
Evaluation of two server prototypes
for AXE O&M

and the Alarm Management System

by Magnus Lewin
000302

Magnus Lewin Page 2 03/02/00

Abstract
A communication network of today consists of many different platforms and techniques.
New platforms and techniques are rapidly invented. Sometimes new platforms are
integrated with older platforms. The evolution puts new requirements on the systems
which are responsible for supervising the communication networks. In the telecom
market these systems are referred to as telecom management systems or Operation and
Maintenance systems. A node in the communication network is called a Network
Element. Since a communication network may and in most cases does consist of
different types of Network Elements, the management system must be able to supervise
all of them. Preferably the Network Elements are looked at, as they were part of the one
and same uniform system. The telecom management systems of today for example
interact with both AXE exchanges and Radio base stations.

The first requirement this puts on the Network Element is that the interfaces used for
O&M should be open. Open means that the interfaces use common protocols.

At Ericsson Utveckling AB two server prototypes have been developed that were meant
to work as access points for Operation & Maintenance applications interacting with the
AXE exchange. The first prototype named EMA (Element Management Access) exposes
a Socket interface and the other called EMS (Element Management Server) exposes a
Corba IDL interface.

My thesis project is mainly about evaluating the performance of EMA and EMS. First I
studied the architecture and functionality of the servers. I also briefly got into what
Operation and Maintenance of the AXE exchange is about. I studied Sockets and Corba.
I developed a program in Java which I used for evaluating the performance of EMA and
EMS. From the graphical user interface of the program it is possible to start any number
of concurrent clients running at the same computer. Each client sends an optional
number of requests in sequence to EMA or EMS. The performance of the servers is
investigated by measuring the response time of each request and by registering
unsuccessful requests.

The results of the experiments I performed showed that the response time of EMS was
much lesser than the response time of EMA when they served just one client. When I
increased the number of clients, EMS’s response time rapidly increased while the
response time of EMA almost was constant. The EMA become more and more unstable
as the numbers of simultaneously requests grew. For example requests were lost.

The second task of the thesis project was to design a management system. The Alarm
Management System which I have designed can be used by operators managing alarms
from several Network Elements. The system is not implemented.

The Alarm Management System uses CORBA for communication and distribution. I
have studied the Alarm IRP which is a specification that should be applied when a
system for managing alarms is developed at Ericsson.

In the design of the system I have considered issues like availability and scalability.

The new Operation and Maintenance platform of the AXE exchange called APG40 will
have an Alarm Server implemented in CORBA. My design of the Alarm Management
System discusses how the Alarm Server could be implemented and connected to a
system that manages alarms from any kind and any number of Network Elements.

I haven’t got into any implementation details. The design covers the system logic and the
IDL interfaces of the components involved in the system.

Magnus Lewin Page 3 03/02/00

Table of contents

1 Introduction 5

2 AXE, EMA and EMS studies 7

2.1 AXE 7
2.2 EMA 7
2.2.1 Overview 7
2.2.2 Configuration 8
2.2.3 Architecture 8
2.2.4 Socket adaptation 9
2.2.5 Parsing process 10

2.3 EMS 11
2.3.1 Architecture 11
2.3.2 Corba adaptation 11

3 Client/Server, Socket and Corba studies 12

3.1 Client/Server 12
3.1.1 Client Server Model 12
3.1.2 Concurrent and non Concurrent Servers 12
3.1.3 Stateful and Stateless Servers 12
3.1.4 Failure handling 12

3.2 Sockets 13
3.2.1 Overview 13
3.2.2 TCP/IP versus UDP/IP 13
3.2.3 The Socket API 14

3.3 CORBA 15
3.3.1 Overview 15
3.3.2 Communication at a high level 16

4 Evaluation of EMA and EMS 17

4.1 Introduction 17

4.2 Evaluation model 18

4.3 Evaluation program 18

4.4 Evaluation platform 20

4.5 Results from experiments 20

4.6 Diagrams 23

4.7 Comments of results 25

5 Alarm Management System 27

5.1 Introduction 27

5.2 Limitations 28

5.3 Alarms and Events 28

Magnus Lewin Page 4 03/02/00

5.4 The components of 29
5.4.6 Alarm Viewer 32
5.4.7 Alarm View 32
5.4.8 Event Log Server 32
5.4.9 Event Log 32
5.4.10 Event Handler 33
5.4.11 Event Channel 33
5.4.12 Network Element Alarm Server 34
5.4.13 AMS Directory Server 34
5.4.14 Communication in AMS 35

5.5 Administration 37

5.6 Failure Handling 37

5.7 Availability 38

5.8 Scalability 38

5.9 Flexibility 38
5.9.1 Event log location 38
5.9.2 Event Channel location 39

6 Conclusions 40

6.1 EMA and EMS 40

6.2 AMS 40

Appendix A EMS IDL Interfaces 42

References 43

Glossary 44

Magnus Lewin Page 5 03/02/00

1 Introduction

During the spring of 1999 UAB/I/M (The department where I am doing my thesis project
at) and LMF/T/F in cooperation started the project called Element Management Access
(EMA). The purpose of the project was to prepare the AXE exchange for the next
generation of telecom management system. The EMA was intended to be a gateway
through which Operation and Maintenance applications would be able to interact with
the AXE exchanges.

Important benefits with EMA were that it should provide enhanced MML functionality
towards the AXE exchange, hide the low-level communication between the O&M
applications and the exchanges and hide the type and version of the AXE exchanges
from the O&M applications. In this way it should be possible to build general O&M
applications managing any AXE.

The outcome of the EMA project was two server prototypes, the EMA prototype and the
EMS prototype.

The EMA prototype supports MML communication and parsing of printouts. It has a
graphical user interface for configuration and exposes a Socket interface for
communication.

The EMS prototype only supports MML communication. It exposes a Corba interface for
communication. The EMS is configured by editing a register file. The register file is
loaded into the Windows NT registry.

The first task of the thesis project is to evaluate the Corba server prototype and the
Socket server prototype in aspects of performance and functionality.

The second task is to design (not implement) a telecom management application towards
the AXE exchange.

To be able to evaluate the servers mentioned above I briefly have got into what
Operation and Maintenance of AXE is about. The functionality and architecture of EMA
and EMS are found in their implementation proposals. I have studied Sockets and Corba
that are used for communication between clients and the EMA server and the EMS
server. Then I have developed a test program that can start several concurrent clients
interacting with EMA and EMS. The test program measures the response time of the
servers. The response time varies depending on:
• The number of clients that concurrently interact with the server.
• If the printouts are parsed or not.
• How many channels that are available between EMA or EMS and the Network

Element.
• If the clients communicates with the same or different Network Elements.
• What MML command that is sent to the Network Element.

The telecom management application that I have designed is an alarm management
system. The alarm management system let operators coordinate their alarm management
towards multiple network elements. The system uses Corba for communication and
distribution. The knowledge of managing alarms I have received from alarm managing
in AXE, the alarm IRPs and Alarm Tool that is an application included in the network
element management program WinFiol and Tools.

This report is structured as follows.

Section 2 briefly presents an overview of operation and maintenance of AXE and the
architecture and functionality of EMA and EMS.

Magnus Lewin Page 6 03/02/00

Section 3 discusses the Client/Server concept and the communication techniques Socket
and Corba.

Section 4 presents how the EMA and EMS are evaluated and the results of that.

Section 5 describes the functionality of the Alarm Management System. Other issues that
are related to the system as distribution, failure handling, reliability and scalability are
also discussed in this section.

Section 6 Conclusions.

In the end of the report there are a glossary and a reference list.

Magnus Lewin Page 7 03/02/00

2 AXE, EMA and EMS studies

2.1 AXE
The functionality in AXE can briefly be divided in two parts. One part includes the
control system and the other part includes the traffic signaling system. These systems are
in turn divided into several subsystems. When working with Operation & Maintenance
against the AXE it is the control system that is mainly involved. The control system for
example exposes an interface for downloading software to the exchange and an MML
(Man Machine Language) interface. The MML interface is used to retrieve information
about the status of the exchange and change the status if desirable. There are about 2000
different MML commands for these purposes. An MML command is sent in form of a
text buffer and the response called a printout is also pure text. The text in the printout is
structured in a way that it easily can be printed out and read by an operator. The MML
language for different versions of AXE may distinguish a bit. New MML commands
may have been added and printouts may have been changed.

The Operation part of O&M stands for detection, localization and correction of faults
that appears in the system. The maintenance part is among other things about connecting
and disconnecting subscribers, software and hardware updates, collecting charging
information, collecting network statistics and traffic measurement data.

Telecom management systems communicate with the AXE through its I/O-system.
Today existing I/O-systems are IOG11, IOG 20 and APG30. IOG11 and IOG20 run on
operating systems developed by Ericsson. APG30 runs on a UNIX machine. A new I/O-
system APG40 is under development. The APG40 runs on cluster architecture on the
Windows NT platform. The I/O-systems supports different communication protocols like
TCP/IP, RS 232(Serial port) and X.25. The I/O-system communicates with the different
sub systems in AXE via the internal bus of AXE. There is today an ongoing research
about using TCP/IP in the internal communication system of AXE.

2.2 EMA

2.2.1 Overview
The EMA was meant to be a server platform, which O&M applications should be built
upon. It acts as a gateway for clients communicating with AXE exchanges. Several
clients can connect to EMA and communicate with the exchanges reachable from that
EMA server. This is demonstrated in Figure1.

Figure1 EMA or EMS acting as a gateway between O&M clients and AXE.

