

Master’s Thesis in Computer Science

An Event Service Implemented with J2EE for

Integration of Enterprise Systems

by

Markus Wurz

Department of Microelectronics and Information Technology,
Royal Institute of Technology (KTH)

April 2001

Examiner: Supervisors:
Prof. Seif Haridi
Department of Microelectronics and
Information Technology,
Royal Institute of Technology

 Ass. Prof. Vladimir Vlassov
Department of Microelectronics and
Information Technology,
Royal Institute of Technology

M.Sc. Johan Lins
Lecando AB

Abstract
The major topic of this Master thesis is event monitoring in distributed systems and use of an
event mechanism for integration of enterprise systems. In particular, this thesis studies an
approach of event propagation using the server-side technology – Java 2 Platform, Enterprise
Edition.

The thesis presents design, implementation and performance evaluation of an event service
that can be used to integrate and to connect enterprise systems. The service allows systems to
interact and communicate synchronously and asynchronously via an event signalling
mechanism where events are propagated as messages from a source system to destination
systems. Asynchronous communication between the systems is the key feature of the service.

An e-Learning system based on the Lecando Enterprise Server is used in this thesis as a case
to study the needs and requirements that an enterprise application might have for an event
service to be linked to other systems.

The main objectives for the event service to be used by integrated enterprise systems are to
avoid degradation in system performance, and to provide high reliability, so that events
propagated via the service are never lost.

The results of the performance evaluation show that the event service is extremely efficient in
receiving and propagating events from one enterprise system to others.

Contents

1 Introduction ..1

1.1 Background and motivation for the project ..1
1.2 Aim of the project...2
1.3 Organization of the report...2

2 Case study: Lecando Enterprise Server ..2
2.1 Overview of the Lecando Enterprise Server...3
2.2 Use cases for information exchange within a e-Learning system4

3 Related work and requirements for the Event Service ...5
3.1 Concepts, Semantics and Architecture ...5

3.1.1 Survey of Event Notification Systems and Messaging middleware...................7
3.1.2 Discussion...9

3.2 Requirements for the Event Service ...10
4 Overview of Enterprise Java technologies ...10

4.1 JavaTM 2 Enterprise Edition ..10
4.2 Enterprise JavaBeans (EJB) ..13
4.3 Java Message Service (JMS)...14

5 Development of the Event Service ...15
5.1 System specification ...15

5.1.1 Three separate units ..15
5.1.2 Events and messages ..15
5.1.3 Interaction between Lecando Enterprise Server and the Event Service16
5.1.4 Interaction between the Event Service and clients ...16

5.2 Design of the Event Service ...17
5.2.1 Events ...17
5.2.2 Event Producer ...18
5.2.3 Java Message Service ...18
5.2.4 Message Listener ..19
5.2.5 Event Handler ...19
5.2.6 Event Storage..20
5.2.7 Scheduler ..20

5.3 Implementation of the Event Service ...20
5.3.1 Packages of the Event Service..21
5.3.2 Events ...21
5.3.3 Monitored system ...21
5.3.4 MessageSender ...23
5.3.5 JMS server ..23
5.3.6 MessageListener ...23
5.3.7 Event Handler ...24
5.3.8 Event Storage..25
5.3.9 Scheduler ..27

5.4 Example of how to use the Event Service ..27
6 Performance Evaluation of the Event Service..29

6.1 Evaluation Technique ...29
6.1.1 Test bed and Performance Experiments ...33

6.2 Performance Results ...33
6.3 Discussion...36

7 Conclusions and future work..37

7.1 Summary...37
7.2 Conclusions ..37
7.3 Suggestion for future work ...38

8 References ..39

List of Figures
Figure 1.1 Symmetric view of systems communicating with the Event Service.1
Figure 2.1 The Lecando Enterprise Server architecture ...3
Figure 4.1. The J2EE Application Server and its containers..12
Figure 4.2 Enterprise JavaBeans architecture...13
Figure 5.1 Overview of the Event Service ...16
Figure 5.2 The Event Service and its components ...17
Figure 5.3 Example of one branch in the event tree...18
Figure 5.4 One branch of the event tree ...22
Figure 5.5 The EventHandler class and its methods that can be used by all handlers added to

the Event Service..24
Figure 5.6 The Event Storage collects events that are stored into enterprise beans into jobs ..26
Figure 5.7 Component overview for the NewUserMailer with the NewUserEvent28
Figure 6.1. Definition of the processing times in the Event Service.30
Figure 6.2 The experiment with one source system, one event type and one event handler ...31
Figure 6.3 The experiment with one source system, three different event types and three

different handlers..31
Figure 6.4 The experiment with three source systems, three different event types and three

different handlers..31
Figure 6.5 Result of the test run with one event type and one handler35
Figure 6.6 Result of the experiment with three event types and one handler for each event...35
Figure 6.7 Result of the experiment with three monitored systems, three event types and one

handler for each event ..36

List of Tables and Diagrams
Table 3.1 Overview of the products described in chapter 2.3.2. Architecture and subscription

types are compared. ..10
Table 6.1 The results of the experiments with the first setup. One event and one event

handler. The results are also depicted Figure 6.5. ..34
Table 6.2 The test setup with 3 different events and three event handlers. The results are also

depicted Figure 6.6 ...35
Table 6.3 The experiment with 3 different monitored systems, 3 different events and three

event handlers. The results are also depicted Figure 6.7 ..36

 1

1 Introduction

1.1 Background and motivation for the project

The Internet opens the market for new industries in different areas. Such as e-Commerce, e-
Learning and e-Business. Enterprises are usually specialized in one area, but not more than
that. It becomes important that software products of different vendors can be integrated to
each other in order to meet the market requests. It is not an easy task to integrate such
enterprise systems. The problem is that changes in one system might effect other systems.
Many questions arise immediately: How should information be exchanged across systems and
platforms? Should for every state change a notification be sent to all connected systems? If
the software of one of the integrated systems is being changed, does this effect all other
systems? Some of the questions will be answered in this project.

This thesis will be concentrated in event monitoring and propagation of event notifications.
Changes in one system should effect other systems. This is done by modelling these changes
as events. Event monitoring is the technique of capturing events and propagating them to
other systems. In Figure 1.1, enterprise systems will be connected to a middleware component
that will be called Event Service. This component is a central point and used to distribute
events. The enterprise systems that need information on certain business data, needs to
subscribe to the event representation of that data in order to receive it.

Figure 1.1 Symmetric view of systems communicating with the Event Service.

E-Learning is an alternative to conventional training and education, based on the Internet.
This means that students all over the world can participate together in the same course, groups
or projects. Books are replaced by multimedial content, that are accessible through the user
interface. Tests are done online. Communication between students are done either via email,
chat or news groups.

An e-Learning system from Lecando is used in this thesis as a case study in development of
the Event Service. Lecando is a company, that developed an e-Learning platform with the
need of having the Event Service module for business-critical information exchange with
other enterprise systems. The platform is called Lecando Enterprise Server. It is a server-side

Event Service

Enterprise System

publish / subscribe events

Enterprise System

publish / subscribe events

Enterprise System

publish / subscribe events

Enterprise System

publish / subscribe events

 2

multitiered enterprise system build upon the specifications of Java 2 Platform, Enterprise
Edition [3].

Lecando wants to use the Event Service to extend its platform to provide their customers with
a more advanced and functional product for e-Learning. Interesting systems to integrate with
the Lecando Enterprise Server are customer resource management system, human resource
management systems or other enterprise information systems.

1.2 Aim of the project

The main objective of the project is to analyse, design, implement and evaluate an approach
for asynchronous event monitoring in distributed enterprise applications. The Event Service
will be able to define and add events to the system. An easy approach for processing and
distributing events to integrated systems is also provided.

Integration is not brand new and therefore parts of this thesis concentrate on studying existing
event monitoring applications and other research material covering that subject. With the
newly gained information on event monitoring, the Event Service will be designed and
implemented. The technology used for implementation of the Event Service will be Java 2
Enterprise Edition (J2EE) [3] and in particular Enterprise JavaBeans (EJB) [4] and Java
Message Service (JMS) [6]. Finally the system’s performance will be evaluated in order to
measure the efficiency of the Event Service.

1.3 Organization of the report

The remainder of this report is organized as follows.

Chapter two presents a case study of the Lecando Enterprise Server. Furthermore are possible
use cases for the Event Service framework presented, its architecture and functions.

Chapter three considers related work and the requirements for the Event Service are specified.

Chapter four presents technologies that are used for the implementation of the Event Service.
These are the Java 2 Enterprise Edition (J2EE) [3], the Enterprise JavaBeans (EJB) [4]
and the Java Message Service (JMS) [6].

Chapter five presents design and implementation of the Event Service. After that the design
and implementation is described. The chapter finishes with an example of one of the use cases
described in chapter 2.2.

Chapter six presents the performance evaluation of the Event Service and a discussion,
whether the requirements are fulfilled.

Chapter seven summarizes the work. It also gives conclusions and suggestions what can be
done to improve the system in the future.

2 Case study: Lecando Enterprise Server
This chapter gives a short overview of the Lecando Enterprise Server used as a case study in
this thesis. It shows examples (use cases) of how Lecando Enterprise Server can be integrated

 3

with other systems. Next chapter considers related work and together with the case study of
the Lecando Enterprise Server the requirements of the Event Service are specified.

2.1 Overview of the Lecando Enterprise Server

First the different business modules are listed and explained. Afterwards the architecture of
the Lecando Enterprise Server is described. The Lecando Enterprise Server can be divided
into four modules: Management, Content Creation, Project Environment and Training.

The Management module is used to administrate all the system’s users and the course content.
New users are added here to the Lecando Enterprise Server. The roles for the users in the
system are defined here, e.g. students, teachers, principals, etc. Courses are also organized in
this module. Students and teachers are registered to courses.

In the Content Creation module, the content is defined as course material, tests, evaluations
and assignments. The content of a course consists of several chapters. Each chapter has its
own structure with titles, pages and with multimedial content.

The Project Environment module is for users that want to be able to communicate, share files
and working together, outside of the courses that they are studying. Projects can be started by
any user of the system.

The Training module includes chat-rooms, whiteboards and news. Students who are taking
the same course can do lectures together with the whiteboard application, which can be
private for a group of users. Messages can be posted and read in different news groups.
Students can see their results on exams, test and assignments.

The business functionalities explained above are all realized by the same server-side
architecture depicted in Figure 2.1. That means that every business model is build upon the
three-tier structure: Presentation layer, Business Logic layer and the Persistence layer.

Figure 2.1 The Lecando Enterprise Server architecture. The user of the system interact with a browser. The
browser communicates with the Lecando Enterprise Server. The modules of the business functions all use
the three layers: Presentation, Business Logic and Persistence. The persistence layer is connected to a
DBMS (Database Management System).

