

According to the BEA white paper on JRockit [15], the JVM design had three main goals
in mind:

• Have each of the 4 different areas described above optimized and cooperating
closely between themselves;

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 18

• Keep the system as platform independent as possible so that porting it to other
platforms is easy and most of the optimizations will be readily available;

• Provide a framework through which the Java application developer can easily
profile and tune the JVM to increase performance.

4.2.1 Code Generation Package
The Code Generation package is the part of JRockit responsible for compiling the code at
startup as well as for the adaptive optimization. When JRockit starts-up it JIT-compiles
all the methods it encounters. As the application runs there is a bottleneck detector which
actively looks for bottlenecks in frequently executed methods. If a method is reducing the
application performance it is sent to the Optimization Manager to be aggressively
optimized and compiled. The optimized one replaces then the old method without
interrupting the running program.

As opposed to other JVMs (as Sun’s JVM for example, which starts-up interpreting Java
code), JRockit uses a fast JIT-compiler for compiling all methods it encounters at startup.
Later, as the application is executed, the bottleneck detector heavily optimizes and
compiles the methods that are most frequently executed. This approach implies on a
slower startup but it ensures that desirable application performance will be achieved even
on the early stages of the application run.

JRockit can thus be seen as having two distinct but cooperating compilers: a JIT-compiler
for all methods and an Optimizing Compiler for the methods classified as application
bottlenecks. The JIT-compiler resolves data from bytecode to native code through three
intermediate levels of representation. The Optimizing compiler optimizes the code in all
three levels of representation, generating heavily optimized native code. The three
intermediate levels of representation are shown in Figure 4, as well as the two compilers
plus the relation between them.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 19

Figure 4: JRockit code optimization paths [21]

The bytecode is first transformed to a high-level intermediate representation (HIR) in a
phase called BC2HIR. At this first level, the IR reflects the bytecode in a more practical
way, where each IR instruction belongs in a basic block. The instructions can be of
arbitrary complexity, what is not true for the instruction set of the target platform. The
second phase, called HIR2MIR transforms the HIR into a more natural form of
representation called MIR (middle-level intermediate representation). The MIR is still
platform independent, but the complex instructions are broken into single operator
intructions. It is at the MIR that most of the optimizations are done. Next phase, called
MIR2LIR, transforms the MIR into a platform dependent representation called LIR (low-
level intermediate representation). From LIR it is easy to produce native code by
mapping the instructions in the LIR to instructions in the target platform.

All the methods executed by JRockit will traverse the left side of the Figure 4, and most
of them will only traverse this path. Only methods classified as application bottlenecks
will be sent to the optimizing compiler and thus traverse the right side of Figure 4.

Method inlining is the single most important optimization tool available. Inlining means
that the code of a called method is inserted directly into the call site. As opposed to
procedural languages as C, method inlining can be very tricky in object-oriented
languages as Java. Polymorphism, interface calls and remote calls are difficult to treat
because the actual method being called is only known at runtime. For this reason, method
inlining must be performed carefully by the Java code optimizer, otherwise it could have

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 20

an effect opposite to the intended and cause a drop-off in performance. To avoid this
JRockit makes use of heuristics tuned for avoiding performance loss.

JRockit, as a JVM optimized for the Itanium II platform, includes some techniques for
code generation on this platform. Among them, it includes a register allocator that takes
full advantage of the Itanium II processor’s large register stack (128 general purpose plus
128 floating point registers).

But how does JRockit knows which methods are hampering the application performance
and should be optimized? The technique used by JRockit to identify methods that merit
optimization is a low-cost, sampling-based one. A “sampler thread” wakes up at periodic
intervals and checks the status of several application threads. It identifies what each
thread is executing and notes some of the execution history. This information is tracked
for all methods and when it is noticed that a method is experiencing heavy use it is
marked for optimization. Usually many such optimization opportunities occur at the
application early stages of run, with the rate slowing down as the execution continues.

4.2.2 Memory Management Package
The Memory Management package is the package responsible for memory allocation and
garbage collection.

Memory allocation is done by the use of “thread local arrays”, that is, each thread is
assigned a small heap where it allocates objects. Thread local arrays work by allocating
space for about a thousand objects on behalf of each thread. This technique provides
spatial and temporal locality of the data, as well as it reduces the synchronization
between threads.

Different applications have different needs, thus JRockit provides 4 garbage collection
schemas to be chosen by the developer to best suit the application needs.

• Generational Copy, which divides the memory into two areas called
"generations." New objects are put in the area reserved for them, called nursery,
and are promoted from there only after surviving for a certain amount of time. By
doing this one avoids the task of garbage collecting the whole object space when
it gets full.

• Single-Spaced Concurrent is a concurrent garbage collection schema, that is, the
garbage collection is performed at the same time the Java application runs. This
schema uses a single object space, in opposition to a generational garbage
collection that uses 2 distinct object spaces. It is designed to support garbage
collection without disruption and to improve multiprocessor garbage collection
performance.

• Generational Concurrent is the second type of concurrent collector BEA
WebLogic JRockit employs. Although very similar to a single-spaced concurrent
collector, a generational concurrent garbage collector makes use of the
generational schema, that is, it will divide the object space in two and put new

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 21

objects in a "nursery," reducing the need to do collection of the entire heap so
often.

• Parallel garbage collection, which stops all Java threads and uses all CPUs to
perform a complete garbage collection of the entire heap.

All these 4 garbage collectors have been designed to work smoothly with large heaps and
to take advantage of the sparseness of the heap, that is, most of the heap is garbage
because most of the objects are short lived.

With the large heaps available for the 64-bit Itanium II systems, fragmentation can be
become a serious performance issue. Compacting the heap during garbage collection
alleviates the problem, but it hampers the performance, as compacting large heaps is an
expensive task. Avoiding compacting the heap is not a good idea either, as large portions
of the heap would become unusable as the application runs, and this would lead to even
more frequent garbage collections and inefficient heap utilization. JRockit solves this
dilemma by using a sliding compaction window. In other words, during each garbage
collection a small part of the heap is compacted, a different part being compacted each
collection. With a properly set size of the window the heap performs almost as well as
with full compaction with the cost of compaction being almost as low as with no
compaction at all.

Each of these garbage collectors have different ways to clean up the heap and thus
different behaviors. For some applications, the only important parameter is the
throughput of the application, while for others the response time is what has to be taken
into account. The four garbage collectors provided by JRockit are intended to cover all
the possible cases and if some time is spent tuning the JVM the desired performance and
behavior of the application will most certainly be achieved.

4.2.3 Thread Management Package
The Thread Management package is responsible for thread handling, such as thread
synchronization, semaphores, and the creation of new threads.

To decrease the amount of system resources used and improve performance by providing
better thread switching and synchronization BEA Weblogic JRockit came up with the
concept of thin threads, where the JVM maps multiple Java threads to a single operating
system thread. The 2 schemas provided by JRockit for thread handling are:

• Native Threads which maps Java threads directly to the operating system threads,
directly taking advantage of the operating system's thread scheduling and load
balancing policies.

• Thin threads, where multiple Java threads are run on a single operating system
thread. This allows WebLogic JRockit to optimize thread scheduling, thread
switching, and thread synchronization, while using less system resources.

Figure 5 shows a graphical representation of the concepts of Native and Thin threads.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 22

J a v a A p p l ic a t io n

1 2 n

N a t iv e T h r e a d s

J a v a A p p l ic a t io n

1 2 n

T h in T h r e a d s

O p e r a t in g S y s te m ’s T h r e a d s

Figure 5: Native threads and Thin threads

The default thread system for BEA WebLogic JRockit JVM is Native Threads. Although
it has some advantages as described above it consumes more system resources than
needed as operating system threads usually have more functionality than Java threads. In
addition, the JVM cannot tightly control the threads resulting in degraded context
switching and thread communication performance.

Thin threads, on the other hand, use less system resources and provide the JVM with
means to tightly control the interactions between threads. However, this scheme is still
experimental on JRockit 8.1 and its use is recommended only on test applications or
applications in development mode. Moreover, it is not available for the Itanium II
platform, thus its practical evaluation will not be possible in the scope of this research
project.

Another important feature of the thread management package is thread synchronization
control. Although no information was found on how JRockit deals with locks between
threads and optimization of unnecessary locks in the code, the technique used by it to
decrease the number of thread locks to get access to the heap is known. To handle
synchronization between allocating threads of the running program, JRockit uses Thread
Local Arrays, a lock-free technique. Each thread is allocated its own stack, and no other
thread can access this area. Every time a thread needs to create a new object or modify an
existing one it can do that directly by accessing its stack, thus no synchronization to
acquire the heap is needed.

The size of the thread local arrays (or thread stack) is an important performance
parameter and is application dependent. JRockit includes heuristics to tune this parameter
at runtime and it can also be set at startup by the use of the JVM startup options. The use
of thread local arrays can also be disabled if desired. JVM instances running with a small
heap size or applications with a large number of threads could perform worse when using
thread local arrays. For more information on JRockit startup options see section 6.3.3,
JVM tuning tests.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 23

4.2.4 Native Package
The native package is the part of BEA WebLogic JRockit responsible for providing
support for native methods (e.g. java.lang, java.io and java.net, JVM-support methods,
JNI, and exception handling). I could not find any source of information about its
internals, techniques used, implementation details, etc, except for some statements by
BEA and Intel that I/O in JRockit is optimized for the Itanium II platform.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 24

5 Problem definition and analysis
This chapter defines the problem that had to be solved and the way chosen to solve it. It
starts by describing the scope of the project and precisely defining what is to be solved.
Then it defines a set of measurements that will be taken in order to achieve the goals.
Later it gives some basic ideas about how to compare JVMs and, to finalize, it briefly
describes the method that will be used.

5.1 Scope of the project
As mentioned in section 2.4, Goals, and section 2.5, Limitations, the main goal of this
project is to evaluate the BEA WebLogic JRockit JVM for the Itanium II platform in a
way that reveals its possible benefits or drawbacks for Java enterprise applications.

For achieving this goal 3 main characteristics of the JVM will be investigated,
performance, scalability and reliability, all in the context of Java enterprise applications.
Java enterprise applications are developed under the J2EE architecture and run inside
J2EE servers that provide transaction and state management, multithreading, resource
pooling, and other complex low-level details. For this reason, the evaluation of the BEA
WebLogic JRockit JVM will not be done directly, but through a J2EE server, also known
as application server. As the JVM is the engine of application servers, its performance,
scalability and reliability heavily affects the way the application is executed by the
application server.

In addition to the investigation of performance, scalability and reliability of JRockit, a
study on tuning options and how they affect the performance of the JRockit JVM will be
carried out.

5.2 Performance, scalability and reliability
Having defined what to measure, it is important to strictly define the exact meaning of
each of the measurement parameters (performance, scalability and reliability) and why
they are representative of the JVM overall behavior.

Performance in this master thesis project is measured in terms of application throughput
and response time given a certain user load. Throughput is the number of transactions or
operations executed in a certain period of time. Response time is the time taken to
execute each of these transactions and give a reply back to the user. User load is the
number of user requests in a certain period of time. As an example, let’s say there are 100
requests per minute and the application executes 300 operations in the same amount of
time, each of these operations taking 300ms to complete and return a result to the user. In
this case the throughput would be 300 operations per minute and the response time would
be 300ms, and they would be the measure of performance used to compare JVMs.

Scalability, as it will be used throughout this document, is the ability to cope with an
increasing number of user requests without degrading the performance and the service
quality. In other words, I am interested on how many users the system could handle

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 25

keeping the same rate of transactions per user in a period of time and providing the same
service quality an individual user would experience. It is worth to emphasize that due to
resource constraints this master thesis project is not going to investigate the JVM
scalability as it is commonly defined by JVM designers, that is, “an increase in hardware
resources will result in a corresponding linear increase in supported user load while
maintaining the same response time”.