The client uses Socket when it communicates with the EMA server and Corba when it
communicates with the EMS server. The EMS server is handled in section 2.3. Both the

Magnus Lewin Page 8 03/02/00

EMA and EMS establish channels for forwarding the client’s requests to the Network
Element, which consists of the I/O-system and the AXE exchange itself. The channel
concept is explained in section 2.2.2.

EMA is programmed in C++ and aimed for the Windows NT platform. A reason for that
the EMA project was closed was the idea of putting more functionality closer to the
exchanges. This is what is happening in the APG 40, the future I/O-system of AXE. The
APG 40 is not just an I/O-system it also includes a lot of business logic that before was
managed somewhere else in the network. The APG 40 is a step towards distributed
computing in the Operation and Maintenance of AXE. The EMA concept is also brought
into APG 40 but there it is called MMLROS. The major difference with the MMLROS
server is that it just manages one exchange not multiple as the EMA server does. This
means that if one MMLROS server is not available then all other exchanges is still
available through their MMLROS servers. The single point of failure that the EMA
server could be is removed.

EMA exposes its services through protocol adaptations. The only protocol adaptation
implemented in the prototype is the Socket adaptation described in section 2.2.4. The
services supported are MML communication, parsing of printouts and file transfer. The
file transfer service will not be investigated in this report. For more information about the
file transfer API see the file transfer API implementation proposal [4].

2.2.2 Configuration
In EMA a node represents a physical AXE exchange on the communication network. A
node is configured by associating the node with one or more channels and the node
type. The configuration is done via a graphical user interface and stored in a relational
database. The EMA prototype uses MS Access as database.

A channel represents the communication link between the EMA and the exchange. There
can be multiple channels associated with one exchange. The channel is configured by
specifying the channel properties. The channel properties are destination address,
communication protocol and target type. The target type is the type of the exchange’s
I/O-system.

The node type in some way reflects the hardware and software the exchange consists of.
When a new version of the AXE exchange is developed the hardware and software are
changed and improved. New functionality may impact on the Operation and
Maintenance management of the AXE. Specific functionality may also be added to
improve the O&M management itself. Together with the release of a new control system
or a new traffic signaling system in AXE a new ALEX book is delivered. The ALEX
book contains among other things, documents and files that are related to Operation &
Maintenance. There are for example operational instruction documents, command
descriptions, printout descriptions and application information.

The syntax and structure of an MML command is stored in a PCM file. The same
information related to a printout is stored in a PPM file. Every node type configured in
EMA has its own file directory containing the PCM and PPM -files.

2.2.3 Architecture
EMA consists of the components showed in Figure2 in the end of this section.

The protocol adaptations are the external interfaces of EMA. The socket adaptation
explained in section 2.2.4 is the only protocol adaptation that is implemented in the EMA
prototype.

The FORM parser, MML & Event (M&E) and Naming & Configuration (N&C)
components are part of the Element Management Resource Kit (EMRK) described in
EM Resource Kit 1.1 [3]. M&E and N&C are implemented as DLL components and the
FORM parser is a C++ class library in the C/C++ API of EMRK. EMRK also includes

Magnus Lewin Page 9 03/02/00

communication protocol drivers. EMRK is reused in EMA. The AXE element
management program WinFiol and Tools uses EMRK for MML communication.

The N&C component exposes interfaces for creating and deleting channels.

The M&E component provides a high level interface to MML commands and printouts.

The FORM parser is used to parse printouts. The parsing process in EMA is explained in
section 2.2.5.

The Resource Manager that is not part of EMRK is responsible for finding a free channel
to the requested exchange and handling the sending and receiving of the command. It
also serves as an interface to the configuration database.

To illustrate how the components in EMA cooperate the following scenario is arranged.
EMA receives a request for MML communication. The request includes an MML
command and the name of the node that the MML command will be sent to.

1. The request is received by the protocol adaptation
2. The parameters are forwarded to the Resource Manager that picks a free channel

belonging to the requested node.
3. The channel identifier and command is passed to the MML & Event interface that

opens the channel.
4. The command is sent and the printout is received.
5. The channel is closed and the channel identifier and printout are returned to the

Resource Manager.
6. The Resource Manager returns the printout to the socket adaptation that sends the

reply to the client which initiated the request.

This section is based on the EMA CORE implementation proposal [5].

Figure2 EMA Architecture

2.2.4 Socket adaptation
Clients communicate with the EMA server via the Socket adaptation. The interface is
text based, synchronous and stateless. A stateless protocol retains no memory of past
requests. Every time the client sends a request a new connection is established with the
EMA server. Clients connect to EMA using the IP address of the machine where the

Magnus Lewin Page 10 03/02/00

EMA is located and the port number where the socket adaptation is listening for
connections. The socket adaptation is multi-threaded which means that it can handle
multiple requests from different clients concurrently. The well known protocol HTTP,
used by web browsers request web pages from web servers behaves in the same way as
the Socket adaptation in EMA. In section 3.1 there is a further discussion about stateless
and concurrent servers.

The request sent to the socket adaptation is an ASCII text string. New line characters
“\n” separate the parameters in the request. The end of the request is marked with the
null character “\0”. The parameters in the request are command, arguments, switches
and switch arguments.

The valid commands are send, list and file. Send stands for MML communication with
the requested node. List is used for listing the nodes that are reachable from that EMA.
The file command is used for retrieving UPC file paths to PCM or PPM files.

An argument is additional information required for a specific command. If the send
command is issued it is followed by an MML-command.

A switch item is additional information that sometimes is optional and sometimes not,
depending on the command. A switch item always has the form “/X” where the x
describes how the switch should be interpreted by the server.

A switch argument is additional information required for a specific switch. A switch
argument always has the form “/xargument”, where “/x” is the switch and “argument” is
the switch argument.

An example of a request could be “send\ncaclp\n/nAXE1\n\0”. This will result in that the
EMA sends the MML-command “caclp” to the exchanged represented by the node-name
AXE1. Here “send” is the command, “caclp” is the additional argument to the command
“send”, “/n” is the switch and AXE1 the additional switch argument.

The reply the client receives from EMA begins with an error code. If the request
succeeded this value is “0000” and the result follows the error code. If the error code is
not equal to “0000” an error text follows it. The result is structured in a way that
corresponds to the request.

For more information about the socket adaptation see [6].

2.2.5 Parsing process
A printout may be very long and include a lot of information. The idea with parsing is
that specific data can be selected from the printout. This help operators and applications
to retrieve the information needed just for their purpose. The major advantage is for
applications that shall take any specific action dependent of some specific information
included in the printout. If the printout is parsed the result is structured and the
application can easy access it. Using the parsing process in EMA will also decrease the
amount of data sent on the network. This might be almost insignificant since the printout
just includes text.

A request for MML communication where the client specifies what information of the
printout it is interested in may look like this: “send\ncaclp\n/p date time\n/nAXE1\n\0”.
EMA manages the request in the following way.

1. The Resource Manager forwards the MML command to AXE1 and receives the
whole printout.

2. The parse-switch “/p” informs EMA that it shall parse the printout with the parse-
arguments “date” and “time”.

3. The Resource Manager fetches the PPM file from the local file store. The PPM file
belonging to the MML command “caclp” is located in a directory associated with
the node-type of AXE1.

Magnus Lewin Page 11 03/02/00

4. The FORM Parser is provided with the printout, the PPM file and the parse
argument. The result is returned to the Socket adaptation.

5. The Socket adaptation sends the result to the client.
6. The text string received by the client looks like this: “0000\n990301\t10543\n\r\0”.

First the error code 0000 is received which means that the request worked out
successfully. Then the two parse-parameters date and time follows.

2.3 EMS
EMS is a prototype that from the beginning should include the same services as EMA
was intended to do. It is developed by LMF/T/F at Ericsson in Finland. The only service
implemented in the prototype is MML communication. File transfer and parsing of
printouts is not supported.

2.3.1 Architecture
EMS is built upon EMRK in a similar way as EMA, section 2.2.3. It does not use the
FORM parser since the parsing service is not available.

EMS requires EMRK 1.2 because this version of EMRK has additional server support
that is lacking in EMRK 1.1.

The Resource Manager in the EMS prototype uses Windows NT registry for storing
available nodes and channel files.

2.3.2 Corba adaptation
The Corba adaptation is implemented with Visibroker for C++ 3.3. It exposes three
objects EmrkFactory, EmrkChannel and EmrkPrintout. The IDL interface for each object
is presented in Appendix A.

A client sending an MML command to an exchange via the Corba adaptation of EMS:
1. The client connects to the EmrkFactory object
2. Invokes the method OpenChannel and receives an EmrkChannel reference.
3. Invokes the method SendCommand on the EmrkChannel object and receives an

EmrkPrintout reference
4. Invokes the method GetAllLines on the EmrkPrintout object and receives a string

sequence consisting all lines in the printout.
5. Invokes the method Release on the EmrkPrintout
6. Releases the EmrkChannel object by calling the method Release.

The client can use the same channel reference to send several requests in a row. This is
not possible in the EMA socket adaptation where every request must be preceded by a
new connection to EMA. The Corba adaptation therefor is a state-full protocol. The
client can reserve system resources, which in this case are channels. If the client fails or
if it for another reason never releases the channel, the channel will be locked and can’t be
used by any other client. To prevent this a timeout can be used that allows the client to
reserve the channel for just a predefined amount of time. This is not implemented in the
EMS prototype.

If the client releases the channel, the channel is put into a channel pool managed by the
Resource Manager where it stays for some predefined time. New clients requesting
channels to the same exchange can reuse the channel. This is more efficient because the
channel does not have to be opened and closed every time it is requested. The channel
pool is not implemented in the EMA prototype discussed in section 2.2.

More information about the EMS server is find in [7] and [8].

