

A General eCommerce
Platform with Strong
International and Local
Aspects

By Martin Ramsin

A Master’s Thesis

August 2000

 Examiner: Professor Seif Haridi
Supervisors:Andy Neil and Mark Bünger, Icon

 MediaLab
Vladimir Vlasov, IT/KTH

Department of Teleinformatics

 2

Abstract

The objective of the Master’s project was to build a platform for e-commerce solutions. The
goal with this platform was to facilitate process of building e-commerce solutions. An e-
commerce solution is often a Web store that sells products or services.

Today, when building a Web-store, it is a custom to use a database such as Oracle to store
persistent data and a Web server to handle client requests. Most of the components of the Web
store are often written in a server-side computing language such as ASP or Java. The requests
to the database is translated into SQL-code (SQL is a standard language for databases).
When constructing a Web store one has to know how to set up a database-structure and
program the SQL calls. One also has to know how a web server works and how to handle
transactions, security, stability and much more for both the Web components and the database
components.
Recently how ever, the concept of application servers emerged. An application server is a
server with built in services for handling these kinds of difficulties when constructing a Web
store. Application servers are very powerful and contain the latest technology in server-side
application development.

I chouse to build the e-commerce platform upon the J2EE application server developed by
SUN Microsystems.

The platform was to be general in that aspect that any kind of e-commerce solution could be
built using the e-commerce platform as a base. Another feature of the platform was a built-in
support for localization and internationalization.

 3

Preface

This Master’s Thesis is a result of my Degree Project performed at Icon Medialab in San
Francisco, USA between October 1999 and March 2000. It will conclude my Master of
Science in Electronic Engineering at the Royal Institute of Stockholm (KTH).

Icon Medialab is a Swedish Internet solution company with offices in most European
countries, Kuala Lumpur, New York and San Francisco.
The San Francisco office is located in south of market (Soma). Soma is close to the center of
San Francisco and has been getting popular for new media and Internet companies the last
couple of years. There is today about 50 employees in the San Francisco office.

Thanks to Andy Neil and Mark Bünger at Icon Medialab, San Francisco and to Vladimir
Vlassov, my advisor at KTH.

 4

Table of contents

1. INTRODUCTION ... 5

1.1 BACKGROUND TO THE PROJECT.. 5

2. CHOICE OF DESIGN STRATEGY... 7

2.1 CHOOSING A ARCHITECTURE FOR THE E-COMMERCE PLATFORM .. 7
2.2 COMPONENT MODELS... 8
2.3 CHOOSING A DESIGN STRATEGY ... 10

3. HOW TO BUILD A J2EE APPLICATION.. 11

3.1 APPLICATION SERVER... 11
3.2 THE JAVA 2 ENTERPRISE EDITION APPLICATION SERVER ... 12
3.3 ENTERPRISE JAVA BEANS (EJB)... 13
3.4 JAVA SERVLETS.. 15

4. SOME IMPORTANT CONCEPTS IN THE J2EE PLATFORM ... 16

4.1 JNDI LOOKUP SERVICE .. 16
4.2 RMI ... 16
4.3 DEPLOYMENT OF THE J2EE APPLICATION .. 17
4.4 PACKAGING COMPONENTS INTO EJB MODULES .. 19
4.5 SECURITY ... 20
4.6 INTERNATIONALIZATION AND LOCALIZATION.. 20

5. BUILDING THE E-COMMERCE PLATFORM ... 22

5.1 IN GENERAL.. 22
5.2 EVALUATION.. 22
5.3 THE THREE-TIER MODEL... 22
5.4 INTERACTION BETWEEN COMPONENTS OF THE PLATFORM ... 23
5.6 THE DATABASE STRUCTURE... 31

6. DEPLOYMENT .. 33

6.1 DEPLOYMENT OF THE WEB- AND EJB COMPONENTS ... 33
6.2 INTERACTION BETWEEN THE WEB AND EJB MODULES ... 34
6.3 INTERNATIONALIZATION AND LOCALIZATION.. 35
6.4 SECURITY ... 36

7. CONCLUSIONS ... 37

8. RECOMMENDATIONS .. 38

9. REFERENCES .. 39

APPENDIX A - SERVICES PROVIDED BY THE EJB CONTAINER ... 40

APPENDIX B - SERVICES PROVIDED BY THE J2EE PLATFORM.. 41

APPENDIX C - TECHNICAL REQUIRES FOR THE J2EE PLATFORM .. 42

APPENDIX D - DEPLOYMENT IN DETAIL... 43

APPENDIX E - DEPLOYMENT DESCRIPTORS IN DETAIL.. 44

APPENDIX F – GLOSSARY ... 45

APPENDIX G – CLASS DOCUMENTATION ... 47

 5

1. Introduction

1.1 Background to the project
The market of e-commerce is growing fast and its potential is gigantic. A store on the Internet
has an enormous advantage over traditional stores; the number of potential clients is the
number of people that has access to the Internet. Another big advantage of selling products on
the Internet is that the producer of a product can sell directly to the client without any people
making profit on the product on the way from the producer to the client. Because of this, the
price of the product can be lower. Because of these advantages and other it is very likely that
e-commerce will revolutionize traditional commerce and the way that people shop.
When building a store on the Internet, the basic structure of the store is often similar. I wanted
to construct a platform that any kind of e-commerce store could use with this basic structure
already implemented.

The project was to build a general e-commerce platform with local aspects. There are a lot of
difficult words in this definition and I will in this section explain what they mean.
E-commerce means doing commerce using electronic means. More specific, e-commerce is
selling products or services in virtual stores on the World Wide Web.
A platform for e-commerce is a software that can be used to build the basic structure of an e-
commerce store upon. Typically, the platform would handle services such as client register,
product- database handling, money transactions, security etc.

The platform that I was building was to be general in that aspect that it could be used for this
basic services by any kind of e-commerce solution no mater what the store would sell.
Local aspects would be to implement to this platform a service for international and local
views.

Server-side requirements are the equivalent to the requirements of the J2EE application
server. The J2EE application server requires a platform that is Solaris Operating Environment,
version 2.6 or Windows NT, version 4.0. Java JDK version 1.2.2 or later must be available on
the platform. The J2EE application also requires at least 128 MB of memory.
Supported databases and JDBC drivers are Oracle8 Server version 8.05, Microsoft SQL
Server versions 6.5, 7.0 and Cloudscape version 3.0.

Client-side requirements are a GUI (Graphical User Interface) that is informative, convenient
and responsive and that the time to download the client should be short.

In this project, I expected to build a platform that would be a useful tool when developing e-
commerce solutions. The platform should be general so that any type of e-commerce solution
could be built upon the e-commerce platform.
A prototype has been implemented for this project.

The report is structured as follows:

 6

Chapter 1 - Introduction - specifies what the project is about. This chapter also contain
information about what platform I chouse to work on, hardware requirements for running the
e-commerce platform and the results that I expected of the final product.

Chapter 2 - Choice of design strategy - presents several different types of design strategies
that I chouse from evaluate them and explain the choice of strategy.

Chapter 3 - How to build a J2EE application - explains what is an application server and more
closely how the J2EE application server from SUN work. It also presents two Java APIs that
are important in the construction of the e-commerce platform.

Chapter 4 - Some important concepts in the J2EE platform - continues the presentation of the
J2EE application server by presenting some of its most important concepts. These are:
• JNDI lookup service
• RMI
• Deployment of an J2EE application
• Packaging an J2EE application
• Security in the J2EE platform
• Internationalization and localization an J2EE application

Chapter 5 - Building the e-commerce platform - is the chapter where I explain how I built the
e-commerce platform.

Chapter 6 - Deployment - in this section, I explain how the deployment of the e-commerce
platform was done.

Chapter 7 - Conclusions

Chapter 8 - Recommendations

Chapter 9 - References

Appendix A is about the services that the EJB container in the J2EE server provides.
Appendix B is about the services that the J2EE server provides.
Appendix C is about the technical requires in the J2EE server.
Appendix D is about the deployment in the J2EE server provides.
Appendix E is a description of deployment descriptors in detail
Appendix F is a glossary for this report
Appendix G is a summary over the most important classes in the prototype of the e-commerce
platform

 7

2. Choice of design strategy

In this chapter, I will explain what kind of design strategy I have chosen for the e-commerce
platform and why.

2.1 Choosing a architecture for the e-commerce platform
A model that is commonly used is the two-tier model (see figure 2.1). This is the famous
client-server model with the client as the first tier and the server and database as the second.

Another model is the three-tier model (see figure 2.2). In this model, the client represents the
first tier. The middle tier is the computing tier and is often called application server or
middleware. The third tier represents databases and other back-end products.

In this approach, the client can be thin and independent because the middle tier does almost
all the computing. In the two-tier model, the client is not as thin and does a lot of computing
itself.
Because the client is thin in the three-tier model, it makes the client independent of the server-
side computing and therefore one can write applications that are scalable.
Another benefit with the three-tier model is that the second tier can handle security and
personalization of a client. Security and personalization are extremely important in any type
of e-commerce. Security rules in the second tier can protect the database in the third tier by

1st tier
Client

2nd tier

3rd tier

Figure 2.2.The three-tier model

1st tier Client 2nd tier Server

Figure 2.1.The two-tier model

 Data

Server

Business
logic

Business
logic

Services

Server

Data

 GUI

GUI

 8

identifying the client and decide through authentication if the client has access to the data.
Personalization is an important concept in any type of e-commerce. The three-tier model
makes it possible to implement personalization computing in the second tier for localization,
language translation, personalization of the GUI etc.
Because most of the computing in this model is in the second tier and not in the client tier as
in the two-tier model, the performance is increased. The application server that does the
computing in the second tier is typically very fast in comparison to the machine on the client.

I decided to work with the three-tier model for the e-commerce platform for these advantages
over the two-tier model. This decision meant working on an application server.

An application server is a server with built-in services for handling database transactions,
security, scalability etc. Application servers are being used more and more when developing
e-commerce solutions.

One of the most popular type of application server today, and the one that I decided to use, is
built upon the concept of containers. A container is the part of the application server that
hosts components. The components are small entities that together form the application(s)
running on the server. The container provides a runtime environment for the components. This
runtime environment performs services for the component such as transactions, security,
database connection etc.
Because of this approach of having containers that perform these basic services, the
components can be very thin and easy to program. Of course, the components have to be
programmed after a certain model so that the container knows how to handle them.

The container-component model suited me well because one of the benefits with this
approach is that the applications can be scalable; it is possible to add or remove components
to the application without changing the behavior of the other components. This is important
when building a platform that will be used to build applications on. I can now build
components that perform a certain tasks and together form a platform for e-commerce
applications to interact with and the platform-components will not be changed.

2.2 Component models
On the market today, there are mainly three types of component models that spring out of the
concept on application servers using containers:

• DCOM
• Enterprise Java Beans
• Corba

COM (Component Object Model) was developed by Microsoft and was the first component
standard to be used on a big scale. COM was the core component in many Microsoft products
including Office 97, Windows 95 and Windows NT.

DCOM (Distributed Component Object Model) is an extension of COM that allows
components to communicate with each other over a network.

 9

A DCOM component can be programmed in almost any programming language and so the
DCOM standard is language-independent.
ActiveX is a popular application service that is built on top of DCOM. ActiveX allow
components to be embedded in Web sites and can be compared to Java applets.

DCOM is best supported on Windows 95 and NT platforms. However, Microsoft has released
versions of DCOM for other platforms for example MacOS and UNIX.
Components written to the DCOM specifications are not platform independent and must be
recompiled for a specific platform.

CORBA (Common Object Request Broker Architecture) is a component standard from the
Object Management Group (OMG). The latest version (3.0) is a server side CORBA
component model. Like DCOM, CORBA is a language-independent distributed computing
architecture.

Enterprise JavaBeans (EJB) is an extension of the JavaBeans specification to make Java
components suitable for server-based applications.
The architecture of a component model is important as it specifies how the components
communicate and collaborate.

The Microsoft DCOM model differs a little bit in behavior from the other two. This is a direct
consequence of the difference for what the three models are used; DCOM was developed to
build distributed application on a Microsoft platform, CORBA was written to set a universal
standard for components and EJBs is SUN Microsystems try to commercialize the CORBA
standard.

TABLE 2.1 DCOM EJB CORBA
Component types Session Session, entity Session, entity,

process, service
Container services Transaction, security Transaction, security,

persistence
Transaction, security,
persistence

Other services Events notification,
load balancing, data
caching

Directory, thread
pulling, message
queuing

Event notification

Cross-platform? No Yes Yes

In table 2.1, some of the main differences between the three component models are. At this
time it is not so important to understand all the different types of components and services
listed in the table but to see that the CORBA model offers a most complete set of services
followed by the EJB model. It is also important that the CORBA and the EJB standards are
cross-platform but DCOM is not.

EJB model has the advantage of having an application server implemented, and available for
free*– the Java 2 Enterprise Edition (J2EE) platform.

 10

2.3 Choosing a design strategy
As the application I was constructing had the aspect of being general, the model that I picked
had to be cross-platform. Therefore the DCOM model could not be used. That left me to
choose between the EJB model and the CORBA model.

I decided to work with EJB because I had heard a lot about Java Beans and thought it would
be a good thing to learn about the concept of Java Beans. Another advantage is that SUN INC.
offers an application server called the J2EE server for free*. This application server is built on
the concept of components (EJBs) and containers.
Of course, I could have picked the CORBA model and written CORBA components in Java
for example and then tried to find a vendor that was equipped with an application server that
run CORBA objects.

The Java programming language was a necessary choice as the EJBs are Java language-
specific. But it turned out that the Java language suited me very well because of the many
useful APIs for example Servlets, Internationalization and localization etc.

* The Java 2 Enterprise Edition platform is available for free from Java Soft but can only be
used for non-commercial development.

 11

3. How to build a J2EE application

So how do I build a general e-commerce platform with local aspects based on the concept of
Enterprise JavaBeans living in an application server? In order to explain that, I first have to
explain in more detail what an application server is, how the J2EE application server for
Enterprise JavaBeans works and what exactly is an Enterprise JavaBean.

3.1 Application server
A product that can host the types of components described in chapter 2.2 (DCOM, EJB and
CORBA) and that provides a container for runtime services are generally called application
server.

In the tree-tier model, the middle tier can be thought of as the computing tier. Because the
middle-tier application server provides a lot of services to the components running on it, the
components can be thin, simple, and rapidly developed. It is also easy to integrate new
components with existing applications and databases.
An application server is generally equipped with a web server and a component server. The
web server hosts web side applications such as HTML pages, Java Servlets, Java Applets, etc.
The component server host’s components such as the ones described in chapter 2.2. Both the
web server and the component server are hosting its components in containers. The container
handles the runtime services for the component. The servers are also offering some higher-
level services.
Figure 3.1Illustrates the architecture of an application server.

Figure 3.1 Application server

Web server Component server

Web container Services Component container Services

Web
elements

Components

 12

3.2 The Java 2 Enterprise Edition application server
The Java 2 platform, Enterprise Edition (J2EE) developed by SUN INC is an application
server that hosts enterprise beans. There are other application servers on the market but this
one is free under the agreement that one is not developing commercial products on it. I am
therefore using a J2EE to build the e-commerce platform on.
The J2EE application server includes a Web server and an EJB server. These two servers are
distinct software entities that may or may not be located on the same machine. If they are
located on different platforms, connectivity between the platforms is established using RMI-
IIOP.
The J2EE platform can host the following types of components:
• Applets
• Application clients
• Enterprise JavaBeans
• Web components (JSP, Servlets, HTML etc).