JVM reliability, as is defined now, is the ability to execute a Java enterprise application
under a fairly constant load over a longer period of time without presenting any problems
as memory leaking, data corruption, or system crash. In other words, the JVM has to be
able to execute an application over a longer period of time without disruption and with
valid output during all the time.

JVM performance, scalability and reliability are key points of the JVM behavior because
they can be easily translated to business and financial figures. The performance as it was
defined on this document can be easily translated to the number of business transactions a
JVM can execute in a period of time (throughput) and the service quality experienced by
a user of the system (response time). Scalability will show how many of these business
transactions can be executed at the peak without degrading the service quality. And
reliability will directly impact on the number of business opportunities missed, as a
system that is down or generates unpredictable results cannot generate any valid business
transaction.

5.3 Comparing JVMs
The task of comparing JVMs is not as easy as it might seem at first glance. The
performance achieved by a JVM depends, among other things, on the hardware,
operating system and JVM tuning parameters used. Without taking into account the first
two factors of this equation, namely the hardware and operating system, the comparison
of JVMs performance is meaningless. A bad implemented and not efficient JVM running
on a 32 processor machine will much likely be faster than a very efficient JVM running
on a single processor machine. For this reason, standardized benchmarks were created,
providing means to effectively compare different JVMs running on different
environments. The most widely used and accepted benchmarks for server side Java are
SPECjbb2000 (evaluates the performance of server side java by emulating a 3-tier
system), SPECjAppServer2001 (measures the performance of J2EE Application Servers),
ECperf (measures the performance of J2EE Application Servers) and VolanoMark
(measures the performance of server JVMs when running applications with long lasting
network connections and a high number of threads).

5.4 Evaluation process
Instead of evaluating the performance of the JVM when executing different types of tasks
and operations the method used will focus on the performance of the JVM when running
an enterprise application inside an application server. For achieving this goal ECperf will
be used to simulate a real world enterprise application. ECperf is an Enterprise
JavaBeans(EJB) benchmark meant to measure the scalability and performance of J2EE
servers and containers. GUI and presentation are not the focus of the ECPerf workload,

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 26

nor are aspects of everyday DBMS scalability (e.g., database I/O, concurrency, memory
management, etc.). ECperf stresses the ability of EJB containers to handle the
complexities of memory management, connection pooling, passivation/activation,
caching, etc. ECperf provides a good way to evaluate the JVM, as the performance,
scalability and reliability of the application server heavily depends on the JVM.

For running the ECperf benchmark a DBMS is needed, as well as a J2EE application
server. The DBMS is needed to provide data storage and retrieval capabilities. The
application server is needed to provide the environment for the ECperf application to run
(J2EE framework).

All the tests are performed using ECperf, as it simulates a real life enterprise application
in many of its details and particularities. For the performance and scalability test the
ECperf application is run with different injection rates (see section 6.1, ECperf, for
information on the benchmark test), and the results obtained using different JVMs are
then compared. For the reliability test the ECperf benchmark is run for a longer period of
time, 1 to 5 hours, and the application and JVM behavior is monitored for errors, invalid
responses or crashes. For the study of tuning options and how they affect the performance
of the JRockit JVM, the ECperf application is run several times under the same
conditions having different JVM startup options used at each time. The results are then
compared to verify which startup options combination provided the best performance.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 27

6 Method
This chapter describes the software and hardware platforms used for the tests to evaluate
JRockit and it provides detailed information about the method used to carry out the tests.

It starts by describing ECperf, the benchmark application used to evaluate JRockit and
compare it with Sun’s JVM. Then it lists all the software used to perform the tests, the
JVMs used, ECperf version, application server used, etc. Subsequently it describes the
hardware used and how it was arranged on the tests. Finally it describes the tests
themselves, giving detailed information about the method used.

6.1 ECperf

6.1.1 Introduction to ECperf
The ECperf benchmark is based on a distributed application that claims to simulate a real
world e-business application in all its aspects and requirements. The “storyline” of the
business problem modeled is made of manufacturing, supply chain management, and
order/inventory. As stated by the ECperf developers in the ECperf specification [9], this
is a meaty, industrial strength distributed problem. It is heavyweight, mission-critical,
worldwide, 7x24, and necessitates use of a powerful, scalable infrastructure. And most
importantly, it makes use of interesting middleware services as transactional components,
distributed transactions, caching, object persistence and resource pooling, and it can also
make use of clustering, load-balancing and fault-tolerance.

6.1.2 ECperf Domains
ECperf models business by using 4 domains:

1. Customer Domain;

2. Manufacturing Domain;

3. Supplier Domain;

4. Corporate Domain.

The Customer Domain handles customer orders and interactions. This domain hosts an
order entry application which is responsible for, among other things, adding new orders,
changing an existing order and retrieving the status of a particular order or all the orders
from a particular costumer. Orders can be placed by individual customers or by
distributors. Orders placed by distributors are called large orders.

Orders can be placed by existing customers or by new customers. In either case, a credit
verification is done on the customer by sending a request to the corporate domain.
Discounts are applied to orders depending on the type of customer. First time customers,
existing customers and distributors have a differentiated treatment regarding discounts.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 28

Existing orders can be changed and their status can be accessed by customers or
salespeople.

The Manufacturing Domain performs "Just In Time" manufacturing operations. It models
production lines in a manufacturing plant. Products manufactured by the production lines
are called widgets. They are made of components or parts. The Bill of Material (BOM)
for a widget indicates the parts needed to produce it. There are 2 types of production
lines: planned lines and large order lines. Planned lines produce widgets according to a
pre-defined schedule. Large order lines produce widgets as a response to large orders
from customers. Production for both lines starts when a work order enters the system.
Each work order describes what types of widget and the quantity to produce. Work orders
for the planned lines are generated as the result of demand forecasting while for the large
order lines they are the result of customer orders.

When a work order is created the Bill of Materials (BOM) for the widgets to be produced
is created and the parts are taken from the inventory. As work progress the work order is
updated until it is completed. When the work order is completed it is marked as
completed and the inventory is updated. When there is a lack of parts in the inventory the
Manufacturing Domain must contact the Supplier Domain which will, on its turn, send
purchase orders (PO) to the appropriate suppliers.

The Supplier Domain handles interactions with external suppliers. It orders parts from
suppliers based on which parts are needed, when they are needed, and the price of the
parts in different suppliers. It orders parts by sending purchase orders (PO) to the
suppliers. These purchase orders contain the quantity of various parts being purchased,
the site where they must be delivered and the date by when they should be delivered.
When parts are received from the suppliers, the supplier domain send a message to the
manufacturing domain to update the inventory.

The Corporate Domain is the master keeper of customer, product, and supplier
information. It manages the global list of customers, parts and suppliers. All the
information about customer credits and order discount rules is kept in the corporate
domain. Whenever a credit check or a discount calculation must be performed it is
requested to the corporate domain.

6.1.3 ECperf application design
The ECperf benchmark is made of 3 applications: the ECperf application itself, which
contains all 4 domains; the Supplier Emulator application, which simulates external
suppliers; and the Driver, which generates the workload for the benchmark.

All the tasks and processes executed in the 4 ECperf domains are implemented using
Enterprise Java Bean components (EJB 1.1 specification) and are assembled into a single
application (the ECperf application) which is deployed into the System Under Test
(SUT). The performance of this application on the SUT is what will be measure by the
ECperf benchmark.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 29

Suppliers are implemented in a separate application that must run in a system other than
the SUT. This application is known as the Supplier Emulator. It provides the supplier
domain ways to emulate the process of sending and receiving purchase orders to/from
suppliers. It accepts a purchase order from the BuyerSes session bean in the supplier
domain, processes the purchase order, and then delivers the items requested to the
ReceiverSes session bean after sleeping for an amount of time based on the lead-time of
the component. The Supplier Emulator makes no use of Enterprise Java Beans, thus it can
be run in any Java-enabled web server outside the SUT.

The last piece of the ECperf benchmark is the driver, responsible for generating the
workload. It is not part of the SUT either, and it must be run using an arbitrary number of
JVMs to ensure it has no scalability limitations.

A relational DBMS is used to provide data persistence and all the access operations use
entity beans which are mapped to tables in the ECperf database. Both container (CMP)
and bean managed (BMP) persistence is supported.

The throughput of the ECperf benchmark is driven by the activity of the OrderEntry and
Manufacturing applications. The throughput of both applications is directly related to the
chosen Injection Rate. To increase the throughput, the Injection Rate needs to be
increased. The Injection Rate is the rate at which business transaction requests from the
OrderEntry Application in the Customer Domain are injected into the system under test
(SUT). In other words, it determines the number of order entry requests generated and the
number of work orders scheduled per second.

The performance metric provided by ECperf is BBops/min (Benchmark Business
OPerationS per minute). It is composed of the total number of business transactions
completed in the customer domain plus the total number of work orders completed in the
manufacturing domain, normalized per minute.

6.2 Software and hardware platforms
Deploying and running ECperf is not a straightforward task, and some requirements for
both hardware and software components have to be followed in order to obtain valid and
meaningful results. The minimum hardware system needed is composed by at least 2
machines, as the Supplier Emulator and Driver are not supposed to run on the SUT. As
for software requirements, the system must bear, in addition to the ECperf benchmark
itself, a relational DBMS to hold the benchmark tables and a J2EE server to run the
benchmark application. As some of the tests require monitoring CPU and memory
utilization, some kind of monitoring tool must be used too. Table 1 is a list of the
software used to perform the tests.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 30

Use Product Description

ECperf ECperf 1.1 Final release Benchmark to evaluate JRockit
and compare it with Sun’s JVM.

Application Server WebLogic 8.1 Application Server that provides
the environment for running the
ECperf application benchmark.

DBMS Oracle 9.2.0.2 DBMS used for running the
ECperf application benchmark.

Monitoring Tool RRDtool 1.0.45 Tool to monitor the CPU and
memory utilization in the form of
charts.

Table 1: List of the software used to perform the tests, their versions and descriptions.

The performance and scalability tests are basically comparative tests, that is, the results
of JRockit in these tests are compared to the results of other JVMs, providing means to
verify if JRockit performs and scales better or worse than other JVMs on the Itanium II
platform. By the time this master thesis project started the only JVMs available for Linux
on the Itanium II platform were JRockit and Sun’s JVM, thus all the tests and
comparisons are based on these 2 JVMs. The JVMs used as well as their versions and
descriptions are shown in Table 2.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 31

JVM Version Description

BEA WebLogic JRockit 8.1-1.4.1-linux64-
mislenite-20030320-
1104

JRockit JVM

Sun’s JVM 1.4.1-b21, interpreted
mode

First version of Sun’s JVM for the
Itanium II platform. Among other
deficiencies it does not include a JIT-
compiler, thus it has serious
performance restrictions. Its results
are only for informative reasons, as
comparing it with JRockit would be
the same as comparing oranges and
apples.

Sun’s JVM 1.4.2_02-b03, mixed
mode

Newer version of Sun’s JVM for the
Itanium II platform, now bearing a
JIT-compiler. This is the JVM that is
actually compared to JRockit.

Table 2: List of the JVMs tested, their versions and descriptions.

As for the hardware configuration, 2 different setups have been used. The first one is the
minimal possible setup to run ECperf and is the one I had access throughout the project.
The second setup makes use of 2 Itanium II machines, and I could perform tests on it
only for a period of time as short as 10 days. These 2 setups are shown in Figure 6 and
Figure 7 respectively.