Browser

Presentation layer

Business Logic layer

Persistence layer

Lecando Enterprise Server

Database

 4

The Lecando Enterprise Server is implemented in Java using Java 2 Enterprise Edition
[3]. J2EE is an open server application standard supported by leading vendors of distributed
systems. See chapter 4.1 for more information about the J2EE technology.

The end user interacts with the e-Learning platform using a standard web browser. The
Lecando Enterprise Server is a multi-layered application, implemented according to well
established patterns for distributed applications. The layers in the server consist of the
Presentation Layer, the Business Logic Layer and the Persistence Layer as seen in Figure 2.1.
For more information about multi-layered distributed applications see [1].

The Presentation Layer communicates with the end user through the web browser.
Communication is achieved using HTTP and HTML standards [9]. The Presentation Layer
can also be equipped with Secure Socket Layer encryption (SSL) [9], upon which HTTPS [9]
is used. The Presentation Layer is implemented with Java Servlets and Java Server Pages
(JSP) technologies [8]. The Business Logic Layer contains all the logic in the systems. It is
implemented with components called session beans, which in turn is part of the Enterprise
JavaBeans technology [4].

The Business Logic Layer communicates with the Presentation Layer, providing the
information and services it needs.

The Persistence Layer provides the system with the information stored in the Database
Management System (DBMS). The Persistence Layer is implemented with entity beans, also
part of the Enterprise JavaBeans technology (see chapter 4.2 and [4]).

2.2 Use cases for information exchange within an e-Learning system

A few examples are given here to demonstrate how an e-Learning platform can use the Event
Service to distribute data to other systems. Data changes that is important to other systems are
modelled by events. When such data has to be exchanged with some other systems, a specific
event is fired in order to publish it to the Event Service.

Examples for such systems are e-Commerce, knowledge management system, customer
resource management systems, human resource management systems, external result-
handling systems, or existing user information databases.

With the Event Service the following use cases are easy to implement.

• Updating user information in an external database whenever user data is changed at
the Lecando Enterprise Server. This is necessary, e.g. if a customer of the e-Learning
platform has a separate business application that depends on the correct user data. It is
necessary that changes on user data in the e-Learning platform, triggers an event with
the new data, captured by the Event Service and sent to the subscribing business
application to update a database management system (DMBS).

• Sending student results to a result-handling system and notifying the students is
another interesting use case. Here the functionality of the Lecando Enterprise Server is
extended with functionality that every graded exam, test and assignment, will cause an
event to be fired with the information of the respective result of the grading. These
events will be received by a system for handling student results and also by an
application that sends a standardized email to inform the student about the result.

 5

• Users of the e-Learning platform will be billed by an external e-Commerce system
that sends invoices to the users. This could be done by firing an event when a user gets
registered at a course or a seminar. The event will be send via the Event Service to the
e-Commerce system where the registration will be handled.

The list could be longer. Mentioned here are just a few examples listed that makes the task for
the thesis easier to comprehend.

3 Related work and requirements for the Event Service
This chapter considers related work and with the case study of the previous chapter, the
requirements are specified.

Messaging middleware and Event Notification Systems are studied to get information about
existing approaches in event monitoring. The Event Notification Systems is a framework for a
dynamical approach to publish and subscribe events. There are a few products that have
implemented parts of that framework, most of them are only used for academic purposes. On
the other hand, there are commercial products most often called Messaging-middleware. They
are quite similar to the Event Notification Systems, but less complex. Some of the most
important terms and concepts will be explained later in this chapter to make it easier to
compare those products with each other.

3.1 Concepts, Semantics and Architecture

Event Notification Systems are described in the papers: [10], [11] and [14].

In distributed systems literature there is no straightforward definition for an event. Some
describe events as happenings of interest that occur in a system. Elsewhere events represent
state changes of interests that may occur in a system. Every event is causing an action, most
likely in form of an event notification message that is send to interested parties.

Event Publisher is a component that will generate events and have to register them at the
event service before they can be published. After that, whenever an event occurs the publisher
can send a notification about the occurrence of the event to the event service. It is also
possible for the event publisher to cancel a registration of an particular event.

A component that is interested in getting notifications about events is called Event
Subscriber. They have to subscribe to the events before they can receive them. Only events
that are registered at the event service can be subscribed upon. Subscription can be done on a
single event or a group of events. It is the component that specifies which notifications are
sent to it. It is possible that components can publish one type of event and subscribe on others
at the same time.

The Event Service could exist of many servers that altogether provide the same service. How
many servers are included in the event service depends on the architecture of the system. The
event service decouples the event publishers from the event subscribers. This is because
components can operate in the system without being aware of other components.
Components need to know about the event service and how to communicate with it. The event
publisher can send notifications to the event service after it has registered the event. It is the
responsibility of the event service to forward the notification to all subscribers. Sometimes it
is necessary that the service is persistent. This means that the event service guarantees

 6

delivery to all subscribers. Most likely there are repositories at one or more servers to fulfil
that requirement. This solves the problems when subscribers are not able to receive a
notification. The event service also perform some sort of lookup to find all the subscribers to
an particular event.

Publishers can register events that they will generate and publish. This process is called Event
Registration. The events get registered at the event service. In some services it is also
possible to cancel a registration. It is not clear if it is the responsibility of the event service to
cancel subscriptions on those events.

Event notifications are defined as data structures that are used by the publisher to represent
the event. These data structures could include parameters such as type of subject, time of
occurrence and information about the event that occurred.

A event subscription is generated by components that are interested in receiving a
notification about the occurrence of an event. Subscriptions are handled by the event service.
Components can also unsubscribe events when they are not interested in them any longer.

Selection mechanisms of the Event Notification Service

Publishers send notifications of events to the event service. They will be forwarded to
subscribers. Subscribers want to receive notifications that they have subscribed to, not to
every notification that is send to the event service. The event service has to select the
notifications and send them to the subscribers that want to be notified about the events. A
filter selects one event notification at a time, a pattern can select several notifications that
together match an algebraic combination of filters. Two mechanism are usually used: Filters
and patterns.

An event filter defines a class of event notifications by specifying a set of attribute names and
types and some constraints on their values. Filtering is done on channels, subjects and
content. This is then called channel-based, subject-based respective content-based filtering.
More about that follows below. A pattern of events is defined by combining a set of event
filters. An event filter is itself a pattern and two or more patterns can be combined to build a
new one. Patterns usually operate in content-based filtering event services.

Subscription mechanisms

There are different types of subscription modes that are offered by the event service.
Normally not all of them are supported at the same time. These are: Channel-based, subject-
based and content-based subscription. Interested parties can subscribe or listen to a channel.
The channels are identified by an unique channel id. The Event publishers send notifications
to one or more channels. The Event service identifies the events and delivers them to all
subscribers of the event.

In subject-based event notification services, the notifications contain a well-known attribute
named subject. Producers register the subject at the service and publish those notifications
under the specified subject. Notifications want to be received by subscribers. The service just
has to identify the subject in the notification, search for the subscribers to these subjects and
send those to them. With subject-based subscription it is possible to express interest in many
subjects by specifying some form of expression. It will be used when the event service has to
determine the subscribers for a notification.

 7

In content-based subscription, notifications are handled by the event service based on the
whole content which is being sent in the messages and not by specified subject fields.
Producers will generate messages without a particular destination. Message delivery depends
on the subscribers that are interested in them. They have to specify predicates that are used by
the Event Service for filtering the notifications and forwarding them to the subscriber. The
delivery of messages to subscribers is completely independent of the publisher, it is the
content that matters for message delivery.

Server Topologies

Servers in an event-based notification service could be organized in many different ways. A
description of the most common configurations follows below. Hybrid architectural
configuration are also possible but less usual. The most common topologies are: Centralized,
hierarchical, and peer-to-peer.

The network topology is configured with one central server with all its clients around it. All
notifications are sent through this single unit. An advantage of this composition is simplicity,
but one of the major disadvantages of this configuration is that the server could be a
bottleneck, as all communication is supposed to passed through it.

In hierarchical server topology, the event service is built as a set of distributed components.
This means that the event servers are organized in a hierarchical fashion. Each event server
manages the communication among the components that are local to the server. These
components are objects of interest for interested parties. The servers have to communicate
with each other to build a transparent event service to the user. Subscription are stored and
forwarded upward in the hierarchy until they reach the root server. Notifications are sent to all
the local servers, all low-level servers that have forwarded a corresponding subscription. The
hierarchical topology is an extension to the centralized one. A propagation mechanism
between the event server has to be added to the centralized version, to make it hierarchical.
One of the problems with this architecture is the overloading of high-level servers. All
subscriptions and notifications are forwarded upwards and downwards through the hierarchy.
Failures of a single server can disconnect the whole subnet reachable from this server.

There are two different forms of the peer-to-peer architecture: acyclic and general. In acyclic
topology, servers communicate with each other through a bi-directional protocol for the flow
of subscriptions and notifications. The clients communicate as described above through the
publish/subscribe protocol with the servers. A problem with this architecture is that a failure
of one link separates the event service and the servers can not communicate any longer with
each other. The general peer-to-peer architecture is an extension to the one which is acyclic.
Servers are allowed to have connections to more than two servers. One of the advantages is
that it is more flexible in the connection between the servers. It is also possible to have
redundant paths to the servers. In case of a server failure, it is still possible that the other
servers reach each other through a different path.

3.1.1 Survey of Event Notification Systems and Messaging middleware

This chapter describes some event notification services and messaging systems using the
terms and concepts described in the previous chapter. Event notification services and
messaging systems are quite similar, the only difference is that event notification services are
using events to send data and in messaging systems data is sent by using messages instead.

 8

iBus is a commercial product from SoftWired [19]. It supports the peer-to-peer topologies
described above. Subscription is done through channels. There are two communication
models implemented: Publish/Subscribe, which is asynchronous and request/reply, which is
synchronous. Information gets pushed from the producer to the consumer transmitted through
the channel. The transport mechanism is similar to IP multicast. iBus was built to fit the
Java Messaging Service specifications [6].

The CORBA Event Service [17] defines a set of interfaces that allows objects to
communicate with each other through channels. The communication is synchronous and both
push and pull techniques for the clients are supported. All subscribers connected to a channel
receive the notifications published on that channel. Both centralized and hierarchical server
topologies are supported by many vendors who have implemented the specifications.
Unfortunately are some aspects of event notification and event observation not supported
which makes it quite limited for other solutions.

TIB/Rendezvous [15] from Tibco utilizes a distributed architecture with a hierarchical server
topology. It supports both publish/subscribe and request/reply messaging. This means both
synchronous and asynchronous communication. Subscription is subject-based and the
notifications are self-describing and platform independent. The notifications supports a user-
extensible type system like XML. The subject is a list of strings over which it is possible to
specify filters based on a limited form of regular expressions. TIB/Rendezvous APIs are
available in Java and a few other programming languages.