EJB Container services
The J2EE platform offers the Enterprise Java Beans a lot of support like Web server,
transaction management etc. Applications built on the J2EE platform are scalable and easy
maintainable. This is important for the general aspect of the e-commerce platform. If a future
e-commerce product would be build based on the e-commerce platform, it would be possible
as J2EE application always are scalable; they let you add components or functionality's
without altering the existing components.

Enterprise beans instances run within an EJB container. They provided the following runtime
services to enterprise beans (see appendix A for detailed information):
• Transaction Management
• Remote Client Connectivity
• Security
• Life Cycle Management
• Database Connection Pooling

Other services provided by the J2EE platform
The J2EE platform offers these additional services (for a closer look, see chapter 3.3 for
Enterprise Java Beans, chapter 3.4 on Java Servlets, chapter 4.1 for JNDI, chapter 4.2 for RMI
and appendix B for detailed information about the rest of the services):
• Java DataBase Connection, JDBC 2.0 Extension.
• Java Transaction API, JTA 1.0
• Java Naming and Directory Interface, JNDI 1.2
• Servlet 2.2
• Java Server Pages, JSP 1.1
• Enterprice Java Beans, EJB 1.1
• Java Remote Method Invocation over IIOP, RMI-IIOP 1.0
• Java Message Service, JMS 1.0
• Java Mail 1.1
• Java bean Activation Framework, JAF 1.0

 13

3.3 Enterprise Java Beans (EJB)
The Enterprise JavaBean is an extension of the JavaBean model. A JavaBean is a portable,
platform-independent software component that enables developers to write components once
and run them anywhere - benefiting from the platform-independent power of Java.
JavaBeans can be manipulated in a visual builder tool and composed together into
applications.

Enterprise JavaBeans are server components for building distributed applications. The best
way to picture an enterprise JavaBean is to see it as a small unit that performs one specific
task and that, once created, can be used without being changed in many different contexts.

There are two types of enterprise beans: session beans and entity beans

Session Beans
A session bean represents a client in the application server and is non-persistent. Non-
persistent means that the state of the bean is not saved when the bean terminates. A session
bean can be stateful or stateless.
In a stateful session bean, the bean's instance variables may contain a state. A statful session
bean can have only one client and can, for example, be used to implement a shopping cart.
When the client terminates, its corresponding session bean also terminates.
A stateless session bean does not contain any instance variables and can have multiple clients.

Entity Beans
An entity bean represents a business object in a persistent storage mechanism such as a
database. For example, an entity bean could represent a customer or a product, which might
be stored as a row in the customer or product table of a database.

An entity bean can have bean- or container-managed persistence. In a bean-managed
persistence bean, the programmer writes the SQL code that is used to manipulate data in the
database in the class file of the bean. The bean also has to manage the connection to the
database via JDBC.
In a container-managed persistence bean, the EJB container (in the J2EE platform) handles
the calls to the database.
For a container-managed persistence bean the developer do not need to write the SQL-code.
Instead, the deployment tool (see chapter 6.1) generates SQL code.

The container-managed persistence beans are mush easier to write because the developer does
not need to worry about SQL code and JDBC connections. In some cases however, when the
calls to the database are complex, the container may not be able to create the SQL code and
bean-managed persistence must be used.

Multiple clients may share entity beans. Because the clients might want to change the same
data, it is important that entity beans work within transactions. An entity bean can be of bean-
or container-managed transaction nature.
In a bean-managed transactions bean, the developer implements the transactions and in a
container-managed transactions bean, the EJB container manages the transactions.

 14

Each entity bean has a unique object identifier that is called the primary key.

Distributed application
The enterprise bean is built to be remotable using the Java RMI API. This means that both
local and remote programs can access an enterprise bean. A caller of an enterprise bean
method can be another enterprise bean deployed in the same or different container. It can also
be an application, applet, or Servlet on the same or a different platform. As RMI objects can
interact with CORBA components, the caller of an enterprise bean method can be a
component written in a programming other than Java.
The fact that enterprise beans are remotable makes the J2EE application a distributed
application. A distributed application is made up of distinct components running in separate
runtime environments, usually on different platforms connected via a network.

Interfaces
The enterprise bean’s home interface defines the methods for the client to create, remove, and
find EJB objects of the same type. A client can locate an enterprise Bean home interface
through the standard Java Naming and Directory Interface (JNDI) API.
The instance of an enterprise bean is accessible via the enterprise bean’s remote interface. The
remote interface defines the methods callable by the client to manipulate the EJB object.
EJB object interface defines the operations that allow the client to access the EJB object’s
identity and create a persistent handle for the EJB object. Each EJB object lives in a home,
and has a unique identity within its home.
For session beans, the container is responsible for generating a new unique identifier for each
session object. The identifier is not exposed to the client. However, a client may test if two
object references refer to the same session object. Figure 3.2 illustrates the interaction
between a client and an Enterprise Java Bean inside an EJB container.

Database Access
The Enterprise JavaBean specification does not require a particular type of database. An
entity bean's information does not have to be stored in a relational database. It could be stored
in an object database, a file, or some other storage mechanism.
Both session and entity beans can access a database.

Client Home
interface

Remote
interface

Bean
object

Figure 3.2 Client interaction with the Enterprise JavaBeans Container

 15

3.4 Java Servlets
A Servlet is a web component, managed by a container that generates dynamic content.
Servlets are small, platform-independent Java classes. Servlets interact with web clients via a
request-response model implemented by the Web container. This request-response model is
based on the Hypertext Transfer Protocol (HTTP).

The Web container manages the response and the request objects and takes care of the
Servlets lifecycles. Here follows an example of how a client could use a Servlet:

A client web browser accesses a web server and makes an HTTP request. The request is
processed by the web server and is handed off to the web container. The web container, which
can run on the same host or on a different host from the web server, determines which Servlet
to invoke.
The Servlet uses the request object to find out whom the user is, what HTML form parameters
may have been sent as part of this request, and other relevant data. The Servlet then performs
the logic it was programmed with and generates data to send back to the client via the
response object. This scenario is visually explained in figure 3.3.

Client
Web
browser

Web server Web container

Servlets

HTTP
Request

HTTP
Response

Figure 3.3

 16

4. Some important concepts in the J2EE platform
In this section, I will give a summary over some of the most important concepts in the J2EE
platform.

4.1 JNDI lookup service
The JNDI (Java Naming and Directory Interface) API is a service that connects a simple name
to a Java object.
The functionality of the JNDI API can be thought of, as, for example, a telephone directory
service where one can look up the address of a person if one knows the name of the person.
Another example of how a Naming and directory service is the DNS (Internet Domain Name
System) that maps a name such as www.kth.se to an IP address such as 198.32.432.12.

4.2 RMI
The RMI (Remote Method Invocation) is a Java API for writing distributed Java objects. RMI
is based on one important principle: The definition of a Java class and the implementation of
the class are separated and can be run on different Java Virtual Machines.

In RMI, the definition of a class is implemented as an interface to the class. The interface is a
listing of what methods, in the RMI object, that are accessible to the client.
There are two kinds of classes that implement this interface: the stubs and the skeletons. A
stub is the client side interface and the skeleton, the server side interface.
The actual implementation of the Java class using RMI is placed on the server.

When a developer has created the implementation and the interface of the class and compiled
the code, the developer has to execute the rmic - a Java command that generate the stubs and
skeletons. Once the stubs and skeletons are created, the developer needs to start the RMI
registry with the rmiregistry command. Both rmic and rmiregistry are comes with the Java
Development Kit 1.2.
The RMI Registry is a registry service that uses JNDI. When the server is started it will bind
the objects using RMI in the RMI registry.

When the client calls a method in the object using RMI on the server, it first looks up the
object using JNDI lookup service, in the RMI Registry. It then sends the request to the
skeleton, which forwards it to the object. The skeletons receive a value back from the objects
method and send this value back to the stub.
Figure 4.1 shows the general idea of the RMI architecture.

Client

Stub

Stub

Server

Skeleton

Skeleton

Object

Object

RMI Registry

Figure 4.1

 17

An example of a distributed program that could be using RMI is a chat server. A client in this
case would be a user. The user needs to download a stub before she can enter the chat area.
The interface that is the content of the stubs (one for every user) and the skeleton would be a
list of methods to read and write to the chat area. The object would implement these methods
and some additional methods for the graphical interface.

The RMI architecture as used in enterprise beans is shown in figure 4.2 Note that the client in
this case is a Java application, Servlet, JSP file, applet or another enterprise Java bean. When
working with enterprise beans on the J2EE server, the stubs and skeletons will be created
automatically in the deployment phase.

On the J2EE platform, almost all communication between components is using RMI. The
home- and remote-interfaces of the enterprise beans are being used as stubs and skeletons.

4.3 Deployment of the J2EE application
When a component for the J2EE application is implemented and compiled it has to be
deployed in the deployment tool that comes with the J2EE platform. The deployment process
transforms the component to a format that fits the J2EE server. It also creates the stubs and
skeletons and binds the RMI objects to the JNDI registry service (see Appendix D for details
about what happens when an application is deployed).

The main idea of the deployment phase is to make it possible to use the same enterprise beans
and web components in more than one context without changing the code of the components.
In the deployment tool, one can give the components environment entries and link hard coded
names to JNDI lookup names. Here are two examples to demonstrate this.

Example 1: Environment entries.
In the first example, the developer wants to write a Web store that contains a Servlet to handle
a catalogue. If it is spring, the catalogue Servlet should show the spring catalogue and if it is
winter it should show the winter catalogue. With environment entries, the developer doesn't
need too re-write the catalogue Servlet code when winter changes into spring. The developer

Client

Home
skeleton

Remote
skeleton

Bean
object

Home
stub

Remote
stub

RMI Registry

Figure 4.2 Communication of EJBs using RMI

 18

just has to re-deploy the application and set a new environment entry such as: Season =
“spring” instead of: Season = “winter”. The environment entries are bound in the JNDI
registry.

Example 2: Linking hard coded names to JNDI lookup names
In the second example, the developer has an enterprise bean that looks up a database to get
data. On the J2EE platform, the developer uses JNDI when looking up databases. In the code
of this enterprise bean, there will be a JNDI name that is used to locate the database. Let's say
now that all data is moved to a new database with a different name. Now, the developer don’t
need to rewrite the enterprise bean’s code and change the old JNDI name to the new name of
the database. The developer just has to re-deploy and link the old JNDI name to the JNDI
name of the new database.

Deployment Descriptors
The role of the deployment descriptor is to capture information that is set while deploying an
application for example environment entries and links from hard coded names to JNDI lookup
names that I demonstrated in the previous section. Deployment descriptors specify two kinds
of information:
• Structural information: The structural information describes the different components of
the JAR or WAR file and their relationship with each other.
• Assembly information: The assembly information describes how the contents of the JAR
or WAR file can be composed into a larger application deployment unit.

The deployment descriptor is an XML-file and can look like this for a JAR file containing a
session bean called TheShoppingClientControler:

<session>
<description>The MVC controller</description>
<display-name>TheShoppingClientController</display-name>
<ejb-name>TheShoppingClientController</ejb-name>
<home>com.sun.estore.control.ejb.ShoppingClientControllerHome</home>
<remote>com.sun.estore.control.ejb.ShoppingClientController</remote>
</session>

Structure of the J2EE application
When deploying the application, the developer will compose Java Archive files (JAR files)
and Web Archive files (WAR files). When the application is ready, the deployment tool will
create an Enterprise Archive file (EAR file). The structure of a J2EE application is shown in
figure 4.3

Enterprise Archive file

Java
Archive
files

Web
Archive
files

Figure 4.3

 19

Enterprise Archive file
The goal of this file is to set the structure of the application and to eliminate portability
problems.

Java Archive files (JAR files)
A software unit, that consists of one or more enterprise beans and an EJB deployment
descriptor, is called an EJB module. An EJB module is packaged and deployed as an EJB
Java Archive (.jar) file. It contains:
• Java class files for the enterprise beans, and their remote and home interfaces.
• Java class files for super classes and super interfaces
• An XML deployment descriptor that provides both the structural and application assembly
informations about the enterprise beans in the EJB module.

An EJB JAR file differs from a standard JAR file in one key aspect: it is augmented with a
deployment descriptor that contains meta-information about one or more enterprise beans.

Web Archive files (WAR files)
A software unit that consists of one or more web components such as Servlets, JSP or html
files and a WEB deployment descriptor is called a web module. A web module is packaged
and deployed as a Web Archive (.war) file. It contains:
• Java class files for the Servlets and the classes that they depend on.
• JSP pages and their helper Java classes
• Static documents (for example, HTML, images, sound files, and so on)
• Applets and their class files
• An XML deployment descriptor.

These modules are reusable. It is possible to build new applications from existing enterprise
beans and components. And because the modules are portable, the application they comprise
will run on any J2EE server that conforms to the specifications.

4.4 Packaging Components into EJB Modules
 There are several ways of composing the EJB Modules. Here follows some packaging
options:

1. Package each enterprise bean in its own EJB module. Each enterprise bean has its own
deployment descriptor and is packaged in one EJB module.
 => Maximum reusability of each enterprise bean.
2. Package all enterprise beans in one EJB module. This is the simplest way to implement the
modules.
3. Package related enterprise beans in one EJB module. The enterprise beans are grouped
based on their functional nature and put in one EJB module manner.

 20

4.5 Security
An e-commerce application is often designed to minimize the barriers that a user must
overcome to become a customer. In contrast to typical computer user authentication
environments, where a user must wait for an administrator to set up the user’s account, an e-
commerce application often let users create their own accounts.
The J2EE platform security services are designed to ensure that resources are accessed only
by entities authorized to use them. Access control involves two steps:

1. Authentication
A client must establish its identity through authentication. It typically does so by providing
her name and password. A client that can be authenticated is called a principal. A principal
can be a user or another program. Typically, logging in authenticates users.

2. Authorization
When an authenticated principal tries to access a resource, the J2EE container determines
whether the principal is authorized to do so based on the security policies in the application’s
security policy domain.
The J2EE platform authorization model is based on the concept of security roles. The security
roles are set in the deployment phase and are executed at runtime by the container.
In the EJB container, the security roles can control whether a principal is authorized to use a
specific method of an enterprise bean.
In the web container, security roles are used to protect URL patterns and an associated HTTP
method for example “GET”.
Before all the mapping of security roles to users can work, one has to create the different
groups of users. Unfortunately, the J2EE platform only provides a command-line tool to
manage the users.

4.6 Internationalization and Localization
Internationalization may often be overlooked when developing a web application. However, if
one is developing a web application that will be used in more than one market, it is important
to plan for internationalization and localization in an early phase of the development. It is
easier to design an application that is capable of being internationalized than to rebuild an
existing application, which can be both costly and time consuming. Planning for
internationalization and localization at the beginning of a project can save a great deal of time
and money.
An internationalized application can present a local view of the application for users from
different countries and with different languages. With a local view I mean that not only the
application is language specific, but also presents prices in the currency that the user is used to
and

Internationalization
Internationalization is a process that aims to make an application possible for many different
languages. If this process is well built up from the start, it should be small task to add a new
language to the application even after the application is complete. An internationalized
application has a well-formed structure for the different locales. A locale is a language- and
country-specific data type. For example, a locale could be “fr_CA” which would refer to a

 21

French speaking Canadian or it could be “fr_FR”, which would be a French speaking
Frenchman.

