
Examiner:  Supervisors: 
Prof. Seif Haridi  Ass. prof Vladimir Vlassov 
Teleinformatics, KTH  Teleinformatics, KTH 
  M. Sc. Carl-Axel Eriksson 
  Lecando AB 

    

 

 

 

 

A Project Management module 
by 

Magnus Claesson, KTH  

and 

Jan Harada, UTH 

 

 

 

 

 

 

 

 

 

 

Stockholm, December 2000 



A Project Management Module 

 
 

 
    

 



A Project Management Module 

 
 

 
    

 

Abstract 
A module intended to facilitate distributed information sharing on project basis have been 
designed and implemented for a Knowledge Management System (KMS) server application.  
The KMS server application is written for a  Java  2 Enterprise Edition (J2EE) server, using 
a three-tier application with a logical separation of the three tiers. 

• A presentation tier where  Java Server Pages and servlets are used to provide a 
dynamic and flexible user interface. 

• A business logic tier where Enterprise JavaBeans (EJB) components are responsible 
for handling the business logic and delegating data storage transactions to the data tier. 

• A data tier to store persistent data where other EJB components are responsible for the 
storage of data. 

The module consists of basic functionality needed to administrate the project,  a distributed 
file handler with support for a directory structure, file owner permissions, exclusive write 
locks and version handling. A newsreader is also incorporated in the module. 

The objectives while developing this module have been to develop a scalable module that can 
perform well under high workloads, as well as providing a well-designed user interface. A 
small test tool have been developed in order to conduct load tests on the server application.  



A Project Management Module 

 
 

 
    

 

  



A Project Management Module 

 
 

 
    

 

 

1 INTRODUCTION ............................................................................................................1 
1.1 BACKGROUND .............................................................................................................1 
1.2 PURPOSE OF THIS PROJECT ...........................................................................................1 
1.3 STRUCTURE OF THE REPORT.........................................................................................2 

2 OVERVIEW OF EXISTING TECHNOLOGIES FOR DISTRIBUTED 
APPLICATIONS......................................................................................................................3 

2.1 ARCHITECTURES OF WEB SERVERS ..............................................................................4 
2.2 THE JAVA 2 ENTERPRISE EDITION ...............................................................................5 
2.3 SOFTWARE ERRORS AND TESTING ................................................................................9 
2.4 JAVA SERVER PAGES .................................................................................................11 

3 PROJECT MANAGEMENT SYSTEMS.....................................................................15 
3.1 CHARACTERISTICS OF PROJECT MANAGEMENT SYSTEMS ...........................................15 
3.2 OVERVIEW OF THE MARKET.......................................................................................15 
3.3 CONCLUSIONS ...........................................................................................................18 

4 ARCHITECTURE OF THE PROJECT MANAGEMENT MODULE....................21 
4.1 DESIGN ISSUES TO BE CONSIDERED ............................................................................21 
4.2 USE CASES ................................................................................................................23 
4.3 OVERVIEW OF THE PROJECT MANAGEMENT MODULE.................................................24 
4.4 THE PROJECT MANAGEMENT MODULE .......................................................................25 
4.5 THE NEWS READER ....................................................................................................31 
4.6 USER INTERFACE .......................................................................................................32 
4.7 WEB BASED DISTRIBUTED AUTHORING AND VERSIONING ........................................33 

5 IMPLEMENTATION....................................................................................................35 
5.1 DESIGN ISSUES...........................................................................................................35 
5.2 DEVELOPMENT ISSUES...............................................................................................37 
5.3 CLASSES AND PACKAGES ...........................................................................................39 

6 LOAD TESTING............................................................................................................41 
6.1 TOOLS .......................................................................................................................41 
6.2 THE TEST BED ............................................................................................................43 
6.3 TEST STRATEGY.........................................................................................................43 
6.4 TEST RESULTS............................................................................................................44 
6.5 CONCLUSIONS ...........................................................................................................49 

7 CONCLUSIONS AND FUTURE WORK....................................................................51 
7.1 SUMMARY .................................................................................................................51 
7.2 SUGGESTIONS FOR FUTURE WORK..............................................................................51 

8 APPENDIX .....................................................................................................................53 
8.1 REFERENCES..............................................................................................................53 
8.2 EXAMPLES FROM THE USER INTERFACE .....................................................................55 

 

 



A Project Management Module 

 
 

 
    

 

 

 

 

                



A Project Management Module 

 
 

 
   
 1   

 

1 Introduction 

1.1 Background 
Lecando is a company that targets itself on the Knowledge Management System area of the 
market, and Lecando is developing products to facilitate administration and presentation of 
education components over intra- and Internet. Lecando’s early technical platform was a 
flexible system, written entirely in Java and the architecture of the system was closer to the  
traditional two-tier application model than the three-tier model. Scalability of the system was 
substandard mainly due to two reasons; first that clustering of servers was not possible, and 
second that the relational database architecture was not optimized for performance. All 
dynamic presentation of content required calls to A relational database. The performance of a 
relational database constructed with conceptual schemas as a model, with no consideration 
with regard to performance is often poor. 

Since the server application could not be clustered over different machines it lead to the 
situation that the possibility to improve performance via upgrading of hardware was 
extremely costly. To keep the competitive edge the technical platform have been rewritten 
entirely, using new technologies and developed  with demands regarding scalability as well as 
all the inherited demands of the early system. This technical platform can be divided into 
modules where every module has a logically separable subset of responsibilities and 
functions. Examples of such modules are a chatserver with a couple of applets for the user 
interface or a course administration module.  

Lecando wants to develop a module for project management for the new technical platform, 
the main objective of the module shall be to facilitate interproject communication and 
information sharing rather than project control and time management. 

1.2 Purpose of this project 
The purpose of this project is threefold. 

• Evaluation of market: to examine a few typical and widespread project management 
tools on the market with regard to the availability of tools facilitating interproject 
communication and information sharing, choose some core functionality that must be 
implemented in the project management module and make suggestions on suitable 
functionality to be developed after the end of this master’s project. 

• Implementation: implement a project management module using the technologies that 
assure a scalable and expandable project management module that can work as a base 
to add new functionality to. 

• Evaluation of module: to perform tests that will confirm or deny the scalability of the 
module under different workloads. 

There are only few project management systems on the market that can be distributed in the 
meaning that they support administration of projects where the members can be 
geographically distant. Of these we have not been able to establish any project management 



A Project Management Module 

 
 

 
   
 2   

 

systems that build on a technical platform that supports true distribution of the application 
components.  

This is the true purpose of this master’s project; to develop a project management module 
where the administration of the project as well as the underlying technical platform can be 
distributed. 

1.3 Structure of the report 
The remainder of this report is organized as follows.  

Chapter 2 presents some of the existing technologies that are available for development of 
distributed application development.  

Chapter 3 define two different types of project management systems, summarize key 
functions that are common for project management systems and present a few project 
management systems on the market. 

Chapter 4 discuss design issues to be considered while developing distributed applications 
and presents an conceptual overview of the project management module we have developed 

Chapter 5 discuss the implementation and issues related to the development process 

Chapter 6 describe the load tests of the project management module that we have developed,  
presents the results of the load tests and the conclusions that we could draw from them. 

Chapter 7 present our conclusions regarding reaching of our goals and how we got there. It 
also presents suggestion on how to improve our project management module. 



A Project Management Module 

 
 

 
   
 3   

 

2 Overview of existing technologies for distributed 
applications 

A distributed system is a system where users invokes methods without  being aware of that 
they reside on several machines. In a distributed system, the existence of autonomous 
computers can be transparent to the user. The user can type a command to run a program and 
it runs. It is up to the operating system to select the best processor, to find and transport all 
input files to that processor, and put the results in the appropriate place. In other words, the 
user of a distributed system is not aware there are multiple processors involved; to the user, it 
looks like one virtual uniprocessor. Allocation of jobs to processors and files to disk, 
movement of files between where they are stored and where they are needed, and other 
system functions must be automatic. 

Developing and implementing distributed systems is not only time consuming but also 
complicated. It would be desirable to separate the methods handling the communication 
between the machines, and the business oriented methods, as well as objectifying the business 
methods in order to make them easy for a developer to understand, and implement. Object 
orientation provide means to make a complex problem concrete and easier to interpret.  

Enterprises of today need quickly to develop and deploy custom application systems that are 
secure, flexible, scalable and reusable. It is imperative to reach data from remote locations, 
and the system need to provide reliability and concurrency without significant time loss. The 
demands has lead the development to distributed objects, which separate the business logic 
from the network issues, and allow objects on one machine to be used by client applications 
on different machines. This is accomplished by using a three-tier application, where the first 
tier handles the presentation, the second tier handles the business application; resources such 
as databases resides on the third tier. 

The distributed object architecture is based on three parts: the stub, skeleton, and the object 
server. The stub and skeleton are responsible for making the object server, which resides on 
the middle tier, look as if it was running locally on the client machine. The object server 
residing on the middle tier is an instance of an object from the running machine. The skeleton 
is an extension of this instance to the stub, which resides on the client machine. The protocol 
responsible for this network communication is called a remote method invocation protocol 
(RMI protocol). When a client invokes a business method on the stub, the request is streamed 
through the RMI protocol to the skeleton, which in turn parses the stream in order to find 
what business method is requested. The skeleton then invokes the corresponding business 
method on the server. The value returned from the request by the server is then sent back by 
the skeleton to the stub. Finally the stub presents the value requested to the client application 
as if it had been processed locally. 

The JavaTM 2 Platform, Enterprise Edition [9] fulfills these needs. It provides a single 
standard for server- and client-side multi-tier applications, where the client tier provides user 
interfaces, the middle tier provides client services as well as business logic, and the third tier 
provides persistent data management. 



A Project Management Module 

 
 

 
   
 4   

 

2.1 Architectures of web servers 
We hereby use the definition of a web server as an application that provides access to web 
components that are pointed to by an Uniform Resource Locator (URL). 

2.1.1 Static web pages 
In the late 1980’s the Internet increased its rate of expansion and on a conceptual level it was 
mostly used for file transfers. Client software was developed that could present textfiles 
directly which allowed the administrators of  a server to put information regarding the files. In 
the early 1990’s the technique to present graphical files in the browser was part of the 
growing interest in the internet. The browser still was almost only used for static file transfer. 
Soon the need for dynamic presentation became apparent, and different techniques evolved, 
including javascript and CGI-script mentioned below.  

2.1.2 Two-tier architecture 
From the need of persistence and context-dependent presentation CGI-script emerged. CGI-
scripts made possible to distinguish two conceptually different mechanisms; presentation 
including logic operations for the presentation and storage with logic operations for storage. 

This application model is called a two-tier architecture, where the first tier is presentation and 
the second is the storage. Often the storage is done by a relational database. A web server 
application handles a request from the client by invoking procedures on the web server which 
may affect the presentation.  

A large number of web server applications of today use this two-tier architecture. However, as 
the size and complexity of web server applications have grown it has become apparent that 
this model has severe disadvantages. Even if the underlying technique is partly object-
oriented this model spoils some of the benefits with object-orientation, such as hiding of data 
and delegation of methods to the data container. A required change in the storage tier often 
makes it necessary to make changes in the presentation layer which makes the maintenance 
and development of large systems cumbersome and error-prone. In many implementations the 
client’s request  forces the starting of a new server process to handle the request. This allow 
the server to handle requests concurrently, but decreases performance and scalability. Figure 
2.1 [22] shows a schematic representation of the two-tier model. 

 
Figure 2.1 The two-tier model. A new server process is started to handle the request. 



A Project Management Module 

 
 

 
   
 5   

 

2.1.3 Three-tier architecture 
In recent years an improved model have become widespread; the three-tier architecture [5]. It 
separates three conceptually different tiers and these are presentation, business logic and 
storage. Ideally this will make it possible to make changes in the one tier without being forced 
to make changes in other parts of the system.  

A request is handled at the web server through invocation of the proper business logic, which 
in turn alters and/or retrieves data according to the request, sends them to the presentation 
layer where the data is presented via a response to the client. 