The Elvin Event Notification Service [14] is a research project of the Distributed Systems
Technology Centre at the University of Queensland, Australia. The event service is
implemented with a centralized server topology. Notifications are sets of named and typed
data elements. A subscription is a declarative boolean expression over the components of the
event notification. A component can declare its interest on a number of notifications
characterized by some common properties. The producers pushes notifications to the service,
which in turn pushes them to the consumer. The event service which uses content-based
notification selection, compares the received notifications with the registered subscription
expressions and forwards those whose expressions are satisfied. The communication between
the components is based on publish/subscribe protocol with quenching. Quenching allows
producers to receive information about what consumers that are expecting the information.
Events are only generated when they are demanded.

Java Event-based Distributed Infrastructure (JEDI) [18] is a research project at Politecnico di
Milano. The event service organizes the server hierarchically. Subscription is subject-based
and it is possible to unsubscribe events at runtime. The notifications are structured in an
object-oriented fashion and furthermore are they defined by name and a number of
parameters. This system is similar to Elvin.

SmartSockets [12] is a publish/subscribe middleware solution from Talarian. The
architecture of servers is structured in a peer-to-peer fashion. It allows synchronous and
asynchronous data transfers. Subscription is done by specifying a subject. The event service
can accept subscriptions of a number of different subjects. A notification consists of a subject
part and a data part. Components receive all notification belonging to the subject they have
subscribed on.

Gryphon [16] is a research project of IBM. The Event Service is structured in a distributed
peer-to-peer topology. The flow of events are described via an information flow graph. This

 9

flow graph is responsible for filtering the events, which is content-based. When two different
sources produces event streams, they get transformed in a new single stream. Subscriptions
are modelled as conjunctions of basis predicates defined over specific attributes.

The Keryx Notification System (KNS) [13] was developed by Hewlett Packard. KNS
supports communication between loosely coupled components. These do not have to know of
the existence of each other. All routing is done by the Event Distributor (ED) based on the
content of the messages. The events are encoded in SDR (Self-Describing Data
Representation), a textual syntax for structured data. There are three possible ways to build
these structured events: map values, list and atomic values. Furthermore is content-based
event filtering supported. Clients send requests for delivery of events to the Event Descriptor,
which are called event subscriptions. A subscription defines the events of interest to a client
by including a filter that includes the necessary predicates over events. Just the events that
pass through these filters are delivered to the clients. The communication protocols used by
Keryx are TCP and UDP. An implementation of the Keryx Notification System is done in
Java with a hierarchical server topology.

Siena [10] is one of the most advanced event notification services. It is a research project of
the University of Colorado. The servers that build the event service could be structured both
hierarchical and peer-to-peer. The event notification service exports functions which are
usually referred to as the publish/subscribe protocol. The notifications sent by clients have
sets of attributes with a type, name and a value. Efficient routing based on the content of the
notifications is one advantage of the defined set of those. The selection of the notifications is
done with filters and patterns. There exists a prototype implementation in Java.

Sun Microsystems has defined the Java Message Service (JMS) specification [6]. Various
companies have implemented the JMS specifications. SoftWired with its iBus is one of them.
Some key features of JMS are: Support of asynchronous messaging, subscription is channel-
based and the architecture of the service is centralized. Message filtering is done with
message selectors. Another important fact of JMS is that it is included in the specifications of
Java 2 Enterprise Edition, which is used in many Internet business solutions. In chapter 4.3,
more information about JMS is provided.

3.1.2 Discussion

Table 3.1 presents a comparison of Event Notification Systems and Messaging middleware
described in the previous chapter. iBus is a product that is implemented under the JMS
specification. Recently many more new products have been introduced onto the market for
messaging middleware. They differ in the server architecture and the way they subscribe to
events (messages).

Most of the products above are not convenient to be used in the project. They have a quite
complicated server structure that will be too complex to use for the purposes of this project.
Siena, Keryx, Gryphon, JEDI, and Elvin are research projects without a stable
implementation. No system fulfils our needs since non can provide a mechanism for delaying
events. An implementation of JMS will be used inside the Event Service. JMS is used with a
centralized server and subject-based subscription. Asynchronous and synchronous
communication can be used with JMS. Another advantage that comes with JMS is that it is
included into the J2EE specification, which many enterprise application systems are based on.
An example is the Lecando Enterprise Server, which is using the Orion Application Server
[20], an implementation of the J2EE specification.

 10

Architecture Subscription
Centralized Hierarchical Peer-to-peer Channel-based Subject-based Content-based

JMS X X X X
iBus X X X X
CORBA Event Notification Service X X X X
TIB/Rendezvous X X
Elvin X X
JEDI X X
SmartSockets X X
Gryphon X X
Keryx X X
Siena X X X

Table 3.1 Overview of the products described in chapter 2.3.2. Architecture and subscription types are
compared.

3.2 Requirements for the Event Service

As shown in chapter 3, there are many different solutions for distributing events from one
system to another. There are three important requirements on the Event Service that have to
be fulfilled in order to reach a satisfying result for the project. These are:

• Ease of usage: The usage of the Event Service should be easy for the application
developers. Only an overview of the Event Service should be enough information to
use it. External consultants should be able to manage implement customized handlers
without deeper knowledge of the technology used in the Event Service module.

• High Performance: The Event Service should have short response time. This means
that the Lecando Enterprise Server (monitored system), that is responsible for the
information sending, should not be occupied to long while communicating with the
Event Service.

• High Availability: Events that are fired should never get lost. The Event Service
should be fault tolerant. Failures in the Event Service are handled with the Java
Exception mechanism. Most critical data will be implemented by entity java beans and
must be persistent. The issue of high availability is not considered in this thesis.

In the next chapter programming technologies are represented which will be used to
implement the Event Service.

4 Overview of Enterprise Java technologies
This chapter presents some of the technologies used in the implementation of the Event
Service. First a brief introduction is given to server-side programming: Java 2 Enterprise
Edition (J2EE) [3]. After that the Enterprise JavaBeans (EJB) [5] and the Java Message
Service (JMS) [6] technologies are introduced and briefly explained. How EJB and JMS
technologies are used to obtain asynchronous communication between event publishers and
the JMS server is also discussed in this chapter.

4.1 JavaTM 2 Enterprise Edition

The J2EE platform provides a component-based approach to the design, development,
assembly, and deployment of enterprise applications. The J2EE specifications provide support
for a large number of Java APIs; such as

• Java Database Connectivity (JDBC),
• Remote Method Invocation (RMI),

 11

• Java IDL (CORBA Distributed Objects),
• Java Naming and Directory Services (JNDI),
• Enterprise JavaBeans (EJB),
• Java Servlets,
• Java Messaging Service (JMS),
• Java Transactions API (JTA),
• Java Server Pages (JSP),
• JavaMail,
• JavaBeans Activation Framework.,
• Java API for XML (JAXP),
• J2EE Connector,
• Java Authentication and Authorization Service (JAAS).

Some of the Java technologies listed above will be briefly explained in this chapter.

A multitiered distributed application model is used within the J2EE platform. This means that
application logic is divided by their functions into components that together form the J2EE
application. Normally, these components are placed on different machines, depending on the
tier in the J2EE environment they belong to. An application could have the following tiers:

• Client tier components run on the client machine,
• Web tier components run on the J2EE server,
• Business tier components run on the J2EE server,
• Enterprise information system (EIS) tier, run on some database server.

This is considered as a three-tiered model since the tiers are placed in three locations: client
machine, J2EE server machine and the database machine. The client components could be
either web-based or non web-based. An ordinary web-browser downloading content from the
web tier, is such an example. A web component consists either of Java Servlets or JSP
pages [8]. Servlets are classes that process requests and create responses. JSP pages are run as
Servlets, but are used to create text-based content inside HTML pages. The business tier is the
logic that solves the needs for the business application. Inside this tier you find enterprise
beans, which come in three flavours: session bean, message-driven bean and entity bean.
More about that later in chapter 4.2. The EIS tier handles all from database systems to
Enterprise Resource Planning (ERP) systems.

The J2EE server, also called Application Server, provides underlying service to each
component types in form of containers. This is convenient since the application developer can
concentrate on the business logic and will not need to solve complex low-level details like
multithreading, resource pooling etc.

The components have their running environment inside its containers. We have web,
enterprise and application containers (see Figure 4.1 for an overview). These containers
function as an interface between the components and the low-level platform functionality that
supports the component. They have configurable and non-configurable services. To the
configurable services belong security, transaction management, directory and naming
lookups, and remote connectivity. The servlet and bean life-cycle, database connection
resource pooling, data persistence, and access to the other J2EE platforms APIs are non-
configurable services. This means that you canot change that behaviour.

 12

We will concentrate on Enterprise JavaBeans and the Java Message Service, since the
implementation of the Event Service uses these two technologies. They are described in the
next two chapters. Below you will find a short description about some of the APIs that are
included inside the J2EE specifications.

Figure 4.1. The J2EE Application Server and its containers. The web and EJB container are provided by the
Application Server. Browsers communicate with the web container. Other client program such as JavaBeans
can communicate directly with the enterprise beans within the EJB container. Business logic is processed
inside the EJB container and is sent to the web container or the application container.

The Java Database Connectivity (JDBC) is used to invoke SQL commands from inside
Java methods. Usually you will not use this service if you are not using the bean-managed
persistence mode for an entity bean. More about that in the next chapter. The JDBC API are
divided into two parts: the application-level interface and the service provider interface. The
first is used by application components to access a database and the later to connect an JDBC
driver to the J2EE platform.

Java Servlets are used to extend the functionality of Web servers. Servlet is a server-side
application that executes requests and creates responses. Servlets run inside the Application
Server within the servlet engine.

With JavaServer Pages (JSP), Java code can be included inside text-based documents like
HTML pages. With this technology it is easy to produce dynamic web-content. When such a
page is requested by the client, the server returns a dynamically generated HTML page.

Java Transaction Architecture (JTA) and Java Transaction Service (JTS) are used
for transaction handling. Applications can use JTA to access the transaction monitor. JTS is
the implementation of such an monitor. This monitor provides service to the application
server, resource managers, stand-alone applications, etc.

The Java Naming and Directory Interface (JNDI) is used to access naming and directory
services. Such resources are DNS, LDAP, local file system, or objects inside the application
server. Objects can be connected to simple names and located from application that need
some service of them.

Application Server

Servlet JSP Page

Web Container

EJB

EJB Container

EJB

Browser

Application
Client

Application Client
Container

Client Machine

 13

4.2 Enterprise JavaBeans (EJB)

Enterprise beans are components that represent a discrete, well-defined piece of functionality.
In a distributed multi-tiered application the Enterprise JavaBeans components form the
business logic for the application. See Figure 4.1 for an overview of the EJB architecture. In
Figure 4.2, the EJB server is hosting the EJB container. Usually the Application server
provider will support the EJB server tasks too.