Localization
Once and application is internationalized it can be localized.
Determining what content is given to the users; localization can be done in a few different
ways. Web applications can be designed to deliver localized content based on a user
preference or they can be designed to automatically deliver localized content based on
information in the HTTP request or by user selection.
When an application allows users to select a language, the preferred language can be stored in
the session. The selection can occur through a URL selection or a form post, which can be
used to set an application level, preferred language. This data can be maintained as part of a
user profile, which will be stored on the client’s system using a cookie or in a persistent data
store.
Applications can also automatically deliver content by using Accept-Language attribute in
header information of the HTTP request and mapping it to a supported locale. To use
automatic application-level locale selection, it is prudent to also provide a mechanism to let
the user override the automatic selection and select a preferred language.

 22

5. Building the e-commerce platform
In this section, I will explain how I used the J2EE server to build the e-commerce platform.

5.1 In general
Building a platform for e-commerce solution is not an easy task. Because I chouse to work
with the J2EE server however, the job became less difficult - I did not need to program the
server myself. The J2EE server also handles security, transactions and database connections
and many other useful services.
The e-commerce platform would set up a basic structure for an e-commerce solution on the
J2EE platform using EJBs and Servlets. I implemented entity EJBs for the persistent data such
as product and profile databases, session EJBs to keep track of the session of a user and
Servlets to realize the basic features of a e-commerce solution such as login/logout or a
catalog.

When the EJBs and Servlets were implemented, they needed to be deployed in order for the
J2EE application server recognizes them as a part of a J2EE application.

5.2 Evaluation
The goal with the project was to construct a platform that could be used to build any type of e-
commerce store upon. Basically, when constructing a store upon the e-commerce platform,
one would only need to implement the graphical user interface and maybe add some
enterprise beans or make some changes to the beans that I had built. The enterprise beans
would be so general that they could work in any kind of e-commerce solution.
The difficulty when implementing general enterprise beans was that I had to find a complete
set of variables for each enterprise bean.
For example, the Product EJB defined a product to be sold in a Web store and its parameters
(Id, name, description etc.) had to meet the demands for parameters from any Web store
selling any kind of product. Of course, a complete set of parameters can not be found and
therefore the e-commerce platform can never be general for all types of e-commerce.
Anyhow, I tried to make the e-commerce platform as general as possible and made a survey
about e-commerce on Icon Medialab about what kind of parameters that are normally used in
a Web store.

What I needed to implement was a set of enterprise beans and Servlets that together form the
basic services of an e-commerce store. As it turned out, the most difficult and time-consuming
was not to build the beans and Servlets but the process of integrating them into the J2EE
server.

5.3 The three-tier model
I created two user interfaces: one Web store and one interface to manage the database. There
are three different types of users to these interfaces: Tour, Profile and Administrator.

 23

A Tour is a user that can access the Web store and all the functionalities of the Web store but
can not access the Management interface. The Tour user can become a member by creating a
Profile. There is no record stored in the database of the Tour users.

A Profile is a member in the Web-store and, like the Tour, can not access the Management
interface. The Profile reaches the same functionalities as the Tour in the Web store but can
profit of member prices and can see what product that he/she has recently purchased. The
record of a Profile user is stored in the Profile database and can be accessed by the Profile
EJB.

An Administrator has access to both the Web store and the Management tool. In the Web
store, the Administrator has the same view as the Tour has but can not become a member. The
record of an Administrator user is stored in the Administrator database and can be accessed by
the Administrator EJB

The three-tier model of the e-commerce platform is shown in Figure 5.1.

Connection between user and web interface is using the HTTP protocol. Between the Web
interfaces and the EJB objects and when EJB objects are interacting with each other, the
connection is RMI. The connection between EJB objects and the database is using JDBC.

5.4 Interaction between components of the platform
I chouse to use Servlets to present the graphical user interfaces, three entity enterprise beans
to store data in the database and two session beans keep track of the user when the user has
logged in.
Figure 5.2 demonstrates a scenario of a use-case where an entity EJB is used to fetch a value
in a database.

Tour or
Profile
user

Admini
- strator
user

Cloudscape
database.

Product
Profile
Administrator

Web store
interface

Management
interface

EJB
objects

First tier: client Second tier: J2EE platform with Web and EJB Third tier: database

Figure 5.1

 24

1. The Servlet gets an HTTP Request from the user.
2. The Servlet asks a helper class to compute the tasks.
3. The helper class connects to the EJB objects through the remote homes and accesses the
EJB methods. These methods operate on the instance variables of the EJB object. The EJB
container translates the calls on the instance variables to SQL-calls to a database.
4. The EJB object methods return the values that were fetched in the database, through the
remote interface to the helper class.
5. The helper class returns the values to the Servlet.
6. The Servlet send the computed values to the Servlet HTML helper class.
7. The Servlet HTML helper class asks the Session helper class for the locale of the user.
The locale is used for internationalization and localization tasks.
8. The Session helper class asks the Session session beans remote interface for the locale.
The remote interface accesses the Session object and gets the value.
9. The Session object methods return the value that was stored in the Session session bean
object, through the remote interface to the helper class.
10. The helper class returns the values to the Servlet HTML helper class.
11. The Servlet HTML helper class gets the locale value and calls a resource bundle to open a
Language property text file, specific for the users locale, for translation of the final HTML
response. The Servlet HTML helper class can also use the Locale for localization (see chapter
6.3).
12. The Language property text file sends the translation back to the Servlet HTML helper
class.
13. The Servlet HTML helper class finally sends the HTML response to the client.

User Servlet

Helper
class

Servlet
HTML
helper

 Figure 5.2

1

2

3 4

5

6

7

EJB object

EJB remote
interface

Database

The Session
remote
interface

Language
property
text file

8 9

Session
EJB object

Session
helper class

10
11

12

13

= A call managed by
the EJB container

= A call implemented
in a class of the e-
commerce platform

 25

Figure 5.3 demonstrates a scenario of a use-case where the Cart session bean, that represents
the shopping cart, is used.

1. The Cart Servlet gets an HTTP Request from the user.
2. The Cart Servlet asks the Cart helper class to compute the tasks.
3. The Cart helper class connects to the Cart EJB objects through its remote home and access
the Cart EJB methods.
4. The EJB object methods return the values that were fetched in the Cart object, through the
remote interface to the helper class.
5. The Cart helper class returns the values to the Servlet.
6. The Cart Servlet send the computed values to the Cart Servlet HTML helper class.
7. The Cart Servlet HTML helper class asks the Session helper class for the locale of the
user. The locale is used for internationalization and localization tasks.
8. The Session helper class asks the Session session beans remote interface for the locale.
The remote interface accesses the Session object and gets the value.
9. The Session object methods return the value that was stored in the Session session bean
object, through the remote interface to the helper class.
10. The helper class returns the values to the Servlet HTML helper class.
11. The Servlet HTML helper class gets the locale value and calls a resource bundle to open a
Language property text file, specific for the users locale, for translation of the final HTML
response. The Servlet HTML helper class can also use the Locale for localization (see chapter
6.3).
12. The Language property text file sends the translation back to the Cart Servlet HTML
helper class.

User Cart
Servlet

Cart Helper
class

Servlet
HTML
helper

 Figure 5.3

1

2

3 4

5

6

7

Cart EJB
object

Cart EJB remote
interface The Session

remote
interface

Language
property
text file

8 9

Session
EJB object

Session
helper class

10
11

12

13

= A call managed
by the EJB

= A call implemented
in a class of the e-
commerce platform

 26

13. The Cart Servlet HTML helper class finally sends the HTML response to the client.

5.5 The components of the platform
The components of the platform are:
• HTML files
• Servlets
• Session Java Beans
• Entity Java Beans
• Helper classes

The HTML files
The HTML files are typically being used when no business logic is needed. For example,
there is an HTML file for the welcome page of the Web store.

The Servlets
For both the Web store and the management tool, I am using one Servlet class for every
function of the interface. One Servlet for every function makes the application code easy to
comprehend.
The Servlets in the web store are listed in table 5.1 and those of the management interface are
listed in table 5.2.

Servlet Description
BuyServlet BuyServlet will check if there are any products in the clients shopping

cart. If there are any, BuyServlet will present them to the client and the
total cost. If the client chooses to buy the products, it will add them to
the clients purchase in his profile and delete them from the shopping
cart.

CartServlet Manages the cart in the Web store. CartServlet shows the location in the
Catalog, if the "Action" attribute of the HTTP-request to the CartServlet
is "Erase" then it erases selected products from the Cart EJB. If the
"Action" attribute is "Add" it adds the product to the Cart EJB. When
this is done it displays the content of the Cart EJB.

CatalogServlet Manages the catalog in the Web store. Lets the user jump from between
product areas or search for a product by text search. CatalogServlet calls
it self every time the client does a new search with the id number of the
requested product or product area as an HTTP-request attribute.
When a product is presented, CatalogServlet first get the product
information from the Product EJB.

IndexServlet Displays the index of the functionalities of the Web-store. For example,
the cart and the catalog are two of these services. The functionalities
depend on what kind of user that uses the store. If the user is a "Tour"

Table 5.1. The Servlets in the Web store

 27

one functionality will be "Sign up for membership!" but this
functionality will not be presented for a user that is already a member
etc.

LoginServlet Handles login from the user to the Web store. The LoginServlet first
check what kind of user that tries to log in and then checks in the
corresponding EJB if the login name and password exists. If a user is
found with the correct login name and password, LoginServlet will
create a new Session EJB and a new Cart EJB for this user and set the
locale of the user in the Session EJB.
LoginServlet is also used when a "Tour" user has filled in forms to
become a member in NewProfileServlet for creating this new "Profile"
user in the Profile EJB.
When the information submits this information in the
NewProfileServlet, LoginServlet receives it and check the information
before creating the new "Profile".

LogoutServlet Handles logout from the user to the Web store. The LogoutServlet erases
the Session EJB and the Cart EJB.

NewProfileServlet Presents the forms for the user to fill in to make a new "Profile" user or
change a "Profile" user. If the user is already a "Profile" user,
NewProfileServlet will extract the information about the user from the
Profile EJB and displays it.

Servlet Description
CheckServlet When the "Administrator" user has decided to erase a product,

profile or administrator, the CheckServlet does an additional check
with the "Administrator" user before erasing the product, profile or
administrator from its EJB.
Another functionality of the CheckServlet is the updating of the
type attribute (the type attribute is defined later in this chapter under
Product EJB) of all the products in product database. The type
attribute tells if the product is valid or not or if the product is on
sale. The product could for example be set to be on sale the 15th
October and when that date occurs, the type should be changed from
no sale to sale. An administrator should run the updating function in
CheckServlet every day.

ManageLoginServlet Handles login of administrator to the management tool.
ManageProductServlet The ManageProductServlet presents an interface for managing the

product database. The administrator can create, change or erase a
product or a product area in the database.

ManageProfileServlet The ManageProductServlet presents an interface for managing the
profile and administrator database. The administrator can create,
change or erase a profile or an administrator in the database.

Table 5.2. Servlets in the Management interface

 28

The session beans
I have implemented two session beans: the Cart session bean and the Session session bean.

The Cart EJB handles the customers shopping cart. The bean is created when a customer is
logging in to the store and it is deleted when the customer is logging out. The ShoppingCart
bean is storing the products that the customer puts in the cart. It is also implementing some
functions for adding and deleting the products in the cart and to get the contents of the cart.

The Session EJB stores the user's locale and looks up the home interfaces to the Cart
EJB, Product EJB, Profile EJB and Administrator EJB and stores them as variables. A locale
is a Java object that contains two strings: language and country. These variables are used for
the internationalization and localization of the interfaces. Like the Cart EJB, the bean
is created when a customer is logging in to the store and it is deleted when the customer is
logging out.

The entity beans
The store is using the following three entity beans for storing data in the database:
• Product EJB
• Profile EJB
• Administrator EJB

Each of these beans contains a number of parameters (id, name, address etc) that will become
rows in the database when the bean is created. The entity bean's parameters are what make the
beans general so that any kind of Web-store can be built using these beans. The parameters
that I have implemented to the entity beans may not be complete but more parameters can be
added to the beans. The parameters, that I implemented to the beans, comes from a survey
about e-commerce that I did on Icon Medialab.
The entity beans offer a set of functions for retrieving and to set their variables through the
remote interface. They also prevent some functions for finding the rows in the database
through their home interfaces (search by primary key, search by description etc).
The three entity beans are using container-managed persistence and container-managed
transactions.

Product EJB is storing the products in the database.
The parameters of the Product entity bean are listed in table 5.3.

Parameters Java type Description
Product id String Tells were in the pyramid of product and product areas the product

is (see chapter 5.6 for more information about the database
structure). For example a product id could be "
product_cigars_Mexican cigars". The id is unique.

Father String Tells what product that is the father to this product. If the product
id is " product_cigars_Mexican cigars" then the father would be "
product_cigars "

Name String The name of the product. If the product id is "

Table 5.3 Parameters of the Product EJB

 29

product_cigars_Mexican cigars " then the name would be "
Mexican cigars "

Type String See description below.
Sale code String Sale code is a string that could be used when a product has

different prices to different users.
Valid start String Tells the start- and end-date for when the product is valid. The

string is on the form YEAR-MONTH-DATE or for example 1999-
12-14.

Valid end String Tells the end date for when the product is valid. The string is on
the same form as the Valid start parameter.

Sale start String Tells the start date for when the product has sale. The string is on
the same form as the Valid start parameter.

Sale end String Tells the end date for when the product has sale. The string is on
the same form as the Valid start parameter.

Description String The description of the product
Price int The price of the product.
Sale Int The sale of the product.

The Type parameter is specifying whether it is a product area (see chapter 5.6 for information
about products and product areas) or a product and if it is valid (which means that the product
is not yet for sale) or if it is on sale. An area is always valid and can not be on sale. The
possible types are:

"A" If it is an area.
"PV" If the product is valid and is not on sale (Product Valid).
"PNV" If the product is not valid (Product Not Valid).
"PVSV" If the product is valid and is on sale (Product Valid and Sale Valid).
"PVSNV" If the product is valid and will be on sale in the future (Product Valid and Sale
Not Valid).
"PNVSNV" If the product is not valid and will be on sale in the future (Product Not Valid
and Sale Not Valid).

Profile EJB is storing the customers to the web store. A customer has access to the store
interface but not to the management interface.
The parameters of the Profile entity bean are listed in table 5.4.

Parameters Java type Description
Id Integer The id number is unique.
Login String Login name
Password String Login password
First name String First name of the customer.
Last name String Last name of the customer.
Status String Status is a String that could be used in an e-commerce store to

Table 5.4 Parameters of the Profile EJB

 30

decide whether to give a person a sale on a product or not.
Profession String The profession of the customer.
City String The city in the customers address.
Country String The country in the customers address.
Telephone String The telephone number of the customer.
Email String The email of the customer.
Interest 1 –
Interest 6

Strings The interest strings could be used by an e-commerce store to store
information about the clients interests

Purchase 1 –
Purchase 10

String The purchase strings could be used in an e-commerce store to store
what products that this client has bought.