This is not a perfect solution but offers more hiding of the methods operating on the data than 
the two-tier architecture. A schematic description of the three-tier model can be viewed in 
Figure 2.2 [23]. 

 
Figure 2.2 The three-tier model. (GUI is an acronym for Graphical User Interface). 

2.2 The Java 2 Enterprise Edition 

2.2.1 Overview 

SUN has developed three specifications, the Java 2 Enterprise edition (J2EE), the Java 2 
Standard Edition and the Java 2 Micro Edition. The Java 2 Micro Edition is intended 
mainly for devices with small processors, such as Personal Digital Assistants.  

The Java 2 Standard Edition specifies the core classes, interfaces and packages of the Java 
language. J2EE is an extension of this specification, J2EE adds the functionality needed to 
develop and deploy a web server architecture, such as servlets and other webserver specific 
classes and interfaces.  J2EE is the collection of a number of specifications, the core being 
Enterprise Java Beans [7] and there are a number of other specifications that the J2EE 
specification comprises of; among these the most fundamental are the Java Servlet 
Specification [10] , the Java Server Pages specification [11], the Java Naming Directory 



A Project Management Module 

 
 

 
   
 6   

 

Interface specification, J2EE Compatibility Test Suite, and the Java Message Service 
specification. 

A J2EE server is an implementation of the J2EE specification. There are multiple benefits of 
using an J2EE server. 

• Focus for developers: the J2EE application model separates levels of responsibility, the 
application developers can concentrate on implementing business logic and presentation, 
and the J2EE server takes care of the machine specific details. 

• Portability: it is possible to write and compile the code once and then run it on different 
platforms with machine specific software. This includes the J2EE platform security model 
as well making it possible to maintain implemented security constraints across different 
platforms. 

• Broad industry adoption: there are a number of third-party implementation of J2EE 
servers giving the application developers a better possibility to choose an implementation 
fitting their needs. 

• Scalability: a J2EE server following the specification shall be able to distribute the 
components over different machines. 

2.2.2 Enterprise JavaBeans, EJB 

2.2.2.1 Overview 
The Enterprise Java Beans specification is the core of the J2EE specification. As a part of the 
J2EE specification, it features the same benefits as those of the J2EE specification. 

An EJB server allows the application developer to create and maintain persistent data in a 
distributed environment, the underlying management of data can be handled by a relational 
database management system, but it can be handled by other data management techniques.  

Thus the EJB server allows the application developers to develop business logic, without 
having to indulge in system-level details of the complex issues of distributed and concurrent 
data handling. EJB components are entirely written in Java, and these components are named 
beans. There exists two main types of beans, entity beans and session beans. 

2.2.2.2 Entity Beans  
Entity beans represents persistent business data in an application, and can be seen as rows in a 
database. A good rule of thumb is that entity beans can be seen to model business concepts 
that can be expressed as nouns in a business application [6]. Entity beans describe both state 
and behavior, and allow developers to encapsulate data and rules associated with specific 
concepts. This makes handling of data associated with the concept secure and consistent. 
Entity beans can represent data in a database in several different ways. An entity bean can 
depending on its attributes span from a single row to an entire table. 

Entity bean allows shared access from multiple clients. This is handled by the J2EE server’s 
support of transaction management. Changes to an entity bean means changes to the database. 
This objectifying of data greatly simplifies tasks, such as changing state of a bean. Instead of 



A Project Management Module 

 
 

 
   
 7   

 

writing SQL directly to the database, one can use a method through the bean. In addition, the 
objectifying of data also promotes software reuse, and simplifies development. 

There are a few questions that should be confirmed in order to decide whether to model a 
business object as an entity bean or not. 

• Representing persistent data – does the state of a business object needs persistent 
storage this suggests using entity beans? 

• Providing concurrent access by multiple clients – does the business objects need to be 
available among multiple clients? 

• Grouping together - do the business object represent a single logical record of data? 
This can be a single row or an entire table in a database. 

• Do the business object need support for robust, persistent data management ? 

There are two types of entity beans. 

• Container-managed persistence beans have their persistence managed automatically 
by the EJB container. The container knows how a bean instance’s fields are mapped in 
the database and takes care of all database methods automatically. 

• Bean-managed persistence beans: they do all this work explicitly. The developer has 
to create all SQL code needed to manipulate the database. The EJB container informs 
the bean instance when it is safe to commit work, but provides no other help. The bean 
instance conducts the persistence work itself.  

2.2.2.3 Session Beans 
Session  beans are used to implement the business object that represents business logic. The 
state of such an object initializes on behalf of a single client, and can therefore not be shared 
among other clients. A sesssion bean is a logical extension of the client program running, and 
contains information specific to one user. In contrast to entity beans, session beans does not 
directly represent shared data in a database, but instead define methods to manipulate data. 

They are components that allow clients to perform tasks without being concerned with the 
details that make up the tasks, which allows developers to manipulate the bean without 
impacting on the client program code. There are two kinds of session beans, stateful and 
stateless session beans.  

Stateful sessions beans do not directly represent data in a  persistent database, but they can 
access and manipulate data on behalf of a client. They are designed to maintain a 
conversational state on behalf of a client, therefore business-oriented logic should be modeled 
as stateful session beans. Since they represent non-persisting object they are destroyed when 
the client’s session is over – or when the server suffers a crash. 

Stateless session beans are designed only to provide server-side behavior. They contain no 
user-specific data, but instead the EJB architecture provide ways for a single stateless session 
bean to provide services for multiple clients. It is a business object that provide generic 
services to multiple clients. Such an object does not need to maintain any client specific state 
information, so the same bean instance can be reused to service other clients. Since it is 



A Project Management Module 

 
 

 
   
 8   

 

reusable and not tied to a specific client it can requires fewer system resources which may 
enhance scalability of the application. 

2.2.2.4 Implementation of beans 
In order to implement an enterprise bean, one is obligated to define two interfaces and at least 
one class: the home interface, the remote interface, and the bean class, and/or a primary key 
class, depending on whether the bean is an entity bean or not. 

The remote interface defines the methods available for a client interacting with an enterprise 
bean. For every method in the remote interface, there is a corresponding method in the bean. 

In other words, it defines the set of business methods available to the clients. This interface 
allow the client to perform the following methods on a reference to an enterprise bean 
instance: 

• Obtain the home interface. 

• Remove the enterprise bean instance. 

• Obtain a handle to the enterprise bean instance. 

• Obtain an entity bean instance’s primary key. 

All these methods are business oriented in the way that they all represent an action, as 
naming, setting, and getting.  

The enterprise bean’s home interface defines the methods for the client to create, remove and 
find EJB objects of the same type. This interface allow clients to do the following. 

• Create a new enterprise bean instance. 

• Remove an enterprise bean instance. 

• Retrieve meta-data for the enterprise bean through the interface. The interface is 
provided to allow application assembly tools to discover the meta-data information 
about the enterprise bean at deployment time. 

• Obtain a handle to the home interface, which provides the mechanism for entity beans. 
The home interface of an entity bean provides methods for finding existing entity 
beans instances within the home. A client that knows the primary key of an entity 
object, can obtain a reference to the entity bean by invoking a finding method on the 
entity bean’s home interface. 

The primary key provides a pointer to the database, and therefore only entity beans need a 
primary key. 

These classes provide methods for creating, removing, finding, and using a bean. The last 
class needed for a implementation is the bean class. The bean class implements the bean’s 
business methods. However the bean class does not implement the bean’s remote- or home- 
interfaces, but it does need methods matching the signatures of the methods defined in the 
remote interface. It share responsibility for two specialized categories of methods with the 



A Project Management Module 

 
 

 
   
 9   

 

remote interface: the create- and finder- methods. Furthermore it must have methods 
corresponding to some of the methods in the home interface. 

The bean object resides in the middle tier, and handles the business methods requested by the 
client, through its home- and remote- interface. The container surrounding the bean is 
responsible for interactions with the server. A schematic presentation is shown in Figure 2.3 
[23]. 

 
Figure 2.3 Description of interaction between a client and the server   

2.3 Software errors and testing 

2.3.1 Problems with software development and testing 
When developing software it is important to have the ability to deliver stable and error-free 
products. In general the complexity of a system increases with increased functionality and this 
makes it difficult to make a reasonably correct estimate of time and resources that is needed to 
develop the product. 

The traditional way of developing a software system has been to do a thorough specification 
and modelling, and then it is up to the development team to implement this specification. As 
timeschedules often are tight, testing can be sketchy at best on a component level. 

 In the end phase of a development process when all of the components have been assembled, 
the system is tested and often this testing is done by people separated from the development 
team.  

As there is a vast number of possible states in a software system, and commonly a large 
number of possible  test cases as well, high quality of the end product – where high quality is 
defined as a low number of errors – normally cannot be guaranteed. Instead quality can be 
viewed as probability function of the tests, where an increased number of tests where errors 
have been found increases the probable quality. Since it is not feasible to test the entire 
system the tests have to be selective, and test cases are often constructed based on typical user 
scenarios. Empirical experience suggests that there normally is a linear correlation between 
size of an application – where size is measured in lines of code of the application – and the 
number of software errors have implemented while creating the application. This has lead to 
the somewhat pragmatic approach of some software development companies, that they will 



A Project Management Module 

 
 

 
   
 10   

 

not release a commercial product until a certain number of precalculated errors have been 
found during the test phase. However, the correction of found errors can be a tedious task in a 
large and complex system, on a distributed system it can be virtually impossible to recreate 
the state that triggered the error. It can also be difficult identifying which components of the 
system that are responsible for the error. Often the programmers have forgotten details about 
their work, and do not have the overview of the system to be sufficiently certain how a error 
correction will affect the integrated system, and usually the time-schedule is even more hard 
pressed. Ad-hoc error corrections often introduces new errors which makes another test phase 
necessary, and so forth where the number of errors hopefully diminish exponentially.  

Often programmers get involved into new projects which produce error reports and their 
fixing an unwelcome increase in workload. During these circumstances the risk increases for 
a lowering in quality of the work, and documentation of the system and its components often 
is neglected.  

Since software development progress towards projects in the magnitude of large-scale 
industry projects, large efforts have been made world-wide to address the problem of errors in 
software. It is quite easy to construct methods and software for component testing and quite 
complex to construct methods and software for application testing. Therefore component 
testing is more widespread than the latter and there exists numerous ways to do it, from ad-
hoc to systematic. 

2.3.2 JUnit – component testing  
In Java errors normally are more infrequent than in other languages, much thanks to Java’s 
systematic exception handling, clever compiling warnings and Java’s total lack of 
programmer handled memory pointers. However, errors are always unwelcome and JUnit 
[12] is a systematic way to decrease them. 

 JUnit allows the developer to set up a test class for every class in the application, and then 
construct tests on method level in the test classes. JUnit then supplies the framework needed 
to automate the process of running the tests at compiletime. 

How to use JUnit can briefly be summarized in the following steps: 

• First create classes and their methods. 

• For every class that is constructed a similarily named test class is created. 

In every test class the testing consists of three stages: 

• Instantiating of the class. 

• Calling methods with values for which the output is known. 

• Comparing actual results with the known output. 

These tests should be run after compilation, preferably as the last line in a compilation 
makefile. This way, at compiletime an OK or an error message is displayed.  

JUnit also facilitates refactoring of code, ie when you want to optimize or rewrite your code 
you can rely somewhat on the tests assuring you that your methods work as intended. 



A Project Management Module 

 
 

 
   
 11   

 

Since only a minor amount of time has to be sacrificed in order to use JUnit there is no reason 
not to use them, or a similar test procedure. But it is important to point out a few key issues 
regarding the use of JUnit. First it requires imaginative test construction in order for the tests 
to be of any use at all. Second, whenever changes to the API has to be done, changes to the 
tests must be done accordingly. Third and most important, no tests of the user interface is 
possible. You can test interaction between several components if you have written service 
classes that use several components, and this is a major plus,  but still many errors can be 
implemented during the construction of the user interface. These errors – although usually 
trivial to correct - imply low quality to the end user. 