Figure 4.2 Enterprise JavaBeans architecture. Clients that want to use an enterprise bean will use the
EJBHome and EJBObject interfaces for using the bean methods.

The EJB architecture consist of four different components:

• The EJB client
• The EJB server
• The EJB container
• The EJB component

Clients to the EJBs are processes that want to use the service of EJBs. Such a client could be
an application running on a different machine than the server, e.g. a web browser or a Java
servlet located on the same server and providing dynamically created web content. Clients use
the remote objects of the EJB to access them. Remote Method Invocation (RMI) is used if it is
a Java client and otherwise Corba. Enterprise JavaBeans are located through the JNDI
technology. All the client needs is a unique name to reference the EJB with the naming and
directory service. When found a reference to an EJBHome object is returned to the client.
This object is used to get the reference to the EJBObject object, which is the remote object
interface. Now the client can call methods on the EJBObject to access the service that the EJB
provides.

The EJB server, most likely included into the application server, provides all low-level
services required by the EJBs. The naming services provide the service to locate the EJBs, as
mentioned above. Who is allowed to access an EJB is controlled by the security services. The
persistent data storage is accessed via the database access services. The transactions services
are responsible to handle commit and rollbacks. The transaction monitor is also provided if it
was implemented into the EJB server. The EJBs life cycle management is another service
that is offered to the EJBs. Multithreading is also another service.

EJB Container

EJB Server

EJBHome
EJB Component

EJBObject

EJB Client
EJB Client

EJB Client
EJB Client

EJB Client

 14

The EJB container gives the EJBs the environment in which they run. The applications
functionality is provided to the EJBs and some other functions are provided by this container.
EJBs get registered by the container when these are loaded. The container is responsible for
the life-cycle of the EJB, i.e. to create and remove them. The persistence for the EJBs is
handled by the container. They can get serialized and stored in the persistent storage when
they are not in use. Access control to the EJBs service is also handled by the container. Some
methods are made accessible to the clients and others are not.

The EJB component is the Java class that represents the business logic of one module of the
distributed application. With the EJB2.0 specifications [5], there are three types of enterprise
beans: Session beans, Entity beans, and Message-driven beans.

The EJBHome and the EJBObject are two interfaces that are associated with the EJB
component. When the EJB is loaded into the container, their classes are created. The
EJBHome interface has for both session and the entity bean create methods that will return an
instance of the EJBObject class. The entity bean will have methods, that take a primary key as
a parameter and return a reference to a collection of EJBObjects matching the key. The
methods that are provided by the EJB component are accessed by the clients through an
instance of the EJBObject class.

Session beans represent a set of processes or tasks, which are performed on behalf of the
client application. Since the client request a service from a bean, it will get its own instance of
the session bean, that cannot be shared with other clients. There are the stateful and stateless
session beans. The stateless session bean provides a single-service to the client and can not
store any information related to a client between calls. Stateful session beans can retain state
between multiple client requests or transactions. Session beans are not persistent, they do not
survive if a server is restarted. In this case the clients need to get a new session object.

Entity bean represent specific data. They map a Java class to a data source. This could be a
single row or an entire table in the database. Each entity bean has a primary key associated
with it that identifies the data inside it. There is only one instance of an entity bean for any
primary key because multiple copies of the data would be very difficult to manage. There are
two different types of entity beans: bean-managed and container- managed. With container-
managed entity beans all database access calls are performed by the container. In a way this is
automatic persistence. The other type is the bean-managed entity bean, which itself is
responsible to provide all database access calls.

The message-driven bean (MDB) is a stateless enterprise bean component that is designed to
consume asynchronous JMS messages. This is further explained in the next chapter. The
difference between the MDB and the other two bean types, is that it does not have a remote
and a home interface. This bean does not have any business methods that are invoked from
other clients. The MDB listens only to the virtual channel and consumes the messages posted
to them by other JMS clients. Messages that are send to such a channel are forwarded to one
message bean instance from the message bean pool of the EJB container. These messages are
received by the bean instance when its onMessage method is called.

4.3 Java Message Service (JMS)

The Java Message Service (JMS) is an interface for communication among clients in
distributed applications. The messaging functionality of JMS is described with interfaces that
vendors of messaging systems implement. With JMS you can send messages from one client

 15

to another client through the messaging service it provides. There are two different
subscription paradigms in use: Point-to-point or publish/subscribe messaging.

In point-to-point a message has at most one consumer. Many producers can send messages to
the queue that is maintained by a consumer. When a message arrives in the queue it is
removed only by the consumer of this queue.

When using the publish/subscribe mechanism, messages are published to topics which
consumer can subscribe on. These messages are routed to all subscribers of that message.
They can be many publishers and subscribers on the same topic.

The message consists of two parts: header and body. The header contains routing and
identification information. The message body carries the application data or payload. There
are several message types which depends on the payload. They are types that carry simple text
(TextMessage), serialized objects (ObjectMessage), etc.

The main advantage using JMS is the asynchronous sending methods, which means that a
JMS client can send a message without having to wait for a reply. The reason for this is that
clients send messages to a topic and do not want to wait for the reply of the subscribers.

The JMS architecture is much larger than described above, for more information see the JMS
specifications provided by SUN Microsystems [6].

5 Development of the Event Service
This chapter describes design and implementation of the Event Service. The service is
implemented with a central JMS server that receives events in a topic from the system that
wants to notify about the occurrence of events. These events will be distributed by the Event
Service to all subscribers. In this chapter, first, the global view of the service is specified,
second, the components in use are described and, third, the implementation of these
components is presented and explained.

5.1 System specification

5.1.1 Three separate units

The units involved in the integration of an enterprise platform to other systems can be
identified as follows: the monitored system, various clients and the Event Service itself (see
Figure 5.1). The monitored system in our case is the Lecando Enterprise Server. Clients can
play different roles. They can act as proxies between the monitored system and a third party
or they could simply extent the functionality of the monitored system. Figure 5.1 depicts these
three components and their connection to each other.

5.1.2 Events and messages

Events are happenings that are created by the monitored system and sent as messages in order
to notify other applications of their occurrence.

The monitored system is the source of all event production. It only makes sense to fire events
here, since it is the monitored system that wants to notify third parties of the occurrence of
events. Only predefined events can be used by the system. These events have to be defined in

 16

a certain manner that will be described later in this chapter. Since the monitored system has
no knowledge who might receive notifications of the event occurrence, it can not possibly
know if there are event handlers that want to receive such notifications at all. If there are no
event handlers for a fired event, this would lead to bad utilization of an efficient monitored
system. The monitored system fires just those events that are defined. The frequency of how
often and when events occur is not predictable. The reason is the unpredictable usage of the
monitored system. In case of Lecando’s e-Learning platform, most events are triggered by
users while using the system different times of the day, with different frequency and intensity.

Figure 5.1 Overview of the Event Service. The monitored system will use the Event Service to send
notifications about the occurrence of events. Event Handlers are subscribers of those events.

Example of events are: adding a new user to the monitored system, grading exams by
examiners or receiving messages from other users. The list of different events is long and
there is not really a restriction in the variety of events.

If system performance is getting poor because too many events are fired, one might change
the approach in how to use the Event Service.

5.1.3 Interaction between Lecando Enterprise Server and the Event Service

The Lecando Server uses the Event Service to communicate with clients, (see Figure 5.1 for
an overview). The Event Service provides an event passing mechanism. It accepts events
packed into messages and published by the monitored system. This system has no knowledge
how events are handled and who will be notified. There is no feedback from the Event
Service to the monitored system. All events sent from the monitored system to the Event
Service are kept stored until the clients succeed in processing them. The Event Service
guarantees event persistence in case of failure.

5.1.4 Interaction between the Event Service and clients

The Event Service guarantees sending events to all clients that made a subscription to
receiving them. In Figure 5.1 the clients are the event handlers. Clients that want to process
events not instantly can delay them. The Event Service provides facilities to store them into a
database. All delayed events need to have a new execution time. Clients can also use the
Event Service to save their own properties. Examples of such properties could be last

Client
(Event Handler)

Client
(Event Handler)

Client
(Event Handler)

Event Service

Monitored System
(Lecando Enterprise Server)

publish event

fetch event

fetch event

fetch event

 17

execution time, number of tries an event processing are allowed to fail or simply the time
when the next execution should take place.

5.2 Design of the Event Service

The monitored system, event handlers and the Event Service are divided into various
components that are shown in Figure 5.2 and described in the rest of this section.

Figure 5.2 The Event Service and its components. The monitored system uses the MessageSender class to
send an event to the JMS server (provider). The JMS server distribute the event to the MessageListener. The
Message Listener looks for the EventHandlers of the event and executes them. The EventHandlers can delay
events and use the EventStorage for this purpose. The Scheduler is responsible for finding and executing
delayed events.

5.2.1 Events

Moments arise when the monitored system wants to inform other entities of the occurrence of
a specific situation. This situation will be called event. An event is a description of what has
happened at the monitored system. The Event Service will get a notification of the occurrence
of every event. All events carry information that are useful for other parties. Events that are
similar will be built in a special structure. This structure is a tree. On top of the tree is the root
event. Every new event will be defined in a sub branch of the tree. The number of branches is
not restricted. The reason for this is to make the tree as flexible as possible. Every event in a
branch will inherit all information from the event that is higher up in the tree structure and
add some more information to it as well. New events are added to a branch of the tree where it
fits into the branch. If no branch seems to carry information that a new event could use, a new
branch is added to the root of the tree. The reason for structuring events as a tree is to simplify
the subscription mechanism. This mechanism will be explained in chapter 5.2.5, where we
talk about the event handlers. Events can hold several different objects and attributes that are
used to pass information from the monitored system to the clients.

An example of an event in the event tree is the NewUserEvent (see Figure 5.3). This event
inherits everything held by the parent node. This is the date of creation that is included into
the root event and the user information, such as name and address and so on. Additionally the

JMS Provider

Message Sender Message Listener

Event Handler
(Client)

Monitored System
(Lecando Enterprise Server)

Scheduler

Event Storage

publish event

send event
distribute event

execute handler

(2) run current events

(1) look for current events

 18

NewUserEvent carries a password. This event is supposed to be fired when a new user is
added to the monitored system.

The next event to be added to this branch might be a UpdateUserPasswordEvent. It will
carry the new password and some new information on the user.

5.2.2 Event Producer

The Lecando Enterprise Server includes many business logic modules that together form an e-
Learning platform. Since the functionality is divided into different modules, every module
should be able to produce events. Generally there are no restrictions on what kind of events
every module is allowed to fire. Since these events are highly flexible, they should be used
with precaution.

Figure 5.3 Example of one branch in the event tree. The Event is the root of the tree. The UserEvent inherits the
Event class and adds user information. A password is added by the NewUserEvent class to the existing object of
the UserEvent class.

