
Stockholm, Dec 2002 

 
 
 
 
 
 
 
 
 
 
 
 

AAR 
An Audio Augmented Reality System 

 
 
 
 
 
 
 

NILS MONTAN, 711017 – 0193, MONTAN@KTH.SE 
 

Final project for the degree of Master of Science performed at the Fraunhofer 
IGD. 
 
 
 
 
 
 
 
 
 
 
KTH, Royal Institute of Technology, Stockho lm 
Department of Microelectronics and Information Technology 



  

 

ii 

 

 
Abstract 
As we hear sound in three dimensions the reproduction of spatial aspects of audio is essential 
to digitally create, recreate or enhance an environment. Only recently has computer processing 
power reached levels enabling performance of synthesis and reproduction of 3D soundscapes 
in real-time, also on inexpensive hardware. An implementation of a real-time spatial audio 
rendering system for augmentation of real life situations, and an exa mination of some of the 
possibilities such a system provides, is the goal of this thesis. 

Providing intuitive access to an increasing amount of information in everyday environments is 
a great challenge. Augmented reality systems address this issue but have so far mainly focused 
on visual enhancements, which usually require rather immoderate means in terms of 
perceptual effort. There exist surprisingly few attempts of utilising audio user interfaces in real 
life environments. The major aim of this thesis has been to implement a low cost audio 
augmented reality prototype system and to implement and explore some applications. The 
result is the AAR system, providing a full framework to design and create spatial audio 
applications. Using the AAR system, three test applications have been implemented were a 
museum tour guide turned out especially well. 

The three major components of the system are the listener, the emitters and their environment. 
In an application a listener moves around free in space where different locations, such as 
physical rooms or parts of rooms, provide boundaries between different acoustic landscapes. 
Audio objects, the emitters, are placed within these environments and can be made to interact 
with the listener based on his location.  

The system is implemented using a client-server architecture and the rendering of the 3D 
audio and of the environmental acoustics is done through the DirectSound3D and the EAX 
API’s. A head-tracking device makes it possible to use head related transfer functions. An 
interface to a graphical soundscape design tool is also included. In evaluating the system a 
brief comparison with a sophisticated audio rendering system, as well as the implemented test 
applications, showed a satisfying quality of the produced spatial sound. 
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Sammanfattning 
Att reproducera ljud på ett adekvat sätt kräver att man tar hänsyn till de tre dimensionella och 
akustiska aspekterna som den mänskliga hjärnan utnyttjar för att analysera ljud. Dagens 
tekniska utvecklingsnivå tillåter att man, i realtid, simulerar spatiala egenskaper hos ljud på 
ordinära persondatorer. Syftet med föreliggande arbete är implementering och utvärdering av 
ett realtidssystem för spatial ljudrendering.  

Det implementerade systemet kallas AAR och möjliggör gestaltning och realtidsproduktion av 
interaktiva ljudmiljöer. Systemet bygger på att en användare kan röra sig fritt i ett rum där 
olika ljudobjekt är utplacerade. Användarens placering styr den akustiska ljudbilden och 
interaktionen med de olika objekten. 

Systemet är tillämpat med en client-server-arkitektur i vilken en server renderar de 
tredimensionella och akustiska egenskaperna med hjälp av DirectSound3D- och EAX-
biblioteken. En positionsgivare, som registrerar en användarens huvudposition, möjliggör att 
huvudrelaterade överföringsfunktioner används i ljudrenderingsprocessen. Ett gränssnitt till ett 
grafiskt verktyg för ljudmiljödesign är också inkluderat i systemet. 

Tre testapplikationer är implementerade och särskilt en virtuell guide för museum kan visa på 
de stora möjligheter som ljudsystemet har. En utvärdering av systemet visar att den spatiala 
ljud kvaliteten håller hög standard. 
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1.0 Introduction 
Providing intuitive access to an increasing amount of information in everyday environments is 
a great challenge. Augmented reality systems address this issue but have so far mainly focused 
on visual enhancements, which usually require rather immoderate means in terms of 
perceptual effort. Even though sound generally carries less information than light, there are a 
lot of situations where the obtrusiveness of visual cues could make audio an interesting option, 
either in the complimentarily between the visual and auditory senses, or as a stand alone 
interface. 

Thanks to new advances in auditory rendering techniques and to the decreasing cost of 
computational power, spatial audio augmentation may become an approach accessible to 
implementation in inexpensive information systems. An implementation of such a system and 
an examination of some of the possibilities it provides is the goal of this thesis. The 
requirement on the system is a flexible implementation without demands of specific audio 
hardware. 

Why spatial audio as an interface 
The term AR is in this thesis given a rather wide definition: a technical system providing 
information in natural situations. Most information systems today utilise interfaces using 
different concepts of visualisation. If electronic environment augmentation tools are going to 
become a more natural part of everyday life, I think the interface must be re-examined.  

Exploring spatial audio as an interface to information could probably be fruitful as most of our 
frequently used electronic devices rapidly are shrinking in size and their traditional man-
machine interfaces, keyboard and display, are unable to follow beyond a certain limit.  

Yet a motivation for exploring the world of spatial audio interfaces is a concrete scenario, also 
implemented as a part of this thesis, using spatialised audio in a typical exhibition situation. 
This is illustrated in figure 1. 

 

 

Figure 1 Illustration of a personalised 3D-audio exhibition guide. 

 
Given the means of personalised 3D audio and environmental acoustic treatment of sounds, I 
believe, information provided by museum audio guides could be revolutionised. 
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Aim of the study 
One aim of this study is to provide a comprehensive guide of spatial audio as well as to take a 
look at previous attempts in augmenting physical environments using audio. The main 
objective though, is to implement a prototype audio-only augmented reality system utilising 
different off-the-shelf products. The system should provide cues of information on the 
surrounding auditory scene such as sound source direction, its velocity and a sense of the 
general acoustic environment. Also more sophisticated hints of objects obstructing a sound 
path and occlusion should be included. The challenge lies in creating a low cost, easily 
manipulated and accurate spatial audio system. An evaluation of the system and 
implementation of some test applications also lies within the scope of this  project. 

Scope of this study 
The first part of this project is a study of different aspects of the theory behind spatial audio. It 
is followed by a review of existing audio augmented environment implementations.  

The major part of the thesis concerns my implementation and evaluation of a spatial audio 
system for augmenting environments. I also describe a number of implemented applications 
that are used to further evaluate the system and to explore the possibilities of an audio-only 
augmented reality. 

This study is organised in the following manner. Chapter 2 provides an overview of human 
spatial hearing and environmental acoustics and explains briefly how these can be modelled. 
Chapter 2 also describes some playback techniques of immersive sound and some API’s for 
synthesising spatial audio. In Chapter 3 work related to audio augmented realities is reviewed. 
Chapter 4 describes the implementation of my system and its evaluation. In Chapter 5 
describes and briefly evaluates a number of applications implemented in the developed system 
and Chapter 6 conclude this thesis. 
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2.0 Background  
The common technique to synthesise and reproduce sound is to use stereo. A stereo sound 
captures differences in intensity and phase between points in a sound field. From these 
variances, the listener is able to imagine a position of the sound source. The experienced 
position of the sound source is, however, usually along a line between two speakers or, in the 
case of using headphones, along an axis through the middle of the head. This limitation of 
stereophonic reproduction is due to the fact the playback audio in stereo is a poor model of 
how real life sound waves arrive at the ears. In order to create more realistic soundscapes, 3D 
treatment of the sound is required. This is done using better models of the human auditory 
perception systems and allows a sound, together with acoustic environmental modelling, to 
emanate from any direction, carrying cues of distance, motion and ambience. Ultimately the 
sound waves that arrive at the eardrums during playback should be an approximation as close 
as possible to what would have actually arrived at a listener’s eardrum in a real life situation. 
A simulation like this, with a complete acoustic audio scene, is sometimes called 
spatialisation and provides the full framework for creating realistic sound environments. 

Spatial audio and its modelling 
To understand how to model, implement and use artificially spatialised audio the human 
perception of spatialisation has to be investigated. There has been substantial research in this 
area and eight particularly important cues [1] for giving a sound a direction have been 
identified. Interaural time delay, interaural level difference, pinna1 response and shoulder 
echo, all of which are modelled in head related transfer functions2, are considered particularly 
essential when it comes to the localisation of a sound. Further, there are the cues of head 
motion, vision, early reflections and reverberation. 

To achieve realistic spatial audio, the objects emitting a sound must interact with the 
surrounding environment. This is referred to as simulating the acoustic environment and it 
involves a number of different acoustic behaviours. The previously mention reverberation and 
early reflections are the most obvious ones but also phenomena such as obstruction and 
occlusion play significant roles in forming the natural acoustics of an environment. 

In the following the above mentioned spatial cues and acoustic phenomena and how they may 
be modelled will be described. In order to be able to portray some of these cues clearly, as 
well as for further discussions, a spherical coordinate system about the head needs to be 
established.  

Coordinate system 
The centre of the coordinate system is defined as the point halfway between the ears, see 
Figure 2. The azimuth is defined as the deflection from front centre (0°) in the horizontal 
plane, with positive angles defined to the right. 90° is directly to the right and –90° is directly 
to the left. Positions directly behind the head maybe described as either 180° or –180°. 

                                                 
1 Outer ear. 
2 The HRTF is determined differently depending on the criteria set for a particular application 
[2]. Some measurements incorporate only the outer ear and the head, others also make account 
of features of the body. 
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Figure 2 Azimuth and elevation. 

The elevation is the horizontal deflection, with positive values defined above and negative 
below. 90° is directly over the head and –90° is directly under the head. The distance  is simply 
defined as meters from the centre of the head. 

Pinna, ITD, head shadow and shoulder echo  
Reflection and diffraction mainly caused by the pinna and the head, and to somewhat lesser 
extent by the shoulders, give raise to variations in a perceived sound and play a key role in 
sound localisation. The interpretation of these cues has been thoroughly examined by 
researchers for the last five decades. 

Pinna 

The different folds in the pinna modify a sound frequency in a manner that depends on the 
azimuth, elevation and the spectrum of the sound. Reinforcing some frequencies and 
attenuating others, the pinna acts as a filter and has responses that allow the brain to estimate 
the arriving sounds direction. Since everyone's pinna is different, so is the acoustic stamp 
placed on a sound entering the brain [3]. 

Interaural time delay 

The ITD is the delay between a sound reaching the ear closer to the sound source and then the 
farther ear. It provides a primary cue for the azimuthal information except in the case of a 
sound source position with an azimuth of either 0° or 180°. A sound source coming directly 
from the left or the right has an ITD of around 0,63 ms [3]. The frequency of, as well as the 
linear distance to, a sound source also affect the ITD value. 

Interaural level difference 

The fact that a sound has to go through or around the head to reach an ear account for a 
significant attenuation of sound intensity. The head also has a filtering effect on the sound, 
which together with the attenuation of the head gives indication of both direction and distance 
to a sound source. 
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Shoulder echo 
Frequencies in the range of 1-3 kHz are reflected from the upper torso and produce echoes that 
the brain perceive as a time delay relative to the direct sound. Even though this cue is not 
considered as a primary one, it holds some spatial information [4]. 

HRTF 
The above cues can be modelled or measured and form a set of head-related transfer functions. 
Usually the HRTF’s are measurements of a sound source made through inserting miniature 
microphones into the ear canales of a human subject or a mannequin. The measurement 
procedure is repeated for many locations of the sound source relative to the head, resulting in a 
database of hundreds of values, describing the sound variation characteristics produced by a 
particular head [3] [4]. To reproduce the recorded effect of the position with an arbitrary 
sound, the sound has to be transformed into its frequency components where the HRTF then 
can be applied and then inversely transformed back into the time domain. 

A drawback of this technique is that HRTF’s vary considerably from person to person, 
resulting in poor performance in the synthesised directional cues from a non-personalised 
measured HRTF. This use of non-individualised HRTF’s can result in front/back and 
elevation errors when reproducing 3D audio [5]. The types of distortions imparted by the 
pinna and the head fortunately follow some general patterns. Thus meaningful estimations of a 
median human may be made using average-shaped human models as measuring subjects. 
There is also a variant where people with proven good sound localisation skills are used as 
models that achieve good HRTF’s. 

Head movement and vision 
Since the human anatomical constitution does not allow the ears to move individually we have 
to move our head to get a better sense of a sound’s direction. This fact is well documented and 
a recent study preformed by Miner et al. [6] states that sound localization generally improves 
significantly when head movements are allowed.  