JUnit takes a little extra development time to incorporate in the development process, but we 
strongly recommend the use of any systematic component testing tool, such as JUnit, in order 
to improve software development quality.  

2.4 Java Server Pages 

2.4.1 History of dynamic presentation on the web 
In the early days of the Internet only static contents could be presented on the web. The need 
to create dynamic content presentation pushed the development forward. Common Gateway 
Interface, CGI, was the first attempt. It provides the ability to retrieve non-static data for a 
client request, managed by an application that runs on the server. CGI-scripts can be written 
in a multitude of languages supported by the server. CGI-script was used for a diversity of 
functions, such as hit counts on web pages. Performance was poor and maintenance of state 
was problematic. With the creation of Java in the mid 1990s browsers started to support 
Javascript [2]. Javascripts are small interpreted programs in a language that has similarities to 
Java, and Javascripts are embedded in the HTML [1] pages. The ability to download and to 
run bytecompiled Java programs with strict security restrictions also became widespread and 
a norm for browsers. Poor performance, stealable code and the slight awkward procedures in 
handling these modules created a demand for new solutions. 

 From the early versions of the SUN’s Java implementations servlets are supported, and it is 
simply put compiled Java programs running on the server, carrying out tasks that is related to 
the clients requests. Here performance is also an issue – not more than a few thousands of 
Java threads can be created on even powerful servers of today, and in some implementations  
a new thread is created for every client. This puts a limit on the number of clients that can log 
on to the server systems that are built with Java servlets.  

More powerful, truly distributed languages  have been developed as an alternative to Java, a 
good example is the Oz language [14]. Oz supports extremely lightweight threads and creates 
a thread at 1/60th of the time to create a thread in SUN’s implementation of Java. It is also 
possible to create over 100.000 threads on a standard desktop PC. Unfortunately the market 
does not always support the best solutions but often the most widespread one, and the 
dominance of Java in server solutions today is almost total. 



A Project Management Module 

 
 

 
   
 12   

 

2.4.2 The Java Server Pages approach 
Servlets are compiled Java code that is running on the server, returning created HTML pages 
as response to requests. When a change is done to the servlet it has to be recompiled, put in 
the correct package and the servlet engine has to be restarted, often a tedious task. 

Java Server Pages is a specification, and a JSP page can conceptually be visualised as 
specification or a template for a servlet. JSP can use the full functionality of the Java 
language, as it is compiled to a servlet during runtime. It can instantiate EJB components, 
access them and present data from them to a browser. JSP gets converted into Java Byte Code 
and is essentially a interpreted language. JSP uses Inner Classes or Declarations for separation 
of code. The JSP page accesses the web server through dynamic linking and there is no need 
to write the request to a pipe or file, starting a program on the server and reading back the 
output. The state can easily be kept by the Servlet host.  

The idea is to embed Java code in the HTML pages instead of embedding HTML in servlets. 
When a fresh JSP page is requested the JSP page compiler generates a servlet, the servlet is 
then run on the client computer to present HTML code in the browser. Requests for data is 
taken care of by direct access to other components such as EJB. 

With the SUN’s reference implementation a JSP server is supplied that takes care of the 
creation of servlets based on the corresponding JSP files. 

The order of processing requests and responses when using JSP is briefly put: a client makes a 
request for a JSP file to the JSP web server, see Figure 4.3, the JSP web server forwards the 
request to the JSP file, the JSP file typically retrieves data from other components such as 
EJB components or servlets and then sends back a response object to the JSP web server 
which in turn sends the processed JSP page as response to the client. The JSP specification 
does not allow posting to a JSP page even though some JSP server supports this, in order to 
keep an application portable, servlets must be created to handle posted data.   

 
Figure 4.3 Description of a request for a JSP file 

2.4.3 Java Server Pages tags and syntax 
Unlike HTML JSP tags are case sensitive, here are a few of the most common tags, assuming 
that Java is used as the scripting language. 
 
<%@ page import=”javax.servlet.HttpServlet” %> 

Page directives apply to the entire JSP source file, it can among others be commentary or for 
specification of imported packages  



A Project Management Module 

 
 

 
   
 13   

 

<% include file=”test.gif” %>  

The include directive embeds the contents of another file in the main JSP file 
<%=printThis( ) %> 

The “=” is a shorthand for the Java “out.println” and the evaluated expression is cast to a 
string and streamed to the browser 
<% // any valid Java code %> 

Declarations, expressions and any other valid Java code, as can be expected declaration must 
preceed use of the declarated object. 

Code embedded in a JSP page will be compiled and read by the J2EE server, neglecting the 
HTML code structure. This can be considered a bit awkward at first but works in a simplistic 
and straightforward fashion. When using conditionals in  a JSP file, the output of HTML will 
be controlled by the conditionals, as can be seen in the following example: 
<HTML> 
<BODY> 
<% 

final  int alwaysPositive=1 
if(alwaysPositive>0)  
{ 

%> 
<H1>This will always be displayed</H1> 

<% 
} 
else {  

%> 
<H1>This will never be displayed</H1> 

<% 
  } 
 %> 
</BODY> 
</HTML> 
 

Even if these lines of code have been indented to ease reading, it is easy to understand that the 
code in JSP is not user-friendly to read or create. When the amount of code increases it 
becomes hard to get an overview of the code since it is intervened with the HTML tags, and 
no good texteditor modules are available to help the developer with indentation or syntax 
checking for JSP pages.  

Since the JSP page is compiled to a servlet during runtime, it is not possible to detect standard 
compile-time errors in a JSP page during compiling and deployment of an application. Thus 
JSP syntactic errors are detected runtime and this makes JSP pages a bit awkward to use, on a 
semi-large application this deployment may take fifteen minutes with the standard java 
compiler from SUN. Great care must be taken to check the JSP pages before deployment to 
avoid vasting valuable development time due to minor spelling errors.  

It is important to note that JSP pages is actually a shorthand for servlets, it is not essentially a 
way to create HTML pages with some dynamic presentation. Instead of writing a servlet that 
can stream HTML to a client one writes a HTML page with embedded Java code that will be 
compiled into a servlet runtime when the JSP page is first accessed. However moot this point 



A Project Management Module 

 
 

 
   
 14   

 

might seem, it may serve as a comfort to the developer that it normally is faster to create and 
maintain JSP pages than it is to use Java servlets.  
 One should not confuse JSP with JavaScript, JavaScript is interpreted in the browser and JSP 
pages are servlets that return HTML and possibly JavaScript. 

The JSP specification from SUN claims that one of the advantages with JSP pages is that they 
can be altered without having to stop the server application and recompile it, only the altered 
JSP pages are recompiled during runtime. This is not necessarily so in all J2EE servers. Since 
the JSP pages are compiled at runtime it is not possible to detect any errors during 
deployment of the application, if the compiler is not typechecking JSP pages explicitly. If it 
does not, it can be a timeconsuming task to work with JSP pages. 



A Project Management Module 

 
 

 
   
 15   

 

3 Project management systems 

3.1 Characteristics of project management systems 
There is a great diversity regarding functionality among the project management systems 
since they are aimed at different parts of the market. However, it is possible to distinguish and 
characterize some key concepts that are implemented in many project management systems. 
Among these key concepts are access restriction of project information, the possibility to 
share and distribute files, tools for handling what has to be done and what has been done by 
whom, calendar function with possibility to book project meetings and so forth, a messaging 
system for project specific messages, resource management tools such as time reporting  and 
budget monitoring tools. 

In spite of the similarities of project management systems, it is possible to distinguish two 
types; one that aims for facilitation of project control and the other that focus on information 
sharing. 

3.1.1 Project management systems with focus on control of resources 
This type of project management system give the user possibility to control and monitor the 
resources of the project, typically the user is the project manager with responsibility to 
balance the work amongst the resources available and to be able to keep track of costs, 
calculate time consumption of tasks and schedules for the individual resources and for the 
project as a whole. This is the most commonly used commercial type of project management 
tools, with a clear objective to facilitate monitoring of the economic factors of a project. 

Little is done to facilitate the information sharing and the actual distributed work of the 
project and as we believe this is either disregarded or facilitated by other system components. 

3.1.2 Project management systems with focus on information sharing 
Twenty years ago, it was hard to believe that a number of volunteers could make a 
competitive threat to multinational companies investing large sums of money into research 
and development. With the growth of the Internet, a new type of software development has 
evolved. Unpaid part-time developers making a synergistic effort to produce software that can 
match those of even the largest of software companies, such as Microsoft and SUN. Existing 
management systems are the result of this new type of  software development. 

3.2 Overview of the market 
There are numerous applications that can be used to enhance the control and administration of 
projects. There are only a few project management systems that focus on information sharing, 
the reason for this might be that there is not a great need for such a product. Possibly it lies in 
the unproved hypothesis that for being commercially successful, a project should not endorse 
personal initiatives regarding the time planning and delegation, but instead centralize the 
control and administration. 

 



A Project Management Module 

 
 

 
   
 16   

 

3.2.1 Project management systems with focus on control of resources  
To get insight in how different project management systems of this kind meet demands of 
today, the following project management systems were examined: 

• Microsoft Project [18] 

• Microsoft Outlook [19] 

On the market of today there is a number of systems developed for the facilitation of project 
management, many of them aimed for users involved in large and serious projects where it is 
important to maintain and share much information about the project’s status. In this type of 
projects, the project managers can afford to spend time learning to use a complex system and 
spend time assembling and sharing information regarding the project, since the alternative 
might be an ill-run project wasting valuable resources.  

The applications we have examined are commercial and with different objectives, intended 
for different parts of the market. All efforts to manage projects comes with a cost – the 
overhead for administration of tasks and users is the price that has to be paid regardless of 
how it is performed. To be able to perform this master’s project in a professional manner we 
plan to use a project management system to keep the project on track, and to get a chance to 
evaluate and learn as much as possible from this project. At first we were concerned that the 
overhead would not be worth the benefits but now we have chosen to use Microsoft Project 
[18] for this task. And we believe that as a bonus we will get a good idea of the end-user’s 
need and demands of a project management system. 

3.2.1.1 Microsoft Project 
Microsoft Project by Microsoft is a project management system which facilitates for project 
managers, with emphasis on timeplanning, delegation of tasks and resource management. The 
task management functions are powerful and calculates the completion dates of sequential and 
parallel tasks based on delegation and completion criteria specified. When creating tasks and 
linking them, ie task A has to be completed before task B, the project manager can specify 
criteria for the task such as “no later than”. Tasks can have duration times and can be assigned 
to resources. Resources are identified by name and have work schedules, they can be assigned 
cost per hour for the assigning. A resource is typically a human but can be anything, such as 
servers or rented equipment.  

The project managers can easily monitor workload on a resource and what tasks are assigned 
for the resource every day of the project. The project manager specifies an end date or a start 
date, assigns tasks for the resources and during assigning the time plan will be created 
dynamically, either showing what date that the project has to start on or which date that it has 
to be finished. It is not meant to specify a start date and an end date and then use the 
application to find out how hard the project must be driven to be completed on time. In 
project management systems the term “milestone” is often used. It represents the completion 
of a phase in the project and in Microsoft Projects milestones can be incorporated as tasks. 
The task list is expandable in the hierarchies so the project manager can view only the 
relevant tasks for the current planning. The cost for tasks and the project is updated 
dynamically so it is possible to track costs continually during the project. 



A Project Management Module 

 
 

 
   
 17   

 

It is possible to make report printouts of the numerous graphs and charts and one can include 
Office component documents in the graphs. We believe that this product is  a tool for 
facilitating the running of projects with a strict hierarchy; there are numerous functions for the 
project manager to plan, track and delegate time and resources. It is possible to publish 
chosen parts of the project on the web and a email function can be used for interchanging 
status or project information. This is an application and not a distributed system aimed to 
facilitate information sharing between all the members of the project, there is no support for 
such things as authentication of members or to give them access to edit parts of the project 
planning. Nonetheless we believe that it is a versatile tool for small to medium sized projects 
where the project manager wants to have total control of the administration of the project.  