PC

IA64 x 1

1 2 3 4 5 6

7 8 9101112

A
B

12x

6x

8x

2x

9x

3x

10x

4x

11x

5x

7x

1x

Et
he

rn
et

A

12x

6x

8x

2x

9x

3x

10x

4x

11x

5x

7x

1x

C

HUB

Emulator
+

Driver

Application Server
+

DBMS

10 MB/s 10 MB/s

SUT

Figure 6: application server and DBMS on the same machine (setup 1)

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 32

Setup 1, shown in Figure 6, is made of 2 machines connected via a 10 Mbps Ethernet
network. The system under test (SUT) was an Itanium II machine with a single
900MHz processor and 1 GB RAM plus 2 GB swap space. The operating system on
this machine was Red Hat Linux SMP kernel 2.4.18-e.25smp. It hosted the
Application Server (Weblogic 8.1) and the DBMS (Oracle 9.2.0.2.). The machine
used to host the Supplier Emulator and the Driver for the test was a Pentium 4, 2GHz
with 1 GB RAM plus 1.5GB swap space. The operating system on it was Windows
2000, service pack 2.

IA64 x 1

PC

1 2 3 4 5 6

7 8 9101112

A
B

12x

6x

8x

2x

9x

3x

10x

4x

11x

5x

7x

1x

Et
he

rn
et

A

12x

6x

8x

2x

9x

3x

10x

4x

11x

5x

7x

1x

C

1 2 3 4 5 6

7 8 9101112

A
B

12x

6x

8x

2x

9x

3x

10x

4x

11x

5x

7x

1x

Et
he

rn
et

A

12x

6x

8x

2x

9x

3x

10x

4x

11x

5x

7x

1x

C

IA64 x 4

HUB 2

HUB 1
10 MB/s 10 MB/s

10 MB/s

10 MB/s

Application Server

Emulator
+

Driver

DBMS

SUT

Figure 7: application server and DBMS on separate machines (setup 2)

Setup 2, shown in Figure 7, separated the application server and the DBMS, providing
means to isolate the application server performance from the DBMS performance. The
system under test (SUT) in this configuration was an Itanium II machine with 4x1.2GHz
processors and 4GB RAM plus 4GB swap space. The operating system on this machine
was Red Hat Linux SMP kernel 2.4.18-e.7smp. It hosted the application server
(WebLogic 8.1). The DBMS (Oracle 9.2.0.2.) was hosted on the other Itanium II
machine, the one used as the SUT in setup 1, a 900MHz single processor machine with 1
GB RAM plus 2GB swap space running Red Hat Linux SMP kernel 2.4.18-e.25smp. The
Supplier Emulator and the Driver for the test were still hosted on the 2GHz Pentium 4
with 1 GB RAM plus 1.5GB swap space machine running Windows 2000, service pack
2.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 33

6.3 Tests
The goal of the tests is to provide enough data to produce a good, reliable and meaningful
comparison between JRockit and Sun’s JVMs on the Itanium II platform as well as
investigating JRockit’s reliability and how tuning affects the performance of Java
applications run by this JVM.

The tests performed can be divided in 3 groups:

1. Performance and scalability tests;

2. Reliability tests;

3. JVM tuning tests.

6.3.1 Performance and scalability tests
The simple measurement of performance and scalability indicators for JRockit on the
Itanium II platform would not provide meaningful information about how good or bad it
is when confronted to other JVMs. For this reason, the performance and scalability of
JRockit on the Itanium II platform were evaluated by comparing it to the performance
and scalability of Sun’s JVM on the same platform. Tests were performed for both JVMs
and the results were compared.

For evaluating the performance and scalability of the BEA Weblogic JRockit JVM and
comparing it to Sun’s JVM, ECperf was repeatedly run with different injection rates. For
each JVM the ECperf benchmark was run with increasing injection rates for simulating
increasing user load. This approach allowed me to analyze how both JVMs perform
under different load conditions and also to investigate how well they scale for a different
number of users (see sections 7.1.2 and 7.2.2 for details on the JVM scalability test
results).

One important thing to observe when having performance tests on different JVMs is the
amount of resources allocated to the JVM and any optimization technique used. If one
runs 2 different JVMs with different heap sizes then, the results of the tests will most
likely be misleading as a JVM with a bigger heap will probably have some advantage
over a JVM with a smaller one. The same logic is valid for optimization parameters.
Tests where one JVM optimizes code in a certain way while the other does not could be
misleading. For this reason, in all the tests taken for comparing the performance of
JRockit and Sun’s JVM the same heap size and no optimization startup options were
used.

6.3.2 Reliability tests
The task of measuring reliability or quantifying it somehow is not an easy one. What is it
meant when the term “reliability of the JVM” is used? How could it be measured?

The way chosen to measure this property of the JVM was to run the ECperf benchmark
with different injection rates (to simulate different loads) over a longer period of time and
monitor the system for application or JVM errors, JVM crashes or system crashes.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 34

Two types of tests were performed to evaluate the reliability of the BEA WebLogic
JRockit JVM on the Itanium II platform. The first type of test was run over a longer
period (5 hours) having the JVM loaded so that on the average 10% to 20% of the CPU
capacity was used depending on the setup. The other type of test was run over a shorter
period of time (1 or 2 hours) with the JVM heavily loaded, using 100% of the CPU
capacity. These two types of tests cover two very common scenarios: 1) the application
being constantly accessed over long periods of time; 2) a very high demand on the
application for a certain time longer than utilization peaks.

6.3.3 JVM tuning tests
The first question that arises when one talks about JVM tuning is: why is tuning
necessary? The answer for this question is simple: tuning will best suit the JVM to the
system it is executing on.

Although WebLogic JRockit JVM was designed to automatically adapt itself to the
underlying system it is executing on, it cannot detect everything about the system and it
cannot take certain decisions such as how much memory to use or which garbage
collection algorithm is most appropriate to the application being deployed, as wisely as
someone who has a deep knowledge of the underlying system. To instruct WebLogic
JRockit on how to handle these critical processing functions, one can configure - or tune -
many aspects of the JVM's performance by setting appropriate configuration options at
startup.

WebLogic JRockit JVM has 2 types of startup options, the standard ones available for
other JVMs as –version (product version number) or –verbose (verbose output) and the
non-standard ones, starting with –X. By using the non-standard options one can tune
JRockit JVM to optimally perform on one’s system.

A list of some non-standard startup options used in the tests with their respective effect is
shown in Table 3. A complete list of non-standard options can be found in the JRockit
documentation on tuning [18].

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 35

-Xgc Deploys the specified garbage collector.

Parameters:

. gencopy; Generational Copying

. singlecon; Single Spaced Concurrent

. gencon; Generational Concurrent

. parallel; Parallel

The default is gencopy if -Xmx is less than
128MB; otherwise, it is gencon.

-Xgcpause Prints pause times caused by the garbage
collector.

-Xgcreport Causes WebLogic JRockit JVM to print a
comprehensive garbage collection report at
program completion. The option -Xgcpause
causes the VM to print a line each time Java
threads are stopped for garbage collection.

-Xmanagement Enables the management server in the VM,
which needs to be started before the
Management Console can connect to
WebLogic JRockit JVM.

-Xms

Sets the initial size of the heap. You should
set the initial heap size (-Xms) to the same
size as the maximum heap size.

The default is 16 MB if maximum heap size
is limited to less than 128 MB, otherwise
25% of available physical memory, but not
exceeding 64 MB.

This value can be specified in kilobytes
(K,k), megabytes (M,m), or gigabytes
(G,g).

-Xmx

Sets the maximum size of the heap. You
should set this value as high as possible, but
not so high that it causes page-faults for the
application or for some other application on

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 36

the same computer.

The default is the lesser of 75% of physical
memory and 400 MB when running
gencopy; when running another garbage
collector, the default is the lesser of 75% of
physical memory and 1536 MB.

This value can be specified in kilobytes
(K,k), megabytes (M,m), or gigabytes
(G,g).

-Xns Sets the size of the young generation
(nursery) in generational concurrent and
generational copying garbage collectors
(these are the only collectors that use
nurseries). If you are creating a lot of
temporary objects you should have a large
nursery.

The default is default is 10 MB per CPU
with a gencon garbage collector and 320
KB per CPU with gencopy.

This value can be specified in kilobytes
(K,k), megabytes (M,m), or gigabytes
(G,g)..

-Xss

Sets the thread stack size; can be specified
in kilobytes (K,k), megabytes (M,m), or
gigabytes (G,g).

Table 3: JRockit non-standard startup options

The main goal on this part of the project was to obtain the best performance of the
ECperf application by setting the appropriate startup options. As applications can differ
considerably, the startup options that achieved the best performance in this case can be
not the optimal ones for some other application. However, the basic ideas of tuning as
well as most of the conclusions drawn from the tests can be widely applied to other
enterprise applications.

The initial idea was to test all the 4 different garbage collectors with different heap and
thread stack sizes as well different thread systems (native and thin threads) on both setups
and analyze the results to see which combination of startup options would result in the
best performance.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 37

However, thin threads are not available for Itanium II machines and I had problems when
trying to run the generational garbage collectors on setup 1. As a result, the tunning tests
for setup 1 and setup 2 are slightly different. The tunning tests on setup 1 were performed
only for the single spaced concurrent (singlecon) and single spaced parallel (parallel)
garbage collectors while on setup 2 they were performed for all garbage collectors,
although focused on the generational copying (gencopy) and generational concurrent
(gencon).

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 38

7 Results and Analysis
In this chapter the tests carried out to evaluate JRockit and compare it to Sun’s JVM are
presented and analyzed. The results are organized according to the hardware used to
perform the tests (setup 1 and setup 2) and the type of tests performed. Performance and
scalability tests were carried out for all JVMs and the results were then analyzed and
compared. For the characterization of JRockit, reliability tests and tuning studies were
performed and the results were then analyzed.

7.1 Setup 1
Setup 1 had the BEA WebLogic application server and Oracle DBMS running on the
same machine, as shown in Figure 6 (page 31). This setup was extensively tested, as I
had access to this configuration throughout the master thesis project.

7.1.1 Performance
Performance and scalability tests were performed according to the method exemplified in
Section 6.3.1. The tests were run in a way to simulate different user loads and for each
different load the throughput and response times were monitored.

The tests were performed for both BEA WebLogic JRockit and Sun’s JVM to provide
means of comparing between these two JVMs on the Itanium II platform. The versions
tested were BEA WebLogic JRockit 8.1, Sun JDK 1.4.1 and Sun JDK 1.4.2 (see Table 2,
page 31, for details). Initially the tests were run for only Sun JVM version 1.4.1, but
afterwards I discovered that this version does not include a JIT-compiler, so a new set of
measurements was taken for Sun JDK 1.4.2 which includes the HotSpot JIT-compiler.

The RampUp time (time when the JVM executes the ECperf application but no
measurements are taken) used during the tests for each JVM and version differs
according to the time taken to achieve a stable application throughput. A brief study on
the minimum RampUp time for each JVM was done and is presented in section 11, “

Appendix I – JRockit vs Sun’s JVM RampUp time”. For BEA WebLogic JRockit and
Sun JDK 1.4.2 the RampUp time used was 8 minutes, for Sun JDK 1.4.1 it was 35
minutes.

As the tests should be performed under similar conditions for all JVMs, the minimum and
maximum heap size were set at startup and no tuning options were used for any of the
JVMs. The command line to start each of the JVMs is shown in Table 4.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 39

JVM / version Command Line

Sun / JDK 1.4.1 java –server -verbose:memory,cpuinfo -Xms64m –Xmx512m

Sun / JDK 1.4.2 java –server -verbose:memory,cpuinfo -Xms64m –Xmx512m

JRockit java -jrockit -verbose:memory,cpuinfo -Xms64m -Xmx512m -
Xgc:singlecon

Table 4: command line for starting the JVM in each of the application server configurations used in
setup 1.