Our primary tool for localisation is our vision and we rely on it so heavily that we ignore 
auditory directional cues of a sound source if they disagree with the visual ones. 

To satisfy the head movement cue, a head-tracking device can be used with the audio 
rendering system. As for vision, it is essential to calibrate whatever system one is using in 
order to make sure that the visual cues match the auditory ones. 

Reverberation 
Reverberation comprises all the different reflections produced by a sound in an environment, 
typically a room. Assuming a direct path exists between the listener and a sound source, this 
direct sound, or direct signal, will be heard first. This will be followed by reflections off 
nearby surfaces, called early reflections, within the first 80 ms after the sound starts [2]. These 
early reflections are a set of well defined, and directional, reflections that are directly related 
to the shape and size of the room, as well as the position of the source and listener in the room. 

After a few tenths of a second, the number of reflected waves becomes very large and the 
resulting reverberation is characterized by a dense collection of sound waves travelling in all 
directions, called the late reverberation, see Figure 3. Simulating reverberation is essential for 
establishing the spatial context of a soundscape. Reverberation gives information about the 
size and character, such as shape and surface materials, of a space and if modelled correctly it 
adds greatly to the realism of the simulation.  
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Figure 3 Distinction between the direct signal, early reflections and late reverberation over 
time. 

 
A measure that is used to characterize the reverberation in a room is the reverberation time . 
Technically speaking, the reverberation time is the amount of time it takes for the sound 
pressure level, or intensity, to decay to one millionth (60 dB) of its original value or 
thousandth of its original amplitude. Longer reverberation times mean that the sound energy 
stays in the room longer before being absorbed. Typical values of reverberation times run 
from about 0,3 seconds for a living room to up to 10 seconds for large churches. Most large 
rooms have reverberation times between 0,7 and 2 seconds [7]. The reverberation time is 
controlled primarily by two factors, the surfaces in the room and the size of the room. The 
surfaces of the room determine how much energy is lost in each reflection. Highly reflective 
materials, such as a concrete or tile floor, brick walls and windows, will increase the 
reverberation time. Absorptive materials such as curtains, a heavy carpet and people reduce 
the reverberation time. Further, the absorption of most materials usually varies with 
frequency.  

The loudness of reverberation, in relation to the direct sound, also plays an important role in 
determining distances [8]. The direct sound decreases in amplitude as the distance to the 
listener increases. For every doubling of the distance, the amplitude of the direct sound 
decreases by about a factor of one half, or 6 dB. The amplitude of the reverberation though, 
does not decrease considerably with increasing distance. The ratio of the direct sound 
amplitude to the reverberation amplitude is greater with nearby sounds than with it is with 
more distant sounds, producing an important distance cue. 

 

Early reflections 
The early reflections, also called early echo, does on their own hold many different sound cues 
such as source direction, source distance, environment dimensions and environment 
characteristics. The full brain -ear interaction on early reflections, as for a lot of other psycho-
acoustic matters, is not fully understood today, but it is an active field of research. An amazing 
example of information contained in the early reflections is the phenomena of echolocation 
[2]. Experiments have shown that both blind and sighted blindfolded subjects could make use 
of clicking or hissing sounds from the mouth to estimate distance, width and, in some cases, 
material composition of objects placed in front of them.  

Late reverberation 
The late reverberation is the primary factor establishing a sense of a room's size. In a room, 
the late reverberation, is often considered nearly diffuse and its impulse response as a 
exponentially decaying random noise [9]. 



An Audio Augmented Reality System 7 
 

 

 

Modelling reverberation 
In acoustic environment modelling, some parts of the reverberation is often approximated 
using geometrical models of the simulated space [9]. Geometrical modelling methods use 
specular reflection to model the sound waves and certain behaviours, such as diffraction and 
interference, are generally ignored. In other words, a modelled sound reflects off a surface 
with the same angle as it hit the material. Object dimensions and surfaces are assumed large 
and its curvatures and imperfections small compared to the sound wavelength. The most 
commonly used geometrical methods are ray-tracing and image-source. 

Ray tracing 

The ray-tracing method sends a number of non-diverging rays out from a source, usually 
modelled as a point source, which then are reflected from the surfaces they strike. The listener 
is penetrated by a number of rays, simulating the sound reflections. In the standard algorithm 
specular reflection is used. The listener is normally modelled as a sphere since it provides the 
most pure response patterns and is easy to implement. 

A shortcoming of this method is the large number of rays necessary to ensure that all paths 
from the source to the receiver are covered. A problem that arises as the number of rays has to 
be approximated with a finite number, and as the rays radiate from a point source, is that the 
ray-tracing representation gradually becomes less exact with increasing ray lengths, see Figure 
4. 

 

Figure 4 Increasing ray length increases the distance between the rays and may leave regions 
erroneously unaffected. 

‘ 

More sophisticated algorithmic extensions to the ray-tracing method exist, trying to overcome 
the problem of unfair detection due to ray length. One such approach is  beam tracing where 
the rays are represented as cones or pyramids, emanating from the sound source [10]. 
However, these methods face problems with double coverage and may still leave regions 
erroneously unaffected. 
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Image source method 
The basic idea of the image source method is to compute specular reflection paths by 
considering virtual sources, generated by mirroring the location of the sound source over each 
surface. The locations of the image sources are independent of the receiver’s position and 
when positions in a room change, recalculation of which image sources the listener “sees” has 
to be done, see Figure 5. This, so called visibility check, is in a brute force implementation 
done through analysing the direction of the normal vector of each surface. In general, O(nr) 
image sources have to be calculated for r reflections in a room with n surface planes. This 
expected computational complexity allows, in practice, only a set of early reflections to be 
calculated in even a simple environment [10]. There have been several refinements of the 
image source method and, in using it together with other algorithms, one may reduce the 
computational load [9].  

 

 

Figure 5 The direct sound path and the image sources that the listener "sees" in this 
particular position. 

Occlusion and obstruction effects 
Occlusion and obstruction are two physical phenomena that also have to be taken into account 
when considering simulating an acoustic environment. 

Occlusion  
Occlusion occurs when a material separates two environments and comes between the sound 
source and the listener. Since no open-air sound path exists, all sound reaching the listener has 
to travel through a, more or less, muffling material. 
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Obstruction 
The sound from a sound source behind an obstructing object diffracts around the object to 
reach the listener. Wavelengths larger than the occluding object are not affected much, but in 
the case of wavelengths smaller than the object a considerable attenuation will be the result. 

Sounds that are transmitted through material structures undergo a frequency dependent 
attenuation, depending on material and thickness, and will usually have a character that may 
be simulated using low-pass filters. In the case of obstruction the reflected sound remains 
unaffected and in occlusion all sound paths are affected. 

The air in a space will of course also attenuate the sound waves, resulting in lower loudness as 
well as a reduction of the reverberation time. This attenuation varies with the humidity and 
temperature. 

Systems for synthetic spatialisation 
There exists a great number of systems for artificially creating spatialised sound. Many of 
these systems are heavily relying on hardware whilst others are software based.  

Sound synthesis languages, such as Csound3 or Music-V4, have been used by the audio 
synthesis research community for over 30 years. These techniques are useful for limited 
applications in music synthesis and sound effects processing, but they do not generalize to the 
task of creating sounds for use in more demanding applications, such as a real time augmented 
audio reality system. 

The purpose of this project is to create a lightweight and flexible spatial sound system on an 
of-the-shelf platform. This has narrowed the investigation of existing systems for synthetic 
sound spatialisation to only include three rendering systems, namely Microsoft’s 
DirectSound3D, its open standard counter part OpenAL and the EAX technology. 
DirectSound3D and OpenAL mainly provide 3D audio capabilities and EAX provides an 
interface to render the more CPU intensive effects, such as reverberation, reflections and 
occlusion, in the audio hardware. 

The Lake DSP audio rendering product, Huron, is also briefly described as it will be used in 
the coming spatial sound quality evaluation. 

Standardisation 
As the consumer PC market is flooded by products labelled 3D audio5 the Midi 
Manufacturer's Association (MMA) has formed an Interactive Audio Special Interest Group 
(IASIG). IASIG has a 3D sound Working Group who has defined a specification of 
Interactive 3D Audio Rendering Guidelines (I3DL) [11]. In 1999 the second version of these 
guide lines were formulated, I3DL2, that has set a standard for what producers should call 3D 
audio in terms of positional audio and environmental acoustic modelling. The IASIG standard 
is supported by both DirectSound3D and OpenAL. 

                                                 
3 www.csound.com 
4 The MUSIC series software went through an evolution following the development of the 
IBM computers which ended with Music-V written in FORTRAN running on the IBM 360 
machines. 
5 3D audio is from the commercial point of view pretty much the same as spatial sound. A 
clear distinction between surround, 3D and environmental effects in a sound is though usually 
lacking. 
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OpenAL 
The Open Audio Library, OpenAL6, is an effort to create an open and vendor-neutral API for 
spatialised audio. Like the two next rendering systems to be described in this thesis the 
OpenAL is a software interface to audio hardware. The interface constitutes a number of 
functions that allow the programmer to produce audio output of 3D and environmental 
arrangements of sound sources around a listener.  

The OpenAL is currently defined through The Final Draft of the OpenAL 1.0 Specification 
that was released in October 2000 and it supports the I3DL2 standard. The status of this API7 
is that there are still some crucial functionality suffering from not having full support, such as 
certain environmental effects, such as occlusion and obstruction.  

DirectSound3D 
The DirectSound3D API is a part of Microsoft DirectX8 software suite that was released in 
1996 and is a set of different multi-media API’s. In August 2000, version 8 of DirectX was 
released with an updated audio interface, DirectX Audio, which the DirectSound3D library. 
The DirectSound3D interface supports the I3DL2 guidelines as well as it is including HRTF9 
simulation. DirectSound3D is object orientated and the two most central objects are the sound 
buffer, which provide the mechanism for creating sound sources and listeners, and the 
interface that ties certain characteristics to a buffer. 

Sound buffers 
The sound buffers are used in DirectSound3D to contain a set of values in a waveform table. 
Converted into an analogue representation these values will produce sound on an audio 
system. 

There is always a primary buffer from which to feed the waveform data directly to the audio 
system through the digital-to-audio converter. The primary buffer can support multi-channel 
playback by interleaving samples for each channel within a single table. Since the primary 
buffer is the direct waveform to be output and played it represents the listener, and is often 
referred to as such. The primary buffer is therefore assigned listener settings such as position, 
orientation and velocity. 

When running an application, the primary buffer receives a mix of waveform data from other 
sound buffers, called secondary buffers. The number of secondary buffers supported is limited 
to system RAM capacity. The secondary buffers are usually seen as the sound sources and 
each holds a waveform table created by the application that may be assigned a position, 
minimum and maximum distances from the listener and so on. DirectSound3D keeps track of 
the location of the secondary sound buffers in relation to the primary buffer and alters their 
output to simulate three dimensional audio.  

Interfaces 

To provide control of the buffers the DirectSound3D uses interface objects. An application 
controls each sound buffer through the buffer’s interface by calling member functions on the 
interface. The standard interface includes functions such as volume and frequency control. In 
order to render 3D characteristics it is also necessary to tie a 3D interface to the buffer. 

It is also possible for third party vendors to define interfaces through so called property sets. 
One example of a property set, forming an interface object, is the EAX which provides an 
environmental acoustics interface to apply on top of the standard and the 3D buffer interfaces.  

                                                 
6 www.openal.org 
7 October 2001 
8 www.microsoft.com  
9 HRTF’s in DirectSound3D are vMax technology licensed from Harmon-Kardon. 



An Audio Augmented Reality System 11 
 

 

 

EAX 
The open standard EAX stands for Environmental Audio Extensions and is created by Creative 
Labs Ltd. It is a layer on top of DirectSound3D or OpenAL providing optimised hardware 
rendering of environmental effects. 

EAX includes two different property sets, one for the primary buffer and one for secondary 
buffers. The properties of the primary buffer property set control the overall aural environment 
and affect the way all sound sources are perceived in the environment. The secondary buffer 
property set control the environmental effects applied to each individual sound source. It 
controls the amount of attenuation and tonal filtering applied to the source’s direct and 
reflected sounds, which determines the amount of reverberation, obstruction and occlusion the 
listener hears for the source. See Appendix B - EAX Buffer Properties, for the property sets 
description of the EAX interface. Tweaking all these parameters separately when designing a 
sound scene can be very tedious, so Creative Labs has developed a DLL called EAXManager 
that at run-time can provide the system with predefined settings previously retrieved from an 
Environmental Audio Library (.eal) file. These files are created through a graphical editor 
called EAGLE where applied sound effects may be rendered and listened to directly. Doing 
this outside the programming environment gives an opportunity to design soundscapes more 
intuitively. 

