
 Master's Thesis in
 Computer Science

 Preliminary version
 August th29, 2001

 GEM Security Adaption
 Karin Almstedt
 The Royal Institute of Technology
 Kungliga Tekniska Högskolan

Examiner: Prof. Seif Haridi
 Department of Microelectronics and Information Technology
 The Royal Institute of Technology

Supervisor: Vladimir Vlassov
 Department of Microelectronics and Information Technology
 The Royal Institute of Technology

 Johan Petersson
 AU-System AB

 GEM Security Adaption.doc

 Page 2 of 76

 Abstract
Distributed applications provide an opportunity to establish and maintain a
competitive advantage by creating a flexible IT infrastructure. That brings, however,
new requirements on distributed business applications. They must be able to work on
a variety of hardware and software platforms. Users and programs should also be able
to dynamically join and leave the network, and discover each other. It should also be
possible to have the same naming conventions to locate any resource on the network.
Since 1989, the Object Management Group (OMG) has been busy specifying the
architecture for an open software bus on which objects written by different vendors
can interoperate across network and operating systems.

Common Object Request Broker Architecture (Corba) is a specification defined by
OMG. The Corba specification describes a software bus, called an Object Request
Broker (ORB) that provides an infrastructure for distributed object computing.

The company AU-System has created a Java component library, Generic Element
Manager (GEM), to be able to easily create a system for supervision of network
elements. GEM is using Java RMI for the remote communication between programs.
But as Java RMI can only be used for object written in Java, AU-System wanted to
migrate GEM to the more general Corba and also improve GEM by using Corba over
Secure Socket Level (SSL) as the session security model.

Security is very important in distributed systems and the second part of the Master
thesis is to design a new security model for authentication and authorisation.

In this Master thesis the migrating of GEM turned out well. Test of the modified
version showed that it contains the same functionality as the previous version. The
extra facility is that GEM is more general now, which was a requirement from
customers to AU Systems.

 GEM Security Adaption.doc

 Page 3 of 76

Summary of contents
1 Introduction.. 9

2 Overview of GEM: Generic Element Manager... 10

3 Distributed objects.. 18

4 Security in distributed objects.. 46

5 Migration of GEM from Java RMI to Corba/SSL.. 50

6 Design of GEM Security Model ... 59

7 Conclusions and Future work ... 72

 GEM Security Adaption.doc

 Page 4 of 76

 Contents

1 Introduction.. 9

1.1 Background ...9

1.2 The objective of the Master thesis...9

2 Overview of GEM: Generic Element Manager... 10

2.1 Consultant unit TM/D ..10

2.2 Project GEM ...10

2.3 Overview of the elements: NE, EM, NEM ..10

2.4 Technical solutions in GEM ...12
2.4.1 Challenging design issues...12
2.4.2 Definition of a component in GEM ..12
2.4.3 Functions ..12
2.4.4 Network Adapter ..15
2.4.5 Requirements for using GEM ...15
2.4.6 The GEM library...15
2.4.7 User Roles in GEM...16
2.4.8 Start-up and synchronisation...17

3 Distributed objects.. 18

3.1 Definition of a distr ibuted object...18

3.2 Overview of different approaches to distr ibuted computing............................19

3.3 RMI: Remote Method Invocation ...20

3.4 Corba Technology...22
3.4.1 Overview of Corba, ORB and OMG ..22
3.4.2 Interfaces, IDL and stubs and skeletons..24
3.4.3 Interface Repository (IR) ..27
3.4.4 Object Adapter..28
3.4.5 Object Implementation and Object Reference..28
3.4.6 Static and Dynamic Invocation...28
3.4.7 Standard object interfaces...29
3.4.8 Interoperability ...33
3.4.9 The Portable Object Adapter (POA)...36
3.4.10 Tie Mechanism...40

3.5 Corba compared with Java RMI ...43

4 Security in distributed objects.. 46

4.1 Threats in a distr ibuted object system..46

4.2 Overview of secur ity in distr ibuted objects..46
4.2.1 Low level ..46
4.2.2 High level..46

4.3 Secur ity features...47
4.3.1 Authentication...47
4.3.2 Privacy..47
4.3.3 Integrity ..47
4.3.4 Authorisation ..47

4.4 Public-key encryption...47

4.5 Auditing...48

 GEM Security Adaption.doc

 Page 5 of 76

4.6 Investigation of Corba/SSL products..48
4.6.1 VisiBroker SSL package...48

5 Migration of GEM from Java RMI to Corba/SSL.. 50

5.1 General method of porting...50

5.2 The Analyse Phase..50
5.2.1 Client-Server communication in GEM ...50
5.2.2 GEM Clients...51
5.2.3 GEM Server ..52

5.3 Design and Implementation ...53
5.3.1 The Corba Development Process..53
5.3.2 Write and generate IDL files...53
5.3.3 Using Name Service...56
5.3.4 Using the Tie-mechanism...57
5.3.5 Using Callback..57
5.3.6 SSL Security Service Package..57

5.4 Test procedure of GEM with Corba/SSL ...57

6 Design of GEM Security Model ... 59

6.1 Secur ity Management...59

6.2 Design processes and tools...59
6.2.1 Rational Unified Process ..59
6.2.2 Rational Rose..60

6.3 Design phases..60

6.4 The existing GEM Secur ity Model ..61

6.5 Secur ity policies..62
6.5.1 Access policy architecture..62

6.6 Use cases and scenar ios in GEM Secur ity Model ..63
6.6.1 A representative use case..64

6.7 I teration plan...67

6.8 Relation Database Design...67
6.8.1 Relation Model Concepts..67
6.8.2 Conceptual Schema...68
6.8.3 Relation Database Schema..70

7 Conclusions and Future work ... 72

 GEM Security Adaption.doc

 Page 6 of 76

 List of Figures

Figure 1. Overview of a Network Management system. 11

Figure 2. The GEM Fault Management main window. 13

Figure 3. The GEM Security Management main window. 13

Figure 4. The GEM SA main window - Cleared Alarms Log. 14

Figure 5. Functional overview. 15

Figure 6. System overview. 16

Figure 7. The different user roles. A SecurityAdm is allowed to do the same
things as a SystemAdm and an Operator. A SystemAdm the same things as an
Operator, but an Operator can only have the role as an Operator. 17

Figure 8. Java RMI distributed application. 21

Figure 9. An overview of Corba. An IDL interface acts as a contract between
developers of objects and the users of their interfaces. 22

Figure 10. Corba IDL bindings provide client/server interoperability. 25

Figure 11. Stub, skeleton and ORB. 26

Figure 12. Generated files after compiling an IDL-file (using VisiBroker 4.1). 26

Figure 13. Example of an IDL-file, Common.idl. 27

Figure 14. BankAccount.idl. 27

Figure 15. Corba Architecture. 29

Figure 16. Naming scheme for an order entry system. 32

Figure 17. Binding, resolving, and using an object name from a naming context
within a namespace. 32

Figure 18. Event channel between Consumer and Supplier. The channel acts as
an intermediate object. 33

Figure 19. Interoperability via ORB-to-ORB communication. 34

Figure 20. Structure of the Corba Interoperability Specification. Shaded
components are mandatory for Corba Interoperability compliance. Interoperability
Architecture contains the basic architecture built on bridging; the Interoperable
Object Reference (IOR); the interoperability interfaces including the DSI; and the
provision for context-specific services. 35

Figure 21. I IOP is GIOP over TCP/IP. 35

Figure 22. Overview of the POA. 36

Figure 23. Servant manager function. 37

Figure 24. The FaultManagement interface in the IDL file Interfaces.idl. Just a
part of the file is shown. 38

Figure 25. The server implementation of the code. Note: This shows just the
instantiation of FaultManagement part of the code. 39

 GEM Security Adaption.doc

 Page 7 of 76

Figure 26. The client implementation of the code. Note, only the implementation
of FaultManagement is shown. 40

Figure 27. Single class inheritance. 41

Figure 28. A schematic picture of the Tie-mechanism. 41

Figure 29. The implementation class only needs to implement
<InterfaceName>Operations and can still inherit another class. 42

Figure 30. Changes in the server code example in Figure 25 when using Tie-
mechanism. 42

Figure 31. Server side, using RMI. LocateRegistry.createRegistry creates and
exports a Registry on the local host that accepts requests on the specified port
(1099). Naming.rebind rebinds the specified name to a new remote object. Any
existing binding for the name is replaced. 43

Figure 32. Client side, using RMI. Naming.lookup returns a reference, a stub,
for the remote object associated with the specified name (rmiHost). 44

Figure 33. Server side, using Corba. 44

Figure 34. Client side, using Corba. 45

Figure 35. Public and private keys performing inverse function of one another.
 48

Figure 36. Client-Server communication 51

Figure 37. A part of the new IDL file CommonDeclare.idl. 54

Figure 38. The Server side is using an Alarm object and the parameters in the
object receive its data from the database (db). Corba is used between the Client and
the Server. When sending alarm information between the Client and the Server is it
necessary to place the object parameters in a struct CorbaAlarm that is defined in
the file CommonDeclare.idl. 54

Figure 39. Help class, GetCorbaAlarm, to pass parameters from Alarm to
CorbaAlarm. 55

Figure 40. Process Structure – Lifecycle Phases 59

Figure 41. Use-case model. 60

Figure 42. Use case diagram for Configure Network Policy. 64

Figure 43. Example of Configure Network Policy dialog. 66

Figure 44. Example of Copy Network Policy dialog. 66

Figure 45. Conceptual schema for the GEM Security model. 69

Figure 46. Graphic view of some tables. 71

 GEM Security Adaption.doc

 Page 8 of 76

List of Tables

Table 1. Use cases for GEM Security Model... 63

Table 2. The iteration plan for design of security model use cases. 67

Table 3. Table with table name UserMembership and column names
GroupName and UserName... 67

Table 4. Description for every object in the conceptual schema......................... 70

 GEM Security Adaption.doc

 Page 9 of 76

1 Introduction

1.1 Background
The next generation of client/server systems will most certain be built using
distributed objects. The explosive growth of the Web, the increasing popularity of
PCs and the advances in high-speed network access have brought distributed
computing into the main stream.

The middleware technology Corba [6], among others, simplifies distributed systems
in many ways. The distributed environment is defined using an object-oriented
paradigm that hides all differences between programming languages, operating
systems, and process locations. Corba was invented to provide a new networking
infrastructure intended to solve software interoperability problems. It replaces legacy
remote procedure call (RPC) infrastructures and precursory technologies by providing
an object-oriented network interface that greatly simplifies distributed computing.

The company AU-System [www.ausystem.se] has consciously built up specialist
expertise for the development of Operations Support Systems (OSS), in other words,
systems that are used to configure, govern and monitor the supplier's products. AU-
System primarily develops so-called Element Managers and Network Managers for
equipment suppliers. Their solutions are adaptable, follow prevailing standards and
are modular and able to be integrated into a complex operating environment with an
operator. This guarantees a solution that is adaptable to the future and has greater
acceptance among operators.

Their solutions are platform independent with reusable architecture, own developed
components and the market's best third-party products. They have for example
developed a Java component library, General Element Manager (GEM) that are used
for supervision (O&M).

1.2 The objective of the Master thesis
AU System wanted to improve GEM by

• change from Sun’s Java RMI to the more general Corba, for remote
communication

• use Corba over SSL as the session security model
• design a new security model for authentication and authorisation.

The Master thesis consists of two main parts: the first part to migrate from Java RMI
to Corba/SSL in the existing Java component library (GEM) and the second part is to
design a new security model for authentication and authorisation in GEM. Other
“smaller” parts included in the Master thesis is to decide which Corba/SSL product to
use and to study the technology used in GEM and learn the procedures used at AU-
System, such as RUP (Rational Unified Process) [7]. In Appendix A is an overview of
the products and technologies to study in the Master thesis.
The Master thesis should result in a modified GEM.

 GEM Security Adaption.doc

 Page 10 of 76

2 Overview of GEM: Generic Element Manager
AU-System has created a Java component library, Generic Element Manager (GEM),
to be able to easily create a system for supervision of network elements [1].

2.1 Consultant unit TM/D
TM/D (Telecom Management/Development) is a consultant unit at AU-System. Its
main enterprise is development and consultant in the area of supervision of network
elements and networks in the telecommunication sector.

2.2 Project GEM
The trend within NEM (Network Element Manager) [1] for telecommunication and
data communication is, as in other lines of business, to start using web-based
solutions. There are great interests for tailor-made web-based NEM solutions among
the supplier of telecommunication and data communication equipment. As there are
lots of similarities between the demanded systems, TM/D realised that it could be an
advantage to create a library with NEM components to be able to fast and easily
create similar systems.

TM/D started the project GEM and the two main goals are to deliver ordered NEM
functions to customer X, and to make components of the developed code to add to the
NEM component library.

The supervision system should be web-based and developed in Java. During
development the RUP[7] with UML (Unified Modelling Language)[8] and Rational
Rose[9] should be used.

2.3 Overview of the elements: NE, EM, NEM
This paragraph will give a brief overview of Network Elements (NE), Element
Manager (EM) and Network Element Manager (NEM).

Equipment providers must provide well-functioning, comprehensive operations and
maintenance solutions for their products [25]. These solutions are often called
Element Managers (EM) because they are so specific to the equipment provider's
network equipment. The term Network Element Manager (NEM) is often used in a
broader sense to denote the entire range of functionality for configuring and operating
an equipment provider's product. This often means element and sub-network
management functionality (i.e. the ability to manage the capabilities provided by
interconnected network elements are also included), see Figure 1. GEM contains
some of the functionality in NEM, such as supervision of status (alarm handling).

A Network Element (NE) is a minor physical part that has a task in a network. A
network element can for example be a router, base station or a radio link.

An Element Manager (EM) is a system for supervision of network elements. An EM
system is used for
• installation and configuration
• supervision of status and performace

 GEM Security Adaption.doc

 Page 11 of 76

• operations and tests etc. of network elements

Element Managers normally address the entire FCAPS1 scope (Fault, Configuration,
Account, Performance and Security Management) to the extent that is applicable to
the services provided by the networking equipment. This means Element Managers
have to provide functionality for service assurance, service provisioning, planning and
accounting.

 Network Management

 Network Element Manager Network Element Manager

 Sub Network Manager Sub Network Manager

 Element Manager

NE NE NE NE
NE

NE

 Element Manager

Figure 1. Overview of a Network Management system.

A Network Element Management (NEM) system can be divided into two parts:
• Product specific applications that are strong connected to the type of network

element to be used and can not be used for other types of network elements.
Typical functions are configuration, test and diagnostic.

• Generic applications that can handle network elements from different vendors.

They can be used as stand-alone applications or be integrated with other
applications.
The generic applications can further be divided into:
Technology dependent applications, that are restricted to a specific technical area
(e.g. SDH or ATM). This kind of application exists for example within
Performance Management.
Technology independent applications, that can handle different kinds of NE
within several technical areas. One example is Fault Management applications.

A technology dependent generic application can have similarities, which makes it
suitable to do some parts of the functionality generic with an adaptation to the
respective technology area.

It is important that developers and customers have the same definitions about a
Network Element Management. Therefore, the applications in GEM shall follow the
ITU standard for Network Element Management [1].

1 The FCAPS model is a contribution from the TMN (Telecommunications Management Network)
model M.3100 by ITU. FCAPS is the division of management functionality into a number of functional
areas.

 GEM Security Adaption.doc

 Page 12 of 76

2.4 Technical solutions in GEM
This section gives a short overview of the technical solutions in GEM.

2.4.1 Challenging design issues
During the design phase of GEM the biggest challenge was to decide which Java
packages that should define components and to decide the interface of the packages. It
was also difficult to follow a specific alarm standard as it turned out that the customer
had a different point of view of what an alarm was.

