
Master of Science Thesis
Stockholm, Sweden 2010

TRITA-ICT-EX-2010:211

D A R I O V O D O P I V E C

 On-demand Television combined with
non-real-time Peer-to-Peer Content

Delivery for Television Content
Providers

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

On-demand Television combined with non-real-time Peer-to-Peer
Content Delivery for Television Content Providers

Dario Vodopivec
dariov@kth.se

Masters Thesis
Royal Institute of Technology (KTH)

24 August 2010

Gerald Q Maguire Jr.
KTH Supervisor

Henric Persson
Kanal5 Supervisor

Abstract

With the expansion of the Internet and an increasing fraction of consumers
having broadband connections, more and more content is finding its way on-line.
Video content is becoming one of the most popular types of media content on
the Internet. Traditional media content providers, such as television networks, are
placing their content on the Internet in order to gain a broader audience. On-demand
websites such as kanal5play.se allow viewers to view the multimedia content they
want at the time of their choice. While this gives viewers flexibility in their viewing,
it creates resource problems for content providers.

Statistics from Kanal5 AB show that, even with individual viewers requesting
content when they want, there are still patterns in which multiple viewers watch the
same content at the same time. This means there are correlations in the demand for
content. With unicast distribution this leads to spikes in requirements for bandwidth
to the viewers. These peaks lead to high costs for network and server resources to
deliver the requested content, but these resources have low average utilization. This
thesis project investigates how a content provider can make use of each viewer’s
own resources to deliver content to other users using peer-to-peer techniques. The
thesis evaluates what methods can be used in order to reduce the content provider’s
resource requirements during peak hours by exploiting copies of contents that have
already been delivered to viewers who requested this same content earlier.

A prototype was made to evaluate the suggested design using Java Remote
Method Invocation (RMI), which is built on top of the Transfer Control Protocol
(TCP). Experiments show that an initial delay of several seconds is reached on a
network with a simulated delay of 100ms, while a minimal initial delay was observed
on a network with low delay, i.e. ideal conditions. The throughput results of the
prototype show that the suggested solution is adequate for delivering on-demand
content supplied by Kanal5 AB. However, the relatively poor startup performance
of this solution argues for tuning the application to better work with the TCP
protocol or to utilize another transport protocol - especially if the round-trip delay
is large as TCP’s 3-way handshake and flow control algorithm limit the performance
of the prototype system.

i

Sammanfattning

Med utbyggnaden av Internet och en ökande andel konsumenter med bredband,
mer och mer innehåll hittar sin väg på nätet. Video innehåll blir en av de mest
populära typer av media på Internet. Innehållsleverantörer som använder sig av
traditionella medier, exempelvis tv-nät, lägger sitt innehåll på Internet för att
nå en bredare publik. On-demand webbplatser som kanal5play.se låter tittarna se
multimediainnehållet de vill, när de vill. Även om detta ger tittarna flexibilitet i sitt
tittande så skapar det resursproblem för innehållsleverantörer.

Statistik från Kanal5 AB visar att även med enskilda tittare som begär innehåll
när de vill så finns det fortfarande mönster där flera tittare tittar på samma
innehåll på samma gång. Detta innebär att det finns samband i efterfrågan på
innehåll. Med unicast distribution leder detta till sprikar i krav på bandbredd till
tittarna. Dessa toppar leda till höga kostnader för nät-och server för att leverera det
efterfrågade innehållet, men dessa resurser har låga genomsnittliga utnyttjanden.
Detta examensarbete undersöker hur en innehållsleverantör kan använda sig av varje
tittares egna resurser för att leverera innehåll till andra användare med hjälp av peer-
to-peer-teknik. Avhandlingen utvärderar vilka metoder kan användas för att minska
innehållsleverantörens resursbehov under rusningstid genom att utnyttja kopior av
innehåll som redan har levererats till tittarna som begärde samma innehåll tidigare.

En prototyp gjordes för att utvärdera den föreslagna konstruktionen med
Java Remote Method Invocation (RMI), som är byggd ovanpå Transfer Control
Protocol (TCP). Experiment visar en uppstartsfördröjning på flera sekunder på
ett nätverk med en simulerad fördröjning på 100 ms, samtidigt som en minimal
uppstartsfördöjning observerades på ett nätverk med låg fördröjning, dvs idealiska
förhållanden. Resultaten för genomströmningshastigheten hos prototypen visar att
den föreslagna lösningen är tillräcklig för att leverera on-demand innehåll som
tillhandahålls av Kanal5 AB. De relativt dåliga uppstartsresultaten för denna
lösning säger dock att förbättringar bör göras i applikationen så att den kan arbeta
bättre med TCP protokollet, eller att ett annat protokoll används - särskilt om
nätverksfördröjningen är stor, då TCP:s 3-vägs handskakning och flödeskontroll
algoritm begränsar prestandan hos det föreslagna systemet.

ii

Acknowledgments

First and foremost I would like to thank my academic advisor and examiner
Professor Gerald Q. Maguire Jr. for his knowledge, constructive criticism, and
advice which have helped me throughout the entire thesis. Next I would like to
thank my industrial advisor at Kanal5 AB, Henric Persson, for his invaluable advice,
programming expertise, feedback, and support. This thesis would not have been
possible without this help from both of them.

Further acknowledgments go to Daniel Cedercrona for his thoughts and ideas
regarding the direction of the thesis, for lending his industrial connections, and for
giving me the opportunity to do my thesis project at Kanal5 AB.

Special thanks to George Younan and Anders Orrevad for their advice and
support in time of confusion, to Rajna, Anders & Emil Lundqvist for their couch
and support, and to all other family members and friends who supported me before,
during, and after my thesis.

Thank you,
/Dario

iii

Contents

Abstract i

Acknowledgments iii

List of Figures vii

List of Tables ix

List of Abbreviations x

1 Introduction 1
1.1 Background . 1
1.2 Goals of this master’s thesis project . 2
1.3 What this thesis project does not cover 3

2 Related Work 4
2.1 IPTV . 4

2.1.1 Video on-demand . 5
2.1.2 The nature of Video on-demand 5

2.2 Content Distribution Networks . 6
2.3 Peer-to-peer . 7

2.3.1 P2P explained . 8
2.3.2 MPS Broadband . 10
2.3.3 Gnutella . 10
2.3.4 Daedalus . 11
2.3.5 Joost . 12
2.3.6 Spotify . 12

2.4 Additional relevant background information 13
2.4.1 Swedish home network speeds . 13
2.4.2 IPv6 . 14
2.4.3 Testing of P2P systems . 14
2.4.4 Episodes . 14
2.4.5 CODECs . 15

iv

3 Loree: A system designed for On-demand P2P television 16
3.1 Loree overview . 16

3.1.1 Resources used for development . 16
3.1.2 Prototype implementation using Java RMI 17

3.2 Key features of Loree . 18
3.3 Client and Content Server . 20

3.3.1 Client operation . 21
3.3.2 Client implementation . 22
3.3.3 Content Server . 22

3.4 Tracker . 23
3.4.1 Tracker implementation . 24
3.4.2 Monitor . 25

3.5 Modules . 25
3.5.1 Sender module . 26
3.5.2 Downloader . 27
3.5.3 Tracker module . 27

3.6 Classes in Loree . 28
3.6.1 Peer class . 29
3.6.2 Video class . 29
3.6.3 PartOfVideo and PartOfVideoInfo classes 29

3.6.3.1 Size of PartOfVideo . 30
3.6.3.2 Order of downloading content 31

3.7 Downloading other relevant episodes . 32

4 Measurements 34
4.1 Test environment . 34
4.2 Delays . 35
4.3 Initial delay . 37

4.3.1 Ideal conditions . 38
4.3.1.1 Peer retrieving content from a Content Server 38
4.3.1.2 Peer requesting content from another Peer 39

4.3.2 With added network delay . 41
4.4 Throughput . 42

4.4.1 Ideal conditions . 43
4.4.1.1 Peer requesting content from a Content server 43
4.4.1.2 Peer requesting content from another Peer 44

4.4.2 With added network delay . 46
4.5 Control overhead . 48

5 Evaluation and Recommendations 51
5.1 Initial delay and Throughput . 51
5.2 Playout buffer . 52
5.3 Overhead communications . 52
5.4 The Achillies’ heel . 53

v

6 Conclusions and Future Work 54
6.1 Conclusions . 54
6.2 Future work . 55

6.2.1 Future implementation work . 55
6.2.2 Future research work . 57

Bibliography 59

Appendix A Viewing patterns of Kanal5play viewers 64

vi

List of Figures

2.1 Classic client-server content distribution. Server sends content directly to
each user. 6

2.2 CDN network where content servers are strategically placed close to users. 7
2.3 Tree structured Peer-to-Peer system . 9
2.4 Unstructured (mesh) Peer-to-Peer system 9

3.1 1. A client connects to the tracker’s registry and retrieves the remote
tracker module which it will then use to invoke functions. 2. Clients
connect to other clients’ registries and retrieve the remote Sender module
object which is used to transfer files. 18

3.2 Example of a tree structure in the Loree system. Note that the peers
can be organized in different ways and that they can retrieve content
from multiple peers for different pieces of content. There can be multiple
content servers in the network and the tracker is on a separate location
and communicates with all peers and content servers. 20

3.3 Internal components of the tracker. 25
3.4 The Client and Server are put together using the different modules.

Note, however, that they are essentially identical since they use the same
modules. The difference is that the content server has all the content
available from start. 26

3.5 The timeline of a TV-episode. 1 represents the point of time where a
viewer might choose to start viewing, and some content is buffered after
that, 2 & 3 represent other points in the episode which are buffered in
advanced because they are predicted to be skipped to by most viewers
and t=n is the end of the episode. Note that the above figure is strictly
for illustration purposes as these patterns have not yet been investigated. 31

3.6 The figure shows how the amount of content sent by a server during peak
hour could look like (compare with figure A.1 in appendix A). The red line
represents how the throughput over time can look like when all viewers
download the content from the server. The black line, on the other hand,
represents how the peak could be reduced and the average throughput
increased if peers download content in advanced and new peers joining
the network download the content from them. 33

vii

4.1 The network setup for testing the Loree system. Three PCs
interconnected using a 100Mbps switch. 35

4.2 Time line diagram showing the traffic between a client, tracker, and
another peer in the prototype implementation. 37

4.3 The percentage breakdown of traffic sent in bytes over the Loree network
when transferring a file of 323MB in 256kB chunk sizes. Note that Peer
messages consist of traffic sent between client and peer which includes
both content and control traffic, thus this figure primarily shows the
percentage of control traffic to and from the tracker. 49

4.4 The percentage breakdown of traffic sent in bytes over the Loree network
when transferring a file of 323MB in 512kB chunk sizes. Note that Peer
messages consist of traffic sent between client and peer which includes
both content and control traffic, thus this figure primarily shows the
percentage of control traffic to and from the tracker. 49

4.5 The percentage breakdown of traffic sent in bytes over the Loree network
when transferring a file of 323MB in 1024kB chunk sizes. Note that Peer
messages consist of traffic sent between client and peer which includes
both content and control traffic, thus this figure primarily shows the
percentage of control traffic to and from the tracker. 50

A.1 Number of page loads for the TV show "Ballar av stål" during the 21th
of March 2010. The episode was shown on TV during the time interval
21:00-21:55. These statistics show that most viewers accessed the play site
just after the show was broadcast on TV (with the majority of accesses
taking place between 22:00-24:00). 65

A.2 Pages entered related to the show "Ballar av stål" on the day episode two
of season two was shown (s02e02 in the above list). 65

viii

List of Tables

3.1 The Sender Modules remote interface functions. 27
3.2 The Trackers remote interface functions. 28

4.1 Performance of the Loree prototype, measuring initial delay in
milliseconds (ms) when a client downloads content of 323MB from a
content server. 38

4.2 Performance test of the Loree prototype, measuring initial delay in ms
when a client downloads content of 735MB from a content server. 39

4.3 Performance test of the Loree prototype, measuring the initial delay in
ms when a client downloads content of 323MB from a peer. 40

4.4 Performance test of the Loree prototype, measuring the initial delay in
ms when a client downloads content of 735MB from a peer. 41

4.5 Performance test of the Loree prototype, measuring the initial delay in
ms of a client downloading content of 323MB from a peer. The client
has a simulated delay of 50ms on inbound and outbound packets (total
simulated round-trip time of 100ms). 42

4.6 Performance test of the Loree prototype, measuring the throughput in
kBps of a client downloading content of 323MB from a content server. . . 43

4.7 Performance test of the Loree prototype, measuring the throughput in
kBps of a client downloading content of 735MB from a content server. . . 44

4.8 Performance test of the Loree prototype, measuring the throughput in
kBps of a client downloading content of 323MB from a peer. 45

4.9 Performance test of the Loree prototype, measuring the throughput in
kBps of a client downloading content of 735MB from a peer. 46

4.10 Performance test of the Loree prototype, measuring the throughput in
kBps of a client downloading content of 323MB from a peer in the network.
The client has a simulated delay of 50ms on inbound and outbound packets
(total simulated round-trip time of 100ms). 47

ix

List of Abbreviations

AB Aktie Bolag (Swedish for: Joint Stock Company)

ACK Acknowledgment

API Application programming interface

CDN Content Distribution Networks

CODEC Compressor-decompressor

GB Gigabyte

Gbps Gigabit per second

GHz Gigahertz

H.264 H.264/MPEG-4 Part 10 or Advanced Video CODEC

HD-DVD High Definition-Digital Video Disc

HP Hewlett Packard

HTTP Hypertext Transfer Protocol

ID Identification

IPTV Internet Protocol Television

ISP Internet Service Provider

kB Kilobyte

kBps Kilobyte per second

kbps kilobit per second

MB Megabyte

Mbit Megabit

Mbps Megabit per second

x

ms Millisecond

MSS Maximum Segment Size

OS Operating System

P2P Peer-to-Peer

Play site On-demand website

QoS Quality of Service

RMI Remote Method Invocation

RTT Round-trip time

SPCs Strategically placed servers

TV Television

VM (Java) Virtual Machine

VoD Video on-demand

xi

Chapter 1

Introduction

This chapter explains the goals of this thesis project and the scenario which the thesis
project builds upon.

1.1 Background
The explosion of Internet usage has lead to a situation where a very large amount of
multi-media content is transfered via the Internet. This multi-media content includes
video clips and much of the material that was previously broadcast by traditional
television (TV) networks. The Internet enables users to get the media content they
want through "video on-demand" (VoD) services and/or through file sharing systems.

Internet growth has occurred both in numbers of users and in the amount of traffic
being transferred (measured in both bytes and numbers of packets). The types of
information that are being transfered is changing, with more and more traffic being
video content.

Since today’s youth spend more time in front of their computers, traditional TV
content providers and aggregators (such as existing TV channels) are interested in finding
new ways to reach these potential viewers. One potential way of reaching them is
through on-demand content, as this enables viewers to view their choice of show or
movie whenever they want. One of the technical questions that occurs is how to deliver
the desired content to these Internet viewers, while at the same time keep the costs
down and maintaining or increasing profits. Sending streams to individual viewers (via
unicast) requires very large amounts of bandwidth (roughly proportional to the number
of viewers). The success of peer-to-peer (P2P) file sharing and other P2P services suggest
that one method to lower the costs of distributing content to users is to utilize the viewer’s
own resources to help other viewers. Earlier thesis projects have shown that splitting
traffic over multiple download sites can decrease the time required to deliver content to
a user [1] and that if the peers are located in the same fixed access network that the
network access provider can more effectively deliver traffic within their network rather
than having to transfer all traffic via peering points [2].

