

Master’s thesis 2001 for KTH (departments of Financial Mathematics and Microelectronics and Information Technology) and for OM

MARKET SURVEILLANCE SYSTEM

S U R V E I L L A N C E C L I E N T

Author: Johan Örtenblad

Tutors: Vladimir Vlassov, KTH

 Torkel Erhardsson, KTH

Håkan Carlbom, OM

Johan Norén, OM

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

2(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

1. Table of contents

1. TABLE OF CONTENTS 2

2. ABSTRACT 5

3. ACKNOWLEDGEMENTS 6

4. INTRODUCTION 7
4.1. MARKET SURVEILLANCE 7
4.2. OM 10
4.3. TASK DEFINITION 11

4.3.1. The server 11
4.3.2. The client 12

4.4. GOALS FOR THE THESIS REPORT 12
4.5. DELIMITATIONS 12

5. THEORETICAL FRAMEWORK 14
5.1. TYPES OF UNLAWFUL CONDUCT 14

5.1.1. Market manipulation 14
5.1.2. Insider trading 16

5.2. SURVEILLANCE OBJECTS AND GOALS 17
5.2.1. Detection process 18
5.2.2. Other automatic surveillance systems 24

5.3. SURVEILLANCE FUNCTIONS 25
5.3.1. Overview 26
5.3.2. section Metrics 28
5.3.3. Alert types 32

5.4. BENCHMARKS 37
5.4.1. Time series 37
5.4.2. Standard technique 38
5.4.3. Alternatives 40
5.4.4. Time series models 42
5.4.5. ARMA models 43
5.4.6. GARCH models 45
5.4.7. Additional extensions 48

6. THE PILOT IMPLEMENTATION 50
6.1. THE JIWAY EXCHANGE 50
6.2. THE APPLICATION 51

6.2.1. System overview 51
6.2.2. The XML Interface 52
6.2.3. Client application 56

6.3. PERFORMANCE EVALUATION 79
6.3.1. Capacity 79
6.3.2. Summing up 85

7. CONCLUSIONS AND FUTURE WORK 87
7.1. BRIEF SUMMARY 87

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

3(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

7.2. CONCLUSIONS AND FUTURE RECOMMENDATIONS 87
8. APPENDIX 1: UNALLOWED MARKET ACTIONS 90

8.1. MARKET MANIPULATION 90
8.1.1. Affecting the price 90
8.1.2. Affecting the real turnover volume 91
8.1.3. Affecting the perceived turnover volume 91
8.1.4. Affecting the trading participant anonymity 92
8.1.5. Price manipulation by brokers 92

8.2. INSIDER TRADING 93
9. APPENDIX 2: XML INTERFACE VERSION 1.0 94

9.1. PROTOCOL 94
9.2. REQUEST 95

9.2.1. Data in requests 95
9.2.2. Request DTD 97

9.3. TRADING INFORMATION RESPONSES 97
9.3.1. Tags used 98
9.3.2. XML response DTD 100

10. APPENDIX 3: XML INTERFACE VERSION 2.0 103
10.1. INTRODUCTION 103
10.2. PROTOCOL 103
10.3. TRADING INFORMATION RESPONSES 103
10.4. MAPPING THE INTERFACE TO JIWAY 105

10.4.1. Tags used 105
10.4.2. XML response DTD 107
10.4.3. Transaction message mapping 107

10.5. MAPPING THE INTERFACE TO SAXESS 108
10.5.1. Tags used 110
10.5.2. XML response DTD 111
10.5.3. SX Session message mapping 112

11. APPENDIX 4: TO DO LIST FOR THE CLIENT APPLICATION 113
11.1. PERFORMANCE ISSUES 113
11.2. GENERAL IMPLEMENTATION SHORTCOMINGS 113
11.3. SURVEILLANCE MODEL SHORTCOMINGS 114

12. APPENDIX 5: DATABASE STRUCTURE 116
12.1. SURVEILLANCEDATA_X 116
12.2. ORDERSTRADES 117
1.1. INSTRUMENTS 117
1.2. GROUPEDINSTRUMENTS 118
1.3. INSTRUMENTGROUPS 118
1.4. INSTRUMENTCLASSES 118
1.5. CLIENTSWITHSAMEBENEFICIALOWNER 119
1.6. BENEFICIALOWNERSHIPS 119
1.7. ALERTS 119
1.8. ALERTGROUPS 120
1.9. ALERTTYPES 120
1.10. TRIGGEREDALERTS 120
1.11. TRIGGEREDALERTGROUPS 121

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

4(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

1.12. CLIENTS 121
1.13. CLIENTCATEGORIES 121
1.14. CUSTOMERS 122
1.15. COUNTRIES 122
1.16. CLIENTCUSTOMERRELATIONS 122
1.17. AUTOMATICQUERYSTATUSES 122
1.18. AUTOMATICQUERYBEFORE 123
1.19. AUTOMATICQUERYAFTER 123
1.20. AUTOMATICRETURNGRAPHINSTRUMENTS 123
1.21. AUTOMATICTRADEVOLUMEGRAPHINSTRUMENTS 123
1.22. AUTOMATICORDERVOLUMEGRAPHINSTRUMENTS 124
1.23. AUTOMATICBBOGRAPHINSTRUMENTS 124

13. REFERENCES 125
13.1. TEXT BOOKS 125
13.2. PERIODICALS AND MAGAZINES 125
13.3. PERSONAL MEETINGS 125
13.4. WORLD WIDE WEB 125
13.5. OTHER MATERIAL 126

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

5(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

2. Abstract

Over the course of the last decades, the growth of the national and international
capital markets has been tremendous. The activity, measured in number of
traded contracts, on a typical market place has soared. At the same time, the
number of electronically operated market places increases constantly. Facing
this development, the need for market place surveillance is today more relevant
than ever.

The present thesis regards the client side of a client-server based market
surveillance system for use with an electronic exchange system. It was developed
during the fall of 2001 at OM in Stockholm for use with the CLICK trading system
on the JIWAY exchange, but with flexibility and scalability as core ambitions.
During the same time, Peter Bergenwald developed the server side of the same
market surveillance application. Naturally, there was a close collaboration
regarding the design and implementation of the surveillance system, even though
the client and the server could and should be considered separately.

We start off by introducing market surveillance, in terms of market manipulation
and insider trading. Thereafter, a procedural and statistical framework for an
automated surveillance process is presented, along with a specification for how
to implement it on an exchange system. A fully functional pilot implementation
has been implemented of the client, as well as the server, application. For obvious
reasons, this report only covers the client part, which on the other hand is
presented in detail. Consideration is also paid to the interaction with the server
and the surveillance operator.

The report is concluded with a section on the performance of the pilot
implementation, coupled with a discussion on how to move the pilot
implementation forward towards being part of a release version of the
surveillance system.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

6(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

3. Acknowledgements

The author would like to thank the tutors at OM – Håkan Carlbom and Johan
Norén – for their interest, support and exchange of ideas during the
development process of this thesis. Their help was invaluable to the results
presented herein.

Also at OM, Mats Danielsson contributed with much help in the development of
the surveillance methodology.

A thank you is, of course, also directed towards the tutors at KTH – Torkel
Erhardsson and Vladimir Vlassov – for their help in writing this report.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

7(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

4. Introduction

During the fall of 2001, me and Peter Bergenwald finishied our thesis work at the
OM group in Stockholm. The task we faced was that of investigating the
possibilities to implement an automatic surveillance system for the CLICK bourse
trading system, and also to implement a pilot application to illustrate our
findings. I will in this report give an overview of the results of our work.

The interested reader should also consult the thesis report by Peter Bergenwald,
since the present thesis solely aims at covering my part of our common work.

In this section, an introduction to the area of market surveillance is given,
followed by a short description of OM. Finally, the task definition is presented.

4.1. Market surveillance
Over the last decades, the capital markets of the world have seen a tremendous
development. The book by Grinblatt and Titman1 gives a good overview over this
development, in the US and abroad. Between 1970 and 1995, the total value of the
outstanding equity in the US, for example, soared from just over $1 000 billions to
almost $7 000 billions. Several trends are now working towards an even greater
importance of these markets, as well as towards an increased access for
different members of society. In the following, I give an overview to these
patterns:

The increasing global presence of large, multinational businesses shopping
around for cheap capital is forcing the governments of the world to streamline
the legislation and tax policies for the capital markets. This is in turn likely to
make the raising of capital in different geographic regions equally expensive,
adding to the mobility of global capital. Conversely, it is becoming ever more
difficult for countries to sustain regulations favouring large corporations at the
cost of smaller ones, as the mobility of capital increases. Therefore, deregulation
and capital mobility are walking hand in hand in a kind of spiral movement.

At the same time, the markets have never been this inventive before when it
comes to coming up with new financial solutions to various problems. For
example, today it is possible to hedge against an abundance of risks categories by
the use of standardised instruments in the capital markets, from interest rate
exposure to catastrophe-linked risk2. Also, companies can now securitise on many
more types of assets than has been possible before. One illustrative example is
the sell of a company’s accounts receivable as a bundled security on the market.

Behind many of these overwhelming changes and the rapid expansion of the
global capital markets is the constant development of the technology used for
the actual trading. Today it is possible to simultaneously issue assets worth

1 Grinblatt – Titman (1998)
2 Örtenblad – Bogentoft [2001]

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

8(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

billions of dollars in several countries. It is virtually possible to trade 24 hours a
day, following the sun around the globe3 . It is, however, not only the big players
that can benefit from this development. The spread of sophisticated software
for retail trading, brokerage, clearing, etc. is beginning to allow many smaller
players such as private persons to trade in the markets with almost the same
ease as the large corporations.

All of these trends in combination are making the world’s financial markets
increasingly complex, sophisticated and extensive. In the long-term, the effects
of this development are, of course, of much value. Most importantly, the spread
of risk and the distribution of capital in the world can potentially be of
tremendous benefit.

However, in the backwater of these great land-winnings, there are also problems.
As larger and more complicated financial bonds tie the global market actors
together, more opportunities for scams arise. The need for surveillance is
therefore also on the increase. Nowadays the markets have more participants
than ever, each wanting the turn of events to go the way of their portfolio. As
the barriers of entry to the markets are lowered along with transaction costs,
actors that would not have been thinking of trying to get a piece of the pie the
dirty way start to look for ways to side-step the market systems.

In a perfect market, the prices of the instruments traded reflect the current
information publicly available. If, however, the prices of some instruments do not
obey to this rule, those who have the better information can use this fact to
make money.

It is hence possible to make a profit with significantly lower risk4 than the one
faced by the rest of market by trading on an asset that you have some special,
non-public knowledge of – e.g., information not yet released to the public. Ideally,
the same information should be available to all market participants in order for
the pricing to accurately reflect all available information. However, this is not
precisely the case, since there are people working in all the listed companies. All
of these people are potential insider traders. Furthermore, it would not be
possible to monitor the trading activity of all of these persons. Instead, one
chooses to focus on, in Yahoo Finance’s5 words, “officers, directors, major
stockholders, or others who hold private inside information allowing them to
benefit from buying or selling stock.” Still, the surveillance of these individuals’
holdings is quite a task.

3 The exceedingly capital-intensive and fragmented global money markets are, for example, active 24/7 around
the year. Also, there are examples of centralised exchanges, such as the OM-run UK Power Exchange in London,
that are operational 23,5 hours per day, seven days a week.
4 One common measure of the relative risk of an investment (e.g. a company share) is the Sharpe’s ratio, defined
as the expected return divided by the historical standard deviation for the instrument. The higher the Sharpe’s
ratio, the higher the expected return compared to the risk of the investment. For more information, please see
Bodie – Kane – Marcus (1999] p. 754.
f finance.yahoo.com

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

9(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

Another method of getting a cheap return in the market is to manipulate the
market prices in favour of one’s own holdings. By way of example, if I can affect
the price of a stock so that it dips temporarily, I can buy at the lowest point
(knowing that the price dip does not reflect any changes in the fundamental data
associated with the stock). In this case, the potential wrongdoer is anyone
trading in the market. Therefore, the surveillance task becomes even more
difficult. Also, many of the techniques that can be used in order to affect prices
on a market build upon ordinary sound market practice. As there are no clear-cut
rules for what behaviour is price manipulative, the problem arises of defining
limits for the activities that are to be considered legal.

On top of this, price manipulation is highly coupled with control of the information
about the instrument being manipulated. Hence, a surveillance system potent of
the detection of this kind of non-allowed behaviour needs to consider the news
flow as well as the hard market data. For example, if the price of an instrument
rises by 5%, it can be because of the fact that the company released new,
positive information. On the other hand, it may equally well be a consequence of
some kind of price manipulation on the part of one or several of the market
actors involved in the trading of the instrument. When to anticipate manipulative
behaviour is not obvious in this simple case, and real market situations are, of
course, usually much more complicated.

Aitken and Berry give a good introduction to the emerging market surveillance
concern6. They argue that different governments try to limit the information bias
in the financial markets, through the use of legislation and for several reasons.
Firstly, a publicly available and accurate flow of information increases the
stability of the financial markets and lowers the systematic risk faced by the
market participants. This is true both on a domestic and an international scale,
the latter being propelled by the currently rapid expansion of the international
financial markets. Secondly, a common economic and political goal for markets is
that they should be fair and efficient. Fair means that no one actor should have
any information advantage over another, effectively ruling out insider trading.
Efficient means that the information that is equally available to every market
participant accurately should reflect the actual status of the companies traded
on the market, and that the asset prices observed are accurately set by the laws
of supply and demand on the basis of this information. Therefore, price
manipulation makes the market inefficient, giving rise to surplus economic costs.

At the same time as the governments of the world are getting increasingly
interested in controlling this kind of behaviour in the financial markets, the
exchanges themselves share this interest. The reason for this is of a similar
nature – the existence of any given market place depends upon the public’s trust
in its ability to fairly and efficiently distribute risk and investment means between
its participants. Therefore, it is of vital importance for the exchange itself to
sustain the credibility of the market place it operates. But the threat also comes

6 Aitken – Berry (1991)

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

10(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

from above – much of the regulations for the financial activity of today is
initiated from within the financial markets themselves. In short, the financial
institutions have a relatively large leeway for self-regulation. This arrangement
cuts both ways – the business has control over its own structure and
regulations, as long as the government trusts in their ambition to strive for the
achievement of not only economic goals, but also for the social ones drafted by
the government.

For these reasons, stock exchanges in the US and in Canada started to look more
seriously into the possibilities of an active surveillance of their markets during
the boom years of the 1980’s. Since then, the market has developed and several
software systems have been developed for the automatic detection of non-
allowed market behaviour. Later in this chapter, we will shortly describe a couple
of these other systems.

4.2. OM
OM is the world’s leading supplier of transaction technology7, providing exchange
technology solutions to more than 25 stock exchanges and clearing houses
around the globe. Among other things, the company markets two major exchange
systems, and also operates the Stockholm Stock Exchange, as well as other
exchanges in Calgary and in London. Thus, for OM the growing issue of market
surveillance is highly relevant – both as a technology provider and as an exchange
operator.

The company markets two major exchange systems under the names of CLICK
and SAXESS, respectively. They constitute completely autonomous solutions, and
are sold separately. Although their features are somewhat different, they can be
used interchangeably by one single exchange using the proper configurations.
One thing that unites them is that both keep a log of the transactions that have
been processed by the system, making it possible to add surveillance functionality
on top of the system without draining power from the exchange process itself.

One of the market places running SAXESS is the spot stock market in Stockholm.
The derivatives trade in Stockholm operates using the CLICK platform. Another
exchanges running the CLICK exchange system is JIWAY, the market place of
primary concern to this thesis. JIWAY is aiming at providing European and US
retail investors with a highly competitive international equity exchange for
smaller transactions. By providing the brokers in the different countries that are
connected (currently France, UK, Sweden, Germany, the Netherlands, Italy and the
USA) the access to JIWAY, the retail public gains access to a cheap and easy way
to trade in foreign stock.

One problem when developing a surveillance system to be run on top of either the
CLICK- or SAXESS system is that the logs are differently represented on the two
platforms. Another problem is that for different exchanges, such as JIWAY and

7 One possible definition of the term “transaction technology” is IT infrastructure for the processing of
transactions at an exchange.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

11(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

the ISE8, the actual transactions that drive the system have different
informational formats. In order to use the same surveillance system in all of
these cases, a common interface needs to be developed for the communication
between the exchange system log and the surveillance application. In chapter 6,
this issue of information mapping is addressed in detail.

4.3. Task definition
The aim of this thesis is to provide a suggestion for the architecture of an
automatic market surveillance system, both theoretically and practically, to be
used with the CLICK system on the JIWAY exchange. However, the solution should
ideally be general and flexible enough to be adaptable for use on other exchanges
and exchange systems, particularly with the SAXESS system.

Except for flexibility, scalability of the solution is an important evaluation
criterion. This is natural, given the recent development on the international
financial markets as well as the growth of the OM-run market places.

Figure 1 below gives an overview of the prerequisites.

4.3.1. The server
The server-side part of the system (the part that Peter Bergenwald has
developed) should be highly exchange system specific. It reads the log data
produced by the exchange system in real-time and processes it. Through the use
of the XML9 interface, it provides the client application with a view of the log
data that is more general than the specific log data format provided by the
exchange. At the same time, a server-side database makes the log data (as

8 ISE (International Securities Exchange) is the first electronic US option exchange and is also running CLICK.
9 XML (eXtended Markup Language)

User

Log data Interaction

X
M

L
 in

te
rf

ac
e

Server ClientExchange
system

Internal
database

External
database

Figure 1 – Overall prerequisites for the thesis. The part focused on in this thesis is the
Client application, whereas the thesis report by Peter Bergenwald is primarily interested
in the server-side solution.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

12(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

viewed through the XML interface) randomly accessible, making search
operations of historic data possible.

4.3.2. The client
Via the XML interface, the client-side application (the one in focus for this thesis)
communicates with the server. This part has been developed and tested for the
CLICK-operated JIWAY exchange, but with the ambition to be flexible enough to
be reconfigured to operate on other exchanges as well as under different
systems. The general view of the system log data given by the server-side
application should therefore also add system- and exchange independency. The
definition of the XML interface itself was also part of our task.

The client application communicates with the end surveillance operator (the user)
via a Graphical User Interface (GUI), displaying surveillance information and
accepting configuration input.

4.4. Goals for the thesis report
In this thesis, I will try to give a thorough description of the theoretical design
aspects of the automatic surveillance client mentioned above, given that a
server-side solution exists. Also, a description of the actual pilot-version client,
developed in the Java language, will be provided. This pilot application is built to
interact with the pilot server application developed by Peter Bergenwald,
communicating via a first-generation XML interface. The aim of exchange
system- or exchange portability is not fulfilled to 100% in the current
implementation. However, the design of the client application is intended to be
easily configurable to handle new and more generic information. Also, a new and
more general version of the suggested XML interface is presented, intended to
be used with a generic exchange provided there is a server-side solution provided
for each particular exchange and exchange system.

For a better understanding of the actual pilot implementation, a discussion of
the theoretical framework will precede the description of the client application.
This discussion spans over present surveillance targets, -methodologies, -
informational prerequisites, and finally the models actually used.

Then, the actual pilot implementation is described, together with a thorough
performance evaluation.

Technical details are, to as large an extent as possible, moved out of the text and
placed in appendices found at the end of the report.

4.5. Delimitations
To investigate and build a full-scale surveillance agent is, of course, a very large
task. In order to gain focus I have tried to limit the area to the most crucial or
interesting parts of such a surveillance agent. In short, I will:

• limit the number of financial markets that are to be surveillable by the use
of the thesis’s surveillance application. For instance, derivatives markets

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

13(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

will not be possible to surveil, nor will there be a possibility to combine
data from different markets in the surveillance process.

• limit the data input to the surveillance process. Additional data that could
(and should) be incorporated in a release version include a news feed and
clearing information.

• limit the scope of the surveillance process implementation to a small
number of tests, in order to exemplify the theoretical surveillance
framework. The level of mathematical complexity actually implemented is
to be kept relatively low. By contrast, I will build this framework in rather
general terms, in order for future enhancements and additions to be
easily implemented. In particular, I will only consider market manipulation,
leaving insider trading for future functionality expansions.

• not be able to present any results regarding the accuracy of the
surveillance tests actually developed, since the access to real exchange
data for different reasons is restricted.

• limit the scope of the GUI to a very rudimentary level, with the primary
objective of making it possible to demonstrate and exemplify the workings
of the surveillance process. Specifically, configuration of the system via
the GUI will be strongly limited.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

14(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

5. Theoretical framework

In this section, background information is given for market manipulation and
insider trading and possible unlawful market conducts. Following this
introduction, a discussion of the process of actually detecting these events is
presented. Lastly, the general approach of the surveillance application is
described, together with the statistical theory that it is based upon.

5.1. Types of unlawful conduct
As mentioned, there are two major categories of methods to gain a better
estimated return while maintaining the risk in the market – market manipulation
and insider trading. The article by Aitken and Berry10 features a thorough
discussion of these. Let us start with market manipulation.

5.1.1. Market manipulation

Motives
The reasons for manipulative behaviour affecting the price or the volume of a
company’s share vary. Individual investors, the company giving out the shares as
well as other companies may have incentives to affect the price of shares one
way or the other.

By raising the volume of an asset, for instance, liquidity increases, thereby helping
an investor to an easier exit for an open position, or to magnify the price
manipulation attempts currently pursued. A common factor for price
manipulation is that because the fundamental information upon which the stock
price is founded cannot be changed, the long-term price cannot be expected to
change. Instead, market manipulation is all about strategies in the relatively
short-term time frame.

The company itself may also want the price of its share to rise in the short run,
because it is about to issue a new round of shares to the market. Naturally, it
wants to sell the new stock for as high a price as possible, giving birth to the
interest of raising the spot price in the short run. Also, old promises of good
returns on shares bought by investors in the past might be hanging around,
promises that the company wants to fulfil for one reason or another. By
artificially raising the value of the company, genuine investors might also become
more attracted, increasing the possibility of financing new projects. Under other
circumstances (e.g., under financial distress), a price boost could possibly
convince important shareholders not to leave the company. Companies will
sometimes also want to affect the price of their own stock or that of other
companies while facing potential take-over, either the take-over of another
company or of the own company.

10 Aitken – Berry (1991)

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

15(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

Also, individual investors (private or institutional) might want to temporarily
affect the prices of the instruments, in which they trade or take ownership
positions. The most fundamental case is where there exists a short-term, long
position in either the stock itself or an option with the stock as underlying. There
are, however, other ways to make money by price manipulation. For example, by
decreasing the price of a security, the investor, knowing that the fundamentally
implied price should be above the temporarily sunken market price, can take a
larger long position at an advantageous cost. Other examples include investors in
low-liquidity assets creating a false appearance of activity in the paper (thus
inducing other parties to enter the market and artificially creating an increased
liquidity), as well as different tax planning reasons. More complicated situations
include the holding company, which might be interested in a value increase of the
company. Finally, major private shareholders could give a shot at manipulating the
price prior to selling part of their holdings or when so-called convertible loans
have been issued.

Typical techniques
In this section, an overview of the ways in which a market actor can affect prices
is given. For a more detailed listing of these techniques, please see section 8.1 of
the appendices.

Market manipulation is either the manipulation of the price or the volume of a
share. There are vast possibilities to affect these metrics both in the equity-,
derivative- and fixed income markets, and by using combinations of positions in
these markets. One common example is to affect the stock market in order to
gain in the options market, or the other way around. These issues will however
not be dealt with herein, as discussed above in the introduction.

In order to affect the price or the volume of an instrument, one usually has to be
a major player in that particular asset, since one’s actions need to be large-scale
enough to affect the actual market for the asset. One common way to gain the
control of an instrument is called cornering. It involves buying significant volumes,
preferably at artificially set price levels, until one becomes one of the major
shareholders in the market. Of course, the more illiquid the market, and the
smaller the company, the more likely this is to succeed. Still, you will need
substantial means in order to afford volumes high enough to gain significant
controlling power.

Once a certain control over the instrument is gained (by the use of cornering or
in some other way), the goal of the price manipulator can either be to raise or to
lower the market price. Price increases are accomplished by demand-side
manipulation, making buyers enter the market and thus driving the price.
Similarly, supply-side manipulation affects the number of sellers (and short-
sellers), lowering the price of the asset.

There are several techniques for both demand-side and supply-side price
manipulation. They either include the manipulation-, or use, of various information

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

16(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

channels or special techniques for placing orders. All of these methods aim at
giving the impression to the market that the price of the instrument should be
something not equal to the currently prevailing.

In other cases, the manipulator will want to affect the turnover rate for a
particular instrument. For example, when the turnover rises, the effects of the
original manipulative attacks can be magnified. In the case of the so-called chain-
letter rally, the volume increase is a natural consequence of the manipulation
itself. The volume increase can also be a part of a manipulation attempt in the
first time, as when the market is short-squeezed.

It is also possible to create a perceived turnover rate that is different from the
actual market volume. One rationale for this would be to increase the attention
given to the instrument that one tries to manipulate, hence making additional
actors enter the market, possibly magnifying the manipulative effects. There may
also be tax reasons behind an apparent attempt to raise the perceived turnover
volume. So-called wash sales, e.g., where positions are regrouped in order to gain
tax advantages, have the side effect of raising the noted turnover for the
instrument involved.