2.4.2 Definition of a component in GEM
In the GEM project it is decided that a component will have the following definition:

A component is a java package and a package consists of several compiled Java
classes and Java interfaces. Each package has a unique name and according to the
convention, a package name shall precede with the company's Internet domain name,
backwards. The whole component family is named GEM, so the Fault Management
component has the unique name: se.ausys.gem.fm. This package can have sub
packages, such as se.ausys.gem.fm.gui for the user interface and
se.ausys.gem.fm.server for the server program.

The user of a component imports the package to his/her Java code and uses the
included methods via the exported interfaces.

2.4.3 Functions
The main functions in GEM are Fault Management, Security Management and
System Administration.

Fault Management (FM)
The GEM Fault Management comprises:
• the handling of alarms and notifications related to hardware and software faults
• logging of alarms
• localisation of faulty replaceable units
• correlation between different alarms

Alarms and clear operations arrive to the server from a network element, via an
adapter, see 2.4.4. The server updates the database as well as the view on all clients to
inform the operators.
The GEM Fault Management provides a user interface that consists of a tree view
with two main nodes, one for alarms and one for network elements (NE), see Figure
22. In the alarm node the alarms are grouped after the measure status: open,
acknowledge or cleared. Alarms are even presented in a list, in chronology order. By
using a filter the user can select what kind of alarms to be shown. In the network
element node alarms are presented per network elements and are grouped per severity.
Changes in alarm status made by any operator are reflected on all clients.

2 [3], figure 7.

 GEM Security Adaption.doc

 Page 13 of 76

Figure 2. The GEM Fault Management main window.

Secur ity Management (SM)
The GEM Security Management comprises the handling of access restrictions to
management operations. It also provides the possibility to define user profiles and
maintains a log of events related to security, see Figure 33. All events are logged by
the SM function.
The GEM Security Management contains functions to administrate users and
passwords, which is stored in cryptic form in the database. A user is connected to a
role: operator, security administrator or system administrator, and role is allowed to
do certain operations. In the new security model, part two of the Master thesis, it will
even be possible to connect the user to one or several group/s, and a group is allowed
to do certain operations.
By using/contacting GEM Security Management, other applications can control if a
user is qualified for doing a certain operation. Note, not implemented yet.
Implementation is not a part of the Master thesis.

Figure 3. The GEM Security Management main window.

3[3], figure 12.

 GEM Security Adaption.doc

 Page 14 of 76

System Administration (SA)
The GEM System Administration comprises the supervision and configuration of the
system, see Figure 44. The GEM System Administrator controls the server side
functionality.

Figure 4. The GEM SA main window - Cleared Alarms Log.

Note. Only the GEM Fault Management supports change reflection to other clients.

In Figure 55, the three main functional areas of the GEM are present. The purpose is
that other functional components easily can be incorporated if needed, e.g.
Configuration Management.
The broken line surrounding the client and server components represents a customer
specific "container" for the desired functionality. Such a container is not a part of
GEM, rather is it designed to requirements of each customer.

The communication between client and server is by using a distributed interface (e.g.
Java RMI).

4[3], figure 14.
5[2], page 6.

 GEM Security Adaption.doc

 Page 15 of 76

Fault
Management

SERVER

…

…

CLIENT

Security
Management

Fault
Management

System
Administration

Security
Management

Configuration
Management

Configuration
Management

System
Administration

Figure 5. Functional overview.

2.4.4 Network Adapter
The Network Adapter is not considered to be a part of GEM but a part of the
customer/network element specific part of an element manager system based on GEM
[2]. The Network Adapter is responsible for polling the network elements, generating
internal alarms when contact is lost with network elements and synchronise the alarm
list in the network elements with the alarm database in GEM when the system is
started and when contact is re-established with a network element.

The Network Adapter is also responsible for receiving alarms from the network
elements and to convert them to the internal GEM alarm format and forward them to
the GEM server.

2.4.5 Requirements for using GEM
The requirement for using GEM is that the protocol between the Network Element
and the Network Adapter is known, see Figure 6. It is also necessary to do an adapter
for every protocol.

2.4.6 The GEM library
The GEM System constitutes of functional components that will be used in a
framework designed for a specific system. That means that the components will be
reusable in a new context for a new system. The GEM focuses on the functional
components, not the framework.
All components in the GEM library are presented in Figure 66. The GEM database
holds a list of network elements associated with the network equipment. It also holds
alarms, users, logs etc.

6[2], page 7.

 GEM Security Adaption.doc

 Page 16 of 76

Figure 1. Included components

GEM Ser ver

…

Log
DB

NE NE NENE

Server
Communication

Database

NetL ist

Fault
M anagement

FM Tree AlarmL ist

Communication

FM Client

Security
M anagement
Administration

Security
M anagement
M anager

SM Client

Security
M anagement
Client

SA Client

 RM I

Network
A dapter

 RM I

SysA dmin
Server

System
A dministration
Client

Figure 6. System overview.

GEM source code is packaged with the generic code and the customer specific code
separated. The generic code consists of 133 Java files and the customer specific code
of 6 files (in a specific project).

2.4.7 User Roles in GEM
There are three roles defined for the GEM user [3]: operator, system administrator and
security administrator, see Figure 7.

The Operator works in the Fault Management (FM) area and may acknowledge and
clear alarms.

The System Administrator works in the System Administrations (SA) area and may

• add and remove network elements
• maintain the application log
• perform some server configuration

The System Administrator also has the right to work with Fault Management.

 GEM Security Adaption.doc

 Page 17 of 76

The Security Administrator works in the Security Management (SM) area to add, edit,
block, activate and remove user.
The Security Administrator also has the right to work with Fault Management and
System Administration. Only the Security Administrator is allowed to maintain the
security log in the System Administration area.

Note. A user can only be associated with one role at the time.

 SecurityAdm

 SystemAdm

Operator

Figure 7. The different user roles. A SecurityAdm is allowed to do the same

things as a SystemAdm and an Operator. A SystemAdm the same
things as an Operator, but an Operator can only have the role as an
Operator.

2.4.8 Start-up and synchronisation
Upon start-up the server, actually the Network Adapter will go through the network
element list, establish a contact with every physically available network element, read
the element alarm list and synchronise with the alarm list in the database. Such
synchronisation will also be performed when the server has gained contact with a
previously lost network element.
At a configurable time interval the server will also send a heartbeat request to every
network element.

 GEM Security Adaption.doc

 Page 18 of 76

3 Distributed objects
This chapter gives an overview of distributed objects and distributed systems.

3.1 Definition of a distributed object
A distributed object is essentially a component. According to [6], this means it is a
blob of self-contained intelligence that can interoperate across operating systems,
networks, run on different platforms, languages, applications, tools, and multivendor
hardware. One way to explain it is that distributed objects, when packages as
components, provide the only middleware that can make client/server computing
really work at a global level.

Distr ibuted component infrastructure
At the most basic level, a component infrastructure provides of an object software bus
- the Object Request Broker (ORB) - that lets components interoperate across address
spaces, languages, operating systems, and networks. The bus also provides
mechanism that lets components exchange metadata and discover each other. At the
next level, the infrastructure makes the bus more effective with add-on a system-level
service that helps the programmer to create very smart components. Examples of
these services include licensing, security, version control, persistence, suite
negotiation, semantic messaging, scripting, and many others.

The benefits of distr ibuted objects
A "classical" object (non-distributed), of for example C++ variety is a blob of
intelligence that encapsulates code and data. Classical objects provide good code
reuse facilities via inheritance and encapsulation. However, these classical objects
only live within a single program. Only the language compiler that creates the objects
knows of their existence. The outside world doesn't know about these objects and has
no way to access them.

In contrast, distributed object technology is extremely well suited for creating flexible
client/server systems, because the data and business logic are encapsulated within
objects, allowing them to be located anywhere within a distributed system. The
granularity of distribution is greatly improved [6]. Objects should make it possible to
manage complex systems by broadcasting instructions and alarms. It should also be
possible to modify or change any object without affecting the rest of the components
in the system or how they interact.

Disadvantages with distr ibuted object
The opportunities distributed objects provide, such as web-based computing, brings
new concerns for interoperability, security, scalability, data integrity, and access to
multiple data sources. Some points to consider [6]:
• Distributed objects can play both client and server roles. In traditional

client/server architecture, it is clear who is a client and who is a server. A server
can always be trusted, but not a client. A client can for example trust its database
server, but the reverse does not have to be true. In distributed object systems it is
not possible to clearly distinguish between clients and servers, as a single object
can alternate between these roles.

 GEM Security Adaption.doc

 Page 19 of 76

• Distributed object interactions are less predictable because distributed objects are
more flexible and granular than other client/server system and may interact in
more ad-hoc ways. This is a strength of the distributed object model, but it is also
a security risk.

• Distributed objects can scale without limit. As every object can be a server it can
be millions of servers on the ORB. How to manage access rights for millions of
servers?

• Distributed objects are very dynamic. A distributed object is inherently
anarchistic. Objects come and go. They get created dynamically and self-
destructive when they are no longer being used. This dynamism is a great strength
of objects, but it could also be a security nightmare.

Good news is that moving the security implementation into the Corba ORB itself can
solve many of these problems.

In shor t
In summary, the object bus and the component infrastructure make it unnecessary to
build information systems from scratch. Distributed objects are really independent
software components. A component is an object that is not build to a particular
program, computer language, or implementation. Objects built as components are
well suited for distributed systems. They reduce application complexity, development
cost, and time to market. They also improve software reusability, maintainability,
platform independence, and client/server distribution. Finally, components provide
more freedom of choice and flexibility. All these features, however, introduces "new"
aspects that have to be concerned, such as other security threads than for traditional
client/server systems.

3.2 Overview of different approaches to distributed
computing

There are several different approaches to distributed computing [18], such as:
• RPC uses a protocol for implementing the client/server mode. With RPC a

specific function is called. The function might be on another host in a network.
• Java RMI provides remote communication between programs written in Java.

Java RMI can be used on many operating system platforms, as long as there is a
Java Virtual Machine (JVM) implementation for the platform.

• DCOM is defined by Microsoft. DCOM server components can be written in a
number of languages. DCOM will run on any platform, as long as there is a COM
Service implementation for the platform.

• Corba is an open platform standard, defined by the Object Management Group
(OMG). Unlike competing technologies, such as Microsoft's DCOM or Java RMI,
Corba is not tied to a specific vendor, platform or programming language. Corba
will run on any platform as long as there is a Corba ORB implementation for the
platform.

Location transparency is one of the important design issues to be considered for
distributed object technology and for Java RMI, DCOM and Corba, location
transparency is of great concern.
Location transparency is the ability to access and invoke operations on an object
without needing to know where the object resides. The idea is that it should be equally

 GEM Security Adaption.doc

 Page 20 of 76

easy to invoke an operation on an object residing on a remote machine as it is to
invoke a method on an object in the same address space.

Corba and Java RMI will be described in more detail as they are of great concern for
the Master thesis. For more information about DCOM, see references [6], [18], and
[20].

3.3 RMI: Remote Method Invocation
The present GEM system is using Java RMI for the remote communication.
The Java RMI system [10] allows an object running in one Java Virtual Machine
(VM) to invoke methods on an object running in another Java VM.

RMI application
RMI applications are often comprised of two separate programs: a server and a client.
A typical server application creates some remote objects, makes references to them
accessible, and waits for clients to invoke methods on these remote objects. A typical
client application gets a remote reference to one or more remote objects in the server
and then invokes methods on them. RMI provides the mechanism by which the server
and the client communicate and pass information back and forth. Such an application
is sometimes referred to as a distributed object application.

Distributed object applications need to
• locate remote objects: Applications can use one of two mechanisms to obtain

references to remote objects. An application can register its remote objects with
RMI's simple naming facility, the rmiregistry, or the application can pass and
return remote object references as part of its normal operation.

• communicate with remote objects: Details of communication between remote
objects are handled by RMI; to the programmer, remote communication looks like
a standard Java method invocation.

• load class byte-codes for objects that are passed around. Because RMI allows a
caller to pass objects to remote objects (copy by value), RMI provides the
necessary mechanisms for loading an object's code, as well as for transmitting its
data.

In Figure 87 an RMI distributed application uses the registry to obtain a reference to a
remote object. The server calls the registry to associate (or bind) a name with a remote
object. The client looks up the remote object by its name in the server's registry and
then invokes a method on it. When the client runs as an applet, the RMI system uses
an existing Web server to load class byte-codes, from server to client and from client
to server.

7[10]

 GEM Security Adaption.doc

 Page 21 of 76

 client

Web server

 Server

Web server

Web server

RMIRMI

RMI

Figure 8. Java RMI distributed application.

Remote Inter faces, Objects, and Methods
Like any other application, a distributed application built using Java RMI consists of
interfaces and classes. The interfaces define methods, and the classes implement the
methods defined in the interfaces and, perhaps, define additional methods as well. In a
distributed application some of the implementations are assumed to reside in different
virtual machines. Objects that have methods that can be called across virtual machines
are remote objects.

An object becomes remote by implementing a remote interface, which has the
following characteristics.
• A remote interface extends the interface java.rmi.Remote.
• Each method of the interface declares java.rmi.RemoteException in its throws clause,

in addition to any application-specific exceptions.

RMI treats a remote object differently from a non-remote object when the object is
passed from one virtual machine to another. Rather than making a copy of the
implementation object in the receiving virtual machine, RMI passes a remote stub for
a remote object. The stub acts as the local representative, or proxy, for the remote
object and basically is, to the caller, the remote reference. The caller invokes a
method on the local stub, which is responsible for carrying out the method call on the
remote object.
A stub for a remote object implements the same set of remote interfaces that the
remote object implements. This allows the stub to be cast to any of the interfaces that
the remote object implements. However, this also means that only those methods
defined in a remote interface are available to be called.

Creating Distr ibuted Applications Using RMI
When using RMI to develop a distributed application, follow these general steps.
1. Design and implement the components of a distributed application.
2. Compile sources and generate stubs.
3. Make classes network accessible.
4. Start the application.

 GEM Security Adaption.doc

 Page 22 of 76

3.4 Corba Technology

3.4.1 Overview of Corba, ORB and OMG
The abbreviations Corba, ORB and OMG, which are widely used in distributed
computing community, stands for:
• Common Objects Request Broker Architecture - the name of the whole

architecture
• Object Request Broker - the active component that supplies and handles calls to

and from different programs in the network. Depending on the ORB vendor it
might be necessary to install on every machine.

• Object Management Group - the consortium that specifies and administrates the
Corba standard. Over 800 companies are members.

Corba
Corba is a technology standard developed by OMG, a non-profit group, to allow
objects to communicate with each other and develop the architecture to support
remote objects. It consists of standards for an Object Request Broker (ORB) and
services and facilities supporting a distributed application, see 3.4.7. Corba works in a
heterogeneous environment where different operative systems, hardware and
programming languages can be used.

Using Corba makes it possible to create an ordinary object and then make it
transactional, lockable, and persistent by making the object multiply-inherit from the
appropriate services. This means that the programmer can design an ordinary
component to provide its regular function and then insert the right middleware mix at
run time.

Corba separates interface from implementation and provides language-neutral data
types that make it possible to call objects across language and operating system
boundaries, see Figure 98.

file.idl

Idl2langX Idl2langY

 ApplicationX

 Stub/Skeleton

 ApplicationY

 Stub/Skeleton

 ORBX ORBY

 Interface
Specification
 (Contract)

 IIOP (GIOP/TCP/IP)

Figure 9. An overview of Corba. An IDL interface acts as a contract between
developers of objects and the users of their interfaces.

8 [21]

 GEM Security Adaption.doc

 Page 23 of 76

Local/remote transparency
In general, a Corba programmer does not have to be concerned with transports, server
locations, object activation, byte ordering across dissimilar platforms, or target
operating systems - Corba makes it all transparent.

History and versions
• OMG is created 1989 and Corba has been OMG's biggest task.
• Corba 1.0 came 1991, but was during a long time a good thought without

implementation.
• With Corba 2.0, which came late 1994, implementations and practical used started

to increase.
• From Corba 2.0 IIOP exist, which makes it possible for different ORB to co-

operate.
• From Corba 2.3.1 POA exist, which makes the most part of the code ORB vendor

independent.
• Corba is under continually development, new specifications are released the

whole time.