These startup options say the following to the JVM:

-server/-jrockit: instructs the Sun’s JVM/JRockit to optimize the code execution for
server applications.

-verbose:memory: verbose output for memory management (garbage collection)

-verbose:cpuinfo: verbose output for cpu information.

-Xgc:singlecon: JRockit non-standard startup option that instructs the JVM to use the
single spaced concurrent garbage collector.

7.1.1.1 Throughput
The throughput of each of the JVMs is measured by ECperf in terms of BBops/min, that
is, the total number of business transactions completed in the customer domain plus the
total number of work orders completed in the manufacturing domain, normalized per
minute. Figure 8 shows the results of the ECperf benchmark tests performed on the
single processor Itanium II machine (IA64x1) used in setup 1.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 40

Throughput

0

200

400

600

800

1000

1200

1400

1 2 4 6 8 10 12 14

Injection Rate (tx)

B
B

op
s/

m
in

JRockit

Sun JDK 1.4.2

Sun JDK 1.4.1 (35min
RampUp)

Figure 8: Throughput of the ECperf application on the IA64x1 machine (setup 1) according to the
injection rate and JVM used..

Through the analysis of this chart one can verify that the throughput of the ECperf
application is about the same when using a low injection rate (tx=1) but as the injection
rate increases (and thus the load on the system being tested) the JVMs with a JIT-
compiler (JRockit and Sun’s JVM JDK 1.4.2) show a much better performance than
Sun’s JVM JDK 1.4.1.

For injection rate values as high as tx=12 the throughput of the ECperf application
increases linearly to the injection rate if JRockit or Sun’s JVM JDK 1.4.2 are used. The
throughput obtained when using Sun’s JVM JDK 1.4.1, on the other hand, increases
linearly to the injection rate only when using low injection rate values, tx=1 and tx=2.
Figure 9 provides additional information to understand the reason of this behavior.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 41

CPU utilization

0

20

40

60

80

100

120

1 2 4 6 8 10 12 14

Injection Rate (tx)

C
PU

 (%
) .

JRockit

Sun JDK 1.4.2

Sun JDK 1.4.1 (35min
RampUp)

Figure 9: CPU utilization on the IA64x1 machine (setup 1) during the steady execution of the ECperf
application (after the RampUp time) according to the injection rate and JVM used.

Carefully analyzing this chart it becomes clear that the throughput of the ECperf
application increases linearly to the injection rate as long as the CPU is not swamped, that
is, as long as it is not overloaded executing the application. When using Sun’s JVM JDK
1.4.1 to run the ECperf application, the CPU became swamped from injection rates
starting at tx=2. When using JRockit or Sun’s JVM JDK 1.4.2 the CPU capacity was not
totally used for all injection rates lower than or equal to tx=12. In all cases however,
when the CPU became saturated the throughput did not increase linearly to the injection
rate.

At this point it is worth reminding that, as already mentioned, the results for Sun’s JVM
JDK 1.4.1 are presented only for analytical reasons, as it would be meaningless to
compare it with JRockit. Sun’s JVM JDK 1.4.1 only interprets the bytecode whereas
JRockit JIT-compiles all the bytecode before executing it.

The comparison between JRockit and Sun’s JVM JDK 1.4.2, however, is meaningful and
vital for understanding how JRockit behaves as a server-side JVM. As shown in Figure 8,
the throughput of the ECperf application when being executed either by JRockit or Sun’s
JVM JDK 1.4.2 is about the same, no matter the injection rate used. When analyzing the
chart depicted in Figure 9 one notices that the CPU utilization follows the same pattern,
and is about the same when using either JRockit or Sun’s JVM JDK 1.4.2 (being slightly
lower when using Sun’s JVM).

These charts show that the behavior of JRockit and Sun’s JVM JDK 1.4.2 is very similar,
and seems to indicate that their inner workings are not very different. The throughput
obtained when using both JVMs is about the same to all loads tested (even though
JRockit performs slightly better and has a more predictable behavior under heavy load),
and the CPU utilization follows the same pattern. As far as the throughput of the ECperf

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 42

application on setup 1 is concerned, no great advantage towards JRockit or Sun’s JVM
JDK 1.4.2 was noticed.

7.1.1.2 Response Time
The ECperf benchmark also provides a detailed report on the response time for many
different transactions in the Manufacturing and Customer Domain. The response times
are a good way to analyze how a user of the system would experience the performance of
the application being executed by the JVM. Following the same methodology used for
measuring the throughput, the response time was measured according to the injection rate
used in the tests and the JVM executing the ECperf application.

Figure 10 to Figure 14 show the response time as a function of the injection rate (or load)
for a representative set of transactions in the Manufacturing and Customer Domains.

Manufacturing Domain

0
20
40
60
80

100
120
140
160
180

1 2 4 6 8 10 12 14

Injection Rate (tx)

R
es

po
ns

e
Ti

m
e

(s
)

JRockit

Sun JDK 1.4.2

Sun JDK 1.4.1
(35min RampUp)

Figure 10: Time taken for a WorkOrder to complete in the Manufacturing Domain (IA64x1 – setup
1), according to the injection rate and JVM used.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 43

NewOrder

0
2

4
6

8
10

12
14

1 2 4 6 8 10 12 14

Injection Rate (tx)

R
es

po
ns

e
Ti

m
e

(s
)

JRockit

Sun JDK 1.4.2

Sun JDK 1.4.1
(35min RampUp)

Figure 11: Time taken for a NewOrder Transaction to complete in the Customer Domain (IA64x1 -
setup 1), according to the injection rate and JVM used.

ChangeOrder

0

1

2

3

4

5

6

1 2 4 6 8 10 12 14

Injection Rate (tx)

R
es

po
ns

e
Ti

m
e

(s
)

JRockit

Sun JDK 1.4.2

Sun JDK 1.4.1
(35min RampUp)

Figure 12: Time taken for a ChangeOrder Transaction to complete in the Customer Domain
(IA64x1 - setup 1), according to the injection rate and JVM used.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 44

OrderStatus

0

0,5

1

1,5

2

2,5

1 2 4 6 8 10 12 14

Injection Rate (tx)

R
es

po
ns

e
Ti

m
e

(s
)

JRockit

Sun JDK 1.4.2

Sun JDK 1.4.1
(35min RampUp)

Figure 13: Time taken for an OrderStatus Transaction to complete in the Customer Domain (IA64x1
- setup 1), according to the injection rate and JVM used.

CustomerStatus

0
0,5

1
1,5

2
2,5

3
3,5

1 2 4 6 8 10 12 14

Injection Rate (tx)

R
es

po
ns

e
Ti

m
e

(s
)

JRockit

Sun JDK 1.4.2

Sun JDK 1.4.1
(35min RampUp)

Figure 14: Time taken for a CustomerStatus Transaction to complete in the Customer Domain
(IA64x1 - setup 1), according to the injection rate and JVM used.

The results shown in the previous charts indicate a behavior similar to the one observed
in the analysis of the throughput of the ECperf application. Sun’s JVM JDK 1.4.1 had an
acceptable performance only for low injection rates while JRockit and Sun’s JVM JDK
1.4.2 had a good performance even for higher injection rates, and were very similar to
each other.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 45

The ECperf specification defines some required values for the response times of the
ECperf application. If the result of an ECperf test is to be published, the response time in
the Manufacturing Domain must be lower than 5 seconds and for all the transactions in
the Costumer Domain it must be lower than 2 seconds.

If the results shown in the previous charts are analyzed according to these requirements
Sun’s JVM JDK 1.4.1 succeeds on the tests only when having an injection rate tx=1, as
all the response times of the ECperf application are within the requirements for tx=1
only. Higher injection rates cause some of the response times to be higher than the
required.

When having Sun’s JVM JDK 1.4.2 as the JVM to run the ECperf application the results
are much better, and the requirements for the response times are met for all tests using an
injection rate lower than or equals to tx=12. Even when using tx=14 the requirements for
response time are met for all the transactions except the NewOrder transaction in the
Customer Domain.

Using JRockit as the JVM to run the ECperf application gives an even better result as far
as response times for the ECperf transactions are concerned. The response times for all
the transactions are within the requirements for all the tests with an injection rate lower
than or equals to tx=14. That means that for all the tests carried out using JRockit as the
JVM, the response time was within the requirements defined by the ECperf 1.1
specification.

A comparison between the response times of the ECperf application (Figure 10 to Figure
14) and the CPU utilization (Figure 9) shows that the response times are likely to be
within the ECperf requirements as long as the CPU capacity is not fully utilized. When
the CPU utilization reaches 100% the response times are most likely not to be within the
range pre-defined in the ECperf 1.1 specification. JRockit, however, had a good
performance on the response time measurements even when the CPU was fully utilized.
Its performance was very similar to Sun’s JVM JDK 1.4.2 performance throughout the
tests, but under heavy load, when all the CPU power was used, it performed slightly
better than Sun’s JVM.

7.1.2 Scalability
The tests performed for evaluating the scalability of the BEA WebLogic JRockit JVM (as
defined in section 5.2) are the same ones carried out for evaluating the performance of
JRockit and comparing it with Sun’s JVM (see previous section for results).

Through the careful analysis of Figure 8 one can notice that under the same injection rate
the performance greatly varies according to the JVM being used. While the throughput is
about the same for tx=1, it becomes clear that JRockit and Sun’s JVM JDK 1.4.2 perform
better than Sun’s JVM JDK 1.4.1 when higher injection rates are used. The analysis of
Figure 10 to Figure 14 shows the same behavior for the application response time.

By crossing these data with the information about CPU utilization shown in Figure 9 one
can investigate how the 3 different JVMs scale. Just to refresh the memory, scalability as

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 46

it was defined in section 5.2 is the ability to cope with an increasing number of users
without degrading the performance and the service quality. By translating this definition
to the parameters provided by the ECperf benchmark one has ways to numerically
measure performance and service quality degradation.

The performance can be considered degraded if the throughput increase is not linear to
the injection rate. For example, if the result with tx=1 was 100 BBops/min the
performance will not be degraded if the result for tx=4 is 400 BBops/min. A lower value
shows a decreasing system performance. In the scope of this master thesis project the
performance will not be considered degraded if the value is within a 5% margin of the
expected value. Using the same example as before, for tx=4 a value of 380 BBops/min is
considered valid.

The service quality, on the other hand, can be thought of as the response time of the
transactions in the ECperf application. The ECperf documentation defines some values
for desirable response times as mentioned in the previous section (5 seconds for the
Manufacturing Domain and 2 seconds for all transactions in the Customer Domain).

Having defined scalability in terms of throughput and response times one can now study
how the 3 different JVMs scale on the Itanium II platform.

Running Sun’s JVM JDK 1.4.1 with a RampUp time of 35 minutes provides
disappointing results regarding JVM scalability. The results are within our requirements
for performance and response times only for tx=1. For this reason one can say that this
JVM does not scale for injection rates higher than tx=1.

Sun’s JVM JDK 1.4.2, on the other hand, is within our requirements for performance and
response times for all ECperf tests having an injection rate lower than or equals to tx=12,
as well is BEA WebLogic JRockit.

By comparing this behavior with Figure 9 one can state that the JVM will most likely
scale well as long as the CPU is not saturated, that is, as long as the CPU capacity is not
totally used all the time. If the CPU is fully utilized the behavior of the application
throughput and response time is not completely predictable, and the service could be
heavily affected.