Magnus Lewin Page 12 03/02/00

3 Client/Server, Socket and Corba studies

3.1 Client/Server

3.1.1 Client Server Model
The client server model is used to describe the communication between two processes.
The client requests services that are provided by the server. An example of a well-known
client server system is the World Wide Web. Web clients like Netscape Navigator and
Internet Explorer connect to Web servers and request for HTML pages to be downloaded
and viewed in the web browser.

In the example above one side is the client and the other side is the server. This is not a
must. In any interaction between two processes one is the client and the other is the
server, but the same client and server may play the opposite role in another interaction.

3.1.2 Concurrent and non Concurrent Servers
There are concurrent and non-concurrent servers. Concurrent servers can handle several
simultaneous requests from different clients. Every time the server receives a request a
new thread or process is started to handle it. Non concurrent servers just manage one
request at the time. The benefits with concurrent servers are:
• If a lot of requests arrive from different clients simultaneously, they all have to wait

for the reply about the same time. The last one that arrives does not have to wait
much longer than the first.

• Servers doing a lot of I/O for example reading from the disk or communicating with
other servers can during that time process other requests. In this way the CPU is
utilized more efficiently.

• If the server runs on a multi-processor system the different threads or processes can
run on different processors.

Introducing a thread-pool can speed up a concurrent server. Instead of releasing the
thread when the connection is closed the thread is inserted to a pool. Another client
connecting to the server later reuses the thread. The time a thread is hold in the pool can
be predefined. In this way the number of threads will increase and decrease dynamically
and follow the present load on the server.

3.1.3 Stateful and Stateless Servers
As mentioned before a stateless server retains no memory of past requests. The client
establishes a new connection every time it sends a new request. The big advantage with
stateless servers is that clients can’t reserve system resources (CPU and memory -
utilization) at the server no longer than it takes to handle one request. This suits
client/server implementations over the Internet, which may have a lot of clients
requesting the same services simultaneously. A disadvantage with stateless servers is that
every request takes more time to perform, because a new connection must be established
every time. It is also hard to implement more sophisticated servers without introducing
states.

3.1.4 Failure handling
The thing that makes remote procedure calls different from local procedure calls is the
possibilities of failures. First we have controlled failures that appears when a client sends
an invalid request or when the server performs an invalid operation. The server informs
the client of the failure by raising an exception.

Failures that are harder to deal with is when the client or server suddenly crashes. A
stateless server can simply be rebooted while a stateful server must have some
mechanism that makes the client and server agree on the state of the system. The

Magnus Lewin Page 13 03/02/00

mechanism to use depends on the logic and functionality of the system. States can be
preserved in the system by storing them in persistent memory. Another problem that may
appear is that the client or server crashes before the reply could be delivered to the client.
Then the client does not know if the request was performed or not. If the request is
idempotent meaning that it can be executed any number of times with same effect, the
client can retransmit the request. If the server is not idempotent the client can attach a
sequence number to every request. The processed requests are cached in the server and if
the client sends duplicate requests the server will notice it. If the server crashes the cash
of former requests will be lost. Then the server has to recover in some way when it
reboots.

3.2 Sockets

3.2.1 Overview
The Socket Interface is an Application Programmers Interface (API) that allows a
program to gain access to all the services provided by the communication protocols that
the Socket implementation supports. Microsoft’s Socket implementation winsock2 today
supports TCP/IP, UDP/IP ATM, IPX/SPX, and DECnet. The protocols may coexist
within one application. Winsock2 is originally derived from Berkeley-Sockets which
have became some sort of standard in the area. More information about winsock2 is find
in [14].

The Berkeley-Socket API comprises eight system calls that are common to all Berkeley
based Unix operating systems (SCO, Linux). Other Unix operating systems such as
SunOS based on SVr4 support the socket interface as well. The Socket API is explained
in section 3.2.3.

The name socket refers to a communication endpoint. A pair of sockets uniquely
identifies a connection between two applications or processes located at the same host or
at different hosts. If TCP/IP is used as communication protocol then the sockets pair is
[(IP-address host A, TCP port application B), (IP-address host C, TCP port application
D)].

For a client and server to be able to communicate with each other they must talk the
same language. The language consists of a set of requests and replies that are predefined
and forms the application protocol. An example is the get and put commands in FTP. Get
is used to download files from an FTP server. Put is used for transferring files from an
FTP client to an FTP server.

3.2.2 TCP/IP versus UDP/IP
Communication protocols are usually split into reliable or unreliable protocols. TCP/IP is
a reliable protocol and UDP/IP is unreliable. TCP/IP is also a connection-oriented
protocol meaning that a connection between the applications must be established before
the exchange of data can begin. In UDP/IP the messages is sent without establishing a
connection. Upon TCP/IP it is just possible to build synchronous application protocol
while applications using UDP/IP can communicate asynchronous or synchronous.

The reliable properties of TCP/IP ensure that every packet is delivered non-faulty, in
correct order and not duplicated to the application. TCP/IP also provide flow control.
Both sides of the TCP/IP connection have a finite amount of buffer space. If the sender
process is faster than the receiving process the buffer space of the receiving process will
be full within some time. To prevent this a mechanism called sliding windows is used
that helps the receiving process to slow down the sending process. A detailed
explanation about the sliding window mechanism is find in Data and Computer
Communication, William Stallings [13].

The UDP/IP protocol does only ensures that delivered packages are non-faulty. If they
are lost or delivered in non-correct order the application have to deal with this. TCP/IP

Magnus Lewin Page 14 03/02/00

suits well for applications that don’t have great real-time requirements and where it is
more important that the data is delivered correctly. The protocol for transferring files on
the Internet File FTP is built upon TCP/IP. An application transferring video or audio
signals in real time should not use TCP/IP because retransmission of lost or faulty -data
is meaningless. The TCP/IP protocol suit is described in TCP/IP Illustrated Volume1
[12].

3.2.3 The Socket API
Socket:
Creates the socket which is associated with the protocol family for example AF_INET if
IP is used, protocol type for example stream (TCP) or datagram (UDP) and the specific
protocol to be used.

Bind:
Associates the socket with a local IP address and a port number.

Listen:
Is used by servers only which is put in a passive state listening for client connections on
the specified port number.

Accept:
Accepts incoming client connections.

Connect:
Only used by clients to initiate a connection between the client socket and the server
socket.

Read and Write:
A write call adds data to the socket’s outgoing queue. Lower level functions decide when
enough data is added and form a packet that is sent across the net. The read call removes
data from the incoming queue.

Close:
The close call breaks the connection and releases all local system resources allocated
within the socket.

0 shows how a socket client and a multithreaded socket server are set up and the
communication between them.

Magnus Lewin Page 15 03/02/00

Figure3 Connection oriented (TCP/IP) communication between a socket client and
a socket server

3.3 CORBA

3.3.1 Overview
CORBA makes it possible to develop applications consisting of objects implemented in
different languages and that are located at different platforms, operating systems and
computer networks without that the programmer has to concern about these issues.

The Client/Server model mentioned in section 3.1.1 can also be applied to CORBA. A
client requests services from an object implementation. The services an object provides
is the same as the operations it exposes through its IDL interface (Interface Definition
Language). The communication between the client and the object implementation is
explained in 3.3.2.

The OMG (Object Management Group) which is a consortium of computing-involved
companies leads the evolution of CORBA. OMG does only produce specifications. The
specifications are freely available for any company to implement. The activities
performed by OMG are connected to the architectural framework OMA (Object
Management Architecture) which was introduced 1990 by OMG. OMA consists of the
following four main components.

1. Object Request Broker, which is responsible for the communication between clients
and object implementations. This includes finding the object and invoking the requested
operation with its parameters and returning the result.

2. Object Services, which provide services that are used by many distributed object
programs. Examples of Object Services are:

The Life Cycle Service defines operations for creating, copying, moving and deleting
objects.

The Naming Service allows clients to locate objects by name.

Magnus Lewin Page 16 03/02/00

The Event Service allows clients and objects to dynamically register or unregister their
interest in specific events.

The Transaction Services provides two-phase commit coordination among recoverable
objects using either flat or nested transactions.

3. Common Facilities provide services that are needed by many end-user applications.
They are divided into two categories:

Horizontal Common Facilities, which are shared by many or most systems.
There are four major sets of these facilities: User Interface, Information Management,
Systems Management and Task Management. For example it could be services for mail
and document exchange.

Vertical Market Facilities, which support the domain-specific tasks which are associated
with vertical market segments. Examples of markets could be Telecommunication and
Finance.

4. Application objects are not standardized by OMG. They can be referred to as objects,
which may use all of the components mentioned above.

Details about OMA and CORBA are find at OMG’s web site www.omg.org.

3.3.2 Communication at a high level
Before an object is accessible for any client it must be announced on the ORB or the
object bus which the ORB also is called. The component responsible for that is the
Object Adapter. The Object Adapter also assists the ORB with delivering requests to
the object and with activating the object.

Before the client can access an object it first must receive the object’s object reference.
The object reference is received from either the Naming Service, another object or from
a shared file. The object reference is not visible to the client. The client application just
sees the IDL interface of the object.

The IDL interface could be known to the client in compile time and is then converted to
a stub routine called the Static Invocation Interface (SII). The stub routine is the
connection between the client and the ORB. When the client invokes a specific operation
on the object, the object reference and information about the operation and its parameters
is delivered to the orb via the stub. The ORB then forwards the request to the object
which can be located locally or remotely. The object receives the request through its
skeleton routine which like the client’s stub is constructed at compile time. When the
request is processed the result is returned to the client.

It is also possible for a client to access an object which type is not known at compile
time. The client then uses the Dynamic Invocation Interface (DII).