The Corba Development Process
To build and run an application using Corba the following steps are required, [13]:
1. Write some IDL that describes the interfaces to the object or objects that will be

used or implemented.
2. Compile the IDL file. This produces the stub and the skeleton code that

implements location transparency, see Figure 12.
3. Identify the IDL compiler-generated interfaces and classes that will be used or

specialised in order to invoke or implement operations.
4. Write code to initialise the ORB and inform it of any Corba objects that are

created.
5. Compile all the generated code and the application code with a Java compiler, if

using Java.
6. Run the distributed application.

As can be seen, it is very similar to how distributed applications are created using
Java RMI, see 3.3.

OMG
Since 1989, a consortium of object vendors, the Object Management Group (OMG),
has been busy specifying the architecture for an open software bus (the ORB) on
which object components written by different vendors can interoperate across
networks and operating systems. OMG has today over 800 member companies
representing the entire spectrum of the computer industry: 3Com, Canon, Hewlett-
Packard, Sun Microsystems. The success of OMG is perhaps that it creates interface
specifications, not code. The interfaces it specifies are always derived from
demonstrated technology submitted by member companies.

OMG’s primary goal is to create a truly open object infrastructure instead of being
controlled by a single company. OMG is definitely doing a great job as it is of great
importance to have a standard for objects to interoperate in heterogeneous
client/server environment. Unfortunately, when writing Corba programs it is, in some

 GEM Security Adaption.doc

 Page 24 of 76

cases, still necessary to be vendor dependant (in the ORB environment, although, they
can co-operate with other Corba implementations). Inprise VisiBroker's SmartAgent
is one example.

ORB
The ORB defines a mechanism for objects to communicate with each other. The ORB
can be seen as an object bus, which one can plug objects into to communicate,
regardless of location and language the object was written. In addition the mechanism
for communication is transparent to the programmer. The programmer uses the
remote object the same way one would use a regular object. The client object views
the remote object as local and the remote object views the client object as local.

Built in security and transaction
The ORB includes context information in its messages to handle security and
transactions across machine and ORB boundaries.

The Corba specification provides certain interfaces to components of the ORB, but
leaves the interfaces to other components up to the ORB implementer.

3.4.2 Interfaces, IDL and stubs and skeletons
An interface is a description of the operations and data types that are offered by an
object and can also contain structured type definitions used as parameters to those
operations. Interfaces are specified in OMG IDL and are related in an inheritance
hierarchy. In Corba, interface types and object types have a one-to-one mapping.

Interface Definition Language (IDL) is a programming language transparency that
provides the freedom to implement the functionality encapsulated in an object using
the most appropriate language. Corba supports this freedom by using OMG IDL for
defining the interfaces of Corba objects.

OMG uses IDL contracts to specify a component's boundaries and its contractual
interfaces with potential clients. The IDL is purely declarative and therefore has no
implementation details. IDL can be used to specify a component's attributes, the
parent classes it inherits from, the exception is raises, the typed events it emits, and
the methods it interface supports - including the input and output parameters and their
data types. IDL-specified methods can be written in and invoked from any language
that provides Corba bindings - currently Java, C, C++, Smalltalk, Cobol, Ada, and
Object Pascal. It allows client and server objects written in different languages to
interoperate across networks and operating systems, see Figure 109.

9 [6], figure 3-1.

 GEM Security Adaption.doc

 Page 25 of 76

 C

Other Other

Cobol Cobol

 Ada

 Java

 C++

 Ada

 Java

 C++

 CIDL

 C
 L
 I
 E
 N
 T

 S
 E
 R
 V
 E
 R

IDL

IDL

IDL

IDL

IDL

IDL

IDL

IDL

IDL

IDL

IDL

 ORB

Figure 10. Corba IDL bindings provide client/server interoperability.

The IDL compiler generates stub code (e.g. Java classes) for the client and skeleton
code for the server. The role of the stub code is to provide proxy objects that the client
can invoke methods on. The proxy object method implementations invoke operations
on the object implementation, which may be located remotely. If the object
implementation is at a remote location the proxy objects marshals and transmits the
invocation request. That is, it takes the operation name and the types and values of its
arguments from language-dependent data structures and places them into a l inear
representation suitable for transmitting across a network. The code to marshal
programmer-defined data types is an essential part of the stub code. The resulting
marshalled form of the request is sent to the object implementation using the
particular ORB's infrastructure. This infrastructure involves a network transport
mechanism and additional mechanisms to locate the implementation object, and
perhaps to activate the Corba server program that provides the implementation.

The skeleton code implements the mechanisms by which invocation requests coming
into a server can be un-marshaled and directed to the right method of the right
implementation object. The implementation of those methods is the responsibility of
the application programmer. See Figure 1110 for an illustration of the use of stub,
skeleton, and ORB to make a remote invocation.

10 [13], page 27.

 GEM Security Adaption.doc

 Page 26 of 76

 Client

 Server Proxy
 (Skeleton Code)

 Client Proxy
 (StubCode)

 Object Request Broker

 Object Implementation

Figure 11. Stub, skeleton and ORB.

The skeleton code provides the glue between an object implementation, a Corba
server, and the ORB, in particular the object adapter, see 3.4.4.

A client programmer needs only the IDL to write client code that is ready to invoke
operations on a remote object. The client uses the data types defined in IDL through a
language mapping. This mapping defines the programming language constructs (data
types, classes, etc.) that will be generated by the IDL compiler supplied by an ORB
vendor, see Figure 12.

 IDL-file
 (xxx.idl)

 Client Stub
 (_xxxStub)

 Interface
 (xxx)

Server Skelton
 (xxxPOA)

 xxxHolder
 (xxx.idl)

 xxxHelper

Interface Repository
 Compile

Implementation
 of client

Implementation
 of server

Implementation
 of main

Server Skelton
(xxxOperations)

Server Skelton
 (xxxPOATie)

Figure 12. Generated files after compiling an IDL-file (using VisiBroker 4.1).

The IDL grammar is a subset of C++ with additional keyword to support distributed
concepts; it also uses the same pre-processors as C and C++, see Figure 13 and
Figure 14.

 GEM Security Adaption.doc

 Page 27 of 76

#ifndef COMMON_IDL
module Common{

struct PersonalData{
string firstName;

 string familyName;
string phoneNumber;
string address;

} ;
} ;
#endif

Figure 13. Example of an IDL-file, Common.idl.

 #ifndef BANKACCOUNT_IDL

#include <Common.idl>
module BankAccount{

 exception toLargeAmount{ long maxAmount} ;

interface Account{
 // Attribute
 attribute string account_no;
 attribute long holding_amount;
 // Operations
 boolean insert(in long amount);
 boolean withdraw(in long amount)

raises toLargeAmount;
 Owner get_owner(); // Returns another interface

} ;
 interface AccountManager{
 Account open(in common::PersonalData id);

} ;
interface SuperAccount : Account{
 // More attributes and operations
} ;

} ;
#endif

An exception

Using the included
datatype PersonalData

Inherits the
interface Account

Include file Common.idl

Figure 14. BankAccount.idl.

The parameters can either be of type in, out or inout. A parameter of type in is for
incoming data, out is for outgoing data and inout is for bi-directional data. In Figure
14 all parameters are of type in.

3.4.3 Interface Repository (IR)
The Interface Repository (IR) is a fundamental service in Corba that provides
information about the interface types of objects supported in a particular ORB
installation. The IR is like a database that contains information about objects. The
information includes modules, interfaces, operations and attributes. The repository
can be used for a variety of things including a centralised location for information
about interfaces available to programmers and to create clients that find and use
interfaces at run-time and without prior knowledge of the interface. Essentially the
repository contains the information found in the IDL.

 GEM Security Adaption.doc

 Page 28 of 76

3.4.4 Object Adapter
An object adapter is the mechanism that connects a request using an object reference
with the proper code to service the request. The original OMG specification for
binding the object implementation to the ORB was named Basic Object Adapter
(BOA). But the BOA was neither robust enough nor precisely enough described. The
server side code did for example not port from one vendor's ORB to another. The
BOA specification was followed, and replaced, by a Portable Object Adapter (POA)
specification that among other things solved this problem. The BOA is anyhow still
supported.
POA is used in the Master thesis and will be described in detail in chapter 3.4.9. Here
is a short definition [11]: "The POA is a particular type of object adapter specified by
OMG to achieve the maximum amount of portability among ORBs that have widely
differing design points".

3.4.5 Object Implementation and Object Reference
It is necessary to distinguish between object implementation and object reference.
Object implementation is the code that implements the operations defined by an IDL
interface definition, while an object reference is the object's identity, which is used by
clients to invoke its operations.

An object implementation is the part of a Corba object that is provided by an
application developer. It usually includes some internal state, and will often cause side
effects on things that are not objects, such as a database, screen display, or
telecommunications network elements. The methods of the implementation may be
accessed by any mechanism, but in practice most object implementations will be
invoked via the skeleton code generated by an IDL compiler.

Object references are handles to objects. A given object reference will always denote
a single object, but several distinct object references may denote the same object.
Object references can be passed to clients of objects, either as an operation's
parameter or result, where the IDL for an operation nominates an interface type, or
they can be passed as strings which can be turned into live object references that can
have operations invoked on them.
Object references are opaque to their users. That is, they contain enough information
for the ORB to send a request to the correct object implementation, but this
information is inaccessible to their users. Object references contain information about
the location and type of the object denoted, but do so in a sophisticated manner so that
if the object has migrated or is not active at the time, the ORB can perform the
necessary tasks to redirect the request to a new location or activate an object to
receive the request.
Unless an object has been explicitly destroyed, or the underlying network and
operating system infrastructure is malfunctioning, the ORB should be able to convey
an operation invocation to its target and return results. The ORB also supports
operations that interpret the object reference and provide the client with some of the
information it contains.

3.4.6 Static and Dynamic Invocation
The ORB lets clients invoke methods on remote objects either statically or
dynamically [11]. If a component interface is already defined, the developer can bind

 GEM Security Adaption.doc

 Page 29 of 76

the program to a static stub to call its methods; otherwise, the developer can discover
how the interface works at run time by consulting an OMG-specified Interface
Repository, see chapter 3.4.3.

Dynamic Invocation and Dynamic Skeleton Inter faces
The Dynamic Invocation Interfaces (DII) on the client side and the Dynamic Skeleton
Interface (DSI) on the server side is a symmetrical pair of ORB components.
The DII enables a client to invoke operations on an interface for which it has no
compiled stub code. That is, it can send the request, do some further processing, and
then check for a response. This is useful regardless of whether or not the interface
type is known at compile time, as it is not available via a static, or stub-based,
invocation.
The DSI is used to accept a request for any operation, regardless of whether it has
been defined in IDL or not. The mechanism allows servers to implement a class of
generic operations of which it knows the form but not the exact syntax. It helps in
writing client code that uses compiled IDL stubs based on an abstract IDL template.
The client can then invoke operations on a complied proxy stub in a type-safe manner.

3.4.7 Standard object interfaces
The OMG's object management architecture (OMA) identifies four categories of
software interfaces for standardisation [23]: the Corba ORB, the Corba services, the
Corba facilities and the Corba domain, see Figure 1511.

 Application

 Object

 Application or
 Company specific

 Corba Facilities

 User Interface
 Information Mgmt
 System Mgmt
 Task Mgmt

 Corba Domains

 Finance
 Health Care
 Telecom
 Manufacturing
 Etc.

 Corba Services
Naming Lifecycle Externalisation Time
Event Security Query Licensing
Transaction Trader Collection Properties
Persistence Concurrency Relationship Notification

 OBJECT REQUEST BROKER (ORB)

Figure 15. Corba Architecture.

Corba Facilities
Corba Facilities are collections of IDL-defined components that provide services of
direct use to application objects.

11[21], slide 1-15.

 GEM Security Adaption.doc

 Page 30 of 76

Corba Domains
Corba Domains provides IDL-defined interfaces (or components) for domain specific
areas, such as Finance or Telecommunication.

Application objects
Application objects are not standardised by OMG. They are components specific to
end-user applications. These objects must be defined using IDL if they are to
participate in ORB-mediated exchanges.

ORB and its implementations
The Object Request Broker (ORB) is the object bus. It lets objects transparently make
request to and receive responses from, other objects located locally or remotely. The
client is not aware of the mechanisms used to communicate with, activate, or store the
server objects.

A Corba ORB provides a very rich set of distributed middleware services. The ORB
lets objects discover each other at run time and invoke each other's services. An ORB
is much more sophisticated than alternative forms of client/server middleware,
including traditional RPC, Message-Oriented Middleware (MOM), database-stored
procedures, and peer-to-peer service [6].

Corba Services
The Corba Services represents services that distributed object systems may need. The
remote and local objects to work with the ORB and other objects use these services.
According to [11] there are 16 Corba services specified by OMG.

• The Naming Service allows objects implementations to be identified by name and

is thus a fundamental service for distributed object systems.

• The Trader Service is like a directory of available objects.

• The Event Service provides channels where supplier objects can input events, and

consumer objects can receive them. This is a standard way for components on the
bus to register and unregister objects interested in an event. The event object is
responsible for notifying event recipients.

• The Notification Service works as the Event Service plus using sophisticated
event typing and filtering.

• The Object Transaction Service provides two-phase commit co-ordination

among recoverable components using either flat or nested transaction.
Concurrency Control Service supports Object Transaction Service.

• The Secur ity Service defines architecture and interfaces for security on an object.

• The LifeCycle Service defines operations for creating, copying, moving, and

deleting components on the bus.

• The Relationship Service allows for creating links between objects that have no

direct knowledge of each other.

 GEM Security Adaption.doc

 Page 31 of 76

• The Persistence Service provides a single interface for storing components
persistently on a variety of storage servers, such as Object Databases (ODBMs).

• The Externalisation Service provides a standard way for getting data into and out

of component using a stream-like mechanism.

• The Object Query Service is a standard for querying objects using a scripting
language. It is similar to SQL and based on SQL 2 specification and Object
Database Management Group Object Query Language.

• The Object Properties Service provides operations to associate named values or
properties with any component.

• The Concurrency Control Service provides a lock manager that can obtain locks

on behalf of either transactions or threads.

• The Licensing Service provides operations for measuring the usage of an object.

• The Secure Time Service is a standard for providing synchronising time in a

distributed environment.

• The Object Collection Service provides a standard for creating and manipulating

collections of objects.

Of all the services, the Naming Service is the most important and therefore always in
use. The Naming Service makes the local transparency possible. As the service is
relevant for the Master thesis it will be described in more detail.

Naming Service
The use of object references alone to identify objects has two problems for human
users, first, because object references are opaque data types, and second, their string
forms is a long sequence of numbers. When a service is restarted, its objects typically
have a new object reference. However, in most cases clients want to use the service
repeatedly without needing to be aware that the service has been restarted, object
persistence. The Naming Service solves these problems by providing an extra layer of
abstraction for identification of objects.

The Naming Service provides a mapping between a name and an object reference.
According to the OMG specification [16] is a name-to-object association called a
name binding. A name binding is always defined relative to a naming context. A
naming context is an object that contains a set of name bindings in which each name
is unique. Contexts are similar to directories in file systems and they can contain
name bindings as well as sub-context, see Figure 1612. Different names can be bound
to an object in the same or different context at the same time. Obtaining an object
reference, which is bound to a name in a given context, is known as resolving the
name. To bind a name is to create a name binding in a given context. A naming
context can also be bound to a name in a naming context. Binding context in other
contexts creates a naming graph.

12[12], figure 18.2.

 GEM Security Adaption.doc

 Page 32 of 76

Figure 16. Naming scheme for an order entry system.

The typical use of the Naming Service involves object implementations binding to the
Naming Service when they come into existence and unbinding before they terminate.
Clients resolve names to objects, on which they subsequently invoke operations. See
this usage scenario in Figure 1713.