One of the main tasks in designing the Event Service is to make the process of firing an event
as lightweight as possible for the monitored system. The firing event mechanism will be
divided into three parts: first an event is produced, second an event is packed into a message
and third the message is sent to the Event Service. The reason for packing events into
messages is that we want to use the Java Message Service. We will send events inside a
message and to this message we will attach information about the JMS destination. This
additional information has semantically nothing to do with the event itself, therefore we use
messages as the transportation object instead of the events. In the next section you will
discover how the JMS technology is used inside the Event Service.

5.2.3 Java Message Service

Java Message Service is included in the Event Service because it is possible to communicate
asynchronously between two parties. This is why the monitored system will not be occupied
too long while firing and sending an event. As mentioned in chapter 4.3, there are two ways to
send messages with JMS. Here we choose the topic method, since it seems to be more flexible
when adding more functionality to the Event Service. Topics are not more complicated than
queues which is an advantage and that is why it is used here. We will choose to have one
topic with a single subject. Every message received by the topic is sent further to a consumer
that is subscribing to the topic. Again, normally there are many consumers of a topic, but in

Event

date of creation

UserEvent

user information

NewUserEvent

password

 19

this system only one will be used. Next you will see how the consumer distribute the
messages to the event handlers that have subscribed to particular events.

5.2.4 Message Listener

The Message Listener’s duty is to receive messages from the JMS, to filter events from the
messages, to look up the event handler(s) that subscribe to the event, and to send the event to
the event handler(s) for processing.

The Message Listener is a subscriber of a JMS topic and will be activated on arrival of a
message to it. Every message will be processed by a Message Listener. If a Message Listener
is occupied with processing another message, while a new message arrives from the JMS, a
new instance of the Message Listener will be invoked, receive the message and processe it.
Details about this mechanism will be explained in chapter 5.3.6.

When an event is uncovered from the message, its event handlers are looked up in a file.
Every event must have at least one event handler that is subscribing to it. There is no
restriction on how many different event handlers could receive the same event. The
subscription file includes event and event handler pairs. Every event will be listed with all
event handlers that subscribe to it.

Every found handler will be instantiated and executed by the Message Listener. This is further
explained in chapter 5.3.6, were we describe the implementation details.

5.2.5 Event Handler

The power of the Event Service lies in its event handlers. Event handlers could have many
different tasks. The main duty are to react on the reception of events and process them in the
way it is defined in the handlers. There are some limitations about what is allowed to do and
what is not. These limitations are the same as discussed in chapter 4.1, where we talked about
the application server provider. Event handlers are added easily to the system. They can
receive one or more different events. There is also no restriction on the number of different
events they might subscribe to. As seen in Figure 5.2, the event handler is called from the
Message Listener or the Scheduler. The Scheduler and its tasks will be described in the next
chapter. Every event handler needs to subscribe to events. This is done, as described in the
last chapter, with the event properties file.

Every event handler can use several services when processing events. They could execute
events instantly or delay them for later execution. If events are sent to an event handler that
processes events, e.g. once a week, then all events arriving within this time period have to be
stored for later processing. This means that event handlers will process them later. The event
handlers can be stateful, which means they can save their processing state for later execution.
For this purpose, the event handlers may save their last execution time at the Event Storage
and fetch it from there later when necessary. In the next section we will describe the duty of
the Event Storage. See also Figure 5.2 for an overview. Properties can be saved at the Event
Storage as well. They are always saved as key value pairs that could be of any type. Delayed
events are sent with a timestamp to the Event Storage where they are collected by event
handler name and processing time. It is the Scheduler that will instantiate the event handlers
when they should process events for those who are stored at the Event Storage.

 20

With the possibility of delaying events and saving its properties, the event handlers have all
they need for error handling. Events that fail to process can be delayed. How many times an
event handler should try to reprocess failed events can be saved and retrieved in the event
storage. This is useful for the implementation of error strategies.

One of the main tasks while designing the framework for the event handler was to give the
developers of the handlers as much flexibility as possible. In chapter 5.3.7, you will see how
developers can use the event handler framework when customizing new event handlers. The
variety of such handlers is huge. Sending an email with user information, login, and password
to every new user when added to the system, could be one possible task. For this purpose we
would add the NewUserEvent, described in chapter 5.2.1, to the system. Next step would be
to create a new handler that produces an email holding the user information. The Event
Storage is only used if an email could not be send to its receiver. This means that every
incoming event is processed on arrival without delay. Later you will find more examples for
event handlers.

5.2.6 Event Storage

The Event Storage is used by the event handlers and the Scheduler (see Figure 5.2). As
mentioned above, the event handler is responsible for delaying events and the Scheduler for
checking the processing times of all delayed events and initiating the event handlers with the
events waiting to be processed.

The Event Storage collects all events in different jobs. A job is used to collect events that
should be processed by the same event handler at the same time. Every job holds also only
events for the same event handler with all events belonging to this handler that have a
processing time within one minute. This means that every handler could have many jobs that
are saved at the Event Storage. Every job could include many events, because an event
handler could process events once a day and every event that reaches this handler before that
time, will get delayed until than. A job is deleted whenever the Scheduler activates the event
handler for this job and send all information that the job is holding to the handler. The Event
Storage is persistent and recovers from system failure. This means no events are lost
whenever they were saved. The service of the Event Storage will be described in detail in
chapter 5.3.8.

5.2.7 Scheduler

The Scheduler is responsible for checking the Event Storage if jobs are ready to be run by its
event handlers. These jobs will be passed from the storage to the Scheduler. Next the event
handler, as mentioned above, will be instantiated with a collection of the events that were
found inside the job. After that is the job deleted from the Event Storage. Every job found by
the Scheduler will be processed by the handlers. If no job is found, the Scheduler will be
terminated. This process is repeated every minute. The Scheduler is activated every minute by
an external application.

5.3 Implementation of the Event Service

This chapter describes how the Event Service is implemented. An overview of the Event
Service is illustrated below in Figure 5.2. The following subchapters will explain how the
components interact with each other.

 21

5.3.1 Packages of the Event Service

The Event Service contains five packages listed below.

com.lektor.events
com.lektor.events.beans
com.lektor.events.handlers
com.lektor.events.servlets
com.lektor.events.events

Events added to the Event Service is handled by the events package. Handlers in the handler
package. The Message Listener is as described below an enterprise bean and therefore put into
the beans package. The Event Storage and the Event Wrapper is added to the bean package
also.

In the following sections you will find out which classes are used to build the components
from Figure 5.2, where they are located and how they are used by the event handler
developers. An example of how to use the Event Service is added at the end of this chapter.

5.3.2 Events

Events are used to pass information from the monitored system to external systems. Every
event is a class with its own objects and methods. All Event classes are included into the
com.lektor.events.events package. The top class in this package is the Event class.
Figure 5.4 presents the event structure. Every new class added to the Event Service should
inherit from this class or its sub classes. This will create a tree structure of all event classes.
The event objects have to be serializable, since they are passed around between enterprise
beans inside the EJB container of the monitored system. The Event class just holds a
creationDate object. Every sub event class holds additional objects.

Every event class has, excepts its constructor, at least two more methods. These are the
equals and the hashCode method. They are used to store and retrieve events by the Event
Storage. Furthermore these two methods must be overwritten by each sub class to make the
events distinguishable. In the next paragraph you will see how a new event class is added to
the event tree.

The Event class is inherited by the UserEvent class. This new class holds an user object that
includes all data of the user such as first name, last name, etc. The UserEvent class could be
used every time the user information is updated in the monitored system. When an user saves
his/her new data by using the save button, a UserEvent will be fired. An example of how this
is done is described in the next section. Now the NewUserEvent class that inherits the
UserEvent class is introduced. The NewUserEvent could be used every time a new user is
added to the monitored system. This new event has, compared to its superclass, an additional
password parameter, see Figure 5.4 for an illustration.

5.3.3 Monitored system

In this section you will find out how events are fired and published. A monitored system, in
our case the Lecando Enterprise Server, is built upon many modules that together comprise a
platform. Such a module consists of one or more enterprise beans that are responsible of

 22

computing one specific task. When the application developer wants to transfer information
from the monitored system to external systems, the usage of the Event Service will solve this
task. The application developer of the monitored system must remember that publishing
events without any subscription on it will give the data transfer unnecessary overhead.

Figure 5.4 One branch of the event tree. The root holds the creationDate object. The UserEvent additionally
the UserVO object and the NewUserEvent class adds a password to the UserVO of the UserEvent class.
Note: + means public method.

Events are objects that carry information. Events are created by instantiating one of the event
classes, e.g. a new UserEvent will be created by calling the constructor of the UserEvent
class with the parameter UserVO. An UserVO is an object containing user information such as
name and address. The construction of an event can be performed in the following way:

UserEvent userEvent = new UserEvent(UserVO userVO);

The userEvent object is sent with the publish method of the MessageSender class.

As soon as the Message Sender delivers the message to the JMS topic, the application will not
be blocked anymore and continues execution. The publishing of an event can be performed as
follows:

publish(userEvent);

The monitored system does not know who will receive the event. It is transparent to the
monitored system. Events are fired when the user of the monitored system triggers them. This
could be done when a button in the user interface is pressed or some sort of interaction
between the user and the interface takes place. Next you can see how the Message Sender is
publishing messages to the JMS topic.

Event

+creationDate: Date

+hashCode():int
+equals(o:Object):boolean
+toString():String UserEvent

+userVO:UserVO

+hashCode():int
+equals(obj:Object):boolean
+toString():String

NewUserEvent

+userVO:UserVO
+password:String

+hashCode():int
+equals(obj:Object):boolean
+toString():String

 23

5.3.4 MessageSender

The MessageSender class (com.lektor.events package) is used by the monitored system
to send messages to a JMS topic. LecandoTopic is the name of the topic used together with
the monitored system.

Furthermore this class is used to make the JMS communication transparent to the application
developer since the JMS setup is hidden in the publish method. The object of this method
needs to be serializable because of the need for transfer of it over a network.

public static void publish(Serializable object);

The following steps are executed by the publish method; in chronological order:

• A TopicConnection to the JMS provider is created.
• A TopicSession is started.
• An ObjectMessage is created.
• The LecandoTopic is looked up.
• A TopicPublisher for the session is created.
• The event object is added to the ObjectMessage.
• The message is send by the TopicPublisher.
• The TopicPublisher, the session and the connection is closed.

5.3.5 JMS server

The JMS server, normally referred to as the JMS provider, receives messages at its topics.
The subscribers of every topic will receive every message that arrives to the specified topic.
In our case we only have one topic, named LecandoTopic. Our subscriber is the Message
Listener that will receive every message. We want that the monitored system and the Message
Listener to communicate asynchronously. The only way to do this with applications that are
based on J2EE is to use JMS.

The JMS server is fault tolerant and persistent. This means that when a message can not be
delivered to the MessageListener right away, the JMS server will try again until it succeeds.
Every message that reaches the JMS server will be kept in the storage of the JMS until it is
delivered to all its subscribers.