Sometimes the objective of the manipulation is to hide the identity of the actor
behind the volume created, rather than to affect the real or perceived volume
itself. This can be the case when someone is trying to manipulate prices and when
the secrecy of the identity of the manipulator is crucial for the manipulation to
succeed (such as in a take-over situation). Anonymity can be obtained by letting
someone else trade on one’s own account or by more complicated chains of
trade, that appear to affect other market actors than oneself. It is also possible
to hide trading information from the public after a major deal.

Further, there are some price manipulative techniques that may be used by
brokers, including churning and burning.

5.1.2. Insider trading
In the case of insider trading, the reasons for the conduct are more
straightforward than in the case of price manipulation. Put simply, insider trading
is about having access to information about the market that the rest of the
public is not aware of. Hence, the market price of the security is somehow
“wrong”, and before the market gets around to correct this, the insider trader
can prepare him- or herself with a position that will become lucrative when the
price correction finally takes place.

One category of market participants that might partake in insider trading is of
course the company insiders themselves. These include the upper managers or
others with a good insight into the doings of a particular listed company. The
insider trading in this case takes place when such an insider buys or sells shares
prior to the release of some kind of price-sensitive information announcement
about the company.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

17(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

However, the company insiders are not the only ones that can have access to
insider information. Brokers can also, in light of their special position giving
insight into the deals of their individual clients, find themselves in an inside
position. This is similar to the case of the broker-specific manipulation
techniques described above.

It is also possible for insiders to manipulate the market prices by the mere power
of their position. Since the market knows that they are insiders, attention will be
given to their behaviour in the market place. Information about their trades
becomes public information by the use of insider lists, etc. If such an insider
wishes to affect the market one way or the other, all he needs to do is to let his
actions in the market reflect the belief he wants to induce into the market. There
has, however, been a discussion on whether or not such conduct can be a
sustainable manner to affect prices (since an insider who repeatedly does this in
the end is “seen through” and loses his credibility). For a more thorough
discussion on these matters, please see the article by John and Narayanan11 or
the one by Benabou and Laroque12.

5.2. Surveillance objects and goals
Above, we have discussed in what ways market inefficiency and unfairness in the
financial markets can lead to economic damage. As a general rule, all actions
aiming at misleadingly making the market appear differently than it should when
in an effective and fair setting (by actually trading or by simply giving out
offerings to buy or sell) are harmful to a given market. It is not, however,
completely obvious where one should draw the line between legal and illegal
conduct. For example, a person that enters an illiquid market can aggressively buy
more shares in order to increase the apparent liquidity, thus attracting more
liquidity to the market. In the end, the problem boils down to define where simply
being a buyer in a market turns into trying to affect prices in the same.

On top of this, if the surveillance process is to be fruitful, the intent of the
market actor has to be proven. Since such things as risk-taking, speculating and
information trading are perfectly allowed in a market, it is often quite difficult to
pinpoint an event as being the result of a specific illegal intent. If the market
reasonably could anticipate the behaviour, then the situation becomes even more
complicated. For example, when two companies are engaged in a cross holding, it
is not difficult to foresee that that the one company has an interest in that the
price of the other’s shares are kept high. Whether this means that certain price
manipulative behaviour is already discounted in the observed market prices or
not is however not obvious.13

Thus, a complete surveillance system does not only have to identify possible
breaching of the rules associated with the market place. This identification of

11 John – Narayanan (2001)
12 Benaboud – Laroque (1992)
13 Aitken – Berry (1991)

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

18(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

insider trading and/or market manipulation is merely the first step to the
ultimate goal of at the best interrupting the illegal activity, or at least to single
out the wrongdoers and putting them to justice. To do this, it is also necessary to
effectively secure evidence, and to alert the relevant authorities to carry
through with the legal proceedings. Exactly what the appropriate proceedings
are depends on the kind of conduct. It might be a trading member who has
breached the trading rules, a securities regulator who has not followed the
legislation or a company not obeying the listing rules.

In order to effectively treat the surveillance alerts triggered by the system,
these alerts have to be of good quality in the first place. The difficult part here is
to ensure that most of the illegal actions taken on the exchange are detected, at
the same time as the number of false alarms are kept to a minimum, as every
alarm has to be investigated one way or another. If the expected costs of
surveillance are in excess of the average economic losses to unlawful conduct in
the markets, there is no economic incentive to actually carry through with the
surveillance program. Especially the number of false alarms can potentially be
large, because of the stochastic nature of the trading activity itself. The key is to
set the alarm levels so that they, on average, give a limited number of alerts per
day, concentrating on the really significant ones by filtering them out of the
general background noise.

5.2.1. Detection process

Generalities
In order to detect suspicious market behaviour, one has to carefully monitor the
market and its actors, trying to single out suspicious actions based upon certain
patterns that empirically have been observed in association with such unlawful
conduct in the past. With respect to the massive amounts of market information
available from a typical market place, the monitoring has to be very selective and
efficient. In the case of insider trading, patterns are perhaps easier to pinpoint
than in that of market manipulation – it is sufficient to monitor the trading of
the legally-defined insiders, and possibly associated market participants that
effectively affect the beneficial ownership of these insiders.

For the same reasons, the proofs are also easier to gather for insider trading
than they are in the case of market manipulation. In the latter case, it is the
information of the asset itself that is manipulated to be incorrect. Since prices,
volumes, etc. are volatile by nature, and since complicated trading patterns may
(and should) occur in a given market, the actual conduct, as well as the intent
behind manipulative behaviour, is difficult to prove.

The surveillance system presented herein does not, however, detect insider
trading. As it is a more challenging task, and because of the limited amount of
time devoted to this project, the scope has been limited to market manipulation,
leaving insider trading for a possible future functionality expansion.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

19(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

So, how does one practically detect price manipulative behaviour, given
sufficiently detailed market data? There are several basic strategies that may be
used. First of all, one has to define certain metrics, deciding what to measure in
the market. These metrics can be the observed market prices, individual orders,
turnover volumes, etc. They thereafter need to somehow be compared to a
number of benchmarks, in some sense defining normal or allowable market
patterns.

The comparison of the metrics with the benchmarks can be carried out in one of
two basic ways. A practical implementation is to have a number of predefined
such comparison tests, which the user of the surveillance system has the power
to fine-tune by the use of certain configuration parameters. This way, the user is
up-and-running after a relatively short period of introductory time. On the other
hand, real-life markets are often complex, intertwined and continuously changing.
Therefore, it may be more effective for the surveillance system to offer the
available metrics and benchmarks as configurable entities, that can be combined
in any way or pattern to produce the user’s own benchmark tests. This
implementation offers more flexibility and diversity, but is more demanding on the
account of the user.

In the next step, the surveillance system developer has to decide whether the
whole surveillance process should be contained in one single platform or if it
should be split up into several modules. Analogously to the case with predefined
or custom-made benchmark test, a single platform is easier to use. On the other
hand, a module-based approach is a more flexible solution. As an example, the
monitoring of market manipulation and insider trading, respectively, can be
separated or integrated. Also, there can be a certain vertical integration of the
parts of the process from monitoring to evidence securing. Alternatively, these
parts can be divided into distinct modules, reflecting the organisation of the
actual surveillance process more accurately. Naturally, there is a need for an
information exchange between different such modules. The degree to which they
are integrated can however vary.

As can be seen from Figure 2 above, the data inputs to the system should ideally
not only include the raw trading activity data. There are other data sources that

Figure 2 - Overview of the surveillance process

Evidence gathering

Benchmarks

Surveillance metrics

News and other related information

Market

Legal process

Trading process

Clearing process

Monitoring/testing Alerts production Evaluation

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

20(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

may be of interest as well when deciding whether an observed market event
should be considered suspicious or just business-as-usual trading activity. For
example, such external data feeds might include the clearing process14 and a
news feed15. It is also easy to see additional funcionality in a surveillance system
that would be of value. For example, an information bridge between different
market places would make it easier to detect price manipulation relating to
several markets at once, such as stock price manipulation in order to affect the
prices of associated stock options, perhaps on a different exchange. Another
example would be the possibility to play back the market activity during a certain
time period, in order to observe what really happened in “real-time”. Without this
feature, the amounts of information to manually investigate when an alert has
been triggered might be massive.

Typical symptoms of insider trading and market manipulation
Every action taken in the market place has its consequences, so also unlawful
actions. More precisely, different kinds of unlawful conduct in the marketplace
lead to different typical patterns in terms of the available metrics. Figure 3
below shows some of these patterns, among these notably the ones actually used
in the pilot implementation of the surveillance client application. It thus depicts
various ways to manipulate the market and insider trade, and the consequences
(symptoms) these actions have on the market. The symptoms themselves are
measurable by the use of carefully selected metrics.

One example is trading parties that trade non-anonymously with one another.
This means that they strike a deal outside of the trading system, after which
they place the orders simultaneously in the system (see under matched orders in
the Figure 3. This way, the trade never appears on the trading screens before it
is matched. One way to detect these trades is by detecting trades with orders
that have been in the orderbook for a very short time (or not at all) before the
trade was accomplished. Another is to use the fact that these deals often take
place outside of the spread for the traded instrument, because this is a way to
obtain a quick trade at a given price level. A better way of detecting matched
orders is to use both of these symptoms in combination. Observe, however, that
wash sales share both of these symptoms with matched orders, making these
unlawful conducts difficult to contrast by only considering these two symptoms.

Another example is the symptom of a sudden spread16 change, which can have
several explanations. One possibility is that the market expects some important
information to be announced shortly, such as an earnings announcement. When
the uncertainty increases, the spread widens as a consequence. Opposedly, the
reason can also be that an inside party has gotten information not publicly

14 The clearing process can, e.g., be used for the consideration of cancelled orders, that add to the percieved
volatility but that do not actually clear in the end. Also, on some trading systems, much of the historical
information lies within the clearing process.
15 Increased volatility or volume is not strange in the event of a major news event concerning a company.
16 The spread is the difference between the best bid- and ask prices observable in the market.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

21(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

known, and thus moved the outstanding orders further away from the best
bid/offer spread.

When a symptom has been observed, it is up to the surveillance staff to try to
figure out what has actually happened – has somebody done something unallowed
– and in that case, what? This process can be very difficult, especially if the
trading situation is complex. The only way to succeed is by experience. It should be
possible to solve this by the use of an AI17 implementation. In this thesis, this
method is not investigated further. Instead, it is assumed that there are
competent surveillance staff ready to interpret the various symptom alerts
delivered by the system.

17 AI, Artificial Intelligence

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

22(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

Unallowed action Comment

La
rg

e
vo

lu
m

es
P

ric
e

m
ov

em
en

ts
O

rd
er

s
fa

r f
ro

m
 B

B
O

A
no

rm
al

 o
rd

er
bo

ok
B

B
O

 c
ro

ss
in

g
Im

m
ed

ia
te

ly
 tr

ad
ed

 o
rd

er
s

S
pr

ea
d

ch
an

ge
s

B
en

ef
ic

ia
l o

w
ne

rs
hi

p
no

t c
ha

ng
ed

N
o

re
le

va
nt

 n
ew

s

Orderbook-coupled
techniques

Price-affecting techniques
Cornering a a a

Highest bidder a a a One player consequently bidder outside spread

Transactions at progressively higher prices a a a a One player fast follower in price raise sequence

Pump and dump a a a a a
The price moves up or down, then someone puts a large order
to take advantage of the move.

Ramping a a a Large orders are placed near closing, outside of the spread

Window-dressing a a a Large orders are placed near closing, outside of the spread

Volume-affecting techniques

Churning a a a
A player has both buy- and sell orders. Large trading with no
beneficial ownership change.

Passing the parcel a a a a
A player has both buy- and sell orders. Large trading with no
beneficial ownership change.

Pools a a Large trading with no beneficial ownership change

Short squeeze a a a a Large volumes

Wash sale
a a a a a a Large volume rders that never reach the order book between

the same two parties. No beneficial ownership change.

Anonymity-affecting techniques

Matched orders a a a
Large volume orders that never reach the order book between
the same two parties. BBO crossing.

News-coupled
techniques

Price-affecting techniques
Bait-and-switch a a Stock price movements

Hype and dump a a a
Stock price movements in one direction, then a rapid
movement

Failure to disclose information
Warehousing

Nominee accounts
Volume-affecting techniques

Chain-letter rally a a a increased volatility and volume

Insider trading
Brokers

Front-running a

Inside market information a a Non-motivated volume or volatility

Piggy-backing Correlation between the broker's and the customer's portfolios
Company insiders

Scalping a a a a
Price movements before the release of the news. The spread
widens prior to the announcement if anticipated.

Classic insider trading a a a a
Price movements before the release of the news. The spread
widens prior to the announcement if anticipated.

Symptom

Figure 3 - Mapping unallowed actions to symptoms

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

23(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

Among the listed symtoms in Figure 3, some may need some additional
explanation:

BBO crossing means that an instrument is bought at an unnecessarily expensive
price, or sold unnecessarily cheap. This means that there was a seller in the
market willing to sell to a lower price than that of the one used for the
transaction, and analogously in the latter case. In the efficient market, this
should never occur.

In order to observe the anormal orderbook symptom one first needs to define
what is meant by “anormal”. Later on in the thesis, this issue will be dealt with
more in-depth. In the meantime, we can conclude that there is not a one-to-one
mapping between this symptom and the BBO crossing symptom.

However, the picture is still slightly more complicated than. To be able to detect
suspicious behaviour, it is not only necessary to monitor trading activities
(measured by the available metrics) with respect to individual instruments and
trading parties. One also has to consider the propagation of these metrics over
time. In order to know what benchmark to compare the metric to, it is necessary
to study the time process of the metric, in order to obtain some kind of
estimation of the “normal” state of the process. There are several aspects to
this.

Different metrics need to be treated differently. In some cases, such as when
the time process can be approximated with a scaled white noise, a good method
is to calculate the historical mean and variance, and then perform a simple
hypothesis test to see if a value is to be considered to be normal or not. This
white noise approximation can, e.g., be used for the return process in liquid stock
exchange markets18. Other possibly usable metrics, such as the orderbook,
cannot be treated in this simple manner. Instead, some more elaborate methods
must be considered. One such method is a neural network approach. Another one
is, as we shall see later on, to use a time series model such as ARMA and GARCH19.

When one considers the propagation of the metrics over time, there might also
be seasonal variations in the observations. In models such as the ARMA, this can
be incorporated quite easily. For other models, the question of seasonality needs
to be dealt with differently.

On top of this, the metrics themselves are often not clearly observable in the
market data. For example, when considering the price process of an instrument,
how does one define the price? One possibility is to use the last trade price. This
definition is quite straight-forward to use, but does not take into consideration
the fact that some trades take place on the bid side of the market, while others
take place on the ask side. This oscillation gives rise to a certain descrepancy

18 Gouriéroux (1997)
19 See below for more on such time series models.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

24(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

between consequtive trades without the real price of the asset being changed.
This so-called bid-ask bounce adds to the perceived volatility of the price
process.20

If, on the other hand, one chooses to define the price as a function of the best
bid- and ask offers in the orderbook, the bid-ask bounce problem vanishes.
However, other problems take its place:

Liquidity is defined as the possibility to convert cash to and from a security
without affecting the prevailing price level.21 For small, illiquid stocks, it might be
difficult to find the price simply by looking at the orderbook. There might not
even be both a bid- and an as price. Or, these might not change over time to
reflect the actual change in market valuation of the asset.

On top of this, when an asset is very illiquid or not traded at all, it is also difficult
to define a volatility measure. It is therefore also difficult to obtain a good overall
historical understanding of what is to be considered “normal” return – in this
case it might help to make use of so-called asset groups , grouped together by
historical similarities. By observering metrics in light of some kind of average or
aggregation over several instruments, a better understanding can be obtained.

At the same time, one needs to consider the fact that illiquid instruments are
more prone to market manipulation, since per definition less cash is needed to
affect the price of the instrument.

These issues will be dealt with on a more mathematical level below. For
completeness, two of the existing automatic surveillance system solutions are
presented next.

5.2.2. Other automatic surveillance systems
The typical automatic surveillance system is not a generic product. Instead, it is
custom-made for a certain exchange system or a certain exchange. In this
section, Peter Bergenwald and me briefly present one such custom-made-, and
one more general surveillance system.

LM
LM (Local Modules22) is an integrated part of the CLICK system that, among other
things, acts as a primitive market surveillance agent. It is CLICK-specific, and
therefore only used on exchanges that run this exchange system (even though
not all such exchanges have incorporated LM into their CLICK system). LM checks
for the following events, and produces an alert if one of them is detected:

• Internal trade: a member that trades with himself.

20 “Discovery” (2001)
21 finance.yahoo.com
22 The name “Local Modules” does not seem to have a rational explanation apart from historical reasons.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

25(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

• Large trade: detects trades that are larger than what is considered “normal”.
The definition of this event uses the normal-state (historical) variance.

• Trade price movements: a member that sells and buys in steps, to move the
trade price in a certain direction (without the net ownership being altered in
the end).

• Unintended BBO crossing: deals that occur outside of the spread. This means
that the buyer will pay more than the seller who will sell for the lowest price
requires (see discussion above).

A surveillance system as simple as this one clearly has its limitations – one of the
reasons why our study was conducted in the first place. However, it represents a
possibility to at least carry out rudimentary market surveillance, although its
tight dependancy on the CLICK system makes it non-portable to other exchange
systems.

SMARTS
SMARTS23 (Securities Markets Automated Research Trading Surveillance) is a
generic surveillance system designed to run on various platforms, and in
collaboration with various kinds of financial markets. It was originally developed by
a group of researchers at the University of Sydney, but today it is developed and
marketed by Computershare Limited. The system is made up of several different
modules, each providing its own functionality. Among these are modules for
benchmark visualisation, alerts triggering and post-trigger analysis, statistical
reporting, real-time statistical monitoring and a market replay function.

The system was designed more like a general tool for financial market
surveillance than with a specific exchange, or exchange system, in mind.
Therefore, it is very versatile, at the same time as its complexity probably does
demand some investments in learning time. When properly used, however, it is
relatively powerful. Among other things, it features an own alerts definition
language, allowing the user to define and use its own benchmarks and alerts
through a collection of predefined metrics. This solution allows the user on an
individual exchange to interactively gain an understanding of the market
prerequisites prevailing at that particular market, and fine-tune alerts over time
so that they are triggered not too often, nor too seldom, carrying relevant
information about illegal market actions.

Today, an installation of the SMARTS system is used, for example, on the Oslo
stock exchange.

5.3. Surveillance functions
After this more general overview of the field of market surveillance, and of the
generic surveillance process, we now turn to study the theories developed during

23 www.smarts.com.au

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

26(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

the work with this thesis. As much of the surveillance process can be described in
terms of algorithms, an overview of the main surveillance algorithm in the client
application is presented firstly. After this, the focus turns to how the actual
detection of unlawful conduct is carried out in the system.

5.3.1. Overview
The main surveillance algorithm of the client application processes the incoming
market data in two main loops, each operating on a different time scale. Firstly,
the information is processed continuously, in real-time, over the so-called
aggregation period. At the end of each such period, it is processed (aggregated)
and dumped to the historical database. Each such aggregation thus takes place
in discrete time, where each point in time is one aggregation period from the
next in continuous time. We call the real-time loop the continuous loop, and the
other one, wrapping the continuous loop, the discrete loop.

During both the continuous- and the discrete time loops, the market information
is characterised into various metrics, each representing a certain
characteristics of an individual instrument. Some metrics (discreet metrics)
describe processes over time. They are collected over the aggregation period,
and subsequently dumped into the historical database as some kind of sum or
average value at each aggregation. Other metrics (continuous metrics) are
associated with real-time individual events, such as a single order arriving into
the system. They are not aggregated into the database. Rather, they take part in
the associated discreet metric (where applicable), hence indirectly saved in the
database as a part of the aggregated information.

There are a number of different ways to detect market manipulation in its
different forms (please see 5.1 Types of unlawful conduct above for more on
these forms). Each of the methods used carries out a comparison of one or
several metrics to some statistical model, or benchmark. Ideally, such a
comparison should be carried out for each traded instrument on the exchange.
However, for different reasons24, instruments are bundled into instrument
groups, where all instruments belonging to the same group share the same
benchmarks. Therefore, each comparison takes place for every instrument in the
considered instrument group. The parameters of the statistical model are
calculated using aggregated, historical data collected from the database. Then
an alert is triggered for the considered instrument if the metric is “too unusual”
by the definition of the benchmark used. As the model takes into consideration
the historical data for all the instruments in the same instrument group, one
single instrument can be compared to a group of other instruments. The
historical data used from the database is constituted of historical values for
different metrics. Thus, by carefully designing ways to fuse metric values
associated with different instruments, one can end up with a single time series

24 Please see the Configuration package section of 6.2.3 Client application for more information on instrument
groups.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

27(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

of metric values, which can be treated with the chosen statistical model in order
to create a common benchmark for the instrument group.

The default statistical benchmark model is a simple confidence interval approach,
in which the average value and the variance of the metric over time is observed
under a time-constant normality assumption. Then it becomes possible to use
the historical variance to measure how far from the historical mean the received

metric value is, thereby
deciding whether the
current value of the
metric is within the range
of “normal” values or not.

The system also allows for
the definition and add-on
of more elaborate models
for the detection of
different types of alerts.
When such a model is used,
the comparison of the
metric to the historical
data for the instrument
group is carried out in a
model-specific way, using

model-specific
parameters calculated
from the historical data.
For example, for one of
the alert types, a
GARCH(1,1) method is
defined and used to
describe the return metric
process over time.

The flow chart in Figure 4
depicts the surveillance loop more in detail. The top half represents the
continuous process, where the surveillance takes place in real-time. This process
is punctuated at each aggregation time by the discreet surveillance process.

At each lap of the continuous process, one more item of market data is
collected, followed by a check for triggered continuous alerts25. The type of test
carried out in each loop depends on the type of market data collected. For the
instrument to which this data relates, any configured alerts for this particular
instrument are checked by comparing the discreet metric associated with this
market data type with the statistical model for this metric derived from the

25 Actually, alerts are bundled together in alert groups . Please see the section the Configuration package
section of 6.2.3 Client application for more information.

Figure 4 - Main surveillance loop

yes

no

C
on

tin
uo

us
 lo

op

D
is

cr
ee

t l
oo

p

Main surveillance loop

yes

no

Collect and aggregate data

Check for triggered discreet alert groups

Update historical database

Is it time to
process the
aggregated

data?

Is it time to
recalculate the

statistical
parameters?

Recalculate the models

Check for triggered
continuous alert groups

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

28(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

historical aggregated data. For all alerts defined for an instrument, an alert
check is performed for each piece of market data corresponding to the alert.
The continuous surveillance process finally keeps track of all the data collected,
producing aggregated measures of the different metrics as the data arrives.

The discreet-time surveillance process starts each turn by carrying out alert
checks for all the defined discreet alerts defined in the surveillance system.
Similarly to the continuous case, these alert checks are performed by the
comparison of a metric to the statistical model of this metric. However, in the
discreet case, the metric used for the comparison is not associated with a single
piece of market data, but the latest value for the aggregated metric. Lastly, the
discreet loop updates the historical database with the latest values for the
aggregated metrics produced by the continuous process

5.3.2. section Metrics
As described above, there are two basic types of metrics used in the surveillance
system; discreet and continuous metrics.

Discreet metrics are measured over a whole aggregation period in a simplified
way, either as some kind of average or as an aggregated value over the period.
Consequently, they are stored in the database to be used to standardise the
current surveillance data. These metrics include the volume-, return-, spread-
and orderbook metrics.

Continuous metrics, on the other hand, are measured continuously (as soon as
the event to which they are tied take place). They are not simplified, but rather
used as they are. They are not stored in the database either, since they are
typically standardised by the use of some special rule or by the use of discreet
metrics. They include the orders- and trades metrics (representing the
characteristics of individual orders and trades that enter the exchange system).

Below follows a more detailed discussion of the different available metrics,
starting with the discreet ones.

Discreet metrics
Volume
Historical volume data is interesting for standardising the current volume data in
the system. The surveillance system measures both the volumes ordered and the
ones traded for the active instruments.

Volume data is summed over the aggregation period, and is subsequently written
to the database at the end of the aggregation period. Instruments are bundled
into instrument classes26, sharing the same surveillance settings. For different
instrument classes, the aggregation period may differ. Hence, at the time of
aggregation, data is written for all instruments belonging to the aggregated

26 Again, see the section on the Configuration package section of 6.2.3 Client application for more information.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

29(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

instrument class. However, the data for each instrument is saved distinctly from
the data of other instruments belonging to the same instrument group or –class.

In addition, the volume data is split up along two further dimensions, the final
trading client and exchange customer27. This division is done to be able to check
such things as the correlation between the orders put by a certain customer and
the orders put by its individual clients, and the real change in beneficial ownership
during a period of trade in a certain paper.

The aggregate volume for each asset is thus calculated for every time period,
and stored into two different database structures:

• A list of aggregated order- and trade volumes per instrument, client,
customer and time period. Both the net and gross volumes are saved. At the
time of alert checking, this list is used to check the “normal” pattern for the
volume of trades and orders, both on a market level and on the level of
individual market participants.

• A list of aggregated trade volumes per instrument, client and time period.
Both the net and gross volume is saved. This list is only used for the
calculation of the actual change in beneficial ownerships as compared to the
gross trading activity in a certain paper.