Namespace

<name_1, objref_1>
<name_2, objref_2>
 .
 .
 .
<name_x-1,objref_x-1>

Client Application

Object Implementation

1. bind(name, object_ref)

2. resolve(name)

3. resolve() returns
an object reference

4. Invoke methods
on objects

Figure 17. Binding, resolving, and using an object name from a naming

context within a namespace.

13 [12], figure 18.1.

 GEM Security Adaption.doc

 Page 33 of 76

Event Service
The Corba Event Service provides a way of distributing data about an occurrence in a
distributed application to a number of interested parties without requiring the
originator of the event data to know the receivers and to make several calls to specific
objects.
The Event Service's event channel takes event data from a supplier of events and
delivers that data to one or more event consumers, see Figure 1814. The channel may
act as a client to the supplier, pulling the event data from the supplier, or it may
provide an object interface that allows the supplier to push the event data into the
channel. When the data is to be delivered to consumers, the same options are
available: the channel may push the event data to the consumer, or it may wait until
the consumer pulls the event data from the channel. Channels may also use a
combination of the push and pull approaches with different clients.
The specification defines the communication interfaces used to push and pull event
data to and from suppliers and consumers. It then defines the Event Channel in terms
of proxy suppliers and consumers. That is, the channel is an intermediary object
between a supplier and a consumer, and it act toward a supplier as a proxy consumer
and toward a consumer as a proxy supplier.

 Consumer

 (Push)
Consumer

 Proxy
 (Push)
 Supplier

 Supplier

 Proxy
 (Push)
Consumer

 (Push)
 SupplierEvent channel

Figure 18. Event channel between Consumer and Supplier. The channel acts

as an intermediate object.

3.4.8 Interoperability
Local and remote invocation
Corba 2.0 interoperability is based on ORB-to-ORB-communication [11], see Figure
1915. All of the clients connected to ORB 1 can access object implementations in both
ORB 1 and ORB 2. The same conditions holds for clients connected to ORB 2. The
architecture scales to any number of connected ORBs.
An invocation from a client of ORB 1 passes through its IDL stub into the ORB core.
ORB 1 extracts the location of the object instance from the object reference where it
is encapsulated. If the target instance is local, ORB 1 passes the invocation through
the skeleton code to the object for servicing. If the target is remote, ORB 1 marshals
arguments for the wire and passes the invocation across the communication pathway
to ORB 2, which un-marshals and routes everything to the object. Because the
invocation must come into the implementation via either the skeleton or the DSI
(Dynamic Skeleton Interface), the object implementation (like the client) has no way
of knowing whether the client is local or remote, nor does it care.

14 [21], slide 9-7.
15 [11], page 163.

 GEM Security Adaption.doc

 Page 34 of 76

 Client

 ORB 1

 Stub Skel Skel Stub

 Object Client Object

 ORB 2

Figure 19. Interoperability via ORB-to-ORB communication.

For invocations that stay local, Corba only adds a few extra instructions and the
servicing is extremely fast. For remote invocation, most of the processing is local and
only the actual invocation goes out over the wire unless the target object has moved;
in this case, an extra round-trip or two are necessary to find its new location.

Note that client and object implementations are not involved in the communication
step. In Corba, the communication always goes from one ORB to another.

Remote invocation works regardless of platform, protocol, and format differences that
might exist between ORB 1 and ORB 2. That made it necessary for both ORBs to
have enough information about the invocation and response to allow them to translate
data where necessary as they transfer the requests from Platform 1 to Platform 2, and
back. IDL interfaces are the key to this: Interface definitions are encoded in the stubs
and skeletons, where they control marshalling and un-marshalling; for dynamic
invocations, these details come from the Interface Repository, see 3.4.3.

Interoperable Object References (IORs)
OMG has specified a standard object reference format, as part of the architecture. It is
named Interoperability Object Reference (IOR) and contains the same information as
a single domain object reference, but adds a list of protocol profiles indicating which
communication protocols the domain of origin can accept requests in.
IOR is used in inter-ORB invocations, so it is emitted and accepted by ORBs
speaking to the network, and used by the bridges between them.

Protocols
Some protocols are official OMG standards. So far there are two protocols: the IIOP,
and the DCE-ESIOP [11]. See [21]16 for the relationships between these protocols.

16[13], page 68.

 GEM Security Adaption.doc

 Page 35 of 76

IPX DCE-CIOP

 GIOP

 IIOP ...

 ESIOP

Corba Core/IDL

Interoperability
Architecture

...

Figure 20. Structure of the Corba Interoperability Specification. Shaded

components are mandatory for Corba Interoperability compliance.
Interoperability Architecture contains the basic architecture built on
bridging; the Interoperable Object Reference (IOR); the
interoperability interfaces including the DSI; and the provision for
context-specific services.

General Inter-ORB Protocol (GIOP) and Internet Inter-ORB Protocol (IIOP)
The GIOP defines a linear format for the transmission of Corba requests and replies
without requiring a particular network transport protocol.

IIOP, which is the GIOP over TCP/IP, is the one protocol mandatory for Corba
Interoperability compliance, see Figure 2117. It defines some primitives to assist in the
establishment of TCP connections. This protocol is required for compliance to Corba
2.0 and is intended to provide a base-level interoperability between all ORB vendors'
products, even though some vendors will continue to support proprietary protocols.

 GIOP

 TCP/IP

 GIOP

 TCP/IP

"Transport
independent"

 GIOP
Specialisation

 I IOP
Messages

Figure 21. IIOP is GIOP over TCP/IP.

Environment-Specific Inter-ORB Protocols (ESIOPs)
A non-GIOP protocol is an ESIOP if it is based on the interoperability architecture
including domains, bridging, the IOR, and the interoperability interfaces including
DSI. A Distributed Computing Environment (DCE)-based protocol adopted by OMG,

17 [21], slide 1-23.

 GEM Security Adaption.doc

 Page 36 of 76

as a part of Corba 2, is an ESIOP. Even though it is not mandatory for all ORBs is it
an OMG standard, and using it is the only way to implement a DCE-based protocol in
Corba.
The DCE-CIOP is a protocol for ORB-to-ORB communications, there it plays the
same role as IIOP.

3.4.9 The Portable Object Adapter (POA)
A POA is the intermediary between the implementation of an object and the ORB.

Definitions
Definitions of some key concepts used in the POA specification:
• Servant. An implementation/programming object that provides the run-time

semantics of one or more Corba objects. A servant is not a Corba object.
• Object ID. An identifier, unique with respect to a POA, that the POA uses to

associate a Corba object identity with a servant.
• Incarnate. The action of providing a running servant to serve requests associated

with a particular object ID. A POA will keep this association in its active object
map.

• Etherealise. The action of destroying a servant associated with an object ID, so
that the object ID no longer identifies a Corba object with respect to a particular
POA.

• Default Servant. An object to which all incoming requests for object IDs not in the
Active Object Map are dispatched.

In its role as an intermediary, a POA route requests to servants and, as a result may
cause servants to run and create child POAs if necessary.
Servers can support multiple POAs. One POA is created automatically, the rootPOA.
The set of POAs is hierarchical; all POAs have the rootPOA as their ancestor. Servant
managers locate and assign servants to objects for the POA. When an abstract object
is assigned to a servant, it is called an active object and the servant is said to incarnate
the active object. Every POA has one Active Object Map, which keeps track of the
object IDs of active objects and their associated active servants. See Figure 2218 for an
overview of the POA.

 Server

 rootPOA

 Servant Manager

Active Object Map

ObjectID
ObjectID
ObjectID

 Servant

POA

POA

 Servant

 Servant

Servant Manager

Client request

Figure 22. Overview of the POA.

18[12], Figure 7.1.

 GEM Security Adaption.doc

 Page 37 of 76

A POA object is locality constraint. This means that references to objects defined in
POA may not be passed outside of a server's address space. Its job is to deal with
requests on a particular computer.

Servants and servant managers
Servant manager performs two types of operations: find and return a servant, and
deactivate a servant. They allow the POA to activate objects when a request for an
inactive object is received. Servant managers are optional. For example, servant
managers are not needed when the server loads all objects at start-up. Servant
managers may also inform clients to forward requests to another object using
ForwardRequest.

A servant is an active instance of an implementation. The POA maintains a map of
the active servants and the object IDs of the servants. When a client request is
received, the POA first checks this map to see if the object ID (embedded in the client
request) has been recorded. If it exists, then the POA forwards the request to the
servant. If the object ID is not found in the map, the servant manager is asked to
locate and activate the appropriate servant. See Figure 2319 of the example scenario.
Scenarios can be different depending on the POA polices.

 POA

 Active Object Map

 ObjectID
 ObjectID
 ObjectID

 Servant
 Manager

 Servant

2. POA asks the servant
 manager to find an
 appropriate.

3. Servant manager constructs the
appropriate servant and returns it to the
POA, which completes the request.

1. Client makes a
request, but the
required object is not
present.

Figure 23. Servant manager function.

Setting up a POA with a servant
The steps to follow are the following:
• Obtaining a reference to the rootPOA
• Defining the POA policies
• Creating a POA as a child of the rootPOA
• Creating a servant and activating it
• Activating the POA through its manager

These steps can be seen in Figure 25.

19[12], Figure 7.2.

 GEM Security Adaption.doc

 Page 38 of 76

Example code: The example code is from for the Master thesis20 and shows the
FaultManagement part. The FaultManagement interface is specified in Figure 24.
When compiling the IDL file creates, among other, a FaultManagementPOA.java file
and this serves as the skeleton code for the FaultManagement object implementation
on the server side, see Figure 25.

#ifndef INTERFACES_IDL
#include <CommonDeclare.idl>

module interfaces{

 /**
 * The interface is used by any component that wants alarms from the database.
 */
 interface FaultManagement {
 /**
 * Returns all active alarms from database.
 */
 commonDeclare::alarmList getAlarms()
 raises (commonDeclare::DbException);
 /**
 * Called from clients in order to update active alarms.
 */
 void updateAlarm(in commonDeclare::Client client, in commonDeclare::alarmList alarms, in long updateData)
 raises (commonDeclare::DbException);
 commonDeclare::alarmList getSelectedAlarms(in long from, in long to)
 raises (commonDeclare::DbException);
 /**
 * Returns the number of cleared alarms in the database.
 */
 long long getAlarmHistoryCount(in commonDeclare::Date from, in commonDeclare::Date to)
 raises (commonDeclare::DbException);
 /**
 * Returns a vector of cleared alarms.
 */
 commonDeclare::alarmList getAlarmHistory(in long size, in long order)
 raises (commonDeclare::DbException);
 /**
 * Returns a vector of cleared alarms.
 */
 commonDeclare::alarmList getAlarmHistoryDate(in long size, in long order, in commonDeclare::Date from, in
commonDeclare::Date to)
 raises (commonDeclare::DbException);
 } ;

Figure 24. The FaultManagement interface in the IDL file Interfaces.idl. Just a

part of the file is shown.

20 As VisiBroker 4.1 is used it might be a difference when using another ORB.

 GEM Security Adaption.doc

 Page 39 of 76

/** The start menu item has been clicked.
 * Construct all the Corba servers and add them in to the NameService.
 */
 void jMenuItem2_actionPerformed(ActionEvent e){

...
 try
 {
 // Init ORB
 ORB orb = ORB.init(m_args, null);
 // Init root POA
 POA rootPOA = POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
 // Init root POA policies, make PERSISTENT
 org.omg.CORBA.Policy[] policies = {
 rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT)
 } ;
 //Init NameService
 org.omg.CORBA.Object nameObj = orb.resolve_initial_references("NameService");
 NamingContextExt root = NamingContextExtHelper.narrow(nameObj);
 //Instansiate object implementation

...
 //Fault Management
 //Create a fmPOA with the same policies as the rootPOA
 POA fmPOA = rootPOA.create_POA("FaultManagementPOA",rootPOA.the_POAManager(),policies);
 //Create a servant
 FaultManagementImpl fm = new FaultManagementImpl((DistributionProxyAlarms)dist ,conf);
 //Bind the servant to an ID
 byte[] faultManagementID = "FaultManagement".getBytes();
 //Activate servant with the objectID on fmPOA
 fmPOA.activate_object_with_id(faultManagementID, fm);
 //Activate the POA Manager
 rootPOA.the_POAManager().activate();
 //Bind object to name
 NameComponent faultManager = new NameComponent("FaultManagement","");
 root.rebind(new NameComponent[] { faultManager} , fmPOA.servant_to_reference(fm));
 //Wait for incoming requests
 orb.run();
 }
 catch (org.omg.CORBA.SystemException se){
 System.out.println("ERROR: CORBA SYSTEMException" + se.getMessage());
 se.printStackTrace();
 }
 catch (org.omg.CORBA.ORBPackage.InvalidName exc){
 System.out.println("ERROR: The ORB could not resolve a reference to the NameService");
 exc.printStackTrace();
 }
 }
 }

The name may always be the same

Figure 25. The server implementation of the code. Note: This shows just the

instantiation of FaultManagement part of the code.

In the example code the FaultManagement is activated with activate_object_with_id
(see Figure 25), which passes the objectID to the Active Object Map where it is
recorded. This approach ensures that this object is always available when the POA is
active and is called explicit object activation. The Corba NameService is in use, see
Naming Service in chapter 3.4.7. A logical name is associated with an object
reference and the logical name is stored in a namespace. In this example an object
reference is named FaultManagement. This allows a client application to use the
Naming Service to obtain an object reference by using the logical name assigned to
that object, see Figure 26.

 GEM Security Adaption.doc

 Page 40 of 76

 public ServerProxyImpl(boolean alarmSubscriber, boolean netlistSubscriber, String hostName, String[] args)
 {
 this.hostName = hostName;
 isAlarmSubscriber = alarmSubscriber;
 isNetlistSubscriber = netlistSubscriber;

 try{
 // Init ORB
 ORB orb = ORB.init(args,null);

 // Init NameService
 Object nameService = orb.resolve_initial_references("NameService");
 nc = NamingContextHelper.narrow(nameService);

...
 //Resolve a logical name to an object reference.
 NameComponent faultManagementName = new NameComponent("FaultManagement","");
 org.omg.CORBA.Object faultMObj = nc.resolve(new NameComponent[] { faultManagementName});
 faultManagement = FaultManagementHelper.narrow(faultMObj);

...
 alarms = new FaultManagementProxyImpl(faultManagement);

 // Create callback objects and activate them on rootPOA
 POA rootPOA = POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
 regAlarmClient = new ClientImpl(alarms,true,false);
 regNetlistClient = new ClientImpl(netlist,false,true);
 rootPOA.activate_object(regAlarmClient);
 rootPOA.activate_object(regNetlistClient);
 rootPOA.the_POAManager().activate();
 regAlarmCl = ClientHelper.narrow(rootPOA.servant_to_reference(regAlarmClient));
 regNetlistCl = ClientHelper.narrow(rootPOA.servant_to_reference(regNetlistClient));
 this.registerSubscriber();
 }
 catch (org.omg.CORBA.ORBPackage.InvalidName ex){
 System.out.println("Can't find nameservice!");
 }
 catch (Exception e)
 {
 System.out.println(e);
 e.printStackTrace();
 }
 }

Figure 26. The client implementation of the code. Note, only the

implementation of FaultManagement is shown.

3.4.10 Tie Mechanism
The inheritance approach has some shortcomings. Since Java only supports single
class inheritance, an object implementation cannot extend any application specific
class as it already extends the skeleton class, see Figure 27. Some times it might be
necessary for one Java object to implement multiple IDL interfaces, for example, an
application specific interface and a general management interface. This cannot be
achieved via Java extension, as the implementation object in that case needs to extend
two or more skeletons, see Figure 29.

 GEM Security Adaption.doc

 Page 41 of 76

public class FaultManagementImpl extends FaultManagementPOA{

 public CorbaAlarms[] getAlarms throws DBException{
...

 }
}

The specification is in the interface FaultManagement

Figure 27. Single class inheritance.