How client and objects communicate at high levels and the lower levels is explained in
the CORBA specification [2].

Magnus Lewin Page 17 03/02/00

4 Evaluation of EMA and EMS

4.1 Introduction
The functionality of EMA and EMS are explained in section 2.2 and 2.3.

How is performance of a server measured? When we talk about a server computer the
performance probably is measured in the number of instructions it can perform per
second which also is called throughput. In this Master thesis I got the task to evaluate the
performance of a server program. The performance can be measured by investigating
some properties of a server program. First I would like to divide the properties in two
groups. The first group includes the properties that impact on the performance of the
server. The second group includes the properties that impact on the surroundings of the
server. A property may impact on both the performance and the surroundings and
therefore it could be included in both groups. The splitting in two groups is not necessary
for my evaluation process of the servers. But it could perhaps help if the server should be
adjusted. Adjusting one property of the server may impact on another property in the
same or the other group. The adjustments that is made for making a server faster perhaps
also lead to that the server uses more memory and more CPU than earlier. Perhaps is the
server not allowed to use more than a specific amount of the system resources?

Example of properties that could be investigated:

Performance related properties
• Throughput, the number of requests a server can process per second. The throughput

will be different for different kinds of requests. In a multithreaded server running on
a single processor system simultaneous requests are processed concurrently. If a
request leads to some kind of I/O management in the server like communication
with another system, the free CPU time is used to process other requests. From an
observer’s perspective it looks like some of the requests is processed in parallel.
When the server processes enough requests simultaneously all the free CPU time
associated with I/O management will be used. The server has reached its saturation
level and the number of requests it processes per seconds will never exceed this
limit.

• Response time, the time it takes to process a request. The response time is different
for different kind of requests. For a multithreaded server the response time also
depends on how many requests the server processes simultaneously. When the
server reaches its saturation level (It uses all the CPU time it is capable of) the
response time will increase linearly with the number of requests that the server
processes simultaneously. This is illustrated in Figure4.

Figure4 The response time as a function of the number of simultaneous requests a
server processes.

Magnus Lewin Page 18 03/02/00

• The correctness of the server. Does the server lose requests? Are the requests
successfully or not successfully processed.

• CPU usage. Used CPU time during a time interval divided by the same time interval.
The CPU usage depends on how many other processes that are running on the same
system. It is also possible to adjust the CPU usage among the processes by using
priority scheduling.

• Memory usage. Is the amount of used memory almost constant or varies it a lot? It is
possible to speed up the server by optimizing the memory management in the server
program. What is the maximum and minimum amount of used memory during a
server execution? Is there any memory leakage?

• Thread management. How changes the number of threads dependent on for example
the number of simultaneous requests and/or time.

Properties that impact on the surroundings
• Memory usage. See performance related properties. The system resources are shared

among all the programs that run on the same system.
• CPU usage. See performance related properties. The system resources are shared

among all the programs that run on the same system.
• Traffic load on the communication network. The program logic and what

communication technique that is used will probably impact on the traffic load.

Now I have discussed how the performance of a server can be measured by investigating
some properties of the server. The second question is how is each property investigated?
I have not done any kind of research in this area because my evaluation model presented
in next section mostly is founded on response time measurements. It was also never
required that I should investigate other properties. Probably there are several commercial
programs which can be used to investigate Memory usage, CPU usage and thread
management in a program. There are also programs for investigating the traffic on a
communication network

4.2 Evaluation model
In my evaluation model I look at EMA and EMS as they were black boxes. I use my
evaluation program (presented in next section) to investigate:
• The response time.
• The number of lost requests.
• The number of requests that were not successfully processed.
• The time it takes to perform an experiment.

In the experiments against EMA and EMS I don’t simulate any kind of user model. Each
client involved in an experiment sends their next request as soon as it has received the
reply from it last request. This types of experiments is called stress tests.

When I discuss the results of the experiments performed against EMA and EMS it in
most cases are speculations. To really find the reason behind the results, the source code
of each server must be investigated. The conclusions or guesses I make are based on the
implementation proposals of EMA and EMS and the outcome of my experiments.
Unfortunately I haven’t had the possibility to discuss the behavior of EMA and EMS
with someone who was involved in the implementation of them.

4.3 Evaluation program
The program is developed in Java. In fact it is two programs which almost are similar,
one for evaluating EMA and the other for evaluating EMS. The difference between the
programs is the part which communicates with the server. The program for evaluating
EMA of course uses Socket for communication and the program for evaluating EMS
uses CORBA.

The graphical user interface of the program is used for setting up experiments against
each server. In one experiment it is possible to run any number of clients requesting

Magnus Lewin Page 19 03/02/00

services from either EMA or EMS. All the clients run on the same machine and are
simulated with threads.

If the response time of the server is much larger than the time slot each thread runs when
it is scheduled plus the time it takes to propagate the request from the client to the server
and the reply from the server to the client the requests almost are processed
simultaneously at the server.

The response time measured by the evaluation program when it runs several clients will
sometimes not be the true response time. Sometimes is the reply from the server returned
when another client (Thread) is scheduled. The measured response time will be the real
response time plus the time the client is blocked.

To produce real simultaneous requests the clients must run on different computers. This
would be easy to do on a Unix system but it is much harder to achieve on a windows
system of today.

The configuration of each client is about:
• Setting the number of requests it will send. The client will send the next request as

soon as it has received the reply associated with the last request.
• Configuring the request. Inserting the MML command that will be sent to the server.

Parse parameters may be added to the request. Only EMA supports parsing of
printouts. The parsing process in EMA is explained in section 2.2.5.

• Deciding what node in EMA or EMS the client will interact with.
• Setting the timeout which decides when the client should give up trying to receive

the response that is associated with the last request.

The results of an experiment are presented in one or more result windows.
Clients sending the same request can have a shared result window while clients sending
different requests must have different result windows.

In the result window the following information is presented.
• Average response time, response-time(request1) + response-time(request2) + …+

response-time(requestN) / N.
• Max response time, max(response-time(r1), response-time(r2),..,response-time(rN)).
• Min response time, max(response-time(r1), response-time(r2),..,response-time(rN)).
• Number of successful requests.
• Number of non-successful requests.
• The response if the request carried out successfully. This one is optional.
• An error message if the request did not carry out successfully. This one is optional.

Since EMA and EMS are multithreaded servers I also investigated how they performed
when several clients simultaneously send requests to them. In these Experiments the
response time of a single request is not enough to make a statement of how the servers
perform. Therefore I also look at the time it takes to carry out the experiment. I explain
this by an example. If a single client sends 5 requests and the response time of each
request is 1 second, then the time it takes to perform the experiment is approximately 5 *
1 seconds = 5 seconds. Then I let 5 clients send 1 request each. If the server can process
each request in parallel the response time of each request is 1 second and the time it takes
to perform the experiment is 1 second.

EMA and EMS run on a single processor systems and can’t process any requests in
parallel. But since EMA and EMS performs I/O operations, for example communicating
with other systems it look like some of the requests are processed in parallel. At some
level when enough requests are processed concurrently there is no more free CPU time
to use. Then the response time of the server will increase linearly with the number of
requests it simultaneously processes. This is illustrated in Figure4.

Magnus Lewin Page 20 03/02/00

4.4 Evaluation platform
The evaluation program runs on a computer from Dell, 166 MHz Pentium processor and
128 Mbytes memory.

The EMA and EMS servers run on a computer from Dell, 450 MHz Pentium II processor
and 128 Mbytes memory.

The AXE uses an APZ212/25 and the I/O-system is IOG20.

The computer network is a 10 Base T Ethernet

4.5 Results from experiments
All the experiments presented in this section are based on 5 detached experiments.

In the experiments where several clients communicate with the same node in EMA or
EMS I have configured the node with the same number of channels (Telnet connections
to the Network Element) as there are clients communicating with the node. This is
illustrated in Figure5.

Unfortunately there was just one AXE exchange available in the laboratory when I
performed my experiments. Therefore I couldn’t perform any experiments where several
clients simultaneously interacted with different nodes in EMA or EMS.

I did one experiment against EMA and EMS where I configured 5 “different” nodes that
were connected to the same Network Element. The results of these experiments showed
to be almost the same as the results from the experiments when the clients interacted
with the same node. Figure5 and Figure6 show the difference in the configuration of the
servers.

Figure5 5 clients interacting with the same node in EMA or EMS

Figure6 5 clients interacting with “different” nodes in EMA or EMS

Magnus Lewin Page 21 03/02/00

4.5.1 Experiments against EMA
1 client sends 10 requests to 1 node in EMA.
Experiment Request Average response time [ms]
1 caclp 2633
2 allip 2966
3 ioifp 3281
4 syfdp 2500
5 alexp 2389

Average response time (E1 – E5): 2754 ms
Average execution time: 28 s
Number of unsuccessful requests: 0
CPU usage: 0 – 30 percents

6 alacp 2420
7 alacp /p alcat 2529
8 caclp 2593
9 caclp /p date 3282
10 caclp /p date time3302

5 clients send 10 requests each to the same node in EMA.
Experiment 11

Request Average response time [ms]
Client1 caclp 2601
Client2 allip 3019
Client3 ioifp 3266
Client4 syfdp 2454
Client5 alexp 2446

Average response time: 2757 ms
Execution time: 49 s
Number of unsuccessful requests: 1.6
CPU usage: 30 – 70 percents

4.5.2 Experiments against EMS
1 client sends 10 requests to 1 node in EMS.
Experiment Request Average response time [ms]
12 caclp 652
13 allip 577
14 ioifp 1163
15 syfdp 621
16 alexp 497

Average response time E12 – E16: 702 ms
Average execution time: 7 s
Number of unsuccessful requests: 0
CPU usage: 2 percents

5 clients send 10 requests each to the same node in EMS.
Experiment 17

Request Average response time [ms]
Client1 caclp 2403
Client2 allip 2918
Client3 ioifp 2716
Client4 syfdp 2380
Client5 alexp 2185

Magnus Lewin Page 22 03/02/00

Average response time: 2520 ms
Execution time: 38 s
Number of unsuccessful requests: 0
CPU usage: 2 percents

Magnus Lewin Page 23 03/02/00

4.6 Diagrams

1 client sends 10 requests to 1 node in EMA (Experiment 1 – 5).