As an alternative to using the “normal” volume patterns for ordering and trading,
one can standardise ordering- and trading activity with the total number of
outstanding stocks28 for the considered instrument. This feature is currently not
implemented in the pilot application, but it would mean that the number of
outstanding stocks should be stored together with other instrument-specific
data. For each instrument, the data should not be updated until the actual
number of outstanding stocks is altered.

Return
The return process is interesting for the standardisation of return-related
events. In this, price data could be of alternative interest. However, market share
price data is typically not stable over time – i.e., the moving average of the price
of a share tends to change over time. On the other hand, with a return
transformation, the data typically becomes stationary and therefore has more
usable statistical characteristics29.

As is the case for the volume data metric, the discreet return data metric is
measured over a certain aggregation period. However, it is only the final price of
the instrument over the period that is of interest. Hence, no actual aggregation
is produced during the aggregation period.

27 The exchange’s customer is called a member in the case of a CLICK system.
28 I.e., the total number of stocks that a company has issued to the market, and hence are tradable.
29 Séries Chronologiques (2000). A more general way to make a time series more stationary is to repeatedly
differentiate the series until stationarity is reached.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

30(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

In order to define a return measure for an instrument, one first has to define
the price of the instrument at a given point in time. Two possible price definitions
are offered by the configuration of the system:

• Average bid-ask price:
()

2
tt

t

bidask
P

+
=

• Latest Trade Price: LTPPt =

Other definitions, including best bid and best ask, are possible but not
implemented. The latter trade definition provides a price “close” to the actual
market activity, in that it takes into consideration the trades actually taking
place. This definition might be useful when surveilling instruments with very low
liquidity, where the perceived market spread is sometimes not very significant for
the actual price process of the instrument. For example, the downwards spread
might be significantly larger when not many actors are interested in buying the
security. Also, in the case of such a price definition being used, it is relatively easy
to affect the instrument price by simply putting an order that changes the
spread, or by withdrawing an order defining the price. On the other hand, for
illiquid instruments it is relatively easy for one individual actor to affect the price
by a single trade, thus affecting the price if a latest trade definition is used.

One extra advantage can be argued for the average bid-ask price definition.
Namely, it does not lead to the excess volatility gained from the latest trade
definition, a volatility that is due to the fact that some transactions take place
on the bid side while others take place on the ask side of the orderbook. At the
same time, the average bid-ask price is more abstract, relating primarily to the
orderbook and not the actual trading activity.

Given the above definitions of price, it is now possible to define the return. In our
case, this boils down to using one of the following available definitions:

1. Linear return:
t

tt
t P

PP
r

−
= +1 .

2. Logarithmic return:)ln(1

t

t
t P

P
r += .

The linear return might be the most intuitive measure to use. However, the
logarithmic return is most often used in practice, because it has the attractive
feature of accumulatable rentability. If one adds subsequent returns the sum is
equal to the return over the whole period considered:

∑
= +

+++ =
j

k kt

kt

t

jt

P
P

P

P

0

1)ln()ln(.

Also, the logarithmic return measure assumes values in the interval (-∞, ∞), just
like the linear return does. When considering small returns, the two measures

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

31(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

yield approximately the same values. Depending on the price definition used,
different historical data is of interest for calculating the return metric. These
data are collected either from the best bid- and ask prices of the historical
orderbook data, or from a list of historic trade prices that is stored for each
instrument. In this latter list, each price is that of the trade that occurred last in
the given aggregation period for that particular instrument. In order to be able
to change the price definition over time, all data is saved regardless of the
current price definition.

Spread
The spread process is measured in three ways, in order to capture market
manipulation both on the bid- and the ask side:

1) relative bid-side spread:
()

t

tt
tb P

bidP
RS

−
=,

2) relative ask-side spread:
()

t

tt
ta P

Pask
RS

−
=,

3) relative total spread:
()

t

tt
t P

bidask
RS

−
=

Obviously, all spread measures depend on the definition of the price of the
instrument. When using the average bid-ask price, the relative bid- and ask-side
spreads are per definition equal – in this case the only spread measure
interesting for alert checking is the relative total spread. The values used are the
final ones in each aggregation period.

Unlike the volume- and return metrics, the historic spread data is not stored
explicitly as one or several lists. Instead, it is implicitly derived from the historical
aggregated orderbook (as this includes the best ask- and best bid price – see
below).

Orderbook
For each instrument, an aggregated (simplified) orderbook is saved for each
aggregation period. When calculating and storing this metric, the data is
simplified over several dimensions:

• The actual orderbook saved only includes the total aggregated volume at each
price level, not the individual orders or quotes that make up this volume.

• Only a number of price depth levels are considered, discarding bid- and ask
orderbook entries at prices that are more than the specified number of
prices away from the BBO. This depth number is configurable. Each price level
represents one available price at which a price is specified. For liquid assets,
each price level should correspond to one tick mark, at least near the best
bid/ask off levels. For less liquid ones, consecutive price levels may very well
be several tick marks apart, as the orderbook is less dense.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

32(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

• The orderbook that is saved in each aggregation is an aggregated snapshot
of the actual orderbook at that point in time. Hence, no attention is given to
any abnormal events taking place in the orderbook between two
aggregations, not affecting the orderbook at the end of the aggregation
period.

From the orderbook, the average ask/bid-definition price and spread metrics
may be derived. Hence, the saved historical orderbook data is used for the
calculation of these metrics as well.

Continuous metrics
Orders and trades
Orders and trades entering the system are measured by continuous metrics. The
transactions are considered as they are, and are not stored in an aggregated
form per se, even if they can be compared with aggregated historical data
(discreet metrics) when checking for alerts.

The continuous metrics measure such things as the price of an order or the time
an order resides in the orderbook before it is traded.

5.3.3. Alert types
The purpose of the surveillance system is to trigger alerts when possibly non-
allowed market behaviour is detected for any one instrument. This is done in two
ways; continuous metrics are evaluated as soon as they can be calculated, and
discreet metrics are evaluated once every aggregation period.

Each alert type relates to one of the described metrics. Alerts are organised into
alert groups. The purpose of this is to offer a way to define alerts whose
definition build upon several comparisons between metrics and the
corresponding benchmarks. By combining several alerts into alert groups, one
can configure more complex alerts, built from the inspection of several of the
metric processes in combination. Since a given illegal market conduct has its own
“fingerprint” in terms of metric patterns (as is further explained in 5.2.1
Detection process), the surveillance user can define one alert group for every
non-allowed action monitored. The fingerprint is built from individual metrics, and
the whole alert group is triggered when all of the individual metrics display
strange enough values at the same time.

Some alert types are quite straightforwardly tied to a metric, while others have a
more complicated relationship to their underlying metrics. Every alert is
associated with a threshold level variable, and every alert group has a sensitivity
setting.

The evaluation itself depends on the types, and the number, of alerts in the alert
group considered. The general rule is that if there are several alerts in the alert
group, the defined threshold level value of the individual alerts is used for the
evaluation of the alert group. The level is an absolute value for the metric

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

33(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

considered. In this case, if each individual alert threshold level is surpassed by the
corresponding metric for the examined instrument, the alert group is triggered,
and is thereafter made visible to the system user. This case is quite
straightforward, and the actual result of the evaluation of the alert group
depends on what kind of alerts that the group contains.

It gets more interesting when there is only one alert in the alert group. In this
case, the defined sensitivity parameter of the alert group is used for the
evaluation. This parameter measures the number of alerts wanted by the
surveillance user during each time period. Hence, it is related to the statistical
distribution of the metric considered. The way that the comparison between the
metric and the historically founded statistical model is done depends on the
statistical model used for the specific metric, and we will return to this issue
shortly.

Ideally, it should be possible to tie the trigger level of several-alert alert groups
to the statistical metric distributions as well. However, this requires a more
thorough statistical treatment, and the present scope cannot cover this aspect.

In the following, each alert type is described, along with its relation to the
underlying metric.

Alerts relating to discreet metrics
Volume alerts
There are in fact three different volume alerts. They are all based on different
metrics and are standardised with historical volume data:

• Total trade volume – this alert is triggered if the total traded volume in the
instrument is unnaturally high during an aggregation period. It is investigated
by comparing the discreet trade volume metric to historic aggregated trade
volume data.

• Total order volume – this alert is basically the same as the trade volume alert,
except for the fact that it is the discreet order volume metric that is used in
combination with historical aggregated order volume data.

• Individual order volume – here, the metric used is also the order volume
metric, but this time measuring the individual order volume for each client
and instrument over the aggregation period (thus, the continuous volume
metric). It is standardised with the historic, aggregated such individual order
volume data. Thus, the alert is triggered if the total orders of an individual
client during one aggregation period have “too large” a volume as compared
to the historic volumes for individual orders.

As an alternative standardisation for the volume metric (as opposed to historic
volume data), the total amount of stocks outstanding can be used. This means
that the alert is triggered whenever the order- or trade volume exceeds some
predefined percentage (predefined by the user) of the outstanding shares for

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

34(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

that instrument. However, this feature is not implemented in the current version
of the client application.

In the case of the volume alert, defining instrument groups should be useful when
the liquidity of the instruments considered is low, enhancing the number of
historical statistical observations for the volume and therefore improving the
forecasting potential and the accuracy of the alert checking procedure.

Beneficial ownership alert
This alert could be considered a variant of the volume alerts. It should be
triggered if trading takes place in significant volumes, affecting the holdings of a
single ultimately beneficiary owner, but where the gross trade volumes are very
elevated as compared to the net change in ownership for the beneficial owner in
question. Clearly, this means that the beneficial owner somehow has traded with
himself, for whatever reason. The trades themselves can take place by the
effectuation of several clients, each representing the same beneficial owner30.
Observe that this technique not only captures trading with oneself, but also
circulatory trading, given that the trading takes place within one aggregation
period and that the circle is fully completed – in other words, that the holdings
come back to their original owner in the end.

The investigating of this alert is done by comparing the discreet net trade volume
metric per beneficial owner and instrument, divided by its gross counterpart, to
the historical, aggregated process of such metric quotes. If the current metric
quote is “near enough” to zero, the alert is triggered.

A shortcoming in the current implementation of the client application is that no
attention is given to the absolute trading volumes, only to the relative
(net/gross). Ideally, smaller trading volumes should not trigger alerts.

Return alert
Similarly to the case of the volume alert, the return alert is produced if the
return from an instrument suddenly leaps “too high” above- or “too low” below
zero (indirectly indicating that the price also has leaped quickly). The metric used
to check for this alert is the return alert, standardised by historical, aggregated
return data.

The same type of low-liquidity instrument groups as in the volume alert case
should be applicable also in the case of the return alert, given that the
instruments in the same group are associated with companies similar enough.

Spread alerts
Just like with the volume alert, the spread alert is in fact three different alerts,
each associated with a different variant of the spread metric. They include:

30 A list of the parties representing each beneficial owner must be pre-configured by the user.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

35(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

• Relative bid-side spread alert – using the discreet relative bid-side spread
metric, standardised with historic, aggregated values of this metric, an alert
is triggered if the bid-side spread is “too wide” during an aggregation period.

• Relative ask-side spread alert – essentially the same as the bid-side
equivalent. However, this alert is rather triggered when the ask-side spread is
“too wide”, indicating suspicious activity on the ask side of the orderbook.

• Relative total spread alert – combining the two previous alerts, not taking
into consideration the side of the orderbook where the spread is widest.

Possibly, defining instrument groups for less liquid instruments or in less liquid
markets should also be usable in the case of abnormal spread detection. The
reason is that when the trading in an instrument is scarce, one order can have a
decisive influence on the orderbook, even affecting the best bid- or ask price
available. Since few new orders arrive each given time period, the observed
spread might not always well reflect the real liquidity for the asset. By averaging
over several instruments, a better understanding can be gained for the spread
process over time.

Correlation between actors' orders alert
This alert type should be triggered when the correlation between the orders
placed by a client and the orders placed by the client’s broker are “near enough”
to unity. This indicates that a piggy-backing31 activity is probable. The correlation
estimator is calculated by the use of the well-known formula

)()(
),(

),(
YDXD

YXC
YX =ρ ;)()()(),(YEXEXYEYXC −=

 []1,1),(−∈YXρ .

Thus, the alert type is investigated by the correlation between the values of the
discreet individual order volume metric for two different market participants.
The standardisation takes place with respect to the historical values of this
process, as calculated from the saved metric values from the database.

However, the checking for this alert is not currently implemented in the client
application. One reason for this is that client/broker log data is not guaranteed
to be accurate on the JIWAY platform.

Orderbook alert
This alert type is quite different from the ones described so far. As for, e.g., the
volume- and return alerts, they relate directly to a measurable discreet metric.
However, the orderbook alert, as well as the underlying metric, is more
complicated. The underlying metric used is the simplified orderbook of an
instrument, and should be triggered when the current value of this metric is

31 See above under 5.1 Types of unlawful conduct

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

36(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

significantly “different” from the historical values of the metric, as estimated
from aggregated data from the database.

How to define “different” is the core problem here. It is probably impossible to
find a general definition of the term “different”, since different types of
instruments have different typical orderbooks, depending heavily on the liquidity
of the instrument and on the market type. Stocks with lower liquidity (that are
more prone to price manipulation) usually have an orderbook that is more volatile.
One large order can move up and down in the orderbook as the price of the
instrument changes, hence causing large estimated values of the volatility. Also, a
large class of orderbooks should be considered “normal”, or at least not
abnormal enough to trigger an alert.

As the problem of defining “different” is so difficult, the generic evaluation model
described below is not appropriate when checking for the orderbook alert type.
Instead, specific models (that are also described below) are needed32.

In the current implementation of the client application, the checking for this alert
type is not possible.

Alerts relating to continuous metrics
Suspicious orders/trades
There are also a couple of alert types relating to continuous metrics. One of
them is the suspicious orders/trades alert, which is triggered if an order enters
at a price too far outside of the best bid/best ask spread, or if a trade is settled
at such a price. To check for this alert, the discreet orderbook metric is used.

When it comes to the standardisation of continuous metrics for the evaluation
of suspicious trade alerts, the current implementation of the client application is
somewhat limited. Regarding orders, it only allows the user to indicate a minimum
distance from the best ask- or best bid price, respectively, as a fraction of the
price of the instrument, for an alert to be triggered. For trades, it suffices for
the trade to take place outside the spread to trigger the alert. It would be
better if these alerts were checked for by the standardisation of the continuous
price- and volume metric (measuring the characteristics of the individual order
or trade) with historical, discreet metrics in a more intelligent manner. For
example, by relating the continuous order volume to the historical aggregated
individual order volume, one could eliminate alert triggers for very small,
malpriced orders. Also, by standardising with the discreet spread metric, a more
realistic view on the magnitude of the price distance to the best bid- or ask price
would be gained.

Immediately traded orders
This alert should be triggered when two orders are in the orderbook for only a
short period of time before they are traded against each other. However, the

32 See below for a more detailed discussion on these topics.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

37(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

current implementation of the client application triggers the alert only when one
order is matched without first entering the orderbook at all. It also has the major
setback of not checking if both of the matched orders have been immediately
traded.

The continuous metric of orderbook time should preferably be standardised with
some minimum time value configured by the user. Finally, and in the same way as
for the suspicious orders/trades alert, there should be a standardisation with
respect to the order sizes, so that orders don’t give rise to triggered alerts if
they have not a significant volume.

5.4. Benchmarks
As we have seen, alert checking is done by comparing a relevant metric to some
kind of benchmark for this metric. The metrics and benchmarks vary depending
on the alert type checked for. However, each test is carried out in a similar
fashion, aiming at controlling the triggering frequency of each alert. In this
section, a general framework is presented for benchmark definitions, along with
actual applications.

5.4.1. Time series
The propagation of a measured metric can be seen as a series over
time () { }L,2,1,0, ∈itX i , where the ti’s represent discreet points in time. It is this
time series that is to be compared to the relevant benchmark. In this, the
benchmark must be represented with a statistical model of some sort,
describing the propagation pattern of X over time.

The goal of the surveillance process is to capture non-normal behavior in the
market. In order to accomplish this, it is necessary to know what is to be
considered to be “normal”. This is where the benchmark comes in. At ti, the
underlying statistical model is used to forecast the closest future value of X, i.e.

()1+itX . As long as this forecast is of good quality, it can be used as the
benchmark for what is to be considered a “normal” propagation of the metric
considered. If the actual value of the metric at ti+1, ()1+itX is “too far” from the
forecasted value, a suitable alert should be triggered.

Definition: The innovation of the process is the variable ∗−=
ppp ttt XXY , where

∗
ptX is some regression on { }1,,2,1,0; −= piX

it
L , forecasting the value of

ptX
given all values of X up to (but not including) this point.

Using this definition, the value of
ptX should be considered to be “non-normal” if

ptY is too large.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

38(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

In order to calculate the value of the forecasted value ∗
ptX , there are three

major classes of forecasting procedures that can be used33 :

• Subjective forecasts are based on judgment, intuition, know-how or any other
type of intelligent use of information external to the actual time process.

• Multivariate forecasts are also dependant on external information. However,
in this case the analysis is more formalized. Instead of taking into
consideration such vague concepts as “market knowledge”, one draws
information from a broader field than just the time series per se. For
example, the interest rate propagation can be used as an input variable in the
forecasting of certain stock price curves.

• Univariate forecasts, finally, represent a more naïve, but simpler way to
forecast a time series. Here, only the historical values of the time series
itself are used in the actual forecast of its future values.

In the present surveillance process, a combination of univariate- and subjective
forecast is used. The surveillance client needs to be fully automated at the same
time as it is facing tough, time-critical performance demands. Therefore, a
univariate forecast methodology has been judged to be accurate enough for the
task at hand – to identify suspicious market behavior. However, a subjective
forecast methodology has to be applied in order to judge the severity of the
detected behavior, in light of the other information available to the surveillance
personnel34.

In a future version of the surveillance client, multivariate forecast methodologies
should, however, be considered. Using a larger percentage of the total amount of
available information, more precise alerting can be accomplished. The price to pay
for this is more connections to external data sources and a larger calculations
workload, leading to longer processing times. Also, the subjective aspect must
always be incorporated before taking legal action.

5.4.2. Standard technique
By default, {Xi} is assumed to be a white noise process35 with a bias term. Thus,

L,2,1,0=
+=

iiiX εµ , where µ is the (constant) bias term and ε I is the white noise.
This means that the different Xi’s are assumed to be independently and normally
distributed, with a mean equal to µ and with a constant variance36. This situation
can also be viewed as if each new measured value for the metric is considered to
be a random sample from a set of such values following a continuous normal
distribution.

33 Chatfield (1985)
34 Here aspects such as the general market situation and the news- and clearing information becomes
important.
35 Anderson (1976)
36 For more elaborate models, see below.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

39(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

The normality assumption can often be motivated to some degree using the law
of large numbers. No respect is paid to possible changes over time of this
distribution. Rather, it is assumed to be completely described by its mean µ and
variance σ2.

These parameters are estimated using the following standard (efficient and
expected value consistent) estimators:

∑
=

• =
N

i
iX

N 1

1
µ

∑
=

∗ −
−

=
N

i
iX

N 1

2)(
1

1
µσ .

N may be chosen to be any number large enough to give a fair estimation of the
distribution. In the current implementation of the surveillance system, N is set via
the configuration.

Under the assumption of a white-noise process, we can now forecast the next
value of this time series. We know that the regression term ∗

ptX is equal to µ*,

since the
it

X are independent. Therefore, the best forecast for
ptX is simply µ*.

Using the historical standard deviation σ*, we can now form a forecast interval
for

ptX , on the form:

∗−∗ ⋅+±= σµ α
1
2/

* 1
1 N

t t
N

X
p

,

where t is the student-t distribution quantile37.

According to Pankratz38, this forecast interval can be treated as an approximate
confidence interval, under the condition that one uses a sufficient number of
historical data points in the estimation of the distribution

Thus we have a way to construct an approximate confidence interval for
ptX for

any given value of λα. Given this, we are free to make tests of the type

H0: µ =
ptX ,

on, e.g., a significance level α. If H0 turns out not to be rejected, this means that
the difference between the mean and the most recently measured value of the

metric (i.e. µ−
ptX) is within the α−1 quartile of all values for

ptX , as expected

having the information contained in the series { }1,,2,1,0; −= piX
it

L . Thus, all

37 We use the student-t distribution to form the interval since the standard deviation is approximated.
38 Pankratz (1983)

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

40(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

values for which H0 is rejected can be defined as “too far” away from the
expected value to be “normal”.

Expressed differently, on average α% of all values for
ptX will be treated as

“non-normal”, under the assumption that the values are indeed normally
distributed and that we use sufficiently many measurement points of historical
data. By choosing α in relation to the average amount of measurement points for
the considered metric, one can control the overall frequency of “non-normal”
metric values, thus controlling the amount of alerts to tend to on, e.g., a daily
basis.

In order to choose a suitable value for α, one can use the following relation:

() () xx =Φ⇒=Φ − αα ,

where Φ denotes the student t distribution function.

5.4.3. Alternatives
However, there are many situations where it is not very efficient to use the
default alert production model. Often, the metric data cannot be properly
represented by a simple one-dimensional time series. Also, even if we have one-
dimensional data, there might be a more intelligent way to look at the metric
data, less naïve than the simple normality assumption under which the standard
model works.

In this section, we will look at a number of examples where this is the case. We
start with an example of more complex metric data. Thereafter, some examples
of more elaborate models for the treatment of a one-dimensional time series
are presented.

Regression model
Regarding the orderbook alert, the metric is more complicated than a simple
one-dimensional time series. Rather, the metric input is in the form of a
simplified orderbook at every point in time. Every orderbook holds information
about the number of instruments available to the market (sell or buy) on every
distinct price level. An example of the structure of such an orderbook is shown in
the following figure:

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

41(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

The aggregated orderbook for some stock is shown at a particular moment in
time. The aggregated order depth is shown for each tick level. The market spread
is between 50 and 52. Below 50, market participants are willing to sell
instruments. For example, at the 49,5 level, there are a total of 300 instruments
offered for sale in the market. On the buy side, the converse apply. Of course
sellers cannot be found on the buy side and vice versa, since these orders will be
matched right away by the market place engine.

As can be seen, it is often possible to see a pattern in the aggregated orderbook.
In this case, a simple parabola function has been fitted to the order depth
function with a rough conformance. As a matter of fact, this method can very
well be used in order to define the look of a “normal” orderbook. When the market
undergoes drastic changes (because of attempted market manipulation or for
some other reason), the parameters of the fitted function can be expected to
change accordingly.

This way, as long as one has defined a regression with acceptable approximation
to the “normal” state of the orderbook, it is possible to investigate the
propagation over time of the regression parameters instead of the orderbook
itself. What we have done is to construct a model on top of the input metric.
Having defined such a model, the model parameters can be treated in a fashion
similar to the standard technique described above. Naturally, the standard
technique would have to be modified to account for possible non-linearities in the
regression model.

Aggregated order book

-800

-600

-400

-200

0

200

400

600

800

1000
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

price

N
u

m
b

er
 o

f i
n

st
ru

m
en

ts
 o

rd
er

ed

Figure 5 - A sample aggregated orderbook with regression line

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

42(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

no

yes

Forecast

Stage 1: Identification
Choose one ore more ARIMA models as

candidates

Stage 2: Estimation
Estimate the parameters of the model(s) chosen

at Stage 1

Check the candidate model(s) for adequacy
Stage 3: Diagnostic

checking

Is model satisfactory?

Neural network
Another alternative method to treat metric data is to use an AI (Artificial
Intelligence) solution, e.g. by the use of a neural network. The orderbook metric
should be ideal for this, but one can imagine applying a neural network on any
metric data. Specifically, the one-dimensional time series metric of the standard
technique example above could very well be treated using such a method.

In order to gain a more concrete picture, consider the orderbook metric. In this
case, the neural network is fed with such aggregated orderbook measurements
until it has “learnt” how an orderbook normally looks. Then, it can be used as a
filter, singling out the orderbooks that do not comply with the “normality” criteria
as defined by the parameters of the network function.

5.4.4. Time series models

Box-Jenkins framework
Except for more imaginative methods (such as the regression model and AI
approach described above), there are of course other, more elaborate, methods
to treat simple univariate time series data such as the returns- or volume metric
data. These methods often include manual judgment procedures in order to
choose the model to use, how many parameters to incorporate, etc. However, it
turns out that in the present surveillance example, the process can be
automated without too much lack of relevancy.

In this section, a standard framework for the analysis of time series – the Box-
Jenkins framework – will be
discussed as an illustrative
example of how the design
of the automated
surveillance process can be
carried out. Thereafter,
attention will be given to
some specific time series
models.

Consider the Box-Jenkins
iterative approach to
construct a model for a
given time series data,
adapting the model
parameters to fit the
historical data, and
consequently using the
model to make forecasts
for the time series.

Figure 6 - Overview over the Box-Jenkins Framework

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

43(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

As can be seen in Figure 639, the Box-Jenkins approach uses so-called ARIMA
(Auto-Regressive Integrated Moving Average) models to model the time series’
propagation over time. These models constitute an extension of the classical
ARMA (Auto-Regressive Moving Average) models. In this context, we will
introduce the standard ARMA models on an intuitive level. Thereafter, we will
quickly move on to GARCH (Generalised Auto-Regressive Conditionally
Heteroscedastic) models. The reason for this is that these are more usable for
the financial motives studied herein than what is the case for ARMA models.

However, the Box-Jenkins framework depicted above is highly illustrative for the
methodology when using not only ARIMA models, but also, e.g., GARCH models. Its
main components apply equally well to the modeling using GARCH models.