When running Sun’s JVM JDK 1.4.1 the CPU is not fully utilized only when the lowest
injection rate is used (tx=1). For higher injection rates the CPU utilization remains around
100% all the time, thus the service degrades and the throughput decreases. When using
Sun’s JVM JDK 1.4.2 and BEA WebLogic JRockit the CPU capacity is not fully utilized
for injection rates from tx=1 to tx=12. For higher injection rates the CPU is overloaded,
causing the service to degrade and/or the throughput to decrease.

Table 5 shows the highest injection rate that could be used with each JVM without
degrading the throughput and the service quality.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 47

JVM Injection rate (tx) Throughput

Sun’s JVM JDK 1.4.1 1 96.00 BBops/min

Sun’s JVM JDK 1.4.2 12 1201.50 BBops/min

JRockit 12 1181.70 BBops/min

Table 5: Highest injection rate used with the JVMs without degrading the performance and service
quality and the throughput measured in each case (setup 1).

7.1.3 Reliability
Two types of tests were performed to assess the reliability of the BEA WebLogic JRockit
JVM on the Itanium II platform as explained in section 6.3.2. The first type of test was
performed over a 5 hours period when the application server (and thus the JVM) was
loaded in such a manner to utilize around 20% of the CPU capacity of the machine in
setup 1. For the other type, two individual tests were performed. First it was performed a
1 hour long test when the application server (and JVM) was heavily loaded and the CPU
utilization was around 100% all the time. The second test in this category was run for a 2
hour long period, with the CPU utilization also around 100% all the time. When running
these tests, CPU and memory utilization, WebLogic and JRockit logs, and application
behavior were constantly monitored and checked. No crashes occurred and no failures
were detected.

7.1.4 Tuning
The investigation of tuning techniques for BEA WebLogic JRockit was performed as
defined in section 6.3.3. As mentioned there, thin threads are not available for the Itanium
II platform and both generational garbage collectors (generational copying, “gencopy”
and generational concurrent, “gencon”) did not work on the single processor Itanium II
machine (IA64x1) in setup 1. For this reason the investigation of tuning techniques was
restricted to adjusts to the heap and thread stack size using the Single Spaced Concurrent
(singlecon) and Single Spaced Parallel (parallel) Garbage Collectors.

The problem faced when trying to use any of the generational garbage collectors
(gencopy and gencon) was that the whole system crashed under heavy load. Several
different heap and thread stack sizes have been tried but none of them solved this
problem. I tried to contact the BEA support to ask for possible bugs on the
implementation of these garbage collectors on single processor machines but I got no
reply.

Running all the tests under the same conditions is a very important pre-requisite to have
meaningful results on the investigation of tuning techniques. If the tests are not run under
the exact same conditions, by changing the RampUp time or the hardware setup for
example, it is not possible to identify if differences in the performance were caused by

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 48

different tuning options or by the other changes. To have the same conditions for all the
tests the ECperf driver was run with the same values for Trigger, RampUp, Steady and
RampDown time. The values used with the ECperf driver are shown in Table 6.

Parameter Value

Injection Rate: txRate 6

Ramp up time: rampUp (in seconds) 240

Ramp down time: rampDown (in seconds) 120

Steady time: stdyState (in seconds) 400

Table 6: Values used in the ECperf driver to run the tests for investigating tuning techniques for
JRockit on setup 1

The different startup options used and the results got are shown in Table 7 and Table 8.
The best result for each garbage collector is shown in bold characters and the best overall
result is marked with an asterisk (*).

Single Spaced Concurrent Garbage Collector

Startup options Throughput

-Xgc:singlecon 410.70 BBops/min

-Xms128m -Xmx512m -Xgc:singlecon 516.90 BBops/min

-Xms500m -Xmx500m -Xgc:singlecon 535.80 BBops/min

-Xms600m -Xmx600m -Xgc:singlecon 591.50 BBops/min

-Xms650m -Xmx650m -Xgc:singlecon 503.33 BBops/min

-Xms600m –Xmx600m –Xss1m –Xgc:singlecon 597.90 BBops/min

-Xms600m –Xmx600m –Xss2m –Xgc:singlecon 615.30 BBops/min

-Xms600m –Xmx600m -Xss4m -Xgc:singlecon 615.83 BBops/min *

-Xms600m –Xmx600m –Xss8m –Xgc:singlecon 534.17 Bbops/min

-Xms128m –Xmx512m –Xss4m –Xgc:singlecon 343.33 BBops/min

Table 7: tuning JRockit with the singlecon garbage collector

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 49

Single Spaced Parallel Garbage Collector

Startup options Throughput

-Xgc:parallel 426.60 BBops/min

-Xms128m –Xmx512m -Xgc:parallel 578.10 BBops/min

-Xms500m –Xmx500m -Xgc:parallel 569.25 BBops/min

-Xms600m –Xmx600m -Xgc:parallel 563.10 BBops/min

-Xms650m –Xmx650m -Xgc:parallel 524.70 BBops/min

-Xms128m –Xmx512m -Xss4m -Xgc:parallel 469.80 BBops/min

-Xms128m –Xmx512m –Xss8m -Xgc:parallel 460.67 BBops/min

-Xms600m –Xmx600m –Xss4m -Xgc:parallel 396.83 BBops/min

Table 8: tuning JRockit with the parallel garbage collector

Table 7 shows the startup options used and the results got for the single spaced
concurrent garbage collector. If no startup options are used JRockit will use its default
values, in this particular case 64Mb for the initial heap size, 256Mb for the maximum
heap size and 128Kb for the thread stack size.

On the tests using the single spaced concurrent garbage collector (singlecon) it was
noticed that for this garbage collector one achieves a better performance when using the
same value for the initial and the maximum heap size. It was also noticed that for heaps
taking up to 75% of the available memory the performance increased as we increased the
size of the heap. When we crossed the 75% barrier the behavior was the opposite, and
bigger heaps caused the performance to degrade. The explanation for this behavior is that
very big heaps can cause page-faults for the ECperf application or some other
application, degrading the performance by swapping data between the disk and the
physical memory.

Another startup option that was tested was the size of the thread stack. The thread stack is
a LIFO (last-in first-out) data structure in which function call arguments, function return
values, and local variables (among other things) are placed. By using the JRockit non-
standard startup option -Xss one can tell the JVM how much memory to allocate for each
thread stack. On the tests with the ECperf application the best performance was achieved
with thread stacks around 0.5% of the available memory. This value is, however, strictly
specific to this application. Other applications can have different thread behavior, and can
have a better performance with either smaller or bigger thread stacks, depending on the
number of threads used by the application and the number of objects each thread has to
handle as well the size of these objects.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 50

On the tests performed using the single spaced parallel garbage collector (Table 8) the
results were slightly different. Whereas we achieved the best performance for the
singlecon garbage collector when having the same value for the initial and maximum
heap size, the parallel garbage collector had a different behavior and the best performance
was achieved with a small (-Xms128m, 16% of available memory) initial and a high (-
Xmx512m, 64% of available memory) maximum heap size. In addition, no performance
increase was noticed for bigger thread stack sizes, and the default size of 128Kb (0.016%
of available memory) proved to be the one that achieved the best performance. However,
all the results for the parallel garbage collector were worse than the best one for the
singlecon garbage collector.

The tests performed for investigating tuning techniques for JRockit show how important
it is to tune the JVM for the underlying system it is executing on. Great performance
increase can be achieved just by instructing the JVM how much memory to allocated for
the heap or for each thread. In the particular case studied here a throughput improvement
of about 50% was achieved for the singlecon garbage collector when the best result is
compared to the result of running this very same garbage collector with no other startup
options, thus leaving to JRockit the responsibility of adapting itself automatically to the
underlying system. When using the parallel garbage collector the throughput increase was
almost 36%.

7.2 Setup 2
Setup 2 had the application server (BEA WebLogic) and the DBMS (Oracle) hosted in
different machines, as shown in Figure 7. The behavior of JRockit and Sun’s JVM on this
configuration was not investigated as extensively as on setup 1 because the time window
allocated for me to use the IA64x4 machine was short. However, the same tests
performed for setup 1 were carried out for setup 2, as well as some other representative
tests, as the application performance when having an application server cluster, testing
the generational garbage collectors and testing the performance of the application for
different load balance algorithms when having an application server cluster (see the
Appendix II, section 11.2 for details).

7.2.1 Performance
The approach to measure performance and scalability on setup 2 was the same used for
setup 1 and defined in section 6.3.1. However, due to the higher processing capacity of
this setup, higher injection rates were used to characterize the behavior of JRockit and
Sun’s JVM,

Moreover, two different application server configurations were tested on setup 2. The
first one is the same used for all the tests on setup 1: a single server configuration, that is,
there is only one instance of the application server running on the machine and being
responsible for handling all the requests. The second configuration tested was an
application server cluster. Clusters provide higher availability and reliability, as well as
load balancing capabilities. The WebLogic cluster configured in the IA64x4 machine for
the tests was made of 2 managed servers where the ECperf application was deployed and

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 51

an administration server for controlling the managed servers. The cluster configuration
was tested only with JRockit.

To have similar conditions for all the tests, the minimum and maximum heap size was set
at startup and no tuning options were used for any of the JVMs. The command line for
each of the JVMs is shown in Table 9.

JVM/configuration Command line

Sun / JDK 1.4.1 java -server -verbose:memory,cpuinfo –Xms1500m –Xmx1500m

Sun / JDK 1.4.2 java -server -verbose:memory,cpuinfo –Xms1500m –Xmx1500m

JRockit/noncluster java -jrockit -verbose:memory,cpuinfo -Xms64m -Xmx512m -
Xgc:singlecon

JRockit / cluster Managed Server 1:

java -jrockit -verbose:memory,cpuinfo -Xms600m –Xmx600m -
Xgc:singlecon

Managed Server 2:

java -jrockit -verbose:memory,cpuinfo –Xms600m –Xmx600m -
Xgc:singlecon

Administration Server:

java -jrockit -verbose:memory,cpuinfo -Xms300m –Xmx300m -
Xgc:singlecon

Table 9: command line for starting the JVM in each of the application server configurations used in
setup 2

These startup options say the following to the JVM:

-server/-jrockit: instructs the Sun’s JVM / JRockit to optimize the code execution for
server applications.

-verbose:memory: verbose output for memory management (garbage collection)

-verbose:cpuinfo: verbose output for cpu information.

-Xgc:singlecon: JRockit non-standard startup option that instructs the JVM to use the
single spaced concurrent garbage collector.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 52

7.2.1.1 Throughput
Figure 15 shows the results of the ECperf benchmark tests performed on the 4 processors
Itanium II machine (IA64x4) used in setup 2.

As for the previous setup, the results for the Sun’s JVM JDK 1.4.1 are presented only for
analytical reasons, and it is not meaningful compare them to the results for JRockit.

The throughput of the ECperf application achieved when using this JVM was about the
same as for JRockit or Sun’s JVM JDK 1.4.2 for lower injection rates, that is, tx=5 and
tx=10. For tx=15, however, the throughput was already lower than the one achieved
when using JRockit or Sun’s JVM JDK 1.4.2, and was not linear to the injection rate
anymore. The average CPU utilization when using injection rate tx=15 was around 85%
(see Figure 16), and it was fairly well distributed among the 4 CPUs. The throughput was
not linear to the injection rate anymore even though the CPU capacity was not 100%
utilized. The believed reason for this behavior is that on multiple CPU machines some
time is spent on scheduling the threads to the different processors, and it is difficult to get
100% utilization on all processors.