EAXManager 
The EAXManager is a COM interface that resides in a DLL. It provides the handling and the 
processing of data settings provided through an .eal file. The application has to assign the .eal 
file to the EAXManager and may then query the EAXManager for the appropriate render 
settings of the sound objects. The application does for example query for occlusion values of a 
particular sound source given its current position. The EaxManager do not take care of 
actually setting the values, but returns the proper data for the application to set. 

EAGLE 
EAGLE (Environmental Audio Graphical Librarian Editor) is a graphical editor for creating 
and designing sound environments. EAGLE supports the EAX standard. The editor produces 
.eal files that may be interpreted by an application including the eaxman.dll. 

The EAGLE reads a number of standard geometry files such as 3D Studio Max and 
Lightwave 3D Object files. Once the geometry is imported the designer can start assign 
different areas with acoustic effects. Sound sources may be placed and assigned whatever 
properties necessary. Partitions between different acoustical environments, such as a door 
opening, can be given occlusion parameters and objects may be assigned obstruction values. 
Figure 4 is an example of what the EAGLE design environment looks like. 
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Figure 6 Example of an EAGLE design environment. 

Huron 

The HURON workstation, manufactured by the Australian company Lake DSP10, is a high 
quality, and very expensive spatial audio rendering machine. By using twelve DSP’s the 
system is capable of mapping up to twenty audio streams in real time using up to ten 
loudspeakers at 48 kHz sampling rate and 18 bits resolution. Headsets can also be used as the 
workstation provides filters for calculating HRTF.  

Reverberation and other environmental effects for the acoustical behaviour of rooms can be 
applied to the audio. Software support is provided via an application framework, providing a 
Windows NT-based user interface to the DSP hardware and the firmware system. 

                                                 
10 www.lakedsp.com 
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Spatial audio reproduction schemes 
Spatial audio reproduction schemes can be divided into three different categories [12], namely 
biaural (headphones), crosstalk-cancelled binaural (two loudspeakers) and multi-channel 
reproduction (several loudspeakers). 

Binaural 
It is straightforward to deliver the appropriate sound fields to each ear with the use of 
headphones. No consideration of the environment of the playback is needed and head tracking 
can be integrated with the headphones allowing effective HRTF rendering. Headphone 
reproduction also allows great mobility for the user, since they could be wireless. 

A major drawback of this technique is that headphones generally do not allow real-world 
sounds to enter the ears, which may be an important feature in an augmented reality. A lot of 
people also experience fatigue from long time listening while wearing headphones. Attempts 
with shoulder mounted speakers, enabling spatial reproduction in the same way as with 
headphones but without suffering from the previously mentioned caveats, have been tested in 
an audio augmented reality system called Nomadic Radio [13], see Chapter 3. At an initial 
phase of this project some attempts of using shoulder-mounted speakers was made. Figure 5 
shows testing of a system manufactured by Sennheiser. 

 

 

Figure 7 Shoulder mounted speakers. 
 

The poor sound quality of this model, as well as the lack of other models, led me to abandon 
further investigation of shoulder mounted speakers. 

Crosstalk cancelled binaural 
Today there is a large number of desktop computers with two loudspeakers mounted on either 
side of the monitor. This has motivated the development of binaural sound reproduction using 
two loudspeakers placed in front of a listener. In doing this, it is necessary to eliminate the 
crosstalk [14] that arises due to the sound each loudspeaker sends out to the ipsilateral ear. In 
Figure 6, the crosstalk paths are labelled ALR and ARL. The crosstalk severely degrades 
localization performance. 
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Figure 8 Crosstalk terms ALR and ARL needs to be cancelled out in order to achieve spatial 
sound. 

Considering this cross-talk factor and cancelling it with appropriate filters is called cross-talk 
cancellation. To be effic ient, this reproduction system also must incorporate head-tracking or 
the best listening area, called the sweet spot, will be very small. It should further more take 
account of reflections from nearby surfaces in the playback environment, such as the desk the 
computer is placed on.  

Multi-channel 

The most common multi-channel spatial sound reproduction techniques applied today are 
typically based on amplitude panning [15]. This means that the same sound signal is applied to 
a number of loudspeakers equidistant from the listener, each speaker reproducing the sound 
with appropriate amplitude to spatialise the sound. The most common systems, based on 
amplitude panning, used [9] are Ambisonics and Vector Base Amplitude Panning (VBAP).  

Ambisonics 

Ambisonics is an amplitude panning method in which a sound signal is applied to all 
loudspeakers placed evenly around a listener. The feature that a sound emanates through all 
speakers is, simply speaking, what spatialises the sound. As a 3D loudspeaker set up, 
Ambisonics is typically applied as eight speakers in a cubical arrangement or as twelve 
loudspeakers as two hexagons on top of each other.  

VBAP 

The vector base amplitude panning (VBAP) is an amplitude panning method developed by 
Pullki [15]. The VBAP can be used with any number of loudspeakers in any position to 
simulate 3D virtual sound source positions. 
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3.0 Related work 
A common concept of audio augmented information systems is the audio guide services 
currently offered by almost all big museums around the world. These systems offer a random 
access library of stored information that you retrieve by either entering a specific code on a 
portable device, such as a CD-player, or through positioning yourself in zones were infrared-
based techniques play loops of the information around the exhibit. Drawbacks with this kind 
of systems is either the inconvenience of carrying around a playback system or having a 
system were the timing of the audio clips not are individually controllable. 

Providing more sophisticated auditory cues based on a person’s position and actions have 
been explored in several previous projects. An early prototype of an audio augmented reality 
tour guide, with the capability to provide individualized information and triggered by the users 
position was imp lemented by Benderson [16]. In this system you still had to carry around the 
audio source. A processor was added to the playback device and controlled the playing of the 
audio clips depending on the user location, which was delivered through an infrared tracing 
system.  

This concept was developed further by the Guided by Voices [17] system who also used a 
simple wearable computer and a radio frequency based location technique and then play 
different digital sounds, narrations, sound effects or ambient sounds, corresponding to the 
user’s location. They also added a state to each user that could be manipulated through 
actions. One notable conclusion from this system, which was implemented as a medieval 
fantasy world role-play, was the importance of utilizing different layers of sound , such as 
narrations, sound effects and ambient sounds in creating a non-trivial immersive audio 
augmented reality.  

A third approach of a augmented reality audio system, called Hear & There [18], was 
developed by the Social Media Group at the MIT Media Lab. In this system, users create the 
content of the augmented audio space by recording their own sounds and then embed them at 
a particular location. All users traversing the designated location can then hear these audio 
imprints. The hardware in this system, headphones with a digital compass, a laptop, a palm 
pilot, a GPS receiver, a battery and a microphone is rather bulky and has to be placed on a 
luggage cart in order to allow mobility. The digital compass together with the GPS allows the 
head position of the user to be known and thereby the reproduced sound to be spatialised. One 
of the main explorations of this ongoing project is the feasibility of navigation in an 
augmented audio environment. 

Two more extensive as well as better documented projects involving audio augmented 
environments are Audio Aura [19] and Nomadic Radio [13]. 

Audio Aura 
The Audio Aura project explores augmented audio tied to people’s physical actions in office 
environments. The primary goal of the system is to provide useful serendipitous information, 
that is information not actively asked for, via different ambient soundscapes. The audio, 
primarily non-speech, creates a non-distracting peripheral display with a low perception cost. 
Since information needs and interface preferences do vary a lot between users, emphasis was 
put on creating an easily configurable system for the end users. 

The Audio Aura system is implemented using active badges, a server and wireless 
headphones. An active badge is a small electronic badge, to be worn by a person, that emits a 
unique infrared signal. Sensors distributed in a building pick up the signal and this position 
information, combined with other sources of information such as emails in the users inbox and 
personal agendas, triggers the system server to provide the auditory cues to be sent to the user 
via the wireless headphones. 
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Three different sample scenarios, in which to provide and test the serendipitous information 
ideas, guided the design and development of Audio Aura.  

• Email notification through audio cues. When for example entering the bistro in between 
meetings you will hear a cue conveying approximately how many new email messages 
you have and indicating messages from particular persons and groups. 

• When people drop by other people’s offices finding no one there, the Audio Aura 
provides cues on whether the person has been in that day, been gone for some time or if 
the person was just missed. The system does not deliver information like “Mr. K has been 
gone for 45 minutes” but tries to, via auditory cues, provide an augmentation of the empty 
rooms status: is the light on, is there a briefcase by the table, audio footprints and so on. 

• Since many people are not co-located with their collaborators the last scenario envisioned 
tries to create a “group pulse”. Whether people are working that day, on what they are 
working and if some are working on the same thing, maybe even in a face to face 
situation, are things that trigger changes in the systems audio cues. 

The Audio Aura system explores three different types of sound; speech, musical and sound 
effects. Within these different sound domains sonic ecologies were created. For example, one 
sound effect design mapped particular sets of functionalities to various beach sounds. The 
amount of email was mapped to seagull cries, email from particular persons or groups were 
mapped to various beach birds and seal cries, group activity was represented as surf, the wave 
volume and the wave activity, and audio footprints are mapped to the number of buoy bells. 

No complete evaluation from this project exists at the moment. One conclusion from initial 
user reactions of the Audio Aura system, when trying out the sound effects of the above 
described sonic ecology, is that some users found the meaning of the sounds hard to 
remember. 

Nomadic Radio 
Nomadic Radio is a message application utilising spatialised audio, speech synthesis, speech 
recognition and location awareness, developed by the Speech Interface Group at MIT Media 
Lab. The user can choose one or more message categories, such as email, news or personal 
calendar, and the messages are then, in order to enable the listener to better segregate the 
multiple information sources, presented simultaneously as spatialised audio streams. A speech 
recognition module provides means for navigation of the system. 

In Nomadic Radio the clients run on a wearable computer that provides the real-time 
spatialisation of the sound as well as the speech recognition interface. A remote server deals 
with the filtering and the prioritisation of the incoming messages and includes an audio 
classifier that detects whether the user is speaking to the system or is engaged in another 
conversation. The system then dynamically adjusts the level of notification for incoming 
messages. To provide as unobtrusive interface as possible the audio reproduction platform 
used is a system called SoundBeam Neckset , developed by Nortel11. It is worn around the neck 
and consist of two directional speakers placed on the user’s shoulders and a microphone over 
the chest. A button on the SoundBeam Neckset activates or deactivates the speech recognition. 

The system has primarily been used to explore and evaluate different schemes for Audio User 
Interfaces (AUI) in nomadic situations. Topics such as contextual recognition, peripheral 
awareness and spatial listening have been examined thoroughly. 

                                                 
11 www.nortelnetworks.com 
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Some of the experiences learnt in the Nomadic Radio project were: 

• Acquiring a particular service from the application is not easily done since quite 
many different commands must be recalled by the user for an efficient utilisation of 
the system. Hence the interaction with the system must be designed in a truly 
intuitive way allowing the user to gradually become familiar with the syntax.  

• Hearing synthetic speech can be tedious due to its sequential and transient nature. 

• A particular problem of the Nomadic Radio system, since it produces the output 
audio on loud speakers, is that other persons can take part of the messages. The 
contextual awareness of the system is therefore of utter importance. 

• One major conclusion drawn from user evaluation was that ambient audio provided 
the most benefit while requiring least cognitive effort. The users in these particular 
test also wished to hear ambient audio at all times in order to remain reassured that 
the system was operational and on. 

Summary of related work 
From my investigation on previous work on audio augmented realities I conclude that 
surprisingly few attempts has been done in using sound interfaces in AR environments. Trying 
to bring user friendly interfaces into situations where the visual perception should be 
undisturbed seems rather unexplored.  

One conclusion to be drawn from the above implementations is that the sound design, what 
sounds to play and when to play them, in an audio environment is crucial. This might seem 
obvious but the importance of not underestimating the complexity in creating natural and 
intuitive soundscapes must not be neglected. None of the systems covered use sophisticated 
spatial rendering of the audio. I believe that with more accurate rendering of the sound more 
information may be put into it, which could enable more refined interfaces to be created.  
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4.0 AAR system 
The system design overview of the Audio Augmented Reality (AAR) system gives a 
conceptual presentation of the different parts, and how they interact. The implementation part 
of this chapter describes some more technical aspects of the system and the evaluation gives a 
hint on its strengths and weaknesses. 