The ultimate goal for a time series analysis is to be able to forecast future values
of a certain series. In our case the forecast deals only with the next value of the
measured metric, but it is not uncommon to forecast more distant time series
values. In order to do this, the first thing to do is to plot the actual given time
series data. Unfortunately, there were (for different reasons) difficulties
coupled with obtaining good data from the JIWAY exchange. Therefore, this
paper cannot dwell further into this aspect of the process. From now on, it is
assumed that the models used in the surveillance process are suggested and
iteratively developed by a person with access to satisfactory historical time
series data.

The next phase of the Box-Jenkins framework – to estimate the parameters of
the model chosen – can be fully automated, given that a suitable model has been
chosen in stage 1. Stage 3 can also be automated. Even though we do not deal
with this aspect in this thesis, there exist tests to check for the accuracy of the
estimated model parameters.

With the results from these tests, the surveillance process operator can modify
the underlying time series model in correspondence with the specific needs of
every metric. This brings us back to stage 1 in an iterative fashion. As long as the
surveillance process is active, the underlying models need to be attended to,
since the underlying financial metrics tend to change over time.

5.4.5. ARMA models

Generalities
So far, we have assumed that each time series is independent over time, i.e.
{ }ZiX

it
∈; are each independent variables. However, such an assumption is quite

naïve. As a matter of fact, there are several ways that one can model time
dependency for a given time series. One of the more classic methods is to model
the time series as an ARMA process.

39 Pankratz (1983)

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

44(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

We start with defining the process X on the discreet time { }L,2,1,0=t . Since the
observations of our present applications all take place on constant time intervals
this limitation does not pose a problem. Thus, each stationary process { }ZtX t ∈,
that obeys to the equation

qtqttptptt XXX −−−− −−−+=−−− εθεθεθϕϕ LL 11011 , (1)

under certain conditions described below admit to a minimal ARMA(p,q)
representation. We can always eliminate the 0θ term by simply defining a new
process []ttt XEXY −= . Therefore, from now on we always assume that 00 =θ .
{ }tε is a white noise process. (1) can be rewritten according to

tt BXB ε)()(Θ=Φ , (2)

where B is the backward operator and the functions)(BΦ and)(BΘ are
polynomials of order p and q, respectively.

If the time series indeed obeys to (1), and if

• 0≠pϕ and 0≠qθ ;

• The roots of)(zΦ and)(zΘ are located outside of the unit circle;

•)(zΦ and)(zΘ do not share any common roots; and

• { }Ztt ∈;ε is the above said white noise process, with a variance 02 >σ ,

this means that the time series is auto-regressive of order p and has a moving
average of order q. This implies that { }[] { }[]mttttt XXXEXXXE −−− = ,,,, 101 LL ;

()qpm ,max= , i.e. the expected value of the next element in the time series is
only dependent on the m previous values of the series.

Forecasting
When applying an ARMA model to a given time series, the first thing to do is to
choose the value of the parameters p and q, with guidance of the general look
and pattern of the actual investigated time series sample. The next step is to
figure out the proper values of the parameters of the ARMA(p,q) model
(qp θθϕϕ ,,,,, 01 LL). There are several ways to do this estimation as well,
including methods based on the auto-covariance function of the series as well as
pseudo maximum likelihood methods. Once all the model parameters have been
properly estimated, one can predict the expected value of the next value of the
time series according to the following formula:

110111 +−+−+ −−++++= qtqtptptt XXX εθεθθϕϕ LL (3)

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

45(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

Additionally, since we assume that the { }tε are normally distributed, we can say
something about the distribution of 1+tX . Before we can specify this distribution,
we need to say something about the innovation of the ARMA(p,q) process.

Theorem40: Let

== pjz
j

j ,,1;
1

L
λ

 be all the roots of the polynomial

() p
pzzzz ψψψ −−−−=Ψ L2

211 , and let { }pjz
j

j ,,11
1

L∈∀>=
λ

. Then there

exists a series () ∑
∞

=

=Π
0i

i
izz π such that () () 1=ΠΨ zz .

Lemma41: Under the same conditions, () () 1=ΠΨ BB , where B is the backward
operator.

Thus, if)(zΦ does not have any roots on or inside the unit circle, (2) can be

rewritten as { } ∑∑
∞

=
−

∞

=
−

− +====ΘΦ=
110

0
1 1)()(itit

i
ititt BBX επεπεπε . This, in

turn, means that the innovation of the process { }ZtX t ∈, is nothing but tε .

To conclude, when we have estimated the ARMA(p,q) model and its parameter
values, we can forecast the next value of the investigated time series using (3).
This forecasted value has the same distribution as tε . Since tε is normally
distributed, we know that the error of the forecast is also normally distributed.
Finally, this result makes it possible to apply the hypothesis test of the standard
technique described above on the forecasted value of tX , obtained using the
ARMA model.

For financial purposes, many processes (such as the price process) are seldom
stationary over time. In order to solve this issue, one has to differentiate the
process repeatedly until stationarity has been reached. In our case, we simply
transform the price process into a returns process. If this process is not
stationary, one can differentiate the process until so is the case. However, this
last step is not taken in the current pilot implementation.

5.4.6. GARCH models

Generalities
The price process of a certain share, or any other process related to some
financial instrument, does however not generally allow itself to be accurately

40 “Séries Chronologiques” (2000)
41 ibid

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

46(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

described by an ARMA model. The reason for this is that the volatility of the noise
process { }Ztt ∈;ε is not generally constant. The individual noise terms are indeed
normally distributed, but their respective variances ()tV ε are not independent
over time. For example, consider the price process of some listed stock. At
certain time periods, the volatility tends to be high. Inbetween these periods, the
volatility is lower.

At each time, the instantaneous volatility of the price process depends on the
volatilities of the past, giving the price process non-linear characteristics. In
order to include these properties into the analysis of financial time series, Engle42
introduced the ARCH (Auto-Regressive Conditionally Heteroscedastic) models in
1982. These models are only concerned with the behavior of the noise process,
and are able to describe many financial time series more accurately than other
models, such as pure ARMA models (with homoscedastic errors). However, many
problems are still not addressed, some of which include43 :

• In reality, many series do not assume continuous values. For example, company
share prices have a minimal resolution equal to the tick size.

• Sometimes, the fundamental underlying assumption of normal errors breaks
down, due to, e.g, low liquidity.

• ARCH models are parametric specifications that operate best under
relatively stable market conditions. Although ARCH is explicitly designed to
model time-varying conditional variances, ARCH models often fail to capture
highly irregular phenomena, including wild market fluctuations (e.g., crashes
and subsequent rebounds), and other highly unanticipated events that can
lead to significant structural change.

Gouriéroux (1997)44 constitutes a good introduction to ARCH and GARCH models.
In the following, these models are treated briefly for a general understanding.

In an ARCH model, the autocorrelation of the volatility of the terms in the error
process { }0; ≥ttε is modelled by simply adding such an autocorrelation
expression to the ARMA(p,q) model studied before. Hence for an heteroscedastic
model of order one:

++=
Θ=Φ

− ttt

tt

c
BXB

µαεε
ε

2
1

2

)()(
 (4)

tµ is a white noise process. Hence,

() () () () () ()1
2

1
2

−− +=⇔++= tttt VcVEEcEE εαεµεαε .

42 Engle (1982)
43 Gouriéroux (1997)
44 ibid.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

47(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

We start by investigating the { }2ε process itself. A formal definition of the
ARCH(p) process is then the following:

()
()

+=

=
++= ∑∑

=
−−

−

=
−

p

i
ititt

ttp

i
iitit cV

E
c

1

2
1

1

1
,

22
0

εαεε

εε
µεαε

One can find the following criteria for the existence of the process:

• If the process is to be unambiguously defined, we need to apply the initial

condition ()
α

ε
−

=
1

2
0

c
E .

• In order for the 2
tε to be non-negative, sufficient conditions are 0>α and

ttc µµ ∀≥+ 0 .

This autoregressive representation of the error process does come closer than
a simple ARMA or ARIMA model to the behaviour of many actual financial time
series. However, one can also add a moving average part. GARCH (Generalised
Auto-Regressive Conditionally Heteroscedastic) models do this, by modelling the
{ }2ε process with the use of an ARMA model. The formal definition is:

()
()

()
()

−=

++==

=

++++= ∑∑∑∑
=

−
=

−−

−

=
−

=
−

ttt

q

j
jtj

p

i
itittt

tt
q

j
jtj

qpMax

i
iitiit

h

hchV

E

c

2
11

2
1

1

1

,

1

22

0

,

εµ

βεαεε

εε

µβµεβαε

In fact, this is an ARMA(max(p,q),p) representation for the { }2ε process. In this
case, however, the error term µt does not necessarily have a constant variance
(since it depends on ε2 itself).

In the simplest case, one can describe a time series observation directly with an
ARCH model. Otherwise, one can describe the innovation process rather than the
initial process using the model. Also, there are many extensions of the ARCH
model, except for the GARCH model family. For example, it is perfectly feasible to
introduce an ARMA model with GARCH errors:

tt BXB ε)()(Θ=Φ , where { }2ε satisfies a GARCH(p,q) model.

This latter model might be suitable for analysing volume data over time. On the
other hand, the simple GARCH model (where the initial process is modelled, rather
than the innovation process), does not apply to this case – the volume data is not
a zero-mean, normally distributed time series. This model is more accurate for
use with returns data. As always, an iterative development cycle must be applied,

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

48(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

where the models used are evaluated and adjusted over time with respect to the
quality of the alerts produced.

5.4.7. Additional extensions

Seasonality
In general, we can express a time series X(t) as X(t) = T(t) + S(t) + r(t), where T(t)
is a “slowly” changing trend part, S(t) is a seasonal part, and r(t) is the stochastic,
centered residual part, respectively. Regarding T(t) and r(t), the above described
ARMA and ARCH models are adequate tools for describing the time series.
However, there are more effective ways to deal with seasonality.

The easiest solution is to deseasonalise the series before attempting to fit it to
a model. Once the series has been cleared for the seasonal component and
fitted, the estimated model can easily be used for forecasting by simply adding
the seasonal component in retrospect.

One simple way to estimate the seasonal component is the following45. It assumes
that the period p for the seasonality is known in advance. This assumption might
seem unnecessarily restrictive at a first glance. However, this is not the case in
our financial application. First of all, there are different seasonal patterns atop
of each other – over the time of each trading day, there is a distinct pattern in
the volume series data (sometimes even in the returns data), at the same time as
there are several well-documented phenomena operating in the more long-term,
such as the January boom, etc. Common to all of these known cyclic behaviors is
that their respective periods are known in advance. What is left to estimate is
the exact pattern of the seasonal component.

If there is no trend part T(t) to take into consideration, the problem is rather
simple. In this case, we replace T(t) with m – the mean of the process. Since the
seasonal component per definition has a zero mean, we can simply make the

estimation ()∑
=

==
T

i

xiX
T

m
0

1ˆ , where T is a entire multiple of the period p. Then,

we can write () () ()tdstdstS pp++= L11 , where ()

 ∈+=

=
elsewhere

Zkkpit
td i ;0

;;1
. Of

course, we have that ∑
=

=
p

i
is

0

0 .

If we form () () ()∑
=

++=
p

i
ii trtdsmtX

0

, we can estimate the si by the use of the

ordinary least-square method. The more periods we use in the process, the more
accurate the result. At the same time, one cannot use too much data if one
wants a minimum of trend disturbance.

45 “Séries Chronologiques” (2000)

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

49(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

However, in financial time series problems, there are often such tendencies
present. For example, consider the investigation of the intra-day returns
pattern. In order to get a detailed and accurate picture of this pattern, one
typically needs to look at trading data for many consecutive days. But the market
experiences times of hausse followed by baisse periods. Therefore, there is a
general trend on top of the typical intra-day variations in the return to pay
respect to.

In order to estimate the T(t) at the same time as the S(t), we first form:

() () () () ()
2

1
;)(

1
0

11 −
=+=++++=+= ∑∑∑

−=−=−=

p
mttitr

p
itT

p
itX

p
tY

m

mi

m

mi

m

mi

υϕ .

Here we assume that p is odd. The case when p is even is analogous. Since we sum
over one whole period, Y(t) is approximately deseasonalised. Further, since T(t) is
a slow component, () ()tTt ≈ϕ . Thus, we estimate T(t) and S(t) by the following
iterative scheme:

1) Calculate Y(t).

2) Estimate ()tϕ from Y(t).

3) Estimate () ()ttT ϕ̂≈
)

.

4) () () () ()trtStTtXtX +≈−= ˆ)(ˆ * .

5) Estimate S(t) from ()tX *ˆ and deseasonalise the series data.

6) Iterate using the new, deseasonalised data.

The estimation in the step 5) can be done as described above. The one in step 3)
can be done by the use of a parametric model, which is estimated using the least
squares method. For example, a polynomial of sufficient degree should be well-
adapted enough to be able to capture most of the trend in many cases. In yet
others, other function classes may be more appropriate.

Finally, one can also do the whole estimation by using a parametric model of both
T(t) and S(t), estimated by the use of the least-squares method. An example of
such a parametric model is:

()

+=

+++=

)sin()cos()(

10

t
p

i
t

p
i

tS

tataatT k
k

π
β

π
α

L
,

where k should be chosen sufficiently large to capture the detail of the trend.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

50(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

6. The pilot implementation

After having dealt with the general approach and the mathematical background
of a generalised surveillance function, it is not time to move focus to the actual
situation faced by the present thesis. The aim is to apply the methods developed
above to the current situation.

We start by briefly describing the prerequisites on the JIWAY exchange, after
which the application is treated in detail.

6.1. The JIWAY exchange
As stated above, for different reasons our access to good data from the JIWAY
exchange has been somewhat limited. The total amounts of data is very large.
However, only a small fraction relates to orders and trades at the JIWAY
exchange itself – the rest of the data relates to off-exchange events. A
consequence of this has been that for each instrument we have only had hard
figures relating to a very limited number of orders per trading day. The situation
has been even worse when it comes to matched trades. Sadly, this fact
somewhat limits the scope of this thesis, because of two major reasons.

Firstly, considering the large sizes of the historical market place data available
for the testing of the client/server system, it has not been possible to use more
than a week’s worth of data. During this time, the trading activity in each
instrument is quite limited. This makes an extensive testing of the surveillance
algorithms difficult. Instead, I have chosen to focus on the theoretical aspects of
the task at hand, viewing the client application developed as merely a pilot
implementation shedding some light over the possibilities and limitations of such
an automatic surveillance system architecture.

Secondly, when the activity level is so low, it is difficult to estimate how usable
the surveillance tools developed herein actually are. The price process for any
given instrument based solely on its orderbook is with necessity a piece-wise
linear function of time, in the case of JIWAY for the most part with quite long
linear segments. It is difficult to see how this process could have normally
distributed errors, hence making many of the considered metric/benchmark
tests invalid. Specifically, this is the case for the default, normality-assuming
test, as well as the different time series models discussed below. However,
instead of letting this fact limit the methods developed, I have tried to assume a
wider perspective, trying to present some usable methods in the general
surveillance situation. Hence, the methods investigated herein should be usable in
a generic market, preferably with a larger daily turnover per instrument than is
the case for the available JIWAY data.

Having defined the scope and level of ambition, we now turn to study the pilot
implementation itself.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

51(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

6.2. The application
In this section, the system architecture of the client application is presented
briefly. Where so is applicable, more detailed information and comments on
specific features can be found in the Javadoc files created or the source files of
the client directly.

6.2.1. System overview

As can be seen in Figure 7, the market surveillance system is divided into two
parts – a server and its client. There can be many clients connected to the same
server. Usually, the server should run on one node, and be connected to one or
several clients running on autonomous machines elsewhere on the network or via
the Internet. However, as can seen in the figure below the server is connected to
the client via a TCP link, so the server can in fact run on the same machine as the
client. The Figure also shows that each application has its own separate database
storage.

In the transaction log, market information from the trading system is queued,
and subsequently sent to the server node. This information reflects all market
events occurring in the market place (plus some additional information about the
rest of the world) in the form of transactions. One transaction represents a
distinct event and can be the entering of a quote, a trade that has occurred, a
change in an orderbook, etc.

The server application reads the transaction records sent out from the
transaction log, filters them, enriches the information by adding information
about, e.g., the market participants and consequently furthers it to the different
active client applications. Exactly what information is sent to each client depends
on the demands of the client in question. Additionally, the server keeps an
internal transaction database, in which the transaction data is saved
intermediarily. The reason for this is to facilitate query functionality on historical
data. Also, some initial data processing is done before the transaction data is put
into the database.

Figure 7 - Client-server system architecture overview

Transaction
log

TCP link

Server Application Client Application

Transaction
database

Aggregation
database

Server
process

Client
process

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

52(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

All active clients have one TCP link to the server for each active information
subscription. Also, each distinctive query from a given client node creates a new
TCP link, over which the information is sent from the server. After the whole
query has been delivered, the new TCP link is shut down.

The task of the client application is to communicate with the server, and carry
out market surveillance using the data provided over the TCP link. Also, the client
keeps a database holding aggregated, historical metric data to use in the
surveillance process. Finally, the client also hosts a GUI to let the surveillance
operator interact with the system.

The server application is entirely written in C++ on a Windows NT platform. It
uses Microsoft MFC functionality for TCP/IP communication etc. For more
information, please consult Peter Bergenwald’s thesis report.

The client application, on the other hand, is written in Java. For the TCP/IP
communication and the XML- and JDBC46 functionality, the add-ons available
from Sun Microsystem47 are used. The GUI is based on Swing48 components. As
will be discussed more in depth below, the choice of Java as the implementation
language has not led to ideal performance in time-critical situations. However,
Java offers a way to quickly set up a working application. In the present situation,
Java proved to be powerful enough to effectively demonstrate the thoughts
behind the surveillance system. For the more processor intensive parts of the
application, such as mathematical calculations, C++ native code is used for
increased speed.

Both the server and the client uses a MySQL database. This is a simple, yet
powerful, database that is available free of charge for non-commercial purposes
online49.

6.2.2. The XML Interface
As explained, it is the server that provides the client with all information to be
used in the surveillance process, including the actions taken in the market place
as well as details regarding instruments, brokers, market makers and end clients.
The information is sent as responses to requests sent by the client to the
server.

The communication takes place over a two-way XML protocol, specifically
designed for the present surveillance system. It specifies the format in which the
client poses requests for information to the server, as well as that in which the
server sends information responses in reaction to these requests. In the
Appendices of chapters 9 and 10, two different versions of such XML protocols
are detailed. Here, only an overview of the most important characteristics of

46 The JDBC (not an acronym, but often thought of as standing for “Java DataBase Connectivity”) software is
available for free at the java.sun.com web site.
47 See java.sun.com for more information.
48 Ibid.
49 www.mysql.com is the official site of the MySQL database. Here the software is available free of charge.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

53(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

these protocols is given – please refer to the Appendices for a more complete
discussion.

The XML interface protocol version 1.0 (please see Appendix 2: XML Interface
version 1.0) is quite strongly mapped to the JIWAY exchange, and to the CLICK
exchange system. This works fine as long as the surveillance system is to be used
solely with this system. Ideally, however, the thesis’ solution should be capable of
running on a broader selection of exchanges and exchange systems. Therefore,
me and Peter Bergenwald have proposed a more general XML communication
protocol (please see Appendix 3: XML Interface version 2.0) to be used over the
interface. This new protocol incorporates as detailed information as possible at
the same time as exchange- or exchange system-specific information is hidden.
This way, the same client could be used with a variety of exchange systems, e.g.,
with the SAXESS system by OM. It is possible to incorporate exchange- or
exchange system-specific functionality (such as the CLICK system’s hedge
orders) by only carrying out minor modifications to the client application. The
same is the case for any special functionality on different exchanges. In order to
format the transaction information from the exchange system into XML
information, on the other hand, a new server has to be implemented on every new
exchange to be surveilled.

One problem using XML as the base for the protocol is that XML is tagged and
textual. Therefore, an XML communication tends to be very talkative. However,
since the server eliminates redundancy in the data sent, the XML-formatted
information sent to the client remains within the same magnitude as the original
log data from the exchange (which in turn comes in a binary format). Please refer
to the thesis report by Peter Bergenwald for a more thorough treatment of this
topic.

Today, the bandwidth on a standard LAN is broad enough to handle the
information load over the XML interface between a server and a client. Should
this constitute a problem, however, it is always possible to add compression to
the data actually sent. This way the bandwidth load could be decreased
considerably.

Requests
Which records that are sent out by the server to each connected client depends
on what the client has asked for. This is done in a request, using the same XML
protocol. Such a query can either be a query or a subscription.

A subscription can only be placed for future exchange data – the start time for
the subscription is automatically set to the current time. It can further be
delimited in terms of transaction types, instruments, stop time, customers,
users and clients. After the subscription is placed, the server produces XML
records of all the relevant information from the exchange in real-time (or at
least in semi-real time, i.e., as quickly as possible).

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

54(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

A query, on the other hand, is always concerned with historical data from the
internal database. The user can limit the scope of the returned information in the
same dimensions as for the subscription, with one exception. In the query case,
an individual order number (the internal exchange order number) can be specified,
to track an individual order’s path through the system in retrospect.

There is always a third type of request, namely a “light” subscription. Here, the
server sends out only the most vital information to the subscribing client. The
exactly information to send out is configured in the server application.

The format for all requests is the same for both of the XML interface versions.

Responses
All data arriving to the client can be divided into records, each one representing
an individual transaction50 on the exchange. Each such record is informationally
self-contained, i.e. it contains all data available for the respective trading parties
and so forth. For instance, this means that individual instruments are referred to
by name in a readable manner rather than by some internal code. As a matter of
fact, there is no special query for instrument-, client- or customer data, since all
this information is contained in the relevant records.

The mapping between the exchange transactions and the XML records is close,
but not necessarily one to one. Specifically, many transactions are never sent –
either because the client has not asked for them, or because of the fact that the
server clears out some information-redundant transactions in the initial
information processing.

By the introduction of the XML interface version 2.0 (presented in Appendix 2),
the congruency is further decreased in favour of a more generic and flexible
protocol. However, single transactions are still represented by single information
records, since related transactions often are separated in time in an
unpredictable manner.

As opposed to requests, the information sent from the server differs between
the two XML interface versions for subscription. On the other hand, the
response XML records are produced in the same format for both queries and
subscriptions.

As an example, the information records that may arrive when using the CLICK-
operated JIWAY exchange is derived from the transaction types presented below
in Table 1:

50 Recall that a transaction represents a single event on the exchange.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

55(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

These transactions are mapped into response records by the server application.

Please see the Javadoc or the source files for the client application and the log
documentation for the CLICK system for further information about the exact
meaning of hedge orders, improvement quotes, etc., and about what information
is relevant to-, and available from, these different types of information records

Information and surveillance
Using Table 1 as an illustrative example, the information available from a typical
exchange is on a very detailed level. During the life span of one single order, there
are several transactions, each reflecting an event in the market, such as the
entering of the order into the orderbook or the trading of the whole order, or a
part of the order. All of these transactions occur at different points in time, and
information records describing each event will therefore be sent out to the
client as they occur. In light of the currently large order volumes on the typical
exchange, the total amount of information records sent to the client is massive.

The task of the client application is to extract as much relevant information as
possible from the response records received, while still limiting the data load by
cutting away the not-so-relevant information. This is done by the process of
aggregating the data received over such dimensions as time, instruments,
clients, etc. By aggregation, two purposes are fulfilled. Firstly, the information is
cut considerably while still maintaining control over the relevant market patterns.

Information record type Contains information about Metric(s) affected

New order entry Newly arrived order Orders and trades
New quote entry Newly arrived quote None
New trade New trade Orders and trades

Beneficial ownerships
External best bid / offer The BBO of the far-away market

place upon which the stock is
parallel-noted

None

Internal best bid / offer The BBO of the market system, as
defined by the current orderbook

None

Hedge order entry Newly arrived hedge order None
Hedge order execution Hedge order that has been traded

on a far-away market place
Orders and trades

Improvement quote The definition of a newly arrived
definition of an improvement quote
rule

None

Instrument status The status of an instrument None

Orderbook change Any change in the current orderbook Price-, volume and
orderbook

Table 1 - Transactions on the JIWAY exchange

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

56(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

Secondly, the general trends in the market are isolated more concisely.
Subsequently, this aggregated data is used, in conjunction with the incoming
information on the most detailed level, for the surveillance of the market. In the
following section, we will study how this is done in practice.

6.2.3. Client application
As stated above, the client application is coded in Java. The code consists of 13
packages, with a total of 73 classes and approximately 10,000 rows of code. This
is quite a substantial amount of code, owing greatly to the diverse tasks of the
application. The majority of the code, however, does not relate to the core
surveillance loop. Rather, since this is a pilot implementation for demonstration
purposes, there are many functions (such as the GUI), that have been
implemented without flexibility and robustness as the primary concern. The core
functionality, however, has been more thoroughly tested – both under different
conditions and under large workloads. Javadoc with comments has been
produced for all classes of the application.