The setup of the JMS server is different for every JMS provider. Since Lecando Enterprise
Server uses the Orion Application Server [20], we use the JMS implementation of Orion. The
Orion Application Server follows the J2EE specifications. If the monitored system uses
another application server, the setup could be different but since everything in the Event
Service compatible to the specifications, it should not be a problem. In the Orion application
server, the JMS server is set up with a file named “jms.xml”, that is used to specify the names
of the topics and its subscribers. More details about how to setup the server can be found in
the Orion documentation [20].

5.3.6 MessageListener

The MessageListener class in the com.lektor.events.beans package is responsible for
identifying the incoming messages, to locate the event handlers of the identified events, to
instantiate these event handlers, and to call the process method of every found event handler.

 24

The MessageListener is a message-driven bean that receives all messages from the JMS
server. The key method onMessage is called by the JMS server. The method code looks like
this:

public void onMessage(Message message) {…}

As a bean developer you must only provide the bean class with this method in accordance to
the EJB2.0 specifications [5]. How and when this method is called is transparent to the
developer. Below you find a detailed description about what this method will do in our case.

As mentioned above, the message received from the JMS server, must be identified as an
event. First the object of the JMS message has to be retrieved. As you know from chapter
5.3.2, events were added to the ObjectMessage. The object is retrieved from the message
with the following line:

Object object = ((ObjectMessage) message).getObject();

If the object is an instance of the Event class, the event handlers for this event are fetched.
For this purpose the getEventHandlers method of the EventConfiguration class will look
for the event handlers that are listed as subscribers of the event in the event.properties file.
An entry in this file can look like this:

com.lektor.events.NewUserEvent = com.lektor.events.handlers.NewUserMailer

On the left-hand side the complete path of the event is used as a key and on the right-hand
side the complete path of the event handler is used as the value. This method returns a
collection of all event handlers found for the specified event to the Message Listener. The
event handlers are already instantiated and ready for execution. Every event handler will be
executed sequentially until every handler is terminated. Eventually the process method of
every event handler is called with the event itself as a parameter. See the next section for
details.

5.3.7 Event Handler

The EventHandler class located in the com.lektor.events.handlers package is an
interface that every customized handler must implement. The event handler developer could
use the methods of the abstract EventHandler class as shown in Figure 5.5. A description of
how these methods can be of use follows below.

Figure 5.5 The EventHandler class and its methods that can be used by all handlers added to the Event
Service. Note: + means public and # protected method.

EventHandler

+ process(events:Collection)
delay(events:Collection,dateToRun:Date)
setTimeStamp()
getTimeStamp():Date
setProperties(properties:HashMap)
getProperties():HashMap
log(obj:Object)

 25

The abstract process method must be implemented by every handler. This method is called
by the Message Listener and takes as parameter a Collection of one or more events. This
method is used to define the action that should be taken when an event is received.

The delay method sends a Collection of one or more events to the Event Storage. The
parameter dateToRun is used by the Scheduler to get all events that are ready to be processed
by the event handlers.

The method setTimeStamp is used to save the current time of execution of the event handler
at the Event Storage. The getTimeStamp is used to retrieve the time that the setTimeStamp
method saved during the last executed.

Every event handler implementation can save data of its own choice at the Event Storage.
How often a particular event should be reprocessed when failures occur, could be one
example of such a property. The method to do this is setProperties, getProperties
retrieves the property from the storage.

The log method is used for logging the action an event handler is handling. Every time this
method is called, the object parameter is appended to a file. Logging should be used with
great care to avoid performance degradation and failure due to loss of free space on the
storage media.

Above we described the methods that the EventHandler class provides to the developers of
the event handlers. Next you will find out what happens if the event handler delays an event.

5.3.8 Event Storage

The Event Storage is used by the event handlers and the scheduler to store and retrieve events.
We will describe how the Event Storage collects events into jobs and how they are stored by
it. Additionally the event storage is also used to save information about event handlers.

The EventStorage class has two more classes that are used to give the event handlers and
scheduler the services they need. For an overview see Figure 5.6. The Event Storage is an
entity bean with its persistence managed by the bean container. This means that for the
developer, the maintenance of the database is transparent. It is the enterprise bean container
that creates, updates and searches tables for data. Furthermore is the Event Storage a singleton
bean, this means that the entity bean only exists in one instance. This was chosen to eliminate
the risk for critical sections and other similar problems. In the next few paragraphs we will
explain the methods and data types of the EventStorage class.

The getTimeStamp and setTimeStamp methods are called from the event handlers as
described above. The data type timeStampsByHandlerName is a HashMap and used by the set
and get methods. This HashMap uses the event handler name as key and the timestamp as
value.

The getProperties and setProperties methods are also called from the event handlers.
They are operating on the propertiesByHandlerName of type HashMap that is similar to the
timeStampsByHandlerName also a HashMap. Every event handler has its own defined
properties stored in the Event Storage.

 26

A job in this context is used to keep events that are delayed by the same event handler
together if the dateToRun parameter of them are within one minute. This means that every
event is kept by one job. Event handlers could have many jobs with events. As you can see
from Figure 5.6, a job keeps an ArrayList with all event ids, the event handler name and the
date when to execute this job, which is the same as the first event added to it. The methods
used by the job, except for the constructor, are the equals, compareTo,
createEventWrapper, getEventIds, getEvents, and the destroyEvents methods. The
equals and the compareTo methods are used when the Event Storage looks for the right job
to save a new event that should be delayed. When an event is passed to a job, it will be put
into an entity bean called EventWrapper by the job. These entity beans manage the
persistence for the events automatically. The job will get a handle with the event ids after
calling the createEventWrapper method. This method is called as soon a new event arrives
at the job. The getEventIds method just returns a Collection of all event ids that are saved
by the job. The getEvents method also return a Collection of all event instances, which are
fetched from the Event Wrappers. The methods that are used by the job for this purpose are
the getId and getEvent methods. The destroy method of the job, removes all entity beans
that are found inside a job.

Figure 5.6 The Event Storage collects events that are stored in enterprise beans and into jobs. A job has a
date to run and a list with all events that are included inside the job. Every event is stored with its id and
event object inside the EventWrapper. The EventWrapper is an entity bean that stores the event into the
DBMS. Note: + means public and – means private method.

The delayEvent method of the Event Storage looks for an existing job and if one is not
found, creates a new. After that the event will be added to the job. As mentioned above, an
EventWrapper is created for every new event added to a job and the HashMap
jobsByHandlerName is updated. Remember that events get delayed only by event handlers.

EventStorage

+ delayEvent(events:Collection, dateToRun:Date, eventHandler: EventHandler)
+ getCurrentJobs(): Collection
+ setTimeStamp(eventHandler: EventHandler)
+ getTimeStamp(eventHandler: EventHandler): Date
+ setProperties(eventHandler: EventHandler, properties:HashMap)
+ getProperties():HashMap

+ id: Integer
+ jobsByHandlerName: HashMap
+ timeStampByHandlerName: HashMap
+ propertiesByHandlerName: HashMap

Job

- createEventWrapper(events:Collection): ArrayList
+ equals(o: Object): boolean
+ getEventIds(): Collection
+ getEvents(): Collection
+ destroyEvents()

+ eventHandlerName: String
+ dateToRun: Date
+ eventIds: ArrayList

EventWrapper

+ id: Integer
+ event: Event

+ getId(): Integer
+ getEvent(): Event
+ setEvent(event: Event)

 27

The Scheduler is responsible to check the Event Storage for jobs that have to be executed.
This is done by calling the getCurrentJobs method of the Event Storage.

The getCurrentJobs method is called by the scheduler. This method looks through the
HashMap called jobsByHandlerName and returns all jobs that are ready to be processed to the
scheduler. After that the job is removed from the Event Storage.

5.3.9 Scheduler

The Scheduler’s responsibility is to look for jobs that are ready to be executed. The jobs that
are found are then send to its event handlers where they get processed. Every minute is the
Scheduler executed by a process of the operating system called clock.

First the scheduler calls the getCurrentJobs method of the Event Storage. As mentioned a
Collection with the found jobs are returned. For every found job, the event handler is
located and instantiated. After that the events are fetched from the job and passed to the event
handler where they get processed.

The Scheduler is implemented as a servlet, because it can be called from outside of the
application server.

5.4 Example of how to use the Event Service

The Event Service designed above can be used for propagating events that happened in one
system to others. This chapter presents an example of typical usage of the Event Service. In
this example the monitored system will fire predefined events and send them to the JMS
server. A client (event handler) is added to the Event Service that will subscribe to this type of
events. Every incoming event will be delayed by the event handler until midnight every day
when an email will be sent to the administrator with all event’s data included. Figure 5.7
shows all components involved in this example.

The NewUserEvent is used to produce and fire an event. The NewUserMailer is the handler
that will delay every incoming event until midnight every day. This means that every event
sent before midnight will be added to the same job at the Event Storage. The Scheduler will
receive this job when executed at midnight or shortly thereafter. In our setup the Scheduler
will be executed every minute. This is of course changeable if necessary by shortening the
wait circle of the operating systems process that is responsible to call the Scheduler every
minute. After the event handler receives the job from the Scheduler, it will send an email to
the administrator of the Lecando Enterprise Server with all new user data.

Figure 5.7 shows only the most important methods that are used in the example. All other
methods have been discussed in chapter 5.3.

At the appropriate place inside the monitored system we fire the new event by first calling the
constructor of the NewUserEvent class with the UserVO object and a password.

NewUserEvent newUser = new NewUserEvent(userVO, passwd);

Next we call the publish method of the Message Sender.

publish(newUser);

 28

The Message Sender’s publish method communicate with the JMS server. What it does is
basically packing the event object into a message and sending it to the LecandoTopic at the
JMS server. See chapter 5.3.4 for more detailed description.

Since the Event Service only has one subscriber for all messages from the JMS server, our
NewUser message will be sent to the Message Listener. This is done by the EJB container
which invokes the onMessage method of the Message Listener every time a new message
arrives there. If the Message Listener is occupied with processing a message while a new
message arrives at the JMS server, a new instance of the Message Listener is invoked. How
many different instances at the same time that can reside at the same time depends on the
application server provider. In the next chapter we will test the Event Service and will see
with what frequency messages can be processed.

Figure 5.7 Component overview for the NewUserMailer with the NewUserEvent. The monitored system uses
the MessageSender class to send the NewUserEvent to the JMS server. The JMS server distributes the event
to the MessageListener. The Message Listener looks for the EventHandlers of the NewUserEvent. The
NewUserMailer is registered as a subscriber to the NewUserEvent in the event.properties file. The Message
Listener finds the NewUserMailer, executes it and delays all events until midnight with help of the
EventStorage class. An external clock will trigger execution of the Scheduler once a minute. When the
Scheduler finds out that midnight has passed, the NewUserMailer will get all jobs with the events that are
ready to be processed.