A solution to these problems is to use delegation instead of inheritance. This is
achieved by generating a pseudo-implementation or Tie-class, which inherits the
skeleton. However, rather than implementing the operations, this pseudo-
implementation class delegates all calls to the actual implementation, see Figure 28.
The Tie-class acts like a proxy that takes care of the net communication.

FaultManagementPOATie fmTie = new FaultManagementPOATie(new
FaultManagementImpl((DistributionProxyAlarms)dist),conf,rootPOA)

_stub getAlarms() getAlarms()

 Tie-class

FaultManagementPOATie FaulManagementImpl

Figure 28. A schematic picture of the Tie-mechanism.

When compiling an IDL file, see Figure 12, two additional files are generated:
<InterfaceName>POATie and <InterfaceName>Operations, and those are used when using
the Tie-mechanism, see Figure 29.

 GEM Security Adaption.doc

 Page 42 of 76

/**
* This class handles all operations regarding alarms.
*/
public class FaultManagementImpl implements FaultManagementOperations,FaultManagementNAOperations {

 public CorbaAlarm[] getAlarms() throws DbException{
...

 }

 public string newAlarm(CorbaAlarm alarmCorba) throws DbException{
...

 }
}

The specification is in the
interface FaultManagement

The specification is in the
interface FaultManagementNA

Figure 29. The implementation class only needs to implement

<InterfaceName>Operations and can still inherit another class.

Changes in the server code example in Figure 25 when using the Tie-mechanism is
(changed lines in bold):

/** The start menu item has been clicked.
 * Construct all the Corba servers and add them in to the NameService.
 */
 void jMenuItem2_actionPerformed(ActionEvent e){

...
 try
 {
 // Init ORB
 ORB orb = ORB.init(m_args, null);
 // Init root POA
 POA rootPOA = POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
 // Init root POA policies, make PERSISTENT
 org.omg.CORBA.Policy[] policies = {
 rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT)
 } ;
 //Init NameService
 org.omg.CORBA.Object nameObj = orb.resolve_initial_references("NameService");
 NamingContextExt root = NamingContextExtHelper.narrow(nameObj);
 //Instansiate object implementation

...
 //Fault Management
 POA fmPOA = rootPOA.create_POA("FaultManagementPOA",rootPOA.the_POAManager(),policies);
 FaultM anagementPOATie fmTie = new FaultM anagementPOATie(new
FaultM anagementImpl((Distr ibutionProxyAlarms)dist ,conf,rootPOA));
 // FaultManagement: Bind it to an ID
 byte[] faultManagementID = "FaultManagement".getBytes();
 fmPOA.activate_object_with_id(faultM anagementID, fmTie);

...
 //Activate the POA Manager
 rootPOA.the_POAManager().activate();
 //Bind object to name
 NameComponent faultManager = new NameComponent("FaultManagement","");
 root.rebind(new NameComponent[] {faultM anager}, fmPOA.servant_to_reference(fmTie));
 //Wait for incoming requests
 orb.run();
 }
 catch (org.omg.CORBA.SystemException se){
 System.out.println("ERROR: CORBA SYSTEMException" + se.getMessage());
 se.printStackTrace();
 }
 catch (org.omg.CORBA.ORBPackage.InvalidName exc){
 System.out.println("ERROR: The ORB could not resolve a reference to the NameService");
 exc.printStackTrace();
 }

...
 }
 }

The name may always be the same

Figure 30. Changes in the server code example in Figure 25 when using Tie-
mechanism.

 GEM Security Adaption.doc

 Page 43 of 76

3.5 Corba compared with Java RMI
Both Corba and Java RMI defines a programming model for distributed object
computing. The biggest difference is that Java RMI is only for use for objects written
in Java. Corba objects can be written in a variety of languages including C++, Cobol,
Java, Ada, Smalltalk and Object Pascal.

Protocol
Java RMI defines APIs, that enable invocations of methods on Java objects across
JVM and machine boundaries. RMI uses its own proprietary protocol, Java Remote
Method Invocation Protocol (JRMP) over TCP/IP and does not define a specific
protocol, but can be implemented with IIOP (including object-by-value). RMI-over-
IIOP natively supports the propagation of transaction and security contexts and allows
the integration of legacy systems through IDL interfaces implemented in other
languages [24]. Corba is using the two official OMG standard protocols: IIOP and
DCE-ESIOP.

Call-by-value
RMI provides call-by-value mechanisms for Java objects. For example, RMI makes it
possible to send a Hashtable object from one Java machine to another. From Corba
version 2.3 is it also possible to use Object-by-value (e.g. passing of objects by value),
but it is not as simple as in RMI. In RMI is it not necessary to add code. In Corba is it
necessary to use the IDL data type valuetype to make a mapping to a public Java class
with the same name, see 5.3.2 for more information.

Naming Service
In RMI, for a client to locate a server object for the first time, RMI depends on a
naming mechanism called a RMIRegistry that runs on the Server machine and holds
information about available Server Objects, see Figure 31. A Java RMI client acquires
an object reference to a Java RMI server object by doing a lookup for a Server Object
reference and invoke methods on the Server Object as if the Java RMI server object
resides in the client's address space [18], see Figure 32.
For Corba the client and server parts are described in chapter 3.4.9. To compare with
RMI the server side part is in Figure 33 and the client side part is in Figure 34. As can
be seen, Corba requires more coding.

try
{

LocateRegistry.createRegistry(1099);
//LogManager
LogManagerImpl lmi = new LogManagerImpl(Database.getDbLogInstance());
Naming.rebind("LogManagerServer",lmi);
//Netlist
NetListHandlerImpl nl = new NetListHandlerImpl((NetListSubscriber) dp);
Naming.rebind("NetList",nl);

}

Figure 31. Server side, using RMI. LocateRegistry.createRegistry creates and

exports a Registry on the local host that accepts requests on the
specified port (1099). Naming.rebind rebinds the specified name to a
new remote object. Any existing binding for the name is replaced.

 GEM Security Adaption.doc

 Page 44 of 76

public SysAdmProxy (String hostName){
this.hostName = hostName;
try{

// NetworkElements
String rmiHost = "//" + this.hostName + ":1099/NetList";
NetListHandler NL = (NetListHandler)Naming.lookup(rmiHost);
NetListHandlerNLW NLAdmin = (NetListHandlerNLW)Naming.lookup(rmiHost);
// ActionLog
rmiHost = "//" + this.hostName + ":1099/LogManagerServer";
Log log = (Log)Naming.loopup(rmiHost);

}
...

}

Figure 32. Client side, using RMI. Naming.lookup returns a reference, a stub,

for the remote object associated with the specified name (rmiHost).

try{
//Init ORB
ORB orb = ORB.init(m_args,null);
//Init rootPOA
POA rootPOA = POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
//Init rootPOA policies, make PERSISTENT
Policy[] policies = {

RootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT)
};
//Init NameService
Object nameObj = orb.resolve_initial_references("NameService");
NamingContextExt root = NamingContextExtHelper.narrow(nameObj);
//Instatiate objects
//LogManager
POA logMPOA = rootPOA.create_POA("LogPOA",rootPOA.the_POAManager(),policies);
LogPOATie logMTie = new LogPOATie(new LogManagerImpl(Database.getDbLogInstance(), rootPOA));
byte[] logManagerServerID = "LogManagerServer".getBytes();
logMPOA.activate_object_with_id(logManagerServerID,logMTie);
//Netlist
POA netlPOA = rootPOA.create_POA("NetListHandlerPOA",rootPOA.the_POAManager(),policies);
NetListHandlerPOATie netlTie = new NetListHandlerPOATie(new NetListHandlerImpl((NetListSubscriber)

dist,rootPOA));
byte[] netListHanderID = "NetListHandler".getBytes();
netlPOA.activate_object_with_id(netListHandlerID,netlTie);
//NetlistNLW
POA netlNLWPOA =

rootPOA.create_POA("NetListHandlerNLWPOA",rootPOA.the_POAManager(),policies);
NetListHandlerNLWPOATie netlNLWTie = new NetListHandlerNLWPOATie(new

NetListHandlerImpl((NetListSubscriber) dist, rootPOA));
byte[] netListHandlerNLWID = "NetListHandlerNLW".getBytes();
netlNLWPOA.activate_object_with_id(netListHandlerNLWID,netlNLWTie);
//Activate the POA Manager
rootPOA.the_POAManager().activate();
//Bind object to name
NameComponent logManager = new NameComponent("LogManagerServer","");
root.rebind(new NameComponent[]{logManager},logMPOA.servant_to_reference(logMTie));
NameCompontent netListH = new NameComponent("NetListHandler","");
root.rebind(new NameComponent[]{netListH},netlPOA.servant_to_reference(netlist));
NameComponent netListNLWH = new NameComponent("NetListHandlerNLW","");
root.rebind(new NameComponent[]{netListNLWH},netlNLWPOA.servant_to_reference(netlNLWTie));
//Wait for incoming requests
orb.run();

Figure 33. Server side, using Corba.

 GEM Security Adaption.doc

 Page 45 of 76

public SysAdmProxy(String[] args){
try{

//Init ORB
ORB orb = ORB.init(args,null);
//Init NameService
Object nameService = orb.resolve_initial_references("NameService");
NamingContext nc = NamingContextHelper.narrow(nameService);
//Network elements
NameComponent netlistName = new NameComponent("NetListHandler","");
Object netlistObj = nc.resolve(new NameComponent[]{netlistName});
NetListHandler NL = NetListHandlerHelper.narrow(netlistObj);
NameComponent netlistNLWName = new NameComponent("NetListHandlerNLW","");
Object netlistNLWObj = nc.resolve(new NameComponent[]{netlistNLWName});
NetListHandlerNLW NLAdmin = NetListHandlerNLWHelper.narrow(netlistNLWObj);
//Action logs
NameComponent logManagerServerName = new NameComponent("LogManagerServer","");
Object logMObj = nc.resolve(new NameComponent[]{logManagerServerName});
Log log = LogHelper.narrow(logMObj);

}
...

}

Figure 34. Client side, using Corba.

Corba has several benefits over traditional two, three, and N-tier client/server systems.
• The programmer uses a familiar method for using a remote object.
• Can find, query and invoke a method without knowledge of the actual behaviour.
• Integration of legacy systems can be accomplished by hiding them behind an

interface.
• Corba allows objects to seamlessly interact with each other without regard to the

location, language or platform (vendor independent).
• Corba can scale from a stand-alone palmtop to the enterprise.
• Corba hides the locations of object.
• The specification is separate from the implementation. The interface is defined by

a general language, IDL.

(Corba) ORBs and Java RMI have been viewed as competing technologies. SUN and
OMG are, however, working very close with Java RMI and Corba. In mid-1999 a new
version of Java RMI, supporting IIOP, was official released. The version was
developed jointly by IBM and Sun [26]. Additionally the OMG aligned its object-by-
value specification so that it is fully compatible with RMI.

Finally some word from [27]21:
• Start with Corba if you need to build to an architecture.
• Start with RMI if you are programming a simple all-Java prototype (not for

deployment).

21 Chapter 9, slide 23.

 GEM Security Adaption.doc

 Page 46 of 76

4 Security in distributed objects
Security is an important issue for most distributed applications, in particular when
developed over the Internet. Distributed object systems are for example more
vulnerable to security breaches than the more traditional systems, as there are more
places where the system can be attached. Therefore, security is needed in Corba
systems, which takes account of their inherent distributed nature.

4.1 Threats in a distributed object system
There are several threats in a distributed object system [15]:
• An authorised user of the system gain access to information that should be hidden

from him/her.
• A user masquerading as someone else, (in other words: obtaining access to

whatever that user is authorised to do) so that actions are being attributed to wrong
person. In a distributed system, a user may delegate his/her rights to other objects,
so they can act on his/her behalf. This adds the threat of rights being delegated to
widely, again causing a threat of unauthorised access.

• Security being bypassed.
• Eavesdropping on a communication channel, so gaining access to confidential

data.
• Tampering with communication between objects - modifying, inserting, and

deleting items.
• Lack of accountability due, for example, to inadequate identification of users.

4.2 Overview of security in distributed objects

4.2.1 Low level
At a low-level, at the OSI sessions level, the industry standard Secure Socket Layer
(SSL) can be used to establish secure connections between clients and servers. The
SSL protocol allows sensitive data to be transmitted over an insecure network, like the
Internet, by providing the security features: authentication, privacy and integrity [17].

SSL is a protocol on top of TCP/IP, which adds security capabilities [24]. The SSL
API is an extension to the TCP/IP socket API. SSL's security capabilities include
encryption of the message sent through an SSL communication channel,
authentication of the server based on digital certificates and signatures, and optional
authentication of the client. Note, in SSL the client is the program that initiates an
SSL connection and the server is the program that accepts the connection. The client
and server participating in an SSL connection are also known as peers.

4.2.2 High level
SSL is only for use at the session level and not for higher levels, such as the
application level. SSL can not secure "soft parameters", such as that the user is who
he/she claims to be. SSL can only secure that the client and server machines are what
they claim to be.

 GEM Security Adaption.doc

 Page 47 of 76

4.3 Security features

4.3.1 Authentication
Authentication is asking the question "Are You Who You Claim To Be?". A client
can determine a server’s identity and be certain that the server is not an impostor.
Optionally, a server can also authenticate the identity of its client applications [17].

In SSL authorisation is based on digital certificates [24]. A digital certificate is issued
by a certificate authority. The certificate contains the name of the certificate authority,
the name of the party who owns the certificate (and which is identified by it), the
public key of this party, and time stamps. All this data is signed by the certificate
authority, which means that the certificate can not be modified without this being
noticed.

The information a certificate gives is that a name and a public key belong together. As
that information can be public is it necessary to prove that whoever presents the
certificates also has the private key corresponding to the public one contained by the
certificate. Digital signatures are used to prove this, see Figure 35. The mechanism
behind the digital signature involves creating random message and encrypting it with
the private key. If the server wishes to authenticate itself with the client who holds its
certificate, the server sends the message in clear text as well as the encrypted message
to the client. The client can compare the clear text message with the result of
decrypting the encrypted message using the public key it obtained from the certificate.
If they match, the client knows that the public and the private key of the server match
and has finally established the identity of the server.

4.3.2 Privacy
Data passed between the client and server is encrypted so that if a third party
intercepts their messages, it will not be able to unscramble the data.

4.3.3 Integrity
The recipient of encrypted data will know if a third party has corrupted or modified
that data.

4.3.4 Authorisation
Authorisation is asking the question "Are You Allowed to Use This Resource?". Once
a client are authenticated, the server objects are responsible for verifying which
operations the clients are permitted to perform on the information they try to access
[6]. Note. SSL does not support security on this level.

4.4 Public-key encryption
SSL authentication is based on public key cryptography. Public key technologies use
a pair of asymmetric keys for encryption and description. This means that a message
encrypted with one key can only be decrypted using the other key of the pair, see
Figure 35. Each user generates a private key and a public key and it is not possible to
derive a user's private key from their public key. If someone wants to send sensitive
data to a user, they acquire the users public key and use it to encrypt that data. Once
encrypted, the data can only be decrypted by the person holding the users private key
- the user himself. Not even the sender of the data will be able to decrypt the data.

 GEM Security Adaption.doc

 Page 48 of 76

One of the most popular public-key encryption algorithms is RSA [www.rsa.com],
named after its inventors Rivest, Shamir and Adleman (1977). Data that has not been
encrypted is often referred to as clear-text, while data that has been encrypted is
called cipher-text.

Clear-text
Message

Clear-text
Message

Clear-text
Message

Clear-text
Message

RSA
Encryption

RSA
Decryption

RSA
Encryption

RSA
Decryption

Public
Key

Private
Key

Private
Key

Public
Key

Cipher-text
Message

Cipher-text
Message

encryption

digital signature

Figure 35. Public and private keys performing inverse function of one another.