When using JRockit or Sun’s JVM JDK 1.4.2 the throughput was about the same given a
certain injection rate. The CPU utilization was also about the same for both JVMs, except
for the case when JRockit is used in a WebLogic server cluster. In this case the CPU
utilization is slightly higher, probably due to the overhead of having an extra
administration server to manage the two server instances responsible for handling the
requests. The average CPU utilization, however, was not over 12-13% in any of the tests.
In addition, the throughput stopped being linear to the injection rate when using tx=20.
This seems to indicate that the application had a performance bottleneck that did not
allowed it to achieve higher throughput, but this bottleneck was not the application
server. Most likely the bottleneck was the DBMS or the network connection. The study
of the location of this bottleneck and the possible solutions for it are beyond the scope of
this master thesis project.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 53

Throughput

0

500

1000

1500

2000

2500

5 10 15 20 25 30

Injection Rate

B
B

op
s/

m
in

 .

JRockit (non-
clustered)
JRockit (clustered)

Sun JDK 1.4.2

Sun JDK 1.4.1 (35min
RampUp)

Figure 15: JVMs throughput on the IA64x4 machine of setup 2

CPU utilization

0
10
20
30
40
50
60
70
80
90

5 10 15 20 25 30

Injection Rate (tx)

C
PU

 (%
) .

JRockit (non-clustered)

JRockit (clustered)

Sun JDK 1.4.2

Sun JDK 1.4.1 (35min
RampUp)

Figure 16: CPU utilization on the IA64x4 machine (setup 2) according to the injection rate, JVM
used and application server configuration (non-clustered/clustered).

The tests performed on setup 2 showed that JRockit and Sun’s JVM JDK 1.4.2 have a
very similar behavior and performance. However, due to the fact that it was not possible
to heavily stress the application server (maximum CPU utilization was around 12%), it
was not possible to investigate how these two JVMs would react under extreme load
conditions. But taking into account measures as CPU utilization and the results for the
tests on setup 1 it is reasonable to think that the throughput achieved by using either

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 54

JVMs would be about the same even under heavy load, maybe with a slight advantage to
JRockit when the system is heavily stressed.

7.2.1.2 Response Time
This section presents an analysis of the response time for different transactions in the
Manufacturing and Customer Domain. As for the throughput, the response time was
measured according to the injection rate and the JVM used for providing means to
compare how the different JVMs execute the ECperf application under different loads.

Figure 17 to Figure 21 show the response time as a function of the injection rate (or load)
for a representative set of transactions in the Manufacturing and Customer Domains.

Manufacturing Domain

0

5

10

15

20

25

5 10 15 20 25 30

Injection Rate (tx)

R
es

po
ns

e
Ti

m
e

(s
) JRockit (non-

clustered)
JRockit (clustered)

Sun JDK 1.4.2

Sun JDK 1.4.1
(35min RampUp)

Figure 17: Time taken for a WorkOrder to complete in the Manufacturing Domain (IA64x4 – setup
2)

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 55

NewOrder

0

0,5

1

1,5

2

2,5

5 10 15 20 25 30

Injection Rate (tx)

R
es

po
ns

e
Ti

m
e

(s
) JRockit (non-

clustered)
JRockit (clustered)

Sun JDK 1.4.2

Sun JDK 1.4.1
(35min RampUp)

Figure 18: Time taken to complete a NewOrder Transaction in the Customer Domain (IA64x4 -
setup 2)

ChangeOrder

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6

5 10 15 20 25 30

Injection Rate (tx)

R
es

po
ns

e
Ti

m
e

(s
) JRockit (non-

clustered)
JRockit (clustered)

Sun JDK 1.4.2

Sun JDK 1.4.1
(35min RampUp)

Figure 19: Time taken to complete a ChangeOrder Transaction in the Customer Domain (IA64x4 -
setup 2)

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 56

OrderStatus

0

0,2

0,4

0,6

0,8

1

5 10 15 20 25 30

Injection Rate (tx)

R
es

po
ns

e
Ti

m
e

(s
) JRockit (non-

clustered)
JRockit (clustered)

Sun JDK 1.4.2

Sun JDK 1.4.1
(35min RampUp)

Figure 20: Time taken to complete an OrderStatus Transaction in the Customer Domain (IA64x4 -
setup 2)

CustomerStatus

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6

Injection Rate (tx)

R
es

po
ns

e
Ti

m
e

(s
) JRockit (non-

clustered)
JRockit (clustered)

Sun JDK 1.4.2

Sun JDK 1.4.1
(35min RampUp)

Figure 21: Time taken to complete a CustomerStatus Transaction in the Customer Domain (IA64x4 -
setup 2)

The careful analysis of the previous charts shows that, as expected, Sun’s JVM JDK 1.4.1
has the highest response times and JRockit and Sun’s JVM JDK 1.4.2 have a comparable
behavior when executed under the same conditions (the use of JRockit in an application
server cluster resulted in higher response times).

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 57

The results could be analyzed using the same methodology used for setup 1, that is, the
response time in the Manufacturing Domain has to be lower than 5 seconds and for all the
transactions in the Costumer Domain it has to be lower than 2 seconds.

Using this criterion Sun’s JVM JDK 1.4.1 succeeds in all tests with an injection rate
lower than or equals to tx=10. Having JRockit in an application server cluster gives the
same result. The test with an injection rate tx=15 fails as the response time for the
manufacturing domain transactions is higher than 5 seconds (even though it is lower than
when using Sun’s JVM JDK 1.4.1). The use of JRockit to run a single application server
instance or Sun’s JVM JDK 1.4.2 gives a better result and all the tests with an injection
rate lower than or equals to tx=15 succeed.

If one carefully analyzes the previous charts one can notice that all the transactions have
very low response times except the transactions in the manufacturing domain (Figure 17).
This seems to indicate that the bottleneck is located in this domain and the application is
waiting for a long time for the transactions to complete, hampering the whole application
execution. The cause of this problem could be the one explained in [12], that is, two
crucial transactions in the Manufacturing Domain, WorkOrderSes.scheduleWorkOrder()
for Planned Lines and WorkOrderSes.scheduleWorkOrder() for the LargeOrder Line take
way too long to complete, while holding exclusive locks on some highly demanded
database tables. This behavior provides strong evidences that the bottleneck on setup 2 is
indeed the DBMS (probably disk IO, as the highest CPU utilization on the IA64x1
machine holding the database in setup 2 was around 40% during the tests).

For this reason it is worth analyzing the response times of the other transactions alone,
without taking into account the time to complete a workorder in the manufacturing
domain.

If only the transactions in the Customer Domain are taken into account then all the tests
carried out for all JVMs succeed. The response times achieved were all under 2 seconds,
thus within the ECperf requirements for response time. Once again Sun’s JVM JDK 1.4.1
had the worst performance, having the highest response time in all tests. JRockit, when
used in an application server cluster had a better performance, although not as good as the
single server instance. JRockit as a single server instance and Sun’s JVM JDK 1.4.2 had
the best performance and very similar results, as expected.

7.2.2 Scalability
The scalability of the different JVMs for setup 2 will be analyzed in the same way it was
done for setup 1, that is, by investigating performance and service quality degradation
according to the rules defined in section 7.1.2.

Sun’s JVM JDK 1.4.1 executed the ECperf application within the parameters defined
above in all tests with an injection rate lower than or equals to tx=10. For higher injection
rates both the response time in the Manufacturing Domain and the throughput
requirements fail.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 58

The use of JRockit in an application server cluster achieves the same results, that is, it
scales well for all tests with an injection rate lower than or equals to tx=10. For higher
injection rates the requirement for the response time in the Manufacturing Domain fails.

JRockit in a single server instance and Sun’s JVM JDK 1.4.2 achieve the best result once
more. The requirements are satisfied for all the tests with an injection rate lower than or
equals to tx=15. For higher injection rates the response time in the Manufacturing
Domain fails.

Table 10 shows the highest injection rate that could be used with each JVM without
degrading the performance and the service quality in setup 2.

JVM Injection rate (tx) Throughput

Sun’s JVM JDK 1.4.1 10 993.10 BBops/min

Sun’s JVM JDK 1.4.2 15 1510.90 BBops/min

JRockit / noncluster 15 1507.70 BBops/min

JRockit / cluster 10 1028.20 BBops/min

Table 10: Highest injection rate used with the JVMs without degrading the performance and service
quality and the throughput measured in each case (setup 2).

7.2.3 Reliability
Two types of tests were intended to be performed for assessing the reliability of the BEA
WebLogic JRockit JVM on the Itanium II platform running Linux as explained in section
6.3.2. However, when using JRockit as the JVM to run the ECperf application on setup 2
it was not possible to achieve a CPU utilization higher than 9% or 10%. For this reason
(and time constraints) only one test was performed to evaluate the reliability of JRockit
on this setup.

The test was performed over a 5 hours period, running the ECperf application, and using
around 10% of the CPU capacity of the machine. When running this test, CPU and
memory utilization, WebLogic and JRockit logs, and application behavior were
constantly monitored and checked. No crashes occurred and no failures were detected.

7.2.4 Tuning
The investigation of tuning techniques for BEA WebLogic JRockit on the IA64x4
machine of setup 2 was performed as defined in section 6.3.3. On this machine all the
garbage collectors worked smoothly and I had the opportunity to perform a thorough
examination of them and look for the one which would give the application the best
performance. As there were some results available from the tuning studies on the IA64x1
machine of setup 1 regarding the Single Spaced Concurrent (singlecon) and Single
Spaced Parallel (parallel) garbage collectors the study on setup 2 focused on the

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 59

generational garbage collectors. Some tests were performed for the single spaced garbage
collectors too, but not as extensively as for the generational ones.

Running all the tests under the same conditions is a very important pre-requisite to have
meaningful results on the investigation of tuning techniques. To have the same conditions
for all the tests the ECperf driver was run with the same values for Trigger, RampUp,
Steady and RampDown time. The values used with the ECperf driver are shown in Table
11.

Parameter Value

Injection Rate: txRate 15

Ramp up time: rampUp (in seconds) 300

Ramp down time: rampDown (in seconds) 150

Steady time: stdyState (in seconds) 300

Table 11: Values used in the ECperf driver to run the tests for investigating tuning techniques for
JRockit on setup 2

The different startup options used and the results got are shown in Table 12 to Table 16.
The best result for each garbage collector is shown in bold characters and the best overall
result is marked with an asterisk (*).

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 60

No parameters

Startup options Throughput

 1290.00 BBops/min

Table 12: On the first test no parameters were given, that is, JRockit tries to optimize the execution
automatically.

Single Spaced Concurrent (singlecon)

Startup options Throughput

-Xms1500m –Xmx1500m –Xss10m –Xgc:singlecon 1442.20 BBops/min *

-Xms1500m –Xmx1500m –Xss4m –Xgc:singlecon 1406.40 BBops/min

Table 13: Startup options and results for the singlecon garbage collector. The startup options used
were the ones which achieved the best performance on setup 1 (75% of the available RAM for the
heap and 0.5% for the thread stack).

Single Spaced Parallel (parallel)

Startup options Throughput

-Xms128m –Xmx1500m –Xgc:parallel 1252.20 BBops/min

Table 14: Startup options and results for the parallel garbage collector. The startup options used
were the ones which achieved the best performance on setup 1 (small min heap, 75% RAM max heap
and default thread stack size 128kb).