3.2.1.2 Microsoft Outlook 
Microsoft Outlook is another product in the Office family by Microsoft. All Office products 
are integrated to a certain extent. They share much of the user interface and base functionality. 
This is an advantage if one is used to and content with their user interface and otherwise a it 
might be a certain learning threshold for those who does not want the automation of services 
that one is used to have control of. Having said that, Outlook is an application that can handle 
emails and that is probably how most users use it. It does not actually qualify as a project 
management system as it is mainly intended for single users who has a need for managing 
meetings, keeping track of contacts and creating non-hierarchichal tasks.  

But it supports intranet usage and then it is possible to share calendars and book meetings 
with other users and then it, as we believe, can be of great help during projects to facilitate 
intraproject information. Used in this way it is product demanding discipline from its users to 
avoid chaos, but being simplistic and intended for non-power users perhaps this is not the 
right product to be used for all potential small and loosely handed projects. 

There have been several grave security flaws on Microsoft products, most of them have been 
related to the Visual Basic scripting support for emails and documents. This support can be 
turned off to increase security and Microsoft always supplies security fixes with great speed. 
Nonetheless, for a serious, expensive or sensitive project the security issue have to be 
considered regardless of which Microsoft product is being used. Microsoft have a long 
tradition of making software intended for standalone computers and came late into the 
competition for Internet products, perhaps related to low knowledge of web based issues 
among their employees. They have not, in our opinion, addressed the security flaws to their 
full extent for strict commercial reasons. With or without errors in their products Microsoft 
can sell vast amounts of software due to their position on the market, and it costs money to 
find potential security breaches. 

3.2.2 Project management systems with focus on information sharing 
There are not many implementations of this type of project management systems We have 
examined one implementation. 

• Projectplace.com [20] 



A Project Management Module 

 
 

 
   
 18   

 

3.2.2.1 Projectplace.com 
Projectplace.com is a web based client-server project management system developed by the 
swedish company Projectplace International AB. Projectplace.com allow project members 
connecting to a server via a browser, sharing project information and administrating it. The 
clients pay for a file space on the server, this file space is shared among the members of the 
project. Each member of a project is authenticated by a login and password. All the data 
stored is encrypted and all the interaction with the client is encrypted with the HTTPS SSL 
encryption, if the client software supports this. 

Projectplace provides a file manager where files and their meta-data can be stored on the 
webserver. This file manager also supports version handling, where an old version can be 
retrieved from the webserver. Another feature is template documents, ie base documents with 
correct format and information to begin with. This feature seems a bit redundant as it can 
easily be incorporated in the project via agreements, but nonetheless the feature exists. 

Users of the Projectplace.com system can use a standard browser without any plugins and 
this, sets limits to the user interface. The file handling logic can be improved if the client 
accepts and downloads a file transfer applet that allows the client to modify the files without 
saving them locally, the files have to be downloaded to the client computer nevertheless. 

3.3 Conclusions 
There are quite a few project management systems available on market today, and most of 
them do not provide distributed project management, ie allowing seamless geographic 
separation of clients. 

The base functionality is quite similar between the different types of project management 
systems, regardless of implementation. Among the most common are facilitation of 
distributed messaging, similar to emails and newsgroups, task lists and calendars, schedule of  
meetings, administration of project resources and control of economy and cost. 

But most project management systems are focused on aiding the manager of the project. If 
there are more members within the project, they can be viewed as resources that can be used 
and controlled during the project span.  

Enterprises of today often separate their workforce in projects, this modularization of the 
workforce is useful when outside consultants are being hired for specific purposes, since the 
employees are used to work in different project teams. Considering this it is a bit surprising 
that truly distributed project management systems, that focus on decentralization and 
information sharing are not more common. 

With regard to the aim of enhancing the existing system of Lecando by a module facilitating 
interproject communication and information sharing, existing systems for project 
management have been evaluated. Microsoft Outlook and Microsoft Project do not provide 
any possibility to manage distributed projects in an acceptable fashion as they are not aimed 
for this purpose. Both of these systems provide limited support for intranet usage and thereby 
requiring the project to be administrated on a local workstation or within  an intranet. 
Projectplace.com allows a project to be distributed, but cannot fulfill the requirements of 
Lecando. First, it is not a module that can be incorporated into the existing system of 



A Project Management Module 

 
 

 
   
 19   

 

Lecando. The internal handling of data structures and security can not seamlessly be handled 
in Projectplace.com. Second, to our knowledge it is not built on a technical platform that 
fulfill the demands regarding performance and scalability that is specified by Lecando. 

Therefore the decision was made to develop the project management module described in the 
following chapters. 

 

 



A Project Management Module 

 
 

 
   
 20   

 



A Project Management Module 

 
 

 
   
 21   

 

4 Architecture of the project management module 
This chapter presents the conceptual architecture of the project manager module that we have 
developed and implemented. We define a module as an application component that is 
depending on other application components in order to work. Our project management 
module for example, is relying on other components to take care of user data creation, storage 
and modification. 

There are several design issues to be considered for development of a distributed application, 
the key issue being distribution. The project management module we have developed, 
hereafter referred to as the PM module, can be described to be distributed in two ways. First, 
it allow the members of a project created in the PM module to share information in a 
distributed environment, ie the project members can be geographically separated and still 
share information in a structured and controlled environment. Second, the underlying 
technology allow the project data and software components to be distributed over more than 
one processor and machine. 

The PM module provides three conceptually separated parts. 

• The core administration of a project such as adding and removing of members, 
controlling project specific attributes, handing over responsibilities of a project, as 
described in chapter 4.4. 

• The file manager, a file system where project members can upload and share files in a 
directory structure, lock files to prevent deletion and access older versions of uploaded 
files, as described in chapter 4.4.1. 

• The news reader where members of the project can post messages with or without file 
attachments. These messages can only be read and replied to by other project 
members. The news reader is described in chapter 4.5. 

4.1 Design issues to be considered 

4.1.1 Availability 
One of the key aspects of a web server of today is its availability since more and more of the 
web servers of today perform business critical operations, and interruptions in these 
operations will have a severe effect on the enterprise.  

Availability can be defined and measured in different ways, such as percentage of the time a 
web server can respond to requests or number of server breakdowns per some time unit. There 
are however a chain of components that must work in order for a client to be able to receive a 
response from a web server, eg the clients ISP, the web servers ISP, the web servers LAN, 
often a multitude of software components on the web server. For most enterprises, little can 
be done about the external factors and many ISP of today have no guarantees of QoS 
regarding their availability. 



A Project Management Module 

 
 

 
   
 22   

 

4.1.2 Fault tolerance 
Much can be said concerning the concept of fault tolerance. Fault tolerance in general can 
regard different abilities of a system; it can be that the ability to identify and disregard corrupt 
input or to handle different faults in the system in some appropriate manner, eg. to save non 
corrupted data so that the state of the system can be restored after a crash recovery. 

In a distributed system fault tolerance is regarded on a non-centralized basis, ie the ability for 
different parts of the distributed system to be able to perform some functions even if another 
part of the system has ceased to function. Distributed fault tolerance is difficult to implement 
and almost always use time-outs to detect crashed parts of a system. These time-outs have to 
be tune to avoid accidental restarts of functioning parts, ie system components with an 
increased response times due to high workload. 

4.1.3 Concurrency 
Concurrency means the ability for a system to handle multiple users in a correct fashion, ie 
the ability to allow simultanous modification of shared data in a manner so that the altered 
state of the system reflects a state which is possible if the modifications were made 
sequentially. Updates of data is often referred to as transactions, and correct transaction can 
be offered by almost every implementation of a relational database system, but the 
performance drawbacks between the different models of transaction management that are 
implemented differs quite a lot. 

4.1.4 Scalability and performance 
Web server performance can be measured in a variety of ways, one simple definition of web 
server performance is the average response time, where low numbers indicate high 
performance. Scalability is the ability to increase load factors, such as database size and 
number of requests, without severely decreasing performance. Scalability can also be the 
possibility to keep performance via plugging in more hardware in a parallel fashion, ie not via 
purchase of super computers but rather via installing more processors of similar type. 

For a web server application the performance has increased in importance. When broadband 
Internet services have become an abundant resource, at least in Sweden at the end of year 
2000, tolerance for long wait times have decreased among the Internet community. Web 
servers where there is some sort of session state maintained, eg a login, and where there is 
data that should be accessed and modifiable by the users, often suffer from bad performance. 

There seem to be little understanding regarding the fundamental differences of application 
software and distributed system software, and the difficulties of maintaining a distributed 
state in a multi-user environment, and the performance drawbacks it brings along is not 
common knowledge. 

One of the biggest bottlenecks of stateful distributed systems is the underlying database. The 
conceptual schemas that computer science students are taught at database courses are simple 
to grasp and construct, and fitting for applications with a small number of users. For multi-
user, distributed systems the underlying data handling must be carefully planned, where 



A Project Management Module 

 
 

 
   
 23   

 

performance optimization and reducing of data handling overhead must be considered in 
detail. 

4.1.5 Security 
Computer system security is almost always a compromise between several issues such as 
user-friendliness, performance and cost [4]. Often when security is mentioned cryptography is 
the topic, but cryptography should only be used to enhance the security of a system, it cannot 
be the only implementation of security for a system to be regarded as safe. What also must be 
kept in mind is the concept of security as a chain of links, where a weak link will jeopardize 
the entire chain no matter how strong the other links are. Many of the security breeches and 
leaks are made by employees that are trusted with passwords etc. A weakness that often is 
exploited by attackers are wrongful setup and installation of security components, such as the 
operating systems. 

Security has a tradition of being overlooked in the Internet industry, and even if there exists 
security methods and systems that will make brute-force attacks more or less computationally 
infeasible, installing of such systems still is no guarantee for having a secure system. 

4.1.6 Session 
When a client interacts with a server, when the server needs information from the client, there 
are two general ways to handle this. 

• The client can send all requested information every time and the server maintains no 
client-specific information 

• The server can hold the client-specific data that is consistent during request or client-
specific data that requires user affirmation to change. 

The latter of these two ways is called a session. Sessions might have an impact on server 
performance, positive or negative, depending on several factors such as request workload, 
number of sessions kept, potential bottlenecks in the system. Generally speaking, there might 
be a gain in performance using client sessions if the client-specific data the server requires 
takes much time for the server to get hold of. Often sessions are kept in the servers RAM 
memory and is therefore is quick to access, but this memory often is a precious resource and 
can be run out of if not kept under surveillance. 

4.2 Use Cases 

4.2.1 Actors and Use Cases 
We have used the UML [3] Use Case model to define our functional demands on the module, 
for readers not familiar with the object-oriented modelling of UML a brief introduction to Use 
Cases might be appropriate. 

Users of a system are referred to as Actors, modelled visualized in the model by a simple line 
picture of a human. Actors are external entities – people or other systems - who interact with 



A Project Management Module 

 
 

 
   
 24   

 

the system to perform a conceptual operation. This interaction is called a Use Case, visualized 
in the model by an oval with text describing the interaction.  

Use Cases are a simple way of defining what operations a system shall be able to perform, 
and it is easy to grasp for non-developers. The problem with Use Cases is to decide on what 
level of detail the Use Cases shall be constructed. It seems that the general agreement is to 
keep Use Cases on a conceptual level and not create hundreds of Use Cases for low level 
functions.  

4.3 Overview of the project management module 
The implementation is that of a J2EE application, it incorporates the standard request 
handling, transaction management, response handling of a J2EE enterprise application. The 
dynamic presentation of the response is partially done in the JSP pages. Unfortunately some 
of the user-interaction had to be done using javascript, and this is an effect of being forced to 
use the semi-static client that a browser represents. Figure 4.1 shows a schematic 
representation of the three-tier architecture. 