Sex String "M" for Male and "F" for Female.
Marital status String Marital status of the customer. The Marital status could be

“single”, “married” or “divorced”.
Street String The name of the street in the customers address.
City code String The city code in the customer's address.
Language String The language of the customer.
Age int The age of the customer.
Total
purchase

int The total purchase string could be used in an e-commerce store to
store the total amount of the products that this client has buy.

Latest login String The date when this client was latest logged on to the application.
Favorite
color

String The favorite color of the customer.

Administrator EJB stores the administrators, which are the persons that manages the products,
profiles and administrator in the database. An administrator has access to the store interface
and to the management interface.
The parameters of the administrator entity bean are listed in table 5.5.

Parameters Java type Description
Id Integer The id number is unique.
Login String Login name
Password String Login password
First name String First name of the administrator.
Last name String Last name of the administrator.
Country String The country of the administrator.
Email String The email of the administrator.
Language String The language of the administrator.

Table 5.5 Parameters of the Administrator EJB

 31

HTML helper classes
For each Servlet there is an HTML helper class that translate text to the language that the
customer desires and sends the HTML response to the client. In this approach of having a
helper class that takes care of the localization and output of HTML code, the business logic in
the Servlets is clearer. This is also why I did not use JSP technique but Servlets. In JSP
classes, the HTML and the Java computing tasks are blended.

EJB helper classes
For each EJB there is a Helper class that simply gets or sets a value in a bean. It also prevents
methods to call the beans create method, remove method, finder method etc. These helper
classes have the same purpose for the EJBs as the HTML helper classes for the Sevlets, to
make the business logic more clear.

Language property text file
The Language property text files are used for translation from English to the language of the
user. (See chapter 6.3)

5.6 The Database structure
I am using Cloudscape database, which is written in Java. It is populated with Profiles,
Products and Administrators. There is one table for each entity EJB that is represented in the
database and so there are three tables: the Product table, the Profile table and the
Administrator table.
Because I am using container-managed persistence, I never see these tables. In container-
managed persistence, the developer operates the EJBs which handles the database access and
SQL calls to the three tables.
Each entity EJB has a primary key that is unique. The nature of the primary key is set in the
deploy tool. In the Profile EJB and the Administrator EJB, I am using a unique Integer as a
primary key. In the Product EJB, the primary key, which is a String, is used not only to keep
every Product EJB unique but also to describe where in the database structure the product is.

A product EJB object can act either as a product area or as a product. The Type parameter of
the Product EJB tells whether it is a product area or a product (See chapter 5.5 for a definition
of the Type parameter).
The database structure of the products in the database is in tree form. The Id attribute of the
Product EJB tells where in the tree the product or product area is. On top of the pyramid is the
product area "product”. For example one branch of the tree could look like figure 5.2.

product (Area)

product_cigars (Area)

product_cigars_Mexican cigars (Area)

product_cigars_Mexican cigars_El Mexicana (Product)

Figure 5.2.The database
structure.

…………

…………

…………

 32

Basic Rules about products and areas:
• Products can not have sons
• An end date can not be before its start date
• The period of a sale must be within the valid-period

The database structure for the Profiles and Administrator is very simple. All the Profiles are
stored in the Profile table with a unique key but there is no hierarchy like the Product database
structure. The Administrators are stored in the Administrator table in a similar way as the
Profiles.

 33

6. Deployment
In this section, I explain how the deployment of the e-commerce platform was done.

6.1 Deployment of the Web- and EJB components
Both the Servlets and the EJBs needed to be deployed in the deploy-tool, that comes with the
J2EE application server, to fit in the J2EE application server (see chapter 4.3 for more
information on deployment of a J2EE application).

The deploy-tool comes with the J2EE application server. When deploying the EJBs and
Servlets for the e-commerce platform in this tool, there are certain steps to be followed. These
are:

1. Creating the EAR file.
2. Putting together EJB and WEB modules and specify the structural and assembly
information about the modules in the deployment descriptors (see Appendix E that explains
what kind of information the deployment descriptors contain).
3. Specify the security roles and the environmental entries.
4. Run the verifier tool in the deployment tool. The verifier tool search for and present errors
in the modules.
5. If there are no errors in the verifier tool, execute the deployment of the application.

If the deployment executes without errors, the deployment tool will create the J2EE
application (see Appendix D for more details of what happens when a J2EE application is
deployed).

When I had created the EAR file, I started with creating two small EJB and WEB modules
with just one Servlet in the WEB module and one EJB in the EJB module. I then tried to
execute the deployment of these two modules. After correcting errors I finally managed to
create a deployed J2EE application. When this was done, I added modules after modules to
this J2EE application.

I found that Servlets that call each other must be packaged in the same WEB. This discovery
turned out to render the deployment of the Servlets very time-consuming. Every time I needed
to make a change in a Servlet, for example change something in the GUI or a computing task,
I needed to re-deploy the whole module which meant creating a new deployment descriptor
and decide what class files that the WEB module should contain.

I user one WEB module for the Web-store interface and one for the Management interface.
To these WEB module, the HTML helper classes, Servlet HTML helper classes, Language
property text files and Servlet class files needed to be added.

It was easier to create the EJB modules because they could be small units that only consisted
of one EJB and its deployment descriptor. I only needed to re-deploy these modules when
there was a change in the EJB and that was not very often.

So, I created one EJB module for each EJB. The final list of modules in the e-commerce
platform J2EE application is:

 34

• Management interface WEB module
• Client interface WEB module (the Web-store interface)
• Session EJB module
• Shopping cart EJB module
• Product EJB module
• Profile EJB module
• Administrator EJB module

6.2 Interaction between the WEB and EJB modules
When the EJB modules is being deployed, they all get an identification name. This name will
be linked to the actual EJB object in the JNDI lookup service (see chapter 4.1) of the J2EE
application server.
As figure 6.1 and figure 6.2 show, in the e-commerce platform an EJB never calls a Servlet. It
is always a Servlet that calls an EJB for database or session bean information.
When a Servlet calls an EJB, it first needs to look up the EJB object in the JNDI lookup
service. With a reference to the EJB object obtained, one can find the home interface to the
EJB object. Here follows an example of how a Servlet looks up the home interface of the Cart
session bean:

try{
 InitialContext ctx = new InitialContext();(1)
 Object objref = ctx.lookup("Cart"); (2)
 CartHome homeCart = (CartHome)PortableRemoteObject.narrow(objref, CartHome.class);
 (3)
}
catch (Exception NamingException) {
 NamingException.printStackTrace();
}

1. The InitialContext object is used for the JNDI lookup service to specify where to look for
the EJB object. In this case, there are not many references to EJBs in the lookup service and
so there is no specification on where to look.
2. The Servlet looks up the Cart EJB object. The J2EE server calls its JNDI lookup interface
to find if there is any EJB modules with the identification name "Cart". The lookup service
finds the identification name and returns the EJB object of the EJB module that the
identification name pointed at.
3. With the reference to the EJB object, the home interface of the Cart session bean is found.

With a reference to a home interface of a session EJB one can create a session bean. This is
for example made every time a user logs in to the Web-store when a Session session bean and
a Cart session bean is created. The creating of a the Cart session bean looks like this:

try{
 Cart ShoppingCart = homeCart.create();
}
catch(javax.ejb.CreateException ce){
 System.out.println("Createexception in CartHelper: createCart ");
}

 35

catch(java.rmi.RemoteException re) {
 System.err.println("RemoteException in CartHelper: createCart " + re.getMessage());
}

With a reference to a home interface of an entity EJB one can search in the database for an
entity bean. Here is an example:

try{
 Product product1 =homeProduct.findByPrimaryKey("product_cigars_exclusive royal");
}
catch…

This call will search in the database for a product with the Id "product_cigars_exclusive
royal".
When the product is found one can use its business methods defined in the remote interface.
For example, to get the description of a product the following call should be used:

String description = Product1.getDescription();

6.3 Internationalization and Localization
The internationalization and the localization were an important part of the project. I realized
this part by using the localization features of the Java programming language and by setting
the locale of the user in the Session EJB that is created when the user is logging in. Both the
web store interface and the management interface is internationalized and localized.
If the user is a known profile that is stored in the database, the language and country attributes
of the profile are collected from the database. If the user is logging in to the web store as a
“tour”, the user has to choose a language before logging in.

Internationalization
The locale of the user is set when the user logs in to the Web-store or management interface.
Before the user gets back an HTTP-response when requesting a Web page, the page will pass
through an HTML helper class. This class will check the locale of the user in the Session EJB,
look up a resource bundle for that specific locale and Web page and translate the text into the
language set in the locale.

A resource bundle is a Java type that contains a text file. The creation method of a resource
bundle takes two parameters: A string that is the general name of the text file and a Locale. In
the following example, the Servlet html helper looks up a title and prints out the html title.

Locale locale = SessionHelper.getLocale(ManageLoginServlet.session);
ResourceBundle titleText = ResourceBundle.getBundle("titleText", locale);
String LANG_Title = titleText.getString("Title");
out.println("<TITLE>" + LANG_Title + "</TITLE>");

I wrote the e-commerce platform for thee languages: English, French and Swedish. In order
for this to work I had to write three “titleText” text files, one for every language. These three

 36

files have to have the names: titleText_en, titleText_fr and titleText_sw. Otherwise, the
resource bundle would not find them. Each of these files contains a row starting with “Title =
“ and the translation. The titleText_fr file would have the row “Title = Titre”. I created these
three text files for every Servlet. For example the loginText_en, loginText_fr and
loginText_sw contains the text output from the login Servlet.

With this approach, it is very easy to add a language to the application. One only has to write
a couple of new text files and nothing more. It is a little more complicated when one wants to
change the output text. Then one has to add the new words to all the language files (in my
case three). If I was to change the title, I had to open and edit the three titleText files.

The more traditional approach is to have a Servlet or JSP file for every language. If one has a
login Servlet for example that prints a welcome message to the screen, one would need to
have three login Servlets if there were three languages. I didn’t like this idea mainly because
that if one would add a new language, one had to rewrite (or copy and paste) the hole Servlet
and then change the language in it. If one was to change the code of the Servlet, one had to do
it in as many Servlets as there were languages.

Localization
The prices of the products in the web store are given in the currency that depends on the
country of the user. Again the Servlet html helper looks up the Locale is the Session session
bean. It gets the Country attribute in the locale and passes it to a function in a helper class that
calculates and returns the value of the product I the currency of that country.

6.4 Security
As I wrote in the chapter 4.5 about security in the J2EE platform, before all the mapping of
security roles to users can work, one has to create the different groups of users with a
command-line tool to manage the users. I did not like that way of handling the grouping of
users. It meant that every time a new profile or administrator was created, someone had to
manually put her profile in to a security group with this tool. In the e-commerce platform
however, a user logged in as a tour can create a profile by herself and it would be a difficult
job to keep count of all the new profiles and putting them into security groups.

I decided to manage the security by using the already existing groups in the database: profiles
and administrators. The profiles and administrators are authenticated by filling in a login-
password form. The only difference in security is that only the administrator can use the
management tool for managing the database over products, profiles and administrators. That
meant that I somehow had to be sure that a profile could not use the management interface
Servlets.
I assured this by setting a parameter with the value “Administrator” in the Session session
bean when the administrator is logging in to the management interface. Every time a Servlet
is used in the management interface, the Servlet asks for this parameter in the Session session
bean and checks that it is equal to “Administrator” If it is not, the Servlet stops all operations
and writes a error message to the screen.

 37

7. Conclusions

The project turned out to be quite big and I did not manage to deliver complete software but I
think that I learned a lot on the way. I did a couple of presentations about EJBs, Servlets, and
the J2EE application server for the technology team in the office at Icon Medialab, San
Francisco. It was appreciated.

I have learned how to use the J2EE Platform with deploying etc. I also learned how to work
with Servlets and Java Enterprise Beans and how to use the RMI and JNDI technology.

I developed a prototype for the e-commerce platform with two user interfaces using the J2EE
application server. The prototype can be deployed on any of the platforms that the J2EE
application server supports and use any of the suported databases (see Appendix C -
Technical requires for the J2EE platform).

What are the positive aspects about developing applications on the J2EE platform?
One does not need to worry about transaction management or database connections and best
of all: it is not necessary to write any SQL code. The J2EE EJB container can produce the
SQL code itself.
Other positive aspects are:
• Easy to manage security.
• Produces scalable applications.
• Produces applications that can are remoteble to all sorts of clients thanks to the RMI and
RMI-IOOP structure of the J2EE platform.

What are the negative aspects about developing applications on the J2EE platform?
Deployment is VERY time-consuming. When deploying the Web-store, for example, I need
to put all the Servlets in one Web module as they all use each other. Whenever I changed a
Servlet or a class in the Web store interface, I needed to re-deploy the entire module to be able
to see if the changes were correct.

The new release, version 1.2.1, of the Application Deployment Tool has a new re-deployment
feature that let the deployer "hot deploy" the J2EE application.
In this version, the developer does not need to re-deploy the whole Web module or EJB
module if a class is altered. Instead it uses the same module but changes the old classes for the
new that has been changed.

 38

8. Recommendations

Application servers are very powerful tools to work with. The J2EE application server is easy
to use once one learned to implement the EJBs and how to deploy the J2EE application.
The new version of the Application Deployment Tool to the J2EE platform makes it much
easier to deploy the J2EE application than with the previous version that I used. This new
deployment tool makes the J2EE platform even more powerful for developing commercial
products.

Sun provides a developers-connection with forums at http://forum.java.sun.com/ where
developers can ask questions about Java APIs. The question is normally answered the same
day or in some cases the next day.
I can specially recommend the EJB forum and the J2EE forum.

There is a very good Java tutorial online that is possible to download at:
http://java.sun.com/docs/books/tutorial/

 39

9. References

• Database Programming with JDBC and JAVA,1997 O'REILLY by George Reese
• The complete Reference JAVA 1.1 second edition, 1998 Osborne by Patrick Naughton
and Herbert Schildt
• JavaSofts Online Tutorial, http://java.sun.com/docs/books/tutorial/
• Java Developer Connection and the Enterprise JavaBeans forum at
http://forum.java.sun.com/
• Sun BluePrints Design Guidelines for J2EE
• Simplified Guide to the Java 2 Platform, Enterprise edition. Copyright 1999 by SUN INC.
• Java 2 SDK, Enterprise Edition Release Notes
• Fundamentals of Java RMI at SUN:
http://developer.java.sun.com/developer/onlineTraining/rmi/RMI.html#IntroRMI
• Enterprise JavaBeans tutorial at SUN:
http://developer.java.sun.com/developer/onlineTraining/Beans/EJBTutorial/index.html
• Java Servlet Specification, v2.2 at SUN, www.javasoft.com.
• Containers by Neil Ward-Dutton is an article in Component Strategies & Architectures
January 2000. The article is available at http://www.adtmag.com.
• A Detailed Comparison of CORBA, DCOM and Java/RMI by Gopalan Suresh Raj at
http://www.execpc.com/~gopalan/misc/compare.html
• Overview of the concept of e-commerce at http://www.premiersite.com/html/new_call_e-
commerce.htm?support/commerce/whatis

 40

Appendix A - Services provided by the EJB container

Transaction Management
When a client invokes a method in an enterprise bean, the container intervenes in order to
manage the transaction. Because the container manages the transaction, you do not have to
code transaction in the enterprise bean. The code that is required to control distributed
transactions can be quite complex. Instead of writing complex code, the developer simply
declare the enterprise bean's transactional properties in the deployment descriptor file. The
container reads the file and handles the enterprise bean's transactions.