In Figure 8 below follows a (slightly modified) UML-style51 overview of the
packages of the client application. Not shown in the Figure are data wrapper
classes. The code is divided into packages, shown in the Figure along with their
interaction, though in a somewhat simplified way. It does not take into
consideration that some parts of the application are run in separate threads and
may be instantiated in several copies at the same time. For a more detailed
explanation, please see the description of the individual packages below. For a full
understanding of the functionality, please see the Javadoc52 for the client
application classes or the source code itself. In the UML diagram, the naming
convention used is the following:

[package task description] : [Java package name]

The system communicates with two external actors – the surveillance system
user and the XML TCP link. The user receives information from-, and sends
configuration input to, the system via a client GUI. The XML link receives and
sends XML information via the Link manager. The XML translator takes care of
the actual translation of data into the XML format.

In the heart of the client application, the central data manager is found. It
communicates with the client GUI and the XML link manager, and processes the
surveillance data. In the surveillance process it uses a MySQL database (via the
Database IO package, using the Java Sun JDBC functionality), where aggregated
historical data is saved. Special surveillance- and math packages are also used.
Variables global to the system are kept in separate classes. This is the case for
the configuration of the surveillance process as well as for different constant
variables used for various purposes.

51 UML, Unified Modelling Language.
52 This, as well as the source code, can be obtained from the author upon request.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

57(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

Normally, the flow of financial information runs via the central data manager to
the client GUI. However, it is also possible for the system user to request specific
information. When this is the case, the information flow is handled by the use of a
special client GUI data manager, set up in essentially the same way as the central
data manager to communicate with the XML interface. For every new query, an
additional XML interface is started in order to handle the incoming response XML
records.

Application dynamics
In this section sequence diagrams will be used to describe the dynamic behaviour
of the major parts of the application.

Start-up
Figure 9 depicts the start-up dynamics of the client application.

The client GUI package contains the main method of the application. Its client
class starts by instantiating the main data manager class, and sets it off running
the main surveillance loop. The data manager, in turn, instantiates the
surveillance- and statistics classes. Thereafter, the database connectivity is set
up. It is assumed that the MySQL database engine is up and running before the
client application is started. The information queue is also created.

Figure 8 - Client Application overview

Link manager :
LinkManager

XML translator :
XMLTranslator

Database IO : Ext
JDBCConnector

Client GUI :
ExtClient

 : Surveillance
system user

 : XML TCP link

Central data manager :
ExtDataManager

Data surveillance method
s : ExtSurveiller

Information object queue :
ExtInformationQueue

System configuration
: ExtConfiguration

System constants
: ExtConstants

Statistical methods
: ExtStatistics

Client GUI data manager :
GUIDataSupplier

Information object queue :
ExtInformationQueue

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

58(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

Thereafter, the data manager creates the XML link manager, which in turn
creates an XML translator. Submitting the information queue as an argument, a
new default surveillance data subscription is set up with the server application.
This default subscription asks for the relevant surveillance data for all traded
instruments on the exchange. After this point, surveillance data is sent to a
queue in the link manager as soon as it arrives to the server from the exchange.

Receiving information from the server
Please refer to Figure 10 for the information receival dynamics. For every active
subscription, there is one dedicated link manager. Since there is exactly one
subscription open when the client application has been started (the default
surveillance subscription), there is only one link manager running just after start-
up. If the user makes queries for specific information at a later stage, a new link
manager is set up to deal with the query response. Every link manager works in
the same way receiving information records from the server.

The TCP/IP connection to the server is polled continuously for newly arrived
information records. When there is a new piece of information to gather, the link
manager reads it, and passes it on to the XML translator for parsing. The return
from the XML translator is an internal Java object containing the same
information as the XML record received from the server.

This Java object is placed in an information queue recognized by the data
manager. For the default subscription, the data manager is the central data

Figure 9 - Start-up dynamics

XML translator

Data Manager

Surveiller

Statistics

JDBC

Information Queue

Client GUI

Link Manager

create, start

create

create

create, connect

create

create, start subscription

create

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

59(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

manager. If the information records relate to a query, the data manager is a
purpose-defined query data manager.

Information processing
We now turn to study the internal information processing more in detail, with
reference to Figure 11.

Recall that the surveillance loop features two loops. The continuous loop
continuously polls the link manager-associated information queue for new
information records. When such new information is found, it is stored in the
internal memory structure in an aggregated fashion together with the rest of
the data received since the last aggregation for that instrument class.

For each information record received, two additional tasks are performed.
Firstly, the surveiller class is asked to check for any continuous alert groups that
should be triggered for the newly income piece of information. The surveiller uses
the statistics class to do the statistical calculations. This class, in turn, uses
native C++ code for heavy mathematical calculations. Exactly what calculations
are done depends on what benchmarks models are defined.

Secondly, the client GUI is updated with such information as price- and volume
data for display. If there has been one or many triggered alert groups,
information about these are also transferred to the GUI package. The
communication between the data manager and the client GUI takes place via a
collection of common data queues, that map directly to list boxes in the GUI. This
solution is perhaps not the optimal with regards to flexibility demands for a full-
fledged GUI. Remembering that the GUI is only a rudimentary prototype, though,
this method works fine for these purposes.

Every time that the data for a certain instrument class needs to be aggregated,
a new turn is conducted in the discreet surveillance loop. Firstly, the data that
has been aggregated during the previous aggregation period is saved into the
database, using the JDBC package. Thereafter, the surveiller class is used to
check for triggered alert groups in the considered instrument class, in the same
manner as in the continuous loop. However, in the discreet loop, the benchmark
models may be recalculated prior to the actual checking. The frequency of this

Figure 10 - Information receiving dynamics

XML Translator

Link Manager

Information Queue

translate record

queue record

poll TCP/IP connection

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

60(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

recalculation is configurable. In order to recalculate the benchmark models for
the instrument class, historical data is needed. This data is collected from the
database before the recalculation takes place.

If any alert groups have been found to trigger, information about these alert
states is communicated to the GUI by the use of the above said common data.

During the whole surveillance process, the data manager also updates the
database with information about new exchange data (instruments, clients,
customers, etc.) and triggered alerts. This is not, however, showed in the figure.

Requesting additional information
From the GUI, it is possible for the user to request additional historical market
information. Presently, this is only possible to do for information produced in the
market around the time for a triggered alert state and stored in the server-side

Figure 11 - Information processing dynamics

JDBC

Data Manager

Surveiller

save aggregated data

alert checking

Statistics

Information Queue

Client GUI

poll

send information

recalculate benchmarks, check for alerts

Client GUI
send alert information

Co
nt

in
uo

us

lo
op

D

is
cr

ee
t

lo
op

Surveiller
alert

checking

Statistics
check for alerts

JDBC
get data

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

61(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

database. However, it would be rather straight-forward to implement more
elaborate ways for the user to exploit the information in this database, as well as
that stored in the client-side aggregated database.

As can be seen in Figure 12 below, when the user requests for additional
information, the query produced by the client GUI results in very much the same
execution pattern as the start-up procedure described above. As a matter of
fact, the GUI data supplier is nothing but a simplified data manager. The main
difference is that no surveillance is performed in the GUI data provider – rather,
the collected information is simply fed to the client GUI for display in a pop-up
window.

Thread design
In the present implementation, the client application runs three main threads:

1) The link manager runs in an autonomous thread, polling the TCP/IP
connection for new information and putting the information found into an
information queue.

2) The central data manager runs in another thread, polling the information
queue and processing the information found in the main surveillance loop.
It has a data area common with the client GUI, where it puts the results
from the surveillance process.

3) The client GUI runs in the third thread, showing information to the user
and accepting configuration input.

When a request for additional information is made by the user, an additional
thread is created for each such request. Each request thread is structured in a
similar way as the central data manager.

Figure 12 - Additional information request dynamics

XML translator

GUI Data Supplier

Information Queue

Client GUI

Link Manager

create, start

create

create, start subscription

create

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

62(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

With the above discussion on the dynamical behaviour of client application, let’s
now turn to study the individual packages more in detail.

Constants package
This package holds the global constants of the surveillance system. Both the
constants- and the configuration package variables are declared static – that
way they are available to any class that knows about the package.

The variables themselves are of a diverse nature. They include definitions of the
source of XML information, different default values for the system as well as
certain global surveillance settings.

Configuration package
The configuration package holds the entire configuration of the surveillance
system. It acts as a container holding global variables – each class that knows of
the package can read from- and change the configuration settings.

In a release version of the surveillance system, the configuration should be fully
supported by the GUI, in order to allow run-time configuration. However, in the
present implementation of the client application, the configuration of the
surveillance process has to be done in the code. On the other hand, for the
purpose of demonstrating the theoretical surveillance framework this has not
constituted a problem.

The configuration settings can be divided into three major areas: instrument
categorisation, alerts and other parameters. Since the instrument- and alerts
configuration more or less defines the surveillance scope and –process, these
areas will be carefully described in the following.

Instrument categorisation
Instrument categorisation provides a way for the surveillance system operator
to structure the surveilled assets in manageable way.

Instruments
The instrument is the basic unit in the surveillance process, representing a listed
company stock type. New instruments are automatically added to the
configuration when they are discovered in the data received from the server53.

Instrument groups
For certain instruments, the market liquidity is low. It can therefore be practical
to have the possibility to cluster some instruments together when analysing the
market data. For instance, by looking at the return development over time for a
small portfolio of low-liquidity instruments, one might obtain a fairer picture of

53 Recall that all XML data sent from the server application is informationally self-contained.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

63(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

the current market picture for each of these instruments by observing them as
a group rather than by looking at the individual return histories. This is because
since the liquidity is low, the price curve (which is piecewisely linear) is often
stable over a substantial time before jumping to a new, possible quite different,
level. Hence, an estimation of the volatility for the individual instrument becomes
very imprecise.

This clustering is done by the use of instrument groups. Each instrument in an
instrument group is analysed individually, but the individual instrument data is
compared to some sort of aggregated statistics over every instrument in the
instrument group. Thus, the statistical groundwork is more reliable for the
individual instrument. The drawback of this strategy is, of course, that there is
not a perfect correlation between the market data of any two instruments. Som
of what is won in statistical precision is lost in relevancy. In order to obtain a
good trade-off, one has to carefully choose the instruments that should belong
to the same instrument group.

Every instrument must belong to an instrument group. If the liquidity of the
instrument is sufficiently high to treat it separately, it should be put in an
instrument group of its own. One instrument can also take part in several
instrument groups – it is, e.g., possible to have several instrument groups, each
with a wider selection of instruments than the previous. This way, a varying
market liquidity can be handled by simply choosing which instrument group to use
in the alert checking.

Instrument classes
Subsequently, instrument groups are put into instrument classes, clustering the
surveillance settings for different instrument groups. The instruments of every
instrument group have the same settings for the resolution of the market data
that is saved to the historical database. The settings for how often the
parameters of the statistical models used for forecasting and alerts production
should be updated are also shared within the same instrument class. Therefore,
the instrument class abstraction is practical when looking at many instruments
that approximately share the same market characteristics.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

64(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

As is the case for instruments in instrument groups, each instrument group
must be put into an instrument class, at the same time as a given instrument
group very well can be part of several instrument classes.

Consider Figure 13 above, illustrating a part of the configuration that a
particular surveillance system user (Bill) has set up. One of the configured
instrument classes is called “Illiquid stocks”. In this class, all instrument groups
that contain low-cap instruments are put. For all of these instruments, Bill
reckons that the need for historical data is about the same, and he also thinks
that the statistical models used can be updated at roughly the same intervals
and still be valid.

The “Illiquid stocks” class contains, among others, an instrument group called
“Small-cap industry”. In this instrument group, Bill has put some of the low-liquid,
small industry stocks that he is currently surveilling. Since he does not think that
any one of these stocks has liquidity enough to effectively provide a historical
statistical record to compare the collected metrics to (and since he knows that
they usually behave similarly in the market), he clusters them into one instrument
group. So far, he has added Smith’s Black Smith & Sons and Barney’s Textiles,
two companies that have been unusually quiet on the stock market so far this
year.

As can be seen in the Figure, Bill has also added some alerting configuration. Let’s
see how this works:

Alerts and alert groups
As the surveillance client receives new data from the server, it compares this
data with historical data. If the data is somehow suspicious – showing proof of
possible non-allowed market behaviour – it triggers alerts in order to focus the
attention of the surveillance system operator on the suspicious situation. The
way to tell the system for what instruments to do alert checking, and what alert
types should be considered for these instruments, is to define alert groups, each
containing a variable number of alerts.

Figure 13 - Example of an instrument structure

"Illiquid stocks"

"General
suspicion"

Volume Spread

"Front-running"

Instrument class

Instrument group

Individual instruments

Alert groups

Alerts

"Small-cap
industry"

Smith's Black
Smiths & Sons

Barney's
Textiles

Return

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

65(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

Very much the same way as for individual instruments, an alert group always
belongs to an instrument group. As a consequence, every instrument that
belongs to a certain instrument group will be checked for the alerts contained in
the alert groups that belong to the same group.

Analogously, every alert must belong to an alert group, at the same time as one
alert can belong to several alert groups. As each alert represents one basic alert
type related to the investigation of a single surveillance metric, this should in
fact frequently be the case. The type of the alert simply represents the metric
to check for suspicious market behaviour – return, order volume, etc., reflecting
different assumptions about how the market behaves when being manipulated.

Alert groups come in two types – the ones containing only one alert and the ones
containing several alerts. For the first type, it is (in the current implementation)
possible to set a sensitivity parameter for the alert group. This is a measure on
how sensitive the analysis should be, expressed as the desired average number of
alerts per day. For example, if the sensitivity parameter is set to 10, the system
calculates the level of the considered statistics that needs to be surpassed in
order for the expected value of the number of produced such alerts per day
becomes 10. This is done on basis of the historical data for the metric in
question. 54

For the other type of alert group – the one with several alerts in it – the alert
has an absolute threshold level parameter. In this case, an alert is produced if the
level of each individual alert of an alert group is surpassed, at the same time, by
the respective metric value for the considered instrument.

Some types of alerts (discreet alerts, such as the unnatural returns alert) are
investigated every time the data is aggregated into the database. Others
(continuous alerts, such as the alert for suspicious individual orders) are tested
for in real-time, as the transaction is sent from the server to the client
application. Because of the fact that they are investigated at different times,
discreet and continuous alerts are not allowed in the same alert group.

Returning to the case of Bill and his surveillance configuration process, take
another glance at Figure 13 above. For his Small-cap industry instrument group,
Bill has defined two different alert groups. The purpose of the first one (“General
suspicion”) is to catch a broad palette of possible market interference, such as
cornering, pump-and-dump, etc. Consult Figure 3 (also above) for information on
what to look for when checking for different alerts. The alert group contains two
individual alerts – Volume and Return – each checking for unnatural metric values.

Since the General Suspicion group holds more than one alert, the absolute level
parameters of the alerts are used when deciding whether an alert is triggered or
not. As Bill argues, all of the instruments in the instrument group considered
have approximately the same market characteristics. Therefore, it is relatively

54 See the section on benchmarks above for more information on how this calculation is actually carried out.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

66(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

straightforward to find maximum (and also minimum, in the case of the Return
alert) allowed levels for the values of the volume- and return- metric.

However, Bill is also interested in checking for front-running activity in these
instruments. Therefore, he has defined the alert group “Front-running”,
containing the single individual Spread alert (since Bill knows that if the spread
suddenly increases, this might be a sign of front-running activity). Since the alert
group has only one alert, the sensitivity parameter of the alert group is used
when deciding if it should be triggered or not. Hence, Bill simply assigns a value
indicating how many alerts that he wishes to receive from this instrument group
every day. After this, the system itself will calculate the appropriate threshold
level.

Found below is Table 2, summoning the different alert types available. Some of
these are implemented in the pilot application, some should be implemented in a
release version.

Other parameters
Apart from the definitions of instruments, instrument groups, instrument
classes, alerts and alert groups, there are also some other settings available in
the configuration of the surveillance client:

• A list of instruments that will send out historic transaction information to
the client GUI when an alert has been triggered on them. The time span of
this information is also configurable, and is defined as the time before- and
after the actual trigger of the alert from which to query information. The
query is made with the server, hence producing data on a transactions level.
Presently, this feature is not in use. Instead, the GUI package itself will query

Alert type Alert category Implemented

Excessive volume (trades/orders) Discreet (checked at every
aggregation)

Yes

Excessive return “ yes

Excessive spread “ yes

Non-normal orderbook “ no

Beneficial ownerships “ yes

Correlation between orders “ no

Suspicious orders Continuous (checked at the
arrival of the information)

yes

Immediately traded orders “ yes

Suspicious trades “ yes

Table 2 - Available alert types

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

67(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

for this historical information when the user clicks on the presentation of a
triggered alert group in the GUI window.

• Lists of the instruments that send out price-, order volume-, trade volume-
and orderbook information, respectively, to the client GUI in real-time. As
mentioned above, the information sent to the GUI is not in the form of
transaction data, rather in a GUI-specific data format. The actual transferral
of data takes place via a common data structure, making it possible for the
GUI to graph the activity of instruments continuously.

• The price definition that the system uses. The alternatives available at the
moment are the average of the best bid- and ask prices for the instrument
or the price of the last trade made55.

• The definition of return that is used.

• The definition of a suspicious order. This definition is made in terms of a
constant specifying, as a fraction of the instrument price, how far from the
best ask- or bid price that an order can be without being “suspicious”.56

• A number of constants specifying whether or not the surveillance system
should check for a number of different alert types at all. These include the
correlation between the orders of third-party clients as compared to their
brokerage firms, suspicious orders and –trades, and whether the system
should check for orders that are traded without first entering the orderbook.
These parameters should be used for testing purposes only.

• The choice of statistical method for the different alert types. The default
setting is a mean/variance analysis, but for alerts having some other
statistical model associated with them, this setting can indicate that this
alternative model should be used. An example of such an alternative model is
the GARCH model used with the returns alert. See the section 5.4
Benchmarks above for more information about this.

Link manager- and XML translator packages
These packages handle communication to- and from the XML interface. Normally,
this communication will take place over a TCP link with another computer on the
same network or elsewhere. However, the link manager also has the capability to
read from a file containing XML in the appropriate format (for testing purposes).
There are two different versions of the XML protocol, of which the version 1.0 is
the one currently in use.

However, as described above, this version lacks some generality because it is
tightly coupled with the JIWAY exchange and the CLICK trading system. As a

55 See section 5.3.2 for a more detailed discussion on different price- and return measures.
56 Other ways of defining a suspicious order are possible. Please see Appendix 4: To do list for the client
application.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

68(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

matter of fact, much of the information treatable over the XML interface
version 1.0 (Appendix 2: XML Interface version 1.0) is directly related to specific
features of the CLICK system running on JIWAY.

Version 2.0 (Appendix 3: XML Interface version 2.0), on the other hand, has not
been practically implemented. But, since it is a much more general approach, it
should constitute a more extendable solution. When version 1.0 in many ways is a
simple translation of the information arriving from the JIWAY exchange, version
2.0 is a way to send generic market surveillance information in real-time.

Both of the XML interface versions incorporate functionality for sending
information requests (subscriptions and queries) as well as receiving responses.
The requests are the same in both cases.

There is no specific login- or logout procedure. Rather, a surveillance client is
considered logged in when it places a subscription or a query to the server.
Further, there is no encryption, nor compression in the data flow. In a release
version of the XML interface, the security aspect needs of course be taken much
more seriously than has been the case for the present thesis. The information
sent over the XML link is classified, and encryption would be an absolute
necessity. However, as discussed above compression might not be necessary as
long as the information transfer itself is not a bottleneck for the surveillance
system.

In Appendix 2: XML Interface version 1.0 and Appendix 3: XML Interface version
2.0, respectively, the two interface versions are presented in detail. Nowadays,
the standard procedure for specifying XML protocols is with an XML schema. For
the present purposes, however, the authors have judged it fully sufficient with
the simpler DTD (Document Type Definition) of the XML interface protocols.

As can be seen in Figure 9 - Start-up dynamics and Figure 12 - Additional
information request dynamics, the client GUI always runs an XML link manager in
order to get information from the server. Every time this happens, the link
manager is run as a separate thread. The information request is either in the
form of a subscription for real-time information or a query for some specified
set of historic information. The link manager translates the query or subscription
into the appropriate XML text string and sends it to the server over the TCP/IP
connection. Simultaneously, it sets up an XML parser waiting for information
records to arrive in response to the request. This parser is a standard SAX57
solution, using libraries provided by Sun at the java.sun.com web site. The
information is received, parsed and put into the appropriate internal data
structures for further transferral to the data manager that originally initiated
the link manager. When the data collection is done (i.e., when the XML document
ends), the XML parser dies. Since there is no special session management in the
XML protocol used, this can be seen as a user logout.

57 SAX, Simple API for XML.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

69(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

The information thus received is sent to the data manager via an information
queue, to which the XML parser as well as the data manager has access. This
queue serves the double purpose of evening out the data flow and letting the link
manager thread and the data manager thread communicate.

Figure 14 below shows the activity over the XML TCP/IP link more in detail. A
couple of things are worth pointing out specifically. Firstly, the link manager
thread continuously polls the TCP/IP connection for new information. When it has
something to receive, the information is summoned in the textual XML format.
Thereafter, it is passed to the XML translator for translation into one of a
collection of internal information objects. The XML translator is used in the other
direction when formulating a query or a subscription to be sent to the server,
going from internal information objects into XML text.

Secondly, the session management is tightly coupled with the XML structure
itself. The “login” of a client is the request itself. Thereafter, the server accepts
the “login” by sending the XML header of the response document. The server
later “logs the client out” by sending the end tag of the XML document.

Figure 14 - XML link manager details

XML Translator

Link Manager

Information Queue

translate query
or subscription into XML

send query or subscription

poll TCP/IP connection

TCP/IP connection

receive XML header and response records

translate respnse record
into Java object

receive end of XML document

enqueue response object

query- or sub-
scription object

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

70(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

Data manager package
This package is the central handler of surveillance information in the client
application. Initiated by the client GUI package with a subscription for surveillance
information, it forwards the subscription to a link manager that in turn is
initiated by the data manager itself. After these start-up actions, the data
manager starts reading from the information queue that continuously is filled
with information records, arriving from the server and processed by the link
manager and the XML translator as described above. Each information record is
read and is, depending on its type, processed and saved for future reference.
Refer to Figure 11 above for a schematic view of the data manager algorithm.

Data segmentation
Surveillance data is categorised in several dimensions. One of these is by
instrument, directly affecting the behaviour of the data manager when handling a
piece of incoming information. As described above, all instruments that are
active in the system belong to at least one instrument group, and all instrument
groups belong to at least one instrument class. Therefore, the surveillance
actions performed as a response to each information record depends on which
instrument the piece of information relates to. In short, all data analysis and
aggregation is completely separated with respect to different instruments. The
instruments belonging to the same class are saved at the same place in the
internal memory structure, aggregated at the same point in time as well as
treated statistically at the same time. The instrument grouping is considered
only when calculating the various parameters for the historically based statistical
models used to check for market alerts.

Every instrument, for which information arrives in the information queue, is
added to the internal memory structures. Also, recall that the incoming XML
information is self-contained. Specifically, this means that full information on
each instrument, client, customer, etc. is incorporated into the information, and
that it is possible to maintain the database solely with the contained information.
Therefore, the instrument data is also added to the database if not already
added. All such new instruments are assigned to a default instrument class and a
default instrument group, defined in the constants package. In the current
implementation, new information about existing instruments, clients, customers,
etc. is not updated in the configuration and the database. However, this function
should be implemented in a release version of the client application.

The data is further categorised depending on what statistical interest it has for
the instrument in question. Three internal memory structures exist, each
concerning one distinct statistical interest:

• Price-, volume- or orderbook data

• Orders- and trades data

• Beneficial ownership data

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

71(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

Some information affects several of these areas. Depending on the statistical
interest, the information contained in the record read from the information
queue is added to the appropriate internal memory structure.

Database interaction
All of these three data structures are of an aggregation type. That is, they
contain the currently aggregated value since the last aggregation time.
Depending on the settings for the configured instrument class, all aggregated
data for the instrument class at hand is written to the database every so often,
and the internal memory structures relating to this instrument class are zeroed.
Therefore, the adding of the aggregated data to the database itself is not very
time consuming (apart from the actual writing to the database). Instead, the
aggregation takes place immediately and continuously.

However, the writing itself to the database does not take place in a thread of its
own. Rather, program control is taken over by the database IO package. As the
writing operation may take quite some time, a sound add-on to the client
application should be to put this into a separate thread58. See below for more
information about how the data is stored in the database.

GUI interaction
The configuration also gives the opportunity to define certain instruments for
which information (price, volume and/or orderbook data) is supplied to the client
GUI in real-time. If the record read regards one of these configured instruments
and information, it is branched to the client GUI thread as well. As mentioned
above, the connection is through the use of a client GUI data structure known to
the data manager, so that the client GUI is updated immediately.

Surveillance actions
The supplied information is checked for suspicious market behaviour in two ways,
depending on whether the alert group considered contains discreet or
continuous alerts. As can be seen from Table 2 above, certain alerts relate to
data collected over some time period and somehow aggregated or averaged over
this time period. These alerts are only checked for in conjunction with the
aggregation of the data for the affected instrument class. Other alerts can be
related to a particular order, trade or other information entering the system.
They are checked for immediately on arrival of the order or trade in question.

When an alert is triggered on an instrument, information about this alert is sent
to the client GUI for display. This communication is dealt with in the same way as
for the real-time information distribution to the client GUI described above – i.e.,
the data manager has knowledge of some of the client GUI’s data structures and
write directly to them.