 

P ro ject P ro jectF ile P ro jectM essag e

P ro jectS ervice P ro jectF ileS e rvice M essag eS ervice

Presentation  lay er

Service  lay er

Persisten ce lay er

(JSP /Servle ts/H T M L )

(Sess ion  beans)

- au tho riz a tion  and  lo gic

(E n tity  beans)

 
Figure 4.1 Overview of the three-tier architecture 

As mentioned in the beginning of this chapter, the project manager module has three distinct 
parts. 
• A representation of the project, which is the container of data related to the project such as 

memberlist etc. 

• The file manager, which maintains the directory structure and files for the project.  



A Project Management Module 

 
 

 
   
 25   

 

• The news reader where members can read and post messages. 
In Figure 4.2 an UML [3] diagram of the interaction within and between these three parts are 
shown. 

P ro jec t

M e m b e r

C a ta lo g u e

F i le V ers io n

*

P ro jec t -
m an ag e r

1

*

**

*

*

1
1

1

*

1

N ew sread e r

M essag e

*

1

1 *

1 *

Figure 4.2 Conceptual UML class diagram of the project manager module 

4.4 The project management module 
The conceptual functionality of the project module was formed with the help of Use Cases. 
The Use Cases we constructed for the entire project module is shown in figure 4.3 and  Table 
4.1. More fine-grained Use Cases are presented for the file manager in chapter 4.4.1 and the 
for the news reader in chapter 4.5. 

  



A Project Management Module 

 
 

 
   
 26   

 

Handle own 
versions

Leave project

Handle own 
locks Project member

Terminate project

Create project

Relieve project
(must be accepted)

Handle all locks

Add member

Remove member

Handle all versions

Change project

Read and write messages

Project manager

User

 
Figure 4.3 Use Cases for the entire project management module 

The Use Cases for the entire project module are given a brief description in Table 4.1 

Table 4.1 Description of the Use Cases for the entire project management module 
Actor Interaction Description 
User Create project Create a project and become the   

project manager 
Project manager Add member Add any user as a project member 
Project manager Remove member Remove any member 
Project manager Change project Change project properties. This 

includes the name, description, 
activating/deactivating file locking, 
activating/deactivating of version 

management 
Project manager Handle all versions Remove any version 
Project manager Handle all locks Unlock any locked file 
Project manager Relieve project Choose a member to relieve him of 

the project manager responsibility. 
The member then become the new 
project manager after his approval 

Project manager Terminate project Terminate the project at any time. 
All project data, including files, 

members and project messages will 
be removed 

Project member Leave project Leave the project at any time 
Project member Handle own versions Upload a file into the directory 

structure, thereby becoming the 



A Project Management Module 

 
 

 
   
 27   

 

owner of the version of the file. 
Own versions may be deleted 

Project member Handle own locks Lock any file that is unlocked, 
thereby becoming the owner of the 
lock. Only the owner of a lock and 
the project manager can remove the 

lock 
Project manager,           project 

member 
Read/write messages Post and read messages in the 

project forum. Files can be attached 
to messages 

4.4.1 The file manager 
The purpose of the file manager in the PM module is to allow the members and the project 
manager to share and access files within the project in a structured and controlled manner., 
therefore the following features are supported. 

• Uploading of files into a directory structure. 

• File locking.  

• Version management. 

• Strict control so that available project file space is not exceeded. 

The Use Cases for the file manager are shown in Figure 4.4 

 



A Project Management Module 

 
 

 
   
 28   

 

Upload own 
Version in catalog

Activate
versioning

Activate
locking

Download version
from catalog

Lock 
unlocked
version

Unlock own
lock

Unlock any 
lock

Delete 
any version

Delete
own version

Project member Project manager

Create 
catalog

Delete 
catalog

 
Figure 4.4 Use Cases for the file manager in the project management module 

These Use Cases for the file manager are briefly described in Table 4.2 

Table 4.2 Description of the Use Cases for the file manager in the project management module 
Actor Interaction Description 

Project manager Activate locking / 
deactivate locking 

At any time file locking can be 
activated or deactivated. When 
locking is deactivated all locked 

files will be unlocked 
Project manager Activate versioning / 

deactivate versioning 
At any time versioning can be 
activated or deactivated. When 

versioning is deactivated all but the 
newest version of a file will be 

removed. 
Project manager Unlock any lock Any locked file can be unlocked, 

regardless who owns the lock. 
Project manager Delete any version Delete any version, regardless of 

who owns the version. 
Project manager Delete directory Remove the directory and all files 

and directories in it, regardless of 
owner and locking status of 

contained files 
Project manager 
Project member 

 

Create directory Create a new directory in the 
current directory 

Project manager Upload own version in directory Upload a file into the current 



A Project Management Module 

 
 

 
   
 29   

 

Project member directory. The new version of the 
file will be owned by the member 

that uploads it. 
Project manager 
Project member 

Download version Any version can be downloaded, 
regardless of locking status or 

owner of version. 
Project manager 
Project member 

Delete directory Remove any empty directory 

Project member Lock unlocked version Any unlocked version can be 
locked, thereby the member who 

locks the version becomes owner of 
the lock. 

Project member Unlock own lock Lock any file that is unlocked, 
thereby becoming the owner of the 
lock. Only the owner of a lock and 
the project manager can remove the 

lock 
Project member Delete own version Any unlocked version that is owned 

by the member can be removed. 

4.4.1.1 Uploading of files into a directory structure 
File transfer to a web server can be done using the File Transfer Protocol, this stores the files 
directly on the web servers hard disk thereby preventing easy distribution of files over several 
machines. Therefore we are using the HyperText Transfer Protocol (HTTP) to post the files to 
servlets, which in turn can store them in a database, which can be distributed, and thereby 
allowing the files to be distributed. 

To perform a file transfer using HTTP from a browser to a web server can be done in three 
general ways. 

• Use a form in HTML to post the file as a multi-part parameter which contain the file 
name, size and binary stream.  

• Let the client download and run an applet. This require that the applet is signed using 
a public key certificate, and that the client grant the applet access to the client’s local 
file system. 

• Let the client download and install a client program, this gives excellent control of the 
file transfer process. Ofcourse, other protocols can be used than HTTP if using a 
specialized client software component. This, however, creates problems when crossing 
platforms if the software is not written in a platform independent programming 
language. 

The solution we have chosen is to do this via an HTML form, with some extensions. The 
reason that we do not use an applet is that as few applets as possible should be used in order 
to minimize load times for the client. 

 It is possible to upload and download files into most relational databases, many 
implementations support big data blobs of binary data that are treated as a single row, 
increasing the size of the database file without significant loss in performance.  

The files are uploaded into a directory structure, the directory that the file is uploaded to is 
determined by the path part of the URL of the post request. Each directory has a unique path. 



A Project Management Module 

 
 

 
   
 30   

 

This means that each name within a directory, both filenames and directory names, must be 
unique. For example, a multi-part post request to the URL  
http://beta.lecando.com/projectfiles/directory1/directory2?filename=myfile.
txt 

will store the posted file named “myfile.txt”  into directory “directory2” residing in directory 
“directory1”. 

The conceptual representation of directories and files is that of a tree structure, where the 
directories are nodes, and every file is a leaf as shown in Figure 4.5. 

Catalog

Version container

Version 1 Version 2 Version 3

 
Figure 4.5 Representation of a directory structure in the file manager as a tree. 

 We believe that the Web based Distributed Authoring and Versioning protocol (WebDAV) 
will be used for file management in the project manager module at a later stage. WebDAV is 
further explained in chapter 4.7. To be able to easily support  the WebDAV protocol in the 
future we have implemented most of its features.  

4.4.1.2 File locking 
The locking mechanism of the file handler is called an exclusive write lock. This means that 
when a file is locked by a user, no other user can modify or delete the file. Any project 
member can lock any unlocked file, and the remains until the owner of the lock or the project 
manager unlocks it. The version handling mechanism creates a new version of the file when 
an existing file is uploaded, se chapter 4.4.1.3. If a file is locked and the owner uploads a new 
file, the locking mechanism locks the new file and unlocks the old version. Only the newest 
version of a file can be locked. The existence of a file during upload is determined as in most 
file systems, ie pre-existence of the filename in the target path. Old versions can be accessed 
and deleted, but not locked. When a user uploads a file he becomes the owner of the new 
version, and only the owner of a version can delete it.  



A Project Management Module 

 
 

 
   
 31   

 

The project manager can set choose to activate the file locking feature when he creates the 
project. At any time during the existence of the project the project manager can deactivate or 
activate file locking for the project, if the file locking is deactivated all locked files will be 
unlocked.  

4.4.1.3 Version handling 
A file in the file manager of the project management module can conceptually be described as 
a version container. In the user interface, file operations operate on the newest version of a 
file by default. 

Every file that is uploaded receives a version number. The first time a file is uploaded the 
version number is set to 1. If the filename of the file already exists in the directory, the 
uploaded file receives the version number of the existing file plus 1, and the member who 
uploads the file becomes the owner of this version of the file. 

All versions of a file can be accessed by any member of a project, but only the newest version 
of a file can be locked and unlocked. Any unlocked version can be deleted by the owner of the 
version, or the project manager. 

4.5 The news reader 
There are mainly two different types of project systems as discussed earlier. One way is like 
Microsoft projects, to focus on the project manager. The project system is in one way or the 
other designed for the project manager to have an overview of what is happening, and how to 
delegate tasks to achieve its purpose. The other way, the way chosen in this project module, is 
to let all members be a part of the whole project system. The design is focused on shared 
information between the members within this project, where all members can take part of that 
information and work on it. Since the members within a project may or may not be distant, 
there is an urgent need for a forum of some sort where the members can discuss issues 
concerning the project. In order to facilitate the communication between the members, a 
message function has been implemented where the members, as well as the project manager, 
can read and write messages to the other members of the particular project.  

4.5.1 Functionality 
The functions required for the news reader were more or less intuitive. Both the project 
manager and the members within the project have equal rights, and therefor when a member 
is mentioned in this section, it should be considered to be either a project member, or the 
project manager. The news reader supports the following features. 

• Post a message. 

• Read a message. 

• Reply to a message. 

• List unread messages. 

The Use Cases for the news reader are displayed in figure 4.6. 



A Project Management Module 

 
 

 
   
 32   

 

Read message

Write message

Reply to message

Attach files to message

Project memberProject manager

List new messages

Figure 4.6 Use Cases for the news reader in the project management module 

 The Use Cases for the news reader are briefly described in Table 4.3 

Table 4.3 Description of the Use Cases for the news reader in the project management module 
Actor Interaction Description 

Project manager 
Project member 

Write message /  
Attach files to message 

Post a message and attach any 
number of files. 

Project manager 
Project member 

Read message Read a message and download 
message attachments. 

Project manager 
Project member 

Reply to message Reply to any message, including 
reply messages. 

Project manager 
Project member 

List new messages See a list of messages that the 
member have not read. 

4.6 User interface 
The demands on the user interface were quite extensive with web user interface standards. A 
list of the demands on the user interface is as follows. 

• It should be visually appealing and well structured. 

• The user interface should be created in a consistent manner with the existing user 
interface of the other parts of the application. 



A Project Management Module 

 
 

 
   
 33   

 

• All windowed interaction should have a cancel option, including cancelling of 
bunches of uploaded files and cancelling of added members. 

• Notifications of inconsistent file operations should be displayed in a satisfying 
manner. 

• It should both be internationalizable, and localizable to swedish and english 

• Buttons should be dynamically altered via context, ie active / inactive 

• No logic in JavaScript that is not directly related to presentation. 

• No use of applets. 

• Different security roles should have different options. 

The reason for this limited degree of freedom is that much care have been taken in the other 
parts of the existing application to have a consistent and logically structured user interface, 
where certain rules apply to every part of the user interface. 

4.7 Web based Distributed Authoring and Versioning 
The dominating protocol used in browsers for requests of web-pages is the HTTP protocol, 
this protocol has seven operations specified, the most commonly used are GET and POST. A 
GET operation requests a file from a webserver, the file is specified via the URL and possibly 
some parameters. Typically this file request is of a HTML page and associated files, such as 
pictures. A POST operation is used to give data to the webserver, typically it is a servlet or a 
CGI-script that takes care of the posted data and stores it. Forms on a web page often uses 
POST operations. This protocol is limited and although it supports delete and put operations 
on files, it does not in itself allow interoperability and collaboration when handling files. 
There has long been a need to be able to handle files over the internet in a distributed fashion, 
as can be seen on an intranet where file sharing over the network is transparent to the user . 