5 clients send 10 requests each to the same node in EMA. (Experiment 11)

5 clients send 10 requests each to “different” nodes in EMA

Diagram 1

0
500

1000
1500
2000
2500
3000
3500
4000
4500

MML Command

T
im

e
[m

s]

average 2633.2 2965.6 3281.2 2500.4 2389

max 3966 3886 3816 3986 2614

min 2363 2784 2964 2313 2313

caclp allip ioifp syfdp alexp

Diagram 2

0

1000

2000

3000

4000

5000

MML command

T
im

e
[m

s]

average 2601 3019 3266 2454 2446

max 3324 3865 3605 2884 3154

min 2263 2724 2784 2173 1993

caclp allip ioifp syfdp alexp

Diagram 3

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

MML Command

T
im

e
[m

s]

average 2851 4219 3582 2707 2596

max 4796 8812 7541 6559 7450

min 2403 3505 2874 2273 1982

caclp allip ioifp syfdp alexp

Magnus Lewin Page 24 03/02/00

1 client sends 10 requests to 1 node in EMA. (Experiment 6 – 10)

1 client sends 10 requests to 1 node in EMS. (Experiment 12-16)

5 clients send 10 requests each to the same node in EMS. (Experiment 17)

Diagram 4

0

500

1000

1500

2000

2500

3000

3500

4000

MML command

T
im

e
[m

s]

average 2420 2529 2593 3282 3302

max 2804 2764 2694 3405 3715

min 2333 2433 2373 3024 3025

alacp
 alacp /p

alcat
 caclp

 caclp /p
date

 caclp /p
date time

Diagram 5

0

500

1000

1500

2000

2500

3000

MML command

T
im

e
[m

s]

average 652 577.2 1163.4 620.8 496.8

max 811 1101 2033 2653 2243

min 451 451 971 371 360

caclp allip ioifp s yfdp alexp

Diagram 6

0

1000

2000

3000

4000

5000

6000

MML command

T
im

e
[m

s]

average 2403 2918 2716 2380 2185

max 4727 5268 4737 4707 4146

min 601 501 1222 440 401

caclp allip ioifp s yfdp alexp

Magnus Lewin Page 25 03/02/00

5 clients send 10 requests each to “different” nodes in EMS.

4.7 Comments of results
1 client (EMA) versus 1 client (EMS)
The response time of EMA is about 4 times greater than the response time of EMS when
1 client runs against them. What could this depend on?

• Clients running against EMA must establish a new TCP/IP connection with EMA
every time it sends a request. The ORB (Visibroker) probably keeps the connection
between the client and the Channel object in EMS open some predefined time.
Following requests will use the same connection. The time it takes to establish a
TCP/IP connection is much smaller than the response time of the servers, so for that
reason it shouldn't impact very much on the result.

• EMA opens a new channel (Telnet connection) to the Network Element at every
request. EMS keeps the channel (Telenet connection) to the Network Element open
until the client releases it. A Telnet connection is also fast to establish compared to
the response time of the servers.

• The EMA server stores the node configurations in an ACCESS database (located at
the same computer) and the EMS server stores them in the NT registry. Perhaps is
the ACCESS database accessed every time the EMA server receives a request? The
connection to the database is perhaps established for every request and closed when
the server has processed the request?

• The EMA server logs every request in a log file. Perhaps the EMA opens and closes
the log file for every request. Together with the request are also date, time and the
host-name of the client stored.

1 client (EMA) versus 5 clients (EMA)
When 5 clients run against EMA the response time is almost the same as when 1 client
runs against it. The execution time of the experiment with 5 clients sending 10 requests
each was 49 seconds while the execution time of the experiment with 1 client was 28. If
one client sends 50 requests it would take 5 * 28 = 140 seconds to perform the
experiment. This probably means that some free CPU time associated with I/O
management was used when the server processed several requests simultaneously.
The CPU usage of the EMA process according to the task-manager in Windows NT
varied rapidly between 0 and 30 percents during the experiment with one client. The
experiment with 5 clients showed a CPU usage between 30 and 70 percents and an
experiment with 10 clients showed a CPU usage between 50 and 100 percents.

In the Experiment with 10 clients some of the clients were refused to establish a
connection with the EMA server.

Diagram 7

0

1000

2000

3000

4000

5000

6000

MML command

T
im

e
[m

s]

average 2438 2741 2873 2402 2214

m a x 5177 5428 5357 4326 4837

m in 441 591 1222 371 391

caclp allip ioifp s yfdp alexp

Magnus Lewin Page 26 03/02/00

In the repeated experiments with 5 clients, 2 of the clients one time per experiment didn’t
receive the reply connected to one of the requests. The timeout was set to 25 seconds
which means that 3 of the clients probably finished executing much earlier than the other
two. In one request of 50 in the experiment with 5 clients the EMA server responded
with the fault message 0004, which means that the EMA server could obtain a
communication channel to the Network Element but that the request for some reason
couldn’t be successfully processed. Once the experiment carried out with no
unsuccessful requests. The response time was about 0.4 s worse but the execution time of
the experiment was about the same (49 s).

Parsed printouts versus non-parsed printouts (EMA)
The response time of a request just containing the MML command alacp is about 2.4
seconds. If the printout is parsed with the parse parameter alcat then the response time of
the request containing alacp\n/p alcat is about 2.5 seconds. The parsing process had no
major impact on the response time of alacp.

But if the EMA server parses the printout belonging to the MML command caclp there is
a difference of about 0.7 seconds. This may depend on that the PPM file is larger for
caclp (6.63 Kbytes) than for alacp (1.29 Kbytes) and that the “function” used for parsing
the printout of caclp is perhaps more complex.

1 client (EMS) versus 5 clients (EMS)
In the experiment with 5 clients was the response time about 3.6 worse than the
experiment with 1 client. The time for a single client to execute 50 requests is 7*5 = 35
seconds which is about the same time it took to perform the experiment with 5 clients
(38 s). From this we can draw the conclusion that at least from an observers perspective
the EMA server doesn’t processes any requests simultaneously. The requests are in some
way queued at the server and processed one at a time. Another explanation could be that
the server has reached it saturation level and that the response time increases linearly
with the number of requests the server processes simultaneously. This is probably not the
cause since the response time increases dramatically also when just 2 clients run against
EMS. Another interesting observation during the experiments was that the CPU usage
according to the task manager in Windows NT never exceeded 2 percents irrespective of
the number of clients.

The EMS server never failed to process an request.

5 clients (EMA) versus 5 clients (EMS)
The response time of the servers was about the same. The execution time of the
experiment against EMA was 49 s and the execution time of the experiment against EMS
was 38 s. Based on these values the performance of EMA has approached the
performance of EMS. But we also how to consider that the EMA CPU usage is between
30 and 70 percents and the CPU usage of EMS is constantly 2 percents. EMA also
became unstable when the number of clients running against was more than 3. It lost
requests and other requests couldn’t be successfully processed.

Magnus Lewin Page 27 03/02/00

5 Alarm Management System

5.1 Introduction
The other task in my thesis project is to design a telecom management system. The
purpose of this is to illustrate how Corba can be used for communication and distribution
in such a system. The next generation of O&M platform for AXE, the APG 40, will have
some kind of alarm management server which exposes its services through a CORBA
interfaces. The Alarm Management System, which I have designed (not implemented) is
a proposition of how alarms from any Network Element could be managed within one
system.

Operators use the Alarm Management System to coordinate the management of alarms
towards multiple Network Elements. Alarms emitted by Network Elements are stored in
persistent storage. The management is about acknowledging and unacknowledging
alarms, adding comments to individual alarms and adding comments to Network
Elements.

By acknowledging an alarm the operator tells every other operator viewing the same
Network Element that he is responsible for taking some action according to the
information included in the alarm. The action could be managed from remote, for
example first tracing the fault and then perhaps downloading new software into the
exchange. If it is a hardware failure the exchange must be repaired at its location.

If an operator takes some action he thinks is valuable information for himself or other
operators he adds a comment to the Network Element in question. The Alarm
Management System does not include any applications for repairing failures. The
interfaces of these applications could easily be added to the system and accessible from
the Alarm Management Directory Server if desirable.

To avoid inventing the wheel again when a new telecom management application is to be
developed there is a standardization committee at Ericsson that defines IRPs (Integration
Reference Points). An IRP contains information about what functionality just that
telecom management application should include and specific rules that should be
followed if the application shall be able to coexist or interact with other similar systems.

The design of AMS does not stringently follow the general Alarm IRP [16] and the
Corba Alarm IRP [17]. The basic rules of the IRPs will be followed but in the design of
the Alarm Management System I will not go into any specific details of for example how
an event or a specific alarm in the system should look like. If I think these details are
necessary when explaining some functionality in the system I will get into them, but they
may not follow the Alarm IRPs.

There have been no specific requirements from Ericsson on the system logic of the AMS.
From the beginning of the design I have just assumed that the managed Network
Element includes some mechanism for storing the active alarm list and some mechanism
for emitting spontaneous alarms. I have also looked at Alarm Tool that is a part of
WinFiol and Tools. Alarm Tool is used by one operator managing alarms towards one
AXE exchange.