58 Please see section 6.3 for further details on database performance.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

72(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

At certain intervals, the surveiller package is called upon to refit the statistical
models that are used to compare the different statistics with when checking for
alerts. See below for more information on this matter.

Please see the sections 5.3 and 5.4 for a more detailed explanation on how the
data collection and alerts checking processes actually work.

When the XML document ends, and the link manager thus stops sending data to
the information queue, the central data manager dies. In order to continue the
data collection, a new central data manager needs to be started. However, this
new central data manager starts with its internal memory structures blank, so it
needs to recalculate the statistical models in order to be able to perform alert
checking.

The only time the data flow is stopped as a consequence of an ended XML
document is of course time-limited subscriptions and queries (that contain a
limited number of records per definition). However, the issue of a stopped
central data manager brings light upon a problem in the current implementation
of the client application.

Namely, there is currently a weak support for day-to-day operation of the client.
The internal memory structures are adapted to a new day at a configurable time
during the night, but this only works if the data manager is up-and-running 24
hours per day without interruption. In a realistic setting, this is not practical.
Instead, an operations unit should be implemented on top of the client
application. Such a unit should take care of restarts, calendar management, etc.

GUI data provider package
Once the client GUI has received information about an alert that has been
triggered, it has the power to generate a query for more precise information
about the market situation around the time for the alert. This query is executed
by the initiation of another data manager, called a GUI data provider and running
in a different thread from the central data manager.

In many ways, this new data manager proceeds in the same way as the central
data manager. It initiates a link manager with the request for information, and
then awaits the information records put into an information queue by the link
manager. However, it does not carry out any surveillance, nor does it send any
information to the database. Instead, it simply forwards all the information
received to an internal client GUI data structure, which (in a similar manner to the
situation above, when sending information to the client GUI) is known by the data
manager.

When the data collection is done, the new data manager dies. Several such data
managers may be initiated by the client GUI, several of which may also run
simultaneously. Every new such GUI provider runs in an individual thread.
Therefore, the processor load might be considerable when initiating several
queries at the same time to the server.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

73(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

It is also possible to start a new data manager to answer a query not directly
related to the triggering of an alert. In the current version of the client
application, it is not possible to pose queries to the external database. All queries
must be addressed to the server (and thus pass by the XML interface), yielding
answers in terms of detailed transaction information. It would be desirable to
have the opportunity to pose requests for aggregated historical information to
the external database directly. Please see the Appendix 4: To do list for the client
application for more information.

Client GUI package
This package is of a temporary nature, merely providing an illustrative
surveillance GUI draft, and is therefore not dealt with in depth here. However, it
might be of interest to give an overview image of the relationship between the
client GUI and the rest of the client application.

In short, the client GUI receives three different types of data, all from the
central data manager or the GUI data providers when present:

• real-time information on price, volume and/or orderbook changes for the
instruments so configured;

• real-time information about triggered alerts; and

• historic trading information as responses to queries.

Further, the current GUI implementation can:

• create and start data managers and GUI data providers;

• show information received from these data managers; and

• let the user pose queries to the surveillance system for clarifying market
information.

Below follows a number of screenshots of the current implementation of the
client GUI, together with some brief explanations. These pictures could add some
understanding of how such a GUI could look in a release version. Such a version of
the GUI should of course be more comprehensive. It should specifically constitute
a complete UI in terms of system configuration, operation and data investigation,
and be completely integrated with the underlying surveillance functionality.

The current Java implementation of the GUI is structured around a central tab
control. Each tab represents a basic function of the GUI – either information
display or user input.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

74(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

The configuration tab
of the current GUI
implementation
merely allows the
surveillance user to
choose for what
instruments to view
real-time information.
Such information is
available for best
bid/offer, prices and
order- and trade
volumes.

Under the alerts tab,
the user can view
information on
triggered alert
groups. Every row in
the table represents
one alert – several
such alerts make up
an alert group. By
double clicking on an
alert, additional
information about the
market is displayed.

In the request tab,
the surveillance user
has the ability to pose
custom-made
requests to the
system. As of now,
only the possibility of
queries to the
server-side
application is
implemented.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

75(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

Under the prices-,
order volumes-, trade
volumes- and
orderbooks tabs,
real-time information
is displayed. The
available instruments
to view information
for are specified
under the
configuration tab.

Database IO package
This package encapsulates the database I/O operations of the client application.
It uses a standard JDBC connection to access a relational MySQL database.
Tables are created and deleted, and records are added, deleted and read by the
use of standard SQL59 statements via the JDBC connector classes. Notably, the
central data manager creates the entire database structure on start-up.

Below follows a brief summary of the relational database structure of the client
application. For a more detailed view, see Appendix 5: Database structure. The
database In the database, the following data is stored:

• Aggregated instrument-specific data for each instrument.

• Aggregated data about orders and trades from the market system.

• Aggregated beneficial ownership data.

• Configuration of the system, including instrument classification and alert
structure.

• Information about instruments, clients, customers and special information
about what clients represent the same ultimately beneficial owner.

• Triggered alerts history.

Database table Information contained Primary Key

Surveillancedata_X (one
table for each
instrument on the
exchange)

Orderbook, trades and volumes for a
single instrument. X is the internal
instrument number.

Time + date

59 SQL, Structured Query Language.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

76(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

Database table Information contained Primary Key

Orderstrades Net and gross trades and orders for a
specific instrument, a client and a
customer.

Customer +
customer’s country
+ client + client’s
country +
instrument + date
+ time

Instruments Instruments and related information. Instrument

Groupedinstruments Instruments along with the
instrument’s respective instrument
group.

Instrument +
instrument group

Instrumentgroups Instrument groups along with the
instrument group’s respective
instrument class as well as other
related information.

Instrument group

Instrumentclasses Instrument classes along with relevant
information.

Instrument class

Clientswithsamebenefic
ialowner

Five clients with the same beneficial
owner. Some clients may be blank.

Client 1 + … +
client 5

Beneficialownerships Net and gross traded volume per
instrument and client.

Instrument + client
+ client’s category
+ date + time

Alerts Alerts and the alert’s respective alert
type and level setting, as well as the
respective alert group.

Alert

Alertgroups Alert groups along with related
information and instrument group
belonging.

Alert group

Alerttypes Alert type. Alert type

Triggeredalerts Alert group, alert along with threshold-
and actual sensitivity level, as well as
information on client and customer.

Alert group + alert
name

Triggeredalertgroups Alert group along with configured- and
actual sensitivity value, as well as
information on instrument
classification.

Alert group

Clients Client name and category. Client

Clientcategories Client category. Client category

Customers Customer along with related
information.

Customer

Countries Country. Country

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

77(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

Database table Information contained Primary Key

Clientcustomerrelation
s

Related client and customer. Client + customer

Automaticquerystatuse
s

Instruments. Instrument

Automaticquerybefore Days and time. Days + time

Automaticqueryafter Days and time. Days + time

Automaticreturngraphi
nstruments

Instruments. Instrument

Automatictradevolume
graphinstruments

Instruments. Instrument

Automaticordervolume
graphinstruments

Instruments. Instrument

Automaticbbographinst
ruments

Instruments. Instrument

Table 3 - Relational database layout

As the database I/O is not threaded in the current implementation, there are
some performance issues that need to be considered. Please see the section 6.3
below for further information.

Surveiller package
This package handles the actual surveillance of the collected, aggregated data. It
has two main functions – statistical model recalculation and alert checking. In
order to follow the development of the statistical pattern of the time series of
the instruments in an instrument class, it is necessary to recalculate the
parameters of the models used to forecast future time series values. However,
this recalculation takes some time, and should therefore not be carried out more
often than necessary.

Alert checking is performed each time the instrument class data is aggregated,
while recalculating is only performed once in a (configurable) while – even though
every recalculation is performed in conjunction with the alert checking process.
The configurable dimension of freedom for the time elapsed between every
calculation is namely the number of alert checks between every statistical
recalculation.

The recalculation procedure itself is contingent upon the specific model chosen
for the statistical interpretation of the individual data for the instrument class
at hand. Here, only an overview of the available options is given. For a more
thorough discussion on these matters, see the section 5.4 above.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

78(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

The base case is a simple mean/variance analysis. This interprets to calculating
the estimated mean and variance for the historical data, and evaluating new data
by the use of these estimated parameters. If the new data is “too far” from the
statistical mean (i.e., too many standard deviations from the mean), the alert is
triggered. By varying, and making additions to, this method, it can be used for all
of the alerts that are investigated using aggregated data.

For certain types of alerts, it is possible to define more elaborate statistical
models, taking into consideration such phenomena as seasonal- or daily variation,
time-variable volatility and trends. In the current implementation, such a model (a
GARCH(1,1) model) is defined for returns data. However, it is straightforward to
add statistical functionality to the surveillance system in the future. Models of
interest should be ARMA-GARCH models for volume and returns, some type of
regression model for the orderbook or an AI (Artificial Intelligence)
implementation. However, there is an abundance of statistical models to pick
from. As financial time series are studied intensely, more and more elaborate
models are constantly on the uprise.

The historical (aggregated) data for the recalculation process is retrieved from
the database. This retrieval is quite slow in the current implementation (please
see the section 6.3 below), slowing down the whole recalculation process. When
the data has been fetched, the calculation is performed by the statistics
package, either internally or by calling upon Java native code in C++. The latter
alternative is used for the GARCH analysis, but could be extended to every
calculation that is time-consuming (in order to speed things up). After the
recalculation is performed, the model parameters for every metric and every
instrument group are stored in the internal memory structure of the surveiller
package, and can be retrieved when needed for alert checking.

Each time the information is aggregated into the database, the surveiller is thus
called upon by the data manager, to check if any of the alerts that are defined
for the active instrument groups have been triggered. This alert checking is done
by comparing the most recent data aggregated for each instrument to the
historical statistical model parameters calculated for the relevant instrument
group during the last recalculation. This way, the statistical foundation of the
analysis is provided by all the instruments in the instrument group, whereas the
actual alert is triggered on the individual instrument. The criteria for the
instrument to have an alert being triggered is therefore to be too far from the
expected value for the rest of the instruments in the instrument group. Less
liquid instruments can be compared to a more solid history of data than would be
possible only with the data from that particular instrument.

For the alert types that are checked for on a continuous basis, the checking
itself is carried out by the central data manager package as the relevant
information arrives.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

79(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

6.3. Performance evaluation
One of the great challenges with this thesis work has been to implement a
system not only flexible yet powerful in the market surveillance task, but that
also is capable of handling the sometimes very large amounts of data produced in
an exchange system. In this section, we will investigate what the possible
obstacles for achieving this goal are. In conjunction therewith, we will describe
some areas of success, along with issues yet to be solved in a release version of
the surveillance client.

6.3.1. Capacity

Continuous information processing
The most basic criterion for the client application to function well is that it
should be able to handle all the data sent to it by the server without an excess
queue build-up. Since the treatment of data by necessity is serial, all links must
have a relatively high lowest level of performance. Several possibly weak links can
be identified:

If, on the one hand, the link manager / XML translator thread is to slow, the
server-side queue for the client will start to grow. Eventually, when the client’s
performance is too poor as compared to the server speed, the server will
disconnect the client from the flow of information.

If, on the other hand, the central data manager thread is too slow, the client-side
information queue will start to grow. In the current implementation, the queue
will not grow over 1000 records before the link manager starts to wait for the
central data manager to catch up. Such a standstill on the link manager side soon
also makes the situation critical for the server/client relationship, eventually
leading to a disconnection of the client.

As the trading day goes by, the typical mix of trading information received
changes, as well as the typical instantaneous data load. For example, in the
beginning of the day, a great number of records regarding the current status of
the traded instruments, as well as the best bid/offer rates at far-away market
places60, are sent in large chunks almost at the same time. This kind of behaviour
produces heavy data load peaks at certain times of the day. Depending on the
expected size and shape of these peaks, and the dips between them, the client
can be temporarily unable to keep up with the instantaneous data load.

60 A far-away market is a reference market where a contract is traded apart from on the considered exchange.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

80(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

In Figure 15 below, minute-wise data load over one trading day at JIWAY is
presented. As can be seen, the data flow is quite irregular, displaying relatively
large peaks every now and then. Also, there are large longer-term variations over
the day, with higher loads around the opening and closing of the market place. It
should however be noted that the client needs never have a maximum capacity
higher than that of the server, since all information arriving at the client has
been processed sequentially in the server beforehand. The exact effect of this
relationship depends on the maximum capacity of the server, but since a release-
product server application probably should have a larger maximum capacity as

compared to those of the individual clients, this aspect might be negligible.
Please see the thesis report of Peter Bergenwald for more information on this
aspect.

In the current implementation, and depending on the informational structure, the
client application has been tested to handle in about 2000 to 5000 records per
second, not counting aggregation or recalculation of data. It makes sense to
compare these numbers to the number of records in the CLICK system today,
and to the number of records that might be expected to be produced in the
future, on CLICK-run exchanges and others.

Let us assume that the log file data every day in a CLICK system amounts to
between 3 and 15 Gb61, and that the average size of a log record is 50 bytes62.

61 These are the approximate data loads today on the JIWAY and the ISE exchanges, respectively.

6:
13

:0
0

6:
40

:0
0

7:
07

:0
0

7:
34

:0
0

8:
01

:0
0

8:
28

:0
0

8:
55

:0
0

9:
22

:0
0

9:
49

:0
0

10
:1

6:
00

10
:4

3:
00

11
:1

0:
00

11
:3

7:
00

12
:0

4:
00

12
:3

1:
00

12
:5

8:
00

13
:2

5:
00

13
:5

2:
00

14
:1

9:
00

14
:4

6:
00

15
:1

3:
00

15
:4

0:
00

16
:0

7:
00

16
:3

4:
00

17
:0

1:
00

17
:2

8:
00

17
:5

5:
00

Time

N
u

m
b

er
 o

f
re

co
rd

s

Figure 15 – Relative data load per minute during one trading day on JIWAY

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

81(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

Therefore, the number of records produced over a trading day amounts to
between 60 and 300 million records, giving the average frequency of records µ
as:

2100
)60608(

60000000
1 ≈

⋅⋅
=µ records/s

10400
)60608(

300000000
2 ≈

⋅⋅
=µ records/s

First of all, every information record sent to the client has a counterpart in a
record from the log file. However, not all log records read in the server
application are sent to the client, since there is some redundancy in the log
information, and since not all the log data is of interest to the surveillance
process at all. In the end, only about roughly 50% of the records are sent to the
client application63 . So, we finally land in the vicinity of 1000-5000 records/s on
average, with the typical variations roughly depicted in the graph above.

As described in the introductory part of this report, the financial markets of the
world are growing at a tremendous pace. This is true also in the case of individual
market places64. It is not difficult to argue for the probability of a strong future
increase in the data load on a surveillance system like the present. Therefore, the
figures discussed above will need to be modified upwards as time goes by.

Other surveillance tasks
The processing of information records is, however, not the only thing that the
application needs to do. There are also some actions that are carried out not
continuously, but every now and then.

• The most frequently run, and therefore most time-consuming, of these is
the data aggregation. Here, no heavy calculation is done, but a potentially
large amount of data records are written to the database. As this
process is not implemented as a thread, the execution of the incoming
information records comes to a halt when aggregating the data, making
the client’s performance drop to almost zero during these periods
(provided the XML interface package fills up the information queue). Data
is typically aggregated on an hourly- or daily basis.

• Another action that is run every now and then is the recalculation of the
statistical models. This process should be run less frequently than the
data aggregation (typically daily, weekly or even monthly), but consumes
about as much processor time reading from the database as the

62 The size of the log file is expected to grow over time, so the surveillance system should be able to scale as the
demands grow. The average log record size is taken from our own investigation of log files.
63 Please see the thesis report by Peter Bergenwald for more precise information on how the information is cut.
64 Some rapidly growing exchanges include BrokerTech in New York and Stockholmsbörsen.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

82(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

aggregation counterpart does writing to it. More resources are needed
for calculations than when aggregating, but the time needed for the
maths diminishes when compared to the database I/O. At least, this is
true for the current implementation. If even more elaborate
mathematical benchmark models are to be added, the processing time for
these will naturally increase as compared to presently. Also, because of
the lack of data experienced, tests have not been performed for the
behaviour when the data series to regress are longer than a couple of
hundred time points, nor when the model calculated is near a singularity65.
These issues need to be tested and matched with an appropriate
mathematical library for the task at hand. Like the database aggregation,
the recalculation process is not run in a separate thread, producing a
heavy load on the server-side queue at the beginning of the data chain.

• Thirdly, there is the checking for triggered alerts, taking place every time
the data is aggregated. In the base case, this task is not very time-
consuming relative the database I/O. However, there is a dependency on
the average number of database records with information about
beneficial ownerships and orders/trades that need to be read database
during the process of alert checking. See below for more information on
this problem.

• Fourthly, the user can instruct the client GUI to send queries to the
surveillance system. Currently, the only type of query allowed is one that is
posed to the internal server, via the XML interface. As described above,
the client GUI basically sets up a new data manager thread, which
together with an equally additional link manager handles the reading of
information records from the TCP link. During the collection of the
information records that constitute the answer to the posed query, this
leads to a situation where several data manager threads run in parallel,
giving the (time-critical) central data manager less processor attention.
Queries posed to the external database (concerning historical aggregated
data) are not yet implemented, but the addition of such queries would
produce the same kind of problems for the client performance.

Database I/O
During the read phase, the database access of the client application is not
considerable. The operations performed include loading newly triggered real-time
alerts and new instrument information into the database. It is the aggregation of
surveillance data and the recalculation of the statistical foundations that
demand heavy loads on the database. When aggregating, one surveillance data
record is written for each instrument, followed by an additional number of

65 Even though singular points should be handled by the mathematical algorithm in an efficient manner.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

83(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

orders- and trades data records. When recalculating, one surveillance data
record is read for each instrument.

It turns out that, ignoring the problem of the beneficial ownership- and
orders/trades data amounts (see below), it is the reading and writing of
surveillance data for each instrument that puts the far greatest load on the
database. Therefore, the time taken for these operations for some different
numbers of active instruments has been measured. The results from these
measurements can be seen in Figure 16 below.

In the graph, the total access times are shown for reading or writing,
respectively, a specified number of surveillance data records under normal
surveillance conditions. As can be seen from the figure, these access times are
quite long. From the regression lines we see that on average, it takes
approximately one tenth of a second to read or write one record. As one record
contains 45 standard data type variables, this performance could probably be
improved considerably.

One problem is the way data is stored in the database. In an attempt to avoid one
table to grow too large, each instrument was given its own table, where
surveillance data records are written for this single instrument. As there may be
several thousands of instruments active in the surveillance process, the number
of tables can thus be considerable. When facing the task of accessing a
database, it is however much less efficient to access each record from different

y = 0,073x

y = 0,0773x

0

20

40

60

80

100

120

0 200 400 600 800 1000 1200

Number of active instruments

T
im

e(
s)

Read time

Write time
Linear (Read time)

Linear (Write time)

Figure 16 - Database access times for reading and writing

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

84(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

tables than to have them all in one large table, containing the surveillance data
for all the instruments.

By accessing several tables, a number of factors slow down the process of
writing to- and reading from the database. First of all, it becomes impossible to
write several records before committing the transaction to the database.
Secondly, on a lower level, the internal memory handling of the database becomes
more fragmented and demanding, since it has to deal with more than one table at
a time. With a reasonable aggregation period66, and some thousands of
instruments, the data load should not be overwhelming if one instead chooses to
use only one, central, surveillance data table.

Database data storage capacity
The growth of the database as a whole must, however, be considered for a
market system with a larger data load than on JIWAY. Information is added to the
database each time the surveillance information is aggregated. As this is done
periodically in a configurable manner, the user has a certain degree of freedom
customising how large the database should become. Referring again to the
database appendix, the following can be said about the size of the different
tables in the database:

Tables that can potentially grow large include surveillancedata_X,
beneficialownership and ordertrades. The number of surveillancedata_X tables
can also potentially be large. The size of each of these records depends linearly
on the number of aggregations saved into the database, in turn depending
inversely on the aggregation time used for each instrument class. On top of this,
the number of beneficialownership- and orderstrades records depends on the
number of parties trading.

Let’s take an example. Assume that there are 3000 instruments and 10000
different clients. Further, suppose that each client, during each aggregation
period, on average trades through 2 different customers and in 2 different
instruments. Then we get the following growth, in terms of the number of
records on average per aggregation:

Table name Number of records written

Surveillancedata_X 3000 new records (one in each table)

Beneficialownerships 20000210000 =⋅ records.

Orderstrades 400002210000 =⋅⋅ records.

As we can see by this rough approximation, the number of surveillancedata_X
records does not grow considerably over time – only with 3000 per aggregation.

66 Say, once every hour.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

85(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

In this tempo, one can aggregate quite often and still save the data for a long
time afterwards, for use in queries and/or for recalculation of the statistical
models used.

Nor does the growth of the beneficial ownerships- and orders/trades tables
threat the long-term stability of the system. On the other hand, the sensitivity of
these tables to the number of trading clients and the average number of
instruments in which these clients trade, as well as the number of customers
these clients use for the placement of their orders, is high. Our test runs on
JIWAY have not presented any problems, but when used with a larger CLICK
market place, these problems can become serious. Therefore, two main tasks
have been identified that need to be implemented in a release version of the
client application, described below.

One nice side-effect of running the client application on an electronic market
place is that the aggregated information is well formatted to use in other
situations than market surveillance. For instance, many statistical applications
could use the data from the client database. In order to achieve this extra
advantage, one would have to save the data over longer periods of time than
what is necessary for the surveillance function itself.

However, the older the data, the higher level of aggregation could be used. One is
seldom interested in a fine-grained view of very old market data67. Therefore,
additional aggregations should be performed on the older data saved over longer
periods of time.

6.3.2. Summing up
It is, as we have seen, necessary for the client application to have the capacity to
handle the arriving information records fast enough for the server not to be
obliged to wait for the client to read the records sent. Ideally, this also
incorporates the peaks of the information arrived. Now the crucial question is if
the application stands up to meet these demands, and whether it is scalable
enough to grow as the demands increase. This is the issue for the present
section.

When simply processing information records arriving from the server, the client
application does quite all right. With the current levels of transaction frequency
(and with the current maximum speed of the server68), it even has some surplus
capacity. Temporary peaks can be handled by the use of a larger maximum queue
size in the link manager, even if this strategy increases the maximum time from
the actual market event to the actual processing of the event in the client
application. However, it is not a top priority to be as “real-time” as possible. A lag
of a couple of minutes, even, should not disrupt the surveillance process or the
follow-up activity unacceptably.

67 Also, there already exist such data sources in various databases. One such example is the commercially
available EcoWin database.
68 See the thesis report by Peter Bergenwald.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

86(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

It is when considering the aggregation and recalculation of data and the
statistical models that the problems start to arise. Presently on JIWAY, it is
feasible to stop the processing for several minutes at the time every hour or so
to fill the database with new data. However, as the information load increases,
this will become more and more difficult to handle. For example, the internal
memory will suffer greatly from reading several hundreds of thousands of bytes
per second into the memory, without any processing of the data, during any
longer periods of time. The same goes for the recalculation of the statistical
models.

Another problem is that there is no upper bound for the number of simultaneous
queries that the user can pose from the GUI. Neither is there a limit to the size
of the query responses. Therefore, the load from processing queries can
potentially get very heavy for the system.

At the same time, it is important to remember that the tests carried out with
the current version of the client application are done with a 600 MHz computer
equipped with 128 Mb of internal memory and nothing done in particular to
increase the speed of disk I/O. A simple increase of the machine performance
should be enough to at least double the performance of the client. Also, it should
be possible to quite easily put the database itself on another node, lifting these
operations off the host system. Finally, the effect of restructuring the
surveillancedata_X database tables as discussed above should have a significant
effect.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

87(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

7. Conclusions and future work

7.1. Brief summary
In this thesis report, a basic theoretical framework for the construction of an
automatic surveillance system has been developed. The underlying problem of the
increasing need for market surveillance on the world’s financial markets was
presented, alongside with the different ways market manipulation and insider
trading is conducted. Thereafter, a general detection method for these unlawful
conducts was presented, based upon characteristic footprints associated with
the different conducts.

The pilot surveillance system is a practical implementation of the described
detection method. Herein, the client part of this implementation was presented
in detail. For the sake of completeness, a brief documentation of the XML
interface between the client and the server was also provided. Having presented
all the important aspects of the surveillance client, the attention was shifted
towards a performance evaluation. Included in this was the identification of some
areas of special concern, constituting potential threats to the functioning,
flexibility or scalability of the client application.

7.2. Conclusions and future recommendations
During the work with this thesis, me and Peter Bergenwald were faced with the
challenge of developing and describing a surveillance methodology flexible and
scalable enough for the high demands of today’s exchanges.

The next task was to make a demonstrable pilot implementation of the
surveillance methodology. There were certain prerequisites for this pilot system,
further discussed in section 4.3. Most importantly, the system should be split
into a server- and a client part. Between the two, an interface based upon an
XML protocol should be implemented. The server should read the raw log data
from the exchange. Apart from these demands, the solution should of course be
robust.

In short, the overall goals in terms of prerequisites, flexibility, scalability and
robustness have all been fulfilled. However, there remains some major and a
(larger) number of minor shortcomings in the pilot implementation. In the
following, some of these are presented, with reference to Appendix 4: To do list
for the client application, where a more complete list of flaws is presented.