Web-based Distributed Authoring and Versioning, WebDAV [15], is a protocol that is an 
extension of the HTTP/1.1 protocol. The stated goal of the WebDAV working group is to 
"define the HTTP extensions necessary to enable distributed web authoring tools to be 
broadly interoperable, while supporting user needs". Be that as it may, the completed features 
of the WebDAV protocol is: 

• Locking: long-duration, exclusive and shared write locks prevent overwriting of files. 

• Properties: arbitrary meta-data can be stored for web resources, eg files. Searches can 
be provided for web resources based on property values. 

• Namespace manipulation: web resources may be moved and copied and directories 
may be created and listed. 

As this protocol is based on the HTTP protocol, it receives the benefits of the HTTP 
infrastructure; strong authentication, encryption, proxy/firewall navigation and world-wide 
deployment.  



A Project Management Module 

 
 

 
   
 34   

 

This protocol can be used on an intranet as well as over the Internet, as long as the server 
supports this protocol, and on a WebDAV enabled server, ordinary HTTP-requests as well as 
WebDAV requests can be handled. The client application must support WebDAV, and as of 
today there are a number of client products that support this protocol, amongst them are 
Windows2000, Internet Explorer 5, the Office2000 family, the XML editor Documentor and 
Xerox Docushare.  

The client user can – in a conceptual sense at least – edit documents directly on the server, the 
downloading to a temporary storage on the client computer is transparent, as is the uploading 
of the document when saving the file. In Internet Explorer 5 and Windows 2000, it is possible 
to mount and view web resources such as directories via the ordinary look and feel of the file 
handling operations of the operating system. 

The file manager that we have implemented is developed to be prepared for this protocol, as it 
uses dynamic path parsing to map requests to file operations and directory content requests.  

The file locking operations, as well as version handling can be supported in the file manager 
of the project management module. The core of the file manager is a servlet that responds to 
post and get operations that are related to file operations of a project. All files and directories 
in the project file manager have unique paths, as in an ordinary file system. All that is needed 
to support the WebDAV protocol is to translate the XML tagged requested operations to the 
corresponding implemented project file manager operation, and translate the response of the 
file manager servlet into properly tagged XML. 



A Project Management Module 

 
 

 
   
 35   

 

5 Implementation 
In this chapter we discuss how we have chosen to solve the design issues discussed in chapter 
4.1 in the implementation of our project management module. We also discuss some practical 
issues that can affect the efficiency of the development process. In chapter 5.3 we explain 
responsibilities of packages and key classes in the project management module. 

5.1 Design issues 

5.1.1 Availability 
Regarding improving availability for a server application, such as a J2EE application, a few 
steps can be taken. Identifying bottlenecks in the system is a good idea, especially those that 
might make the application crash during high workloads, and to remove these bottlenecks. 
Regarding identifying bottlenecks see chapter 6. 

If it is not possible to eradicate the bottlenecks then availability can be improved by reducing 
workloads, eg by not allowing more than a fix number of users log on to the system. The 
maximum number of users is dependent of user behaviour, and can in most cases only be set 
by a rough assumption of user behaviour. This limit can be altered after monitoring of the 
server application status have been performed for some time.  

5.1.2 Fault tolerance and concurrency 
When using a browser as a client, the displayed content of a web page requires user 
interaction to be updated. This fact makes it very hard to avoid invalid requests to be sent 
from the client, and therefore forced us to make a large effort in handling errors in a way that 
it is acceptable for the user. The file handling components of  the project module will generate 
numerous invalid requests if several users attempts to lock, unlock or delete the same file. 
Even though the underlying data handling can handle concurrent modification of data in a 
consistent manner, for us it was necessary to detect these inconsistencies before attempting to 
update the data structures. Locking an already locked file might seem like moot point, but 
since the lock is owned by the user who has locked it, this will be advert behaviour. Instead 
errors of this type are handled by displaying available information of the error in a popup 
window to the client that sent the invalid request.  

For example, user A might have received a web page displaying file system status of a project 
at time X, and user B locks the file F in the same project at time X+1. User A sends a request 
to lock file F at time X+2. Then the request of user A will be that of locking an already locked 
file, this inconsistency is detected and A receives a message “File F is locked by B since time 
X+1”. There are a number of cases where these inconsistencies can occur, and we have tried 
hard to identify all of these cases and reduce their impact on the users. 

5.1.3 Scalability and performance 
One of the main objectives for the development of this module was to create a module with 
high performance, and being scalable as well. A J2EE server application shall not be 
restricted on running on one server, and ideally it should be able to distribute the EJB 



A Project Management Module 

 
 

 
   
 36   

 

components over several servers. To use several servers for one application is called 
clustering of servers. At the time of the writing of this report, clustering has not been done 
with the J2EE application so nothing conclusive about the possible difficulties and effects can 
be said about this. However, the J2EE server used, Orion server, does not support distribution 
of the underlying database on several servers at the time of writing of this report.  

In order to optimize performance, EJB references should be kept to a minimum, since the 
lookup of EJB bean takes an average of 20 ms on a high-performance server. To minimize 
EJB lookups required for a request, it is better to keep as much data as possible in every entity 
bean type. Thereby instead of having a multitude of different entity beans which forces the 
J2EE server to do several lookups in order to retrieve the wanted data, one EJB lookup might 
be sufficient.  

It is also possible to minimize lookups by using a mirroring java class for every entity bean, a 
Value Object  [21] that have the same attributes as the corresponding bean, and methods to 
support retrieval of the attribute values. When a method shall retrieve data from a bean, it 
does not return the bean object, instead the method instantiates a value object with the data 
from the bean, and returns the value object. The value objects are mainly used to hold data to 
be accessed in the presentation layer and shall never be stored anywhere, since an altering of 
an entity bean does not alter the already instantiated value objects for this bean.  

These solutions in order to improve performance conflicts somewhat with the paradigms of 
object orientation, but we firmly believe that it is better to be pragmatic under certain 
circumstances. 

5.1.4 Security 
Authentication is the procedure of verifying a claimed identity. In the J2EE application that 
our module is a part of, authentication is handled via HTTP Basic Authentication. This 
requires the browser to send an autorization header (which rather should be called an 
authentication header) with every request, containing user login and password. When the 
browser connects to an URL that requires authentication for a realm, it handles this via a 
popup window asking the user for login and password, and then this information is kept by 
the browser for every request within the realm. The authorization header is encoded with 
base64 encoding, a simple algorithm that should not be regarded as secure.  

There are two other ways that the authentication can be handled in a J2EE server, HTTPS 
Client Authentication and Form Based Authentication. 

When the authentication is successfully done, the J2EE container establishes a login session 
with the user, sessions are discussed in 5.1.5. 

The authorization model that is used in our module is role-based, where the different roles and 
their rights on project level are: 

• Non-member – no rights to do anything within the project. 

• Member – use the file manager, post and read messages, leave the project. 

• Project manager – use the file manager, post and read messages, add / remove 
members, terminate a project, hand over the project management to a member. 



A Project Management Module 

 
 

 
   
 37   

 

• Head administrator – same as the project manager except handing over a project. 

This role-based authorization is implemented on method level in the service layer, meaning 
that authorization checks are done in the service layer before any action is taken. 

5.1.5 Session 
A J2EE server creates a client session a client has provided a valid authentication with a 
request, and the session is lost after a period of time if no new requests are made. This time 
period is around half an hour in the Orion server version. The client session can be kept in 
three different ways. 

• HTTP cookies, which basically is a lookup-table in the browser containing server 
specific information. A J2EE session cookie contains a reference number that the 
J2EE container can retrieve from the browser, and this reference can be mapped to 
client data on the server. 

• URL rewriting, which can be used when the client will not accept a cookie. The J2EE 
serve adds client session reference number to URL requests within the domain as a 
path parameter. 

• SSL session, the HTTPS protocol supports identification of a client as being part of an 
accepted session. 

The application that contains this module uses cookies to identify client sessions. In the 
session, attributes can be stored and retrieved. Attributes can contain any Java object, and 
these are retrieved and set with a name as a key. In both servlets and JSP pages the session 
attributes can be retrieved, altered and set.  

5.2 Development issues 

5.2.1 Visual development tools vs. texteditors 
To work with the code of a large java application can become rather cumbersome. There are a 
number of packages and a large number of classes. So, when writing new code, reusing 
existing code or modifying code, it is not feasible to remember where all methods and classes 
are declared and used, and as a developer it is a of great help to file searching and scanning 
tools, such as Linux / Unix “find” and “rgrep” shell commands. 

When we started out on this project, we were contemplating to use a visual development 
tools, such as Visual Age or Forte. Both are powerful with a lot of functionality to aid the 
developer, such as graphic tools for building of user interface, lookup of where methods are 
declared and used and versioning management. However, we chose not to use any other tool 
than the built-in tools of Linux, eg the Emacs text editor and CVS. The reason for this was 
multifaceted, but mainly due to the insufficient performance of our workstations, not being 
able to run these environments at fully acceptable speed. 



A Project Management Module 

 
 

 
   
 38   

 

5.2.2 JUnit 
We have implemented unit testing of our code with the aid of JUnit, and the time it takes to 
write tests is well spent. One possible drawback of using JUnit is that it becomes slower to 
make changes in the existing API, since this requires changes in the testcode as well. This 
might be a good reminder of keeping the API backwards compatible, however. While using 
JUnit the thought of having a testtool for the user interface comes to mind. Since JUnit detects 
many errors at compiletime, a substantial part of the errors encountered are in the user 
interface, not in the business logic. However, automated testing of the user interface is 
complex and requires much more work initially than component testing. 

5.2.3 Concurrency Versioning System, CVS 
We used the Concurrency Versioning System shipped with the Red Hat Linux distribution. 
This is a powerful and versatile tool that mainly helps with two tasks, structured multi-user 
modification and merging of files and an incremental backup system.  

It is set up by specifying a repository directory on the local file system or on a remote files 
system. This repository is the centralized storage area for files. When a file is edited, it can be 
copied to the repository, where other users can access them. CVS automates much of the 
copying tasks, and also has strong integrity checks to prevent accidental misuse. So CVS is, 
apart from the user interface,  an extremely versatile tool that makes it possible to work with 
shared files in consistent manner. 

5.2.4 Javac compiler vs. Jikes 
When we made changes in our code, even the JSP pages, we had to recompile the entire 
server application to be certain that the changes was reflected in the deployment of the 
application. This compilation could take anything up to seven minutes, and this was after we 
had switched to the much faster java compiler Jikes, which outperforms the standard Javac 
compiler from SUN with a time factor of about 10.  

5.2.5 Networking File System, NFS 
We kept our application files in our NFS mounted home directories, and this was modus 
operandi for the development team. This had some advantages, such as having the ability to 
sit down and work on any computer in the network. Unfortunately no work could be done 
when the file server crashed, and this happened on numerous occasions due to poor 
dimensioning of the file server hardware. The CVS repository was kept on a server residing 
outside the internal network, and disruption of access to this server also impaired the 
development work.  

5.2.6 Synergistic effects of teamworking 
 There are several advantages of working together in a closely knitted team of two persons as 
we did during this project. Learning and understanding documentation, brainstorming, error 
corrections, discipline to follow procedures, systematic work – simply put the quality is 
improved due to the fact that two brains outsmart one. However in terms of development 
speed, it is rarely the case that two persons develop twice as fast as one. Quite often when we 



A Project Management Module 

 
 

 
   
 39   

 

both had to modify or add methods to the same class, the work was halted for one of us. 
Nonetheless, low quality generates much extra workload in the long run, and this has to be 
accounted for while summing up the work. 

5.3 Classes and packages 

5.3.1 Overview of classes 
It is possible to categorize classes for our module into three categories:  

• General project components. 