The design of the system is built on the DirectSound3D and the EAX API’s, to render the 3D 
audio and the environmental acoustics. The three corner stones of the system are the listener, 
the emitter and their environment. The ability to easily create and manipulate these entities is 
provided through an interface to the EAGLE software. 

Overview  
As a listener moves around freely in a space, different locations, such as physical rooms or 
parts of rooms, provide boundaries between different acoustic landscapes. In changing 
location the listener experiences a morphing between acoustic sceneries. Different audio 
objects, emitters, are placed within these environments and can be made to interact with the 
listener based on his location.  

The listener hears the audio played through headphones. As he moves, a tracker, mounted on 
the headphones, registers head position and the system renders the audio appropriately. In 
other words, as the user moves around and turn the head the audio objects will always appear 
as coming from wherever the designer of the scene has chosen. As he moves around, the 
acoustical environment may change as he passes predefined borders, or according to actions 
taken. 

 

 

Figure 9 The author poses, wearing the AAR system head set. 
 

Figure 7 shows the AAR system head set. The head set is made up of a pair of head phones 
and a tracking device. 
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Client/server 
The networking is based on a straightforward client-server model. One or more clients connect 
to a server. The server makes sure the appropriate audio is rendered and synchronised. 

The client creates emitters, one listener and the acoustical environment. These objects are 
registered with the server. The client continuously provides positional data of the listener’s 
whereabouts to the server. The emitter might as well move depending on what the 
programmer has chosen. Finally the acoustics connected with the listeners location may be 
altered in runtime or predefined in a .eal file. 

The server, using its different libraries, renders the audio according to the wishes of the 
clients. The rendering is performed in real time according to the positional data of the listener 
and the emitters. 

Listener  

There is one listener per client. A position tracking system delivers real time values of the 
listener position in X, Y and Z co-ordinates and, optionally, of his head orientation. The 
orientation is defined by the relationship between two vectors, both with origin at the centre of 
the listener’s head. The first vector points forward through the listener’s face and the second 
point’s straight up through the top of the head at right angle to the forward vector. 

Emitter 

The emitter is a sound source. The system resources limit the number of emitters in a session. 
The DirectSound3D provides an emitter model with minimum and maximum distance values 
in relation to the listener. 

• Emitter minimum distance. As a listener gets closer to a sound source the sound gets 
louder. Past a certain point, however, it is not reasonable for the volume to increase. This 
is the emitter’s minimum distance.  

• Emitter maximum distance is the distance beyond which the sound does not get any 
quieter. This can also be used to prevent a sound from becoming inaudible as a listener 
moves away from it.  

By default, distance values are expressed in meters. The emitters may, through unique group 
ID’s be synchronised and manipulated as a group.  

Emitters also have an orientation. The model that is supported in the AAR system, provided 
through the DirectSound3D library, is called sound cones. It describes the loudness of the 
orientated sound and is made up of an inner cone and an outer cone with differences in 
attenuation.  

Within the inner cone the volume of the sound is just what the designer has set it to in 
accordance with the above described distance model. At any angle outside the outer cone the 
volume is attenuated by a factor set by the AAR application. Between the inner and outer 
cones is a zone of transition, from the inside volume to the outside volume, where the volume 
increases as the angle decreases, see Figure 8.  
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Figure 10 Sound cones defining a sounds orientation. 
 

The default value is set to 360° for both the inner and the outer cones, creating omni 
directionality. 

Acoustical environment 
In addition to the 3D positional information regarding the listener and the emitters, the system 
also add environmental audio effects to the rendered sounds. Different areas in space may be 
assigned different environmental acoustics. The included obstruction effect allows emitters to 
be put behind objects, physical or virtual, in an application. The occlusion effect provides the 
possibility to put emitters in an adjacent room or outside a window.  

Figure 9 illustrates a schematic overview of the AAR system. 

 

 

Figure 11 Schematic overview if the AAR system. 
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Implementation 
The intention with this description of the AAR system implementation is that it should be 
fairly straightforward to re-implement a similar system with the same structure and the same 
functionality. The code is written in C++ using Microsoft Visual Studio version 6.0. The 
system is implemented based on an existing framework for spatial audio transmission over 
TCP/IP and UDP/IP, called the Spatial Audio Server (SAS), developed at Fraunhofer IGD in 
1997. 

System hardware  
The AAR system is implemented on a Microsoft Windows based standard PC equipped with a 
Pentium III processor. For the audio playback a pair of Sennheiser HD565 headphones was 
used. 

A sound card that supports the EAX 2.0 standard is required in order to use the environmental 
capabilities of the implementation. In my set up an ordinary SoundBlaster Audigy was used. 

A Polhemus FasTrack12 collects the positional data, where the sensor is mounted on the 
headphones. The FasTrack positioning device allow the simultaneous tracking of both head 
position and orientation and promises a less than 1 mm range accuracy over the X, Y and Z 
axis, and 0.15° angular resolution of the orientation. The trackable space is a hemisphere of up 
to 3 meters. A DSP provides an update rate at 120 Hz with a 4 ms latency. The data is 
transmitted via a serial interface. 

The tracker uses electromagnetic induction and is very sensitive to metal objects in the tracked 
environment. If there are lots of metal cabinets, desks and computers around the active area, 
the tracker will not function properly. 

Hardware limitations 
The implementation suffers from some hardware and system constrains. In order to be able to 
render 3D position and environmental effects on the audio in real time I rely on the 
DirectSound3D and the soundcard to output this. In the DirectSound3D system there is only 
one primary buffer containing the waveform data to be fed directly to the sound card. This 
means that I can only render the audio for one client at a particular given point in time.  

The FasTrack might not be considered an inexpensive “of the shelf product”. I use this device 
nevertheless since including the calculation of HRTF’s, where head position is crucial, is 
essential when using a biaural reproduction of the audio. Providing positional data could 
probably be done in other, less expensive ways, in future implementations, such as using a 
digital compass.  

                                                 
12 www.polhemus.com 
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Client 
The client is implemented as an API and resides in a DLL. This library provides all different 
network and audio related commands the client can use, see Appendix A - Client.dll.  

To start a session the Clientconnect command registers with a particular host submitting 
port number and a user name. initialize_audio initialises the Directsound3D and the 
EAX sound libraries as well as the listener object. The command create_Cached_emitter 
registers sound sources, typically a .WAV file, which later may be controlled through a 
variety of commands such as play, pause, synchronis e, position etc. If using an .eal file, 
through the AARloadEAL_file command, the previous command is redundant since all that 
logic is included together with all the environmental acoustics variables via the eaxman.dll 
(see Chapter 2, EAX). If not running a previously designed .eal file, the client API also allows 
setting all emitter and environmental parameters separately through commands such as 
reverbationSetAllParameters and setEAXEmitterProperties.  

The data for the positions is acquired via a serial interface to the Polhemus FasTrack. A thread 
is running in order to catch positional updates from the tracking device and execute the 
AARset_listener_position and AARset_listener_orientation commands as the 
user moves around in the created sound environment  

Network protocol 

The network protocol runs over TCP/IP. Support for UDP/IP exists, but the AAR system is 
currently not implemented in a manner to use it. 

The two different data packages used in the AAR system are an initialisation package and a 
data pack age. The initialisation package is shown in Table 1. The two possible types of the 
initialisation package are shown in Table 2. The second package, the data package, is  shown 
in Table 3. 

 

Field name Field length Description 

Type 4 bytes Value identifying the package 
type.  

Port char[PORTSIZE_MAX] The server uses this field to 
return the port number used 
for the data connection to the 
client. 

Username char[STRINGLENGTH_MAX] The name of the client's user. 

Hostname char[STRINGLENGTH_MAX] The client's hostname. 

IP address char[STRINGLENGTH_MAX] The client's IP address. 

Table 1 Initialisation package. 
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Type Value Description 
INI_CONTACT 0 Used by the client to 

request a data 
connection with the 
server. 

INI_ANSWER 1 Used by the server to 
tell a client that the 
requested data 
connection has been 
established. 

Table 2 The different types of the initialisation package. 

 
 

Field 
name 

Field length Description 

Length 4 bytes Length of the 
whole package. 

Command 4 bytes  Command 
Data Char[DATASIZE_MAX] Data belonging to 

the command. 

Table 3 The data package. 
 

The command field definitions are corresponding to the different client functions calls and are 
presented in Appendix A - Network Commands. 
 

Server 
There are four main classes; the server class, the sound interface class, the listener class and 
the emitter class. Apart from these main classes are there a number of classes and functions, 
within the server implementation or in different libraries, providing the server with error 
handling, networking and audio buffer synchronisation among other things. 

The tool used for implementation was the Microsoft Visual Studio C++.  The only Microsoft 
specific features used in the implementation are as listed below. 

• The Microsoft Foundation Classes (MFC) - for a small Graphical User Interface (GUI).  

• A CWinApp object - as an entry point when running the server. 

• The DirectSound3D API - for rendering parts of the audio.  

In other words, if deciding to implement the server on a Linux platform the code is very much 
reusable if OpenAL is used instead of DirectSound3D. 
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Server class 
The server class is initialised through a standard CWinApp object with a pointer to a sound 
interface, created by the CWinApp object, and a port number as construction parameters. The 
constructor of the server then sets up and initialises the socket communication.  

The server class implements all client administration and control. When a client connects to 
the server the handleEvent method creates a new client object and calls addClient, 
which then registers the client to the server. Further, a number of client administrative 
commands exist such as clientCount and deleteClient. The server receives and 
unwraps the data packets coming from the clients in the reciveTcpData method and parses 
the first two fields (see Table 2). The command field value decides which of the methods the 
reciveTcpData should call.  

The server implements all methods necessary to respond to the client commands, examples of 
these are audioInit, createEmitter and listenerPosition, see Appendix A - 
server.h. These methods parse the data field of the data packet, extracting the particular 
information needed to call the sound interface objects corresponding method. In the 
createEmitter method the server also adds on a session unique emitter id tag. 

Sound interface class 

The sound interface class implements all initialisation and control of the environmental 
effects, the emitters and the listener. Its methods are called from the server class and it handles 
most of the API calls to DirectSound3D and the EAX API. The AAR system sound interface 
must not be mistaken for the DirectSound3D interface objects that are tied to the different 
buffers by the listener and emitter classes, see below. 

In initializeAudio the DirectSound3D interface object, the primary buffer and the listener 
object are created and initialised. The EaxManager interface is also set up. As seen in 
Appendix A - soundInterface.h, all the audio related methods that are represented in the server 
class also are available in the sound interface class. 

Listener class 

The listener class constructor takes, among others, a primary buffer as in parameter. It 
initialises the primary buffer and assigns it the necessary Directsound3D and EAX interface 
objects. In setEAXManListenerEnvironment it is possible to register the listener with the 
EAXManager. setEAXManListener should then be called for positional updates, not the 
setPosition method. For the full definition of the listener class see Appendix A - listener.h. 

Emitter class 
When creating an emitter object the emitter class dynamically allocates a new secondary 
sound buffer through the DirectSound3D API. It fills the buffer with the assigned sound data 
as well as creates the 3D-buffer and the EAX interface objects. Cone angles, cone orientation, 
max/min distances are set to default values. setOrientation and setEAXProperties, see 
Appendix A - emitter.h, are some of the available methods applicable to the emitter. If running 
an .eal file, the sourceEAXman should be used instead of setPosition. 
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AAR system evaluation 
In evaluating the implementation of the AAR system I will consider some general application 
level performance issues and spatial sound quality.  

My evaluation is limited to running one client at a time as the system setup needs one audio 
hardware unit per client. The audio rendering of the AAR system depends largely on the 
underlying implementation of the DirectSound3D and since Microsoft does not use an open 
source principle I am not allowed to analyse it on a level more close to the driver. My system 
evaluation therefore only concerns some general aspects on the application level. 

The spatial quality of reproduced sound is evaluated through listener tests. A structured and 
formalised methodology of the evaluation of spatialised sound is yet to be formulated but 
attempts has been made [20]. Pulkki [15] suggests attributes such as envelopment, naturalness, 
sense of space, directional quality and timbre to be included in a spatial sound quality 
evaluation.  

Since conducting listener tests are rather time-consuming several attempts have also been 
made to create objective tests of spatial sound quality [21]. No such evaluation was made in 
this project due to the lack of high quality measurement instruments, which are required in 
these tests. 