4.5 Auditing
Security auditing assists in the detection of actual or attempted security violations
[15]. This is achieved by recording details of security relevant events in the system,
such as who has logged into the system, who transferred money to whom,
authentication of principals, etc. Depending on implementation, recording an audit
event may involve writing event information to a log, generating an alarm, or some
other action. Audit policies specify which events should be audited under what
circumstances. Auditing is not a part of the Master thesis.

4.6 Investigation of Corba/SSL products
One minor part of the first part of the Master Thesis was to investigate which
Corba/SSL product to use. The investigation is found in Appendix B. Anyhow, the
result of the investigation was to use Inprise VisiBroker with the SSL package.

4.6.1 VisiBroker SSL package
The VisiBroker SSL feature [17] is designed to be easy to use and transparent to
developers of client and server applications. An existing VisiBroker client or server
can be modified to use SSL by simply adding a few lines of initialization code. The
presence or absence of SSL does not affect a client application's core code that
invokes an object's methods and the server code that implements those methods.
VisiBroker’s SSL feature is also compatible with the use of threads and other
VisiBroker facilities.

 GEM Security Adaption.doc

 Page 49 of 76

If writing a client application or server that is to use SSL, the programmer is
responsible for understanding and obtaining the certificate chain and private key. If
writing a client or server that inspects the certificates sent by a peer, the programmer
must understand the syntax and semantics of certificate chains and the programmer
must hold, in the program or in a file, the certificate chain and private key.

 GEM Security Adaption.doc

 Page 50 of 76

5 Migration of GEM from Java RMI to Corba/SSL

5.1 General method of porting
It should be very easy if there was an intelligent program that could do the porting.
That is, unfortunately, not the case. There are, however, some general steps to follow
to make the porting more smooth.

1. Locate all the remote interfaces and find out how and where Java RMI is
used.

2. Analyse methods in a remote interface, this includes looking for in/out
parameters, names, data types, etc.

3. Find out how the interfaces interoperate with each other. Look in a
programmer's guide, if one is available, and in the code.

4. Write the remote interfaces in an IDL-file (see Figure 14) and compile the
IDL-file. The generated files, per interface, can be seen in Figure 12.

5. Find out if a Java RMI class implements more than one interface. If that is
the case it is necessary to use the Tie-mechanism in Corba (see 3.4.10), as
<interface>POA is a class and Java does not allow to extend more than one
class. When using the Tie-mechanism <interface>Operations is
implemented.

6. Change all throws and RMI exceptions to Corba exceptions.
7. If objects need to be send by value decide to choose either Corba object-

by-value or send the object parameters in an IDL struct or if possible, use a
call-back routine.

8. Look at the server example code in Figure 25 or if using the Tie-
mechanism, see Figure 30 for how to implement the Server side.

9. For implementing the Client side, see Figure 26.

5.2 The Analyse Phase
The GEM System consists of functional components that will be used in a framework
designed for a specific system. That means that the components will be reusable in a
new context for a new system. See Figure 6 in 2.4.6 for a view of all components in
the GEM System.
The analyse phase is important for getting a view of how the GEM System is build
and how it works. The code in the GEM System is written by using JBuilder and is
divided into different projects, with different functionality. As the GEM System is a
system for supervision the remote invocation is quite at lot, as can be seen in Figure 6
and Figure 36. The GEM source code is packaged with the generic code and the
customer specific code separated. The generic code consists of 133 Java files and the
customer specific code of 6 files (in a specific project). Many files need to be changed
and it will also take some time to get a picture of the system. In the end it will be
worth it because of the features that Corba has compared with Java RMI.

5.2.1 Client-Server communication in GEM
The communication between the client and the server is by using distributed
interfaces. In Figure 3622 the component Communication on the client-side makes it

22 [1], Figure 4.

 GEM Security Adaption.doc

 Page 51 of 76

possible for the client components to communicate with the server components,
without knowing that they (the client components) are communicating with a
distributed object. The component Communication supplies proxy classes, which gets
data from the components on the server-side. The client components can also
subscribe to alarms by register themselves. The alarms will be received from the
proxy classes. Communication is using Java RMI, but will - as one part of the Master
thesis - be changed to Corba.

Registration
Proxy

NetListProxyFaultManagement
Proxy

Communication

Server

Client

Fault
Management

NetList

Distribution Proxy

Get NetList

New/updated Network element

New/updated
Network element

Register Get Alarms

New/updated Alarm

New/updated
Alarm

Requesting
component

Subscribing
component

Register Get Alarms

Get NetList
New/updated
Alarm New/updated Network element

Figure 36. Client-Server communication

5.2.2 GEM Clients
At present there are three clients in GEM: Fault Management (FM), Security
Management (SM) and System Administration (SA) [2], see Figure 6 in 2.4.6.

FM Client
FM Client consists of components used for storing and updating all alarms and
network elements and presenting alarms and network elements in a tree view. A user
can change status on an alarm (e.g. that an alarm has been corrected) and look at
correlated alarms in the tree view.

Example of components:
se.ausys.gem.fm.gui.alarmdetails
se.ausys.gem.fm.gui.alarmdetails.interfaces
se.ausys.gem.fm.gui.alarmhistory
se.ausys.gem.fm.gui.alarmlist
se.ausys.gem.fm.gui.alarmlist.interfaces
se.ausys.gem.fm.gui.buttonpanel
se.ausys.gem.fm.gui.filterwindow
se.ausys.gem.fm.gui.fmtree
se.ausys.gem.fm.gui.fmtree.interfaces

 GEM Security Adaption.doc

 Page 52 of 76

The FM GUI components above communicate with the server components by using
Communication, see 5.2.1.

SM Client
The SM Client component's responsibility is to present a GUI where a Security
Administrator can add, edit and remove users in the system.

SA Client
The SA Client component's responsibility is to present a set of GUI:s where a System
Administrator can view and update logs, cleared alarms and network elements.

5.2.3 GEM Server
The server is a standalone Java application encapsulating a variable number of server
components. The server is designed depending on the needs of the specific customer.
Each of the server components can easily be included or excluded in the final server.
At present there are 8 server components [2], see Figure 6 in 2.4.6.

FM Component
The component FaultManagement contains the most of the FM functionality. New,
deleted and updated alarms are send to the clients via Communication.

Netlist Component
This component controls the list of Network Elements.

Server communication Component
This component handles call-backs to registered clients. At present only the FM
Clients uses this. Call-backs are made when new, deleted or updated alarms and
networks elements needs to be distributed to registered clients.

SM Administrator
This component is responsible for the server part in the security management
administration part of the system. This server handles all administration of users,
passwords and roles.

SM Manager
This component is responsible for the server part in the security management manager
part in the system. This server handles the login and access control in GEM.

SA Server
This component is responsible for the server part in the system administration part of
the system. This server handles all administration of logs, cleared alarms, the network
list and configuration of polling interval.

Database Component
The database component is responsible for implementing all the interfaces that are
used by the different components in GEM that wants to save and/or retrieve
information from the GEM database.

 GEM Security Adaption.doc

 Page 53 of 76

Log Component
This component is responsible for the server part in the log part of the system. The log
consists of three different types, namely Alarm log (i.e. logs all alarm events, such as
new alarm and update alarm), Security log (i.e. logs all the security events such as
login, password change etc.) and System Administration log (i.e. removal of log
entries etc.).

5.3 Design and Implementation
The design and implementation phases are written in the same chapter as they are
very closely related because of updating an existing system.
The creation of the new GEM System starts in the design phase. It turned out that it
definitely was not easy to do the migration of GEM from Java RMI to Corba. As
mentioned in the Analyse phase the remote invocation is quiet a lot. Another thing is
that the clients should be running as applet, but by some reason it never worked out
initialising Corba with the applet (this is for further investigation). Therefore, the
clients are running as application.

5.3.1 The Corba Development Process
To build and run an application using Corba the following steps are required [13]:
1. Write some IDL that describes the interfaces to the object or objects that will be

used or implemented.
2. Compile the IDL file. This produces the stub and the skeleton code that

implements location transparency, see Figure 12.
3. Identify the IDL compiler-generated interfaces and classes that will be used or

specialised in order to invoke or implement operations.
4. Write code to initialise the ORB and inform it of any Corba objects that are

created.
5. Compile all the generated code and the application code with a Java compiler, if

using Java.
6. Run the distributed application.

5.3.2 Write and generate IDL files
The code style is rather similar between Java RMI and Corba. Both are using
interfaces and both generate stub and skeleton code.
The main disadvantage by using Corba, instead of Java RMI, is that Corba indeed
allow passing of objects by value (from Corba 2.3). But with RMI is it not necessary
to do something special in the coding. In Corba is it necessary to use an IDL type
named valuetype to make a mapping to a public Java class with the same name. A
Java class supporting a valuetype must implement the java.io.Serializable interface.
When implementing a valuetype the Tie-mechanism must be used [11].
In the Master thesis it is chosen not to use the object-by-value facility, but to pass the
object parameters in a struct defined in an IDL file named CommonDeclare.idl. In
Figure 37 a struct CorbaAlarm and a struct CorbaNetworkElement are declared for
this reason.

 GEM Security Adaption.doc

 Page 54 of 76

#ifndef COMMONDECLARE_IDL

module commonDeclare {

 exception DbException {string msg;};

 struct CorbaAlarm{
 long alarmid;
 string distingueshedName;
 string probableCause;
 long long eventTime;
 long percievedSeverity;
 long state;
 string additionalText;
 string eventType;
 string comment;
 string ackSignature;
 long long ackTime;
 long long clearTime;
 };

 struct CorbaNetworkElement{
 string distinguishedName;
 string adress;
 string comment;
 boolean activated;
};

...

 typedef sequence <CorbaAlarm> alarmList;
 typedef sequence <CorbaNetworkElement> networkElementList;
 typedef long long Date;

 interface Client{
 boolean isAlarmSubscriber();
 boolean isNetlistSubscriber();
 };
};
#endif

Figure 37. A part of the new IDL file CommonDeclare.idl.

The "difficulty"with sending objects is illustrated in Figure 38.

Client

Server

commonDeclare::CorbaAlarm

Alarm db

 Corba

Figure 38. The Server side is using an Alarm object and the parameters in the

object receive its data from the database (db). Corba is used between
the Client and the Server. When sending alarm information between
the Client and the Server is it necessary to place the object parameters
in a struct CorbaAlarm that is defined in the file CommonDeclare.idl.

 GEM Security Adaption.doc

 Page 55 of 76

In the Master thesis four help classes are used for passing the object parameters:
GetCorbaAlarm.java, GetAlarm.java, GetCorbaNetworkElement.java and
GetNetworkElement.java. In Figure 39 is the help class GetCorbaAlarm.

package se.ausys.gem.common;
 import se.ausys.gem.common.commonDeclare.*;
 import se.ausys.gem.common.fm.Alarm;

 public class GetCorbaAlarm {
 static Alarm al = null;

 public CorbaAlarm getCorbaAlarm(Alarm alarm){
 al = alarm;

 // To make sure that no empty string is transmitted, as Corba does not allow that.
 if (al.getAckSignature() == null)
 al.setAckSignature(" ");
 if (al.getAdditionalText() == null)
 al.setAdditionalText(" ");
 if (al.getComment() == null)
 al.setComment(" ");
 if (al.getDistinguishedName() == null)
 al.setDistinguishedName(" ");
 if (al.getEventType() == null)
 al.setEventType(" ");
 if (al.getProbableCause() == null)
 al.setProbableCause(" ");
 if (al.getClearTime() == null)
 al.setClearTime(0);
 if (al.getAckTime() == null)
 al.setAckTime(0);

 CorbaAlarm cAlarm = new CorbaAlarm(al.getAlarmId(),al.getDistinguishedName(),
 al.getProbableCause(),al.getEventTime().getTime(),
 al.getPercievedSeverity(),al.getState(),
 al.getAdditionalText(),al.getEventType(),al.getComment(),
 al.getAckSignature(),al.getAckTime().getTime(),
 al.getClearTime().getTime());
 return cAlarm;
 }
}

Figure 39. Help class, GetCorbaAlarm, to pass parameters from Alarm to

CorbaAlarm.

Valuetype
If valuetype was used the IDL file should look like this [11]:
ValueType AlarmType{
 long alarmid;
 string dName;
 void setDistinguishedName(in string dName);
 factory create(in long alarmid, in string dName, in string pCause, in long long eventTime,

in long perceivedSeverity, in long state, in string addText, in string eventType,
in string comment, in string ackSign, in long long ackTime,
in long long clearTime);

 ...
};

 GEM Security Adaption.doc

 Page 56 of 76

Implement the valuetype by inheriting the valuetype base class:

public AlarmTypeImpl extends AlarmType{
 ...
 public void setDistinguishedName(String dName){
 /* User code. */
 }
};

It is also necessary to implement a Factory class to implement any factory methods
defined in IDL23:

class AlarmTypeDefaultFactory implements AlarmTypeFactory{
 public AlarmType create(int alarmId,String dName,String pCause,long eventTime,

int percievedSeverity,int state,String addText,
String eventType,String comment,String ackSign,
long ackTime,long clearTime){

 /* Just an example */
 AlarmType obj = new AlarmType();
 obj.setDistinguishedName(dName);
 obj.setAdditionalText(addText);
 ...
 return obj;
 }
};

Change name of methods
In IDL is it not possible to have methods with the same name and with different
numbers of parameters. As it is possible in Java, some methods had to change name
(i.e. change from getClearedAlarms(int size,int order,Date from, Date to) to
getClearedAlarmsDate(int size,int order,Date from, Date to)).

5.3.3 Using Name Service
VisiBroker provides a Smart Agent architecture that provides high availability and
fault tolerance needed in mission critical applications [11]. When a server binds an
object to a particular name the name, location, and reference to the object is
maintained by Smart Agent. Anyhow, Smart Agent may not be use in the Master
thesis as the GEM System should be as vendor independent as possible. Instead Corba
Name Service is used, see example code in 3.4.9. As Smart Agent should not be used
is it necessary to set it to disable, -Dvbroker.agent.enableLocator=false. Otherwise
the Smart Agent (osagent) must be running to bootstrap the Naming Service24. When
starting the Name Service it can be a good idea to start it on a particular port, for
example port 20000.

23 A factory object is a server object that handles creation and destroy of other server objects (instance
the object, initialise it, register or unregister it at POA and releases it) [21], slide 5-8.
24 A Naming Server needs to register itself with the Smart Agent during starting up (at least with
VisiBroker 4.1). This allows clients to retrieve the initial root context by calling the
resolve_initial_references method [12], Chapter 18, Using the Naming Service.

 GEM Security Adaption.doc

 Page 57 of 76

Example when starting the Name Service:
vbj -Dvbroker.se.iiop_tp.scm.iiop_tp.listener.port=20000
com.inprise.vbroker.naming.ExtFactory -Dvbroker.agent.enableLocator=false

When running the program in JBuilder is it also necessary to add information to the
Application Parameter:
-ORBInitRef NameService=corbaloc::localhost:20000/NameService

When running the program from shell:
%java.home%\bin\java se.ausys.custspec.main.server.MainServerFrame -
ORBInitRef NameService=corbaloc::localhost:20000/NameService

This information is what will be send to main(String[] args). All clients need to get
this information, so that they can use the Name Service for finding required objects.

5.3.4 Using the Tie-mechanism
As Java does not allow multiple class inheritance and that is needed when migrate
GEM to Corba, the Corba Tie-mechanism is used. See 3.4.10 for more information.

5.3.5 Using Callback
Although, it is more common that a client just act as a client (e.g. calls a server) and a
server acts as a server (e.g. receive calls from client) the opposite is sometimes
necessary. The technique, where the server calls the client is named call-back. The
client creates a Corba object and sends the object's reference to the server.

Call-backs, in general, are normally used when:
• a client don't have the time to wait for a reply
• the client subscribes to data from the server (i.e. updates of alarms)
• a kind of asynchronous transfer/reply is required

This technique is in use in GEM. A client informs the server that it will subscribe on
either the network element list or the alarm list.
Instead of using call-back a Corba service can be used, either Corba Notification
Service or Corba Event Service, see 3.4.7. Corba use a synchronous remote procedure
call, but on the application level the named services are set as standards for
asynchronous communication.