• Specific file handling components. 

• Specific project message components. 

For detailed information regarding classes and packages, please see the appendix for Javadoc-
generated documentation. 

5.3.1.1 Servlets 
The J2EE specification does not demand support for HTTP post operations to JSP pages, but 
Orion server supports this. In order to be J2EE server independent, no HTTP post operations 
to JSP pages are done, instead all posting of data are sent to servlets. 

5.3.1.2 General project components 
Represented mainly by the package com.lektor.project. Here the entity bean ProjectBean and 
it’s related interfaces are defined, a ProjectBean contains all data regarding the project frame, 
such as name, description, project manager and member list.  

The session bean ProjectServiceBean and it’s related interfaces are also defined here, and the 
responsibility of this component is to do authorization checks of the client’s before a method 
is invoked on the Project remote interface. 

There is a number of servlets in com.lektor.project.servlets used to process posted data from 
client browsers, and then  invoke methods in the ProjectService remote interface. These 
servlets does not invoke the ProjectService methods if the posted data is apparently invalid, 
but instead passes on error information back to the client, where it is presented. 

5.3.1.3 Specific file handling components 
Represented mainly by the package com.lektor.project.projectfile. Since J2EE does not 
explicitly support filestreams, we use SQL statements to put the binary filestream into the 
database. Unfortunately the SQL language is not entirely standardized, thus making some 
SQL statements database specific. However, a list of database queries, as well as runtime 
lookups of what database is being used provide the means to use a new implementation of a 
database with only minimal modifications of the code.  

The class ProjectFile represents a system unique file pointer, and also contains file status such 
as locking status, owner and creation date. A couple of helper classes retrieves or stores the 
binary filestreams. The session bean ProjectFileServiceBean and related interfaces are also 



A Project Management Module 

 
 

 
   
 40   

 

defined here, and it coordinates file operation tasks after authorization and consistency checks 
have been performed.   

The servlet ProjectFileServlet is used for HTTP get requests for folder information and 
retrieval of files, as well as HTTP post operations to perform file system modifications, such 
as retrieving or deleting a file. This servlet listens to all requests beginning with a specific 
path, and here the rest of the request path determines the corresponding file path. For example 
a get request to http://.../projectfiles/project1/ will make the servlet return a collection of all 
folders and files in the root folder of the project with id 1. A get request to 
http://.../projectfiles/project1/ folder1/folder2/file1.txt will give a servlet response containing 
file file1.txt in the directory /folder1/folder2/ in the project with id 1. All operations on files 
uses dynamic URLs to give the ProjectFileServlet information of the corresponding file paths. 

The servlet UploadFileServlet supports storage of file objects in the session, thus making it 
possible for the user to upload several files into the session and, thus giving the user an option 
of cancelling the operation. If the users posts a save request, all files in the session are stored 
in the project file system. 

5.3.1.4 Specific project message components 
Here we added classes and servlet classes to existing packages, com.lektor.message and 
com.lektor.message.servlets. We implemented in compliance with an existing message API 
and an existing user interface. And modified a few existing methods to include the project 
messages. The existing session bean MessageServiceBean does the authorization checks and 
invokes methods on appropriate EJB components. The ProjectMessageBean supports 
threading of messages, each reply message stores information about the message it is a reply 
to. At the time of the writing of this report the user interface does not support this. 

To support file attachments, a couple of servlets have been implemented that also uploads 
files to the session to give the user a chance to cancel the operation. 

 

 



A Project Management Module 

 
 

 
   
 41   

 

6 Load testing    
The purpose of load testing a distributed system is to gain insight of its behaviour during 
various workloads. Load testing can be used during development to bring design flaws up to 
surface. It is also a tool for asserting that the system meet specified requirements. 

In the Internet industry, availability is often of great importance, and this is what we aim to 
test, workload performance, ie how the response time for the server varies with workload. We 
want to measure response time under different loads. 

In order to perform relevant load tests one must have some knowledge of how the system will 
be used. In some cases this can be well defined, a system that is developed for one customer 
and is specified from its intended use is an example of this. However more often it is hard to 
predict the use of a system. A system that is exposed to a number of different of users will 
almost certainly be used by some users in a way that the designers did not have in mind. 

For our system we have little information about the users but the functionality of the system 
give us some insight to perform relevant tests.  

6.1 Tools 
 In recent years there has evolved a variety of test tools for workload performance, such as 
Siteload. They can be set up with a number of test requests for a web server, and then it is 
possible to simulate a number of users making the requests while measuring response times. 
Since these tools are expensive, Siteload cost around 10.000 EURO for a license to simulate 
100 concurrent users, it has not been possible for us to use such a tool.  

In order to perform our load tests we have developed a small test tool. The test tool is written 
in Java and starts a thread for every user it shall simulate. Each thread receive a valid and 
unique login and password to be used during the requests. Each thread also receive 
information of which project the requests shall concern. The threads prepares a specified 
request dynamically with regard to login, password and project. When all required threads 
have been created, the threads open the HTTP connection they need in order to perform the 
request. Then they measure the time elapsed from the start of the request until the entire 
response have been received. The request can be repeated a number of times or done once, 
every time measure is reported to a separate synchronized thread that is responsible for 
storing results from all threads in a file.  

 



A Project Management Module 

 
 

 
   
 42   

 

In reality a server handle requests from several client machines as shown in Figure 6.1. 

SERVER

CLIENT1

CLIENT2

CLIENT3

CLIENTN

 
Figure 6.1 Several clients accessing one server simultaneously  

We use one machine to simulate several clients by the use of threads and one thread 
represents one client as shown in Figure 6.2. 

S E R V E R
T E S T

C L IE N T

T H R E A D 1

T H R E A D 2

T H R E A D 3

T H R E A D N

 
Figure 6.2 Simulation of simultaneous access from several clients using one client machine  

We did not perform any tests on how accurate this representation is.  



A Project Management Module 

 
 

 
   
 43   

 

6.2 The test bed 
The configurations shown in Table 6.1 were used during the tests. 

Table 6.1 Test bed 

6.3 Test strategy 
To perform tests in a larger scale one need appropriate tools to set up the test environment. A 
tool for automatic creation of a test database is required to measure performance with large 
databases. Since we did not have access to any such tools we had to confine our tests 
accordingly.  

We did not have any means to create a test database other than by manual labour, either by 
typing SQL queries or by using the server application itself to create testdata from an empty 
database. We therefore decided to limit our tests to requests that trigger read operations on the 
database. Furthermore we decided to perform our tests on only one small database. The 
database used had the size shown in Table 6.2.  

Table 6.2 Row size in database used during test 

On ad hoc basis we decided that we would not perform any tests with more than 30 simulated 
clients. This was due to the fact that we performed all of our requests from one machine and 
we have no real insight in how representative this is. 

In order to perform tests on different aspects of the system we chose the following four 
requests:  

• Properties, lists all project members in one project. 

• New messages, lists all unread messages for all message forums, for a user. 

• Message list, lists all member messages in one project. 

• Project list, lists all projects that are accessible for a user. 

We used response time, the time elapsed from that a request is sent from a client until 
the client receives the server response, as one measure during our tests. Furthermore we 
measured the total time elapsed until all requests had been responded. 

Table / Entity Bean Rowsize
project 5
projectMessage 25
projectMembers 200

 Server Testclie
Pentium II 400 Pentium II 350 
128 128 
100 100 
SUN JDK SUN JDK 
Orion n/a 
Solid Embedded n/a 



A Project Management Module 

 
 

 
   
 44   

 

With decisions on the database size and request types made we set up the following test 
schedule. 

• Perform each request in an undisturbed environment for use as reference value. 

• Perform each request from several simulated clients and observe the impact on 
response time and total time. 

• Perform all requests from several different clients and observe the impact on 
response time and total time. 

The result from our test follows. 

6.4 Test results 

6.4.1 Reference values 
To obtain reference values for each request we initiated ten separate requests for each request 
type, then we calculated the mean and standard deviation for the response time for each 
request type. The results are shown in Figure 6.3 

0

200

400

600

800

1000

1200

Properties New messages Message list Project list
Request

R
es

po
ns

e 
tim

e 
(m

s)
, m

ea
n/

st
de

v

 
Figure 6.3 Response time by request - reference values, request performed with no other load 

We can observe that the standard deviation for the response time for each request type is 
small in magnitude, this implies that the mean values for the response time for each request 
type will serve well as reference values. 



A Project Management Module 

 
 

 
   
 45   

 

6.4.2 Separate requests  
These tests were conducted as follows; for one request type we simulated a number of clients 
that each performed the same request type. The request was performed with different 
parameters to avoid caching in the server, each request required a separate lookup in the 
database. 

Our intention was to simulate 5, 10, 20 and 30 clients for each request type and observe the 
effect in mean response time and total response time. Unfortunately the server application 
crashed on several occasions during our test, this happened for request types that we know put 
the application at great strain with increased the workload. Therefore the New message 
request could not run for more simulated clients than 10 and the Project list request could not 
run for more than 20 clients. 

We could not establish the reason behind the fact that two of the queries did not run for 30 
simulated clients. The problem could either lie in our client software or on the server side. If 
the problem resides on the server this is a serious issue that needs attending to. 

With more time at hand and proper tools we would have investigated this further. 

The result for each request type follows.  

6.4.2.1 Request: Properties 

Figure 6.4 Simulated request: Properties  

In the graph above the results for request Properties are shown. The horizontal marks 
represent total time for all requests. For reference the line representing sequential handle of 
responses is added. It should be noted that the response time consists of time for activities 
outside the server (network), a total response time close to the reference line indicates poor 
behaviour from the server.  

 

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

4000 

0 5 10 15 20 25 30 
simulated concurrent users 

R
es

pp
on

se
  t

im
e 

(m
s)

 

mean response time total response time 



A Project Management Module 

 
 

 
   
 46   

 

The mean response time is 500 ms for 30 concurrent requests, this value in itself could not be 
considered bad.  

The total time for each simulation is well below the reference line. 

6.4.2.2 Request: New messages 
We could only simulate 10 concurrent users for the New Messages request. We note that the 
mean response time increases dramatically with increasing load. The total time for the 
requests is on or close to the reference line. This indicates that the server handle all requests in 
sequence. The fact that the mean response time as well is close to the reference line is 
alarming. The mean response time for ten requests is 7 seconds. If the server can respond to 
one request in 1 second (the reference value) the strategy of sending the requests in sequence 
would lead to a mean response time of 5,5 seconds. This behaviour of the server application is 
at least poor. The results for this test is shown in Figure 6.5. 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 2 4 6 8 10
simulated concurrent users

R
es

p
o

n
se

 ti
m

e 
(m

s)

mean response time - total response time

 
Figure 6.5 Simulated request: New messages  

6.4.2.3 Request: Message list 
The result for Message List is similar to those from Properties. The mean response time for 
30 requests is well below one second, the results are shown in Figure 6.6. 



A Project Management Module 

 
 

 
   
 47   

 

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

3 5 0 0

4 0 0 0

4 5 0 0

5 0 0 0

0 5 1 0 1 5 2 0 2 5 3 0
s im u la te d  c o n c u rre n t  u s e rs

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s

)

m e a n  re s p o n s e  tim e - to ta l re s p o n s e  t im e

Figure 6.6 Simulated request: Message list 

6.4.2.4 Request: Project list 
We could only simulate 20 concurrent users for the Project List request. Otherwise the result 
is similar to those of Properties and Message List with a little steeper increase of mean 
response time with increasing load. The results are shown in Figure 6.7. 

0

6 00

1 200

1 800

2 400

3 000

0 5 1 0 1 5 2 0
s im u la ted  c onc urre n t u se rs

R
es

p
o

n
se

 t
im

e 
(m

s)

m ea n  resp o n se  tim e - to ta l re sp o n se  tim e

Figure 6.7 Simulated request: Project list 



A Project Management Module 

 
 

 
   
 48   

 

Simulated clients Properties Message list Project list
15 5 5 5
30 10 10 10

6.4.2.5 Mixed requests 
In this test we made two simulations. One with 15 simulated clients and one with 30, as 
shown in table 6.3.. In each simulation we let clients perform one of the following requests in 
a uniformly distributed manner; Properties, Message list and Project list. We deliberately 
chose not to include the request New messages considering the problems that occurred in the 
previous simulations. 