General system performance evaluation 

In terms of CPU effort the system at run time consumes moderate amounts of resources, up to 
playing about eight sound sources at the same time. Above eight emitters my application do 
affect performance of the system with mainly clicks and other missounds as result. With a 
more powerful CPU or maybe a more optimised audio driver the number of emitters playing 
simultaneously would increase. The environmental effects put on a sound do not affect the 
performance in any notable way. The run time mapping of the environmental affects from the 
.eal file runs with no apparent effect on system resources no matter what size of the designed 
environments. 

The tracking device turned out to cause some problems. The FasTrack’s positional data was at 
times totally out of range for up to half a second. This caused the server to produce sounds 
positioned in the wrong place, with a confusing effect for the listener as a result. This problem 
could be caused of malfunctioning hardware or because I didn’t manage to provide a good 
enough surrounding, free from interfering metal object. The symptom continued even after my 
effort to clean the lab of potential disturbances, which together with the fact that the fault did 
not occur too often led me to give up further action in order to fix this bug. One possible 
solution would otherwise have been to interpolate the positional data series to smoothen 
sudden, and incorrect, changes out. 

Spatial sound evaluation 

This evaluation is conducted through listener tests set up to investigate the AAR system 
spatial sound quality. This is done through a comparison of the spatial sound of the AAR 
system and a Huron system. The task the test subjects underwent is to listen to different 
recordings and then scale certain aspects of its spatial qualities. The Huron machine will here 
be considered as a reference system providing good quality spatialised audio. 

Experience from similar tests [22] has shown that the number of test variables per task should 
be kept at a minimum. I decided to limit my test variables to naturalness, externalisation and 
directional quality, focusing on the first two. The directional capacity of the system is to be 
further explored in the implemented applications. The aim was to keep the tests variables as 
easily distinguishable from each other and as straightforward as possible in order to avoid any 
potential misunderstandings by the test subjects. 
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Method 
Twelve unpaid test subjects were asked to listen to seven differently generated sounds. They 
where asked to determine whether the sound localisation appeared to be inside or outside the 
head, which is called externalisation. The authenticity of the acoustic environment, also called 
its naturalness, was investigated through a question if the sounds seemed very natural, 
natural , synthetic or very synthetic. Together with both of these questions came the option of 
being able not to decide. The questions were presented on a paper in a multiple -choice 
fashion, see Figure 10. The subjects had the opportunity to listen to every sound as many 
times as they needed. Further the perceived sound direction was also asked for as the subjects 
had to mark the sound direction in a X-Y coordinate plane. 

 

The sound localization appears to be: 
 

Inside Head Outside Head Can’t Tell 
 
 
The acoustic environment seems: 
 

Very Natural Natural Can’t Decide Synthetic Very Synthetic 
 

                          Y 

                   

 

 

 

 

                                      X 

 

 

 

 

 

Figure 12 Multiple-choice questions and the 2D plane in which to mark sound direction. 

 
Four different recorded anechoic sounds where rendered either with the AAR system, or by 
the Huron machine, in three different acoustical environments and with the sound emerging 
from three different locations. The three different acoustical sets were a very small room 
(small cellar), large sized room (large living room) and a huge room (larger hall).  
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The positional test I wanted to implement was at first also going to test for sound sources in 
three dimensions, but from performing the test myself a couple of times I decided to exclude 
these. There were already many parameters to ask for in the test and since head movement is 
essential in more precise localisation of a sound I would have to use the tracking device for the 
tests. This I wanted to avoid since the test was designed to be performed sitting in front of a 
computer and the closeness to the monitor could interfere with the electromagnetic 
components of the FasTrack tracking device. The 3D directional capabilities of the system 
were evaluated later in the implemented applications. 

The three acoustical environments were rendered using the two different systems but with 
different recordings. In the different environments the sound sources where placed according 
to the following: 

Small Room – 2 meters 

Large Room – 20 meters 

Huge Room – 40 meters 

The recordings where a snare drum, a man reading a text, a flute playing and a violin playing. 
Not having too similar sounds was the only thought behind choosing these particular 
recordings. I randomly rendered the sounds in the different milieus. The positions of the sound 
sources were chosen differently in order to be able to perform the directivity test on the same 
sound samples. 

The mapping of the different recordings to a numbered test is described below, with the angle 
being the azimuth of the sound: 

Test 1 = AAR Small Room (SR), 0°   

Test 2 = Huron Small Room (SR), 0°   

Test 3 = Huron Large Room (LR), 45°  

Test 4 = AAR Hall (H), -135°  

Test 5 = Test 1 

Test 6 = Huron Hall (H), -135°  

Test 7 = AAR Large Room (LR), 45°  

The order in which the tests were presented was given no significance. As seen, Test 1 and 
Test 5 are used as a pseudo pair to give a hint of the test subject’s reliability and of possible 
bias. Before each subject started performing the tests I carefully confirmed that the task was 
properly understood. 
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Result 
Table 4shows the results from the test regarding the naturalness of the acoustic environment. 

 

  Small Room Large Room Hall  Pseudo Pair 

 AAR SR Huron SR AAR LR Huron LR AAR HR Huron HR AAR SR 1 AAR SR 2 

Subject 1 1 0 -1 2 0 -2 1 1 

Subject 2 -1 1 1 -1 -1 1 -1 -2 

Subject 3 1 2 2 1 1 1 1 -1 

Subject 4 1 1 -1 -1 -1 -2 1 1 

Subject 5 1 0 1 -2 0 -2 1 0 

Subject 6 -2 -2 1 1 -2 1 -2 2 

Subject 7 -1 -1 -2 -1 1 -1 -1 1 

Subject 8 1 2 2 2 -1 1 1 2 

Subject 9 2 1 2 1 -1 1 2 1 

Subject 10 1 1 1 -1 -1 -1 1 -1 

Subject 11 1 1 -1 -2 1 1 1 2 

Subject 12 -1 1 2 -1 -1 -2 -1 -1 

SUM 4 7 7 -2 -5 -4 4 5 

Table 4 Naturalness of the acoustic environment. 
 

In the test of the naturalness of the sound I asked the subjects to judge whether they thought the 
acoustic environment seemed Very Natural, Natural, Synthetic or Very Synthetic. The option 
Can’t Decide was also avalible. In Table 4 the responses are mapped according to the following 
scheme: 

Very Natural = 2 

Natural = 1 

Can’t Decide = 0 

Synthetic = -1 

Very Synthetic = -2 

As seen in table 4 the small room comparison adds up to +7 for the Huron machine and +4 for the 
AAR system. The response range is going over the full spectra, from –2 (Very Synthetic) to +2 
(Very Natural). It seems the Huron machine produced more natural sounding acoustics in the 
small room simulation, but since the answers given are so spread out the result seem rather 
questionable. The large room simulation produced some perculiar results. The Huron sum is –2 
while the AAR system scores a +7. Again the answers range from –2 to +2. The hall simulation 
shows some not very flattering values for both of the systems. –5 for the AAR and –4 for the 
Huron. Not a single +2 was given to either system that indicates all test subjects perceived some 
quite non-natural acoustics in this test. The final comparison is the pseudo pair which turned out 
with rather similar sums, namely +4 and +5. Looking at the response ranges we see that they also 
go from –2 to +2, even though the majority of the answers lies on +1. 
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The externalisation test results are shown in Table 5. 

 

  Small Room Large Room Hall Pseudo Pair 

  AAR SR Huron SR AAR LR Huron LR AAR LR Huron LR AAR SR 1 AAR SR 2 

Subject 1 1 -1 1 -1 -1 -1 1 1 

Subject 2 1 1 1 1 1 -1 1 -1 

Subject 3 -1 -1 1 1 -1 1 -1 0 

Subject 4 1 1 -1 1 1 -1 1 -1 

Subject 5 0 1 1 -1 1 0 0 1 

Subject 6 1 0 -1 -1 -1 -1 1 -1 

Subject 7 1 -1 1 -1 1 1 1 1 

Subject 8 -1 0 1 -1 0 1 -1 1 

Subject 9 0 -1 0 1 -1 1 0 -1 

Subject 10 -1 1 -1 -1 1 -1 -1 -1 

Subject 11 1 1 -1 1 -1 -1 1 -1 

Subject 12 0 1 0 1 1 1 0 1 

SUM 3 2 2 0 1 -1 3 -1 

Table 5 Externalisation test results. 
 

The externalisation test question asked the subject to decide whether a sound localisation 
appeared to be Inside Head or Outside Head. Again the option Can’t Tell was given. All the 
sounds were as, previously told, simulated to be outside the head at different distances for the 
different environmental simulations. The responses map to the table values according to the 
following: 

Inside Head = 1 

Outside Head = -1 

Can’t Tell = 0 

Looking at table 5, the small room simulation adds up to +3 for the AAR system and to +2 for 
the Huron system. We can see that there is just a small favour for the Outside Head  option for 
both the systems. In the large room case we also see a small tendency against the outside head 
option for the AAR system while the Huron produced an answer sum of 0. The hall 
simulation, which in the naturalness test was perceived as rather poor acoustics in both 
systems, proved to be perceived as Inside Head by, almost, an average of 50% of the test 
subjects in both tests. Finally the pseudo test shows that this test reliability might be 
questioned. Only 2 subjects responded with the same answer at this dummy test. 
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Testing the directivity was not the primary goal of this  test. Adding reverb and other effect do 
affect the ability to determine a sound source direction. In a large room the sound source can 
be quite tricky to narrow down to an exact direction and this shows in the test results. Again, 
concerning the directivity and 3D qualities of the system the implemented application 
(Chapter 5), including the head tracking capabilities of the system, should be a better 
indicator. The results of the directivity test is shown in Table 6. 

 

  Small Room Large Room Hall Pseudo Pair 

  AAR SR Huron SR AAR LR Huron LR AAR HR Huron HR AAR SR AAR SR 

Subject 1 25 -25 125 25 180 0 25 -35 

Subject 2 0 0 55 45 -90 180 0 0 

Subject 3 0 45 45 0 -45 -90 0 45 

Subject 4 135 -90 35 0 -135 -90 135 55 

Subject 5 0 0 0 90 0 No Answer 0 0 

Subject 6  45 0 0 0 0 -90 45 70 

Subject 7 25 -45 35 No Answer 50 0 125 0 

Subject 8 0 0 90 0 No Answer 45 0 -45 

Subject 9 0 160 0 90 180 0 0 0 

Subject 10 35 0 45 20 0 180 35 -35 

Subject 11 0 0 0 90 -70 No Answer 0 0 

Subject 12 -45 0 180 0 0 No Answer -45 0 

Correct value 0 25 35 65 -135 135 0 0 

Table 6 Directivity test. 
 

From the test results in Table 6 we see that the range of answers are sometimes widely spread. 
My estimations of the graphical responses from the test subjects are quite rough. For me the 
interest lies in what quadrant they perceive that the sound is coming from.  

The small room simulation shows that only test subject 4 deviated from the correct quadrant. 
It was obviously quite easy for most to tell the right direction of the sound in a small room 
simulation on both systems. For the large room version the response values still are rather 
good, nearly all test subjects are placing the sound direction in the right quadrant even though 
the spread is a bit larger than for the small room simulation. The large room simulation 
produced responses ranging over the whole azimuth. This was, as previously mentioned, 
anticipated. The pseudo pair test shows that almost every test subjects are consistent in 
determining the right quadrant of the sound source direction.  

Conclusion of the evaluation 
The spatial sound quality test that I have performed leaves a lot to refine and evaluate closer. 
One might question whether any significant conclusions may be drawn since almost all tests 
show such a high variance. My objective was to get a hint on whether my AAR system, based 
on relatively inexpensive hardware, could stand a chance against a more sophisticated system 
such as the Huron. The conclusion is that it does. When it comes to real time rendering of 
complex acoustical environments the Huron is of course outstanding, but for less complicated 
environments my system clearly stand a chance of producing quality acoustical effects and 
positional sounds. 
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For the test I would like to point out some of the major weaknesses that I have recognised. 
First of all I experienced some problems in communicating the questions to some of the test 
subjects. The Inside/Outside Head question for example raised discussions on precisely what I 
was asking for. Maybe a small education on different sounds, such as just pointing out the 
sensational difference between a stereo and mono recording, would have helped. 

Another problem might have been the fact that different sounds where played on the AAR and 
the Huron in the same simulations. For example, the violins higher frequency range compared 
to a man reading a text might affect the rendered simulation in an undesirable way through 
emphasising the early reverb parts of the acoustical effect. 