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 61

Generational Copying (gencopy)

Startup options Throughput

-Xms128m –Xmx1500m –Xgc:gencopy 851.40 BBops/min

-Xms1500m –Xmx1500m –Xgc:gencopy 849.40 BBops/min

-Xms1500m –Xmx1500m –Xns:20m –Xgc:gencopy 1015.00 BBops/min

-Xms1500m –Xmx1500m –Xns:40m –Xgc:gencopy 1164.00 BBops/min

-Xms1500m –Xmx1500m –Xns:80m –Xgc:gencopy 1215.60 BBops/min

-Xms1500m –Xmx1500m –Xns:80m –Xss10m –Xgc:gencopy 1190.80 BBops/min

Table 15: Startup options and results for the gencopy garbage collector. Several sizes for the heap,
thread stack and nursery were tested on the search for the best performance.

Generational Concurrent (gencon)

Startup options Throughput

-Xms128m –Xmx1500m –Xgc:gencon 1334.00 BBops/min

-Xms1500m –Xmx1500m –Xgc:gencon 1339.40 BBops/min

-Xms1500m –Xmx1500m –Xns:20m –Xgc:gencon 1322.20 BBops/min

-Xms1500m –Xmx1500m –Xns:80m –Xgc:gencon 1349.00 BBops/min

-Xms1500m –Xmx1500m –Xns:160m –Xgc:gencon 1369.00 BBops/min

-Xms1500m –Xmx1500m –Xns:160m –Xss10m –Xgc:gencon 1267.60 BBops/min

Table 16: Startup options and results for the gencon garbage collector. Several sizes for the heap,
thread stack and nursery were tested on the search for the best performance.

As for the tuning study on the IA64x1 machine on setup 1 the highest throughput on
setup 2 was also achieved when running the Single Spaced Concurrent (singlecon)
garbage collector using 75% of the available physical memory for the heap and 0.5% for
each thread stack.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 62

On setup 2 I could finally test the generational garbage collectors and analyze them on
the grounds of application throughput. As the size of the heap and the thread stacks were
thoroughly studied on setup 1 I decided to use the same values that achieved the best
performance for the singlecon and parallel garbage collectors running on setup 1 and
focus on the search of the ideal size of the nursery for the ECperf application. The size of
the nursery is a vital parameter for generational garbage collectors as new objects are
always put on the nursery before being promoted.

If the nursery size (-Xns) is not set the default size depends on the number of CPUs. For
the Generational Copying (gencopy) garbage collector the default nursery size is 320 KB
times the number of CPUs and for the Generational Concurrent (gencon) garbage
collector the default nursery size is 10 MB times the number of CPUs.

By the analysis of the results shown in Table 15 one can notice how important the size of
the nursery is for the application performance. Using the default size for the gencopy
garbage collector (320KB x 4CPUs = 1.28MB) the performance achieved was the worst
within all the tests performed. This is due to the extremely high number of garbage
collections performed during the execution of the ECperf application. In a 20 minutes test
more than 7000 garbage collections occurred. As the size of the nursery was increased
the performance also increased due to less frequent garbage collections.

The behavior of the gencon garbage collector is similar to the one observed for the
gencopy garbage collector, although less extreme due to the bigger default size of the
nursery (10MB x 4CPUs = 40MB). The worst performance when using this garbage
collector was achieved with the smallest nursery size (20MB). As the nursery size
increased also did the performance. The best performance was achieved (as for the
gencopy garbage collector) with the biggest nursery size.

The study of tuning techniques for JRockit on setup 2 reinforces how important it is to
tune the JVM for the system it is running on. The throughput increase from the run
without any parameters (thus letting JRockit try to optimize the application execution) to
the best run is around 12%. It can look like a small difference, but when one takes into
account the total cost of enterprise systems 12% can represent a lot of money. In addition,
it is worth mentioning again that the bottleneck on setup 2 was not CPU power, but
probably the database. Thus, it is believed that if the database bottleneck is solved the
performance difference between the run without any startup option and the best run could
be close to 50%, as in setup 1.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 63

8 Conclusions and recommendations
This chapter presents the conclusions of the work developed as well as recommendations
based on these conclusions. The conclusions are drawn from the analysis of the data got
in the tests with BEA WebLogic JRockit JVM and Sun’s JVM on the Itanium II platform
as well as from theoretical studies of these JVMs.

As already mentioned, BEA WebLogic JRockit is a JVM developed from the ground up
to meet the requirements of server-side Java applications. It is especially optimized for
the Itanium II platform and, according to BEA, “it is the fastest server JVM available for
this platform”.

The results of the tests seem to corroborate this assertion, although the difference in
performance to Sun’s JVM JDK 1.4.2 is small. In the case where the system is under
ordinary load (the CPU power is not fully utilized) both JVM’s have a very similar
behavior, and there is no great advantage on using either JRockit or Sun’s JVM JDK
1.4.2. Under heavy load however, JRockit performs slightly better than Sun’s JVM JDK
1.4.2, considering both the throughput and the response time metrics of the ECperf
benchmark. JRockit also has a more predictable behavior than Sun’s JVM JDK 1.4.2
under such conditions.

Sun’s JVM JDK 1.4.1, on the other hand, performs extremely poorly under any
condition. In all tests carried out, this JVM got the worst results and its performance and
scalability are not even comparable to JRockit or Sun’s JVM JDK 1.4.2. The reason for
this is that this JVM does not JIT-compiles the Java bytecode, thus it spends a lot of the
CPU capacity to interpret the bytecodes one at a time.

As far as JRockit reliability is concerned, this JVM did not show any flaw or weak point.
Even though no comparative tests were performed to evaluate JRockit’s reliability when
opposed to Sun’s JVM’s, the tests carried out showed that JRockit is quite stable and
reliable. For this reason it is reasonable to think that JRockit can be safely used in
production environments.

The last set of tests performed, the tuning tests, indicate that JRockit’s performance could
be substantially increased by simply choosing the right JVM startup options. In some
cases the performance improvement was around 50% in comparison to the run without
any startup option. Although it is meaningless to compare the best result achieved by
JRockit in the tuning tests with the result of Sun’s JVM during the performance and
scalability tests, it is reasonable to think that the performance difference between JRockit
and Sun’s JVM JDK 1.4.2 could be even larger when both JVMs are pushed to the limit.
This is an interesting subject to investigation and could be the topic of future studies in
this area.

For all the reasons stated above it is suggested that JRockit be the JVM chosen to run
enterprise applications on the Itanium II platform. Even though the performance
measured for JRockit was not much higher than the one measured for Sun’s JVM JDK

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 64

1.4.2, the difference justifies this choice. Enterprise systems can be quite expensive, and
even a difference as small as 2% or 3% means a lot of money.

Moreover, when using WebLogic 8.1 as the application server on Itanium II servers
running Linux (the environment used on this master thesis project) JRockit becomes the
only choice as BEA WebLogic Server 8.1 officially supports only this JVM (WebLogic
JRockit 8.1 SP1).

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 65

9 Further work
• Study of the economical issues of JRockit on the Itanium II platform.

• A comparison of the memory utilization of JRockit and Sun’s JVM running on
the Itanium II platform.

• Comparative study of the effects of JVM tuning on the performance for JRockit
and Sun’s JVMs.

• Investigation of the maturity of the Itanium II platform for business applications.

• More detailed reliability tests could be performed with JRockit.

• This project was focused on the characterization and evaluation of JRockit on the
Itanium II platform under the optics of Java enterprise applications. If a complete
picture of JRockit on the Itanium II platform is wanted the JVM should be tested
with other types of applications and also with the use of micro-benchmarks
(benchmarks that test specific areas of the JVM as thread management, floating
point calculation, etc).

• The application server used on this master thesis project was BEA WebLogic. It
would be interesting to have the same kind of tests performed using other
application servers and compare the results analyzing both JVM and application
server behavior.

• BEA WebLogic JRockit is optimized for the Itanium II platform while Sun’s
JVM is probably optimized for Sun servers. A comparison JRockit on Itanium II
servers vs Sun’s JVM on Sun servers would be very interesting.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 66

10 References

[1] Tim Lindholm and Frank Yellin. “The JavaTM Virtual Machine Specification”.
<http://java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html>

[2] Bill Venners. “Inside the Java Virtual Machine”. McGraw-Hill, 1998.

[3] Ravenbrook Limited. “The Memory Management Reference”. 2001.
<http://www.memorymanagement.org/articles/>

[4] Richard Jones. “The Garbage Collection page”. November 6, 2003.
<http://www.cs.kent.ac.uk/people/staff/rej/gc.html>

[5] Josefin Hallberg. “Optimizing Memory Performance with a JVM: Prefetching in a
Mark-and-Sweep Garbage Collector”. Master of Science Thesis, Royal Institute of
Technology, Stockholm, Sweden, October 2003.

[6] K. Shiv , R. Iyer , C. Newburn , J. Dahlstedt , M. Lagergren and O. Lindholm.
“Impact of JIT/JVM Optimizations on Java Application Performance”.

[7] Ed Ort. ”A Test of Java Virtual Machine Performance”. February 2001.
<http://developer.java.sun.com/developer/technicalArticles/Programming/JVMPerf/>

[8] TheServerSide.com J2EE community. The ECperf homepage.
<http://www.theserverside.com/ecperf>

[9] Sun Microsystems Inc. “ECperfTM Specification - Version 1.1, Final Release”. April
16, 2002.

[10] Kingsum Chow, Ricardo Morin, Kumar Shiv. “Enterprise Java Performance: Best
Practices”. 2003.
<http://www.intel.com/technology/itj/2003/volume07issue01/art03_java/vol7iss1_art03.p
df>

[11] Samuel Kounev and Alejandro Buchmann. ”Performance Issues in E-Business
Systems”. 2002.
<http://citeseer.nj.nec.com/cache/papers/cs/26473/http:zSzzSzwww.ssgrr.itzSzenzSzssgrr
2002wzSzpaperszSz1.pdf/kounev02performance.pdf>

[12] Samuel Kounev. “Eliminating ECperf persistence bottlenecks when using RDBMS
with pessimistic concurrency control”. Technical Report, Technical University of
Darmstadt, Germany, September 2001.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 67

<http://www.dvs1.informatik.tu-darmstadt.de/staff/skounev/pub/ecperf1.0-opt-
proposal.pdf >

[13] BEA Systems, Inc. WebLogic Server documentation. Technical report.
<http://edocs.bea.com/platform/docs81/index.html>

[14] BEA Systems, Inc. BEA WebLogic Platform – Supported Configurations. Technical
report.
<http://e-docs.bea.com/platform/docs81/pdf/support.pdf>

[15] BEA Systems, Inc. BEA White Paper. “BEA WebLogic® JRockit - The Server
JVM”. August 27, 2002.
<http://kr.bea.com/news_events/white_papers/BEA_JRockit_wp.pdf>

[16] BEA Systems, Inc. “WebLogic® JRockit Java Virtual Machine Data Sheet”. 2001.