Table 6.3 Distribution of request type in simulation of mixed requests 

The results from the simulations follow. 

The mean response time increases with increasing load as shown in Figure 6.8. This is not 
remarkable in itself but an increase in mean time for the Message List request of 
approximately six times is somewhat alarming. We crosschecked the results from these two 
simulations with the previous simulations with separate request types. 

0

200

400

600

800

1000

1200

1400

Properties Message list Project list

m
ea

n 
re

sp
on

se
tim

e 
(m

s)

REFERENCE VALUE 15 REQUESTS (5 EACH) 30 REQUESTS (10 EACH)

Figure 6.8 Mean response time in mixed request simulation 

In figure 6.9 we compare the total response time for several simulations. In comparison the 
mixed request simulation of 15 clients needs more time than any of the requests needs to 
process 20 of its own. The mixed 30 clients test lacks comparison with Project list but is well 
above the other two on the same number of simulated clients. 

This implies that the server has some cost in time when handling different requests 



A Project Management Module 

 
 

 
   
 49   

 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

15
 (5

 ea
ch

)

20
 Propert

ies

20
 M

es
sa

ge l
ist

20
 Projec

t li
st

30
 (1

0 e
ac

h)

30
 Propert

ies

30
 M

es
sa

ge l
ist

simulation

to
ta

l r
es

po
ns

e 
tim

e

Figure 6.9 Comparison between mixed and separate request simulation 

6.5 Conclusions 
For similar levels of workloads it was possible to find differences in mean and total response 
time while comparing single request type to mixed request types. This difference suggests that 
the web server uses a cache mechanism of data that is more effective for a single request type 
than for several. This is most likely due to the fact requests of the same type gather data from 
the same type EJB components, and these can be cached by the web server. 

Our tests clearly indicate that the request to list new messages in the news reader perform 
inadequately, we could not even run our small test suite for this request type without suffering 
from a server crash.  

It should be kept in mind that the web server used during these tests were a substandard 
desktop workstation, since we did not have the access to any high-end webserver to perform 
the tests on. All the threads to simulate users were run on another substandard desktop 
workstation. Regarding performance differences between the desktop workstations we used 
and standard web server hardware it is adequate to say that there is a performance gain using a 
high-end webserver. Since this difference is difficult to quantify we will not delve into more 
detailed comparisons than that.  

To perform load tests is a complex, multifaceted task and it is not within the scope of this 
master’s project to perform more complete load tests than we have done. Several questions 
remain unanswered. 

• The database size was small and this affected the lookup time in the database for the 
requests. With a larger database, could we have provoked different behaviour in the 
system? 



A Project Management Module 

 
 

 
   
 50   

 

• The test suite was small, partly due to substandard hardware. How would larger sets of 
requests and simulated users have affected response times? 

As mentioned, performing relevant load tests is not an easy task. It requires:  

• Appropriate tools for the setting up of test environment. 

• Representative means for simulating several clients from one machine. 

• A thorough test strategy and time to conduct it. 

• Methods for appropriate analysis of the results. 



A Project Management Module 

 
 

 
   
 51   

 

7 Conclusions and future work 

7.1 Summary 
We have developed a project management module using distributed technology platforms. 
We have identified parts of the module with possible  low performance by conducting and 
analyzing load tests on the module.  

In order to keep the time plan, we adopted an incremental approach for our development. 
Initially we implemented the base functionality, and then assessed what other functionality 
could be added within the scope of the remaining time. Unfortunately we overlooked the 
complexity of implementing an acceptable user interface for our module, as well as the need 
to rewrite non-trivial parts of the underlying code to meet the demands for the user interface. 
This made the time plan hard to keep, but not impossible since it was kept. 

It is our firm belief that it is more efficient to first implement a detailed user interface, or at 
least decide on a detailed level how the system shall interact with the user and vice versa. The 
benefit of this approach is that you then have a detailed specification of exactly what 
functionality have to be supported and implemented, making it easier to make approximations 
for time required. 

7.2 Suggestions for future work 

7.2.1 Improvements to the file manager 
There are a few features that could be implemented in the file manager that would be useful 
for the end user: 

• Copy function of files. 

• Copy function of folders. 

• WebDAV support. 

7.2.2 Improvements to the news reader 
The news reader is a possible bottleneck, se chapter 6. It is therefore suggested to optimize 
this on a system level, not only the project message part of the news reader. 

7.2.3 Other functionality 

• Calendar function, where it is possible to keep track of and schedule meetings. The 
complexity of this function depends largely on the user interface, it is not complex 
to implement support for this in the core of the module. 

• Notepad function, an easy way to create documentation and similar documents in a 
structured manner. Something similar to a Wiki [17]. 



A Project Management Module 

 
 

 
   
 52   

 

• Message system, separate from the news function, making it possible for members 
to post project related messages not suited for the news reader of the project. 



A Project Management Module 

 
 

 
   
 53   

 

8 Appendix 

8.1 References 
[1] Goodman, Danny. 1998. Dynamic HTML The Definitive Reference. ISBN 1-56592-494-

0, Sebastopol: O’Reilly & associates inc. 

[2] Flanagan, David. 1998. Javascript The Definitive Guide. ISBN 1-56592-392-8. 
Sebastopol: O’Reilly & associates inc. 

[3] Fowler, Martin & Scott, Kendal. 1997. UML distilled applying the standard object 
modeling language. ISBN 0-201-32563-2. Massachusets: Addison-Wesley Longman 
inc. 

[4] Gollmann, Dieter. 1999. Computer security. ISBN 0-471-97844-2. New York: John 
Wiley & sons. 

[5] Kassem, Nicholas. 2000. Designing Enterprise Applications with the Java™ 2 
Platform, Enterprise Edition. ISBN 0-201-70277-0. Palo Alto: Sun Microsystems inc. 

[6] Monson-Haefel, Richard. 1999. Enterprise JavaBeans™. ISBN 1-56592-605-6: 
Sebastopol: O’Reilly & associates inc. 

[7] Monson-Haefel, Richard. 1999. Enterprise Java Beans specification v1.1 

[8] Eckel, Bruce. 2000. Thinking in Java. ISBN 0-13-027363-5: New Jersey: Prentice-Hall 

[9] Shannon, Bill. 1999. Java™ 2 Platform, Enterprise Edition Specification, v1.2. Palo 
Alto:SUN Microsystems inc. 

[10] Coward, Danny & Davidson, J Duncan. 1999. Java™ Servlet Specification, v2.2. Palo 
Alto: SUN Microsystems 

[11] Cable, Larry & Pelegri-Llopart, Eduardo. 1999. Java Server Pages™ Specification. 
Palo Alto: SUN Microsystems 

[12] Object Mentor inc. Junit Cookbook, 
<http://www.junit.org/junit/doc/cookbook/cookbook.htm> 01 Oct. 2000 

[13] Object Mentor inc. Infected: Programmers Love Writing Test, 
<http://www.junit.org/junit/doc/testinfected/testing.html> 03 Oct. 2000  

[14] Swedish Institute of Computer Science. The Mozart Programming 
System,<http://www.mozart-oz.org> 

[15] Stein, Greg. Welcome to WebDAV Resources, < http://www.webdav.org>, 06 Oct. 2000 

[16] IETF WEBDAV Working group. World Wide Web Distributed Authoring and 
Versioning. < http://www.ics.uci.edu/pub/ietf/webdav/> 15. Nov 2000 



A Project Management Module 

 
 

 
   
 54   

 

[17] WikiWikiWeb. Welcome visitors, <http://c2.com/cgi/wiki?WelcomeVisitors> 

[18] Microsoft Corporation. Microsoft Office, <http://www.microsoft.com/office/project> 

[19] Microsoft Corporation. Microsoft Office, <http://www.microsoft.com/office/outlook> 

[20] Projectplace. Projectplace.com, <http://www.projectplace.com> 

[21] Ubilab, Values in Object Systems, <http://www.jvalue.org/papers/ubilab-tr-1998-10-
1.pdf> 

[22] Vlasov, Vladimir. Distributed Computing in Java. Java and CORBA. Java RMI, 
<http://www.it.kth.se/edu/gru/Java/2000_2001/lectures/index.html>, 01 Dec. 2000 

[23] Vlasov, Vladimir. Overview of the Enterprise Java Technologies: JDBC, Servlets, JSP, 
EJB, JNDI , <http://www.it.kth.se/edu/gru/Java/2000_2001/lectures/index.html>, 01 
Dec. 2000 

 

 



A Project Management Module 

 
 

 
   
 55   

 

8.2 Examples from the user interface 
Here we illustrate the following user interactions. 

• Creation of a project named “A Test project” in Figure 8.1 

• The project overview page of “A Test project” in Figure 8.2 

• Adding of members to the “A Test project” in Figure 8.3 

• User properties of members can be displayed as shown in Figure 8.4 

• A typical directory structure in the filemanager is shown in Figure 8.5 

• Figure 8.6 shows the interface when a member creates a directory 

• Uploading of a file is shown in Figure 8.7 

• Selection of an uploaded file is shown in Figure 8.8 

• Locking of a selected file is displayed in Figure 8.9 

• Figure 8.10 shows the popup window for properties of a selected file 

• The popup window for downloading of a file is shown in Figure 8.11 

• The popup window for the news reader is shown in Figure 8.12 

 

 

 

 

 

 



A Project Management Module 

 
 

 
   
 56   

 

 

Figure 8.1 A project named “A Test project” is being created via a popup window. 

 



A Project Management Module 

 
 

 
   
 57   

 

 
Figure 8.2 The  overview page of the newly created project “A Test project” 

 

 



A Project Management Module 

 
 

 
   
 58   

 

 
Figure 8.3 Three users have been added as members of the project “A Test project”  

 



A Project Management Module 

 
 

 
   
 59   

 

 
Figure 8.4 User information is presented after clicking on the member in the memberlist. 

 



A Project Management Module 

 
 

 
   
 60   

 

 
Figure 8.5 A typical directory structure in the file manager. The directory “folder7” is selected and empty. 

 



A Project Management Module 

 
 

 
   
 61   

 

 
Figure 8.6 A project member creates a new directory named “folder8” in the selected directory “folder7”. 

 



A Project Management Module 

 
 

 
   
 62   

 

 
Figure 8.7 A member has uploaded the file “myfile.txt”. If the member clicks “Save” the file will be stored in the 
selected directory “folder 7”. If the member clicks “Cancel” the uploaded file will not be stored permanently in 
the project. 

 



A Project Management Module 

 
 

 
   
 63   

 

 
Figure 8.8 A member has selected the file “myfile.txt”. The toolbar for the file archive is now active, giving the 
member options to lock the file, download it, view its contents in a window, examine the properties of the file or 
delete it. 

 



A Project Management Module 

 
 

 
   
 64   

 

 
Figure 8.9 A member has locked the file “myfile.txt”. Notice that the trashcan is deactivated and that the button 
“Lock File” has changed to “Unlock File”. 

 



A Project Management Module 

 
 

 
   
 65   

 

 
Figure 8:10 A member has pressed the “Properties” button with the file “myfile.txt” selected. A popup window 
displays all previously uploaded versions of the file. The version number is displayed after the filename. Version 
number 4 of the file is selected and can be deleted or downloaded via buttons.   



A Project Management Module 

 
 

 
   
 66   

 

 
Figure 8.11 The file “myfile.txt” is selected and the download button has been pressed. In the popup window the 
file can be downloaded by right-clicking on the filename and saving the file.  

 



A Project Management Module 

 
 

 
   
 67   

 

 
Figure 8.12 The button “Project Bulletin Board” has been clicked. The news reader is displayed in a popup 
window and all the messages for the project “A Test project” are listed. By clicking on the tab “New Messages” 
all messages the user has not read will be listed. 

 