Peer-to-Peer (P2P) communication is a well established technology. It has been widely

1

used for file sharing, in particular for software distribution and audio content, but video
streaming P2P techniques are not yet widely utilized. There are a number of different
services available for live streaming [3], e.g. TVants [4]. There are some on-demand
video services, such as Joost [5]. However, tests show that Joost directly supplies 2/3
of the traffic to individual users, thus only 1/3 of the traffic is delivered by P2P. In a
“pure” P2P service, almost all of the content should be supplied by other users (see
section 2.3). However, saving even 1/3 of the network resources that would have been
required to provide all of the content is still 1/3 savings. For a site providing content that
is popular with a large number of users this could represent a substantial costs savings
(both of capital expenses and operating expenses), hence even this level of savings might
make introducing P2P distribution worthwhile.

Today there are some practical problems that may affect the operation of a P2P
network. For example, for the large numbers of Internet subscribers who access the
Internet via Assymetric Digital Subscriber Line (DSL) and Very high-rate DSL there is
a substantial assymetry in the bandwidth of their broadband connections. Cao Wei Qiu
showed that this asymmetry can be exploited by utilizing multiple sources from which
a peer simultaneously downloads different portions of a file - thus exploiting the high
downlink bandwidth by supplying content from multiple peers with more limited uplink
bandwidth [1]. The asymmetry in bandwidth of many users means that we must examine
how to use more than one source to provide delayed content, specifically exploiting a set
of sources that each provide different parts of content.

Numbers from a Swedish TV channel show that many viewers who miss part of an
episode, or the full episode, from a popular show will later go to the channel’s on-demand
website to watch this episode (see section 2.1.1). For one channel’s statistics see appendix
A. These statistics (and statistics for other days) show that there is a peak hour during
which many viewers watch the same on-demand content, but not all viewers watch the
program at the time it is first shown1. This thesis project examines how the traffic
content that is delivered to viewers during the peak hour could be exploited to provide
delayed delivery of this content to viewers who wish to view the content later. The focus
of this thesis will be on non-real-time P2P delivery for TV content providers (e.g. for
television networks), in contrast to real-time P2P delivery as previously described in [6].

1.2 Goals of this master’s thesis project
P2P delivery may not make a huge difference in the network load on the content
provider with respect to on-demand video, due to uncorrelated requests, i.e., when
people watch different things at different times. However, for popular content there
are peak hours when there are many viewers who want to watch the same content and
there are substantial numbers of viewers who want to watch this content with a delay of

1Note that the detailed statistics of requests for content are not important to this thesis, only the
fact that there are many requests for 1) the content which has been recently requested and 2) related
content. It is simply the fact that there is a correlation in the content requested by multiple users which
is important.

2

several hours. This thesis will explore the use of P2P technology to save resources when
delivering this delayed content when there is some correlation in requests.

The goal of this thesis is to investigate how a content provider can make use of each
viewer’s own resources to deliver content to other users using P2P techniques.

The thesis will be organizes as follows:

• Chapter 1 explains the goals of this thesis project.

• Chapter 2 provides basic background information the reader needs in order to
understand the rest of this thesis and surveys related work.

• Chapter 3 describes the system that has been designed and implemented to solve
the problem described in Chapter 1.

• Chapter 4 describes a set of measurements made of this solution while analysis are
made in Chapter 5.

• Chapter 6 states the conclusions made and suggests future work.

The reader is expected to understand the principles of internetworking along with
knowledge of internetworking protocols.

1.3 What this thesis project does not cover
This thesis project will not focus on any questions regarding subscription based content
or free content, nor will it discuss advertising or commercials which can be broadcast
together with the on-demand content. It will not discuss issues regarding Network
Address Translation (NAT) boxes or firewalls. In addition, this thesis will not consider
optimal algorithms for content distribution. This later area is left for future work -
although it should be noted that there has already been extensive work in this area such
as [7].

3

Chapter 2

Related Work

This chapter reviews existing technologies and provides background information that
will provide the reader with a basis for understanding the rest of this thesis.

Silverston and Fourmaux classify P2P video streaming into two main categories: video
on-demand and live video. The difference is that in on-demand video the content is a
pre-recorded file of a known size; whereas in live video, the total amount of data is
not know in advanced and can be unbounded [8]. This thesis will focus on on-demand
video, thus the size of each file of media content is known in advance. Later this thesis
will explore how knowing the size of each file can be exploited to divide content into
manageable chunks to be distributed over a set of peers.

2.1 IPTV
Internet Protocol Television (IPTV) distributes digital video and audio content (digital
television) through packet switched networks (e.g. the Internet) instead of traditional
broadcast distribution through terrestrial broadcasts, satellite broadcasts, or via a cable
TV distribution network. IPTV has a number of advantages over traditional broadcast.
Among these advantages are:

• Better control of who the content is delivered to.

• As the content distributor can know who the content is distributed to, they can
communicate with the consumer of this content. For example, they can ask
questions regarding the content or ask viewers to vote upon what will happen
in a certain episode.

• IPTV viewers can access a virtually unlimited number of channels, without being
limited to the specific channels that have been allocated cable/satellite broadcast
resources.

Gilbert Held [9] divides IPTV into: Homeowner entertainment, On-demand video,
Business TV to the desktop, Distance learning, Corporate communications, Mobile

4

phone television, and Video chat. All of these are types of services than can be provided
by IPTV.

There are also disadvantages of IPTV, such as sensitivity to packet loss. As a
result, users need to have at least a certain minimum available bandwidth otherwise
they might not receive the content with acceptable quality. Depending on the scenario
and content, there can be a trade-off between increasing delay and increasing quality
when the available bandwidth is limited.

2.1.1 Video on-demand

Video on-demand (VoD) refers to delivering video content that a user can view whenever
he or she wants following a request for specific content1. In recent years many media
companies have begun offering viewers the ability to watch TV episodes on-line through
their website. Examples of these services are Sveriges Television (SVT) Play [10], TV4
Play [11], and Kanal5 Play [12]. These services are mostly focused on TV series, while
there are other content providers who focus on VoD for movies - for example Voddler
[13].

2.1.2 The nature of Video on-demand

VoD has the advantage of allowing viewers to watch what they want, when they want.
This changes how video content is viewed in comparison to traditional TV - as viewers
are no longer bound to follow schedules which are determined by TV content providers
nor does each user have to record the broadcast in order to time shift it for viewing later.

Since VoD provides users with flexibility, it is unlikely that all users will watch the
same content at the same time. There are different types of on-demand video: content
provided by the viewers themselves (e.g. Youtube [14], Google Video [15], etc.) and
content provided by media production companies (such as movie studios) and distributed
by media distribution companies (e.g., Joost [5] and Voddler [13]).

Despite this flexibility, there are still patterns in the times when users watch content
provided by television networks. Statistics provided by Kanal5 AB (Aktie Bolag) based
upon their on-demand website [12] show that many users watch episodes shortly after
they have been broadcast. This leads to the concept of on-demand television (in contrast
to video on-demand); where television broadcasts affects the patterns of what viewers
watch and when they watch it. In classical broadcast television, editors influence what
viewers watch by promoting certain shows or episodes (via advertising - which could be
in any media). In the same way, editors of a TV network can influence viewers to access
a website to view specific episodes (or other content) at certain hours.

However, editors are not the only reason for this correlation. Many viewers view
the content after it was shown on broadcast television because they want to see it
again or they missed some part of the broadcast. Other factors may also contribute to
the correlation in viewing (for example, social networks and a desire to have a shared

1This content can be subscription based or free.

5

context). The result of this correlation in demand is that there are clear peak hours for
on-demand television in contrast to the lower correlation of demand for video on-demand
content.

2.2 Content Distribution Networks
For many years content distribution networks (CDNs) have been used for
unicasting/multicasting content. Unicasting video streams means sending the same
stream separately to each viewer. While this may sound intuitive and simple, its not
very efficient. See Figure 2.1. Unicasting a 1 Megabit per second (Mbps) video stream
to 1000 users simultaneously would require a broadband connection of 1 Gigabit per
second (Gbps). A television network such as Kanal5 of Sweden can have thousands of
viewers viewing a program at the same time, thus unicasting does not scale well. As
Cao Wei Qui states in his thesis: ”One solution is to increase the link capacity, but this
is not an optimal solution because this will lead to potential bandwidth wasting when
the peak hours passed” [1, section 1.3.1].

Figure 2.1: Classic client-server content distribution. Server sends content directly to
each user.

Multicast can be used to send a stream to many receivers. In the example above,
the content provider would only need a 1Mbps connection from their server to send the
same content to 1000 users at the same time. However, not all routers and firewalls
allow multicast traffic to pass through them - hence multicasting is often limited to
multicasting within a given Internet Service Provider’s (ISPs) access network. This is due
to multicast lacking reliable packet dissemination, security, flow control and scalability
in number of groups, as discussed by Vigfusson et.al. in [16].

6

An alternative to multicasting, is that rather than having one server send the full
stream to many users, multiple distributed servers can be used to unicast the traffic to
the users. Thus the individual server load is reduced, but the aggregated load is still
high. This approach scales well if there is a mix of content served by the CDN and if
the requests for content are not correlated.

A CDN distributes the content from one main server containing the content to
multiple strategically placed servers (SPCs) from which the content can be redistributed
to the users. This reduces the workload on the central server and reduces the bandwidth
needed by this server by simply dividing the workload over a set of distributed servers.
If these SPCs are placed in good locations, they also reduce the latency between the
individual user clients and the SPC from which each client is getting content. See
Figure 2.2. Although this reduces the bandwidth and computing power needed for a
single server, the sum of the workload and bandwidth is still the same. Cao Wei Qiu
provides a deeper analysis of CDN networks in his thesis [1]. This leads to the question:
Can we reduce the resources required by the content distributor without reducing the
Quality of Service (QoS) provided to users? One alternative is to enable the users to
help provide the resources!

Figure 2.2: CDN network where content servers are strategically placed close to users.

2.3 Peer-to-peer
Peer-to-peer (P2P) distribution of content enables the users to supply the resources for
distributing the content themselves. This section will describe how P2P technology can
be used for this distribution of content.

7

P2P is mostly (in)famous for being used for downloading of illegal content, however,
the technology itself is very useful since it uses its users own resources to provide content
to other users. There are many different implementations, but the basic idea is that if
one or more users has a file, then another user can download a copy of this file from
any user that has this file instead of going to a central server. This is in contrast to
client-server based systems where all of the files would be kept in a central server which
must supply all of the storage space for the content and have sufficient total bandwidth
to satisfy all of its users. Using P2P, the content provider shifts the provisioning of
resources to the users.

Section 2.3.1 reviews how P2P works and describes some of the different alternatives.
For more information on P2P systems, please refer to [17].

2.3.1 P2P explained

According to Androutsellis-Theotokis and Spinellis, the two defining characteristics of
P2P architectures are:

• ”The sharing of computer resources by direct exchange, rather than requiring the
intermediation of a centralized server. Centralized servers can sometimes be used
for specific tasks (system bootstrapping, adding new nodes to the network, obtain
global keys for data encryption)” [17] and

• ”Their ability to treat instability and variable connectivity as the norm,
automatically adapting to failures in both network connections and computers,
as well as to a transient population of nodes.” [17].

These characteristics can be summarized by saying: Instead of having a centralized
server (like the classic client-server architecture described in section 2.2) users connect
to each other in order to receive and send content.

"Pure” P2P refers to as a system which has no supervision or central server
whatsoever, i.e. where all peers are equal and handle the network creation and
maintenance and transfer content among themselves. In such pure P2P systems, searches
and network control messages are sent via peers to other peers. The network is self-
managing and supports peers joining and leaving the network. An example of a pure
P2P network is Gnutella (see section 2.3.3). Gnutella uses a distributed query approach
to find content. In this approach a peer sends a message to its neighbors and they,
in turn, forward the request to their neighbors if they do not have the content. This
continues for up to 7 steps.

Napster [18] and BitTorrent [19] are examples of hybrid P2P networks. Napster uses a
central server which keeps track of every file existing in the network, hence users connect
to the server to ask where the file is located and then download it from the specified
location. BitTorrent, on the other hand, uses a tracker which keeps information about
files. Users connect to the tracker and receive meta-information about a file (e.g. where
parts of the file can be downloaded from) and then the users download parts of the file
from the different sources.

8

P2P systems can be categorized based on their network structure. In structured
P2P networks, the peers build a topology of trees or graphs in order to optimize the
downloading rates and speed up queries for files (see figure 2.3). However, a structured
network is hard to maintain due to the fact that peers can join and leave at unexpected
times. When either of these changes happen, a new topology should be rebuilt in order to
optimize the graph (this is especially true when a peer high up in a tree hierarchy leaves
- as this might disrupt network operations severely). A properly structured P2P network
can provide very high performance. Companies such as MPS Broadband AB (see section
2.3.2) specialize their P2P solutions for live viewing where many viewers watch the same
content at the same time with few viewers leaving or joining at unexpected times.

Figure 2.3: Tree structured Peer-to-Peer system

Unstructured P2P systems represent another category of P2P systems (see figure 2.4).
Here peers connect arbitrarily to other peers and simply build a mesh network. The
advantage is that when a peer leaves unexpectedly, it does not significantly change the
network topology since peers are not dependent on other peers higher up in a hierarchy.
However, large overheads (in terms of traffic) are incurred in order for the peers to
know about the existence of other peers and when searching for content. Gnutella is an
example of an unstructured P2P network (section 2.3.3).

Figure 2.4: Unstructured (mesh) Peer-to-Peer system

If "pure" P2P systems wish to maintain information regarding their users (i.e. what
users exist, how stable they are, what level in the hierarchy should they be in, etc.)

9

they can implement a reputation system (for an example of a reputation system see
[20]). Having a central server keeping track of all users and the hierarchy (for structured
systems) simplifies the work of the peers. In pure P2P systems the peers communicate
with each other and maintain this information amongst themselves (as a distributed
task). This is not an easy task since nodes can come and go as they please, and if one
of these nodes leaves unexpectedly then important information could be lost unless it is
replicated elsewhere. When peers frequently connect and disconnect, much traffic needs
to be sent in order to update the status of the nodes of the network.

The following sections, will describe some existing P2P systems and companies that
are using P2P technology.

2.3.2 MPS Broadband

MPS Broadband AB[21] uses a tracker system (i.e. their live P2P service is based on a
torrent architecture) developed by Peerialism AB [22]. This tracker system keeps track
of all users in their network. Then, using a patented algorithm, they consider all users
every three seconds and compare them one to another and optimize the user hierarchy
so that the users with the best broadband connections are placed higher in the hierarchy
of users (the higher in this hierarchy a user is the closer the user is to the source server).
Additionally, to make ISPs happier, they organize users within the same ISP’s network
to send more often to each other. This reduces the amount of traffic send to/from other
ISPs (thus reducing the ISP’s costs).

They claim that, up to 98% of the traffic sent in the network comes from other users
[23]. However, in on-demand streaming the same numbers are not likely to be possible
since most users will probably not watch the same thing with in a short period of time.

They claim that the algorithm they use to organize the peers is mathematically proven
to be optimal [23].

2.3.3 Gnutella

Gnutella was originally developed by Nullsoft as an "enhanced Napster clone" [24]2. The
idea was to create a protocol which would enable users to download music in the same
way Napster had, but without a centralized server which could be blocked by network
administrators (or legal action). The other, and more important, advantage Gnutella
had was that because it had not centralized server, it became very hard for the Gnutella
network to be shut down since the content is distributed amongst users in the entire
network. This meant that it could evolve and continue working where Napster had been
stopped due to court decisions.

The Gnutella network works in such a way that each node connects to at least one
peer and builds a small ring of peers. When a node wants to perform a search it sends
a request to each node it is connected to, these nodes will in turn send this request to

2For information regarding the history of Napster, please refer to http://en.wikipedia.org/wiki/
Napster.