Remote Client Connectivity
The container manages the low-level communications between clients and enterprise beans.
After an enterprise bean has been created, a client invokes methods on it as if it were in the
same virtual machine.

Security
The container permits only authorized clients to invoke an enterprise bean's methods. Each
client belongs to a particular role, and each role is permitted to invoke certain methods. The
developer declares the roles and the methods they may invoke in the enterprise bean's
deployment descriptor. Because of this declarative approach, the developer does not need to
code routines that enforce security.

Life Cycle Management
An enterprise bean passes through several states during its lifetime. The container creates the
enterprise bean, moves it between a pool of available instances and the active state, and
finally, removes it. Although the client calls methods to create and remove an enterprise bean,
the container performs these tasks behind the scenes.

Database Connection Pooling
Obtaining a database connection is time-consuming and the number of connections may be
limited. To alleviate these problems, the container manages a pool of database connections.
An enterprise bean can quickly obtain a connection from the pool. After the bean releases the
connection, it may be re-used by another bean.

 41

Appendix B - Services provided by the J2EE platform

JDBC 2.0
JDBC is an API for database connectivity between the J2EE platform and a wide range of
data sources. JDBC allows:
• Load and configure a database driver on a client
• Perform connection and authentication to a database server
• Manage transactions
• Move SQL statements to a database engine for preprocessing and execution
• Inspect the results from Select statements

Java Transaction API and Service
The Java Transaction API (JTA) specifies standard Java interfaces between a transaction
manager and the transactional application, the J2EE server, and the manager that controls
access to the shared resources affected by the transactions.

Java Naming and Directory Interface
The Java Naming and Directory Interface (JNDI) is an API that provides naming and
directory functionality. The JNDI provides applications with methods for performing standard
directory operations, such as associating attributes with objects and searching for objects
using their attributes. Using the JNDI, an application can store and retrieve any type of named
Java object. In particular, a J2EE application uses JNDI to find interfaces used to create
enterprise beans, JTA User Transaction objects, JDBC Data Source objects, and message
connections.

Java Message Service
The Java Message Service (JMS) is an API for using enterprise-messaging systems.

Java Mail
The Java Mail API provides a set of abstract classes and interfaces that comprise an electronic
mail system. The abstract classes and interfaces support many different implementations of
message stores, formats, and transports. Many simple applications will only need to interact
with the messaging system through these base classes and interfaces. The abstract classes in
Java Mail can be subclasses to provide new protocols and add functionality when necessary.

Java bean Activation Framework
The Java bean Activation Framework (JAF) integrates support for MIME data types into the
Java platform. The JAF is used by Java Mail to handle the data included in email messages;
typical applications will not need to use the JAF directly, although applications making
sophisticated use of email may need it.

 42

Appendix C - Technical requires for the J2EE platform

Supported Platforms
Solaris TM Operating Environment, version 2.6
Windows NT, version 4.0

Supported Databases and JDBC Drivers
Oracle8 Server, version 8.05
Microsoft SQL Server, versions 6.5, 7.0
Cloudscape, version 3.0

Limitations
The J2EE platform requires at least 128 MB of memory. Memory problems have occurred
when a large number (> 16) of J2EE applications are deployed, or when a large number (>
1000) of enterprise beans are instantiated.

 43

Appendix D - Deployment in detail

Deployment of enterprise beans consists of following sub-tasks:
1. The J2EE server compiles the stubs and skeletons for each enterprise bean.
2. The J2EE server sets up the security environment to host the enterprise beans according to
their deployment descriptor.
3. The J2EE server sets up the transaction environment for the enterprise beans according to
their deployment descriptor.
4. The J2EE server registers the enterprise beans, their environment properties, resources
references and so on, in the JNDI name space.
5. For enterprise beans that need container-managed persistence, the J2EE server creates
database tables.

Deployment of Web components consists of following sub-tasks:
1. The server transfers all the con-tents of the Web components underneath the document
root of the Web server.
2. The J2EE server initializes the security environment of the application.
3. The J2EE server registers the environment properties, resource references, and EJB
references in the JNDI name space.
4. The J2EE server sets up the environment for the Web application. For example, it
performs the alias mappings, and configures the Servlet context parameters.
5. The J2EE server pre-compiles the JSP pages as specified in the deployment descriptor.

 44

Appendix E - Deployment descriptors in detail

An EJB deployment descriptor contains the following structural information:
• Identification. Specifies the name and description of the EJB module.
• Remote and home interfaces. Specifies the address of the two interfaces.
• Type. The type can be either stateful session, stateless session or entity
• Environment entries
• References to other enterprise beans
• References to external resources
• References to security roles
• (Only for session EJBs) Whether transactions are managed by the bean or by the container
• (Only for entity EJBs) Whether persistence is managed by the bean or by the container
• (Only for entity EJBs) Primary key class

An EJB deployment descriptor contains the following assembly information:
• Security roles
• Method permissions. These permissions specify which security roles are permitted to
execute a given method on the EJB.
• Transaction attributes. These attributes are used for container-managed EJBs to decide
what kind of transaction should be used for each method in the EJB.

A Web component deployment descriptor contains the following elements:
• Identification. Specifies the name and description of the WEB module.
• Servlet initialization parameters
• Servlet context parameters
• Session configuration
• Localization configuration
• Servlet and JSP definitions
• Servlet and JSP mappings
• MIME type mappings
• Welcome and error page list
• Tag library information
• Security roles
• Security constraints, which map security roles and authorization methods to
• collections of Web resources
• Environment entries
• References to enterprise beans
• References to external resources
• References to security roles

 45

Appendix F – Glossary

.ear file A JAR file that contains a J2EE application.
.jar file A JAR file that contains a EJB module
.war file A JAR file that contains a Web module.
API Application Programming Interface
Applet A Java component that typically executes in a Web browser.
Application client A first-tier Java client program.
Bean-managed persistence When the calls to the database are implemented in the entity bean.
Bean-managed transaction When the transaction management is implemented in the entity bean.
Component An application-level software unit supported by a container.
Container An entity part of a application server that provides life cycle management, security, deployment, and
runtime services to components.
Container-managed persistence When the SQL-calls to the database is managed by the enterprise bean's
container.
Container-managed transaction When the transactions are managed by the container
CORBA Common Object Request Broker Architecture. A language-independent, distributed object model
specified by the Object Management Group (OMG).
Deployment The process when it is decided how the components are going to work together and what
responsibility the container should take using the deployment tool.
Deployment descriptor An XML file provided with each module and application that describes how they
should be deployed.
Distributed application An application made up of components running in separate runtime environments,
usually on different platforms connected via a network.
EJB container A container that implements a runtime environment for enterprise beans that includes security,
concurrency, life cycle management, transaction, deployment, and other services. An EJB container is provided
by an EJB- or a J2EE-server.
EJB .jar file A JAR archive that contains an EJB module.
EJB module A software unit that consists of one or more enterprise beans and an EJB deployment descriptor.
EJB server Software that provides services to an EJB container. For example, an EJB container typically relies
on a transaction manager that is part of the EJB server to perform. The J2EE architecture assumes that an EJB
container is hosted by an EJB server from the same vendor. An EJB server may host one or more EJB
containers.
Enterprise JavaBeans (EJB). A component architecture for the development and deployment of object-
oriented, distributed, applications. Applications written using the Enterprise JavaBeans architecture are scalable,
transactional, multi-user and secure.
Entity bean. An enterprise bean that represents persistent data in a database. A primary key identifies an entity
bean. If the container in which an entity bean is hosted crashes, the entity bean, its primary key, and any remote
references survive the crash.
Finder method A method defined in the home interface and invoked by a client to find an entity bean.
Home interface One of two interfaces for an enterprise bean. The home interface defines methods for creating
and removing an enterprise bean. For entity beans, the home interface also defines finder methods.
IIOP Internet Inter-ORB Protocol. A protocol used for communication between CORBA objects.
J2EE application A J2EE application is made up of several modules packaged into an .ear file with a J2EE
application deployment descriptor. J2EE applications are often distributed applications.
J2EE server The runtime portion of a J2EE product. A J2EE server provides a Web- and a EJB-container.
Java 2 Platform, Enterprise Edition (J2EE platform) An environment for developing and deploying
enterprise applications. The J2EE platform consists of a set of services, APIs, and protocols that provide the
functionality for developing multi-tiered, Web-based applications.
Java 2 SDK, Enterprise Edition Sun's implementation of the J2EE platform. This implementation provides an
operational definition of the J2EE platform.
Java Naming and Directory Interface (JNDI) An API that provides naming and directory functionality.
JavaBean A Java class that can be manipulated in a visual builder tool and composed together into applications.
A JavaBeans component must be programmed after certain conventions.
Java Server Pages (JSP) An extensible Web technology that uses template data, scripting languages, and
server-side Java objects to return dynamic content to a client. Typically the template data is HTML or XML
elements.
JDBC API for database connectivity between the Java platform a data source.

 46

Module A software unit that consists of one or more J2EE components of the same container type and one
deployment descriptor of that type. There are three types of modules: EJB, Web, and application client.
Primary key An object that uniquely identifies an entity bean within a home.
Remote interface One of two interfaces for an enterprise bean. The remote interface defines the business
methods that a client can access.
RMI Remote Method Invocation. A technology that allows an object running in one Java virtual machine to
invoke methods on an object running in a different Java virtual machine.
RMI-IIOP [RMI over IIOP] RMI over IIOP is a version of RMI implemented to use the CORBA IIOP protocol.
RMI over IIOP provides a bridge to CORBA implemented objects.
Servlet A Java program that extends the functionality of a Web server, generating dynamic content and
interacting with Web clients using a request-response model.
Session bean An enterprise bean that is created by a client and that usually exists only for the duration of a
single client/server session. A session bean performs operations, such as calculations or accessing a database, for
the client. Session bean objects can be either stateless or they can maintain a state. If a crash in the system, the
state of a stateful session bean is not recoverable.
SQL Structured Query Language. The standardized relational database language for defining database objects
and manipulating data.
Stateful session bean A session bean that contains a state. Data can be stored in a stateful session bean but only
as long as the session bean lives. When the session bean is terminated, the state will be lost.
Stateless session bean A session bean without state. All instances of a stateless session bean are identical.
Transaction Transactions enable multiple users to access the same data.
Web component A component that provides services in response to requests. A Web component in the J2EE
architecture can be a Servlet, JSP- or HTML file or an applet.
Web container A container that implements a runtime environment for Web components that includes security,
concurrency, life cycle management, transaction, deployment, and other services. A Web container is provided
by a Web- or a J2EE-server.
Web server A Web server hosts Web sites, provides support for HTTP and other protocols, and executes server-
side programs (such as CGI scripts or Servlets). In the J2EE architecture, a Web server provides services to a
Web container. For example, a Web container typically relies on a Web server to provide HTTP message
handling. The J2EE architecture assumes that a Web container is hosted by a Web server from the same vendor.
A Web server may host one or more Web containers.

 47

Appendix G - Class documentation

Some of the most important classes in the prototype of the e-commerce platform are here
listed in alphabetic order.

Beans.administrator
Interface Administrator

public interface Administrator
extends javax.ejb.EJBObject
Defines the business methods of the Administrator EJB

Method Detail

The following business methods are implemented in the AdministratorEJB

public int getId() throws java.rmi.RemoteException
public void setId(int id) throws java.rmi.RemoteException
public java.lang.String getLogin() throws java.rmi.RemoteException
public void setLogin(java.lang.String login) throws java.rmi.RemoteException
public java.lang.String getPassword() throws java.rmi.RemoteException
public void setPassword(java.lang.String password)throws java.rmi.RemoteException
public java.lang.String getFirstName() throws java.rmi.RemoteException
public void setFirstName(java.lang.String firstName) throws java.rmi.RemoteException
public java.lang.String getLastName() throws java.rmi.RemoteException
public void setLastName(java.lang.String lastName) throws java.rmi.RemoteException
public java.lang.String getEmail()throws java.rmi.RemoteException
public void setEmail(java.lang.String email) throws java.rmi.RemoteException
public java.lang.String getLanguage() throws java.rmi.RemoteException
public void setLanguage(java.lang.String language) throws java.rmi.RemoteException
public java.lang.String getCountry() throws java.rmi.RemoteException
public void setCountry(java.lang.String country) throws java.rmi.RemoteException

Beans.administrator
Class AdministratorEJB
java.lang.Object
 |
 +--Beans.administrator.AdministratorEJB

public class AdministratorEJB
extends java.lang.Object
implements javax.ejb.EntityBean
Implements the bussiness methods and creation methods of the Administrator EJB

Field Detail

• public java.lang.Integer id
• public java.lang.String login
• public java.lang.String password
• public java.lang.String firstName
• public java.lang.String lastName
• public java.lang.String email

 48

• public java.lang.String language
• public java.lang.String country

Constructor Detail

AdministratorEJB
public AdministratorEJB()

Method Detail

ejbCreate
public void ejbCreate(int id, java.lang.String login, java.lang.String password, java.lang.String firstname,
java.lang.String lastname, java.lang.String email, java.lang.String language, java.lang.String country) throws
javax.ejb.CreateException
ejbCreate creates an Administrator EJB if parameters are correct When ejbCreate is called, the EJB container
creates an Administrator EJB. The creation method of a EJB must be named ejbCreate() and can not return a
value.
Parameters:
The parameters are the same as the instance variables of the Administrator

getId
public int getId() throws java.rmi.RemoteException
Returns the Id of the Administrator

setId
public void setId(int id) throws java.rmi.RemoteException
Sets a new Id to the Administrator
Parameters:
id - the new Id of the Administrator

getLogin
public java.lang.String getLogin() throws java.rmi.RemoteException
Returns the login name of the Administrator

setLogin
public void setLogin(java.lang.String login) throws java.rmi.RemoteException
Sets a new login name to the Administrator
Parameters:
login - the new login name of the Administrator

getPassword
public java.lang.String getPassword() throws java.rmi.RemoteException
Returns the password of the Administrator

setPassword
public void setPassword(java.lang.String password) throws java.rmi.RemoteException
Sets a new password to the Administrator
Parameters:
password - the new password of the Administrator

getFirstName
public java.lang.String getFirstName() throws java.rmi.RemoteException
Returns the first name of the Administrator

setFirstName
public void setFirstName(java.lang.String firstName) throws java.rmi.RemoteException
Sets a new first name to the Administrator
Parameters:
firstName - the new first name of the Administrator