Figure7 shows at a high level how Networks Elements are supervised from
“management centers”. The Network Elements are geographically scattered over wide
areas. The network elements are managed over a computer network consisting of the
Local Area Networks at the management centers and the LANs which the Network
Elements are attached to. In between we have some kind of communication network that
ties the Local Area Networks together.

Magnus Lewin Page 28 03/02/00

Figure7 Telecom management centers and Network Elements.

5.2 Limitations
Any security issues like authorization, authentication will not be included in the design
of the Alarm Management System.

5.3 Alarms and Events
An Event is inserted to the Alarm Management System when an operator manage an
alarm or when a Network Element emits an alarm. An event consists of an event record
containing multiple attributes. Some of these attributes are mandatory and specified in
the “general” Notification IRP [18] and the “general” Alarm IRP[16]. The structure of
the event record in a corba environment is specified in the “Corba” Notification IRP [19]
and the “Corba” Alarm IRP[17].

In section 4.1.3.1 in the “general” Alarm IRP, it is specified how an alarm list should
behave. The alarm list contains all currently active alarms associated with a system, for
example an AXE exchange. When a new alarm is emitted a new entry in the alarm list is
created. An alarm has a certain severity level telling how urgent the alarm is. The
severity level of the alarm can change. When the severity level of an alarm changes, a
new entry is not created in the alarm list, the old one is used. When an alarm is cleared it
is removed from the alarm list. All these changes are referred to as alarm Notifications.
How to handle notifications is specified in the Notification IRP. The corresponding
alarm notifications for the emitted events above are notifyNewAlarm,
notifyChangedAlarm and notifyClearedAlarm. In the same section it is also specified
how the system shall behave if the severity level is changed. Two rules should be
applied:

Magnus Lewin Page 29 03/02/00

1. If the new severity level is more urgent than the old level, the last acknowledge shall
be removed. More exactly as specified in the Alarm IRP the system shall delete
information in attributes AckUser and AckTime of alarm record (4.1.3.8). System
updates the eventTime and PerceivedSeverity. System invokes
notifyChangedAlarm notification.

2. If the new severity level is the same or less than the old level, System shall not
delete information in attributes Ack User and Ack Time of Alarm Record. System
updates the eventTime and PerceivedSeverity. System invokes
notifyChangedAlarm notification.

Alarms have states. The possible lifecycle of an alarm is illustrated in the Alarm State
Diagram in Figure8. The state diagram is an updated version of the alarm state diagram
in section 4.2.1 in the “general” alarm IRP [16]. The state diagram in the Alarm IRP does
not include rule 1 mentioned above. When I reported this to Edwin Tse, responsible of
the Alarm IRP, he also informed me on a new feature that will be applied in the next
version of the Alarm IRP. If an alarm is cleared without ever have been acknowledged it
should not be removed from the alarm list. If an alarm is cleared its alarm number can be
reused. Therefor must the application be able to handle this special case in some way.

Figure8 Alarm State Diagram

5.4 The components of AMS
The components involved in the Alarm Management System are presented in this
section. The IDL interface of each component should be specified in the AMS module
where also AMSException is specified.

module AMS{

 exception AMSException{
 enum exception {"Here are all possible exceptions listed"};
 };

All interfaces ……………..
};

Last in this section some diagrams visually illustrate how the components are related to
each other and how they communicate.

Before each component is presented we take a look at a possible running AMS which
Figure9 shows. Two Network Elements are connected to AMS through their Network

Magnus Lewin Page 30 03/02/00

Element Alarm Servers. The Event Log Server runs two Event Logs associated with each
Network Element. The Event Handler runs two Event Channels associated with each
Network Element. Two operators manage the AMS via Alarm Viewers. Operator 1
manage alarms from Network Element 1 and Network Element 2. Operator 2 just mange
alarms from Network Element 2. To get an idea of how alarms from Network Elements
are managed by AMS we follow alarm c1’ that is emitted from a node in a
communication network.

1. The Network Element Alarm Server (NEAS) receives the alarm from the single
node it is managing.

2. Because the nodes in the communication network can be of different types the
NEAS converts the type specific alarm to the alarm format of AMS. This is
illustrated by c1’ -> c1.

3. The alarm is logged in the Event Log belonging to the Network Element.
4. The alarm is distributed via the Event channel belonging to the Network Element to

every operator interested in alarms from that Network Element.
5. Operator 1 has received and acknowledged alarm c1.
6. The acknowledge is logged together with the alarm in the Event Log.
7. The acknowledge is distributed via the Event Channel of the Network Element to

every operator interested in alarms from that Network Element. Here it is just
operator 1 that is interested.

Figure9 The Alarm Management System

Magnus Lewin Page 31 03/02/00

5.4.1 Event Producer
An Event Producer distributes events to every Event Consumer that have subscribed to
the Event Producer. Events in the AMS could be alarms emitted by a Network Element
or acknowledges of alarms emitted by Operators. If filtering of events is applied the
Event Consumer specifies what filter that is to be used when it subscribes to the Event
Producer.

IDL interface:

interface EventProducer{
void subscribe(in string consumerId, in EventConsumer ref, in string filter); raises
(AMSException);

 void unsubscribe(in string consumerId) raises (AMSException);
 void getSubscriptionStatus() raises (AMSException);
 };

5.4.2 Event Consumer
An Event Consumer receives events.

IDL interface:

interface EventConsumer{
void push(in any event) raises (AMSException);

};

5.4.3 Alarm Storage
Alarm Storage provides operations for retrieving the active alarm list or the old alarm list
associated with one Network Element. When a Network Element is connected to AMS it
transfer its active alarm list by invoking the operation putAlarmList(in
sequence<string>);

IDL interface:

interface AlarmStorage{
sequence<string> getActiveAlarmList(); raises (AMSException);

 sequence<string> getOldAlarms(); raises (AMSException);
 void putAlarmList(in sequence<string>);

AlarmSearch getAlarmSearch();
};

5.4.4 Alarm Search
This interface exposes operations for searching among active and old alarms associated
with one Network Element.

IDL interface:

interface AlarmSearch{
 // Possible search functions on the active and the old alarm list are added here.
};

5.4.5 Administration
Event Log Servers, Event Handlers and Network Element Alarm Servers exposes this
interface for administration. Any relevant operation that has to do with administration of
these components should be added here.

The operation registerAtAmsDirectoryServer is used when the component connects to
the Alarm Management System.

Magnus Lewin Page 32 03/02/00

IDL interface:

interface Administration{
 void useAmsDirectoryServer(in string amsDirectoryServer) raises (AMSException);
 void dontUseAmsDirectoryServer(in string amsDirectoryServer) raises (AMSException);

 void registerAtAmsDirectoryServer(in sequence<string subSystem>) raises (AMSException);
 void unregisterAtAmsDirectoryServer(in sequence<string subSystem>) raises (AMSException);
};

5.4.6 Alarm Viewer
The Alarm Viewer is a visual component from where operators can subscribe to several
network elements. The Alarm Viewer contains the alarm panels of all the Network
Elements that the operator has subscribed to. By investigating the alarm panels the
operator gets a quick overview of the alarm status of the Network Elements he is
responsible for. If the alarm status of a Network Element changes and are required to be
investigated more in detail, the operator opens the Alarm View window. In the window
the whole active alarm list is presented.

5.4.7 Alarm View
The Alarm View is a visual component presenting the alarm status of a single network
element. The Alarm view consists of three components. The alarm panel always shown
in the Alarm Viewer, the Alarm View window that is opened on command from the
operator and the Event Consumer object that receives events from the Network Element
Alarm Server or from the Event Channel of the Network Element.

From the Alarm View the operator acknowledges alarms. The acknowledge is forwarded
to the Event Log and Event Channel of the Network Element.

Since there probably are a lot of alarm views in one Alarm Viewer, in fact as many as the
number of Network Elements the operator supervises, it perhaps would be better if the
Alarm Viewer was responsible of receiving all events through one single Event
Consumer interface. The events then are forwarded to the Alarm View through the
internal interface between the Alarm Viewer and the Alarm View.

5.4.8 Event Log Server
The Event Log Server is responsible for starting up and removing Event Logs on
commands from Network Elements.

When the Event Log Server is started it is provided with information about what
subsystems in the AMS Directory it will serve. It registers itself by passing its object
reference and the list of subsystems to the AMS Directory Server.

IDL interface:

interface EventLogServer{
 Administration getAdministration() raises (AMSException);
 EventLog newEventLog(in string neName) raises (AMSException);
 void removeEventLog(in string neName) raises (AMSException);
};

5.4.9 Event Log
An Event Log consumes events from one Network Element and several Alarm Views.
Therefor it exposes the Event Consumer interface. When an event is received it is
inserted to the active alarm table in the Database. If the event is an alarm that changes
severity level the “new” alarm overrides the “old” alarm. The “old” alarm is inserted to
the old alarm table.

The Event Log also exposes the Alarm Storage interface which is used by the Network
Element Alarm Server for transferring the whole active alarm list when it for the first

Magnus Lewin Page 33 03/02/00

time connects to AMS. The Network Element Alarm Server also uses the Alarm Storage
interface when it knows that the active alarm list in the Event Log is inconsistent. For
example when the NEAS for some time haven’t been able to store one or several alarms
emitted by the Network Element.

The Event Log can be started by the Network Element itself or by an Event Log Server
on command from the Network Element.