10

http://en.wikipedia.org/wiki/Napster
http://en.wikipedia.org/wiki/Napster

each of the nodes that it is connected to, up to a maximum of 7 ”hops”3. This means
that a query would quickly reach around 8,000 computers in a simple and quick way[6,
Section 2.2]. In version 0.4 of the Gnutella protocol, the number of actively connected
peers for each node was around 5, in version 0.6 the terms leaf nodes and ultra nodes
were introduced. Differentiation into these two types of nodes were introduced in order
to reduce the network overhead caused by the flooding of messages between nodes.
These nodes also increased stability since nodes might leave the network at any time
and thus search requests would not reach so far into the network if nodes along the way
are not there. An ultra node, or ultrapeer, is a powerful node which maintains many
connections to non-ultrapeer nodes (also known as leaf nodes) and some connections to
other ultrapeers [25]. Instead of all nodes being considered equal, nodes entering into the
network were kept at the ’edge’ of the network as a leaf, hence they are not responsible
for any routing of queries. Ultrapeers, in turn, were nodes which were considered stable,
thus they were entrusted with accepting leaf connections and forwarding searches and
network maintenance messages. Leaf nodes connect to a small number of ultrapeers
(approximately 3) while ultrapeers connect to many leaf nodes and to many ultrapeers
(more then 32). This shields leafs from messages and increases the stability of the
network while reducing the number of hops messages need to travel since nodes are
connected to many more peers and could thus reach many more nodes.

After a user receives responses to the search query, the node can initiate a Hypertext
Transfer Protocol (HTTP) request to the host holding the file in order to download the
file.

2.3.4 Daedalus

Daedalus is a P2P based architecture for media content delivery on large scale networks
[6]. However, it is not available in any commercial form at the time of writing. The
project was conducted internally at Ericsson [26]. It provides the network with channels
of content. A user in the network can choose which channel he or she wants to receive
(just like choosing television channels). The initial user(s) will receive the data from
a ”media injector”, which is basically a streaming server. Then, subsequent users will
receive the media from peers already watching the stream. Thus, a P2P network is
created to distribute (near) real-time streamed content.

What differentiates Daedalus from other P2P streaming networks is the fact that it
has multiple channels in its network. Thus it differs from on-demand video where users
choose what episode/movie they want to watch, but it is similar to a TV network where
multiple TV channels of broadcast television are transmitted by a network. The peers
communicate with each other by sending messages and if a peer fails, the peers which
were receiving data from it will discover this failure and try to find another peer. This
also means that the peers do not have to communicate with a central server, but can
rely on each other. The system only consists of two types of components: the media

3The maximum number of hops were later reduced to 4 with the introduction of leaf nodes and
ultrapeers.

11

injector and peers4.

2.3.5 Joost

Joost is a P2P service for sending (standard) television-quality video on-demand.
Development started in 2006 and was created by the authors of Skype and KaZaA
[6, p. 25][5].

The procedure followed when a peer wants to watch Joost content is similar to that
of Skype and KaZaA. The client contacts a super node, which handles control traffic and
directs clients to peers. The client attempts to download the content from the peers.
However, according to Hall, et al. [27], the majority of video traffic comes from Joost’s
own servers, at least two-thirds of the content. This means that Joost is a partial P2P
system. However, the reason for this is due to the fact that it is a video on-demand
system. This means that the number of users watching a specific video may be few,
as viewers are spread over all of the available content. As is the nature of on-demand
content, people want to look at what they prefer when they prefer it and that is what
separates on-demand viewing from ”regular” television.

2.3.6 Spotify

Spotify is a music streaming service developed by the Swedish company Spotify AB
[28]. Spotify allows users to stream unlimited amounts of selected music and is a legal
alternative for listening to music [29]. Spotify comes in different versions which are
currently available in 7 different countries: a free version which contains advertisements
and a premium version which is free of advertisements and supplies content at higher
bitrates. One of the features of Spotify is that it has virtually no buffering delay [30].
Spotify is available on computers and for premium users also on mobile phones.

Spotify uses a proprietary network protocol which streams audio of 96-320 kilobit per
second (kbps) bitrates [31]. The first piece of the stream is downloaded from Spotify
servers (which are placed in a CDN) while P2P is used for the rest. The client switches
back and forth between Spotify servers and peers as needed, the focus being to reduce
delay, where the initial delay is considered to be the most critical - however, if the client
is running out of content and the peers are not providing it the Spotify servers or CDN
are used. Clients keep a persistent TCP connection to all current servers (both Spotify’s
servers and peers) while logged in as this enables the servers to constantly see if the
users are connected to the network. (Note that the mobile client does not use P2P, but
downloads all content directly from Spotify servers.)

According to Kreitz [31], the goals of the Spotify P2P architecture is to minimize
bandwidth charges, hardware costs, latency, and to avoid shutter. The P2P network is
built as a unstructured network (see section 2.3.1) where all peers are equals (e.g. it has

4However, in the Daedalus prototype [6] there was also a Master Node which would maintain
information about all the peers within the P2P network which, in turn, it would relay to newly joined
members. Matris and Strikos claim that it is not needed in an actual system based on the Daedalus
architecture

12

no supernodes, unlike Gnutella) and clients only download data they need. In contrast
to BitTorrent, Spotify has only one P2P network for all tracks [32]. Peers find each other
using a partial central index (making it a hybrid P2P system) where a small number of
peers (approximately 20) per track are maintained. Clients also broadcast queries in a
small neighborhood and perform limited broadcasts for local peer discovery (in Local
Area Networks).

Using a partial central index limits the number of peers participating in the
distribution of the content. The advantages are that not all peers expend their bandwidth
for distributing content and the tracker does not need to keep a (potentially large) list
of peers. Another advantage is that since it is an unstructured network, the tracker
does not try to organize the peers in a hierarchy, thus saving tracker resources. The
disadvantages are that the peers will not be organized in any optimal order based
on available bandwidth or content. Spotify has performed sufficiently well that it has
amassed a large user base in two years (7 million users as of 2010 [33]), hence it apparently
does not need such optimizations. However, for video streaming services - which are the
target of this thesis (unlike the audio only Spotify service) - much more bandwidth is
required which means a wider peer base may be required in order to efficiently supply
enough content for all requests.

Clients connect to an Access Point which will handle authentication and encryption
for clients and forward requests to backend servers. Spotify clients are quite clever when
downloading content. They ask for the most urgent pieces first and if a peer is slow, then
it will re-request the pieces from new peers. If a client has low playout buffers (less than
3 seconds worth of data), it will download the missing content from the central server
as well, and if the buffers are very low then it will stop uploading in order to preserve
bandwidth for making requests and acknowledging download traffic.

2.4 Additional relevant background information
This section describes other relevant background information which this thesis will
utilize.

2.4.1 Swedish home network speeds

When building a streaming technology, it is important to know the speed with which
users can potentially receive data. This is relevant for both a streaming and P2P
technology.

A quick check on the Swedish website Bredbandskollen.se 5 shows that out of 146,000
users who have used the site’s self-measurement tool, the average connection speeds are
roughly 5.6Mbps uplink and 15.3Mbps downlink [34]. This value is derived from the
users testing their connection speed on the site during February 2010.

Assuming that a video stream requires 1Mbps, the average user should be able to
redistribute content to 5 other destinations.

5An independent organization for Swedish consumers to evaluate their Internet connection

13

2.4.2 IPv6

IPv6 is the new version of the Internet Protocol [35]. It is designed to replace IPv4
[36] by overcoming limitations in the protocol. One improvement (and probably the
most important one) is the extended addressing capabilities: addresses in IPv6 are 128
bits long, compared to 32 bits in IPv4, which means a total of 3.4 ∗ 1038 addresses
in IPv6 compared to 4.3 ∗ 109 in IPv4. Other improvements include eliminating some
obsolete and unused header fields, improved support for extensions and options in the
protocol, flow labeling capabilities for labeling traffic and security capabilities to support
authentication, data integrity and confidentiality.

As of February 2010, Geoff Huston’s daily IPv4 report predicts that the last of the
IPv4 addresses will be depleted by September 2011 [37]. However, studies show that the
total world usage of IPv6 is still less then 1%[38]. This reveals both a problem and an
advantage of using IPv6. The problem is that the majority of Internet users still do not
utilize IPv6, but the advantage is that using IPv6 in new technology could produce a
new killer application which would increase the usage of IPv6.

In Java, IPv6 has been implemented transparently and is part its networking stack.
The Java networking stack will first check if IPv6 is supported by the underlying OS
and if it is it will try to use it. Even legacy systems built on IPv4 can use the IPv6
automatically without any porting needed [39].

2.4.3 Testing of P2P systems

Testing of P2P systems can be done in different ways, but the important requirement is
to have a large user base to test on. Thomas Silverston and Olivier Fourmaux compared
different P2P live streaming players by during the International Federation of Association
Football world cup [3, 8].

By placing computers of average power in different locations (on the university campus
with a powerful Internet connection and a couple average home connections) they were
able to collect a lot of data on how several different P2P programs behaved and how
much traffic is coming from which source. For their surveys they used tcpdump [40] to
collect time-stamped packets. In addition to its own capture file format, Wireshark can
deal with a number of other file formats including that used by tcpdump.

Wireshark is a network protocol analyzer which enables users to deeply analyze the
network traffic generated and received by their computer [41]. This tool can be used to
identify transmission sequences along with overhead traffic.

2.4.4 Episodes

This section will give an overview of the content provided by the Kanal5 video on-demand
service [12].

The majority of the content is encoded using a H.264/MPEG-4 Part 10 or Advanced
Video CODEC (henceforth referred to as H.264) compressor-decompressor (CODEC)
while some of the older content is encoded using On2’s TrueMotion VP6 (VP6) (see

14

section 2.4.5). Free content is provided at at up to 800kbps video + 96kbps sound while
the subscription based content is provided at up to 2200kbps video + 128kbps sound. A
free 45-minute episode is approximately 300 megabyte (MB) in size while a comparable
subscription based is around 780MB. The majority of episodes are around 45 minutes
long6.

2.4.5 CODECs

The majority of content provided by the Kanal5’s video on-demand service is provided
in H.264 format including all new content, thus this section will only cover the H.264
CODEC and not the older, less used VP6. For more information on VP6 (developed by
On2 Technologies [42], acquired by Google Inc. [43]) see [44].

H.264 is a block-oriented motion-compensation-based CODEC standard developed
by the Joint Video Team [45]. This CODEC is commonly used in applications such as
High Definition-Digital Video Disc (HD-DVD), Blu-Ray Disc, videos from Youtube and
the iTunes store, etc. This CODEC exploits the fact that the difference between two
consecutive frames in most movies is the result of either the camera moving or an object
in the frame moving. This means that the actual difference between two frames, in terms
of the information stored, is quite small. This fact can be exploited by storing the full
information of a frame every, for example, forth frame (also known as a key frame), and
by having the frames in between only store the differences between the two adjacent
frames (e.g. the information needed to transform one frame into the next frame). With
this optimization, the H.264 standard can match the quality of the Moving Picture
Experts Group-2 standard (used in Digital Video Discs) using half the frame rate [46].

6Aside from full length episodes, kanal5play.se also contains short clips which are only 2-5 minutes
in duration, however these are not relevant to this thesis.

15

Chapter 3

Loree: A system designed for
On-demand P2P television

This chapter describes the design of Loree, a P2P system designed for TV content
providers’ on-demand websites. This P2P system is designed to handle peak hour
patterns as described earlier in section 2.1.2, i.e., where viewers access on-demand
websites to watch TV episodes shortly after they have been broadcast on TV and
released on-line. Statistics from Kanal5 show that on the day an episode is released,
users also watch previous episodes from the same show (see appendix A). Based on this
information, a system has been built to reduce the load on the content providers’ servers.

3.1 Loree overview
The Loree system is designed so that users themselves need to do as little as possible
(in fact they only need to select the content of their choice). Loree is not meant for live
streaming, but rather for content which is pre-recorded (complete episodes). Loree is
also designed to reduce the required server bandwidth resources.

3.1.1 Resources used for development

The Loree prototype was developed in Java. Java was chosen as a development
environment since the author was already familiar with it. The following resources
were used during the development of Loree:

• Subversion - a version control system for source code management [47]
• Java Developer Kit 1.6.0_18 [48]
• Java RMI [49]
• Java Eclipse - An Integrated Development Environment [50]

An advantage to using Java for the development is that its networking stack has
transparent support for IPv6 (see section 2.4.2), meaning that the Loree system will
not need to be ported or rewritten to support the "new" technology.

16

3.1.2 Prototype implementation using Java RMI

For the implementation of the prototype, this thesis project uses Java Remote Method
Invocation (RMI). RMI was incorporated so that each client, content server, and tracker
has its own registry server to which the other components can connect. A registry
server is a component in the Java RMI application programming interface (API) which
keeps track of objects which are available remotely from Java virtual machines (JVMs,
abbreivated simply as VMs in this thesis).

The reason for using Java RMI in the implementation is that it simplifies the
communication between clients and tracker thus avoiding the need for direct low-level
socket communication. Instead, clients communicate with the Tracker and each other
by using remote method calls and send objects instead of packets. The advantage of this
simplicity comes at a cost, namely the communication overhead involved in Java RMI
(which makes the remote invocations of procedures transparent) reduces performance
[51]. This means that in future work, the implementation could be optimized by using
socket programming [52, 53].

When a Loree client connects to the tracker; the client connects to the tracker’s
registry server on a predefined port and looks up a remote object using the remote
reference "tracker". The registry server will return this tracker as a remote object (see
figure 3.1). The object contains an API which can be used to perform tracker operations.
(Note that the functions listed in following chapters are not the only functions available in
the remote objects. These other functions provide thread synchronization, Java specific
operations, and other internal functionality and are not described unless specifically
relevant.) This tracker API includes the following functions:

• registerPeer(Peer peer) - registers the peer as a client in the Tracker user list;

• unregisterPeer(Peer peer) - tells the tracker that the peer is leaving the network;
and

• whereCanIFind(String videoName, int partNumber) - asks the tracker for a peer
from which to download a specific part of a video.

The parameters and returned objects sent must be serializable. The serializing interface
encodes Java objects, enabling these objects to be saved outside the VM as files or to
be sent through sockets just as any other data [54].

More detailed information regarding Java RMI and its functionality can be found in
[49].

17

Figure 3.1: 1. A client connects to the tracker’s registry and retrieves the remote tracker
module which it will then use to invoke functions. 2. Clients connect to other clients’
registries and retrieve the remote Sender module object which is used to transfer files.

3.2 Key features of Loree
The main goal was to design a P2P system which could distribute on-demand television
content while reducing the load on the content providers server(s) during peak hours.
This leads to a prototype called Loree. The following paragraphs describe some of the
key features of Loree. An example setup of the Loree network with its components can
be seen in figure 3.2.

• Structured tree hierarchy hybrid P2P network
As described in section 2.3, there are different types of P2P architectures. Even
though pure P2P systems avoid the need for a central monitoring server, they
prove challenging when trying to optimize the flow of traffic. Building a structured,
hybrid P2P system enables the content provider to control how the traffic traverses
the network and thus enables peers with the highest available bandwidth to be
placed higher up in the hierarchy (with the content server at the top of this
hierarchy). Structured P2P systems work well for live streaming when it is known
in advanced that there will be many viewers watching the same content at the same

18

time [3]. That said, the main drawback of a hierarchical system is the uncertainty
of what people will watch and when they will watch it. Since viewers can choose
to watch their choice of content when they want, it is not certain that each viewer
will stay for the entire episode. In a hierarchy, peers depend on each other and
if parent peers leave this can cause QoS problems for their children. For these
reasons in this thesis project we assume that this problem can be solved by suitable
communication between the peers.
Due to the advantages of an hierarchical system, Loree will use a tree hierarchy to
distribute content in order to reduce the content server’s traffic load during peak
hours (as discussed in section 2.1.2).