Management of system resources
Two capacity problems could quite easily be solved by a more controlled behaviour
of the application code. Firstly, the size of the queue of inbound information
records is in the current version set to a maximum of 1000 records. When this
limit is reached, the client forces the server to wait for the client to move ahead.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

88(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

This number could very well be increased substantially, especially with a computer
having a little extra RAM. More preferably, the maximum queue size should be set
relative to the available system memory, maximally transferring the data load
from the server onto the client.

Secondly, a central control unit should be implemented that monitors the usage
of threads. There should be some maximum amount of processor power given to
the query threads, so that they do not interfere too much with the time-critical
workings of the central data manager. This central control unit should also be
equipped with scheduling functionality and act as the system operation control.

Database I/O
Database I/O is the largest threat to the capacity of the client application as the
information load and the number of instruments per server grows in the future.
Delegating the database I/O work to special threads would take off the
processing breaks now experienced by the data managers when the data is
aggregated or the models are recalculated. Instead, the workload for the
database operations could be spread out over time, allowing the central data
manager to obtain a smoother processing curve. Also, the processor attention
given to the database operations could be capped, not jeopardising the capacity
of the system.

At the same time, as indicated above, there is probably quite some processing
time to be saved by storing the surveillance data for different instruments in the
same table – not as the implementation is done now, with one table for each
instrument.

Another area of concern is the amounts of data being saved in the database. In
the current implementation it might not be possible in all situations to save all
the wanted information. Therefore, in a release version, it would be desirable to
have the opportunity to select certain combinations of
clients/customers/instruments to surveil, ignoring combinations not likely to
produce constructive alerts. This way, the amounts of data can probably be cut
considerably.

Also, it would be preferable to carry out an extra aggregation on top of the
aggregated data periodically, when the data becomes older than a certain limit
age. This would also add to the cutting of data load in the database. This extra
aggregation could possibly take place in several steps, making older data
gradually more summarised.

Separation into several instances
One advantage of the surveillance process is that there are few possible
interactions between the market data of different instruments. If we divide the
active instruments into broader categories of instruments, it becomes, by the
simple rule of not allowing instruments from different to be in the same

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

89(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

instrument group, possible to run one client application for every such
instrument category. This way, the processing burden of the surveillance system
can be shared between several computers, each running an instance of the client
application. One possible way to define these instrument categories would be to
use the division already incorporated in the CLICK system69. By assigning one
server application to the log output of each CLICK node, it is possible to run a
client directly on each such server, hence obtaining a complete division of the
amount of data processed.

Language of implementation
The language chosen in which to implement the client application is presently
Java. Considering the sometimes time-critical setting, this might seem like an
odd choice. However, the current implementation should be seen as a test pilot,
the object of which is investigating the possibility of creating a flexible yet robust
platform for market surveillance. In this perspective, Java has proved very good
in its ability to quickly be up-and-running, and offering flexible and extensive
resources for quickly producing a GUI, the database connection and an XML
parser. Especially when considering the limited amount of time for the
implementation of the surveillance client, Java has greatly helped holding the
implementation-specific problems on a minimum, giving time to concentrate on
the theoretical framework for the task.

However, in a release version of the surveillance system, it would be desirable to
use a high-level language offering better run-time performance than Java, such
as C++.

69 Today, it is possible to divide the market between several CLICK nodes, each taking care of a specified number
of instruments.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

90(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

8. Appendix 1: Unallowed market actions

This appendix lists some of the common ways that different parties of an
exchange use price manipulation and insider trading in order to gain an unlawful
advantage in the market place.

8.1. Market Manipulation

8.1.1. Affecting the price

Bait and switch
Via the issuance of buy recommendations in media, a group of customers are
offered to buy at one price and then resell at a slightly higher level (after the
stock recommendation has been incorporated into the price). This in turn
captures the interest of other investors, who step in at the higher price level.
This process can be repeated over and over, until the price level is the desired or
until the market gets its eyes open for the scam.

Hype and dump / Slur and slurp
The hype-and-dump technique, like bait-and-switch, uses the information flow to
“hype” the instrument, thereby raising its market price. The hyping can take place
through rumours, exaggerated reports, recommendations or otherwise. When
the price has risen as intended, the holdings of the manipulator are sold rapidly,
thus dumping the share price. The inverse (talking down the stock and then
buying) is called slur-and slurp.

Highest bidder
By constantly and aggressively appearing as the highest bidder in an instrument,
the supply of bids in the orderbook at lower prices is exhausted. This technique
can also be used on the supply-side, in order to lower prices.

Pump and dump
By progressively staging transactions at higher and higher prices, other
investors get a wrongful image of real market interest for the security, thus
raising prices. It is then possible to sell with a nice return.

Ramping / Window dressing
This technique is used either on the demand- or the supply side to affect prices.
Near the closing of the market at the end of the day, the manipulator places
significant bid- or ask orders for the instrument. Played properly, this technique
alters the closing price of the instrument. As the closing price is often used for

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

91(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

price comparisons over time, the perceived market price is affected. The order
itself can be cancelled during the night or first thing when the market re-opens
in the morning. When an institutional investor is affecting prices this way it is
called window-dressing.

8.1.2. Affecting the real turnover volume

Chain letter rally
This is the volume-increasing effect of speculators that enter the market in
reaction to some event caused by market manipulation. The increased number of
participants increases the turnover and thus the effect of the original
manipulation.

Short squeeze
In assets where there are many short-sellers, some of these will be forced to
cover their short position by buying the security if the price increases enough.
These transactions help raising the price even more, forcing others to follow suit.
By cornering the market and squeezing the short-sellers, the price can thus be
driven in several steps.

8.1.3. Affecting the perceived turnover volume

Churning / Passing the parcel
After cornering the market, the manipulator can place simultaneous bid- and ask
orders, creating excess trading activity (with him- or herself), this way increasing
the apparent volume. When the orders are placed at prices at consecutive levels
– either upwards or downwards – this technique of affecting the volume and
price at the same time by trading with oneself is called passing the parcel.

Pools
There are several ways to hide the fact that you are in fact trading with yourself
when churning an instrument. One way is to use several different brokers, or to
set up a pool of investors, all sharing the same volume- and price goal. By trading
with each other, the churning can effectively be hidden.

Wash sales
Trading with oneself can also be useful for tax reasons, to “wash” some open
positions. Thus, by staging trades between several actors with the same
beneficial owner in the end, or by first selling and then buying back a short time
afterwards (or the other way around), the trade can take place without really
changing the ownership of the shares.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

92(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

8.1.4. Affecting the trading participant anonymity

Matched orders
This is a way to control the turnover of an instrument in more detail. Two parties
agree on that one of them places a bid order at the same time as the other
places an ask order, exactly matching the bid order. Then, the orders are probably
matched right away, and consequently never displayed on the computer screens
of other brokers.

Warehousing / Parking / Nominee accounts
By using a middleman in a transaction, the identity of the real seller and/or buyer
can be kept secret, side-stepping the rules of transparency on the exchange. By
the use of so-called nominee accounts, the same effect can be obtained. It is
possible to set up many such accounts, where the same beneficial owner controls
each one, but the trading activity carried out by the nominee is not associated
back to this ultimate owner.

Failure to disclose
Another way to accomplish the same thing is to simply fail to disclose one’s newly
taken position, thus disobeying exchange rules. This way, the market might for
example get the impression of a genuine interest in a share, in a situation where
there in reality is only one (but major) buyer.

8.1.5. Price manipulation by brokers

Churning and burning
Since the broker obtains commission income on the transactions closed, there
might be an interest in increasing the volume of these transactions. In the case
that the broker him- or herself takes the initiative to an increased number of
transactions, this is called churning. The client, who gets to pay excess
commission, is said to be burnt.

Guarantees or payments
Some brokers might want to offer extra service to valued customers, either by
the guarantee to specified prices in the market, or by affecting the transactions
taken place by subsidies to the actors loosing on the induced transactions as
compared to the prevailing market price. In both cases, the effectivity of the
market is jeopardised.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

93(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

8.2. Insider trading

Classic insider trading
Prior to the release of some kind of price-sensitive information announcement
about the company, a company insider can trade on this information, knowing
that the market price of the stock is going to change in the near future.

Scalping
If the information traded upon in classic insider trading is a research report, the
insider trading is called scalping.

Front-running
This is when a broker gains before-hand knowledge by observing the trading
activity of large client, and uses this information for placing orders on his or her
own account, or for another client. For example, this can be the case when a
player places a large buy order on a company and the broker quickly jumps on the
train before the rest of the market can observe the order in the orderbook.

Piggy-backing
The broker can also take things one step further, observing the successful
trading of one of his clients. Simply replicating the trading decisions of this
client, the broker can “piggy-back” on the research or information of this client.
Unlike front-running, this technique is applicable after the placement of the
order itself, since the broker needs to observe the outcome of the trading
before he or she can decide whether or not the client really is successful in its
trading.

Inside information dissemination
Instead of taking advantage of insider information for the own trading, a broker
can disseminate the information to certain key players or to the public.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

94(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

9. Appendix 2: XML Interface version 1.0

This is the first and currently implemented XML interface for the communication
over the TCP link between the client and the server. In essence, it is a simple
request – response type protocol. A client sends in a request and the server
responds with appropriate transaction data. The request can be either in the
form of a subscription for future trading activity data or a query for historical
data. Both requests and responses in the interface are sent over the interface
in an XML format (a Document Type Definition (DTD) specifying this format is
found below). The request is the only command defined by this interface, and the
client is further restricted to sending only one request per connection. After the
server has sent all of the data in response to the request, the connection is
closed by the server.

9.1. Protocol
Here protocol is used in the sense that it defines the way the client and the
server interacts, for example how communication is set up and ended. The exact
specification of the messages used in the communication is described later. A
client sends requests to the server of either subscription or query type. The
protocol also requires the client to precede every request with the size of the
message in bytes in a textual format. This is a temporary solution to let the
server read the whole request from the socket before starting to parse it.

The server responds to the request by sending an XML document. Both query and
subscription responses follow the same XML format. In the case of a query,
however, all of the information is sent once it has been retrieved from the
database. The signal to end the communication is the end tag of the document.
If the database does not contain any of the data demanded, an empty XML
document is sent.

If the request is a subscription, on the other hand, the beginning of the XML
document is sent to the client when the subscription is added to the subscription
list. This works as a message to the client that the subscription is accepted.
Then, as long as the subscription remains valid, i.e. as long as specified in the
request, subscribed information is sent as XML to the client immediately when it
is received to the server from the CLICK system. Thus, the response forms a
complete and valid XML document being sent successively at the same tempo as
the information arriving from the exchange system. When the subscription
expires, the server ends the communication by sending the XML document’s end
tag (the document is not a valid XML document until the end tag has been sent).
The figure below illustrates the basic flow of messages between a client and the
server.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

95(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

Server Client

Request

Accept
transaction

End data

transaction

transaction

Request = XML request document

Accept = <?xml version = ’1.0’ ?><JD>

End data = </JD>

Below follows a detailed description of the information in a request and the type
of transaction messages the XML interface defines.

9.2. Request
The requests that the interface can handle are predefined. The format of the
request has ten different parameters that define the query, where some of the
parameters also have a predefined set of values that are valid.

9.2.1. Data in requests
The parameters in a request are:

Request type – one of the following predefined values:
1. Subscription
2. SubscriptionLight
3. Query
4. QueryLight

The light types return a response where a configurable amount of the
information in the transaction messages is suppressed. The same transaction
messages are used but with some fields suppressed. For example, it is possible to
configure the messages so that they only contain information about what
instrument and which participant it concerns, price and volume information. The
configuration takes place in the server application.

Parameter
s

Predefined
values

Explanation

Subscription Future data.
SubscriptionLig
ht

Future data where some fields in the
transaction messages are suppressed.

Query Stored data.

Figure 17, Communication flow client - server

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

96(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

 QueryLight Stored data where some fields in the
transaction messages are suppressed.

All This value is only valid for subscriptions in order
to avoid queries for a too large amount of
information.

Surveillancedat
a

This is value returns the minimal subset of the
available information necessary for the client
to perform its surveillance functionality. For
our implementation of the client the necessary
information is quotes, orders, trades and
orderbook changes.

Request
name

Transaction
name

The name of a specific transaction message,
one of the following:
• Trade
• Order
• ExtBBO
• IntBBO
• Hedge
• HedgeExecution
• Quote
• PriceImprovementQuote
• OBChange

All Returns information for all instruments traded
at the exchange. This only a valid value for
subscriptions also to avoid large queries

Instrument

Instrument
name

The name of an instrument should be in a
readable form and not some numerical code. A
name could for example be Volvo A, SSE. This is
not implemented in the prototype due to the
time it would take to develop. Instead the
internal numerical representations are used.

StartTime YYYY-MM-DD
hh:mm:ss

The field is only considered for queries.
Subscriptions are assumed to start when they
are received.

StopTime YYYY-MM-DD
hh:mm:ss

The value is used in both queries and
subscriptions

All
Empty string

Customer

Customer name The name of a customer to the exchange, i.e. a
broker firm.

All
Empty string

User

User name The name of a user account at a brokerage
firm, i.e. a specific broker.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

97(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

All
Empty string

Client

Client name The end client, this information is not available
in the trading system today.

Empty string
Order
number

Number If this field is used the request is assumed to
be a query, and the return is all the information
about that order number found in the
database.

9.2.2. Request DTD

<?xml version = ’1.0’ ?>

<!DOCTYPE REQUEST [

<!ELEMENT REQUEST (REQUESTTYPE , REQUESTNAME , INSTRUMENT,
STARTTIME, STOPTIME, CUSTOMER, USER, CLIENT, ORDERNUMBER)>

<!ELEMENT REQUESTTYPE (#PCDATA)>

<!ELEMENT REQUESTNAME (#PCDATA)>

<!ELEMENT INSTRUMENT (#PCDATA)>

<!ELEMENT STARTTIME (#PCDATA)>

<!ELEMENT STOPTIME (#PCDATA)>

<!ELEMENT CUSTOMER (#PCDATA)>

<!ELEMENT USER (#PCDATA)>

<!ELEMENT CLIENT (#PCDATA)>

<!ELEMENT ORDERNUMBER (#PCDATA)>

]>

9.3. Trading information responses
The format of the trading information sent as XML to the client corresponds
closely to the format of the information from the trading system itself. The
messages are found in the table below. For an explanation of the meaning of the
tags used for specific data fields, see the CLICK log documentation.

Table 4, Request variables

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

98(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

Message Explanation

Order This is a transaction message with information about a
new order in the system.

Quote This message contains information from a market
maker about the quotation of an instrument.

Trade Information about a trade with references to the two
matched orders.

Orderbook change Information about any change in the orderbook. This
record is generated after each trade, order entry and
quote, among other events.

Internal Best Bid Offer Information about the current best bid and best offer
for a certain asset at the market place.

External Best Bid
Offer

BBO at the away-market of the asset.

Hedge Order This record indicates that an order is destined to be
traded at the away market (hedged), because the BBO
at the away market is better than at JIWAY.

Hedge Execution
Report

Report of a successful hedge execution, where the
original hedge order has been traded at the away
market in part or fully.

Price improvement
quote

Record with information that a market maker will trade
a certain volume of an asset at the market place to the
price specified by the external BBO.

9.3.1. Tags used
Since an XML representation of data is string-based, and can be quite “talkative”,
the tags used in the interface are kept at a minimum length. The following tables
present the tag names used, and their respective meaning.

XML transactions tags Meaning

EB External BBO

HO Hedge Order

IB Internal BBO

IQ Improvement Quote

O Order

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

99(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

OB Orderbook Change

Q Quote

S Instrument Status Record

HE Hedge Execution Report

XML data tags Meaning

AEB Ask External BBO

AIB Ask Internal BBO

BA BidAsk

BEB Bid External BBO

BIB Bid Internal BBO

C0 Customer Country

CC Client Category

CL Client

CN Country Number

CON Check OrderNumber

CU Customer

DP Deal Price

EN Exchange/Country Number

ER End Of Report

GSN Global Sequence Number

HI Hedge Order ID

HR Hedge Execution Reference

HS Hedge Status

IC Instrument/Commodity Code

IG Instrument Group

IN Instrument/Series

IS Instrument/Series Status

LR Log Reason

LT Lock Type

MC Market Code

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

100(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

MOD Modifier

MOV Market Order Volume

OC Order category

ON OrderNumber

OT Order Type

PR Premium

QY Quantity

SN Sequence Number

TA Trade Ask side

TB Trade Bid side

TON Target Order Number

US User

VM Volume Multiplier

VO Volume

VT Validity Time

TO Trade Order

9.3.2. XML response DTD
<?xml version = ’1.0’ ?>

<!DOCTYPE JD [

<!ELEMENT JD (O | Q | IQ | OB | T | EB | IB | H | HE | S)*>

<!ELEMENT O (ON, TS, SN, IN, CO, CU, US, BA, QY, PR, VT, OT, CC, CL)>

<!ELEMENT Q (ON, TS, SN, IN, CO, CU, US, BA, QY, PR)>

<!ELEMENT IQ (ON, TS, SN, IN, CO, CU, US, BA, VO, VM)>

<!ELEMENT EB (TS, SN, IN, BEB, AEB)>

<!ELEMENT BEB (PR, VO)>

<!ELEMENT AEB (PR, VO)>

<!ELEMENT IB (TS, SN, IN, BIB, AIB)>

<!ELEMENT BIB (PR, VO, MOV)>

<!ELEMENT AIB (PR, VO, MOV)>

<!ELEMENT MOV (VO)>

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

101(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

<!ELEMENT OB (ON, TS, SN, IN, CO, CU, US, BA, QY, PR, LR, CON, OC, VT, OT,
CC, CL, LT)>

<!ELEMENT CON (ON)>

<!ELEMENT H (ON, TS, SN, IN, CO, CU, US, BA, QY, PR, HI, OT, EN)>

<!ELEMENT HE (ON, TS, SN, IN, CO, CU, US, BA, QY, PR, TON, HI, ER, HS, HR)>

<!ELEMENT TON (ON)>

<!ELEMENT T (TS, SN, IN, CO, CU, US, QY, PR, TB, TA)>

<!ELEMENT TB (TO)>

<!ELEMENT TA (TO)>

<!ELEMENT TO (ON,CO,CU,US,QY,PR,VT,OC,OT,CC,CL)>

<!ELEMENT S (TS, SN, IN, CO, CU, US, IS)>

<!ELEMENT ON (#PCDATA)>

<!ELEMENT TS (#PCDATA)>

<!ELEMENT SN (#PCDATA)>

<!ELEMENT IN (#PCDATA)>

<!ELEMENT CO (#PCDATA)>

<!ELEMENT CU (#PCDATA)>

<!ELEMENT US (#PCDATA)>

<!ELEMENT BA (#PCDATA)>

<!ELEMENT QY (#PCDATA)>

<!ELEMENT PR (#PCDATA)>

<!ELEMENT VT (#PCDATA)>

<!ELEMENT OT (#PCDATA)>

<!ELEMENT CC (#PCDATA)>

<!ELEMENT CL (#PCDATA)>

<!ELEMENT VO (#PCDATA)>

<!ELEMENT VM (#PCDATA)>

<!ELEMENT LR (#PCDATA)>

<!ELEMENT OC (#PCDATA)>

<!ELEMENT LT (#PCDATA)>

<!ELEMENT HI (#PCDATA)>

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

102(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

<!ELEMENT EN (#PCDATA)>

<!ELEMENT ER (#PCDATA)>

<!ELEMENT HS (#PCDATA)>

<!ELEMENT HR (#PCDATA)>

<!ELEMENT IS (#PCDATA)>

]>

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

103(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

10. Appendix 3: XML Interface version 2.0

10.1. Introduction
With the experience gained from the work done with the surveillance client and
surveillance functionality, it was clear that the XML interface version 1.0 was
quite CLICK- and JIWAY specific. One desirable feature of the XML interface is to
be usable on different exchanges, as well as with different exchange systems,
notably also the SAXESS system. With this in mind, the XML interface has
undergone a thorough redesign. The aim of this has been to make it simpler, and
at the same time more general and flexible. Also, the robustness of a strictly
defined structure has been preserved in as much as possible of the new design.

10.2. Protocol
The protocol (i.e. the way the client and the server interact) remains the same in
the new version. It is only the format and content of the messages containing
trading information that change. The format for the requests also remains
unchanged.

10.3. Trading information responses
The number of messages has been greatly reduced as compared to version 1.0,
and their content is designed to reflect the information needed for market
surveillance only. In this, the idea is to only use messages general enough to be
valid for most electronic marketplaces. All flow of surveillance-relevant
information on an exchange relates to orders. This is the most general entity – a
market actor requesting to sell or buy a certain quantity of an asset to a certain
price. An order may also change or be changed during its way through the
exchange system. This leads to the following two main message types:

• Order entry
• Order change
Each of these messages contain data about that specific event. The table below
illustrates the minimal set of such data identified as necessary for the
surveillance process. The choice of what data is considered necessary is based on
the experience gained from the pilot implementation of the surveillance client.
Basically, the idea is that the surveillance process on any exchange is primarily
concerned with the actions taken by its participants, and not internal exchange
information. This follows from the fact that all market manipulation and insider
trading deals with the information that is actually visible to the trading public.
How this information (about orders, trades, prices, volumes, etc.) has been
produced (on a technical level) is not interesting from this viewpoint. Thus, the
surveillance client needs to know what was done at the exchange when, and who
did it.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

104(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

Order entry Order change

Order identity Event time

Instrument Bid order identity

Event time Ask order identity

Bid or Ask Reason

Brokerage firm

Broker

Type

As can be seen from the table, both of the basic messages include certain
predefined fields, containing information that are generic to an “order”, or to an
“order change”, respectively. Hence, an order will always be identified with an
instrument and an event time, for example. In the case of the order change,
either one or both of the bid- and ask order identity will be used, depending on
the reason for the order change.

However, there are many types of orders, as well as reasons for an order change,
so there should be a way to make the messages flexible and the interface
extendable. Therefore, the messages were designed with a set of data fields
common to all types, together with a part that is specific for each type of order
or order change. This way, the interface is extendable; it is possible to add new
order types and new reasons for order changes while the header part of the
message remains the same.

Practically, one defines a new DTD for each exchange system that is to be used
with the surveillance client application. This DTD must be compliant with the XML
interface version 2.0. Therefore, the DTD needs to have the order entry and the
order change entities at the central structural unit. It is then possible to define
several different values for the Type entities of the Order entry, and the Reason
entities of the Order change, respectively, in order to customise the DTD for use
with the particular system considered. The Type- and Reason entity definitions
are simply XML definitions of the allowable sub-entities of compound elements,
reflecting the specific order entry or change that needs to be described.
Examples include a simple order entry (e.g., with a price, volume and ordering
market participant) and a trade (an order change possibly including a price and a
volume).

Below a more detailed explanation is given to the XML interface version 2.0,
described in the light of two examples. The first such example is an example
mapping of the XML interface version 2.0 to the CLICK system run at JIWAY.
After this, another example is presented in the mapping of the XML interface to
a SAXESS-run exchange.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

105(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

10.4. Mapping the interface to JIWAY
For JIWAY (running the CLICK exchange system), there are a couple of special
events that can occur, and which are interesting for the surveillance process.
The different possible order types are:

1. Simple order

2. Quote

3. Price Improvement Quote

The reason for an order change field can be of any one of the above types or, in
addition, any one of the following:

4. Trade

5. Hedge

6. Delete

The respective Type- and Reason entity definitions include the following fields:

Type/
Reason

Simple
order

Quote Price I. Q. Trade Hedge Delete

Price Price Volume multiplier Price Price

Volume Volume Volume limit Volume Volume

Data

End party

Due to the fact that this particular DTD definition deals with the JIWAY exchange
only, certain CLICK-supported transactions that are not used on JIWAY, such as
combination orders, are not defined here. Combination orders are different in
the way that they contain several orders that all need to be traded together. An
extension including combination orders would be quite straightforward. An
example implementation could include an additional Type definition, specifying an
order message as a part of a combination order with a combination order
identity (each combination order would be sent over a number of individual Order
entities). There are other things to take into consideration as well, for example
different price and volume types used by different exchange systems. The
general guideline is that the interface needs to transfer the information that is
public on the market to the surveillance process.