After the Message Listener receives the message, it will search for the event handlers that
have subscribed to the event and include them in the message. We will name our handler
NewUserMailer. Since this handler should receive the NewUserEvent, we have to add the
following lines to the event.properties file:

com.lektor.events.events. NewUserEvent =
com.lektor.events.handler.NewUserMailer

When found, the process method of the NewUserMailer will be called with the
NewUserEvent. The NewUserMailer will only implement the abstract process method of the
EventHandler class. This method just calls the delay method with the NewUserEvent and
the time representation of midnight.

NewUserEvent

Monitored System

Message Sender JMS Server Message Listener

event.properties

NewUserMailer

Event Storage

Scheduler

Clock

create NewUserEvent

publish NewUserEvent
get event handler for event

process event

delay event until midnight

(2) process events of the job

(1) get job to run

run

 29

public void process(Collection events) {
 . . .

delay(events, midnight.getTime());
 . . .
}

The delay method locates the Event Storage and calls its delayEvent method. See chapter
5.3.8 for details. Since all events will have the same dateToRun parameter, they all will be
kept in the same job. When the first event is received, a new job is created and every new
event is added to the existing job.

The NewUserMailer will have one additional method that will be called when the Scheduler
calls the process method of the NewUserMailer. We name this method sendMail. This
method receives all events of one job from the Scheduler. We omit the details of this method
since it is of particular interest precisely how the email is created and the events are appended
to it.

The Scheduler is in our case executed once a minute. At midnight the Scheduler will get all
events from the job when calling the getCurrentJobs method of the Event Storage. Next, as
mentioned above, the process method of the NewUserMailer is called. And from there the
sendMail method.

As you have seen above, there are four things to do when extending the Event Service with
additional functionality.

• First, the event that is causing the action has to be added to the event package if it does
not exist already.

• Second, at the monitored system the event has to be created and published with the
method of the Message Sender.

• Third, a new handler is added.
• Finally, the event handler has to subscribe the new event which is done in the

event.properties file.

6 Performance Evaluation of the Event Service
The performance of the Event Service is measured as the event processing time, defined in
chapter 6.1. The experiments are performed for different values of input parameters, which
are: The intensity of the fired events and the number of subscribing handlers to these events.
The output parameters are the different latencies for the event processing time. It is not easy
to draw conclusions from the results of the experiments, since there are no reference times to
compare with. The possible throughput of events in the Event Service is important and from
the results conclusions can be drawn regarding performance of the Event Service.

6.1 Evaluation Technique

First the event processing time is defined and second the realization of the experiment are
shown in the following two sections. It is important to find out how long time it takes to
process events. Events are fired from the monitoring system. The Lecando Enterprise Server
produces events and sends them to the JMS server with help of the publish method of the
Message Listener at a time indicated by t1 in the timing diagram depicted in Figure 6.1.

 30

The publish method, as described in chapter 5.3.4, establishes a connection and a session to
the JMS server. After that, the publisher sends the event to the JMS server and when the event
is received there, the connection and the session are closed. The publish method returns
when these steps are finished.

The second measurement, t2, is the time interval the Message Listener needs to locate the
handlers for the received event and executes them. After all handlers are processed, the events
and the Message Listener return. It can be noticed that the time periods t1 and t2 overlap. The
reason for this is that the publish method of the Message Sender takes more time to close the
session and connection, than the internal process of the JMS server for sending the event from
the topic to the MessageListener.

Figure 6.1. Definition of the processing times in the Event Service.

The third measurement, t3, is the time an event needs from being created until it is delivered
to the handler that subscribes the event. The three latencies are the output parameters of the
experiments.

As mentioned in the beginning of this chapter, the event intensity, the number of monitored
systems and the number of event handlers that subscribe to the events are the input
parameters. The experiments are done by creating new event classes and adding them to the
event package. Instead of using the web interface of the Lecando Enterprise Server, a new test
class will be added to the server. The TesterServlet class fires events every time it is called,
with an intensity we define in it. Next, event handlers are created and added to the Event
Service.

The three experiments are depicted in the following figures. The first illustrates the first set of
experiments with one source system that fires one type of event and one event handler that
fetches these events.

t1

t2

t3

event occurs,
publisher starts

Message Listener
starts handlers

publisher returns
handler

receives event

Message Listener
terminates

Figure 6.2 The experiment with one source system, one event type and one event handler .

The second figure depicts the experiment with one source system and three different event
types that are received by three different event handlers.

Th
Ev

Ne
En

Th
fro
are

Monitored System
(Lecando Server) Event Servcie Event Handler

(Client)

publish event 1 fetch event

Event Handler 1
31

Figure 6.3 The experiment with one source system, three different event types and three different handlers.

e third experiment uses three source systems. Each of them produce one different event.
ery event is received by a different event handler.

Figure 6.4 The experiment with three source systems, three different event types and three different handlers.

xt a detailed description about how the experiments are realised by modifying the Lecando
terprise Server and the Event Service is explained.

e TesterEvent is an event that is used for the experiments. It inherits the creationDate
m the Event class and has an id for the identification of the events. Two more event classes
 added that are used in the second test case. Below, parts of the TesterServlet code is

Monitored System 2
(Lecando Server) Event Servcie

Event Handler 1
(Client) fetch event 1

Event Handler 3
(Client)

Event Handler 2
(Client)

fetch event 2

fetch event 3

publish event 2

Monitored System 1
(Lecando Server)

Monitored System 3
(Lecando Server)

publish event 1

publish event 3

Monitored System
(Lecando Server) Event Servcie

(Client) fetch event 1

Event Handler 3
(Client)

Event Handler 2
(Client)

fetch event 2

fetch event 3

publish event 1,2 ,3

 32

shown. In the for loop the intensity for producing and publishing events is defined. The time
is captured before and after the event firing process. The latency t1 is written to a log file.

for(int i=1; i<=15; i++) {
Date startTime = new Date();

 try {
 TesterEvent testerEvent =

 new TesterEvent(i, newDate(startTime.getTime()));
 MessageSender.publish(testerEvent);
 } catch (JMSException e) {
 . . .
 } catch (NamingException e) {

. . .
 }
 Date endTime = new Date();
 Log.getInstance(this).info((endTime.getTime()-

startTime.getTime())+ " T1");
}

The MessageListener class is modified to capture the latency t2. This is the time the event
handlers need to process the received event. See below for details.

public void onMessage(Message message) {
Date receivedTime = new Date();
try {

 . . .
 eventHandler.process(eventCollection);

 . . .
 } catch (JMSException e) {
 throw new RuntimeException("Nested exception is: " + e);
 }

Date finishedTime = new Date();
Log.getInstance(this).info((finishedTime.getTime()-

 receivedTime.getTime())+ " T2");
}

The time t2 of the onMessage method is sent to a log file as well. The TesterHandler class
used for the experiments calculates the duration from creating the event until it arrives at the
handler and writes an entry in the log file. This is t3 in Figure 6.1. To capture the time t3, the
Message Listener is modified as follows:

public void process(Collection events) {
Date receivedTime = new Date();
Iterator eventsIterator = events.iterator();
while (eventsIterator.hasNext()) {

Event event = (Event) eventsIterator.next();
if (event instanceof TesterEvent) {

TesterEvent1 e = (TesterEvent) event;
Log.getInstance(this).info((receivedTime.getTime()-

e.created.getTime())+" T3");
 } else {
 throw new RuntimeException("TesterHandler only accepts

 TesterEvent's");
 }

}
}

 33

6.1.1 Test bed and Performance Experiments

All experiments are done on a workstation with an Intel Pentium 3 with a 700 Mhz processor
and 128 Mb memory. The operating system is Linux RedHat 7.0. The modified Lecando
Enterprise Server is used with the Orion Application Server 1.38 [20]. In the test
environment, apart from the handling of events the Lecando Enterprise Server is idle, i.e. no
external workload can interfere with the test measurements

Three different sets of experiments are performed, as listed below.

• The experiment with one source system, one event type and one event handler (see
Figure 6.2).

• The experiment with one source system, three different event types and three different
handlers (see Figure 6.3).

• The experiment with three source systems, three different event types and three
different handlers (see Figure 6.4).

First the TesterServlet fires the TesterEvent. An external process calls this servlet once a
second. The TesterServlet will produce 1, 5, 10, 15, 25, 50, 100 or 500 events every time
it is called. This means that eight experiments are needed. One TesterHandler that
subscribes the TesterEvent will receive the produced events.

The second setup uses three events: TesterEvent1, TesterEvent2, TesterEvent3. The
TesterServlet fires every event once inside the loop. This means that if the loop is executed
10 times, 30 events are produced. Since the TesterServlet is called every second, the
experiment produces 30 events per second. The events are the same except their names. Each
of the three events are subscribed by a different handler. The handlers are called
Testerhandler1, Testerhandler2, Testerhandler3. The event.properties file, with the
subscription table, looks like the following:

com.lektor.events.TesterEvent1 =
com.lektor.events.handlers.TesterHanlder1
com.lektor.events.TesterEvent2 =
com.lektor.events.handlers.TesterHanlder2
com.lektor.events.TesterEvent3 =
com.lektor.events.handlers.TesterHanlder3

The handler will not delay events, since is does not effect the system where the events are
produced.

In the third setup, three different monitoring systems are producing events. Every system fires
one unique event every time the TesterServlet is called. There are three different handlers that
receive one of the events each. The same event intensities as in the second experiments are
used.

6.2 Performance Results

Three sets, with one experiment for every frequency, are tested. A few entries from the log
file while running the first setup with a frequency of 10 events per seconds are listed below.
Notice that the entries are very small. Many events take less than 1 ms to be produced and
published, and since the system clock returns number of integers some of the latency
measured are zero.

 34

Date: Time: Latency (ms):
2001-03-16 15:43:12,467 T1 = 121
2001-03-16 15:43:12,497 T3 = 425
2001-03-16 15:43:12,498 T2 = 70
2001-03-16 15:43:12,514 T3 = 2
2001-03-16 15:43:12,514 T2 = 1
2001-03-16 15:43:12,515 T1 = 3
2001-03-16 15:43:12,517 T3 = 2
2001-03-16 15:43:12,517 T2 = 1
2001-03-16 15:43:12,518 T1 = 0
2001-03-16 15:43:12,519 T3 = 1
2001-03-16 15:43:12,520 T2 = 2
2001-03-16 15:43:12,520 T1 = 1

In Table 6.1, the results of the first setup are shown. The figures in the rows for the latencies
t1, t2 and t3 are average values for each experiment. Every column represents a different test
run with different event firing frequencies. The last row shows the number of events that are
fired by the TesterServlet and received by the TesterHandler during each run.