• One Tracker to rule them all
For a hierarchical system to work, there needs to be some sort of organization. In
section 2.3.1 there were examples of different solutions for this. However, viewers of
on-demand content are unpredictable in terms of how long they stay in the system,
if they watch the same content as others, etc. This is of course in contrast to live
content viewers who all have to watch the content at the same time. Due to the
potential for clients to enter and leave the system independently, a system where
the clients organize the hierarchy themselves will not be sustainable nor scalable.
Therefore, Loree uses a Tracker whose task is to organize the hierarchy in an
optimal way with regard to the available bandwidth & content and to communicate
frequently with clients - so that if a client leaves, those clients who depend upon
this client will not experience reduced QoS.

• Content Server
The content server is the source of media content in the Loree system. The content
server is nearly identical to a client with the exception that the content server is
labeled as a content server and it has all of its content loaded in advanced. This
provides flexibility since it is possible to have multiple content servers in the same
network that operate completely independently. The tracker can choose to utilize
these content servers however it sees fit (based on parameters such as available
bandwidth). These content servers do not need to have the same content available
on all of them, thus they can more flexibly be organized in the network hierarchy
(in order to serve the expected requests).

• Clients
Clients are the core components in any P2P system. The difference between Loree
and pure P2P systems is that Loree’s clients ask a tracker for instructions about
where they should download their content from. A client has two main separate
threads: one acts as a server (e.g. distributing content) and one downloads the
desired content. The download part must keep track of which part of the episode
being downloaded the client wants to watch next and ensure that it downloads the
relevant part of this episode (thus the next expected portion of the episode has the
highest priority for downloading).

19

Part of the client’s functionality is to ask for additional content to download after
the episode requested has been completely downloaded. Doing so reduces the load
on the content servers since other clients will have multiple sources to download
content from. The extra content that is downloaded should be content which is
predicted to be requested in the near term (by this client or other clients).

Figure 3.2: Example of a tree structure in the Loree system. Note that the peers can be
organized in different ways and that they can retrieve content from multiple peers for
different pieces of content. There can be multiple content servers in the network and the
tracker is on a separate location and communicates with all peers and content servers.

3.3 Client and Content Server
The client’s server and the content server are essentially the same. Thus the tracker can
view the content server as a regular client that has a very large portion of the content
already available. As a result, the tracker places the content server at the top of the
hierarchy (see section 3.4). Advantages of sharing this server code include simplicity
in constructing the content server and simplifying for the tracker the use of multiple
content servers (with perhaps different content).

In the current prototype, each client only downloads one episode at a time. However,
the client should be able to download multiple episodes if these episodes are predicted
to have a high demand in the near term. This gives a two-fold advantage: (a) if one
could predict that a viewer watching a certain episode will also watch the following
episode then the viewer will experience a smoother transition between watching the
episodes (e.g. he or she will not have to wait for downloading the next episode since it is
already downloaded) and (b) If an episode is experiencing high demand then downloading
another episode will distribute the bandwidth load from the servers to the peers. The
load distribution is also true for case (a). How to determine which episodes will be most

20

likely to be requested during which hours will be part of future work (see discussion in
section 3.7) as this is affected by editors and when episodes are broadcast on television.

3.3.1 Client operation

The basic client operation is as follows:

• Register with the Tracker using the viewer’s identification (ID)1.

• Start a sender module (see section 3.5.1) which will keep track of the content that
is downloaded and redistribute this content.

• Ask the Tracker for an episode. The Tracker will reply with a Video object
containing information regarding the episode’s size, number of parts, and other
relevant information (for more information about video objects see section 3.6).

• The client will ask the tracker where to download individual parts of the episode
from. Note that a client does not have to start by requesting the first part since
the viewer might want to start watching from a later point in the episode. This
also enables the client to download content in different order, see section 3.6.3.2.

• For each part of the episode, the client will connect to the target peer’s Sender
module (see section 3.5.1) and call the getVideoPart() function which will return
the requested content (e.g. download it).

• After the full episode has been downloaded, the client will ask the tracker for more
content to download. The content which should be downloaded is that which is
predicted to be in high demand (see section 3.7). Note that this is not implemented
in the prototype, but is meant as a problem for future work in order to reduce load
on the content servers.

Also note that in parallel with the above steps, the content already downloaded can be
viewed by the viewer.

If a target peer is not available to download content from (e.g. it suffers unexpected
problems which make it unavailable) the peer requesting the content will to ask the
tracker for a new peer to download from. In this case, each client would receive a
reference (supplied by the tracker) to the content server providing the desired content.
If a peer were to fail, the client can then ask the content server directly for the part it
was trying to download, in order to avoid waiting for a reply from the tracker before
continuing to download the content. This would reduce the chance of buffer under-run
(i.e., not having content to play) which would ruin the user’s viewing experience. This
also means that the clients keep references to relevant content servers in case of such
emergencies.

1Each viewer has some way of identifying them. In the current prototype version the ID is a command-
line argument where each peer selects a unique name. However, there is no verification stopping multiple
clients from using the same ID. In future work, this could be implemented using viewer’s identification
to kanal5play.se as this would give each user an unique ID.

21

3.3.2 Client implementation

Each client starts a Java RMI registry server (TCP port 5011 by default). This server
enables peers to connect to this peer when they want to access remote objects such as the
Sender. Next the client connects to the Tracker registry and retrieves a remote Tracker
object (see section 3.1.2) and registers with the Tracker. After the client has registered
with the Tracker, it will create a Sender thread (encapsulating the Sender module, see
section 3.5.1) which will keep track of downloaded content. The SenderModule is also
an RMI remote object, thus when peers want to download something from this peer
they will retrieve the remote Sender object and use it to retrieve content by calling a
get-function. Next, the client asks for the video content it specifically wants from the
Tracker by using the remote Tracker object it retrieved earlier. The Tracker returns a
Video object which contains information about the video (e.g. how many parts it has,
length of the video, etc., see 3.6.2). Using this video object, the client knows how many
parts it needs to download and can decide which part it should download first and which
ones can be downloaded later (i.e. if the viewer wants to watch from the middle of the
episode, then the client will download the appropriate part(s)). The client will download
all of the parts of an episode with the priority being the parts following the part the
viewer is currently watching. As parts are downloaded the sender module keeps track of
these parts and makes them available for redistribution to other clients.

When the client has finished downloading the desired episode, it will ask the tracker
for which other episode is most likely to be requested at this time and download it. By
doing this, other clients arriving later will be able to download this episode from this
client without the client experiencing poor QoS while the content server(s) will not need
to download the content to these new clients, hence reducing their load.

3.3.3 Content Server

As previously mentioned, the content server is very similar to the client. The main
similarity is that both clients and content servers use the Sender module to distribute
content. The difference is that the content server does not necessarily download any
content via the Loree network. It loads the content in advanced and registers this
content in it’s Sender (see section 3.5.1). After the content is registered with the Sender,
the content server will register with the tracker and notify it of the content that it has
available for distribution and the Sender module will do the rest. Basically, the content
server is a slim-down version of the client. Note that this content server can be replicated
and need not be running on only a single physical computer.

Each content server loads just one piece of content (i.e. one episode) which it
distributes. However, due to the design decision that each content server is simply
another peer in the system it is possible to have multiple content servers for each episode.
These content servers can share the same server hardware but each uses its own ports.

In the prototype the content is loaded from disk and divided into evenly sized pieces
based on a pre-defined number and put into PartOfVideo objects which are then loaded
into the Sender module (see section 3.6.3). The content server’s RMI server operates by

22

default on TCP port 5001, but is changeable with command-line arguments.
What is interesting is that clients can easily be used as content servers. Instead

of needing to have content saved on disk, it is possible to distribute the load between
(geographically) separated servers by having a "client" join the network and download
the content, then continue to operate as a dedicated server. For example, an ISP might
operate a set of such "clients" in order to reduce the cross-ISP interchange traffic by
supplying peers in their own network with copies of the content from one of these
"clients".

3.4 Tracker
The tracker’s role in the system is to keep the peers organized in terms of where they
receive their content from. The tracker maintains a list of all peers in the system and
what content they have available in the form of PartOfVideoInfo objects (see section
3.6.3). The tracker also contacts each client frequently to see if the client is still
operational. Instead of the tracker informing each peer of how to handle their traffic,
each peer individually asks for the content it wants from the tracker which replies to
each individual request2. Simply put, the tracker is primarily a database and much of
the computing is distributed to the peers, thus the trackers computing resources are
dedicated to simply tracking where instances of PartOfVideoInfo objects are.

The tracker internally organizes the peers in a tree hierarchy where the content servers
are placed at the top of the hierarchy, followed by the peers with the most amount
available bandwidth (and the specific content) available (see figure 3.2). Since the Loree
system is focused on on-demand content, the tracker needs to build a tree for each
episode available in the system. This is in contrast to live content where most often
there will be only one stream of content available in a network.

Having a tree hierarchy which contains every node in the system could potentially lead
to extreme loads on the tracker who must sort the tree. One alternative, as implemented
by Spotify (see section 2.3.6), is to have partial central index where the tracker only
maintains a limited number of peers in its hierarchy. In future work, this needs to
be tested on a large user base to verify if this is required in order to maintain a high
throughput and QoS, or if the tracker can handle potentially large trees.

The tree structure could be further optimized based on parameters such as location
and which ISP’s network the peers are located in. Basing the structure on location could
reduce delay when downloading the parts. Which ISP’s network peers are connected to,
on the other hand, can make a difference for ISPs who could benefit from reduced costs
(MPS Broadband AB partly base their algorithm on this factor, see section 2.3.2).

Having the tracker separate from the content servers gives the advantage that if
content servers or peers experience unexpected problems such as unavailability, the
tracker can continue to keep the network of peers operational even if a content server is

2This may generate a lot of overhead traffic in terms of messages to the tracker which could be reduced
by having each peer ask for multiple parts of content at once.

23

unavailable. This is a great advantage in terms of server maintenance, availability, and
reliability.

The prototype system only works with one piece of content at a time and, in order
to complete this thesis project on time, the author chose to implement a simple version
of the tracker’s organization algorithm in the Loree prototype. The tracker will, for a
request of content from peer A, return information about a peer B; where peer B is the
peer with the highest number of available upload slots amongst the peers which have
the specific content available. Therefore, no explicit tree hierarchy is built, but instead
the tracker’s list of peers is simply traversed each time a request is processed. Note that
this is suboptimal but simple to implement and that it will be replaced in future work.

3.4.1 Tracker implementation

The tracker implementation consist of three parts (see figure 3.3): the RMI server, the
tracker module which is the remote object the RMI server allows peers access to, and
a separate monitor thread which monitors all peers and makes sure they have not left
the network unexpectedly. The RMI server is by default initialized on TCP port 50003,
through it peers reach the remote tracker object where different functions are available
(see section 3.5.3). In parallel to the tracker, a monitor thread is initialized which goes
through the tracker’s list of peers every second and tries to connect to each peer in the
list to verify that they are still operational and in the system.

Spotify uses an alternative approach in which each client maintains a persistent TCP
connection to the tracker (see section 2.3.6). In their approach, when a client leaves the
network (for any reason) the tracker will notice it quickly (due to their use of a short time
between TCP keep alive messages). The major difference (in regards to this) between
the Loree and Spotify trackers is that the Spotify tracker does not organize clients in a
hierarchy, thus it has more available resources to maintain connections, while the Loree
tracker organizes clients to gain throughput in the network. In order for the Loree tracker
to see if clients are still in the system, a Monitor is used which frequently verifies that
clients are operational by connecting to them (see section 3.4.2). The downside of using
a monitor is that the monitor will not notice clients leaving the network as quickly as
the Spotify tracker. It is not obvious which alternative is better, as one must consider
the large amount of bandwidth required for video content in contrast to audio content.
As part of future work, a comparison needs to be made between these two alternatives
to see which is most useful for on-demand television and to determine how the choice of
method affects the throughput and stability of the network.

3The default port for the content server’s RMI server is TCP port 5001, which means the tracker and
at least one content server can be run on the same machine.

24

Figure 3.3: Internal components of the tracker.

3.4.2 Monitor

The monitor is a separate thread in the tracker which verifies that all peers are
operational. In the prototype, this is done once every second. The monitor retrieves the
tracker’s peer list and connects to each peer’s RMI server. When it connects to it, it
tries to retrieve the client’s sender module to verify that it is operational. If an error
occurs during this step, then it is safe to assume that the client is malfunctioning - in
which case the monitor unregisters the peer from the tracker.

The reason the author chose this implementation is that an ICMP ping (see ICMP
echo message, also known as ping operation [55]) would be successful as long as a
computer at the target IP address is turned on and connected to the Internet, but
this response would not indicate if the Loree application is running. To verify that the
target client is fully operational, its RMI server must be working and its sender module
must be available. The downside to this approach is that the amount of overhead data
sent over the network due to RMI operations will increase as the number of peers in the
system grow.

3.5 Modules
One of the main design features of the Loree system is its modular architecture. The idea
behind using a modular design is to build standardized modules which can dynamically
be re-used in different components (e.g. client and server). In figure 3.4 the construction
of the client and server are shown. As the figure shows, the content server is almost
identical to the client since it uses the same modules. However in contrast to the client,
the content server has all of the content loaded in advanced. The tracker stands out as
its only modules are an external interface for verifying that the clients are operational
(the Monitor, see section 3.4.2) and an algorithm module for organizing the clients.

The following sections will describe in further detail how the different modules are

25

built up and also describe some key functions available in the modules. Information
regarding the object types can be found in section 3.6.

Figure 3.4: The Client and Server are put together using the different modules. Note,
however, that they are essentially identical since they use the same modules. The
difference is that the content server has all the content available from start.

3.5.1 Sender module

The client and content server share a module named Sender which acts as a server for
peers. The Sender module is a remote object whose primary function for inter-peer
communication is to send content. When peer A connects to peer B, peer A will retrieve
B’s remote Sender object and use it to download the content it specifically wants. Table
3.1 shows some of the key functions available in the Sender module.

26

Table 3.1: The Sender Modules remote interface functions.
Function name Function operation
getVideoPart(String string, int
partNumber)

Used by peers to download a specific
part of a video. Returns the requested
PartOfVideo. If the specific part is not
available, it will return null.

addContents(PartOfVideo video) This is used by the Downloader module
internally within the peer to add down-
loaded Content to the sender so that it
can redistribute it.

3.5.2 Downloader

The downloader module was designed to isolate partial download of video parts and in
order to enable downloading multiple parts in parallel. This module is implemented as
a separate thread which is created and run with the sole purpose of downloading one
PartOfVideo (see section 3.6.3). By separating the download of each part into threads,
the order of downloads can be more flexibly controlled and organized.

The downloader operates in three simple steps: it connects to the peer specified by
input variables and retrieves its remote sender module and downloads the PartOfVideo
object requested, it loads the remote sender of the local client and saves the downloaded
content in the sender object, and finally it registers the downloaded content with the
tracker indicating that the local client now has this content available for redistribution.

In the prototype implementation of the client a maximum of 10 downloader threads
are operational at any point and these are run in a sequential order for simplicity
(this number can be modified in order to optimize speed vs. Central Processing Unit
(CPU) power and memory consumption, but this is not relevant at this point since the
downloading should be done following patterns in future implementations, see section
3.6.3.2).

3.5.3 Tracker module

The tracker is implemented as a remote RMI object. When peers retrieve the tracker
object, they will have access to some specific functions (as can be seen in table 3.2)
which will give them the information needed to download the content they want.