A third possible flaw is the existence of “bad” listeners. Subjects should maybe first have been 
evaluated by a preliminary subjective test for checking their capability to give valid spatial 
sound responses to very evident modifications of the sound field. According a study performed 
by Farina and Ugolotti [23] only about 1/3 of their test subjects passed such a test, and was 
found suitable in a spatial audio quality test. When conducting such a preliminary selection 
test it was also revealed that there were a certain number of subjects who gave inconsistent 
responses and if included in any test, their “random” responses could degrade the overall 
confidence of the data. 
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5.0 Applications 
After implementing and briefly evaluating the AAR system, see Chapter 4, my aim was to set 
up a couple of augmented audio reality applications in order to further test my system as well 
as try to explore some of the potential of audio only AR. The first two applications were 
developed to further evaluate the 3D audio capacity of the system. The third application is an 
attempt to construct a typical museum situation. A user is approaching a piece of art and will 
be presented with cues and stories that interact with the beholders movements and head 
orientation. The audio Pac Man application was unfortunately not implemented due to the 
limited range of the tracking device, but is worth mentioning since the concept is inspiring. In 
evaluating these applications I did not conduct any formal tests. This was due to limited time. 
I did however test them on a number of person, giving me a pretty good idea of how well they 
worked and what could be improved. 

Clock 
The first application is rather trivial. I created an application that tells the time through a 3D 
audio interface. The user actively asks for the time, in this case by typing time in a command 
shell. Upon this command a 3 second “Tick, tack” sound moves clockwise in the azimuth, 
from approximately 2 hours back, to the position of the current time. Another second “coo-
cuu” sound tells the time by being played at the appropriate position. 12 o’clock is right in 
front of the listener. 

With some training I could tell the time with the accuracy on the hour. 

Game- “Draw the sound” 
The idea behind this application is simply to follow the sound you hear on a sheet of paper or 
on a white board in front. This application was designed to test the 3D properties of the AAR 
system. The sound the user should follow is either a short “beep” played with a frequency of 
once every other second or the same “beep” played continuously. 

Evaluating this application I soon realised that trying to draw a sound was rather tricky. The 
first try usually was very confusing for the test subject. Either to slow or to fast speed of the 
sound was a common complaint. I tried tree different drawings; a circle, a horisontal line and a 
diagonal line. After trying a couple of times with some subjects I could conclude that this 
application did not turn out very well. My system did not perform, for some of the subjects, 
much better than a stereo encoding would have. One subject got a chance to train with me 
drawing the different paths and then try to tell which was which. This turned out to be more 
successful. I leave any deeper interpretations of this test open since I believe the lack of data 
together with the lack of a formulated strategy in how to perform the test would make it rather 
speculative.   
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Virtual museum narrator 
This scenario implements a narrator or guide. Imaging a museum where you walk around and 
stop in front of a piece of art. A virtual guide not just tells you facts about the piece, but can 
actually also interact with it. It might ruin your experience or it might just be the difference to 
make a mediocre painting worth seeing. The narrator can move around within the picture, he 
can move around the picture or just tell the story of it. Different locations in the exhibition hall 
may be attached with different ambiances. In Figure 11 the beholder is exposed to different 
soundscapes depending on his whereabouts. 

 

Figure 13 The user of the AAR system is exposed to different soundscapes depending on his 
location. 

 

This application is implementing a virtual guide for a 3x5 meters print of a famous 
photograph. The photograph is portraying construction workers having a lunch break on a 
steel bar on the not yet completed Empire State Building. 

The soundscape is including men chatting, the traffic below and the wind blowing. Depending 
on the whereabouts of the user a narrator tells stories about the picture.  

The sound design was created using the EAGLE editor. The range of the FasTrack limited the 
physical space in which to move around to a 2x2 meters square. Different acoustical 
environments were created which interacted with the movements of the user. Different user 
positions triggered different audio events to take place. 

This application turned out rather well, providing some hints on the potential of spatialised 
audio to augment an environment. The different acoustical zones made it possible to hint to 
the user what to expect if moving in a certain direction. Playing the same sounds in different 
sound zones gave a sense of moving in to the picture. Standing 2 meters away from the picture 
moving up to 1 meter and changing the acoustics from a small room to being outside made an 
impression of entering the picture. Getting the attention of the beholder to look at a particular 
object by first hinting in what direction to look before describing the object to closely 
enhanced the sense of participation with the picture. 

Audio Pac Man 
Pac Man is a famous arcade game where ghosts hunt you while you are supposed to collect 
cookies. A Pac Man game in audio build on the same principal; monsters moving around in 
defined tracks where the player must try to collect items. Different acoustical spaces 
represents “safe zones” or give hints on where items can be found. As previously mentioned 
was the implementation of the Audio Pac Man left out due to hardware constraints. 
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6.0 Conclusions 

Conclusions 
As seen in the related work chapter the spatial aspect of audio is not very well explored in 
augmented realities. There exist surprisingly few attempts of utilising AUI’s in real life 
environments. This fact together with new cheap off-the-shelf technologies make audio 
augmented reality a very exciting area to delve into. The aim of this thesis has been to 
implement a low cost audio augmented reality prototype system and to implement and explore 
some applications. The result is the AAR system, providing a full framework to design and 
create spatial audio applications. Using the AAR system, three test applications have been 
implemented were a museum tour guide turned out especially well. 

The three corner stones of the system are the listener, the emitters and their environment. The 
rendering of the 3D audio and the environmental acoustics is based on the DirectSound3D and 
the EAX API’s. A tracking device provides the positional data of the listener and all audio is 
play-backed in real-time. The ability to easily create and manipulate these entities is provided 
through an included interface to the EAGLE software. The porting of the AAR system on to a 
Linux platform is doable if an API such as the OpenAL is used instead of DirectSound3D. In 
an application a listener moves around freely in a space where different locations, such as 
physical rooms or parts of rooms, provide boundaries between different acoustic landscapes. 
When changing location the listener experiences a morphing between acoustic sceneries. 
Different audio objects, emitters, are placed within these environments and can be made to 
interact with the listener based on his location. 

In evaluating the implementation of the AAR system I considered some general application 
level system performance issues and spatial sound quality. Running the AAR system on a 
Pentium III allows up to eight sound sources with environmental effects and 3D audio playing 
simultaneously. The spatial sound quality test that I performed leaves a lot to refine and 
evaluate closer. My objective was to get a hint on whether my AAR system, based on 
relatively inexpensive hardware, could stand a chance against a more sophisticated system 
such as the Huron. The conclusion is that it does. 

The implemented applications turned out rather differently in terms of success. My tes ting, 
trimming and evaluation of the test applications did suffer from a limiting time schedule. 
Unfortunately not enough time could be spent on developing and evaluating my implemented 
applications. Yet did the virtual museum narrator application turn out well, providing some 
hints on the potential of spatialised audio in augmented environments. 

Future work 
As a summary of the entire project I may conclude that the fascinating topic of spatial audio 
reproduction, rather brutally implemented in the AAR system, spans over a vast spectrum of 
disciplines. The most direct future work would be to more closely design and evaluate the 
different test applications. Further, parts of the AAR system are missing proper 
documentation, as well as an overall users manual. A next step in developing the AAR system 
would also involve documenting it thoroughly. Listed below are some other areas of future 
work related to my thesis: 

• Development of hardware independent acoustical rendering software. 

• Definition and set up of standards for evaluating spatial audio quality. 

• Integration of a wireless tracking device, preferably based on a non-electromagnetic 
solution. 

• Implementation of the AAR system in a VR cube. 

• Further investigation and to some extent implementation of individual HRTF 
modelling.  
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Appendix A – Header files 

client.dll 
NOTE: The” extern "C" __declspec(dllexport)” declarations are not included in order to 
improve the readability. 
 
#include "NetworkCommands.h" 
 
/***  Defines to use in combination with emitter creation   ***/ 
 
typedef struct 
{ 
long nType;                        //why the packet was send 
 
char zPortNumber[PORTSIZE_MAX];    //used in connection with INI_ANSWER 
                                  //contains the port number for the 
                                  //established data connection 
 
char zUserName[STRINGLENGTH_MAX];   //used by the client to tell the server 
                                   //the user's name 
 
char zHostName[STRINGLENGTH_MAX];   //used by the client to tell the server 
                                   //the client computer's hostname 
 
char zIpNumber[STRINGLENGTH_MAX];   //used by the client to tell the server 
                                   //the client computer's IP address 
} TCP_INIT_DATA; 
 
// TCP/IP data packet 
// 
#define TCP_HEADSIZE ( 2 * sizeof ( long ) ) 
 
typedef struct 
{ 
 float x; 
 float y; 
 float z; 
} Vector3d; 
 
typedef struct 
{ 
    long _length; 
    long _type; 
   char _data[DATASIZE_MAX]; 
 
} _TCP_PACK; 
 
typedef _TCP_PACK; 
 
// Types used by TCP_INIT_DATA 
#define INI_CONTACT              0  //send by the client to the 
                                    //server to request a data connection 
 
#define INI_ANSWER               1  //send by the server as response 
                                    //to a clients request for a data 
                                    //connection 
#define SERVER_ERROR          9999 
 
// 
// Polhemus Fasttrack  
// 
#define MAX_TRACKER     4   /* number of supported tracking devices */ 
#define LISTENER      255   /* targetID for listener                */ 
                            /* 255 is the error code for            */ 
                            /* creating emitters                    */ 
enum kind {Orientation, Position, PositionOrientation }; 
 
/*** orthoVectors are used to select the hemispheres of operation ***/ 
enum orthovector {Xpos, Xneg, Ypos, Yneg, Zpos, Zneg}; 
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//Preset of aucostict enviroments 
enum enviro { 
GENERIC, 
PADDEDCELL, 
ROOM, 
BATHROOM, 
LIVINGROOM, 
STONEROOM, 
AUDITORIUM, 
CONCERTHALL, 
CAVE, 
ARENA, 
HANGAR, 
CARPETEDHALLWAY, 
HALLWAY, 
STONECORRIDOR, 
ALLEY, 
FOREST, 
CITY, 
MOUNTAINS, 
QUARRY, 
PLAIN, 
PARKINGLOT, 
SEWERPIPE, 
UNDERWATER, 
DRUGGED, 
DIZZY, 
PSYCHOTIC 
}; 
 
typedef struct { 
 double     Xoffset; 
 double     Yoffset; 
 double     Zoffset; 
 double     Xrecent; 
 double     Yrecent; 
 double     Zrecent; 
 
 double     Azimut_offset; 
 double     Elevation_offset; 
 double     Roll_offset; 
 double     Azimut_recent; 
 double     Elevation_recent; 
 double     Roll_recent; 
 
 double     delta1; 
 double     delta2; 
 short      targetID; 
 enum kind  tracking; 
 double     scaling; 
} tracker_data; 
 
  int     Clientconnect ( char* hostname, int port, char* username ); 
  void    Clientdisconnect ( void ); 
 
  int     initialize_audio ( void ); 
  int     AARreverbation_on ( void ); 
  int     AARreverbation_off ( void ); 
  int     AARreverbation_env ( const enum enviro envId ); 
 int     AARreverbationSetParameters ( const float decay,  

 const float intensity ); 
  int     AARreverbationSetAllParameters( long lRoom ,long lRoomHF,  

float flRoomRolloffFactor, 
float flDecayTime, 
float flDecayHFRatio, 

                                    long lReflections, 
float flReflectionsDelay,  
long lReverb, 
float flReverbDelay, 
unsigned long dwEnvironment, 
float flEnvironmentSize, 
float flEnvironmentDiffusion, 
float flAirAbsorptionHF, 
unsigned long dwFlags); 
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  int    setEAXEmitterProperties(unsigned char nEmitterId, long lDirect,  
long lDirectHF, long lRoom, long lRoomHF  
float flRoomRolloffFactor, long lObstruction, 
float flObstructionLFRatio, long lOcclusion, 
float flOcclusionLFRatio,  
float flOcclusionRoomRatio, 
long lOutsideVolumeHF,  
float flAirAbsorptionFactor,  
unsigned long dwFlags );   

 
  int     AARiniteaxman_source (int emitterID  ); 
  int     AARsourceeaxman_material ( int emitterID, char* preset); 
  int     AARseteaxman_env ( char* filename ); 
  int     AARsource_eax (int emitterID, Vector3d* position  ); 
  int     AARloadEAL_file ( char* filename ); 
  int     AARlistener_eaxman  ( Vector3d* position ); 
  int     AARconnect_listener ( void ); 
  int     AARdisconnect_listener ( void ); 
  int     AARset_listener_position ( Vector3d* position ); 
  int     AARset_listener_orientation ( Vector3d* position, Vector3d* upward ); 
  int     AARcreate_emitter ( char* name,  
                      Vector3d* position, Vector3d* orientation, 
                    float minFront, float minBack,  
                    float maxFront, float maxBack,  
                    float intensity, char* audiofile,  
                    unsigned int groupID ); 
 
  int     release_emitter ( int emitterID ); 
  int     release_multiple_emitters ( int* emitterList, int length ); 
  int     start_emitter ( int emitterID ); 
  int     stop_emitter ( int emitterID ); 
  int     mute_emitter ( int emitterID ); 
  int     unmute_emitter ( int emitterID ); 
  int     pause_emitter ( int emitterID ); 
  int     resume_emitter ( int emitterID ); 
  int     set_emitter_intensity ( int emitterID, float intensity ); 
  int     set_emitter_pitch ( int emitterID, float pitch ); 
  int     set_emitter_position ( int emitterID, Vector3d* position ); 
  int     set_emitter_orientation ( int emitterID, Vector3d* orientation ); 
  int     set_emitter_model ( int emitterID, float minFront, float minBack,  
                       float maxFront, float maxBack, float intensity ); 
  int     set_emitter_min_front ( int emitterID, float minFront ); 
  int     set_emitter_min_back ( int emitterID, float minBack ); 
  int     set_emitter_max_front ( int emitterID, float maxFront ); 
  int     set_emitter_max_back ( int emitterID, float maxBack ); 
  int     change_sounddirectory ( const char* directory ); 
  char**  get_soundfile_list ( void ); 
  int     read_scenario ( const char* scenario ); 
  int     set_CPU_Budget ( const enum RSX_CPU_Budget budget ); 
  int     submitAudioBuffer( short emitterID, char* audio_data,  
                       unsigned int audio_length,  

unsigned int samplingRate ); 
 