Event intensity

1 5 10 15 25 50 100 500

T1 (ms) 1,78 1,80 2,00 1,81 1,88 1,85 1,88 2,10

T2 (ms) 1,58 1,50 1,06 1,21 1,14 1,18 1,17 1,41

T3 (ms) 4,32 3,10 1,84 2,33 1,56 1,55 1,30 1,53

Number of events 300 1765 2890 4335 7275 13350 37100 69500

Table 6.1 The results of the experiments with the first setup. One event and one event handler. The results
are also depicted Figure 6.5.

In the column representing 15 fired events per second, a total of 4335 events are produced
during the experiment. In average, every event took 1.81 ms to be produced and published by
the TesterServlet (t1). The MessageListener (t2) needed 1.21 ms in average to locate the
handler, execute it and wait until it is finished. The TesterHandler (t3) calculates how much
time in average it takes for an event to be produced by the TesterServlet and received by it.
This is 2.33 ms in the test case when 15 events per second were fired. Below the diagram for
the first experiment is shown.

 35

0,00
0,50
1,00
1,50
2,00
2,50
3,00
3,50
4,00
4,50
5,00

1 5 10 15 25 50 100 500

events/second

m
ill
is
ec
on
ds T1

T2
T3

Figure 6.5 Result of the test run with one event type and one handler. Exact values are tabulated in Table 6.1

The second experiment is similar to the first. The results are shown in Table 6.2. The
difference is that three different events are fired and published by the TesterServlet in
every for loop.

Event intensity

3 15 30 45 75 150 300

T1 (ms) 2,25 1,87 1,94 1,92 1,91 2,05 2,00

T2 (ms) 1,60 1,34 1,32 1,32 1,35 1,44 1,39

T3 (ms) 2,43 1,50 1,79 1,60 2,02 1,43 1,66

Number of events 939 4305 8370 12555 21525 43050 86190

Table 6.2 The test setup with 3 different events and three event handlers. The results are also depicted Figure
6.6

The time for one loop is measured. Since every event received by the JMS topic is send to a
separate instance of the MessageListener, the processing time of every handler is measured.
The TesterHandler measures this time (t3). The plot for the second experiment is depicted in
Figure 6.6

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3 15 30 45 75 150 300

events/second

m
ill
is
ec
on
ds T1

T2

T3

Figure 6.6 Result of the experiment with three event types and one handler for each event. Exact values are
tabulated in Table 6.2

 36

The third experiment shows similar results compared to the first two experiments. All three
monitoring systems are firing events. The event intensity is the same as in the second
experiment except that each of the three different events is fired by another system.

Table 6.3 shows the results of this experiment.

Event intensity

3 15 30 45 75 150 300

T1 (ms) 2,73 2,52 2,07 1,99 2,00 1,87 2,12

T2 (ms) 1,59 1,38 1,21 1,06 1,17 1,11 1,37

T3 (ms) 2,09 1,78 1,64 1,54 1,52 1,46 1,63

Number of events 912 4560 9120 13680 22800 45600 91200

Table 6.3 The experiment with 3 different monitored systems, 3 different events and three event handlers. The
results are also depicted Figure 6.7

The diagram of test results is shown below.

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3 15 30 45 75 150 300

events/second

m
ill
is
ec
on
ds T1

T2

T3

Figure 6.7 Result of the experiment with three monitored systems, three event types and one handler for
each event. Exact values are tabulated in Table 6.3.

6.3 Discussion

All execution times in the three tables are approximations since it is not possible to capture
time values more accurate. The log file shows that the TesterServlet sometimes executes
faster than 1 ms, which leads to 0 ms in the log file. All latencies in the Table 6.1, Table 6.2
and Table 6.3 are approximations. In every experiment each of the latencies are added up to a
total and divided by the number of events that are sent. Note that the first time the classes are
called the execution time is higher. The first time, all classes are loaded into memory of the
Orion Application Server. After that they are cached until they get garbage collected by the
JVM (Java Virtual Machine).

The first set of experiments shows that the TesterServlet (t1) need about 2 ms to create a new
event and publish it. The experiments are done with a frequency from 1 up to 500 events per
second. This is satisfying since all events in the monitored system are supposed to be
triggered by user interaction. The MessageListener (t2) will take between 1 and 2 ms to locate

 37

the event handler and wait until it is terminated. The time is depending on the amount of work
an event handler will perform. The amount of time the events are in the system shows much
variation, but the standard deviation appears to be stable when the experiment last longer (see
Figure 6.5). The reason for this is the start up, since the first instances of the classes takes
time to be loaded and instantiated. Nonetheless the value is here also between 1 and 2 ms.
One curiosity is that the value for the event firing process in the TesterServlet (t1) takes more
time compared to the time the event needs from creation time until it is received by the
TesterHandler (t3). The reason for this is that once a message arrives at the JMS server it is
sent straight away to the MessageListener, but the publish method of the MessageSender
still closes first the session and connection and this takes more time than sending the event to
the handler.

In the second series of experiments, three different events are produced and published. Every
event type is subscribed by a different handler. There might be situations when the monitored
system needs to fire several events at once. This is tested in this experiment. In average it
takes between 1 and 2 ms to create and publish events (see Figure 6.6). The MessageListener
(t2) measures around the same execution times for the handlers as in the first setup.

The test results of the third experiment are similar compared to the second setup, since the
same amount of events are fired, but from three sources instead of one.

 The amount of time the events need to reach the handlers are almost the same between all
series (see Figure 6.7). All experiments indicate that the Event Service satisfies the
requirements stated in chapter 3.2. In this environment the user of the monitored system can
not notice whether events are fired or not, since the sending latency (t1) is very short even
with a high number of produced events.

7 Conclusions and future work

7.1 Summary

We have analysed several different approaches to design and develop an Event Service for
enterprise applications. Therefore we have studied similar systems that can be categorized
into two areas: Event Notification systems and Messaging Middleware systems. Commercial
products were found mostly as Messaging Middleware and Event Notification Systems are
developed basically only in research groups. We described the terms used in both areas and
used them for comparison of such systems. After that, the Java 2 Enterprise Edition
architecture was briefly explained and some Java APIs that are included in that standard were
listed. Java Message Service and Enterprise JavaBeans were described in chapter 4.2 and
chapter 4.3, since the Event Service was based upon those technologies. Next, the Event
Service was designed and developed. Finally three different setup of experiments were used
to evaluate the Event Service.

7.2 Conclusions

Our task was to develop an event sending framework that can be used by an enterprise
application based on the J2EE standard architecture. The requirement for fast processing
times for the monitored system limited the choice of usable technologies. From the
comparison of the Event Notification systems and Messaging Middleware systems, we
decided to implement the Event Service with an JMS implementation. Since the Lecando

 38

Enterprise Server was build with the Orion Application Server, we used the JMS
implementation of the Orion Application Server to implement the Event Service.
Asynchronous communication between the monitored system was achieved by using JMS
together with message-driven beans. The experiments done when the Event Service was
complete, satisfied all requirements. The event processing time was short which is extremely
important.

With help of the Event Service it is possible to monitor enterprise applications and propagate
the occurrence of certain events to other systems. Those events can be delayed and collected
for later usage. It is easy to add clients (event handlers) to the Event Service in order to create
the link between the monitored systems and the system to be notified.

7.3 Suggestion for future work

The JMS implementation of the Orion Application Server 1.38 is not satisfying, since it is not
possible for more than one message-driven bean to subscribe on the same topic. Different
JMS implementations should be tested to find a better one, which will improve the
mechanism for message-driven beans to subscribe on topics.

High availability is of great importance, and to assure this different approaches have to be
studied in more detail. It is not unlikely that the availability of the Event Service can be
improved. To make it easier for developers, the delayed event mechanism should be more fine
grained, i.e. to make it easier and faster for handler developers to build their handlers.

 39

8 References

[1] N. Kassem, Designing Enterprise Applications with Java 2 Platform, Enterprise
Edition. Sun Microsystems, Inc. June 2000.

[2] D. Flanagan, J. Farley, W. Crawford and K. Magnusson, Java™ Enterprise in a
Nutshell, O'Reilly & Associates, Inc. 1999.

[3] Java 2 Platform, Enterprise Edition Specification, Version 1.2. Sun Microsystems,
Inc, 1999. http://java.sun.com/j2ee/

[4] R. Monson-Haefel, Enterprise JavaBeans™, Second Edition. O'Reilly & Associates,
Inc, 2000.

[5] Enterprise JavaBeans Specification, Version 2.0, Proposed Final Draft, Sun
Microsystems, Inc. October 2000. http://java.sun.com/products/ejb/

[6] Java Message Service Specifications, Version 1.0.2, Sun Microsystems, Inc, 1999.
http://java.sun.com/products/jms/

[7] J. Wetherill, Messaging Systems and the Java Message Service, Article, Java World,
2000.

[8] J. Hunter and W. Crawford, Java™ Servlet Programming, O'Reilly & Associates, Inc.
1998.

[9] W. R. Stevens. TCP/IP Illustrated, Volume 1, The Protocols. Addison-Wesley, 1999.

[10] A. Carzaniga, D. Rosenblum, and A. Wolf, Interfaces and Algorithms for a Wide-Area
Event Notification Service, Technical report, University of Colorado, May 2000.

[11] G. Liu and A. Mok, An Event Service Framework for Distributed Real-Time Systems,
Technical report, University of Texas at Austin, 1998.

[12] Talarian Corporation, SmartSockets Overview, White Paper, 2000.
http://www.talarian.com/products/smartsockets/

[13] Keryx, In Internet Notification Service, Hewlett Packard Laboratories, Bristol, UK.
1998.

[14] B. Segall and D. Arnold, Elvin: A Publish/Subscribe Notification Service with
Quenching, Technical report, University of Queensland, Australia. 1997.

[15] TIB/Rendezvous: White Paper. TIBCO Software, Inc. 1994.

[16] R. Strom, G. Banavar, T. Chandra, M. Kaplan, K. Miller, B. Mukherjee, D. Sturman,
and M. Ward. Gryphon: An information Flow-Based Approach to Message Brokering,
IBM TJ Watson Research Center. http://www.research.ibm.com/gryphon/

http://java.sun.com/j2ee/
http://java.sun.com/products/ejb/
http://java.sun.com/products/jms/
http://www.talarian.com/products/smartsockets/
http://www.research.ibm.com/gryphon/

 40

[17] Ma C. and Bacon J., "COBEA: A CORBA-Based Event Architecture",Proc USENIX
COOTS'98, pp117-131, Santa Fe, New Mexico, USA, April 1998.

[18] G. Cugola, E. Di Nitto, and A. Fuggetta, The JEDI event-based infrastructure and its
application to the development of the OPPSS WFMS, Politecnico di Milano, Italy.
1998.

[19] S. Maffeis, iBus: The Java Intranet Software Bus, Technical report, SoftWired.
Switzerland, 1997. http://www.softwired.ch/

[20] Orion Application Server, http://www.orionserver.com.

http://www.softwired.ch/
http://www.orionserver.com/