When a peer invokes the whereCanIFind() function, the tracker will find the most
suitable peer from a dynamically built tree of peers and return the Peer object associated
with the most optimal peer to the requesting peer. The tree needs to be rebuilt frequently
so that when the whereCanIFind() function is called, the information will be up to date.

Note that instead of the tracker sending out updates to all clients, the clients will
ask the tracker for the location of content when they want. The main advantage of
this approach is that this reduces the workload on the tracker since it does not need to

27

Table 3.2: The Trackers remote interface functions.
whereCanIFind(String videoName,
int videoPart)

Returns a peer object to download a
specific part of a video from

registerPeer(Peer peer) Registers a peer to the tracker
unregisterPeer(Peer peer) Unregisters a peer from the tracker (e.g. a

”nice” departure from the network)
tellMeAbout(String videoName) Returns a Video object with information

about the size of the video, numbers of
parts, etc.

registerContent(Peer peer,
PartOfVideo vidPart)

Registers with the tracker that the peer
has vidPart available for distribution

addContent(Video video) Registers a new episode to the tracker
whichOtherVideoShouldIDownload() Ask the tracker for which other episode

should be downloaded for helping the P2P
network after the requested episode has
been downloaded completely. (Note that
this function is not implemented in the
Loree prototype)

update all peers with new targets to download from, hence the tracker can simply reply
to requests and save resources for calculating the client tree hierarchy.

The algorithm for optimizing the hierarchy of the system is based on multiple
parameters (e.g. available bandwidth, quantity of content, etc.). Finding an optimal
solution is outside the scope of this thesis project. There already exists some solutions
for this, such as the solution designed by MPS Broadband AB as noted in section 2.3.2.
However, alternative algorithms should be covered in future work. In the prototype, the
tracker returns the peer with the most available bandwidth out of the peers which have
the content available. Note that this is sub-optimal since this calculation occurs each
time a peer calls the whereCanIFind() function of the tracker. For the prototype a more
optimized approach was unnecessary as tests were performed with a small user base and
thus a pre-calculated hierarchy was not necessary (as can be seen in chapter 4).

3.6 Classes in Loree
The different classes used in the Loree system are discussed in this section, specifically
what they contain and why and in what situations they are used. Since these classes are
all remote objects sent between peers, they all implement the serializable interface. As
described previously in section 3.1.2, serializing a Java object enables it to be saved as
a file or sent through sockets.

28

3.6.1 Peer class

The tracker keeps track of all peers currently in the system, and each peer is identified
using the Peer class. This class contains specific peer information such as the peer’s
name, IP address and port, content they have available, upload bandwidth and if this
peer is a content server or not. Note that content servers are also registered as regular
peers in the system, as this simplifies how the tracker handles organization of peers
and also the communication between tracker and peer since the tracker can send a peer
object as its response. Thus, the peers receiving a peer object does not need to account
for whether the peer they are downloading from is a content server or not.

In order to reduce the amount of traffic sent in the system, the prototype
implementation has two separate peer classes: MiniPeer and Peer. The Peer class
inherits from MiniPeer. The difference is that MiniPeer contains only the basic
information needed for peers to be able to connect to other peers. Thus the Peer class,
in addition to the information in MiniPeer class, contains a list of content this peer has
available in the form of PartOfVideoInfo objects (see section 3.6.3). This reduces the
amount of overhead traffic sent in the network, specifically between tracker and peers.
In addition, this reduces the download delay when a peer initializes a download.

When a peer receives a MiniPeer object from the tracker, it contains the IP address
of the peer and the port its RMI server is running on. This is all of the information that
this peer needs in order to download a requested piece of content. The larger Peer class
is used by the tracker to calculate the most appropriate MiniPeer object to send to a
peer requesting a piece of content.

3.6.2 Video class

The Video class is a general object describing the content. In the prototype
implementation, the class simply contains the name of the content and the number
of parts the content was divided into by the content server providing the content.

This class is used by the tracker to keep track of all the videos in the system, but it is
primarily used to inform client peers of the information regarding content. This includes
how many parts the content is divided in to, so that the peers know how many parts to
download. This class can be extended with further information such as individual video
download patterns (see section 3.6.3.2) or related videos in order to prepare clients with
the likely next episode that tier user might watch - for example, multiple episodes in a
series might be viewed directly one after another.

3.6.3 PartOfVideo and PartOfVideoInfo classes

PartOfVideo objects are created when content is loaded into the Loree system. When
a content server loads content, the media content is divided into suitably sized pieces
(see section 3.6.3.1) and each piece is placed into a PartOfVideo object. This class
inherits from PartOfVideoInfo which contains all the relevant information about this
video part, such as the name of the content and which part of the video this object

29

contains. PartOfVideo, in turn, contains the actual content in a binary format (native
Java byte array). Both classes implement the serializable interface [54] which enables
the objects to be transmitted.

PartOfVideoInfo is used primarily by the tracker. The tracker keeps a list of all peers
in the system and for each peer it maintains a list of PartOfVideoInfo objects so that it
can keep track of what content peers have. When a peer asks the tracker for content to
download, the tracker will examine the lists of locations and return an appropriate Peer
object to the peer (see section 3.6.1).

When a peer wants to download a piece of content from another peer, it will connect
to the peer and ask for the piece using a function call (see section 3.3.1). The function
will return the piece of content in the form of a PartOfVideo object.

3.6.3.1 Size of PartOfVideo

To decide upon the size of each content part one must first consider the effects of using
different sizes for these pieces of content. Assuming there is no limitation on bandwidth,
the fastest way to transmit content between point A and point B is to transmit the entire
content at once. Because peers have different upload and download bandwidth, in order
for a P2P system to perform well the content needs to be divided up into multiple parts
and these parts distributed amongst peers. This allows peers to download pieces from
different peers (including content servers) in parallel. In order to minimize the initial
delay between when a user requests certain content until he or she can start to watch
it, smaller parts are better since they can be downloaded and played by a media player
faster than having to wait for the download of large pieces. However, having too small
pieces leads to high overhead in terms of requests and replies sent between tracker and
peers.

BitTorrent [19] is one of the most common file sharing P2P protocols and is similar
to Loree in several ways. According to the BitTorrent specifications [56], the most
common chunk size for BitTorrent is 512 kilobyte (kB). Other common sizes are 256kB
and 1024kB. The author used these same values as default values for the Loree system
(later in section 4.4 the author examines the performance as a function of the size of the
piece of video).

A possible extension to the Loree system is to identify patterns of how viewers choose
to watch content, e.g. directly skip to a certain part of an episode, as discussed in section
3.6.3.2. For such scenarios, it may be relevant to have variable sized PartOfVideo objects
based on what part of the content is (to be) viewed. If a certain part of an episode is
known in advanced to be popular to be viewed first then the PartOfVideo objects in that
part of the episode could have a smaller size (i.e. 256kB instead of 1024kB) in order to
reduce the delay before viewers can watch the part of the episode that they ask for.

Assuming an H.264 CODEC (see section 2.4.5) is used for the media content, one
could correlate the PartOfVideo sizes with the time between key frames. However, this
discussion is outside the scope of this thesis project and will be left for future work.

30

3.6.3.2 Order of downloading content

A common way to download streamed content is to download everything from a certain
point in the stream and onward. This occurs because a viewer might choose to watch an
episode from an arbitrary point in the episode until the end of the episode, in this case
everything after the selected starting point in time will have a higher download priority
than the content in the episode before this point. No matter where the viewer chooses to
start watching, the content with the highest download-priority must contain the portion
starting from where the viewer has requested to start viewing, followed by the content
that follows. However, after a certain amount of the content is buffered and ready to be
rendered, other parts of the content could be downloaded. This is important to note,
since viewers may choose to skip to some part of the episode and if this content has not
yet been downloaded the viewer will experience a delay waiting for the download of this
new content before they can continue watching.

With such non-linear viewing of an episode it is important to investigate just how
viewers watch episodes and determine if there are patterns which could be used to
predict future requests, hence changing the order in which content should be downloaded.
Exploiting this knowledge would be useful to viewers because if they want to jump to
these different places of an episode in the expected order, then they would not have
to wait for missing content and could watch the episode without interruption(s). The
viewer might even choose to jump backwards to an earlier point in the episode (that has
not been downloaded yet), so the client could also download parts of the episode from
different points in time, based on predictions of what the viewer will actually want to
watch (see figure 3.5).

Figure 3.5: The timeline of a TV-episode. 1 represents the point of time where a viewer
might choose to start viewing, and some content is buffered after that, 2 & 3 represent
other points in the episode which are buffered in advanced because they are predicted to
be skipped to by most viewers and t=n is the end of the episode. Note that the above
figure is strictly for illustration purposes as these patterns have not yet been investigated.

In the Loree prototype there is no explicit limitation regarding the order in which
content should be downloaded (although in the prototype content is downloaded
sequentially for simplicity). This means that the prototype can easily be extended
to download an episode in an order based on pre-defined patterns. Patterns for how
episodes should be downloaded could be derived in the client, either by pre-defining a
general pattern for all episodes or by having each client learn its user’s viewing pattern
to optimize the order in which it makes requests for content in the future. The patterns
could also be stored in the Video objects (see section 3.6) based upon overall patterns of
access by many clients. This would enable the patterns to be customized for individual

31

episodes.
To find these patterns, a system could track viewer’s patterns, then these patterns

could be extracted and associated with individual episodes. Program editors could also
define in advanced which parts are most likely to be watched. However, the optimal way
to extract and utilize patterns is outside the scope of this thesis project and is left for
future work.

3.7 Downloading other relevant episodes
After a user has downloaded the content he or she wants, the user’s down-link capacity
will be available for other purposes. If another episode is expected to have a peak
hour shortly (before this user is expected to have finished watching the just downloaded
episode) then this peer could download the episode that is most likely to be requested
in preparation for the peak hour. By doing this, peers watching episodes other than the
episode that is expected to be heavily demanded can help reduce the amount of traffic
on the content servers by downloading and supplying the most frequently demanded
content themselves. Another scenario is when a user chooses to watch the first episode
of a series, their client might assume that the user will watch the following episode as
well and download the following episode in advance of the user’s request. Note that this
feature may increase the average bandwidth utilization of the server(s), but it will help
reduce the peak in throughput which occurs during the peak of requests, as shown in
appendix A (for comparison, see figure 3.6).

Editors have a huge influence on what content will be requested in the near term.
They could explicitly provide this information to the system so that peers can download
this content when they are not busy downloading the content requested by their user.
Specifications for how they could provide this information and how the clients could use
this information remain questions for future work.

However, the advantage of clients downloading other content then the content
requested by their users comes with a downside: if a client downloads content in
preparation for peak hours or downloads the following episode in a series, but the
expected behavior does not occur then this download was a waste of tracker and client
resources. Investigations and answers for how to do this optimally are outside the scope
of this thesis project. However these questions are interesting with regard to future work
on the Loree system.

32

Figure 3.6: The figure shows how the amount of content sent by a server during peak
hour could look like (compare with figure A.1 in appendix A). The red line represents
how the throughput over time can look like when all viewers download the content from
the server. The black line, on the other hand, represents how the peak could be reduced
and the average throughput increased if peers download content in advanced and new
peers joining the network download the content from them.

33

Chapter 4

Measurements

In order to evaluate the Loree prototype, the author designed and performed a set of
experiments to evaluate Loree’s network performance and the behavior of the various
peers. In this chapter, these experiments along with the environment in which they were
carried out are described.

Before presenting the experiments, it should be noted that the Loree prototype was
designed to send chunks of data with a specified size, rather than media streams.
This was a fundamental design decision. This decision was made to simplify both
the implementation and experiments. Specializing the implementation to support any
specific type of data (such as streaming content) or varying size chunks of data is left
as future work. It is also worth mentioning that all communication and transfers are
handled with TCP, as this is the default transport protocol for Java RMI.

4.1 Test environment
The experiments were performed under ideal conditions (e.g. the computers were directly
connected by a switch) with one computer acting as both tracker and content server (this
machine will henceforth be referred to as the server) and two other computers which were
used as peers (see figure 4.1). The server was run on a Hewlett Packard (HP) Compaq
dc7900 Ultra-slim Desktop computer with an Intel Core2 Duo E8400 CPU running at
2.99 Gigahertz (GHz), 3.46 Gigabyte (GB) of RAM, a Intel 82567LM-3 Gigabit network
interface, and running a 32-bit version of Microsoft’s Windows XP (Service Pack 3)
operating system (OS). The peers (peer A and peer B in figure 4.1) were run on two
HP Compaq dc7800p Small Form Factor computors with Intel Core2 Duo E6750 CPUs
running at 2.66 GHz, 3.48 GB of RAM, Intel 82566DM Gigabit network interfaces, and
running a 32-bit version of Microsoft’s Windows XP (Service Pack 3) OS. The computers
were interconnected using an Netgear Prosafe 8 port 10/100 Mbps full duplex switch
model FS108 v2.

Most experiments were performed using three different sizes for each PartOfVideo
object: 256kB, 512kB, and 1024kB. The reason for considering these chunk sizes was
described in section 3.6.3. These sizes of PartOfVideo objects will henceforth be referred

34

to as chunks.
The experiments were performed using two episodes provided by kanal5play.se: a

media file of 323MB and one of 735MB (see section 2.4.4). These files are representative
of the content that would be used in a live implementation of Loree and are currently
used on kanal5play.se. Additionally, the Monitor thread in the tracker (see section 3.4.2)
was set to query peers every second.

Figure 4.1: The network setup for testing the Loree system. Three PCs interconnected
using a 100Mbps switch.

4.2 Delays
The overall delay can be decomposed into the parts shown in figure 4.2. The figure
shows how the Loree implementation operates from a programming perspective. The
actual transmissions on network packet level look different since Java RMI is built on
top of TCP which generates overhead traffic such as 3-way handshakes. How this affects
the Loree prototype is examined in sections 4.3.2, 4.4.2, and 4.5.

Some of these delays will be constant and some can even be approximated to zero.
t1-t0 is an example of both since the only operations in this time period are some
configuration parameters being loaded and set. The following delays will be constant
as the operations performed in these time intervals are the same each time, even if
the content differs: t3-t2, t8-t6, t13-t11, and t19-t18. The aforementioned delays are
only affected by hardware (such as CPU power and available memory). Other delays
are affected by underlying network variables such as packet loss, network delay, and
bandwidth. Retrieving remote objects (t2-t1 and t14-t13) and sending requests and
responses are directly affected the network delay. In our experiments t2-t1 can be
approximated as t2-t1 = round-trip time (RTT, ICMP echo) between client and tracker,
as the actual processing time on the tracker to grant the request of the remote object

35

can be approximated as zero.
Delays when communicating with the tracker (t4-t3, t6-t5, t9-t8, t11-t10, t20-t19,

and t22-t21) should be quite low (approximately the same as the network delay between
the nodes) since messages sent to and from the tracker are small - as they only contain a
minimal amount of information (see PartOfVideoInfo objects in section 3.6.3 and Video
objects in section 3.6.2). In a production environment the tracker will be placed on
high-performance servers with large amounts of available bandwidth. This means that
theoretically the delays which affect the total delay the most are the interactions between
peers (which are not content servers) as peers can be placed in random locations with
variable computer resources and available bandwidths. The most time consuming delay
should be retrieving a chunk (t18-t15) (even if the peer is acting as a content server).
In the following section, test results are presented which show how the initial delay is
affected by the chunk size.

36

Figure 4.2: Time line diagram showing the traffic between a client, tracker, and another
peer in the prototype implementation.