/*** Polhemus function prototypes ***/ 
  int  PolhemusInit ( const char* portName, const DWORD baudrate,  

const BYTE bytesize,  
               const BYTE parity, const BYTE stopbits );  
  int  PolhemusConnectToTarget ( const short targetID,  
                        const enum kind tracking, const double scaling 
);  
  int  PolhemusDisconnectTarget ( const short targetID );  
  int  PolhemusDisconnectTracker ( const int tracker_num );  
  int  PolhemusStartTracking ( void );  
  void PolhemusStopTracking ( void ); 
  int  PolhemusSetZero ( const int tracker_num ); 
  int  PolhemusShutdown ( void ); 
  void PolhemusUpdateTreshold ( const double position, const double angles ); 
  int  PolhemusSetHemisphere ( const short targetID,  
                       const int   tracker_num,  
                      const enum  orthovector dir); 
 
/*** local declared functions ***/ 
 
int       create_connected_socket ( char* hostname, int port ); 
int       create_connected_UDPsocket ( void ); 
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void      disconnect_socket ( int* asocket ); 
char*     receive ( long* tag, int* message_length ); 
int       checkReceiver ( void ); 
int       send ( const _TCP_PACK* command ); 
int       sendData ( const _UDP_PACK* command ); 
int       initialize ( char* username ); 
char**    filename_array ( char* list, int length ); 
char*     tag_def ( long tag ); 
 
/*** serial port and polhemus fkt's ***/ 
 
void      initDataStructure ( void ); 
void      UpdatebyPolhemus ( int num ); 
int       getFreeTrackerID ( void ); 
void      deleteTrackerfromTarget ( const short emitterID ); 
int       rs232open ( const char* portName, const DWORD baudrate,  

const BYTE bytesize, const BYTE parity,  
const BYTE stopbits );       

int       rs232send ( const char* data, const int length ); 
int       rs232recv ( char* data, const unsigned long length ); 
void      rs232down ( void ); 
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Network commands 
#define LOGOUT                         1 
#define INITIALIZE_AUDIO                1000 
#define REVERBATION_ON                1001 
#define REVERBATION_OFF               1002 
#define REVERBATION_SET_PARAMETERS      1003 
#define REVERBATION_ENV             1005 
#define REVERBATION_SET_ALL_PARAMETERS  1006 
#define SET_EAX_BUFFER_PROPERTIES     1007 
#define LOAD_EAX_ENV               1008 
#define LISTENER_EAX_MANAGER          1009 
#define SET_EAX_MANAGER_ENV          1010 
#define INIT_SOURCE_EAX_MANAGER        1011 
#define SET_SOURCE_EAX_MANAGER_MATERIAL 1012 
#define SET_SOURCE_EAX_MANAGER         1013 
#define CONNECT_LISTENER            1103 
 
#define DISCONNECT_LISTENER           1104 
#define SET_LISTENER_POSITION       1105 
#define SET_LISTENER_ORIENTATION     1106 
#define GET_LISTENER_POSITION       1107 
#define GET_LISTENER_ORIENTATION     1108 
#define CREATE_EMITTER             1200 
#define RELEASE_EMITTER            1201 
#define RELEASE_MULTIPLE_EMITTERS     1202 
#define START_EMITTER             1203 
#define STOP_EMITTER               1204 
#define MUTE_EMITTER               1205 
#define UNMUTE_EMITTER             1206 
#define PAUSE_EMITTER             1207 
#define RESUME_EMITTER             1208 
#define SET_EMITTER_INTENSITY       1209 
#define SET_EMITTER_PITCH          1210 
#define SET_EMITTER_POSITION        1211 
#define SET_EMITTER_ORIENTATION      1212 
#define SET_EMITTER_MODEL          1213 
#define SET_EMITTER_MIN_FRONT       1214 
#define SET_EMITTER_MIN_BACK        1215 
#define SET_EMITTER_MAX_FRONT       1216 
#define SET_EMITTER_MAX_BACK        1217 
#define GET_EMITTER_INTENSITY        1218 
#define GET_EMITTER_PITCH          1219 
#define GET_EMITTER_POSITION         1220 
#define GET_EMITTER_ORIENTATION       1221 
#define GET_EMITTER_MODEL           1222 
#define GET_EMITTER_MIN_FRONT        1223 
#define GET_EMITTER_MIN_BACK        1224 
#define GET_EMITTER_MAX_FRONT        1225 
#define GET_EMITTER_MAX_BACK        1226 
#define GET_EMITTER_SOUND           1227 
#define GET_EMITTER_STATUS          1228 
#define SUBMIT_AUDIO_DATA             1229 
#define CHANGE_SOUNDDIRECTORY         1300 
#define GET_SOUNDFILE_LIST            1301 
#define GET_EMITTERLIST              1302 
#define READ_SCENARIO             1303 
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server.h 
#include "soundInterface.h" 
 
class 3dAudioServer 
{ 
public:  
 fsa3dAudioMfcServer( int port,3dAudioInterface  & );   // standard 
constructor 
 
virtual ~fsa3dAudioMfcServer();                  // standard destructor 
 
void handleEvent( Event & rEvent ); 
 
void setSuccessor( fsaChainOfResponsibilityMember *  pSuccessor ); 
 
int lowestClientId( void ) 
throw(); 
 
int clientCount( void ) 
         throw(); 
 
void lostClient( 3dAudioServerClient *    pLostClient ) 
         throw(); 
 
void deleteClient( 3dAudioServerClient *  pClientToDelete ) 
         throw(); 
 
void deleteAllClients( void ) 
         throw(); 
 
void addClient( 3dAudioServerClient * ) 
         throw(); 
 
void receivedTcpData( 3dAudioServerClient *, TCP_DATA * ) 
         throw(); 
 
protected: 
 
// 
// Attribute control methods 
// 
 
bool _clientExists( 3dAudioServerClient *    pClient ) 
         throw(); 
 
3dAudioServerClient * _client( 3dAudioServerClient *    pClient ) 
         throw(); 
 
// 
// Event handling 
// 
void _delegateEvent( Event &    rEvent ) 
         throw(); 
 
// 
// Message methods 
// 
 
void _displayStatusMessage( const char *    zFormatString ) 
         throw(); 
 
void _displayExceptionMessage( const fException &  rException ) 
         throw(); 
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private: 
//  
// Audio interface methods 
// 
 
inline void initializeAudio() 
         throw(); 
// 
// Listener control methods 
// 
 
void connectListener() 
         throw(); 
 
void disconnectListener() 
         throw(); 
 
void setListenerPosition( TCP_DATA * ); 
 
void listenerPosition( 3dAudioServerClient * ); 
 
void setListenerOrientation( TCP_DATA * ) 
         throw(); 
 
void listenerOrientation( 3dAudioServerClient * ) 
         throw(); 
 
   // 
   // Emitter control methods 
   // 
 
  void createEmitter( 3dAudioServerClient *,  
                     TCP_DATA * ) 
         throw(); 
 
  int createEmitter( string      zSoundDirectory, 
                     TCP_DATA *  pTcpPackage ) 
         throw(); 
 
  int createStreamingEmitter( TCP_DATA *  pTcpDataPack ) 
         throw(); 
 
  void releaseEmitter( fsa3dAudioMfcServerClient *  pClient, 
                       unsigned char                nEmitterId ) 
         throw(); 
 
  void releaseMultipleEmitters( fsa3dAudioMfcServerClient *  pClient, 
                            TCP_DATA *                       pData ) 
         throw(); 
 
  void startEmitter( unsigned char ) 
         throw(); 
 
  void stopEmitter( unsigned char ) 
         throw(); 
 
  void pauseEmitter( unsigned char ) 
         throw(); 
 
  void resumeEmitter( unsigned char ) 
         throw(); 
 
  void muteEmitter( unsigned char ) 
         throw(); 
 
  void unmuteEmitter( unsigned char ) 
         throw(); 
 
  void setEmitterPosition( TCP_DATA* ) 
         throw(); 
 
  void emitterPosition( fsa3dAudioMfcServerClient*,  
                         unsigned char ) 
         throw(); 
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  void setEmitterOrientation( TCP_DATA* ) 
         throw(); 
 
  void emitterOrientation( 3dAudioServerClient*,  
                            unsigned char ) 
         throw(); 
 
  void setEmitterIntensity( TCP_DATA* ) 
         throw(); 
 
  void emitterIntensity( 3dAudioServerClient*, 
                          unsigned char ) 
         throw(); 
 
  void setMaxFront( TCP_DATA* ) 
         throw(); 
 
  void maxFront( 3dAudioServerClient*,  
                  unsigned char ) 
         throw(); 
 
  void setMinFront( TCP_DATA* ) 
         throw(); 
 
  void minFront( 3dAudioServerClient*, 
                  unsigned char ) 
         throw(); 
 
       void 
   setMaxBack( TCP_DATA* ) 
         throw(); 
 
       void  
   maxBack( 3dAudioServerClient*,  
            unsigned char ) 
         throw(); 
 
       void  
   setMinBack( TCP_DATA* ) 
         throw(); 
 
       void  
   minBack( 3dAudioServerClient*, 
            unsigned char ) 
         throw(); 
                   
       void  
   setEmitterModel( TCP_DATA* ) 
         throw(); 
 
       void   
   emitterModel( 3dAudioServerClient*, 
                 unsigned char ) 
         throw(); 
 
       void  
   setEmitterPitch( TCP_DATA* ) 
         throw(); 
 
       void  
   emitterPitch( 3dAudioServerClient*,  
                 unsigned char ) 
         throw(); 
 // 
 // Environment control methods 
 // 
 
       void  
   reverbationOn() 
         throw(); 
 
       void  
   reverbationOff() 
         throw();  
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    void  
   reverbation_Env(TCP_DATA *   pTcpPackage) 
         throw();  
 
    void 
   set_reverbation_parameters( TCP_DATA *   pTcpPackage ) 
   throw(); 
 
     void  
 set_all_reverbation_parameters( TCP_DATA *   pTcpPackage ) 
      throw(); 
 
    void    
 set_EAX_buffer_properties( TCP_DATA * pTcpPackage) 
  throw(); 
    
   // 
   // Sound file control methods 
   // 
       void  
   changeSoundDirectory( 3dAudioServerClient *  pClient, 
                         TCP_DATA *                   pData ) 
         throw(); 
 
       void  
   soundfiles(3dAudioServerClient *   pClient ) 
         throw(); 
 
 //AudioData 
       void  
   receivedAudioData( UDP_DATA* ) 
         throw(); 
 
 //Scenario 
       int  
   readScenario( 3dAudioServerClient *    pClient, 
                 TCP_DATA *                     pData ) 
         throw(); 
 