IDL interface:

interface EventLog{
AlarmStorage getAlarmStorage() raises (AMSException);

 EventConsumer getEventConsumer() raises (AMSException);
 void release() raises (AMSException);
 };

5.4.10 Event Handler
The Event Handler is responsible for starting up and removing Event Channels on
commands from Network Elements.

When the Event Handler is started it is provided with information about what subsystems
in the AMS Directory it will serve. It registers itself by passing its object reference and
the list of subsystems it shall serve to the AMS Directory Server.

The OMG Event Service is preferable used for realize the Event Handler. The Event
Handler corresponds to the Event Channel Factory and The Event Channel explained in
next section corresponds to the Event Channel in OMG Event Service. The Event
Handler and Event Channel IDL interfaces presented here do not agree upon the IDL
interfaces in the OMG Event Service, but they do include the same functionality.

The OMG Event Service does not include any mechanism for filtering events. If filtering
of events is desirable, the OMG Notification Service is preferably used. Perhaps one
operator is interested in alarms with a higher severity level and another operator takes
care of alarms with less severity level.

IDL interface:

interface EventHandler{
Administration getAdministration();

 EventChannel newEventChannel(in string neName);
 void removeEventChannel(in string neName);
};

5.4.11 Event Channel
An Event Channel consumes events from one Network Elements and several Alarm
Views. The alarms are distributed to all Alarm Views that have subscribed to the Event
Channel. The Event Channel exposes the Event Consumer interface and the Event
Producer interface.

The Event Channel can be started by the Network Element itself or by an Event Handler
on command from the Network Element.

IDL interface:

interface EventChannel{
EventProducer getEventProducer();

 EventConsumer getEventConsumer();
 void release();
};

Magnus Lewin Page 34 03/02/00

5.4.12 Network Element Alarm Server
The Network Element Alarm Server is the Network Element’s connection to the Alarm
Management System. Before an alarm is emitted into AMS it must be transformed to the
format supported by AMS.

An alarm is emitted into AMS by forwarding it to the Event Log and the Event Channel
of the Network Element. The Event Log stores the alarm in stable storage and the Event
Channel distributes the alarm to every interested Event Consumer (Alarm Views).

When an Alarm View is started it

The NEAS exposes an Event Log interface and an Alarm Storage interface. The
interfaces are used by Alarm Views directly subscribing to the NEAS and by the Alarm
Log that is started on command from the Network Element Alarm Server.

IDL interface:

interface NetworkElementAlarmServer{
 EventChannel getEventChannel() raises (AMSException);
 EventLog getEventLog() raises (AMSException);
 Administration getAdministration() raises (AMSException);
};

5.4.13 AMS Directory Server
The AMS Directory Server is the access point to the Alarm Management System. In the
AMS Directory all Network Elements are sorted into Sub Systems. A Sub System is
potentially container of several Network Elements, one Event Handler, one Event Log
Server and any number of Sub Systems. The structure of the tree may image the
graphical location of the Network Elements.

If there is no Event Handler or Event Log Server associated with a Sub System the first
Event Handler or Event Log Server found above in the tree structure is used.

The OMG Naming Service is preferably used to realize the naming structure in AMS
Directory Server. Every Sub System is a naming context. The Event Log Server and
Event Handler in a subsystem may be bind to any Event Log Server reference and any
Event Handler reference. The Network Element in a subsystem is a naming context
containing name to reference bindings of at least the Network Element’s Network
Element Alarm Server. Here could also other interfaces that the Network Element
exposes be added. The tree structure of the Naming Service could look like in Figure10.

IDL interface:

interface AmsDirectoryServer{

// Operations for building the tree structure of AMS Directory

 void addSubsystem(in string father, in string name) raises (AMSException);
 void removeSubsystem(in string name) raises (AMSException);
 void addNetworkElement(in string father, in string name) raises (AMSException);
 void removeNetworkElement(in string neName) raises (AMSException);

//

EventLogServer getEventLogServer(string neName) raises (AMSException);
 EventHandler getEventHandler(string neName) raises (AMSException);

NetworkElementAlarmServer getNetworkElementAlarmServer(string neName) raises
(AMSException);

// Operations for connecting and disconnecting components to AMS

Magnus Lewin Page 35 03/02/00

void registerEventLogServer(in EventLogServer ref, in sequence<string subSystem>) raises
(AMSException);
void registerEventHandler(in EventHandler ref, in squence<string subSystem>) raises
(AMSExcption);
void registerNEAlarmServer(in NetworkElementAlarmServer ref, in string neName) raises
(AMSException);
void unregisterEventLogServer(in EventLogServer ref, in sequence<string subSystem>) raises
(AMSException);
void unregisterEventHandler(in EventHandler ref, in sequence<string subSystem>) raises
(AMSExcption);
void unregisterNEAlarmServer(in NetworkElementAlarmServer ref, in string neName) raises
(AMSException);

};

Figure10 Possible AMS Directory structure.

5.4.14 Communication in AMS
Figure11 shows the operations invoked on different objects when the Network Element
Alarm Server is started. If the NEAS is able to start an own Event Log and Event
Channel just operation 1 registerNeAlarmServer is required.

Figure11 A NEAS connects to AMS.

Figure12 shows the operations invoked on different objects in AMS when an Alarm
Viewer subscribes to a Network Element.

Magnus Lewin Page 36 03/02/00

Figure12 Alarm Viewer subscribes to a Network Element

Figure13 shows a use-case of A Network Element Alarm Server emitting an alarm

1. The alarm is stored in the Network Element’s Event Log.
2. The alarm is forwarded to the Event Channel of the Network Element.
3. The Event Channel distributes the alarm to every alarm view that has subscribed to

the Event Channel.
4. The operator notices that the Network Element has emitted an alarm.
5. Same as 3.
6. Same as 4.

Figure13 The Network Element emits an alarm.

Magnus Lewin Page 37 03/02/00

Figure14 shows a use-case of an operator acknowledging an Alarm

1. The operator acknowledges the alarm.
2. The acknowledgement is stored in the Event Log of the Network Element.
3. The acknowledgement is forwarded to the Event Channel of the Network Element.
4. The Event Channel distributes the alarm to every Alarm View that has subscribed to

the Event Channel.
5. The operator notices the acknowledgement of the alarm.
6. Same as 3.
7. Same as 5.

Figure14 An operator acknowledges an alarm.

5.5 Administration
The AMS administrators are responsible for:
• Starting the AMS Directory Server and build the Directory structure.
• Starting Event Log Servers and Event Handlers and provide them with information

about what subsystems they will serve.
• Restarting the AMS Directory Servers, the Even Log Servers and the Event

Handlers if they fail.

5.6 Failure Handling
If the Network Element doesn’t have any alarms to emit it emits a heartbeat periodically
telling the surrounding system it is alive. This contradicts the Alarm IRP, which says that
applications should include a function that periodically is invoked and issues the status of
other components in the system.

If the Event Log or the Event Channel belonging to a Network Element Alarm server is
unavailable the NEAS discards the object references and starts a new Event Log or Event
Channel.

If an Alarm View is not available the Event Channel keeping its reference removes the
Alarm View from the subscription list. The Alarm View realizes that something is wrong
when it doesn’t receive any heartbeats from the Network Element.

If the Event Log or Event Channel is not available to an Alarm View it tries to subscribe
to them again via the Network Element Alarm Server.

Magnus Lewin Page 38 03/02/00

5.7 Availability
The most important thing in the system is that the alarms emitted from the Network
Element Alarm Servers are logged.

When a Network Element Alarm Server discovers that its Event Log is not available
anymore it just discards the Event Log reference and tries to start up a new one. If the
present Event Log Server can’t start a new Event Log the NEAS will contact another
Event Log Server. There can be a problem with this solution. If new Event Logs are
started and the old ones still are alive, the number of passive objects in the system could
grow. The heartbeat sent out from the NEAS solves this. If an Event Log does not
receive the heartbeat it will kill itself. The same procedure will be applied if the NEAS
discover that the present Event Channel is not available. If the OMG Event Service is
used to realize the Event Channel then it may be a problem to implement the heartbeat
feature. I don’t know if the Event Channel can investigate the events that it receives. If
the OMG Notification Service is used there shouldn’t be any problem, because it
supports filtering.

5.8 Scalability
Because the number of Network Element in a Tele or Data -communication system can
be very large and probably will increase in time it is important that the Alarm
Management System can handle this. The computing capacity of the AMS is increased
by adding new machines which run new Event Log Servers and Event Handlers. In this
way it is theoretically possible for the AMS to manage any number of Network
Elements. If the Event Log and Event Channel is managed by the Network Element itself
the computing capacity of AMS naturally is increased when the new Network Element is
connected to AMS.

A potential bottleneck in AMS when the number of Network Elements grow could be the
AMS Directory Server. But this shouldn’t be any problem because the AMS Directory
Server is only used when a new Network Element is attached to the system, when an
Event Log or Event Channel of an Network Element fails or when an operator becomes
responsible of a “new” Network Element. These occasions shouldn’t appear very
frequently.

If AMS Directory Server becomes a bottleneck it could be replicated. Since a certain
“management center” is responsible of a certain region of Network Elements which
corresponds to a Sub System in the Directory tree of the Directory Server the Sub
Systems can be replicated to the LANs where the “management centers” are located.
This will also decrease the LAN to LAN traffic in AMS.

5.9 Flexibility
One purpose with flexibility is that the system should be adjustable to different
customers’ needs. One customer may run just a few network elements while another runs
hundreds of network elements.

The flexibility may also help adjusting the system to different kinds of network elements,
which may have different requirements of for example CPU load and memory use.

Here I discuss how the system could be deployed depending on different needs.

5.9.1 Event log location
If the network element have a database management system the alarms could be logged
at the network element itself. All alarm management, acknowledging, adding comments
and retrieving the active and old alarm list will load the network element.