4.3 Initial delay
The initial delay is defined as the time from when a peer is started to the time the
first requested part of the content has been downloaded and registered with the tracker
(initial delay = t22 − t0). This time is measured starting from when a user request is
made for specific content and ends when the client has received the entire first part of the

37

requested content (i.e. the first chunk) and the client computer can start rendering the
content in order to allow the user to watch the requested content1. Although this metric
is not as critical in on-demand video as in live streaming, it is still an important aspect
of the user’s experience and should have an acceptable bounded value. The measured
values for this initial delay is described for each experiment below.

4.3.1 Ideal conditions

The following experiments were performed in ideal network conditions, according to the
setup described in section 4.1 without any additional simulated delays (such as will be
described in section 4.3.2).

4.3.1.1 Peer retrieving content from a Content Server

The first experiment was performed using a client (peer A in figure 4.1) to download a
file of 323MB directly from the content server, with no other peers in the system. The
experiment was repeated 10 times in order to get representative values. As can be seen
in table 4.1, the median initial delays ± standard deviation for the three different chunk
sizes were 320 ± 76.0ms, 593.5 ± 64.8ms, and 1015.5 ± 110.3ms.

Table 4.1: Performance of the Loree prototype, measuring initial delay in milliseconds
(ms) when a client downloads content of 323MB from a content server.

1Of course the client can start to render the content before the end of the chunk has been received,
but this introduces a risk that there might be an interruption in the playout of content if the remainder
of the chunk is not received in time.

38

The same experiment was then performed using an episode of 735MB. The results
from this experiment are presented in table 4.2. The median initial delays ± standard
deviation for the three different chunk sizes were 312 ± 110.1ms, 546.5 ± 57.8ms, and
1006.5 ± 50.3ms. One can observe that the initial delays when downloading content of
323MB and content of 735MB are statistically equal. This means the initial delay is
not affected by the size of the content nor the total number of chunks to be transferred.
However, the initial delay is directly related to the chunk size, since we have defined the
delay to include the time required to download the entire first chunk.

Table 4.2: Performance test of the Loree prototype, measuring initial delay in ms when
a client downloads content of 735MB from a content server.

4.3.1.2 Peer requesting content from another Peer

Another experiment involved having peer B download content from peer A after peer
A downloaded the content from the content server (see figure 4.1). That means there
are two peers in the tracker’s list of peers. However, for the sake of this experiment
peer A has been tweaked to be the optimal choice of the tracker when any peer requests
content, thus for every request from peer B the tracker will return a reference to peer A
(see discussion on Peer objects in section 3.6.1). These measurements were conducted
in the same way as the experiments in section 4.3.1.1.

The results when downloading content of 323MB are shown in table 4.3. The median
initial delays ± standard deviation for the different chunk sizes were: 316.5 ± 24.6ms,
554.5 ± 29.9ms, and 968.5 ± 48.1ms.

39

Table 4.3: Performance test of the Loree prototype, measuring the initial delay in ms
when a client downloads content of 323MB from a peer.

The same experiment was performed using the 735MB episode. The results are
presented in table 4.4. The median initial delays ± standard deviation for the three
chunk sizes were 328 ± 11.2ms, 570 ± 47.4ms, and 953 ± 740.5ms. One of the values
in table 4.4 for chunk sizes of 1024kB deviated strongly from the rest (3250ms). The
reason for this deviation is not due to the Loree prototype implementation, but because
during that experiment other processes on the computer were running and thus occupied
greater CPU and memory resources than for other experimental runs - thus leading to
greatly increased delay.

One can still observe that the median ± standard deviation when downloading content
of 323MB and 735MB are statistically the same, thus concluding that the initial delay
when downloading from a peer is not affected by the size of the content.

40

Table 4.4: Performance test of the Loree prototype, measuring the initial delay in ms
when a client downloads content of 735MB from a peer.

The values observed when downloading from a peer and from a content server
(see section 4.3.1.1) are essentially identical since their medians ± standard deviations
overlap. This means there is statistically no difference in initial delay between
downloading content from a peer in contrast to downloading from a content server.
Note that as there were no other peers active, we can not say what would happen if
the load on the content server were to increase due to it providing content to multiple
requestors. Nor can we indicate what the performance would be if there were multiple
requestors making requests of a single peer that was providing content to several peers.

4.3.2 With added network delay

In this section, the initial delay was measured using a simulated network delay of 50ms on
inbound and outbound packets to and from the client (yielding a total round-trip time of
100ms). This delay was simulated using Dummynet, a tool designed for testing network
protocols [57]. In this experiment, peer B downloads content from peer A. The download
process for downloading content from a content server and a peer is the same (and was
also shown to be statistically identical in section 4.3.1.2), thus only downloading from a
peer was tested in this experiment.

The results from this experiment are presented in table 4.5. The median initial delays
± standard deviation for the different chunk sizes were 3039 ± 462.5ms, 4711 ± 666.0ms,
and 7836 ± 91.8ms. One can clearly note that the initial delay has increased by tenfold
for each of the different chunk sizes. The initial delay has not fallen as much for the

41

larger chunk sizes since this is due to fewer chunks (factor of 2) being transfered. Thus
the amount of time spent fetching remote objects is reduced by a factor of 2.

Table 4.5: Performance test of the Loree prototype, measuring the initial delay in ms of
a client downloading content of 323MB from a peer. The client has a simulated delay of
50ms on inbound and outbound packets (total simulated round-trip time of 100ms).

However, the reason that the delay increases by such high values (compared to the
case without additional delay) is that Java RMI is implemented on TCP, which has
a substantial control overhead in comparison to UDP [58, 59]. An example is TCP’s
3-way handshake which, during the test, was observed to take 100ms before the last
acknowledgment (ACK) was sent to initiate the TCP connection. This was followed
by Java RMI protocol initialization which took another 100ms (i.e., a single round-trip
time. In addition, the throughput for downloading the first chunk is limited by the TCP
slow-start algorithm, which is now increased by the RTT [60]. The point being that
the network delay increases the Loree system’s delay substantially due to the control
overhead required by the TCP protocol. Experiments about how the network delay
affects the throughput of the network are presented in section 4.4.2.

4.4 Throughput
Throughput is measured as the average rate of successful message delivery over a
communication link. In these experiments, throughput is measured in kilobytes per
second (kBps) and calculated based upon the time it takes for a peer to fully transfer a
predefined sized file and to update the tracker with information about the content now

42

available from this peer (for these measurements we exclude peer initialization time,
t12-t0).

4.4.1 Ideal conditions

The experiments described in this section were performed under ideal conditions, i.e.,
without any simulated network delays (as will be examined in section 4.4.2).

4.4.1.1 Peer requesting content from a Content server

In the first throughput experiment a peer joins a server and only a single content server
is available in the peer network (i.e., the network consists only of peer A and the server
from figure 4.1). The results for downloading the 323MB file can be seen in table 4.6.
The median download throughput ± standard deviation for the different chunk sizes
were 11675.5 ± 37.5kBps, 11698 ± 44.9kBps, and 11694.5 ± 40.0kBps. Comparing these
results we see that the throughput is roughly constant and independent of the chunk
size.

Table 4.6: Performance test of the Loree prototype, measuring the throughput in kBps
of a client downloading content of 323MB from a content server.

The same experiment was performed using the 735MB episode. The results are
presented in table 4.7. The median download throughput ± standard deviation for the
different chunk sizes were 11701.5±27.7kBps, 11665.5±38.2kBps, and 11692±25.1kBps.
Again, the results show that the throughput is roughly constant and independent of the
chunk size.

43

Comparing these results to downloading content of 323MB, one can observe that
the median ± standard deviation are statistically the same, thus concluding that the
throughput when downloading content from a server is not affected by the size of the
content.

Table 4.7: Performance test of the Loree prototype, measuring the throughput in kBps
of a client downloading content of 735MB from a content server.

4.4.1.2 Peer requesting content from another Peer

In the next throughput experiment, a peer B joins the network to download the content
from peer A after peer A has finished downloading the content from the content server
(see figure 4.1). This means there are two possible peers to download the content from,
but peer A has been tweaked to always be the most feasible peer to download from, thus
the tracker will, in this experiment, always respond indicating that the peer to download
content from is peer A for each request for content made to the tracker.

The test results can be seen in table 4.8. The median download throughput ±
standard deviation for the different chunk sizes were 11418.5 ± 353.9kBps, 11367.5 ±
53.7kBps, and 11427 ± 41.9kBps.

44

Table 4.8: Performance test of the Loree prototype, measuring the throughput in kBps
of a client downloading content of 323MB from a peer.

The same experiment was performed using the 735MB episode. The results are
presented in table 4.9. The median download throughput ± standard deviation for the
different chunk sizes were 11259 ± 30.5kBps, 11313 ± 29.6kBps, and 11349 ± 113.2kBps.
Comparing these numbers to the results presented in section 4.4.1.1 one can observe
that there is statistically no difference between downloading from a peer compared to
downloading from a content server, and that the size of the content does not affect the
throughput.

45

Table 4.9: Performance test of the Loree prototype, measuring the throughput in kBps
of a client downloading content of 735MB from a peer.

4.4.2 With added network delay

In the following throughput experiment, the throughput was measured using a simulated
network delay of 50ms (in and out). In this experiment peer B downloads the 323MB
episode from peer A, with the exact same setup as in section 4.3.2. The results are
presented in table 4.10. The median download throughput ± standard deviation for the
different chunk sizes when a client downloads content from a peer were 951 ± 6.4kBps,
1051.5±17.1kBps, and 1216±37.4kBps. Here one can observe that the total throughput
has fallen by up to twelve-fold in comparison to the results observed in section 4.4.1.2,
and that the throughput difference when using different chunk sizes now differ from each
other (unlike the case in ideal network conditions, see section 4.4.1.2).

46

Table 4.10: Performance test of the Loree prototype, measuring the throughput in kBps
of a client downloading content of 323MB from a peer in the network. The client has a
simulated delay of 50ms on inbound and outbound packets (total simulated round-trip
time of 100ms).

As mentioned earlier in section 4.3.2, Java RMI utilizes TCP as its transport protocol
which adds additional overhead in the form of control traffic and additional delay due to
the specifics of the protocol. More specifically, TCP implements a slow-start congestion
control strategy to avoid sending more data than the network is capable of successfully
transporting to the final destination. This leads advantages in terms of reliability as
this reduces the chance of packets being lost in the network (in scenarios such as when
an intermediate router runs out of queue space) and thus reduces re-transmissions [60].
However, with a longer network delay this will lead to a slower start than would be the
case for a smaller round-trip delay as the time delay between each increase in window
size (and hence throughput) will increase with larger network delay.

This exposes a serious design flaw in the prototype implementation of Loree: The
throughput is limited by TCP flow control. This flow control limits the throughput in
order to reduce congestion and thus packet-loss. The expected throughput = 1.22∗MSS

RT T∗
√

L
,

where MSS is the Maximum Segment Size, RTT is the round-trip time between the
hosts, and L is the loss rate [61, page 316]. During the experiments the MSS was 1460
bytes, the RTT was 100ms, and L could be approximated to 10−4, thus resulting in
a maximal of 1.22∗1460

10−1∗
√

10−4 ∗ 8 = 1781200 ∗ 8 ≈ 14Mbps. The median throughput when
downloading from a peer with an added network delay of 100ms round-trip for the
different chunk sizes are approximately 7.8Mbit, 8.4Mbit, and 9.7Mbit. In contrast, the
median throughput for the chunk sizes in a network without delay are approximately

47

90.5Mbit, based on the values in section 4.4.1.2. This means that TCP flow control is a
big limitation for the throughput of the Loree network, but it also means that there are
a few Mbit missing in the throughput tests. This throughput is “lost” when the client,
peer, and tracker marshal the data into and out of the RMI encoding. It is clear, from
the results, that the smallest chunk size has the greatest loss. This is due to the smallest
chunk size having the largest traffic overhead. The main source of overhead comes from
the implementation decision to have the client make a new request to the tracker, and
fetch a new remote object for each chunk.

4.5 Control overhead
The control overhead metric represents the percentage of total traffic produced between
a Loree client and tracker that is not content data, in contrast to the total traffic.
This traffic includes requests for peers, content updates to tracker, monitor pings, and
overhead generated by Java RMI.

An experiment was performed under ideal network conditions (as specified in section
4.1) to measure the amount of network traffic sent between a client and tracker. The
same setup was used as in sections 4.3.1.2 and 4.4.1.2 where peer B downloads the
323MB sized content from peer A. Two instances of Wireshark (see section 2.4.3) were
run on peer B with one instance listening to the network traffic between peer B and
server, and the second instance listening to the network traffic between peer A and peer
B. The results are stated in numbers of bytes. The percentage of overhead traffic sent
to and from the tracker, based on the three different chunk sizes, are shown in figures
4.3, 4.4, and 4.5.

48

Figure 4.3: The percentage breakdown of traffic sent in bytes over the Loree network
when transferring a file of 323MB in 256kB chunk sizes. Note that Peer messages consist
of traffic sent between client and peer which includes both content and control traffic,
thus this figure primarily shows the percentage of control traffic to and from the tracker.

Figure 4.4: The percentage breakdown of traffic sent in bytes over the Loree network
when transferring a file of 323MB in 512kB chunk sizes. Note that Peer messages consist
of traffic sent between client and peer which includes both content and control traffic,
thus this figure primarily shows the percentage of control traffic to and from the tracker.

49

Figure 4.5: The percentage breakdown of traffic sent in bytes over the Loree network
when transferring a file of 323MB in 1024kB chunk sizes. Note that Peer messages
consist of traffic sent between client and peer which includes both content and control
traffic, thus this figure primarily shows the percentage of control traffic to and from the
tracker.

One can observe that the number of requests sent from peer B to the tracker is directly
related to the number of chunks the content consists of. The number of requests made
to a tracker (Y) is directly related to the number of chunks an episode is divided into
(X), as specified in equation (4.1). One extra request is made to the tracker during
initialization when the client initially requests a remote tracker object.

Y = X + 1 (4.1)

The figures also show the fraction of network traffic generated by the Monitor (Loree
query operations). During each of these query operations the Monitor (located on the
tracker) requests the local peer’s Sender object in order to verify that it is operational.
As can be seen in the figures, the Monitor generates minimal traffic (0.01%) during the
time it takes for peer A to download a file of 323MB from peer B under ideal network
conditions. It should be noted that the total amount of traffic generated by the tracker
will increase as the network delay increases. When the time for downloading content
increases, because the Monitor still queries peers every second, more query operations
will be generated during the increased download period. However, the amount of traffic
will still be minimal in comparison to the rest of the Loree traffic.

50

Chapter 5

Evaluation and Recommendations

The evaluation of the Loree prototype is presented in this chapter. Here I analyze and
discuss the measured results and recommend how the solution can be used.

5.1 Initial delay and Throughput
I begin by evaluating the initial delay when transferring content divided in chunk sizes
of 256kB, 512kB, and 1024kB in ideal conditions, as described in section 4.3.1. The
values show that the prototype system is unaffected by the size of the content and the
quantity of chunks. The average of the median initial delays under ideal conditions when
downloading from peer, content server, and downloading content of different sizes was
measured to 319.1 ± 6.7ms, 566.1 ± 20.7ms, and 985.9 ± 29.9ms. I believe these are
acceptable values for the initial delay, especially for the 256kB chunk size. It should
be noted that these values do not include the time to load the in-memory content to a
media player. Verifying that the total delay (including the time to load the content to
a media player) is acceptable is left for future work.

We can see, however, by the above results that the initial delay is directly affected by
the chunk size. This shows that dividing the content into variable sized parts can help
improve the user experience by improving performance such as initial delay. If the start
of an episode is divided into 256kB chunks then the client can start loading the content
to a media player with greatly decreased delay. The throughput results presented in
section 4.4.2 show that higher throughput can be achieved when using chunks of larger
size. Ergo, when a client has buffered a certain amount of smaller chunks it can continue
downloading larger chunks in order to reduce overhead traffic and increase throughput.