// EAX Manager 
  void     
 load_EAX_environment(TCP_DATA *  pTcpData ) 
  throw(); 
  
  void 
 listener_EAX_manager(TCP_DATA * pTcpData ) 
  throw(); 
 
  void  
 setEAXManagerEnv( TCP_DATA *   pTcpPackage ) 
      throw(); 
 
  void  
 initSourceEAXManager( TCP_DATA *    pTcpPackage ) 
      throw(); 
 
  void  
 setSourceEAXManagerMaterial( TCP_DATA *    pTcpPackage ) 
      throw(); 
 
  void  
 setSourceEAXManager( TCP_DATA *    pTcpPackage ) 
      throw(); 
 
private: 
 
 fsaAbstract3dAudioInterface &        _rLocalAudioServer; 
 
 CServerSocket *                     _pServerSocket;    // Mainsocket 
 list<3dAudioServerClient*>          _oClientList;     // List of clients 
bool                                _bWaitForClient;   // Temp-client which 

// will be prepared 
             
}; 
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listener.h 
#include "dsound.h" 
#include "eax.h" 
#include "EaxMan.h" 
 
//----------------------------------------------------------------------------- 
// saEAXListener class 
//  
 
class saEAXListener  
{ 
public: 
   // 
   // Construction and Destruction 
   //  
 
   saEAXListener(        const 3dVector &      rPosition 
                          , const 3dVector &      rOrientation 
                          , const 3dVector &      rUpOrientation 
                          , LPDIRECTSOUNDBUFFER    pPrimaryBuffer 
                  ,  LPDIRECTSOUND8      pDirectSound 
                          ,  bool             bConnect = true ) 
         throw(); 
 
 virtual ~saEAXListener() 
   throw(fDoesNotExistException); 
 
// 
 // Interface 
 // 
 
         virtual 
         void 
   connect() 
         throw(); 
 
         virtual 
         void 
   disconnect() 
         throw(); 
 
         virtual 
         void 
   setPosition( const 3dVector &  rPosition ) 
         throw(); 
 
         virtual 
         void 
   setOrientation( const 3dVector &  rOrientation 
                 , const 3dVector &  rUpOrientation ) 
         throw(); 
 
// Sets EAX listener Property Set 
 void EAXListenerProps() 
     throw(); 
 
// Sets EAXManager and keeps track and sets changes. 
  Void 
setEAXManListener(LPEAXMANAGER eaxManager, const 3dVector &  rPosition, 

LPDIRECTSOUND3DBUFFER8 _lp3dBuffer) 
  throw(); 
 
  void 
saEAXListener::setEAXManListenerEnvironment(LPEAXMANAGER eaxManager,  

char* envName, LPDIRECTSOUND3DBUFFER8 _lp3dBuffer) 
  throw(); 
private: 
 
LPDIRECTSOUND3DLISTENER8 _audioListener() 
         throw(); 
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   saEAXListener( const saEAXListener & );   // Not implemented 
 
    

// 
   // Operators 
   // 
  //  Environment ID 
 long lenvId; 
 
public: 
 
 LPDIRECTSOUND3DLISTENER8      _pListener; 
 LPDIRECTSOUNDBUFFER8       _pListenerBuffer; 
 LPKSPROPERTYSET               _pEAXListener; 
 LPDIRECTSOUND3DBUFFER8      _pListener3dBuffer; 
}; 
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emitter.h 
#include "dsound.h" 
#include "soundInterface.h" 
#include "eax.h" 
#include "eaxman.h" 
 
// 
// Forward Declarations 
// 
//----------------------------------------------------------------------------- 
// Emitter class 
// 
 
class Emitter { 
public: 
 
 Emitter() 
  throw(); 
 
 Emitter( unsigned char           nId, 
        string                      zName, 
        const 3dVector &            rPosition, 
        const 3dVector &            rOrientation, 
        const AudioEmitterModel &   rEmitterModel, 
        string                      zSoundFile, 
        LPDIRECTSOUND8              lpEAXSound, 
        unsigned int           groupID 
        ,DirectXSync*          _pSyncronize 
        ); 
 
   Emitter( const Emitter &   rAudioEmitter ) 
     throw(); 
 
         virtual 
  ~Emitter() 
         throw(); 
 
   // 
   // Audio Emitter methods 
   // 
 
         void 
   start() 
         throw(); 
 
         void 
   stop() 
         throw(); 
 
         void 
   pause() 
         throw(); 
 
         void 
   resume() 
         throw(); 
 
         virtual 
       void  
   mute() 
         throw(); 
 
         virtual 
       void  
   unmute() 
         throw(); 
 
         void 
   setPosition( const 3dVector &    rPosition ) 
         throw(); 
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         void 
   setOrientation( const 3dVector &    rOrientation ) 
         throw(); 
 
         void 
   setIntensity( float  fIntensity ) 
         throw(); 
 
         void 
   setPitch( float   fPitch ) 
         throw(); 
 
         void 
   setEAXProperties( long lDirect, 
    long lDirectHF,               
    long lRoom,                   
    long lRoomHF,                 
    float flRoomRolloffFactor,    
    long lObstruction,            
    float flObstructionLFRatio,   
    long lOcclusion,              
    float flOcclusionLFRatio,     
    float flOcclusionRoomRatio,   
    long lOutsideVolumeHF,        
    float flAirAbsorptionFactor,  
    unsigned long dwFlags ) 
         throw(  ); 
 
  //  
  // initEAXman 
  // Sets the source preset through EAX Manager 
  // Called from saEAXinterface::initSourceEAXman(...) 
  // 
 
  void 
initEAXman(LPEAXMANAGER eaxManager, string preset) 
  throw( fDirectXException ); 
 
  //  
  // setEAXmanMaterial 
  // Sets the source material preset through EAX Manager 
  // Called from saEAXinterface::setSourceEAXmanMaterial(...) 
  // 
 
  void 
setEAXmanMaterial(LPEAXMANAGER eaxManager, char* presetName) 
  throw( fDirectXException ); 
 
  // 
  // sourceEAXman 
  // Gets update info from EAX Manager and applies this on source 
  // 
   void 
sourceEAXman(LPEAXMANAGER eaxManager, const fsa3dVector &  rPosition) 
  throw( fDirectXException ); 
 
         LPDIRECTSOUNDBUFFER8 
   secondaryBuffer() 
         const 
         throw(); 
 
         LPDIRECTSOUND3DBUFFER8 
   spacialBuffer() 
         const 
         throw(); 
 
public: 
     void  
   _cleanUp() 
         throw(); 
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public: 
 
   BYTE *        _        _pSoundData; 
   LPDIRECTSOUNDBUFFER8        _pSecondaryBuffer; 
   LPDIRECTSOUND3DBUFFER8      _p3dBuffer; 
   DirectXSync&             _pSync();  
   LPKSPROPERTYSET           pEAXBuffer; 
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soundInterface.h 
#include "eax.h" 
#include "eaxman.h" 
#include “dsound.h" 
#include "3dAudioLibrary/DirectXSync.h" 
#include "listener.h" 
#include "emitter.h" 
 
class  SoundInterface 
{ 
 
public: 
 SoundInterface() 
         throw(); 
       virtual 
   ~SoundInterface() 
         throw(); 
 
       void 
   initializeAudio() 
         throw(); 
 
       unsigned char 
   createEmitter( string                        zEmitterName, 
                  const 3dVector &              rPosition, 
            const 3dVector &              rOrientation, 
            string                        zSoundFile, 
            unsigned int                  groupID) 
         throw(); 
 
  void 
   reverbationOn() 
         throw(); 
 
    void  
 reverbationEnv(unsigned long envId)  
  throw(); 
  
    void 
 reverbationOff() 
         throw();  
  
   void  
 reverbationSetParameters(const float & Decay,const float & intensity ) 
   throw(); 
 
 void  
 loadEAXFile(string ealFile) 
  throw(); 
 
 void 
 listenerEAXman(const 3dVector &  rPosition) 
  throw(); 
 
 void  
initEAX(Emitter *Emitter)  
  throw(); 
 
 // 
 // setEAXManEnv 
 // Set, in EAX Manager, the environment you have created in EAGLE. 
 // Done once for each env. preset. 
 // 
 void 
 setEAXmanEnv(string envName) 
 throw(); 
 
  // 
  // initSourceEAXman 
  // Sets the source preset through EAX MAnager 
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  // 
 
 void  
 initSourceEAXman(int emitterId) 
 throw(); 
 
 void 
 setSourceEAXmanMaterial(int emitterId, string presetName) 
 throw(); 
  
 void 
 sourceEAXman(int emitterId, const fsa3dVector &  rPosition) 
 throw(); 
 
 // reverbationSetAllParameters  
 // EAX feature    
   void  
 reverbationSetAllParameters(long lRoom ,long lRoomHF,float 
flRoomRolloffFactor, 
                    float flDecayTime,float flDecayHFRatio, 
long lReflections,float flReflectionsDelay, 
                    long lReverb,float flReverbDelay, 
unsigned long dwEnvironment,float flEnvironmentSize, 
                    float flEnvironmentDiffusion, 
float flAirAbsorptionHF,unsigned long dwFlags) 
  throw( fAudioNotInitializedException ); 
  
LPDIRECTSOUND8             _pEAXDirectSound; 
 LPDIRECTSOUNDBUFFER        _pEAXPrimaryBuffer; 
 DirectXSync*               _pSyncronize; 
 saEAXListener*             _pAudioListener; 
 EAXLISTENERPROPERTIES      EAXprops; 
 LPEAXMANAGER           eaxManager; 
 saEAXEmitter*              oEmitter; 
 bool                EAXinit; 
}; 
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Appendix B – EAX buffer properties 

Table of primary buffer properties (listener) 
Property Name Type Range Default Description 
Environment DWORD [0, 25] 0  
Environment size FLOAT [1.0, 100.0] (*) meters Apparent size of environment 
Environment Diffusion FLOAT [0.0, 1.0] (*) Echo density in reverb. Decay 
Room LONG [-10000, 0] (*) mB Master vol. for reflected snd. 
Room HF LONG [-10000, 0] (*) HF atten. for reflected sound 
Decay Time FLOAT [0.1, 20.0] (*) seconds Reverberation decay time 
Decay HF Ratio FLOAT [0.1, 2.0] (*) Spectral quality of the above 
Reflections LONG [-10000, 1000] (*) mB Controls initial reflections 
Reflections Delay FLOAT [0.0, 0.3] (*) seconds  
Reverb LONG [-10000, 2000] (*) mB  
Reverb Delay FLOAT [0.0, 0.1] (*) seconds  
Room Rolloff Factor FLOAT [0.0, 10.0] 0.0 Distance attenuation 
Air Absorption HF FLOAT [-100.0, 0.0] -5.0 mB/m HF distance attenuation 
Flags DWORD [0x0, 0x2F] (*)  
Decay Time Scale Flag bit  TRUE Scales DT with Env. Size 
Reflections Scale Flag bit  TRUE Scales DR with Env. Size 
Reflections Delay 
Scale 

Flag bit  TRUE Scales RefD with Env. Size 

Reverb Scale Flag bit  TRUE Scales reverb with Env. Size  
Reverb Delay Scale Flag bit  TRUE Scales RevD with Env. Size 
Decay HF Limit Flag bit  (*) Limits D.HF according to Airabs.HF 

 

Table of secondary buffer properties (sound source) 
Property Name Description Type Range Default 
Direct Direct sound manual volume LONG [-10000, 1000] 0 mB 
Direct_HF Direct sound manual HF volume LONG [-10000, 0] 0 mB 
Room Reflected sound manual volume LONG [-10000, 1000] 0 mB 
Room_HF Reflected sound manual HF vol. LONG [-10000, 0] 0 mB 
Obstruction Obstruction muffling of direct snd. LONG [-10000, 0] 0 mB 
Obstruction_LF_ratio Spectral quality of the above FLOAT [0.0, 1.0] 0.0 
Occlusion Occlusion muffling of direct sound LONG [-10000, 0] 0 mB 
Occlusion_LF_ratio Spectral quality of the above FLOAT [0.0, 1.0] 0.25 
Occlusion_Room_raio Occlusion atten. for reflected snd. FLOAT [0.0, 10.0] 0.5 
Room_rolloff_factor Attenuates reflected sound FLOAT [0.0, 10.0] 0.0 
Air_absorption_factor High-frequency distance atten. FLOAT [0.0, 10.0] 1.0 
Outside_volume_HF Controls HF directivity attenuation LONG [-10000, 0] 0 mB 
Flags  DWORD [0x0, 0x7] 0x7 
Direct HF Auto Auto filtering for direct HF sound Flag bit  TRUE 
Room Auto Auto distance and directivity atten. Flag bit  TRUE 
Room HF Auto Auto filtering for directivity Flag bit  TRUE 
 