10.4.1. Tags used
As in the XML interface version 1.0, the tags used in the JIWAY version of the
interface are abbreviated in order to reduce the XML overhead. The two tables
below present the tags used.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

106(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

Compound XML tags Meaning

OE Order entry

OC Order change

IQ Price Improvement Quote

SO Simple Order

Q Quote

TR Trade

H Hedge

D Delete

T Type

R Reason

XML data tags Meaning

ID
Order identity / Order
change identity

P Price

V Volume

BA Bid or Ask

IN Instrument

TS Time stamp

BR Brokerage firm

DE Dealer

EP End party

VM Volume Multiplier

VL Volume Limit

Table 5 – Tags defining compound entities

Table 6 – Tags defining simple data types

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

107(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

10.4.2. XML response DTD

<?xml version = ’1.0’ ?>

<!DOCTYPE JD [

<!ELEMENT JD (OE | OC)*>

<!ELEMENT OE (ID,IN,TS,BA,BR,DE,T)>

<!ELEMENT T(SO | Q | IQ)>

<!ELEMENT SO (P, V, EP)>

<!ELEMENT Q (P, V)>

<!ELEMENT IQ (VM, VL)>

<!ELEMENT OC (TS,BO,AO,R)>

<!ELEMENT R(SO | Q | IQ | TR| H | D)>

<!ELEMENT TR (P, V)>

<!ELEMENT H (P, V)>

<!ELEMENT D (P, V)>

<!ELEMENT ID (#PCDATA)>

<!ELEMENT IN (#PCDATA)>

<!ELEMENT TS (#PCDATA)>

<!ELEMENT BA (#PCDATA)>

<!ELEMENT BR (#PCDATA)>

<!ELEMENT DE (#PCDATA)>

<!ELEMENT EP (#PCDATA)>

<!ELEMENT V (#PCDATA)>

<!ELEMENT P (#PCDATA)>

<!ELEMENT D (#PCDATA)>

10.4.3. Transaction message mapping
For each exchange implementing the XML interface version 2.0, a server has to
be set up in order to map the informational content to the XML interface.
Mapping the interface to the JIWAY exchange is quite straightforward, since the
order types defined above match the transaction messages from the exchange

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

108(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

closely. In the XML interface version 2.0, external and internal BBO records
should be disregarded (since they are not used in the surveillance process), which
reduces the message load from the CLICK exchange system. The mapping would
be as follows:

Jiway message Interface message

Order entry Order – simple order

Quote Order – quote

Price improvement
quote

Order – price improvement
quote

For the messages mapping to order changes, some extra consideration needs to
be taken. The table below shows a draft for how this could be done.

Jiway message Interface message

Trade Order change – trade

Order/Quote in orderbook,
trade

Disregarded,
redundant

Hedge Execution order Order change –
hedge

Order delete Disregarded,
redundant

External BBO Disregarded,
redundant

Internal BBO Disregarded,
redundant

Order/Quote in orderbook,
deleted

Order change –
deleted

As can bee seen from the table, all order/quote in orderbook messages are
ignored except the ones concerning a deletion of an order.

10.5. Mapping the interface to SAXESS
An exchange running SAXESS would have to adapt the above-presented XML
format for translation from the messages used in the SAXESS Interprocess
Protocol. This section constitutes an example outline of how this could be done. A
certain care should be put into the interpretations of this outline, however – the
mapping may contain errors due to a misunderstanding of the SAXESS system.
The reason for this is a shortage of time to study the SAXESS system.

The order types identified are:

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

109(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

1. Simple order

2. Quote
3. Combination order
4. Linked Order
5. Stop loss order
The reason for an order change field can be of any one of the above types or, in
addition, any one of the following:

6. Trade

7. Delete

The respective Type- and Reason entity definitions include the following fields:

Type/
Reason

Simple order Linked Order Combinatio
n order

Stop loss order

Price Price Price Price

Volume Volume Volume Volume

Open volume Stop loss trigger
price

Price
condition

 Stop loss new price

Data

 Price type

Type/
Reason

Quote Trade Delete

Price Price

Data Volume Volume

In the SAXESS system it is possible to specify market participants acting for
other participants. A decision of how to handle this needs to be taken. One simple
approach would be to disregard the participant acting for another participant
and only use the participant from where the transaction originates. Otherwise it
would be necessary to keep lists with the participants that act in the name of
other participants, so that the XML information correctly reflects the real
intentions of the active exchange members.

Another thing to consider is how the price and volume information is to be
treated, since it is possible to specify price and volume conditions for incoming
orders. In the current implementation, the price condition of the order is
specified in the XML message. For volume conditions, the volume field contains

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

110(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

the total volume left to be traded and the open volume field contains the
remaining volume shown on the exchange.

The SAXESS system also supports so-called combination- and linked orders.
Combination orders are merely a combination of 2-8 individual legs, associated
with an AND condition. Linked orders are like combination orders, except that the
condition is a XOR logic. Combination- and linked order messages in the SAXESS
system are broken up into one XML order message for each leg in the SAXESS
combination order. The XML messages are linked together simply by having the
same order identity in the header.

Finally, there is an order type called stop-loss order, indicating an order with a
price- or volume condition attached to it. At the time when this condition is
fulfilled, the order changes price and/or volume following a predefined pattern. In
the present adaptation of the XML interface, the stop-loss order has its own
message specification with values for the trigger price and the new price when
the trigger price is reached. A definition of the trigger price type is also included.

10.5.1. Tags used
The tags used in the interface are the same except that the Jiway specific
message types price improvement quote and hedge are not used. Instead, a tag
for combination orders is added along with some other tags, such as one for the
open volume field. Please see the table below for the complete listing of the new
tags used.

New XML tags Meaning

CO Combination order

LO Linked order

STO Stop-loss order

OV Open volume

TP Stop loss trigger price

NP Stop loss new price

PT Price type

PC Price condition

Table 7 – New tags for SAXESS

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

111(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

10.5.2. XML response DTD

<?xml version = ’1.0’ ?>

<!DOCTYPE SX [

<!ELEMENT SX (OE | OC)*>

<!ELEMENT OE (ID,IN,TS,BA,BR,DE,T)>

<!ELEMENT T(SO | Q | CO | LO | STO)>

<!ELEMENT SO (P, V, OV, PC)>

<!ELEMENT Q (P, V)>

<!ELEMENT CO (P, V)>

<!ELEMENT LO (P, V)>

<!ELEMENT STO (P, V, TP, NP, PT)>

<!ELEMENT OC (TS,BO,AO,R)>

<!ELEMENT R(SO | STO | Q | TR| D)>

<!ELEMENT TR (P, V)>

<!ELEMENT ID (#PCDATA)>

<!ELEMENT IN (#PCDATA)>

<!ELEMENT TS (#PCDATA)>

<!ELEMENT BA (#PCDATA)>

<!ELEMENT BR (#PCDATA)>

<!ELEMENT DE (#PCDATA)>

<!ELEMENT EP (#PCDATA)>

<!ELEMENT V (#PCDATA)>

<!ELEMENT P (#PCDATA)>

<!ELEMENT D (#PCDATA)>

<!ELEMENT OV (#PCDATA)>

<!ELEMENT NP (#PCDATA)>

<!ELEMENT TP (#PCDATA)>

<!ELEMENT PT (#PCDATA)>

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

112(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

<!ELEMENT PC (#PCDATA)>

10.5.3. SX Session message mapping
As an illustrative example, the SX messages from SAXESS can be mapped into
this XML format in the following way:

XML order messages

• The XML message of type simple order (SO) maps from the SX order insert
message when the order is not a stop-loss order. If the SX order message is
indeed a stop-loss order, it maps to the XML stop-loss order.

• Several XML messages of combination order type map from each SX
combination order insert message, and several XML messages of linked order
type map from each SX linked order insert.

• XML quote messages map from either a leg in a bundled quote message or an
order insert message where the isQuote flag is set to yes.

XML order change messages

• XML trade messages are mapped from SX trade insert messages.
• XML order, quote and stop loss order messages for order changes map from

the SX update and adjust messages for single, linked and combination orders.
• Delete messages in XML are mapped from the cancel messages for the

different types of orders.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

113(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

11. Appendix 4: To do list for the client application

11.1. Performance issues
• The size of the queue of inbound information records is in the current version

set to a maximum of 1000 records. Instead, the maximum queue size should
be set relatively the available system memory, maximally transferring the load
from the server onto the client.

• A central control unit should be implemented that monitors the usage of
threads. There should be some maximum amount of processor power given to
the query threads, so that they do not interfere too much with the workings
of the central data manager.

• It should be possible to use one client application for every predefined
instrument category. This way, the processing burden of the surveillance
system can be shared between several computers, each running an instance
of the client application. An example of a division into categories is to follow
the already-made division in the log files.

• By delegating the database I/O work to special-purpose threads, this not so
time critical work load could be evened out over time, allowing the central
data manager to obtain a smoother processing curve. Also, the processor
attention given to the database operations could be capped, not jeopardising
the capacity of the system.

• If it would be possible to select certain combinations of
clients/customers/instruments to surveil, the amounts of data saved in the
database could be cut considerably.

• It would also be of use to carry out an extra aggregation on top of the
aggregated data periodically, when the data becomes older than a certain
limit. This would also add to the cutting of data load in the database.

• By porting the client code to C++ or some other high-performance compiled
language, overall performance could be elevated for the application.

11.2. General implementation shortcomings
• The GUI is somewhat rudimentary. Its main purpose is to serve as an

illustration of the functionings of a full-fledged GUI. However, some things
are missing from the basic required features, such as the possibility to
choose from all available instruments for real-time graphing. As it is now, it is
necessary to predefine the instruments that should be available in the Client
class in order to view the graph data associated with these instruments.

• Also, the queries from the GUI are lacking some fundamental functionality. It
is only possible to query for detailed historical information from the server

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

114(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

database, and the result is presented in a simple table form. Instead, it should
be possible to query for either detailed or aggregated historical information
(in the latter case it suffices to ask the client database for the information,
releiving the server from the extra work load). Also, the result should be
presented in a more customised way, sorting and graphing relevant data, etc.

• In a release version, the XML information arriving from the server should be
completely self-contained. I.e., no additional information should be needed to
obtain the actual names of instruments, market actors, etc. Therefore, it
would be necessary to implement the client application in such a way so that
it automatically updates the information stored in the database according to
changes of the characteristics of instruments, clients, customers, etc. that
arrive from the XML interface. In the current implementation, all that is done
is to simply add new instruments, etc., as they arrive.

• Additionaly, the information content sent over the XML link would have to be
encrypted in order to guarantee the integrity of information for the
exchange. A login/session functionality should also prove necessary.

• At the moment, all configuration parameters are not saved into the database
(e.g. the model/default statistics parameter).

• A day-to-day operations unit should be implemented on top of the client
application, to take care of the start-up, shut-down and restart of the
system. This operation should be seen to by the use of a calendar function,
and should make it possible to set up more long-term schedules for the
surveillance function.

11.3. Surveillance model shortcomings
• Presently, there are some unlawful conducts that are not checked for by the

surveillance process, such as ramping/window dressing.

• The possibility to use outstanding stocks as the benchmark definition for
volume alerts is not implemented either.

• For all volume-related alerts, it would be of use to have a lower volume limit, in
order not to trigger an alert if the magnitude of the event is not large
enough. This limit could either be calculated from the total amount of
outstanding stocks or from the historical volume data.

• It would also be desirable to implement a way to standardise the suspicious
orders/trades alert with historic orderbook data (in order only to detect
orders or trades that are “far enough” from the BBO, for example).

• For the immediately traded orders alert, there are two concerns. Firstly,
“immediately traded” should be understood as “quickly traded” (with a
configurable maximum time in the orderbook prio to trade) instead of “never
entered the orderbook”. Secondly, the alert is presently triggered not if both
orders are traded immediately, but if this is true for at least one of them.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

115(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

Naturally, both orders need to be traded immediately for a suspicioun to be in
place. Additionally, trades involving a market maker on one side might not be
relevant.

• When calculating the values of metrics for instrument groups, the historical
values of the individual instrument metrics are simply added to one another.
For many metrics (such as for the volume) this is the natural thing to do. For
others, however (such as the price), other functions should be used. This
shortcoming currently strongly restricts the actual use for instrument
groups in the client application.

• As they are evaluated now, the hypothesis tests are always double-sided. This
is correct in many situations (such as for the price process, where the price
of an instruments is supposed to be checked both for sudden increases and
decreases). However, for metrics such as the volume, a single-sided
hypothesis test would be the appropriate one to use (as unnaturally low
volumes are not to be associated with unlawful conduct in a market).

• According to my objectives, it should be possible to specify the sensitivity of
an alert group in terms of “wanted triggers per day” as a percentage. In the
current implementation, however, it is only possible to specify the threshold
as the number of standard deviations from the estimated mean. With the use
of an inverse normal distribution, this should however not present a big
problem to implement.

• Also regarding sensitivity measures, it should be possible to define alert levels
not in absolute values, but rather relative the other alerts in the alert group.
This way, it would be possible to receive a given number of alerts per time
period even for alert groups with several individual alerts.

• Presently, there is a table in the database where it is possible to store a list
with the clients that in reality represent the same beneficial owner. The legal
issues of keeping such a list are however not investigated. Also, the client
application does not take the contents of this list into consideration when
checking for alerts.

• The structure with alerts organised into alert groups is a flexible tool for the
definition of what states should be checked for when investigating the
metrics as compared the available benchmarks. However, one could easily
imagine some ways to extend the usability. One way to do this is to let each
alert have both a level and a sensitivity, and let it be configurable which one to
use. This way, one does not have to create several single-alert alert groups to
check for several alerts at once using the sensitivity method. Another
example of such an extension would be to introduce some kind of alert group
“logic”, such as conditional alert checking or the possibility of an
AND/OR/XOR/NOT-type configuration among the different individual alerts in
the alert group.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

116(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

12. Appendix 5: Database structure

The client-side database is a MySQL relational database, connected to the Java
client by the use of a JDBC connection. Below follows a detailed description of
the database structure. All datatypes are MySQL types. Please see the online
documentation for MySQL70 for details.

12.1. surveillancedata_X
There is one surveillancedata_ table for each active instrument in the
surveillance system, used to store aggregated surveillance data for the
instrument in question. This is basically a simplified orderbook, but the table also
contains the last trade price for the instrument. The internal instrument id
number is a SMALLINT value, starting at 1 for the instrument first added to the
configuration. ORDERBOOKSIZE is a system constant (defined in the
ExtConstants package), defining up until what depth the orderbook should be
saved in the database.

Each table has the following columns, the field values of which reflect data
aggregated over the aggregation period of the instrument class to which the
instrument belongs. If the instrument belongs to several instrument classes, the
shortest aggregation period is used.

Column name MySQL data
type

Primary
key

AskPremium1 FLOAT
AskVolume1 BIGINT
BidPremium1 FLOAT
BidVolume1 BIGINT
AskPremium2 FLOAT
AskVolume2 BIGINT
BidPremium2 FLOAT
BidVolume2 BIGINT
… …
… …
… …
… …
AskPremium[ORDERBOOKSIZE
]

FLOAT

AskVolume[ORDERBOOKSIZE] BIGINT
BidPremium[ORDERBOOKSIZE
]

FLOAT

70 www.mysql.com/documentation/index.html

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

117(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

BidVolume[ORDERBOOKSIZE] BIGINT
LastTradePrice FLOAT
TimePeriod TIME
DaysPeriod INTEGER
TimeStart TIME *
DateStart DATE *

12.2. orderstrades
This table is used to store time-aggregated information about who has ordered
and traded what, both on the net and gross side. The data is subdivided by the
instrument and the trading client and -customer.

Each table has the following columns, the field values of which reflect data
aggregated over the aggregation period of the instrument class to which the
instrument belongs. If the instrument belongs to several instrument classes, the
shortes aggregation period is used.

Column name MySQL data
type

Primary
key

TradedVolumeNet BIGINT
OrderedVolumeNet BIGINT
TradedVolumeGross BIGINT
OrderedVolumeGross BIGINT
CustomerID SMALLINT *
CustomerCountryID SMALLINT *
ClientID SMALLINT *
ClientCategoryID SMALLINT *
InstrumentID SMALLINT *
Time TIME *
Date DATE *

1.1. instruments
This table is part of the configuration. Each record lists an active instrument.

Column name MySQL data
type

Primary
key

OutstandingStocks BIGINT
InstrumentName CHAR(20)
InstrumentID SMALLINT *

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

118(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

1.2. groupedinstruments
This table is part of the configuration. Each record lists a grouping relationship
between an instrument and an instrument group.

Column name MySQL data
type

Primary
key

InstrumentGroupID SMALLINT *
InstrumentID SMALLINT *

1.3. instrumentgroups
This table is part of the configuration. Each record lists a configured instrument
group, together with its assigned instrument class. If an instrument group needs
to be assigned to several instrument classes, one has to create several, identical
instrument groups and assign each one to one of the instrument classes.

Column name MySQL data
type

Primary
key

InstrumentGroupID SMALLINT *
InstrumentClassID SMALLINT
InstrumentGroupName CHAR(80)

1.4. instrumentclasses
This table is part of the configuration. Each record lists a configured instrument
class, together with its configuration parameters in terms of aggregation
periods and the amount of historical data used in the recalculation of the
statistical model for this instrument class.

Column name MySQL data
type

Primary
key

InstrumentClassID SMALLINT *
InstrumentClassName CHAR(80)
AggregationPeriodDay SMALLINT
AggregationPeriodTime TIME
OrderbookHistoryLengthDay SMALLINT
OrderbookHistoryLengthTime TIME
ReturnHistoryLengthDay SMALLINT
ReturnHistoryLengthTime TIME
VolumeHistoryLengthDay SMALLINT
VolumeHistoryLengthTime TIME
SpreadHistoryLengthDay SMALLINT
SpreadHistoryLengthTime TIME

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

119(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

1.5. Clientswithsamebeneficialowner
This table is part of the configuration. Each record lists between 2 and 5 clients
that represent the same beneficial owner, i.e. aliases for one trading party. They
are not currently used, but should be taken into consideration when the
beneficial ownership alert is tested for.

Each record contains the following columns:

Column name MySQL data
type

Primary
key

ClientID1 SMALLINT *
ClientID2 SMALLINT *
ClientID3 SMALLINT *
ClientID4 SMALLINT *
ClientID5 SMALLINT *

1.6. beneficialownerships
This table is used to store time-aggregated information about who has traded
what, and how many shares have really changed owner when adding up. The data
is subdivided by the instrument and the trading client and –customer,
respectively.

Each table has the following columns, the field values of which reflect data
aggregated over the aggregation period of the instrument class to which the
instrument belongs. If the instrument belongs to several instrument classes, the
shortes aggregation period is used.

Column name MySQL data
type

Primary
key

NetTraded BIGINT
TotalVolume BIGINT
InstrumentID SMALLINT *
ClientID SMALLINT *
ClientCategoryID SMALLINT *
Time TIME *
Date DATE *

1.7.alerts
This table is part of the configuration. Each record lists configured alert,
together with its alert group identity and the level of this alert.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

120(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

Column name MySQL data
type

Primary
key

AlertID SMALLINT *
AlertTypeID SMALLINT
AlertGroupID SMALLINT
Level FLOAT

1.8. alertgroups
This table is part of the configuration. Each record lists a configured alert group,
together with its instrument group identity and the sensitivity variable of this
alert group.

Column name MySQL data
type

Primary
key

AlertGroupName CHAR(80)
InstrumentGroupID SMALLINT
AlertGroupID SMALLINT *
Sensitivity FLOAT

1.9. alerttypes
This table is part of the configuration. Each record lists a configured alert type.

Column name MySQL data
type

Primary
key

AlertTypeName CHAR(80)
AlertTypeID SMALLINT *

1.10. triggeredalerts
Each record lists a triggered alert, part of a referenced configured alert group,
together with data about the actual triggered alert.

Column name MySQL data
type

Primary
key

TriggeredAlertGroupID BIGINT *
BidClient CHAR(80)
BidClientCategory CHAR(80)
AskClient CHAR(80)
AskClientCategory CHAR(80)
Customer CHAR(80)

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

121(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

CustomerCountry CHAR(80)
AlertName CHAR(80) *
Level FLOAT
ActualLevel FLOAT

1.11. triggeredalertgroups
Each record lists a triggered alert group, part of a referenced configured
instrument group, in turn part of a referenced instrument class. There is also
data about the actual triggered alert group, such as the instrument and the
actual sensitivity value at the time of triggering.

Column name MySQL data
type

Primary
key

TriggeredAlertGroupID BIGINT *
InstrumentClassName CHAR(80)
InstrumentGroupName CHAR(80)
InstrumentName CHAR(80)
AlertGroupName CHAR(80)
Sensitivity FLOAT
ActualSensitivity FLOAT
Time TIME
Date DATE

1.12. clients
This table lists the clients that have been referenced in the received data. The
client category is necessary to fully identify the client. Please see the CLICK
system documentation for further information.

Column name MySQL data
type

Primary
key

ClientName CHAR(80)
ClientCategoryID SMALLINT
ClientID SMALLINT *

1.13. clientcategories
Ths table lists the client categories that have been referenced in the received
data. Please see the CLICK system documentation for further information.

Column name MySQL data
type

Primary
key

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

122(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

ClientCategoryName CHAR(80)
ClientCategoryID SMALLINT *

1.14. customers
Ths table lists the customers that have been referenced in the received data.
The customer country is necessary to fully identify the customer. Please see the
CLICK system documentation for further information.

Column name MySQL data
type

Primary
key

CustomerName CHAR(80)
CountryID SMALLINT
CustomerID SMALLINT *

1.15. countries
Ths table lists the countries that have been referenced in the received data (in
the current implementation only as a reference to a "customer country"). Please
see the CLICK system documentation for further information.

Column name MySQL data
type

Primary
key

CountryName CHAR(80)
CountryID SMALLINT *

1.16. clientcustomerrelations
This table lists the clients and customer that have been associated. Please see
the CLICK system documentation for further information.

Column name MySQL data
type

Primary
key

ClientID SMALLINT *
CustomerID SMALLINT *

1.17. automaticquerystatuses
This table is part of the configuration. It lists all instruments that have been
configured to send out an automatically generated query for market information
around the time for the trigger of an alert group. In the current implementation,
this query is initated by the user (via the GUI), and is hence not used.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

123(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

Column name MySQL data
type

Primary
key

InstrumentID SMALLINT *

1.18. automaticquerybefore
This table is part of the configuration. It lists only one value, namely the amount
of time that an automatically generated query should cover before the trigger of
the alert group. This value is the same for all instrument classes.

Column name MySQL data
type

Primary
key

Days SMALLINT *
Time TIME *

1.19. automaticqueryafter
This table is part of the configuration. It lists only one value, namely the amount
of time that an automatically generated query should cover after the trigger of
the alert group. This value is the same for all instrument classes.

Column name MySQL data
type

Primary
key

Days SMALLINT *
Time TIME *

1.20. automaticreturngraphinstruments
This table is part of the configuration. It lists all the instruments that are
configured to send out real-time price data from the central data manager to
the client GUI.

Column name MySQL data
type

Primary
key

InstrumentID SMALLINT *

1.21. automatictradevolumegraphinstruments
This table is part of the configuration. It lists all the instruments that are
configured to send out real-time trade volume data from the central data
manager to the client GUI.

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

124(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

Column name MySQL data
type

Primary
key

InstrumentID SMALLINT *

1.22. automaticordervolumegraphinstruments
This table is part of the configuration. It lists all the instruments that are
configured to send out real-time order volume data from the central data
manager to the client GUI.

Column name MySQL data
type

Primary
key

InstrumentID SMALLINT *

1.23. automaticbbographinstruments
This table is part of the configuration. It lists all the instruments that are
configured to send out real-time orderbook data from the central data manager
to the client GUI.

Column name MySQL data
type

Primary
key

InstrumentID SMALLINT *

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

125(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

13. References

13.1. Text books
Anderson, O.D. - Time Series Analysis and Forecasting (Butterworth & Co
(Publishers) Ltd, 1976)

Bodie, Z. – Kane, A. – Marcus, A.J.: Investments (McGraw-Hill 1999)

Chatfield, C. – The Analysis of Time Series – An Introduction (Chapman and Hall,
1985)

Gouriéroux, C. – ARCH Models and Financial Applications (Springer-Verlag 1997)

Grinblatt, M – Titman, S: Financial Markets and Corporate Strategy (McGraw-Hill
1998)

Pankratz, A. - Forecasting with Univariate Box-Jenkins Models (John Wiley &
Sons, Inc., 1983)

13.2. Periodicals and magazines
Benabou, R. – Laroque, G. – “Using Priviliged Information to Manipulate Markets
Insiders, Gurus, and Credibility” (The Quarterly Journal of Economics, August
1992)

Engle, R.F. – “Autoregressive Conditional Heteroscedasticity with Estimates of
the Variance of U.K. Inflation” (Econometrica, nr. 50, p. 987-1008, 1982)

“Evolving Cooperation and Coordination in Financial Market Surveillance” –
Finance & Development (periodical from the International Monetary Fund),
September 1999, vol. 36, nr. 3.

John, K – Narayanan, R. – “Market Manipulation and the Role of Insider Trading
Regulations” (Journal of Business, 1997, vol. 70, nr. 2)

13.3. Personal meetings
Meeting with Mats Danielsson and Per-Åke Sundström 2001-09-17

Discussions with various people at OM, including the tutors and other informed
persons

13.4. World Wide Web
Aitken, M – Berry, J. – “Market Surveillance at the Australian Stock Exchange: An
Overview” (1991, available [online]: www.smarts.com.au, accessed 2001, 2002)

“Discovery” (Issue 3, 2001, newsletter from SMARTS, available [online]:
www.smarts.com.au/09_DiscoveryIntro.html, accessed 2001, 2002)

finance.yahoo.com (accessed 2001, 2002)

Johan Örtenblad M A R K E T S U R V E I L L A N C E S Y S T E M

126(126)

Master’s thesis 2001 for the department of financial mathematics at KTH and for OM

java.sun.com (accessed 2001, 2002)

smarts.com.au (accessed 2001, 2002)

www.jiway.com (accessed 2001, 2002)

www.mysql.com (accessed 2001, 2002)

www.om.com (accessed 2001, 2002)

13.5. Other material
Lecture notes from the course “Séries Chronologiques” (2000, ENSIMAG,
Grenoble, France)

Örtenblad,J. – Bogentoft, E – “Catastrophe-linked Securities” (Master’s thesis,
Stockholm School of Economics, 2001)