The results presented in section 4.4.1 show the network performance in ideal
conditions. If the tracker is optimized to group peers within geographical regions and/or
ISP’s access networks, RTT times above 100ms are not relevant since peers will be close
to each other. This would mean that the throughput of the Loree client would lie between
14Mbps and 90.5Mbps in a production environment, which is more than acceptable for
the majority of the content used on e.g., kanal5play.se (as described in section 2.4.4).
The main limitation for the throughput is the TCP flow control algorithm, as discussed

51

in section 4.4.2. This limitation hinders the scaling of the content quality sent in the
system. Thus, if more throughput is required in the future, the transport protocol for
RMI (TCP) should be reviewed or another transport protocol should be used. One option
is to increase TCP’s send & recieve windows by using the TCP window scale option,
thus increasing throughput for high bandwidth & high latency connections [62]. It must
be noted that the average connection speed of Swedish Internet users (as presented in
section 2.4.1) is 15.3Mbps downlink, meaning that the throughput shown in the above
results will not be limited by the viewer’s connection speeds.

However, in section 4.3.2 I present results which show that the initial delay is heavily
affected by the RTT between the client and peer. The median of the results reach
values of several seconds on a network with 100ms RTT, even for the smallest chunk
size. I believe that this is not acceptable for on-demand viewing. In comparison, Matris
and Striko’s P2P architecture, Daedalus, is built for live streaming with specific focus
on reducing initial delay determines an average delay “between when a user presses a
button to watch a specific channel until full video quality appears on the user’s screen”
of around 650ms in ideal conditions1 [6].

5.2 Playout buffer
A Spotify client with less than 3 seconds worth of data in it’s playout buffer is considered
to have a low amount of data and will switch to downloading content directly from
content servers (see section 2.3.6). By these standards, a 3 second playout buffer for
video + sound content of 800kbps + 96kbps would require 896kbps∗3seconds

8 = 336kB of
downloaded content, which is 80kB less than the smallest chunk size in Loree. One
256kB chunk would result in 256kB

896kbps
8

≈ 2.3seconds. Thus, we believe that one 256kB
chunk of content is enough to satisfy a playout buffer before switching to downloading
larger chunks. In a production environment, we can assume that most of the time a
client will have higher throughput from a content server than from a peer2. With this
assumption, and the performance results presented when higher RTT is introduced, I
suggest that the second chunk to be downloaded be of 1024kB size and also downloaded
from a content server, as this will add another ≈ 9.1seconds of playout buffer, before
safely being able to start downloading content from peers.

5.3 Overhead communications
The amount of overhead in bytes generated when communicating with the tracker is
presented in section 4.5. While the results show small effects in contrast to the traffic
sent between client and peer, it is still a time consuming process since it will add a delay
of 2 ∗ RTTtracker+ processing time (t12-t16 plus t22-t19 from figure 4.2) per download

1Note that this time includes the time to load the in-memory content to a media player.
2As is presented in the test results in the previous chapter, a higher throughput involves a lower RTT

between client and server.

52

thread3. Due to clients not keeping remote Sender objects in a local cache, a RTTpeer+
processing time is added to retrieve these objects. This becomes a total delay of 2 ∗
RTTtracker + RTTpeer + α, where α is the aggregated processing time required by the
client, peer, and tracker to process these requests. If α is approximated to zero, this still
leaves three RTTs between each chunk download. Although the results in section 4.4.2
show that the throughput in a 50ms delay network (100ms RTT) is adequate for most
of the content provided by kanal5play.se, it can still be improved by adding a few simple
optimizations. I recommend the following: Request multiple chunks in one request to
tracker, save remote peer Sender objects in a local cache so that they can be reused if the
tracker specifies the same peer to download from multiple times, and register multiple
chunks in one request to the tracker. These optimizations can reduce the delay of up to
2 ∗RTTtracker +RTTpeer + α for one chunk download.

5.4 The Achillies’ heel
However, the initial delay proves to be the Achillies’ heel of the Loree design. While
the prototype performs well in ideal conditions, the slow-start algorithm together with
the 3-way handshake lowers the performance of the system severely when additional
network delay is introduced. One optimization can be made in the client initialization
process: When the client asks the tracker for a Video object, the tracker replies with a
suitable content server to download the first chunk(s) from in addition to the requested
Video object. This optimization can save at least a RTTtracker. However, as long as
TCP is used as transport protocol, a large fraction of this delay will remain. To solve
this problem (and problems with throughput) I recommend tweaking TCP options by
building a custom socket factory for RMI. While this alternative may give up some of the
core features of TCP, such as reliability, it can increase throughput and reduce delays
- with our key focus being on reducing delay. In addition, building a custom socket
factory enables using different types of sockets for different connections [63]. A option
is to use sockets which result in low delay when downloading the initial chunks (such as
an UDP socket) and switching to TCP sockets once enough content has been buffered4

in order to increase reliability.

3However, since multiple downloads are run in parallel this delay is slightly reduced.
4Enough content to avoid risking interruptions in the playout.

53

Chapter 6

Conclusions and Future Work

This chapter begins by stating some of the conclusions that have been made based upon
the analysis in the previous chapter. This chapter concludes with some suggestions for
future work.

6.1 Conclusions
In this masters thesis, a new approach for on-demand television based on P2P technology
was presented focusing on the peak hours of viewing of on-demand content.

In Chapter 1, an introduction was given of the problem, together with the goals of the
project. Following this, in Chapter 2 background was given regarding IPTV and P2P
systems. The nature of on-demand viewing was discussed and the concept of on-demand
television was introduced. Additionally, related P2P systems were presented, together
with some of their advantages and disadvantages. The chapter concluded by providing
additional information which would be useful to the reader.

Chapter 3 described the proposed solution called Loree. First the overall solution
was presented, together with the technology it uses, followed by a functional overview of
how different nodes in the system operate and a more in-depth description of the nodes’
specifications. Finally, some of the classes used in the Loree system and reduction of
delay by predicting what viewers will watch were presented.

Chapter 4 discusses the measurements that were performed in order to evaluate
the design. This discussion began with a description of the environment used for the
experiments, then continues with a description of the metrics chosen to evaluate the
system along with the results of these experiments.

Chapter 5 discusses the results of the measurements with a focus on the possibilities
and limitations of the design and recommendations were made to improve the
performance.

While the peak hours of viewing specific content are lengthened (and the peak rate
of demand reduced) when on-demand viewing is possible, there are still patterns in the
times when users watch content provided by television networks. As discussed in Chapter
2 concerning the concept of on-demand television, television broadcasts continue to affect

54

the patterns of what viewers watch and when they watch it. For instance, editors of a
TV network can influence viewers to access a website to view specific episodes (or other
content) at certain hours.

With these peak hours in mind, Loree was designed to reduce the resources needed
during these peak hours in terms of the required bandwidth needed by the media content
provider’s server(s). By building a tree-hierarchy of peers, based on available content
and bandwidth, Loree can be used to lower bandwidth costs for media content providers
by taking advantage of these peers resources in order to distribute content to viewers.

While this master thesis report shows that the prototype implementation has
potential and that it can perform adequately in Swedish homes in terms of throughput, it
still has room for improvement - especially for the user experience in terms of initial delay.
Improvements need to be made and some key features need to be re-implemented before
this system could be run in a production environment. Based on the measurements and
analysis made in previous chapters, Loree’s integration with the TCP protocol needs
to be improved in order to supply a better user experience before other features are
implemented.

Notice that while this report covered many of the possible features of Loree, many
were not implemented or tested. The reason is that Loree as a complete system is
fairly large and complicated, and needs features such as optimal tree-building algorithms
which are a master’s thesis project themselves. A full implementation of all features and
extensive testing could not be conducted in the time frame available for this masters
thesis project. Therefore, in the following section the author presents potential features
and required enhancements that need to be implemented before Loree would be suitable
for use in a production environment.

6.2 Future work
Future work is divided into two parts: one part is a list of unimplemented features
or features that have not been tested in the prototype and the second part is a list
requiring further in-depth research and development (i.e. a list of possible follow-up
thesis projects).

6.2.1 Future implementation work

In order to make the Loree system fully operational and suitable for testing/running
with actual customers, the following should be implemented.

• A tree algorithm needs to be implemented according to the discussion in section
3.4.

• Today the client is implemented as a program which needs to be downloaded
and run separately on each viewer’s machine. However, in order to minimize the
amount of work needed by viewers and to reduce the amount of places things can
go wrong, the client should be integrated in a Flash player [64] (preferably the

55

existing kanal5play player and interface) and run completely in the background so
that viewers do not have to interact with the Loree system. This should be done in
a seam-less way so that regular viewers of the play sites (e.g. www.kanal5play.se)
do not notice the transition to a new download system. The viewers should be able
to continue watching the content they choose without having to focus on technical
details.

• Tests should be performed on larger scales, preferably with actual viewers, in order
to insure the stability and scalability of the system.

• Kanal5play.se precede their on-demand content with commercials [12]. Loree could
take advantage of the time between when a commercial is fully downloaded until the
playout of the commercial is completed. In this time-gap, Loree could potentially
buffer several chunks of content. The by far greatest advantage with this is that
viewers would not notice the poor initial delay the Loree system has in high delay
networks due to TCP’s 3-way handshake (as discussed in chapter 5).

• To simplify maintenance and operations, the tracker and content servers should
be equipped with a simple graphical extension. The tracker should be equipped
with a interface which shows the status of the network, what content is available
and by whom, tree structures in the network per content, number of viewers in
the system, etc. For the content server the interface should offer a simple way of
loading content into it and removing it, also this interface should show the current
load on the server in terms of how many peers are downloading the content and
at what speeds.

• The client needs to be optimized by keeping peers’ remote objects locally instead
of retrieving them for each request, thus saving time between downloads and
increasing throughput.

• The client should be optimized by requesting multiple parts from the same peer
in one request, thus reducing the number of requests sent to the tracker and the
total overhead traffic generated.

• Editors and other maintainers should be able to define which content will be under
high demand during which hours so that the system can distribute content to
viewers in the system that have their connection bandwidth available after finishing
downloading their own content. It should be investigated how and when clients
can download other content in order to help reduce load on the content servers
and to determine if it is worth having other peers download the content at all.

• Implement unique IDs for each client. This could be connected to the viewer’s
kanal5play.se ID in order to insure unique names.

• Implement varying sized chunks of data. This is specifically for when the client
loads its content, as currently the clients are not aware of the chunk sizes.

56

• Use variable-quality content in the chunks. For instance, have the first chunk(s)
contain content of lower bit-rate (i.e., lower quality) while the rest of the chunks
contain content with normal quality. Thus a larger playout buffer can be made
and/or the initial delay reduced.

• Connect the Loree system to a media player (such as VLC Media Player [65]) and
verify that the initial delay + the time to load the content to the player is within
acceptable bounds.

6.2.2 Future research work

Although the following could be accomplished in relatively simple ways, the author
believes each are important enough to be researched more deeply before being
implemented in the system in order to find more optimal solutions.

• Define a framework or operation for defining what parts of a specific item content
have a higher chance of being viewed immediately by viewers. See the discussion
in section 3.6.3.2. This might be based upon monitoring how viewers choose to
watch certain episodes (e.g. if they jump to a later point in the episode or if they
start from the start) and from this create patterns which clients can use to modify
the order in which they download content.

• Specify how editors can provide Loree with information about which content is
expected to be under high demand and at what time.

• Find out if it is possible to correlate PartOfVideo sizes with time between key
frames in H.264 CODEC.

• Compare performance with other popular P2P on-demand networks such as Joost.

• Port to Google App Engine or some other existing platform [66].

• Compare using persistent TCP connections and using a Monitor between Clients
and Tracker. The comparison should compare how the stability of the network (i.e.
tree architecture) and throughput are affected and how CPU power and memory
resources are consumed (see the discussion in section 3.4.1).

• Investigate if the initial delay can be reduced by implementing a custom socket
factory in the Java RMI [63].

• Investigate if it is worth having a client which is installed as a background process
on viewer’s computers which will save downloaded content for longer periods of
time (e.g. a week or two) and redistribute it to peers even if the owner of the
computer is not watching anything at the moment. This can be compared to the
Voddler client [13].

57

• Investigate when (and if) content should be downloaded by clients with available
bandwidth resources in order to further help in the distribution of content in the
network and help divert load from the content servers. This can also be used
for preemptive purposes where it might be predicted that the viewer will want to
watch multiple episodes in a series. At which point his or her client will download
the content in advanced. Note that this should be done after the client has finished
downloading the content which was requested by its own viewer! See discussion in
3.3.1.

• Optimize the tracker to group clients within geographical regions and/or operator’s
(ISP’s) access networks in order to reduce delay between peers.

58

Bibliography

[1] Cao Wei Qiu. A new Content Distribution Network architecture - Plenty-
Cast. Master’s thesis, Masters thesis, Royal Institute of Technology (KTH),
School of Microelectronics and Information Technology, IMIT/LCN 2004-
05, March 2004. http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/
040430-Cao_Wei_Qiu-with-cover.pdf.

[2] Ayodele Damola. Peer to peer networking in Ethernet broadband access
networks. Master’s thesis, Masters thesis, Royal Institute of Technology
(KTH), School of Microelectronics and Information Technology, IMIT/LCN 2005-
10, May 2005. http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/
050529-Ayodele_Damola-with-cover.pdf.

[3] Thomas Silverston and Olivier Fourmaux. P2P IPTV Measurement: A Comparison
Study. CoRR, abs/cs/0610133, October 2006.

[4] TVants. TVants. http://tvants.en.softonic.com/. (last visited: April 2010).

[5] Joost. Joost. http://www.joost.com. (last visited: March 2010).

[6] Athanasios Makris and Andreas Strikos. Daedalus: A media agnostic peer-to-peer
architecture for IPTV distribution. Master’s thesis, Royal Institute of Technology
(KTH), School of Information and Communication, COS/CCS, 2008-11, June 2008.

[7] Israel Cidon, Shay Kutten, and Ran Soffer. Optimal allocation of electronic content.
Computer Networks, 40:205â€“218, 2002.

[8] Thomas Silverston and Olivier Fourmaux. P2P IPTV measurement: a case study
of TVants. In CoNEXT ’06: Proceedings of the 2006 ACM CoNEXT conference,
pages 1–2, New York, NY, USA, December 2006. ACM.

[9] Gilbert Held. Understanding IPTV. Auerbach Publications, 1 edition, October
2006. ISBN-13: 978-0849374159.

[10] Sveriges television. SVT Play - Sveriges Television. http://svtplay.se/. (last
visited: March 2010).

[11] Tv 4. TV4 Play - TV när du vill. http://www.tv4play.se/. (last visited: March
2010).

59

http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/040430-Cao_Wei_Qiu-with-cover.pdf
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/040430-Cao_Wei_Qiu-with-cover.pdf
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/050529-Ayodele_Damola-with-cover.pdf
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/050529-Ayodele_Damola-with-cover.pdf
http://tvants.en.softonic.com/
http://www.joost.com
http://svtplay.se/
http://www.tv4play.se/

[12] Kanal5. Kanal5Play. http://www.kanal5play.se/. (last visited: March 2010).

[13] Voddler. Voddler Beta Home - Welcome to the Magical World of Movies. http:
//voddler.com/. (last visited: March 2010).

[14] YouTube. YouTube. http://www.youtube.com/. (last visited: March 2010).

[15] Google. Google Videos. http://video.google.com/. (last visited: March 2010).

[16] Ymir Vigfusson, Hussam Abu-Libdeh, Mahesh Balakrishnan, Ken Birman, Robert
Burgess, Gregory Chockler, Haoyuan Li, and Yoav Tock. Dr. multicast: Rx for data
center communication scalability. In EuroSys ’10: Proceedings of the 5th European
conference on Computer systems, pages 349–362, New York, NY, USA, 2010. ACM.