One major advantage of logging alarms at the network element is that the alarm logs are
naturally distributed. There is no single point of failure, which an external central DBMS
could be.

Magnus Lewin Page 39 03/02/00

The next generation of O&M platform for AXE the APG 40 which is a high available
system will probably store the Alarm Log by itself.

One disadvantage with having the alarm logs distributed at the network elements is that
searching of alarms among several network elements may be less efficient.

If the Event Log isn’t located at the Network Element it is possible to place it at a
management center’s LAN or the LAN which the Network Element is attached to. Since
it is very important that an alarm is logged the Event Log perhaps should be placed as
close as possible to the Network Element i.e. the same LAN. The problem with this is the
administration of the Event Log Server. Hopefully most or all of the administration can
be done from remote.

5.9.2 Event Channel location
The Event Channel like the Event Log may also be located on the network element. If
there are a lot of operators viewing the same network element the network element has to
distribute all updates of the alarms to every operator. This may load the NE a lot.

If the event channel is located outside the NE the load of the network element will
decrease. Another aspect a telecom operator may consider is that the network elements
are scattered geographically over wide areas. Perhaps the communication network
between the “management centers” and the Networks Elements has low capacity or for
any other reason is slow. Then it could be better to place the Event Channel at the LAN
where the “management center” is located.

Probably is also the “management centers” managing a certain region scattered
geographically over wide areas. Since they manage different regions of the
communication network they don’t have to know about each other and the
communication that arises due to alarm management will stay in their own local
networks. Perhaps there is a need for overlapping the management of different regions.
There are techniques that virtually build a single LAN of physical LANs that is
interconnected via Internet. These techniques provide secure transfer of data over the
Internet and transparent access of computers located on other physical LAN. The only
difference the user will notice is that the communication perhaps is slower. One well-
known technique that provides the features mentioned above is VPN (Virtual Private
Network).

To summarize, the location of the components in the system may depend on how many
network elements that are managed, the capacity and functionality of the network
element itself, the geographical location of network elements and “management centers”.

The most important thing to consider is that the location of the event channel or event
log of a Network Element is completely transparent to the Alarm Management System
and the operators using it.

Magnus Lewin Page 40 03/02/00

6 Conclusions

6.1 EMA and EMS
The main task of the thesis project was to evaluate the EMA and the EMS servers.

The response time of EMA is about 4 times greater than the response time of EMS in the
experiments with 1 client. EMA average response time: 2.8s, EMS average response
time: 0.7. Possible reasons of the results are mentioned in section 4.7.

In the experiments with 5 clients the response time of EMA was about the same as the
response time of EMS.

The response time of EMS was almost constant independent of the number of clients that
ran against it. At some level the server must reach its saturation level which means that
the response time will increase linearly with the number of clients. The saturation level
was not possible to measure since the EMA server became unstable when the number of
clients were more than 3. The server began loosing requests and other requests weren’t
successfully processed. In an experiment with 10 clients some of the clients couldn’t
establish a connection with EMA probably because the server had too much to do.

When several clients runs against EMS simultaneously it seems like the requests in some
way are queued at the server. The response time of EMS increases linearly when the
number of clients running against it grows. The execution time of the experiments also
increased linearly when the number clients in the experiments were increased.

The CPU usage of EMA according to the task manager in Windows NT was between 0
and 30 percents in the experiments with 1 client. In the experiment with 5 clients the
CPU usage was between 30 and 70 percents. An experiment with 10 clients showed a
CPU usage between 50 and 100 percents.

The CPU usage of EMS was about 2 percents irrespective of the number of clients that
ran against it.

The parsing process in EMA depends on what printout that is parsed. This was expected.
When the printout from the MML command alacp was parsed the parsing process didn’t
impact on the response time very much. When the printout from caclp was parsed the
average response time increased from 2.6 seconds (without parsing) to 3.3 seconds (with
parsing).

The EMS server never lost a request and never refused a client to connect to it.

What is the future of EMA and EMS? The next O&M platform of AXE, the APG 40 will
expose a Corba interface for MML communication with AXE. Perhaps the evaluation of
EMA and EMS performed in this thesis project can provide the developers of the new
interface at APG 40 with valuable information.

There are also further experiments left to perform on EMA and EMS. For example
letting multiple clients communicate with different Network Elements. If there aren’t
enough Network Elements available a Network Element can be simulated with a Telnet
server and programs that are executed when requests are received.

6.2 AMS
The Alarm Management System uses CORBA for communication and distribution. The
choice of interfaces of the objects involved in AMS, the system logic and the fact that
AMS uses CORBA have contributed to the following characteristics of the system.

Magnus Lewin Page 41 03/02/00

Any Network Element can be part of the system by implementing a Network Element
Alarm Server. The NEAS converts the specific alarms of the Network Elements to the
format supported by AMS.

The logging of alarms is separated from the process that distributes alarms. In this way
operators can receive alarms even if they can’t be logged. The Network Element can log
alarms even if the distribution of alarms isn’t working.

The processes taking care of logging and distribution of alarms can be located at the
Network Element itself or at any other machine that is part of the Alarm Management
System.

Letting several Event Handlers and Event Log Servers having the possibility to distribute
and log alarms of a Network Element increases the availability of the system. If an Event
Log crashes the Network Element Alarm Server may start a new Event Log at another
Event Log Server. The same is valid for Event Channels.

The AMS is a scalable system. If the number of Network Elements managed by the
system is increased then the computing power of the system is raised by adding new
machines. These machines run Event Log Servers and Event Handlers.

Magnus Lewin Page 42 03/02/00

Appendix A EMS IDL Interfaces

/**/
/* Project: EMA */
/* File: EMS.IDL (Element Management Server CORBA IDL file) */
/* Created: 981130 - Jacco.Brok@lmf.ericsson.se */
/* Changed: 990226 - Jacco.Brok@lmf.ericsson.se */
/* Documentation: LMF/T/FI-98:00?? Rev. PA1 */
/* Notes: */
/**/

module EmrkServer
{

exception EmrkException
{

string errortext;
long errorcode;

};

typedef sequence<string> StringSeq;

interface EmrkParser{};

interface EmrkPrintout
{

void Release();
boolean GetResult(in long timeout) raises (EmrkException);
StringSeq GetAllLines() raises (EmrkException);
string GetFirstLine() raises (EmrkException);
string GetNextLine() raises (EmrkException);
string GetLine(in long line) raises (EmrkException);
long GetLineNumber();
long GetTotalLines();
long GetFlags();
long GetFaultCode();
long FindLine(in string token, in long start) raises (EmrkException);
//EmrkParser getParser();

};

interface EmrkChannel
{

void Release();
EmrkPrintout SendCommand(in string mml_command, in long timeout)

raises (EmrkException);
string GetNodeName() raises (EmrkException);
string GetPortName() raises (EmrkException);

};

interface EmrkFactory
{

EmrkChannel OpenChannel(in string node, in string user)
raises (EmrkException);

};

}; // module EmrkServer

Magnus Lewin Page 43 03/02/00

References
[1] AXE Survey. The platform and the applications, Ericsson Telecom AB 1998
[2] Corba Specification, OMG, available at http://www.omg.org
[3] Element Management Resource Kit 1.1, Ericsson Utveckling AB 1999
[4] Gejdeman P (ÄS/UAB/I/MT), File transfer API Implementation proposal, internal

document.
[5] Spong Anders, EMA CORE Implementation proposal, internal document.
[6] Spong Anders, Element management access, socket adaptation and script interface

Implementation proposal, internal document.
[7] Jacco Brok, EMA Implementation Proposal, internal document.
[8] Jacco Brok, prototype Corba Element Management Server, internal document.
[9] RFC 2253 available at http://www.rfc-editor.org/cgi-bin/rfcsearch.pl
[10] Bedrock, Weldon, Goldberg, Belittled, Programming with Visibroker, Wiley, ISBN

0-471-23901-1.
[11] Formalized MML, internal document.
[12] W. Richard Stevens, TCP/IP Illustrated, Volume 1, Addison-Wesley, ISBN 0-201-

63346-9.
[13] William Stallings, Data and Computer Communications fifth edition, Prentice Hall,

ISBN 0-13-571274-2.
[14] Winsock2 Information, http://www.sockets.com/winsock2.htm.
[15] Creating a TCP Stream Socket Application.

http://msdn.microsoft.com/library/wcedoc/wcecomm/winsock_25.htm
[16] LMC/FS Edwin Tse, Alarm Integration Reference Point (IRP) Specification:

Informal Model, internal document.
[17] LMC/FS Edwin Tse, Alarm Integration Reference Point (IRP) Specification: Corba

Solution Set Version1: 1, internal document.
[18] LMC/FS Edwin Tse, Notification Integration Reference Point (IRP) Specification:

Information Model Version1, internal document.
[19] LMC/FS Edwin Tse, Notification Integration Reference Point (IRP) Specification:

Corba Solution Set Version1: 1, internal document.

Magnus Lewin Page 44 03/02/00

Glossary

ASCII American Standard Code for Information Interchange
CORBA Common Object Request Broker Architecture
DBMS Database Management System
EMA Element Management Access
EMRK Element Management Resource Kit
EMS Element Management Server
FTP File Transfer Protocol
IP Internet Protocol
IRP Integration Reference Point
LAN Local Area Network
LDAP Lightweight Directory Access Protocol
MML Man Machine Language
O&M Operation and Maintenance
OMG Object Management Group
PCM Persistent Command Model
POS Printout description
PPM Persistent Printout Model
TCP Transmission Control Protocol
UDP User Datagram Protocol
VPN Virtual Private Network