5.3.6 SSL Security Service Package
The certificate, see 4.3 and 4.4, is obtained by constructing a certificate request and
sending it to a Certificate Authority (CA). In the Master thesis the CA is from
Microsoft. The public and private key pair and the certificate request (i.e. cert_req)
are generated in the tool Certificate Request Generator in Inprise Application Server
Console.

5.4 Test procedure of GEM with Corba/SSL
During, and after, the migration of GEM from Java/RMI to Corba/SSL the
functionality of GEM was tested by doing the operations named in the User Manual
[3].

 GEM Security Adaption.doc

 Page 58 of 76

First, GEM was installed by following the instructions in the Installation manual [4]
and the compliment to the Master thesis [5]. It includes starting the database (i.e.
InterBase) and the Naming Service. Some data about the system was already stored in
the database, such as the user role Security Administrator.
Second, the server was started and third, the client was started and a login window
pops up. The first user role, see 2.4.7, to test was the Security Administrator. A
Security Administrator has the right to work with the three main functions in GEM:
Fault Management (e.g. acknowledge and clear alarms), Security Management (e.g.
add, edit, block, activate, remove user) and System Administration (e.g. add/remove
network elements, maintain application log).
Theses main steps were followed:
1. Change password for this Security Administrator.
2. Start a Security Management client.
3. Start a System Administration client.
4. Start a Fault Management client.

When knowing that all operations was working fine the other two user roles were
tested. Primarily to see that the system did not let them do anything they were not
suppose to do, such as an operator is not allowed to start a Security Management
client (i.e. insert a user).

These main steps were followed for a System Administrator:
1. Change password for this System Administrator.
2. Start a System Administrator client.
3. Start a Fault Management client.

These main steps were followed for an Operator:
1. Change password for this Operator.
2. Start a Fault Management client.

Some data had to be inserted manually into the database, such as alarms. It is
normally the Network Adapter, see Figure 6, that generates alarms. But as the
Network Adapter is not a part of the Master thesis is it not running during this test.

The result of testing the functionality is that the modified version of GEM has exactly
the same functionality as the previous version of GEM.

 GEM Security Adaption.doc

 Page 59 of 76

6 Design of GEM Security Model
This is the second part of the Master thesis. GEM Security Model consists of the part
in GEM that deals with authentication and authorisation. The security model contains
rules about what is allowed in the system. All data in GEM (e.g. network elements,
alarms, users, logs) are stored in a database, see Figure 6, and to prevent that anyone
can get access to any data is it necessary to have rules, i.e. policies. The database is a
relational database, which consists of relations between the stored data.

Implementation of GEM Security Model is out of scope of this Master thesis.

6.1 Security Management
The typical telecom solutions have been running in closed network environments,
with preparatory protocols and no access to such external networks as the Internet,
and with each element manager in the network having its own user database and
access control system.

With an increasing portion of operation and maintenance traffic using the Internet as a
backbone, security management has become more important [22].

6.2 Design processes and tools

6.2.1 Rational Unified Process
During the design of the Security Model the Rational Unified Process (RUP) where
followed. RUP is a software engineering process that enhances team productivity and
delivers software best practices via guidelines, templates, and tool guidance for all
critical software development activities. Its goal is to ensure the production of high-
quality software that meets the needs of its end users within a predictable schedule
and budget [7]. RUP consists of four phases, see Figure 40:

 Inception Elaboration Construction Transition

 Time

Figure 40. Process Structure – Lifecycle Phases

• Inception – Define the scope of project.
• Elaboration – Plan the project, specify features, baseline architecture.
• Construction – Build the project.
• Transition – Transition the product into end user community

 GEM Security Adaption.doc

 Page 60 of 76

Use-case model
The requirements of the system are captured in a use-case model, see Figure 41.

Figure 41. Use-case model.

The use-case model is a model of the system's intended functions and its environment,
and serves as a contract between the customer and the developers. The use-case model
is used as an essential input to activities in analysis, design, and test.

Following is a set of questions that are useful when identifying use cases:

• For each identified actor, what are the tasks in which the system would be
involved?

• Does the actor need to be informed about certain occurrences in the system?
• Will the actor need to inform the system about sudden, external changes?
• Does the system supply the business with the correct behaviour?
• Can all features be performed by the identified use cases?
• What use cases will support and maintain the system?
• What information must be modified or created in the system?

I teration plan
Each phase in RUP can be further broken down into iterations. An iteration is a
complete development loop resulting in a release (internal or external) of an
executable product, a subset of the final product under development, which grows
incrementally from iteration to iteration to become the final system.

Benefits of an Iterative Approach
Compared to the traditional waterfall process, the iterative process has the following
advantages:

• Risks are mitigated earlier
• Change is more manageable
• Higher level of reuse
• The project team can learn along the way
• Better overall quality

6.2.2 Rational Rose
Rational Rose [9], by Rational, is a very useful visual modelling tool. The modelling
is based on the Unified Modelling Language™ (UML) [8]. The UML is the standard
notation for software architecture, which means that it is possible by using Rational
Rose to communicate with one language and one tool.

6.3 Design phases
When designing the GEM Security Model following design phases are used:

 GEM Security Adaption.doc

 Page 61 of 76

1. Identifying use cases, see section 6.2.1.
2. Look in the existing GEM Security Model how authentication and authorisation

are done.
3. Research for what have already been done at AU-System, such as another security

model.
4. Database design.

During research it was found that a security model already had been designed in
another project at AU-System. That project had also followed RUP and there were
several Use Case Specifications in requirement specification documents, and a
Rational Rose model. Some of the use cases were ideal for use in the GEM Security
Model and they are copied into Appendix D, which contains all use cases and
scenarios in more detail. Auditing (i.e. UC 52, UC 53, UC 63), is not a scope of the
Master thesis, but of importance in a Security Model so therefore are they mentioned
in the appendix.

6.4 The existing GEM Security Model
In the existing GEM Security Model authentication and authorisation is very simple.
The authentication is done by using Java Authentication and Authorisation Service
(JAAS) [19], which is plugged-in to the code. Implementing Corba/SSL is definitely
an improvement.
The authorisation is very rudimentary:
• it is only based on the user’s role (i.e. operator, system administrator or security

administrator). "Is an operator allowed to do this operation?"
• the authorisation check is done in the code by using if statement:

 if user equals to “Security Administrator” or “System Administrator”
 delete selected network element

In a (large) system for supervision this authorisation is rather inflexible and complex
and makes authorisation more difficult to administrate, for example is every System
Administrator allowed to do all System Administrator operations (e.g. delete network
elements) in the system. To prevent disorder in the system, such as that someone
deletes an important network element, there must always be a consensus between the
actors in the system before a more severe operation can be done.

There are some steps that can improve the administration and the security in the
existing GEM Security Model:
• Administration will be easier by dividing users into different user groups and

connect each user group (and user role) to a policy rule, see 6.5. By using policy
rules the security in the system will increase, see 6.5. The policy rule contains all
network elements that the user group are allowed to make either a write or a read
operation on. If some conditions changes, such as a user group is not allowed to
read a network element, the user group will be connected to another policy rule. In
this case the question is "Is the Liljeholms group allowed to delete this network
element?"

• Instead of using more or less complex compare statements in the code, is it better
to do the authorisation check by using a relational database, see 6.8.1 and SQL
questions. This makes changes in the system more easy and flexible.
If users are grouped into user groups these changes are necessary to do in the
code, example:

 GEM Security Adaption.doc

 Page 62 of 76

 if (user in usergroup) and (usergroup is allowed to add network element)
 add network element

6.5 Security policies
GEM has three different kinds of user roles: Security Administrator, System
Administrator and Operator. A user is, depending of its role, allowed to do certain
operations, according to the Policy Rule.

6.5.1 Access policy architecture
The use cases Configure Network Policies, Access Control and Modify Security View,
see 6.6, all have to do with access (security) policy.

Problems to solve
There are lots of different access policies that must be possible to implement in the
security model. Examples:
• John, who is a network administrator, is allowed to upgrade all routers in his own

region.
• Ben, who is a network administrator, is allowed to do anything in the office

network.
• Elisabeth, who works at customer support, is allowed to browse the network

status.
• All network operators are allowed to do non-critical operations on all network

elements in their own region.

How to find the correct policy
A user may have many policies, depending on what role he assumes and what he tries
to do.
The approach in the Master thesis is to connect policies to users, user groups and/or
user roles. To use groups or roles is more scalable, but, for example, with few users a
user connected security policy may be useful.

The approach for finding a user connected security policy:
1. Check if the user has any security policies connected to him. If none is attached,

proceed with finding group connected or role security policies. If found proceed to
2, otherwise deny the request.

2. Find if any of the connected security policies satisfies the current conditions. If no
security policy fulfils the conditions, deny the request. Several security policies
may be fulfilled, but the request is granted when the first fulfilled policy is found.

The approach for finding a group or role based security policy:
1. Check if the user belongs to any groups or roles by checking the "group/role-

membership" attribute. If the user does not belong to any deny the request,
otherwise proceed to 2.

2. Find if any of the connected security policies satisfies the current conditions. If no
security policy fulfils the conditions, deny the request. Several security policies
may be fulfilled, but the request is granted when the first fulfilled policy is found.

The search for user policies is carried out before the search for group/role-connected
policies. User connected policies overrides group/role-connected policies.

 GEM Security Adaption.doc

 Page 63 of 76

6.6 Use cases and scenarios in GEM Security Model
Use cases in the scope of the Master thesis for GEM Security model are listed in
Table 1. They are classified in three different groups, according to their functionality:

1. Basic functionality (UC24, UC25,UC28,UC29 and UC30)
2. Grouping (UC64,UC65 and UC66)
3. Authorisation (UC31,UC62 and UC67)

Group 1 is already defined and implemented in GEM, and Group 2 and 3 have to do
with security policy.

Use Case Status

UC 24 Login to the System Already in GEM

UC 25 Change own password Already in GEM

UC 28 Add a User Already in GEM

UC 29 Remove a User Already in GEM

UC 30 M odify a User Already in GEM

UC 31 Configure Network Policy Will be designed

UC 62 Access Control Will be designed

UC 67 M odify Secur ity View Will be designed

UC 64 Add User Group Will be designed

UC 65 M odify User Group Will be designed

UC 66 Remove User Group Will be designed

Table 1. Use cases for GEM Security Model.

 GEM Security Adaption.doc

 Page 64 of 76

6.6.1 A representative use case

UC 31 Configure Network Policy

Figure 42. Use case diagram for Configure Network Policy.

This use case is extended from UC 28 Add User, UC 30 Modify User, UC 64 Add
User Group and UC 65 Modify User Group. The goal for this use case is to define the
access rights on security view25 groups for users or user groups.

A network policy configuration is a collection of rules that determines the user’s, or
the user group’s, access rights on groups of network elements. The Security
Administrator defines the network policy configuration for every user and user group.
The Security Administrator may copy an already existing network policy from
another user or user group. Every user and user group has a unique network policy
configuration.

The network elements are grouped in the security view. Each such group has access
rights, which can be either “None”, “View” or “Control” . A new user or user group
added to the system has the access rights “None” for all security view groups.

A user that is a member of a user group can have “None” access rights for all security
view groups and instead use the access rights set in the network policy configuration
for her user group.

Flow of Events
This use case begins when it is invoked from one of its base use case.

A. Basic Flow
1. The system displays the configure network policy dialog for the user or user

group. See Figure 43 for an example of the user interface.

25 The Security Administrators use the security view to set access rights on the security view groups for
users and user groups. The security view is structured like a tree with security view groups as branch
nodes and network elements as leaf nodes. A security view group can not consist of both sub-level
groups and network elements, i.e. groups and network elements can not be siblings in the security view
tree.

 <<extend>>

 Add User

 Modify User

 Add User Group

 Modify User Group

Security
 Administrator

 <<extend>>

<<extend>>

 <<extend>>

 Configure Network Policy

 The security model

 GEM Security Adaption.doc

 Page 65 of 76

2. The security view for the owner of the network policy is shown with the access
rights.

3. The Security Administrator sets the access rights on security view groups by
selecting and giving them the wanted access rights.

4. When the Security Administrator commits the changes, if any, the network policy
is stored for the user / user group and the dialog shuts down. The use case ends.

B. Alternative Flows
Copy Network Policy from another User or User Group
This alternative flow is followed when the Security Administrator wants to copy an
already existing network policy from another user or user group.

1. Step 1 – 2 from the basic flow above.
2. The Security Administrator activates the copy network policy function.
3. The system displays a new dialog that lists all users and user groups. See Figure

44 for an example of the user interface of the copy network policy dialog.
4. The Security Administrator selects one of the users or user groups to copy from.
5. The copy network policy dialog shuts down and in the configure network policy

dialog the access rights are set on the security view groups just like the copied
network policy.

6. Step 3 – 4 in the basic flow.

Special Requirements for Access Rights
[UC31-req.1] All security view groups have the access rights “None” as

default. That is, a new user has “None” access rights for all
groups in the security view before any configurations of
the network policy have been made.

[UC31-req.2] In the security view all security view groups are noted with
the policy owners access rights. When a security view
group is noted with, i.e. “Control” , you know that all child
groups of that also have “Control” access rights.

[UC31-req.3] If security view groups with the same parent group, i.e.
sibling groups, have different access rights, the parent
group gets the notation “Mixed”. That means that you
must expand the group to find out the access rights for the
child groups.

[UC31-req.4] Access rights can only be set for groups in the security
view, not on separate network elements.

[UC31-req.5] Highest permission rules
When network policy conflicts arise, the network policy
configuration with the highest access rights is valid. Since
a user can be a member of several user groups, and every
user and user group has its own network policy
configuration, these conflicts are likely to arise. For
instance, the user u1 is member of the user groups ug1 and
ug2. If u1 wants to perform an operation on some object, it
is enough that one of the policies of u1, ug1 and ug2 has
the access rights to perform the operation.

 GEM Security Adaption.doc

 Page 66 of 76

Picture of the User Interface

Figure 43. Example of Configure Network Policy dialog.

The above example shows the network policy for the user Johan. The Security
Administrator has given “Johan” the access rights “Control” for the groups “XF R1”
and “XF R2”. “XF R3-R5” has been set to “View” which entails that the child groups
“XF R3”, “XF R4” and “XF R5” also has been set to “View”. Since Johan has
different access rights for “XF R1” and “XF R2” than “XF R3-R5” the parent group
of those get the notation “Mixed”.

Note. The access rights are the same for all the network elements in a security view
group since there is not possible to set the access rights for separate network elements.

Figure 44. Example of Copy Network Policy dialog.

 GEM Security Adaption.doc

 Page 67 of 76

6.7 Iteration plan
The Iteration plan describes the plan for design of the security model use cases.

I terations
The use cases are divided in 2 iterations.

The plan

Use Case I teration 1 I teration 2 Time (days)
UC 24 Login to the System Ready -

UC 25 Change own password Ready -

UC 28 Add a User Ready -

UC 29 Remove a User Ready -

UC 30 M odify a User Ready -

UC 31 Configure Network Policy Start/Ready 2

UC 62 Access Control Start/ready 2

UC 64 Add User Group Start/Ready 1

UC 65 M odify User Group Start/Ready 1

UC 66 Remove User Group Start/Ready 1

UC 67 M odify Secur ity View Start/Ready 2

Table 2. The iteration plan for design of security model use cases.

The number of expected working days are 9.

6.8 Relation Database Design

6.8.1 Relation Model Concepts
All data in the system (e.g. network elements, users) are stored in a relation database
[28]. The relation model represents the database as a collection of relations.
Informally, each relation resembles a table of values and each row in the table
represents a collection of related data values.
The table name and column names are used to help in interpreting the meaning of the
values in each row, see Table 3.