[17] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A Survey of Peer-to-
Peer Content Distribution Technologies. Survey, Athens University of Economics
and Business, December 2004.

[18] Napster LLC. Napster Free–Listen to free streaming music online. http://free.
napster.com/. (last visited: March 2010).

[19] Bram Cohen. BitTorrent.org. http://www.bittorrent.org/. (last visited: March
2010).

[20] Minaxi Gupta, Paul Judge, and Mostafa Ammar. A Reputation System for Peer-
to-Peer Networks. Technical report, College of Computing, Georgia Institute of
Technology, June 2003.

[21] MPS Broadband AB. Broadband video solution provider. http://www.
mpsbroadband.com/. (last visited: March 2010).

[22] MPS Broadband AB. MPS launches revolutionary Peer-to-peer technology for
distributing video online. http://www.mpsbroadband.com/about_news.asp, June
2009. News (last visited: June 2010).

[23] Pontus Eklöf, Sales Director US MPS Broadband AB. Interview on 2010.03.12.

[24] D. Ian Hopper. Open source Napster-like product disappears after re-
lease. http://archives.cnn.com/2000/TECH/ptech/03/15/gnutella/index.
html, March 2000. (last visited: March 2010).

[25] Marcus Bergner. Improving performance of modern Peer-to-Peer services. Master’s
thesis, Umeå University, Department of Computing Science, June 2003. http:
//www8.cs.umu.se/~bergner/thesis/thesis.pdf.

[26] Ericsson. http://www.ericsson.com/. (last visited: March 2010).

[27] Yensy James Hall, Patrick Piemonte, and Matt Weyant. Joost: A Measurement
Study. http://www.patrickpiemonte.com/15744-Joost.pdf, May 2007. School
of Computer Science Carnegie Mellon University.

60

http://www.kanal5play.se/
http://voddler.com/
http://voddler.com/
http://www.youtube.com/
http://video.google.com/
http://free.napster.com/
http://free.napster.com/
http://www.bittorrent.org/
http://www.mpsbroadband.com/
http://www.mpsbroadband.com/
http://www.mpsbroadband.com/about_news.asp
http://archives.cnn.com/2000/TECH/ptech/03/15/gnutella/index.html
http://archives.cnn.com/2000/TECH/ptech/03/15/gnutella/index.html
http://www8.cs.umu.se/~bergner/thesis/thesis.pdf
http://www8.cs.umu.se/~bergner/thesis/thesis.pdf
http://www.ericsson.com/
http://www.patrickpiemonte.com/15744-Joost.pdf

[28] Spotify AB. Spotify. http://www.spotify.com/. (last visited: July 2010).

[29] Maria Ringborg. Musiktjänsten Spotify lanseras. Dagens Nyheter, October 2008.
http://www.dn.se/kultur-noje/musik/musiktjansten-spotify-lanseras-1.
631484, (last visited:July 2010).

[30] Chris Salmon. Welcome to nirvana. guardian.co.uk, January 2009. http://www.
guardian.co.uk/music/2009/jan/16/downloading-music-spotify, (last vis-
ited:July 2010).

[31] Gunnar Kreitz. Spotify — Behind the Scenes. http://www.nada.kth.se/
~gkreitz/spotify/kreitz-spotify-kth_ict10.pdf, May 2010. Set of slides
shown at the Spotify presentation at KTH, ICT 2010.

[32] Wikipedia. BitTorrent Tracker. http://en.wikipedia.org/wiki/BitTorrent_
tracker. Wiki page modified 19 August 2010 at 20:31, (last visited: August 2010).

[33] Maggie Strömberg. Spotify öppnar för alla. Sydsvenskan, May
2010. http://www.sydsvenskan.se/kultur-och-nojen/article876807/
Spotify-oppnar-for-alla.html, (last visited:July 2010).

[34] Bredbandskollen. Bredbandskollen TPTEST. http://www.bredbandskollen.se/
statistik/?section=1&isp=0®ion=0&month=022010. (last visited: February
2010).

[35] S. Deering and R. Hinden. Internet protocol, version 6 (IPv6) specification. RFC
2460, Internet Engineering Task Force, December 1998.

[36] J. Postel. Internet protocol. RFC 791, Internet Engineering Task Force, September
1981.

[37] Geoff Huston and Takashi Arano. IPv4 address report. http://www.potaroo.net/
tools/ipv4/index.html. (last visited: March 2010).

[38] Steinar H. Gunderson. Global IPv6 statistics - Measuring the current
state of IPv6 for ordinary users. http://www.ripe.net/ripe/meetings/
ripe-57/presentations/Colitti-Global_IPv6_statistics_-_Measuring_
the_current_state_of_IPv6_for_ordinary_users_.7gzD.pdf, October 2008.
Set of slides shown at the RIPE57 meeting in October 2008.

[39] Oracle. Networking IPv6 User Guide for JDK/JRE 5.0. http://download.oracle.
com/docs/cd/E17409_01/javase/6/docs/technotes/guides/net/ipv6_guide/
index.html. (last visited: July 2010).

[40] TCPDUMP/LIBCAP public repository. http://www.tcpdump.org/. (last visited:
March 2010).

[41] Wireshark Foundation. Wireshark. http://www.wireshark.org/. (last visited:
June 2010).

61

http://www.spotify.com/
http://www.dn.se/kultur-noje/musik/musiktjansten-spotify-lanseras-1.631484
http://www.dn.se/kultur-noje/musik/musiktjansten-spotify-lanseras-1.631484
http://www.guardian.co.uk/music/2009/jan/16/downloading-music-spotify
http://www.guardian.co.uk/music/2009/jan/16/downloading-music-spotify
http://www.nada.kth.se/~gkreitz/spotify/kreitz-spotify-kth_ict10.pdf
http://www.nada.kth.se/~gkreitz/spotify/kreitz-spotify-kth_ict10.pdf
http://en.wikipedia.org/wiki/BitTorrent_tracker
http://en.wikipedia.org/wiki/BitTorrent_tracker
http://www.sydsvenskan.se/kultur-och-nojen/article876807/Spotify-oppnar-for-alla.html
http://www.sydsvenskan.se/kultur-och-nojen/article876807/Spotify-oppnar-for-alla.html
http://www.bredbandskollen.se/statistik/?section=1&isp=0®ion=0&month=022010
http://www.bredbandskollen.se/statistik/?section=1&isp=0®ion=0&month=022010
http://www.potaroo.net/tools/ipv4/index.html
http://www.potaroo.net/tools/ipv4/index.html
http://www.ripe.net/ripe/meetings/ripe-57/presentations/Colitti-Global_IPv6_statistics_-_Measuring_the_current_state_of_IPv6_for_ordinary_users_.7gzD.pdf
http://www.ripe.net/ripe/meetings/ripe-57/presentations/Colitti-Global_IPv6_statistics_-_Measuring_the_current_state_of_IPv6_for_ordinary_users_.7gzD.pdf
http://www.ripe.net/ripe/meetings/ripe-57/presentations/Colitti-Global_IPv6_statistics_-_Measuring_the_current_state_of_IPv6_for_ordinary_users_.7gzD.pdf
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/net/ipv6_guide/index.html
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/net/ipv6_guide/index.html
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/net/ipv6_guide/index.html
http://www.tcpdump.org/
http://www.wireshark.org/

[42] Google. On2 Technologies. http://www.on2.com/. (last visited: July 2010).

[43] Google Inc. Google closes on2 technologies acquisition. Google investor relations,
February 2010. http://investor.google.com/releases/2010/0219.html.

[44] Wikipedia. VP6. http://en.wikipedia.org/wiki/VP6. Wiki page modified 16
July 2010 at 18:04, (last visited: July 2010).

[45] Wikipedia. H.264/MPEG-4 AVC. http://en.wikipedia.org/wiki/H.264/
MPEG-4_AVC. Wiki page modified 9 July 2010 at 18:04, (last visited: July 2010).

[46] Apple Inc. H.264 Frequently Asked Questions. http://www.apple.com/br/
quicktime/technologies/h264/faq.html. (last visited: July 2010).

[47] Apache. Apache Subversion. http://subversion.apache.org/. (last visited: May
2010).

[48] Oracle. Java SE at a Glance. http://java.sun.com/javase/index.jsp. (last
visited: May 2010).

[49] Oracle. Remote Method Invocation Home. http://java.sun.com/javase/
technologies/core/basic/rmi/index.jsp. (last visited: May 2010).

[50] The Eclipse Foundation. Eclipse.org home. http://www.eclipse.org/. (last
visited: May 2010).

[51] Qusay H. Mahmoud. Advanced socket programming. Oracle, Sun Developer
Network, December 2001. Section ’RMI vs. Socket and Object Serialization’.

[52] SeungJun Bang and JinHo Ahn. Implementation and performance evaluation of
socket and rmi based java message passing systems. Software Engineering Research,
Management and Applications, ACIS International Conference on, 0:153–159, 2007.

[53] Sun Developer Network. Lesson: All About Sockets. http://java.sun.com/docs/
books/tutorial/networking/sockets/index.html. (last visited: May 2010).

[54] Sun Microsystems. Serializable (Java 2 Platform SE v1.4.2). http://java.
sun.com/j2se/1.4.2/docs/api/java/io/Serializable.html. (last visited: May
2010).

[55] J. Postel. Internet Control Message Protocol. RFC 792 (Standard), September
1981. Updated by RFCs 950, 4884.

[56] Bittorrent Protocol Specification v1.0. http://wiki.theory.org/
BitTorrentSpecification#Notes. Wiki page, revision 158 (last visited: 21
June 2010).

[57] Luigi Rizzo. Dummynet home page. http://info.iet.unipi.it/~luigi/
dummynet/. (last visited: August 2010).

62

http://www.on2.com/
http://investor.google.com/releases/2010/0219.html
http://en.wikipedia.org/wiki/VP6
http://en.wikipedia.org/wiki/H.264/MPEG-4_AVC
http://en.wikipedia.org/wiki/H.264/MPEG-4_AVC
http://www.apple.com/br/quicktime/technologies/h264/faq.html
http://www.apple.com/br/quicktime/technologies/h264/faq.html
http://subversion.apache.org/
http://java.sun.com/javase/index.jsp
http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp
http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp
http://www.eclipse.org/
http://java.sun.com/docs/books/tutorial/networking/sockets/index.html
http://java.sun.com/docs/books/tutorial/networking/sockets/index.html
http://java.sun.com/j2se/1.4.2/docs/api/java/io/Serializable.html
http://java.sun.com/j2se/1.4.2/docs/api/java/io/Serializable.html
http://wiki.theory.org/BitTorrentSpecification#Notes
http://wiki.theory.org/BitTorrentSpecification#Notes
http://info.iet.unipi.it/~luigi/dummynet/
http://info.iet.unipi.it/~luigi/dummynet/

[58] J. Postel. Transmission Control Protocol. RFC 793 (Standard), September 1981.
Updated by RFCs 1122, 3168.

[59] J. Postel. User Datagram Protocol. RFC 768 (Standard), August 1980.

[60] W. Stevens. TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast
Recovery Algorithms. RFC 2001 (Proposed Standard), January 1997. Obsoleted
by RFC 2581.

[61] James F. Kurose and Keith W. Ross. Computer Networking: A Top-Down
Approach. Addison-Wesley Publishing Company, USA, 5th edition, 2009.

[62] V. Jacobson, R. Braden, and D. Borman. TCP Extensions for High Performance.
RFC 1323 (Proposed Standard), May 1992.

[63] Oracle. Creating a Custom RMI Socket Factory. http://download-llnw.oracle.
com/javase/1.3/docs/guide/rmi/rmisocketfactory.doc.html. (last visited:
August 2010).

[64] Adobe. Adobe - Adobe Flash Player. http://get.adobe.com/se/flashplayer/.
(last visited: August 2010).

[65] Volunteers. VideoLAN, Free streaming and multimedia solutions for all OS! http:
//www.videolan.org/. (last visited: March 2010).

[66] Google Inc. Google App Engine. http://code.google.com/intl/sv-SE/
appengine/. (last visited: July 2010).

[67] Kanal5 AB. kanal5.se - Underhållningsnyheter, TV-tablåer och WebbTV. http:
//kanal5.se/. (last visited: March 2010).

63

http://download-llnw.oracle.com/javase/1.3/docs/guide/rmi/rmisocketfactory.doc.html
http://download-llnw.oracle.com/javase/1.3/docs/guide/rmi/rmisocketfactory.doc.html
http://get.adobe.com/se/flashplayer/
http://www.videolan.org/
http://www.videolan.org/
http://code.google.com/intl/sv-SE/appengine/
http://code.google.com/intl/sv-SE/appengine/
http://kanal5.se/
http://kanal5.se/

Appendix A

Viewing patterns of Kanal5play
viewers

The following data was received internally from Kanal5 AB [67]. The statistics were
analyzed to find a pattern of how viewers watch television and use the network’s on-
demand website kanal5play.se [12], i.e. to see if there is a explicit pattern for peak hours
on the on-demand website.

An episode of "Ballar av stål" was shown 21:00 on the 21th of March 2010 on Kanal5
(the television channel). After the episode ended on TV, the episode was published
on Kanal5play1. A pattern can clearly be seen in Figure A.1 where viewers watch the
episode on-line just after it was broadcast on television. This clearly shows a peak hour
of episodes after they are viewed. Interestingly, during the same day even earlier episodes
of the show are viewed, as can be seen in Figure A.2.

Both figures clearly show that viewers access the on-demand website to view the same
episode shortly after it is released and broadcast on television.

1http://www.kanal5play.se/program/play/ballaravstal-s02e02

64

http://www.kanal5play.se/program/play/ballaravstal-s02e02

Figure A.1: Number of page loads for the TV show "Ballar av stål" during the 21th of
March 2010. The episode was shown on TV during the time interval 21:00-21:55. These
statistics show that most viewers accessed the play site just after the show was broadcast
on TV (with the majority of accesses taking place between 22:00-24:00).

Figure A.2: Pages entered related to the show "Ballar av stål" on the day episode two
of season two was shown (s02e02 in the above list).

65

www.kth.se

TRITA-ICT-EX-2010:211

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background
	Goals of this master's thesis project
	What this thesis project does not cover

	Related Work
	IPTV
	Video on-demand
	The nature of Video on-demand

	Content Distribution Networks
	Peer-to-peer
	P2P explained
	MPS Broadband
	Gnutella
	Daedalus
	Joost
	Spotify

	Additional relevant background information
	Swedish home network speeds
	IPv6
	Testing of P2P systems
	Episodes
	CODECs

	Loree: A system designed for On-demand P2P television
	Loree overview
	Resources used for development
	Prototype implementation using Java RMI

	Key features of Loree
	Client and Content Server
	Client operation
	Client implementation
	Content Server

	Tracker
	Tracker implementation
	Monitor

	Modules
	Sender module
	Downloader
	Tracker module

	Classes in Loree
	Peer class
	Video class
	PartOfVideo and PartOfVideoInfo classes
	Size of PartOfVideo
	Order of downloading content

	Downloading other relevant episodes

	Measurements
	Test environment
	Delays
	Initial delay
	Ideal conditions
	Peer retrieving content from a Content Server
	Peer requesting content from another Peer

	With added network delay

	Throughput
	Ideal conditions
	Peer requesting content from a Content server
	Peer requesting content from another Peer

	With added network delay

	Control overhead

	Evaluation and Recommendations
	Initial delay and Throughput
	Playout buffer
	Overhead communications
	The Achillies' heel

	Conclusions and Future Work
	Conclusions
	Future work
	Future implementation work
	Future research work

	Bibliography
	Appendix Viewing patterns of Kanal5play viewers