[17] Arvind Jain. “BEA WebLogic JRockit - Update & Roadmap”. March 4, 2003.
<http://www.bea.com/content/files/eworld/presentations/Tues_03_04_03/Application_Se
rvers/1147_JRockit_New_Capabilities.pdf>

[18] BEA Systems, Inc. “BEA WebLogic JRockit™ SDK -Tuning WebLogic JRockit 8.1
JVM”. March 2003.
< http://e-docs.bea.com/wljrockit/docs81/pdf/tuning.pdf >

[19] BEA Systems, Inc. “BEA WEBLOGIC JROCKIT™ - High Performance on Intel
Platforms”. April 2003.
< http://www.intel.com/ebusiness/pdf/affiliates/bea/bea032501.pdf >

[20] Kumar Shiv, Marcus Lagergren and Edwin Spear. “Java in a 64-bit World: Why
BEA WebLogic JRockit and the Intel® Itanium® Processor Family Make Java the
Choice for Developing Server-side Enterprise Applications”.
<http://dev2dev.bea.com/products/wljrockit81/articles/jrockit_intel.jsp>

[21] Kumar Shiv, Marcus Lagergren and Edwin Spear. “Java Opportunities and
Challenges in a 64-bit World: Solutions with the Intel Itanium Processor Family and
BEA WebLogic JRockit”. September 29, 2003
<http://www.devx.com/Intel/Article/17457>

[22] Intel Corporation, “The Advantages of Intel® Itanium Architecture for Java and
Other Component-based Environments”, 2001.
<http://developer.intel.com/design/itanium/downloads/java_itanium.pdf>

[23] R. Lindsay Todd. “Linux Systems Administration - An introduction to administering
Red Hat Linux”. Rensselaer Polytechnic Institute, USA.
< http://www.rpi.edu/~toddr/Classes/Linux-SysAdmin-2003S/sysadmin-6.pdf >

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 68

[24] BEA Systems, Inc. “Supported Configurations for WebLogic Server 8.1 - Red Hat
Enterprise Linux AS 2.1 and ES 2.1 for IA-64”.
<http://edocs.bea.com/wls/certifications/certs_810/redhat_linux_as_ipf.html#58604>

[25] Bryan Duerk, Tom Kast. “Improving Performance and Cutting Costs with BEA and
Intel”. March 4, 2003.
<http://www.bea.com/content/files/eworld/presentations/Tues_03_04_03/Deployment_M
anagement_Administration/1230_BEA_and_Intel.pdf>

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 69

11 Appendices

11.1 Appendix I – JRockit vs Sun’s JVM RampUp time
This appendix presents the results of the tests performed to investigate the RampUp time
that would fit both JRockit and Sun’s JVM needs. The RampUp is the time given by the
ECperf driver to the JVM to JIT-compile and optimize the application code and during
which no measurements are taken. During the RampUp time the application throughput
and response time, as well as the CPU utilization, are not steady. The study of the
RampUp time that fits both JRockit and Sun’s JVM is important because the
measurements for both JVMs must be taken only after the JVM execution has reached a
stable and steady behavior.

11.1.1 Sun’s JVM
For characterizing the behavior of the Sun’s JVM as far as JIT-compiling and code
optimizations are concerned the ECperf application was run for 60 minutes for both JDKs
used in the tests (1.4.1 and 1.4.2) with injection rate 1 (tx=1) for JDK 1.4.1 and injection
rate 2 (tx=2) for JDK 1.4.2. The throughput over time was analyzed, as well as the CPU
utilization during the application execution.

11.1.1.1 JDK 1.4.1
Figure 22 shows the relation between the number of transactions completed per minute in
the Manufacturing Domain and time for JDK 1.4.1.

Throughput x Time

0

10

20

30

40

50

0

24
0

48
0

72
0

96
0

12
00

14
40

16
80

19
20

21
60

24
00

26
40

28
80

31
20

33
60

36
00

Time

tr
an

sa
ct

io
ns

/m
in

Figure 22: Relation Throughput x Time in 1 minute steps for JDK 1.4.1

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 70

Figure 23 shows the same relation measured in 3 minutes intervals. Even though the
measurement of the throughput x time is more accurate in 1 minute intervals, the same
chart plotted using a greater time interval provides better visualization of performance
tendencies over time.

Throughput x Time

0
20
40
60
80

100
120
140

0
36

0
72

0
10

80
14

40
18

00
21

60
25

20
28

80
32

40
36

00

Time

tr
an

sa
ct

io
ns

/3
m

in

Figure 23: Relation Throughput x Time in 3 minutes steps for JDK 1.4.1

Figure 24 shows the CPU utilization during the execution of the ECperf application
benchmark and is directly connected to the 2 previous charts.

Figure 24: CPU utilization (JDK 1.4.1)

Carefully analyzing the previous charts, the behavior of the JVM during the 1 hour
experiment can be divided in three distinct regions. From the start of the execution until
about 3 minutes the number of transactions completed per minute is very low and the
CPU utilization is very high. After this initial stage the number of transactions completed
per minute increases considerably and the CPU utilization becomes less intensive (even
though still near 100%). After about 35 minutes running the application the third stage of

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 71

execution starts. At this point the number of transactions completed per minute increases
around 30-40% and the CPU utilization decreases to 70-80%.

This behavior seems to indicate that Sun’s JVM JDK 1.4.1 performs optimizations not
only in the first minutes of application execution, but during a longer period. This could
be due to the fact that this version of Sun’s JVM does not perform JIT-compilation, so
the optimizations are restricted to how the code is interpreted Due to this fact it is
advisable to have a RampUp time greater than 35 minutes if one wants to truly measure
the performance of this JVM after all (or at least most) of the optimizations have been
applied.

11.1.1.2 JDK 1.4.2
Figure 25 shows the relation between the number of transactions completed per minute in
the Manufacturing Domain and time for JDK 1.4.2.

Throughput x Time

0

20

40

60

80

100

0

24
0

48
0

72
0

96
0

12
00

14
40

16
80

19
20

21
60

24
00

26
40

28
80

31
20

33
60

36
00

Time

Tr
an

sa
ct

io
ns

/m
in

Figure 25: Relation Throughput x Time in 1 minute steps for JDK 1.4.2

Figure 26 shows the same relation in 3 minutes intervals for better visualization of
performance tendencies.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 72

Throughput x Time

210

220

230

240

250

260

270

0
36

0
72

0
10

80
14

40
18

00
21

60
25

20
28

80
32

40

Time

Tr
an

sa
ct

io
ns

/3
m

in

Figure 26: Relation Throughput x Time in 3 minutes steps for JDK 1.4.2

Figure 27 shows the CPU utilization during the execution of the ECperf application
benchmark using the JDK 1.4.2.

Figure 27: CPU utilization (JDK 1.4.2)

When using Sun’s JVM JDK 1.4.2 the execution of the ECperf application could be
roughly divided in 2 phases. The first one lasted about 7 to 8 minutes and it was
characterized by intensive CPU use. At this phase optimizations were performed and
code was JIT-compiled. The second phase started about 8 minutes from the start of the
execution of ECperf application and it was characterized by steady transaction execution
and CPU use. Although the number of transactions executed in the Manufacturing
Domain was constant during the whole time the application was executed, it is believed
that for a higher injection rate (thus a heavier load on the server), the CPU power used in
the first phase of application execution can affect the number of transactions being
executed. For this reason, the minimum RampUp time suggested when running the
ECperf test with Sun’s JVM JDK 1.4.2 is 7 to 8 minutes.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 73

11.1.2 JRockit
The same method described before was used to characterize the execution behavior of
BEA WebLogic JRockit as far as JIT-compiling and code optimization are concerned.
Using this JVM, the ECperf application was run for 60 minutes with injection rate 4
(tx=4) and the throughput over time was analyzed, as well as the CPU utilization during
the application execution.

Figure 28 shows the relation between the number of transactions completed in the
Manufacturing Domain and time, in 1 minute intervals, using JRockit as the JVM to
execute the ECperf application.

Throughput x Time

0

50

100

150

200

0

24
0

48
0

72
0

96
0

12
00

14
40

16
80

19
20

21
60

24
00

26
40

28
80

31
20

33
60

36
00

Time

tr
an

sa
ct

io
ns

/m
in

Figure 28: Relation Throughput x Time in 1 minute steps (JRockit)

Figure 29 shows the same relation in 3 minutes intervals for better visualization on
performance tendencies.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 74

Throughput x Time

440

460

480

500

520

540

0
36

0
72

0
10

80
14

40
18

00
21

60
25

20
28

80
32

40
36

00

Time

tr
an

sa
ct

io
ns

/3
m

in

Figure 29: Relation Throughput x Time in 3 minutes steps (JRockit)

Figure 30 shows the CPU utilization when running this 1 hour experiment using JRockit
as the JVM.

Figure 30: CPU utilization (JRockit)

By the analysis of the three previous charts on can verify that JRockit has a behavior
completely different than Sun’s JVM JDK 1.4.1 and a very similar behavior to Sun’s
JVM JDK 1.4.2. This behavior is most likely to the fact that Sun’s JVM JDK 1.4.1 does
not JIT-compiles, thus it interprets code during the whole application execution time
while Sun’s JVM JDK 1.4.2 and JRockit JIT-compiles the bytecodes.

When using JRockit, the execution of the ECperf application could be divided in 2
phases, as for Sun’s JVM JDK 1.4.2. The first phase lasted about 6 to 7 minutes and it
was characterized by intensive CPU use. At this phase optimizations were performed and
code was JIT-compiled. The second phase started about 7 minutes from the start of the
execution of ECperf application and it was characterized by steady transaction execution
and CPU use. As for Sun’s JVM JDK 1.4.2, the number of transactions executed in the

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 75

Manufacturing Domain was constant during most of the time the application was
executed, but it is believed that for a higher injection rate (thus a heavier load on the
server), the CPU power used in the first phase of application execution can affect the
number of transactions being executed. For this reason, the minimum RampUp time
suggested when running the ECperf test with JRockit is 6 to 7 minutes.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 76

11.2 Appendix II - Investigating the load balance algorithm on the
WebLogic server cluster

One of the parameters that can be configured by the server administrator in a WebLogic
server cluster is which load-balance algorithm to use to distribute the load between the
servers belonging to the cluster. BEA WebLogic application server provides six different
choices for the administrator (in addition to allowing third party load-balancers to be
used). This section presents a brief study on the different load-balance algorithms shipped
with WebLogic 8.1 and how they affect the performance of the ECperf application. The
goal of this study is to provide enough information so that I can choose the load-balance
algorithm that achieves the best performance when running the tests with the WebLogi
server cluster.

To compare the six different load-balance algorithms the ECperf benchmark was run six
times under identical conditions, with six different load-balance algorithms being used in
the application server cluster. The values used with the ECperf driver are shown in Table
17.

Parameter Value

Injection Rate: txRate 6

Ramp up time: rampUp (in seconds) 240

Ramp down time: rampDown (in seconds) 120

Steady time: stdyState (in seconds) 400

Table 17: Values used in the ECperf driver to run the tests for investigating the best load-balance
algorithm for the WebLogic server cluster on the IA64x4 machine of setup 2.

To keep the study as brief as possible only the throughput of the ECperf application was
taken into account. The throughput of each of the runs is shown in Figure 31 for easy
comparison.

Characterization and Evaluation of the BEA WebLogic JRockit JVM on the Itanium II platform

Gustavo Zago Basilio – KTH / R2Meton AB – Stockholm, Summer/Autumn 2003 77

Throughput x load-balance algorithm

1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440

Random Round-
robin

Weight-
based

Random-
affinity

Round-
robin-
affinity

Weight-
based-
affinity

B
B

op
s/

m
in

 .

Figure 31: Throughput x load-balance algorithm measured in the WebLogic cluster in the IA64x4
machine of setup 2.

As can be easily noticed from the chart, the algorithms using server affinity have better
performance than the ones without this feature. Server affinity turns off load balancing
for external client connections: instead, the client considers its existing connections to
WebLogic server instances when choosing the server instance on which to access an
object. If an object is configured for server affinity, the client-side stub attempts to
choose a server instance to which it is already connected, and continues to use the same
server instance for method calls. All stubs on that client attempt to use that server
instance. If the server instance becomes unavailable, the stubs fail over, if possible, to a
server instance to which the client is already connected.

Restricting our analysis to the load-balancers that make use of server affinity, the load-
balance algorithm that achieved the highest ECperf throughput was the round-robin-
affinity algorithm (even though the difference to the weight-based-affinity algorithm is
very small). For this reason, all the tests performed for the WebLogic server cluster in the
IA64x4 machine of setup 2 used the round-robin-affinity algorithm to distribute the load
within the cluster.