 49

getLastName
public java.lang.String getLastName() throws java.rmi.RemoteException
Returns the last name of the Administrator

setLastName
public void setLastName(java.lang.String lastName) throws java.rmi.RemoteException
Sets a new last name to the Administrator
Parameters:
lastName - the new last name of the Administrator

getEmail
public java.lang.String getEmail() throws java.rmi.RemoteException
Returns the email of the Administrator

setEmail
public void setEmail(java.lang.String email) throws java.rmi.RemoteException
Sets a new email to the Administrator
Parameters:
email - the new email of the Administrator

getLanguage
public java.lang.String getLanguage() throws java.rmi.RemoteException
Returns the language of the Administrator

setLanguage
public void setLanguage(java.lang.String language) throws java.rmi.RemoteException
Sets a new language to the Administrator
Parameters:
language - the new language of the Administrator

getCountry
public java.lang.String getCountry()
 throws java.rmi.RemoteException
Returns the country of the Administrator

setCountry
public void setCountry(java.lang.String country)
 throws java.rmi.RemoteException
Sets a new country to the Administrator
Parameters:
country - the new country of the Administrator

The following methods must be overridden because AdministratorEJB implements EntityBean :

public void setEntityContext(javax.ejb.EntityContext context)
public void ejbRemove()
public void ejbActivate()
public void ejbPassivate()
public void unsetEntityContext()
public void ejbLoad()
public void ejbStore()
public void ejbPostCreate(int id, java.lang.String login, java.lang.String password, java.lang.String firstname,
java.lang.String lastname, java.lang.String email, java.lang.String language, java.lang.String country)

Beans.administrator
Interface AdministratorHome

 50

public interface AdministratorHome
extends javax.ejb.EJBHome
Defines the creation and finder methods of the Administrator EJB

Method Detail

create
public Administrator create(int id, java.lang.String login, java.lang.String password, java.lang.String firstname,
java.lang.String lastname, java.lang.String email, java.lang.String language, throws java.rmi.RemoteException,
javax.ejb.CreateException
The create method is implemented in the AdministratorEJB as ejbCreate()

The following finder-methods are implemented by the EJB container in the deployment phase:

FindByPrimaryKey public Administrator findByPrimaryKey(java.lang.Integer Id) throws
javax.ejb.FinderException, java.rmi.RemoteException

FindByLogin public java.util.Collection findByLogin(java.lang.String login, java.lang.String password) throws
javax.ejb.FinderException, java.rmi.RemoteException

FindByName public java.util.Collection findByName(java.lang.String firstName, java.lang.String lastName)
throws javax.ejb.FinderException, java.rmi.RemoteException

FindByEmail public java.util.Collection findByEmail(java.lang.String email) throws
javax.ejb.FinderException, java.rmi.RemoteException

ClientInterface.Servlets
Class BuyServlet
java.lang.Object
 |
 +--javax.servlet.GenericServlet
 |
 +--javax.servlet.http.HttpServlet
 |
 +--ClientInterface.Servlets.BuyServlet

public class BuyServlet
extends javax.servlet.http.HttpServlet
BuyServlet will check if there are any products in the clients shopping cart. If there are any, BuyServlet
will present them to the client and the total cost. If the client chooses to buy the products, it will add
them to the clients purchase in his profile and delete them from the shoppingcart.

Constructor Detail

BuyServlet
public BuyServlet()

Method Detail

init
public void init(javax.servlet.ServletConfig config) throws javax.servlet.ServletException
Overrides:
init in class javax.servlet.GenericServlet

 51

doGet
public void doGet(javax.servlet.http.HttpServletRequest request, javax.servlet.http.HttpServletResponse
response) throws javax.servlet.ServletException, java.io.IOException
Overrides:
doGet in class javax.servlet.http.HttpServlet

destroy
public void destroy()
Overrides:
destroy in class javax.servlet.GenericServlet

Beans.cart
Interface Cart

public interface Cart
extends javax.ejb.EJBObject
Defines the business methods of the Cart EJB

Method Detail

The following business methods are implemented in the CartEJB

public void addItem(Product product) throws java.rmi.RemoteException
public void addItemPrice(java.lang.Double productPrice) throws java.rmi.RemoteException
public void removeItem(Product product) throws java.rmi.RemoteException
public void removeItemPrice(java.lang.Double productPrice)throws java.rmi.RemoteException
public java.util.Vector getContents() throws java.rmi.RemoteException
public java.util.Vector getContentPrices() throws java.rmi.RemoteException
public void removeItemAt(int n) throws java.rmi.RemoteException
public void removeItemPriceAt(int n) throws java.rmi.RemoteException

Beans.cart
Class CartEJB
java.lang.Object
 |
 +--Beans.cart.CartEJB

public class CartEJB
extends java.lang.Object
implements javax.ejb.SessionBean
Implements the bussiness methods and creation methods of the Cart EJB.

Constructor Detail

CartEJB
public CartEJB()

Method Detail

ejbCreate
public void ejbCreate() throws javax.ejb.CreateException, java.rmi.RemoteException
When ejbCreate is called, the EJB container creates a CartEJB. The creation method of a EJB must be named
ejbCreate() and can not return a value.

 52

addItem
public void addItem(Product product) throws java.rmi.RemoteException
Adds a product to the shopping cart.
Parameters:
product - the product

addItemPrice
public void addItemPrice(java.lang.Double productPrice) throws java.rmi.RemoteException
Adds a product's price to the price table in the shopping cart. The price table remembers the prices of all the
products in the shopping cart.
Parameters:
productPrice - the price of a product

removeItem
public void removeItem(Product product) throws java.rmi.RemoteException
Removes a product from the shopping cart
Parameters:
product - the product

removeItemPrice
public void removeItemPrice(java.lang.Double productPrice) throws java.rmi.RemoteException
Removes a price from the price table in the shopping cart The price table remembers the prices of all the
products in the shopping cart.
Parameters:
productPrice - the price of a product

removeItemAt
public void removeItemAt(int n) throws java.rmi.RemoteException
Removes the n:th product in the shopping cart
Parameters:
n - the n:th product in the shopping cart

removeItemPriceAt
public void removeItemPriceAt(int n) throws java.rmi.RemoteException
Removes the n:th price the price table in the shopping cart The price table remembers the prices of all the
products in the shopping cart.
Parameters:
n - the n:th product in the shopping cart

getContents
public java.util.Vector getContents() throws java.rmi.RemoteException
returns the content of the shopping cart
Returns:
a vector of the content of the shopping cart

getContentPrices
public java.util.Vector getContentPrices() throws java.rmi.RemoteException
returns the price table of the shopping cart The price table remembers the prices of all the products in the
shopping cart.
Returns:
a vector of the price table of the shopping cart

The following methods must be overridden because CartEJB implements SessionBean :

public void ejbRemove() throws java.rmi.RemoteException
public void ejbActivate() throws java.rmi.RemoteException
public void ejbPassivate() throws java.rmi.RemoteException
public void setSessionContext(javax.ejb.SessionContext sc) throws java.rmi.RemoteException
public void unsetSessionContext() throws java.rmi.RemoteException
public void ejbLoad() throws java.rmi.RemoteException

 53

public void ejbStore() throws java.rmi.RemoteException

Beans.cart
Interface CartHome

public interface CartHome
extends javax.ejb.EJBHome
Defines the creation and finder methods of the Cart EJB

Method Detail

create
public Cart create() throws java.rmi.RemoteException, javax.ejb.CreateException
The create method is implemented in the CartEJB as ejbCreate()

ClientInterface.Servlets
Class CartServlet
java.lang.Object
 |
 +--javax.servlet.GenericServlet
 |
 +--javax.servlet.http.HttpServlet
 |
 +--ClientInterface.Servlets.CartServlet

public class CartServlet
extends javax.servlet.http.HttpServlet
CartServlet shows the location in the Catalog, if the "Action" attribute of the request to the CartServlet
is "Erase" then it erases selected products from the Cart EJB. If the "Action" attribute is "Add" it adds
the product to the Cart EJB. When this is done it desplays the content of the Cart EJB.

Constructor Detail

CartServlet
public CartServlet()

Method Detail

init
public void init(javax.servlet.ServletConfig config) throws javax.servlet.ServletException
Overrides:
init in class javax.servlet.GenericServlet

doGet
public void doGet(javax.servlet.http.HttpServletRequest request, javax.servlet.http.HttpServletResponse
response) throws javax.servlet.ServletException, java.io.IOException
Overrides:
doGet in class javax.servlet.http.HttpServlet

destroy
public void destroy()
Overrides:
destroy in class javax.servlet.GenericServlet

 54

ClientInterface.Servlets
Class CatalogServlet
java.lang.Object
 |
 +--javax.servlet.GenericServlet
 |
 +--javax.servlet.http.HttpServlet
 |
 +--ClientInterface.Servlets.CatalogServlet

public class CatalogServlet
extends javax.servlet.http.HttpServlet
Manages the catalog in the Web store. Lets the user jump from between product areas or search for a
product by text search. CatalogServlet calls it self everytime the client does a new search with the id
number of the requested product or product area as a HTTP-request attribute.When a product is
presented, CatalogServlet first get the product information from the Product EJB.

Field Detail

products
public static java.util.Collection products

location
public static java.lang.String location

Constructor Detail

CatalogServlet
public CatalogServlet()

Method Detail

init
public void init(javax.servlet.ServletConfig config) throws javax.servlet.ServletException
Overrides: init in class javax.servlet.GenericServlet

doGet
public void doGet(javax.servlet.http.HttpServletRequest request, javax.servlet.http.HttpServletResponse
response) throws javax.servlet.ServletException, java.io.IOException
Overrides: doGet in class javax.servlet.http.HttpServlet

destroy
public void destroy()
Overrides: destroy in class javax.servlet.GenericServlet

ManagementInterface.Servlets
Class CheckServlet
java.lang.Object
 |
 +--javax.servlet.GenericServlet
 |
 +--javax.servlet.http.HttpServlet

 55

 |
 +--ManagementInterface.Servlets.CheckServlet

public class CheckServlet
extends javax.servlet.http.HttpServlet
When the "Administrator" user has desided to erase a product, profile or administrator, the
CheckServlet does an additional check with the "Administrator" user before erasing the product, profile
or administrator from its EJB. Another functionalety of the CheckServlet is the updating of the type
attibute of all the products in product database. The type attribute tells if the product is valid or not or if
the product is on sale. The product could for example be set to be on sale the 15th october and when
that date occures, the type should be changed from no sale to sale. The updating function in
CheckServlet should be run every day by a aministrator.

Field Detail

productsToErase
public static java.util.Vector productsToErase

Constructor Detail

CheckServlet
public CheckServlet()

Method Detail

init
public void init(javax.servlet.ServletConfig config) throws javax.servlet.ServletException
Overrides:
init in class javax.servlet.GenericServlet

doGet
public void doGet(javax.servlet.http.HttpServletRequest request,javax.servlet.http.HttpServletResponse
response) throws javax.servlet.ServletException, java.io.IOException
Overrides:
doGet in class javax.servlet.http.HttpServlet

doPost
public void doPost(javax.servlet.http.HttpServletRequest request, javax.servlet.http.HttpServletResponse
response) throws javax.servlet.ServletException, java.io.IOException
Overrides:
doPost in class javax.servlet.http.HttpServlet

destroy
public void destroy()
Overrides:
destroy in class javax.servlet.GenericServlet

UpdateProducts
public void UpdateProducts(Product product)

ClientInterface.Servlets
Class IndexServlet
java.lang.Object
 |
 +--javax.servlet.GenericServlet
 |

 56

 +--javax.servlet.http.HttpServlet
 |
 +--ClientInterface.Servlets.IndexServlet

public class IndexServlet
extends javax.servlet.http.HttpServlet
Displays the index of the functionaleties of the Web-store. For example, the cart and the catalog are
two of these services. The functionaleties depends on what kind of user that uses the store. If the user
is a "Tour" one functionalety will be "Sign up for memberchip!" but this functionalety will not be
presented for a user that is already a member etc.

Constructor Detail

IndexServlet
public IndexServlet()

Method Detail

init
public void init(javax.servlet.ServletConfig config) throws javax.servlet.ServletException
Overrides:
init in class javax.servlet.GenericServlet

doGet
public void doGet(javax.servlet.http.HttpServletRequest request, javax.servlet.http.HttpServletResponse
response) throws javax.servlet.ServletException, java.io.IOException
Overrides:
doGet in class javax.servlet.http.HttpServlet

destroy
public void destroy()
Overrides:
destroy in class javax.servlet.GenericServlet

ClientInterface.Servlets
Class LoginServlet
java.lang.Object
 |
 +--javax.servlet.GenericServlet
 |
 +--javax.servlet.http.HttpServlet
 |
 +--ClientInterface.Servlets.LoginServlet

public class LoginServlet
extends javax.servlet.http.HttpServlet
Handles login from the user. The LoginServlet first check what kind of user that tries to log in and then
checks in the coresponding EJB if the login name and password exists. If a user is found with the
correct login name and password, LoginServlet will create a new Session EJB and a new Cart EJB for
this user and set the locale of the user in the Session EJB. LoginServlet is also used when a "Tour"
user has filled in forms to become a member in NewProfileServlet for creating this new "Profile" user in
the Profile EJB. When the information submits this information in the NewProfileServlet, LoginServlet
recieves it and check the information before creating the new "Profile".

Field Detail

 57

session
public static Session session

customer
public static Profile customer

cart
public static Cart cart

Constructor Detail

LoginServlet
public LoginServlet()

Method Detail

init
public void init(javax.servlet.ServletConfig config) throws javax.servlet.ServletException
Overrides:
init in class javax.servlet.GenericServlet

doPost
public void doPost(javax.servlet.http.HttpServletRequest request, javax.servlet.http.HttpServletResponse
response) throws javax.servlet.ServletException, java.io.IOException
Overrides:
doPost in class javax.servlet.http.HttpServlet

destroy
public void destroy()
Overrides:
destroy in class javax.servlet.GenericServlet

ClientInterface.Servlets
Class LogoutServlet
java.lang.Object
 |
 +--javax.servlet.GenericServlet
 |
 +--javax.servlet.http.HttpServlet
 |
 +--ClientInterface.Servlets.LogoutServlet

public class LogoutServlet
extends javax.servlet.http.HttpServlet
Handles logout from the user to the Web store. The LogoutServlet erases the Session EJB and the
Cart EJB.

Constructor Detail

LogoutServlet
public LogoutServlet()

Method Detail

 58

init
public void init(javax.servlet.ServletConfig config) throws javax.servlet.ServletException
Overrides:
init in class javax.servlet.GenericServlet

doGet
public void doGet(javax.servlet.http.HttpServletRequest request, javax.servlet.http.HttpServletResponse
response) throws javax.servlet.ServletException, java.io.IOException
Overrides:
doGet in class javax.servlet.http.HttpServlet

destroy
public void destroy()
Overrides:
destroy in class javax.servlet.GenericServlet

ManagementInterface.Servlets
Class ManageLoginServlet
java.lang.Object
 |
 +--javax.servlet.GenericServlet
 |
 +--javax.servlet.http.HttpServlet
 |
 +--ManagementInterface.Servlets.ManageLoginServlet

public class ManageLoginServlet
extends javax.servlet.http.HttpServlet
Handles login of administrator to Management Tool.