UserMembership GroupName UserName
 Liljeholmen KAAL
 Liljeholmen KAAN

Table 3. Table with table name UserMembership and column names

GroupName and UserName.

In the formal relation model terminology a row is called a tuple, a column header is
called an attribute, and the table is called a relation.

 GEM Security Adaption.doc

 Page 68 of 76

6.8.2 Conceptual Schema
The new security model for authentication and authorisation in GEM is structured in a
conceptual scheme [29], see Figure 45. The scheme describes use cases UC31
Configure Network Policy, UC 62 Access Control, UC 64 Add User Group, UC 65
Modify User Group, UC 66 Remove User Group and UC 67 Modify Security View.

Ideas who to structure:
Read the use cases careful and take notes. Three use cases are more difficult to
structure: UC 31 Configure Network Policy, UC 62 Access Control and UC 67
Modify Security View.

UC 31 Configure Network Policy
• Every user and user group has a unique policy configuration.
• Network elements are grouped in the security view. The access rights are set for

each group in the security view.
• Different types of access rights: "None", "View" and "Control". "None" is default

for new user and user group.
• The Security Administrator defines the network policy configuration for every

user and user group. He may also copy an already existing network policy from
another user or user group.

• A user that is a member of a user group can have "None" access rights for all
security view groups and instead use the access rights set in the network policy
configuration for her user group.

UC 67 Modify Security View
• The security view consists of groups, which consists of sub-level groups or

network elements.
• The security view is defined and configured by the Security Administrator.
• The Security Administrator use the security view to set access rights on the view

groups for users and user groups.
• A security view group can not consist of both sub-level groups and network

elements, i.e. groups and network elements can not be siblings in the security view
tree.

UC 62 Access Control
This use case requires that both UC 31 and UC 32 have been structured.
1. Check the users role policy.
2. Check the users network policy.

The notation for mapping constraints between the objects is using the quadruple
(m|1,m|1,t|p,t|p). The first component of the quadruple indicates whether the object's
attribute is single valued or not. The second component indicates whether the attribute
is injective. The third component indicates the totality of the attributes. The fourth
component indicates the surjectivity of the attribute.

Example: A User has exactly one Role (component 1 and 3), several Users may have
the same Role (component 2), and there are Roles that no one has (component 4). This
gives the quadruple (1,m,t,p).

 GEM Security Adaption.doc

 Page 69 of 76

 User Group

 User Membership

 User

 Policy Membership

 Policy Condition Policy Rule

 Policy Read Condition Policy Write Condition

 Security Object

 Policy Action Condition

 Action

 Policy

 Policy Action

 Role

 parent_child

ISA

ISA

ISA

ISA
ISA

ISA

has (1,m,t,p)

has (1,m,t,p)

has (1,m,t,p) has (1,m,t,p)
has (1,m,t,p)

has (1,m,t,p)

has (1,m,t,p)

 (m,m,t,p)

member (1,m,t,p)

in (1,m,t,t)

member (1,m,t,p)

in (1,m,t,t)

Figure 45. Conceptual schema for the GEM Security model.

Table 4 gives a description for every object in the conceptual schema.

Objects Descr iption
Policy Base class for policy related classes.
Policy Action Represents a policy action, i.e. an action to be taken

after one or several policy conditions has been fulfilled.
Policy Condition Base class for different policy conditions.
Policy Membership Represents "connection" between Policy Condition and

Policy Rule.
Policy Rule Points out all conditions and actions for a user, a user

group or a role.
Policy Write Condition Represents a policy condition for a user or a user group.

This policy condition points out all NE:s to which the
user or group has control access.

Policy Read Condition Represents a policy condition for a user or a user group.
This policy condition points out all NE:s to which the
user or role has access.

Security Object Represents a NE in the EM.
Policy Action Condition Represents role related actions, i.e. actions that are not

related to a NE.
Action Represents role-related actions, i.e. each role has an

instance of this class, which points out the role actions

 GEM Security Adaption.doc

 Page 70 of 76

this role can do.
User Group Represents a user group in the EM.
User Membership Represents "connection" between User and User Group.
User Represents a user in the EM.
Role Represents a role in the EM.

Table 4. Description for every object in the conceptual schema.

6.8.3 Relation Database Schema
A relation schema is used to describe a relation. A relation schema R, denoted by
R(A1,A2,..., An), is made up of a relation R and a list of attributes A1,A2,...,An.

Keys are used to access the table, see Table 3. Primary keys uniquely identify a row in
a table, while foreign keys access data in other related tables.

Following are two tables, with each object in Figure 45 written as a relation schema.
For example:
UserGroup((g_name),p_role), there UserGroup is the name of the relation and
g_name and p_role are attributes. g_name is the primary key.

Tables (Pr imary keys in parentheses)

Policy base class and its three different policies:
Policy((p_type))
PolicyAction((p_action),p_type)
PolicyRule((p_role),p_type)
PolicyCondition((p_cond),p_type)
PolicyMembership((p_role,p_cond))

User, user groups and their role and policy:
User ((u_name),setting_id,full_name,activated,pwd,p_role,r_name)
UserGroup((g_name),p_role)
UserMembership((g_name,u_name))
Role((r_name),p_role)

The three different policy conditions:
PolicyReadCondition((p_cond),obj_name)
PolicyWriteCondition((p_cond),obj_name)
PolicyActionCondition((p_cond),action)

The security views sub-level groups and network elements, see also Figure 46:
Secur ityObject((name),type)
ParentChild((parent,child))
NetworkElement26((ne_name),dist_name,comment,adress,activated)

26 This relation is not in the conceptual schema.

 GEM Security Adaption.doc

 Page 71 of 76

Secur ity Object name type
ROC1 false
XF1222 true

Parent-Child parent child
ROC1 XF122

Network Element ne_name dist_name comment address activated
XF1222 ROC1-XF1222 Important 192.167.122.45 true

Figure 46. Graphic view of some tables.

Foreign Keys
--
PolicyAction.p_type << Policy.p_type
PolicyCondition.p_type << Policy.p_type
PolicyRule.p_type << Policy.p_type

UserMembership.g_name << UserGroup.g_name
UserMembership.u_name << User.u_name
User.r_name << Role.r_name
UserGroup.p_role << PolicyRule.p_role
User.p_role << PolicyRole.p_role
Rule.p_role << PolicyRole.p_role

PolicyMembership.p_role << PolicyRole.p_role
PolicyMembership.p_cond << PolicyCondition.p_cond

PolicyReadCondition.p_cond << PolicyCondition.p_cond
PolicyWriteCondition.p_cond << PolicyCondition.p_cond
PolicyActionCondition.p_cond << PolicyCondition.p_cond

ParentChild.parent << SecurityObject.name
ParentChild.child << SecurityObject.name

NetworkElement.ne_name << ParentChild.child

 GEM Security Adaption.doc

 Page 72 of 76

7 Conclusions and Future work
Conclusion
In the Master thesis is presented how to migrate a system that were using Java RMI
for the remote communication, in a distributed system, to use Corba instead. It turned
out that Corba is more complex and needs more coding than Java RMI, but as Corba
is, among other things, language and platform independent is it possible to create
more flexible infrastructures using Corba. That is definitely a demand from
vendors/companies, as it makes the infrastructure more cost effective and possible to
do rapid changes.
Security in an open system is very important and the difficulty of designing a security
model has been shown in the Master thesis. In the existed version of GEM Security
Model authorisation was very rudimentary. Authorisation was only based on the
user’s role and authorisation check was done in the code, by using if-statement. In the
modified version of the security model users can belong to a group and this user
group has a policy rule. Authorisation check is done by using a relational database.
These modifications makes administration easier and more flexible and increases the
security in the system. During design the Rational Unified Process has been followed.

As a request from their customers, AU-System has got a modified system for
supervision there Corba is used for remote communication. They will use this
modified version in their further development of GEM.

Future work
A future work in the Security Model is to add audit functionality. Audit functionality
is very important in a network, for example to detect intruders.

Problems
During the Master thesis there were several problems, some was quite easily fixed and
some took longer time. Here are some of the last mentioned:
• When testing the modified GEM version, a Corba exception error sometimes

appeared when reading data from the database. It turned out that this happened
when a field in the database was empty and data was send to a client. Corba does
not allow empty data, and as object parameters are passed in a struct, see 5.3.2, an
exception was generated. This is mentioned in Corba books!

• The clients should be running as applets, but by some reason it never worked out.
This Corba exception was generated:
org.omg.CORBA.INITIALIZE: can't instantiate default ORB implementation
se.vbroker.orb.ORB minor code: 0 completed: No
at org.omg.CORBA.ORB.create_impl(ORB.java:286)
at org.omg.CORBA.ORB.init(ORB.java:365)
...
According to books and the Internet all configurations and the parameters send to
initialise the applet in Corba is correct. However, there could be an environmental
problem. A question was send to borland.public.visibroker newsgroup, but no
answer. Someone else had the same problem, and had just got an already known
answer. This is under further investigation. The clients are currently running as
applications.

 GEM Security Adaption.doc

 Page 73 of 76

• Got the wrong version of SSL Security Service Package from LinSoft. It was not
possible to install it, and the generated error code was not helpful in this case.
Borland were very helpful and had lots of different suggestions on the
environmental configuration. The error was that the version was not compatible
with the used version of Visibroker, which was mentioned when ordering.

 GEM Security Adaption.doc

 Page 74 of 76

Abbreviations
API Application Programming Interface
Corba Common Object Request Broker Architecture
DCE Distributed Computing Environment
DCOM Distributed Component Object Model
DII Dynamic Invocation Interfaces
DSI Dynamic Skeleton Interfaces
ESIOP Environment Specific Interoperability Protocol
GEM General Element Manager
GIOP General Inter-ORB Protocol
HTTP Hypertext Transfer Protocol
IDL Interface Definition Language
IIOP Internet Interoperability Protocol
IOR Interoperable Object Reference
IR Interface Repository
ITU International Telecommunication Union
J2SE Java 2 Standard Edition
JAAS Java Authentication & Authorization Specification
JVM Java Virtual Machine
O&M Operation and Maintenance
OMA Object Management Architecture
OMG Object Management Group
ORB Object Request Broker
PKI Public Key Infrastructure
POA Portable Object Adapter
RMI Remote Method Invocation
RPC Remote Procedure Call
RUP Rational Unified Process
SQL Structured Query Language
SSL Secure Socket Layer
TCP/IP Transmission Control Protocol/Internet Protocol
UML Unified Modelling Language

 GEM Security Adaption.doc

 Page 75 of 76

References
[1] AU-System. Generic Element Manager. Version PA1.
[2] AU-System.1st of June 2000. Programmers Guide - Generic Element
Manager. Document number: 21908065. Revision A.
[3] AU-System. 9th of April 2000. GEM User Manual. System Release 1.0.
[4] AU-System. 20th of April 2000. Installation av GEM. System Release 1.0.
[5] AU-System. 4th of June 2001. Configuration, installation and start of
GEM(Generic Element Manager) Corba. Revision A.
[6] Orfali, Robert. Harkey, Dan. Edwards, Jeri. 1996. The Essential Distributed
Objects Survival Guide. ISBN 0-471-12993-3, United States of America. John Wiley
& Sons, Inc.
[7] Rational. 2001. Rational Unified Process.
URL:http://www.rational.com/products/whitepapers/100420.jsp [2001, March]
[8] Rational. 2001. The UML and Data Modeling.
URL:http://www.rational.com/products/whitepapers/101516.jsp [2001, March]
[9] Rational. 2001. A Rational Approach to Software Development Using
Rational Rose 4.0. URL: http://www.rational.com/products/whitepapers/293.jsp
[2001, March]
[10] Sun Microsystems. Java RMI Tutorial.
URL:http://www.javasoft.com/docs/books/tutorial/rmi/index.html [2001,February]
[11] Siegel, Jon. 2000. 2nd edition CORBA 3 Fundamentals and programming.
ISBN: 0-471-29518-3. United States of America. John Wiley & Sons, Inc.
[12] Inprise. VisiBroker for Java 4.5 Programmers guide
URL:http://www.inprise.com/techpubs/books/vbj/vbj45/programmersguide/contents.
html [2001, spring]
[13] Vogel, Andreas. Duddy, Keith. 1998. 2nd edition. Java Programming with
CORBA. ISBN 0-471-24765-0. United States of America. John Wiley & Sons, Inc.
[14] Object Management Group. 1999. The Common Object Request Broker:
Architecture and Specification Revision 2.3.1.
URL:ftp://ftp.omg.org/pub/docs/formal/99-10-07.pdf [2001, spring]
[15] Object Management Group. May 2000. Security Services Specification
URL:ftp://ftp.omg.org/pub/docs/formal/00-06-25.pdf [2001, spring]
[16] Object Management Group. November 2000. Interoperable Naming Service
Specification. URL: ftp://ftp.omg.org/pub/docs/formal/00-11-01.pdf [2001, spring]
[17] Inprise. VisiBroker SSL Pack. Programmer's Guide. Version 3.3.
URL:http://www.borland.com/techpubs/books/addons/vbssl/vbssl33/pdf_index.html
[2001, spring]
[18] Suresh Raj, Gopalan. 1998. A Detailed Comparison of CORBA, DCOM and
Java/RMI URL: http://www.execpc.com/~gopalan/misc/compare.html [2001, spring]
[19] Sun Microsystems. JavaTM Authentication and Authorization Service (JAAS)
1.0 Developer's Guide. URL: http://java.sun.com/security/jaas/doc/api.html [2001,
spring]
[20] Chung, P. Emerald. Huang, Yennun. Yajnik, Shalini. Liang, Deron. Shih,
Joanne C. Wang, Chung-Yih. Wang, Yi-Min. (No Date) DCOM and CORBA Side by
Side, Step by Step, and Layer by Layer
URL:http://www.cs.wustl.edu/%7Eschmidt/submit/Paper.html [2001, spring]
[21] Init, Course binder 29/1-2/2-01,Distribuerade objekt med CORBA.
[22] AU-System, May 2001, Security Management.
[23] MowBray Thomas J. Malveau Raphael C. 1997. CORBA Design Patterns.
ISBN 0-471-15882-8. United States of America. John Wiley & Sons, Inc.

 GEM Security Adaption.doc

 Page 76 of 76

[24] Vogel Andreas. (No Date). Building Enterprise Applications for the Net with
EJB, CORBA and XML. http://www.borland.com/appserver/papers/ejb/ejb.doc [2001,
May]
[25] AU-System, May 2001, We build your Element Manager.
[26] Java World. Dec 1999.RMI over IIOP.
http://www.javaworld.com/javaworld/jw-12-1999/jw-12-iiop.html [2001,May]
[27] KTH, Spring 1999, Course compendium 2G1118: Java Network
Programming, IT/KTH.
[28] Elsmasri, Navathe. 2000. Fundamentals of Database Systems. 3rd edition.
ISBN 0-201-54263-3. United States of America. Addison Wesley.
[29] Boman, Bubenko Jr, Johannesson, Wangler. 1997. Conceptual Modelling.
ISBN 0-13-514879-0. Great Britain. Prentice Hall.

Other useful resources, used in the Master Thesis

Internet
• Borland. JBuilder 4 Team Development Feature Matrix

URL:http://www.borland.com/jbuilder/jb4/feamatrix/teamdev.html [2001,
March]

• Inprise. VisiBroker for Java 4.5 Reference
URL:http://www.inprise.com/techpubs/books/vbj/vbj45/java-
reference/contents.html [2001, spring]

• Object Management Group. 1999. IDL/Java Language Mapping. Revision 2.3.1.
URL: ftp://ftp.omg.org/pub/docs/formal/99-07-53.pdf [2001, spring]

• Sun Microsystem. JavaTM 2 Platform, Standard Edition, v 1.3 API Specification
URL: http://java.sun.com/j2se/1.3/docs/api/ [2001, spring]

• KTH, Master Thesis, Corba vs. DCOM http://hem.passagen.se/freddas/
[2001,spring]