Field Detail

session
public static Session session

Constructor Detail

ManageLoginServlet
public ManageLoginServlet()

Method Detail

init
public void init(javax.servlet.ServletConfig config) throws javax.servlet.ServletException
Overrides:
init in class javax.servlet.GenericServlet

doGet
public void doGet(javax.servlet.http.HttpServletRequest request, javax.servlet.http.HttpServletResponse
response) throws javax.servlet.ServletException, java.io.IOException
Overrides:
doGet in class javax.servlet.http.HttpServlet

doPost
public void doPost(javax.servlet.http.HttpServletRequest request, javax.servlet.http.HttpServletResponse
response) throws javax.servlet.ServletException, java.io.IOException

 59

Overrides:
doPost in class javax.servlet.http.HttpServlet

destroy
public void destroy()
Overrides:
destroy in class javax.servlet.GenericServlet

securetyCheck
public static boolean securetyCheck(java.io.PrintWriter out)

ManagementInterface.Servlets
Class ManageProductServlet
java.lang.Object
 |
 +--javax.servlet.GenericServlet
 |
 +--javax.servlet.http.HttpServlet
 |
 +--ManagementInterface.Servlets.ManageProductServlet

public class ManageProductServlet
extends javax.servlet.http.HttpServlet
The ManageProductServlet presents an interface for manageing the product database. The
administrator can create, change or erase a product or a product area in the database.

Field Detail

public static Product selectedProduct
public static java.lang.String[] info
public static java.lang.String Key
public static java.lang.String[] Keys
public static java.util.Vector[] Rows
public static java.lang.String Action
public static int index

Constructor Detail

ManageProductServlet
public ManageProductServlet()

Method Detail

init
public void init(javax.servlet.ServletConfig config) throws javax.servlet.ServletException
Overrides:
init in class javax.servlet.GenericServlet

doGet
public void doGet(javax.servlet.http.HttpServletRequest request, javax.servlet.http.HttpServletResponse
response) throws javax.servlet.ServletException, java.io.IOException
Overrides:
doGet in class javax.servlet.http.HttpServlet

 60

doPost
public void doPost(javax.servlet.http.HttpServletRequest request, javax.servlet.http.HttpServletResponse
response) throws javax.servlet.ServletException, java.io.IOException
Overrides:
doPost in class javax.servlet.http.HttpServlet

destroy
public void destroy()
Overrides:
destroy in class javax.servlet.GenericServlet

getInfo
public void getInfo(java.lang.String type)

addProduct
public static void addProduct(java.lang.String type)

setSelectedProduct
public static void setSelectedProduct()

setInfoNull
public static void setInfoNull()

setNewRow
public static void setNewRow(java.lang.String father, int row)

ManagementInterface.Servlets
Class ManageProfileServlet
java.lang.Object
 |
 +--javax.servlet.GenericServlet
 |
 +--javax.servlet.http.HttpServlet
 |
 +--ManagementInterface.Servlets.ManageProfileServlet

public class ManageProfileServlet
extends javax.servlet.http.HttpServlet
The ManageProductServlet presents an interface for manageing the profile and administrator
database. The administrator can create, change or erase a profile or a administrator in the database.

Field Detail

public static java.lang.String[] info
public static Profile selectedProfile
public static java.util.Collection profiles
public static Administrator selectedAdmin
public static java.util.Collection admins
public static java.lang.String typeOfSearch
public static java.lang.String searchStr1
public static java.lang.String searchStr2

Constructor Detail

ManageProfileServlet
public ManageProfileServlet()

 61

Method Detail

init
public void init(javax.servlet.ServletConfig config) throws javax.servlet.ServletException
Overrides:
init in class javax.servlet.GenericServlet

doGet
public void doGet(javax.servlet.http.HttpServletRequest request, javax.servlet.http.HttpServletResponse
response) throws javax.servlet.ServletException, java.io.IOException
Overrides:
doGet in class javax.servlet.http.HttpServlet

doPost
public void doPost(javax.servlet.http.HttpServletRequest request, javax.servlet.http.HttpServletResponse
response) throws javax.servlet.ServletException, java.io.IOException
Overrides:
doPost in class javax.servlet.http.HttpServlet

setSearchStrings
public void setSearchStrings(java.lang.String TypeOfSearch, java.lang.String SearchStr1, java.lang.String
SearchStr2)

setInfoNull
public void setInfoNull()

destroy
public void destroy()
Overrides:
destroy in class javax.servlet.GenericServlet

getInfo
public void getInfo(java.lang.String type)

ClientInterface.Servlets
Class NewProfileServlet
java.lang.Object
 |
 +--javax.servlet.GenericServlet
 |
 +--javax.servlet.http.HttpServlet
 |
 +--ClientInterface.Servlets.NewProfileServlet

public class NewProfileServlet
extends javax.servlet.http.HttpServlet
Presents the table for the client with input fields to fill in in order to make a new or change a profile. if
the client comes from LoginServlet to change the Profile, it extract all the information about the client
from his profile and displays it.

Constructor Detail

NewProfileServlet
public NewProfileServlet()

Method Detail

 62

init
public void init(javax.servlet.ServletConfig config) throws javax.servlet.ServletException
Overrides:
init in class javax.servlet.GenericServlet

doGet
public void doGet(javax.servlet.http.HttpServletRequest request, javax.servlet.http.HttpServletResponse
response) throws javax.servlet.ServletException, java.io.IOException
Overrides:
doGet in class javax.servlet.http.HttpServlet

destroy
public void destroy()
Overrides:
destroy in class javax.servlet.GenericServlet

Beans.product
Interface Product

public interface Product
extends javax.ejb.EJBObject
Defines the bussiness methods of the Product EJB

Method Detail

The following business methods are implemented in the ProductEJB

public java.lang.String getId() throws java.rmi.RemoteException
public void setId(java.lang.String id) throws java.rmi.RemoteException
public java.lang.String getFather() throws java.rmi.RemoteException
public void setFather(java.lang.String father) throws java.rmi.RemoteException
public java.lang.String getName() throws java.rmi.RemoteException
public void setName(java.lang.String name) throws java.rmi.RemoteException
public java.lang.String getType() throws java.rmi.RemoteException
public void setType(java.lang.String type) throws java.rmi.RemoteException
public java.lang.String getSalecode() throws java.rmi.RemoteException
public void setSalecode(java.lang.String Salecode) throws java.rmi.RemoteException
public java.lang.String getValidstart() throws java.rmi.RemoteException
public void setValidstart(java.lang.String validstart) throws java.rmi.RemoteException
public java.lang.String getValidend() throws java.rmi.RemoteException
public void setValidend(java.lang.String validend) throws java.rmi.RemoteException
public java.lang.String getSalestart() throws java.rmi.RemoteException
public void setSalestart(java.lang.String salestart) throws java.rmi.RemoteException
public java.lang.String getSaleend() throws java.rmi.RemoteException
public void setSaleend(java.lang.String saleend) throws java.rmi.RemoteException
public java.lang.String getDescription() throws java.rmi.RemoteException
public void setDescription(java.lang.String description) throws java.rmi.RemoteException
public double getPrice() throws java.rmi.RemoteException
public void setPrice(double price) throws java.rmi.RemoteException
public double getSale() throws java.rmi.RemoteException
public void setSale(double sale) throws java.rmi.RemoteException

 63

Beans.product
Class ProductEJB
java.lang.Object
 |
 +--Beans.product.ProductEJB

public class ProductEJB
extends java.lang.Object
implements javax.ejb.EntityBean
Implements the business methods and creation methods of the Product EJB

Field Detail

public java.lang.String productId
public java.lang.String father
public java.lang.String name
public java.lang.String type
public java.lang.String salecode
public java.lang.String validstart
public java.lang.String validend
public java.lang.String salestart
public java.lang.String saleend
public java.lang.String description
public double price
public double sale

Constructor Detail

ProductEJB
public ProductEJB()

Method Detail

ejbCreate
public java.lang.String ejbCreate(java.lang.String productId, java.lang.String father, java.lang.String name,
java.lang.String type, java.lang.String salecode, java.lang.String validstart, java.lang.String validend,
java.lang.String salestart, java.lang.String saleend, java.lang.String description, double price, double sale)
throws javax.ejb.CreateException
When ejbCreate is called, the EJB container creates a ProductEJB. The creation method of a EJB must be named
ejbCreate() and can not return a value.
Parameters:
The - parameters are the instance variables of the Product EJB

getId
public java.lang.String getId()
Returns the Id of the Product

getFather
public java.lang.String getFather()
Returns the father of the Product

getName
public java.lang.String getName()
Returns the name of the Product

getType
public java.lang.String getType()

 64

Returns the type of the Product

getSalecode
public java.lang.String getSalecode()
Returns the sale code of the Product

getValidstart
public java.lang.String getValidstart()
Returns the start of validation period of the Product

getValidend
public java.lang.String getValidend()
Returns the end of validation period of the Product

getSalestart
public java.lang.String getSalestart()
Returns the start of sale period of the Product

getSaleend
public java.lang.String getSaleend()
Returns the end of sale period of the Product

getDescription
public java.lang.String getDescription()
Returns the description of the Product

getPrice
public double getPrice()
Returns the price of the Product

getSale
public double getSale()
Returns the sale of the Product

setId
public void setId(java.lang.String id)
Sets a new Id to the Product
Parameters:
id - The new Id of the Product

setFather
public void setFather(java.lang.String father)
Sets a new father to the Product
Parameters:
father - The new father of the Product

setName
public void setName(java.lang.String name)
Sets a new name to the Product
Parameters:
name - The new name of the Product

setType
public void setType(java.lang.String type)
Sets a new type to the Product
Parameters:
type - The new type of the Product

setSalecode
public void setSalecode(java.lang.String salecode)

 65

Sets a new salecode to the Product
Parameters:
salecode - The new salecode of the Product

setValidstart
public void setValidstart(java.lang.String validstart)
Sets a new start of validation period to the Product
Parameters:
validStart - The new start of validation period of the Product

setValidend
public void setValidend(java.lang.String validend)
Sets a new end of validation period to the Product
Parameters:
validend - The new end of validation period of the Product

setSalestart
public void setSalestart(java.lang.String salestart)
Sets a new start of sale period to the Product
Parameters:
salestart - The new start of sale period of the Product

setSaleend
public void setSaleend(java.lang.String saleend)
Sets a new end of sale period to the Product
Parameters:
saleend - The new end of sale period of the Product

setDescription
public void setDescription(java.lang.String description)
Sets a new description to the Product
Parameters:
description - The new description of the Product

setPrice
public void setPrice(double price)
Sets a new price to the Product
Parameters:
price - The new price of the Product

setSale
public void setSale(double sale)
Sets a new sale to the Product
Parameters:
sale - The new sale of the Product

The following methods msut be overriden beacause ProductEJB implements EntityEJB:

public void setEntityContext(javax.ejb.EntityContext context)
public void ejbActivate()
public void ejbPassivate()
public void ejbRemove()
public void ejbLoad()
public void ejbStore()
public void unsetEntityContext()
public void ejbPostCreate(java.lang.String productId, java.lang.String father, java.lang.String name,
java.lang.String type, java.lang.String salecode, java.lang.String validstart, java.lang.String validend,
java.lang.String salestart, java.lang.String saleend, java.lang.String description, double price, double sale)

 66

Beans.product
Interface ProductHome

public interface ProductHome
extends javax.ejb.EJBHome
Defines the creation and finder methods of the Product EJB

Method Detail

create
public Product create(java.lang.String productId, java.lang.String father, java.lang.String name, java.lang.String
type, java.lang.String salecode, java.lang.String validstart, java.lang.String validend, java.lang.String salestart,
java.lang.String saleend, java.lang.String description, double price, double sale) throws
java.rmi.RemoteException, javax.ejb.CreateException
The create method is implemented in the ProductEJB as ejbCreate()

findByPrimaryKey
public Product findByPrimaryKey(java.lang.String productId) throws javax.ejb.FinderException,
java.rmi.RemoteException
This finder-method is implemented by the EJB container in the deployment phase

findByFather
public java.util.Collection findByFather(java.lang.String father) throws javax.ejb.FinderException,
java.rmi.RemoteException
This finder-method is implemented by the EJB container in the deployment phase

findByName
public java.util.Collection findByName(java.lang.String name) throws javax.ejb.FinderException,
java.rmi.RemoteException
This finder-method is implemented by the EJB container in the deployment phase

findByType
public java.util.Collection findByType(java.lang.String type) throws javax.ejb.FinderException,
java.rmi.RemoteException
This finder-method is implemented by the EJB container in the deployment phase

findBySaleCode
public java.util.Collection findBySaleCode(java.lang.String saleCode) throws javax.ejb.FinderException,
java.rmi.RemoteException
This finder-method is implemented by the EJB container in the deployment phase

findByDescription
public java.util.Collection findByDescription(java.lang.String description) throws javax.ejb.FinderException,
java.rmi.RemoteException
This finder-method is implemented by the EJB container in the deployment phase

findInPriceRange
public java.util.Collection findInPriceRange(double lowprice, double highprice) throws
javax.ejb.FinderException, java.rmi.RemoteException
This finder-method is implemented by the EJB container in the deployment phase

Beans.profile
Interface Profile

public interface Profile
extends javax.ejb.EJBObject
Defines the business methods of the Profile EJB

 67

Method Detail

The following business methods are implemented in the ProfileEJB

public int getId() throws java.rmi.RemoteException
public void setId(int id) throws java.rmi.RemoteException
public java.lang.String getLogin() throws java.rmi.RemoteException
public void setLogin(java.lang.String login) throws java.rmi.RemoteException
public java.lang.String getPassword() throws java.rmi.RemoteException
public void setPassword(java.lang.String password) throws java.rmi.RemoteException
public java.lang.String getFirstName() throws java.rmi.RemoteException
public void setFirstName(java.lang.String firstName) throws java.rmi.RemoteException
public java.lang.String getLastName() throws java.rmi.RemoteException
public void setLastName(java.lang.String lastName) throws java.rmi.RemoteException
public java.lang.String getStatus() throws java.rmi.RemoteException
public void setStatus(java.lang.String status) throws java.rmi.RemoteException
public java.lang.String getProfession() throws java.rmi.RemoteException
public void setProfession(java.lang.String profession) throws java.rmi.RemoteException
public java.lang.String getSex() throws java.rmi.RemoteException
public void setSex(java.lang.String sex) throws java.rmi.RemoteException
public java.lang.String getMaritalStatus() throws java.rmi.RemoteException
public void setMaritalStatus(java.lang.String maritalStatus) throws java.rmi.RemoteException
public java.lang.String getAdressStreet() throws java.rmi.RemoteException
public void setAdressStreet(java.lang.String adressStreet) throws java.rmi.RemoteException
public java.lang.String getAdressCity() throws java.rmi.RemoteException
public void setAdressCity(java.lang.String adressCity) throws java.rmi.RemoteException
public java.lang.String getAdressCityCode() throws java.rmi.RemoteException
public void setAdressCityCode(java.lang.String adressCityCode) throws java.rmi.RemoteException
public java.lang.String getAdressCountry() throws java.rmi.RemoteException
public void setAdressCountry(java.lang.String adressCountry) throws java.rmi.RemoteException
public java.lang.String getTelephone() throws java.rmi.RemoteException
public void setTelephone(java.lang.String telephone) throws java.rmi.RemoteException
public java.lang.String getEmail() throws java.rmi.RemoteException
public void setEmail(java.lang.String email) throws java.rmi.RemoteException
public java.lang.String getLanguage() throws java.rmi.RemoteException
public void setLanguage(java.lang.String language) throws java.rmi.RemoteException
public int getAge() throws java.rmi.RemoteException
public void setAge(int age) throws java.rmi.RemoteException
public java.lang.String[] getIntrests() throws java.rmi.RemoteException
public void setIntrests(java.lang.String[] intrests) throws java.rmi.RemoteException
public int getTotalPurchase() throws java.rmi.RemoteException
public void setTotalPurchase(int totalPurchase) throws java.rmi.RemoteException
public java.lang.String getLatestLogin() throws java.rmi.RemoteException
public void setLatestLogin(java.lang.String latestLogin) throws java.rmi.RemoteException
public java.lang.String[] getPurchase() throws java.rmi.RemoteException
public void setPurchase(java.lang.String[] purchase) throws java.rmi.RemoteException
public java.lang.String getFavoritColor() throws java.rmi.RemoteException
public void setFavoritColor(java.lang.String favoritColor) throws java.rmi.RemoteException

Beans.profile
Class ProfileEJB
java.lang.Object
 |
 +--Beans.profile.ProfileEJB

public class ProfileEJB

 68

extends java.lang.Object
implements javax.ejb.EntityBean
Implements the business methods and creation methods of the Profile EJB

Field Detail

public java.lang.Integer Id
public java.lang.String Login
public java.lang.String Password
public java.lang.String FirstName
public java.lang.String LastName
public java.lang.String Status
public java.lang.String Profession
public java.lang.String Sex
public java.lang.String MaritalStatus
public java.lang.String AdressStreet
public java.lang.String AdressCity
public java.lang.String AdressCityCode
public java.lang.String AdressCountry
public java.lang.String Telephone
public java.lang.String Email
public java.lang.String Language
public int Age
public java.lang.String Intrest01
public java.lang.String Intrest02
public java.lang.String Intrest03
public java.lang.String Intrest04
public java.lang.String Intrest05
public java.lang.String Intrest06
public java.lang.String Purchase01
public java.lang.String Purchase02
public java.lang.String Purchase03
public java.lang.String Purchase04
public java.lang.String Purchase05
public java.lang.String Purchase06
public java.lang.String Purchase07
public java.lang.String Purchase08
public java.lang.String Purchase09
public java.lang.String Purchase10
public int TotalPurchase
public java.lang.String LatestLogin
public java.lang.String FavoritColor

Constructor Detail

ProfileEJB
public ProfileEJB()

Method Detail

ejbCreate
public void ejbCreate(int id, java.lang.String login, java.lang.String password, java.lang.String firstname,
java.lang.String lastname, java.lang.String status, java.lang.String profession, java.lang.String sex,
java.lang.String maritalStatus, java.lang.String adressStreet, java.lang.String adressCity, java.lang.String
adressCityCode, java.lang.String adressCountry, java.lang.String telephone, java.lang.String email,
java.lang.String language, int age, java.lang.String intrest01, java.lang.String intrest02, java.lang.String
intrest03, java.lang.String intrest04, java.lang.String intrest05, java.lang.String intrest06, int totalPurchase,
java.lang.String latestLogin, java.lang.String favoritColor) throws javax.ejb.CreateException

 69

When ejbCreate is called, the EJB container creates a ProfileEJB. The creation method of a EJB must be named
ejbCreate() and can not return a value.
Parameters:
The parameters are the instance variables of the Profile EJB

getId
public int getId() throws java.rmi.RemoteException
Returns the Id of the Profile

setId
public void setId(int id) throws java.rmi.RemoteException
Sets a new id to the Product
Parameters:
id - The new id of the Product

getLogin
public java.lang.String getLogin() throws java.rmi.RemoteException
Returns the login name of the Profile

setLogin
public void setLogin(java.lang.String login) throws java.rmi.RemoteException
Sets a new login name to the Product
Parameters:
login - The new login name of the Product

getPassword
public java.lang.String getPassword() throws java.rmi.RemoteException
Returns the password of the Profile

setPassword
public void setPassword(java.lang.String password) throws java.rmi.RemoteException
Sets a new password to the Product
Parameters:
password - The new password of the Product

getFirstName
public java.lang.String getFirstName() throws java.rmi.RemoteException
Returns the first name of the Profile

setFirstName
public void setFirstName(java.lang.String firstName) throws java.rmi.RemoteException
Sets a new first name to the Product
Parameters:
firstName - The new first name of the Product

getLastName
public java.lang.String getLastName() throws java.rmi.RemoteException
Returns the last name of the Profile

setLastName
public void setLastName(java.lang.String v) throws java.rmi.RemoteException
Sets a new last name to the Product
Parameters:
lastName - The new last name of the Product

getStatus
public java.lang.String getStatus() throws java.rmi.RemoteException
Returns the status of the Profile

 70

setStatus
public void setStatus(java.lang.String status) throws java.rmi.RemoteException
Sets a new status to the Product
Parameters:
status - The new status of the Product

getProfession
public java.lang.String getProfession() throws java.rmi.RemoteException
Returns the profession of the Profile

setProfession
public void setProfession(java.lang.String profession) throws java.rmi.RemoteException
Sets a new profession to the Product
Parameters:
profession - The new profession of the Product

getSex
public java.lang.String getSex() throws java.rmi.RemoteException
Returns the sex of the Profile

setSex
public void setSex(java.lang.String sex) throws java.rmi.RemoteException
Sets a new sex to the Product
Parameters:
sex - The new sex of the Product

getMaritalStatus
public java.lang.String getMaritalStatus() throws java.rmi.RemoteException
Returns the marital status of the Profile

setMaritalStatus
public void setMaritalStatus(java.lang.String maritalStatus) throws java.rmi.RemoteException
Sets a new marital status to the Product
Parameters:
maritalStatus - The new marital status of the Product

getAdressStreet
public java.lang.String getAdressStreet() throws java.rmi.RemoteException
Returns the street adress of the Profile

setAdressStreet
public void setAdressStreet(java.lang.String adressStreet) throws java.rmi.RemoteException
Sets a new street adress to the Product
Parameters:
adressStreet - The new street adress of the Product

getAdressCity
public java.lang.String getAdressCity() throws java.rmi.RemoteException
Returns the city adress of the Profile

setAdressCity
public void setAdressCity(java.lang.String adressCity) throws java.rmi.RemoteException
Sets a new city adress to the Product
Parameters:
adressCity - The new city adress of the Product

getAdressCityCode
public java.lang.String getAdressCityCode() throws java.rmi.RemoteException
Returns the city code of the Profile

 71

setAdressCityCode
public void setAdressCityCode(java.lang.String adressCityCode) throws java.rmi.RemoteException
Sets a new city code to the Product
Parameters:
adressCityCode - The new city code of the Product

getAdressCountry
public java.lang.String getAdressCountry() throws java.rmi.RemoteException
Returns the country of the Profile

setAdressCountry
public void setAdressCountry(java.lang.String adressCountry) throws java.rmi.RemoteException
Sets a new country to the Product
Parameters:
adressCountry - The new country of the Product

getTelephone
public java.lang.String getTelephone() throws java.rmi.RemoteException
Returns the telethone nr of the Profile

setTelephone
public void setTelephone(java.lang.String telephone) throws java.rmi.RemoteException
Sets a new telephone to the Product
Parameters:
telephone - The new telephone of the Product

getEmail
public java.lang.String getEmail() throws java.rmi.RemoteException
Returns the email of the Profile

setEmail
public void setEmail(java.lang.String email) throws java.rmi.RemoteException
Sets a new email to the Product
Parameters:
email - The new email of the Product

getLanguage
public java.lang.String getLanguage() throws java.rmi.RemoteException
Returns the language of the Profile

setLanguage
public void setLanguage(java.lang.String language) throws java.rmi.RemoteException
Sets a new language to the Product
Parameters:
language - The new language of the Product

getAge
public int getAge() throws java.rmi.RemoteException
Returns the age of the Profile

setAge
public void setAge(int age) throws java.rmi.RemoteException
Sets a new age to the Product
Parameters:
age - The new age of the Product

getTotalPurchase
public int getTotalPurchase() throws java.rmi.RemoteException
Returns the purchase of the Profile

 72

setTotalPurchase
public void setTotalPurchase(int totalPurchase) throws java.rmi.RemoteException
Sets a new total purchase to the Product
Parameters:
totalPurchase - The new total purchase of the Product

getLatestLogin
public java.lang.String getLatestLogin() throws java.rmi.RemoteException
Returns the last login of the Profile

setLatestLogin
public void setLatestLogin(java.lang.String latestLogin) throws java.rmi.RemoteException
Sets a new last login to the Product
Parameters:
latestLogin - The new last login of the Product

getIntrests
public java.lang.String[] getIntrests() throws java.rmi.RemoteException
Returns the intrests of the Profile

setIntrests
public void setIntrests(java.lang.String[] intrests) throws java.rmi.RemoteException
Sets a new intrests to the Product
Parameters:
intrests - The new intrests of the Product

getPurchase
public java.lang.String[] getPurchase() throws java.rmi.RemoteException
Returns the purchase of the Profile

setPurchase
public void setPurchase(java.lang.String[] purchase) throws java.rmi.RemoteException
Sets a new purchase to the Product
Parameters:
purchase - The new purchase of the Product

getFavoritColor
public java.lang.String getFavoritColor() throws java.rmi.RemoteException
Returns the favorite color of the Profile

setFavoritColor
public void setFavoritColor(java.lang.String favoritColor) throws java.rmi.RemoteException
Sets a new favorit color to the Product
Parameters:
favoritColor - The new favorit color of the Product

The following methods must be overridden because Profile EJB implements EntityEJB :

public void setEntityContext(javax.ejb.EntityContext context)
public void ejbRemove()
public void ejbActivate()
public void ejbPassivate()
public void unsetEntityContext()
public void ejbLoad()
public void ejbStore()
public void ejbPostCreate(int id, java.lang.String login, java.lang.String password, java.lang.String firstname,
java.lang.String lastname, java.lang.String status, java.lang.String profession, java.lang.String sex,
java.lang.String maritalStatus, java.lang.String adressStreet, java.lang.String adressCity, java.lang.String
adressCityCode, java.lang.String adressCountry, java.lang.String telephone, java.lang.String email,
java.lang.String language, int age, java.lang.String intrest01, java.lang.String intrest02, java.lang.String

 73

intrest03, java.lang.String intrest04, java.lang.String intrest05, java.lang.String intrest06, int totalPurchase,
java.lang.String latestLogin, java.lang.String favoritColor)
.

Beans.profile
Interface ProfileHome

public interface ProfileHome
extends javax.ejb.EJBHome
Defines the creation and finder methods of the Profile EJB

Method Detail

create
public Profile create(int id, java.lang.String login, java.lang.String password,
java.lang.String firstname, java.lang.String lastname, java.lang.String status, java.lang.String profession,
java.lang.String sex, java.lang.String maritalStatus, java.lang.String adressStreet, java.lang.String adressCity,
java.lang.String adressCityCode, java.lang.String adressCountry, java.lang.String telephone, java.lang.String
email, java.lang.String language, int age, java.lang.String intrest01, java.lang.String intrest02, java.lang.String
intrest03, java.lang.String intrest04, java.lang.String intrest05, java.lang.String intrest06, int totalPurchase,
java.lang.String latestLogin, java.lang.String favoritColor) throws java.rmi.RemoteException,
javax.ejb.CreateException
The create method is implemented in the ProfileEJB as ejbCreate()

findByPrimaryKey
public Profile findByPrimaryKey(java.lang.Integer profileId) throws javax.ejb.FinderException,
java.rmi.RemoteException
This finder-method is implemented by the EJB container in the deployment phase

findByLogin
public java.util.Collection findByLogin(java.lang.String login, java.lang.String password) throws
javax.ejb.FinderException, java.rmi.RemoteException
This finder-method is implemented by the EJB container in the deployment phase

findByName
public java.util.Collection findByName(java.lang.String firstName, java.lang.String lastName) throws
javax.ejb.FinderException, java.rmi.RemoteException
This finder-method is implemented by the EJB container in the deployment phase

findByEmail
public java.util.Collection findByEmail(java.lang.String email) throws javax.ejb.FinderException,
java.rmi.RemoteException
This finder-method is implemented by the EJB container in the deployment phase

Beans.session
Interface Session

public interface Session
extends javax.ejb.EJBObject
Defines the business methods of the Session EJB

Method Detail

The following business methods are implemented in the SessionEJB :

 74

public ProfileHome getProfileHome() throws java.rmi.RemoteException
public ProductHome getProductHome() throws java.rmi.RemoteException
public CartHome getCartHome() throws java.rmi.RemoteException
public java.util.Locale getLocale() throws java.rmi.RemoteException
public void setLocale(java.lang.String language, java.lang.String country) throws java.rmi.RemoteException
public java.lang.String getType() throws java.rmi.RemoteException
public void setType(java.lang.String type) throws java.rmi.RemoteException

Beans.session
Class SessionEJB
java.lang.Object
 |
 +--Beans.session.SessionEJB

public class SessionEJB
extends java.lang.Object
implements javax.ejb.SessionBean
Implements the business methods and creation methods of the Session EJB

Constructor Detail

SessionEJB
public SessionEJB()

Method Detail

ejbCreate
public void ejbCreate() throws javax.ejb.CreateException, java.rmi.RemoteException
When ejbCreate is called, the EJB container creates a SessionEJB. The creation method of a EJB must be named
ejbCreate() and can not return a value.

getProfileHome
public ProfileHome getProfileHome() throws java.rmi.RemoteException
This method returns the Home interface of the Profile EJB that is stored in the Session EJB

getProductHome
public ProductHome getProductHome() throws java.rmi.RemoteException
This method returns the Home interface of the Product EJB that is stored in the Session EJB

getCartHome
public CartHome getCartHome() throws java.rmi.RemoteException
This method returns the Home interface of the Cart EJB that is stored in the Session EJB

getLocale
public java.util.Locale getLocale() throws java.rmi.RemoteException
This method returns the locale of the user that is stored in the Session EJB

setLocale
public void setLocale(java.lang.String language, java.lang.String country) throws java.rmi.RemoteException
This method sets the locale of the user
Parameters:
language - the language of the user
country - the country of the user

getType
public java.lang.String getType() throws java.rmi.RemoteException

 75

This method returns the type of the user that is stored in the Session EJB

setType
public void setType(java.lang.String type) throws java.rmi.RemoteException
This method sets the type of the user
Parameters:
type - the type of the user

The following methods must be overridden because SessionEJB implements SessionBean:

public void ejbRemove() throws java.rmi.RemoteException
public void ejbActivate() throws java.rmi.RemoteException
public void ejbPassivate() throws java.rmi.RemoteException
public void setSessionContext(javax.ejb.SessionContext sc) throws java.rmi.RemoteException
public void unsetSessionContext() throws java.rmi.RemoteException
public void ejbLoad() throws java.rmi.RemoteException
public void ejbStore() throws java.rmi.RemoteException

Beans.session
Interface SessionHome

public interface SessionHome
extends javax.ejb.EJBHome
Defines the creation method of the Session EJB

Method Detail

create
public Session create() throws java.rmi.RemoteException, javax.ejb.CreateException
The create method is implemented in the SessionEJB as ejbCreate()

