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Preface

These lecture notes aim at giving an introduction to Quantitative Risk Man-
agement. We will introduce statistical techniques used for deriving the profit-
and-loss distribution for a portfolio of financial instruments and to compute risk
measures associated with this distribution. The focus lies on the mathemati-
cal/statistical modeling of market- and credit risk. Operational risks and the
use of financial time series for risk modeling are not treated in these lecture
notes. Financial institutions typically hold portfolios consisting on large num-
ber of financial instruments. A careful modeling of the dependence between
these instruments is crucial for good risk management in these situations. A
large part of these lecture notes is therefore devoted to the issue of dependence
modeling.

The reader is assumed to have a mathematical /statistical knowledge correspond-
ing to basic courses in linear algebra, analysis, statistics and an intermediate
course in probability. The lecture notes are written with the aim of presenting
the material in a fairly rigorous way without any use of measure theory.

The chapters 1-4 in these lecture notes are based on the book [12]
which we strongly recommend. More material on the topics pre-
sented in remaining chapters can be found in [8] (chapters 5-7), [12]
(chapters 8-12) and articles found in the list of references at the end
of these lecture notes.

Henrik Hult and Filip Lindskog, 2007
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1 Some background to financial risk manage-
ment

We will now give a brief introduction to the topic of risk management and
explain why this may be of importance for a bank or financial institution. We
will start with a preliminary example illustrating in a simple way some of the
issues encountered when dealing with risks and risk measurements.

1.1 A preliminary example

A player (investor/speculator) is entering a casino with an initial capital of
Vo = 1 million Swedish Kroner. All initial capital is used to place bets according
to a predetermined gambling strategy. After the game the capital is V3. We
denote the profit(loss) by a random variable X = V; — V{. The distribution
of X is called the profit-and-loss distribution (P&L) and the distribution of
L =—-X = Vy—Vj is simply called the loss distribution. As the loss may be
positive this is a risky position, i.e. there is a risk of losing some of the initial
capital.

Suppose a game is constructed so that it gives 1.6 million Swedish Kroner
with probability p and 0.6 million Swedish Kroner with probability 1—p. Hence,

P { 0.6 with probability p, (1.1)

—0.4 with probability 1 — p.

The fair price for this game, corresponding to E(X) = 0, is p = 0.4. However,
even if p > 0.4 the player might choose not to participate in the game with the
view that not participating is more attractive than playing a game with a small
expected profit together with a risk of loosing 0.4 million Swedish Kroner. This
attitude is called risk-averseness.

Clearly, the choice of whether to participate or not depends on the P&L
distribution. However, in most cases (think of investing in instruments on the
financial market) the P&L distribution is not known. Then you need to evaluate
some aspects of the distribution to decide whether to play or not. For this
purpose it is natural to use a risk measure. A risk measure p is a mapping
from the random variables to the real numbers; to every loss random variable
L there is a real number o(L) representing the riskiness of L. To evaluate the
loss distribution in terms of a single number is of course a huge simplification
of the world but the hope is that it can give us sufficient indication whether to
play the game or not.

Consider the game (1.1) described above and suppose that the mean E(L) =
—0.1 (i.e. a positive expected profit) and standard deviation std(L) = 0.5 of the
loss L is known. In this case the game had only two known possible outcomes so
the information about the mean and standard deviation uniquely specifies the
P&L distribution, yielding p = 0.5. However, the possible outcomes of a typical
real-world game are typically not known and mean and standard deviation do



not specify the P&L distribution. A simple example is the following:

_ 0.35 with probability 0.8,
X = { —0.9 with probability 0.2. (1.2)
Here we also have E(L) = —0.1 and std(L) = 0.5. However, most risk-averse

players would agree that the game (1.2) is riskier than the game (1.1) with
p = 0.5. Using an appropriate quantile of the loss L as a risk measure would
classify the game (1.2) as riskier than the game (1.1) with p = 0.5. However,
evaluating a single risk measure such as a quantile will in general not provide
a lot of information about the loss distribution, although it can provide some
relevant information. A key to a sound risk management is to look for risk
measures that give as much relevant information about the loss distribution as
possible.

A risk manager at a financial institution with responsibility for a portfolio
consisting of a few up to hundreds or thousands of financial assets and contracts
faces a similar problem as the player above entering the casino. Management or
investors have also imposed risk preferences that the risk manager is trying to
meet. To evaluate the position the risk manager tries to assess the loss distribu-
tion to make sure that the current positions is in accordance with imposed risk
preferences. If it is not, then the risk manager must rebalance the portfolio until
a desirable loss distribution is obtained. We may view a financial investor as a
player participating in the game at the financial market and the loss distribution
must be evaluated in order to know which game the investor is participating in.

1.2 Why risk management?

The trading volumes on the financial markets have increased tremendously over
the last decades. In 1970 the average daily trading volume at the New York
Stock Exchange was 3.5 million shares. In 2002 it was 1.4 billion shares. In
the last few years we have seen a significant increase in the derivatives markets.
There are a huge number of actors on the financial markets taking risky positions

Contracts 1995 1998 2002
FOREX 13 18 18
Interest rate 26 50 102
Total 47 80 142

Table 1: Global market in OTC derivatives (nominal value) in trillion US dollars
(1 trillion = 1012).

and to evaluate their positions properly they need quantitative tools from risk
management. Recent history also shows several examples where large losses on
the financial market are mainly due to the absence of proper risk control.

Example 1.1 (Orange County) On December 6 1994, Orange County, a
prosperous district in California, declared bankruptcy after suffering losses of



around $1.6 billion from a wrong-way bet on interest rates in one of its principal
investment pools. (Source: www.erisk.com) |

Example 1.2 (Barings bank) Barings bank had a long history of success and
was much respected as the UK’s oldest merchant bank. But in February 1995,
this highly regarded bank, with $900 million in capital, was bankrupted by $1
billion of unauthorized trading losses. (Source: www.erisk.com) [

Example 1.3 (LTCM) In 1994 a hedge-fund called Long-Term Capital Man-
agement (LTCM) was founded and assembled a star team of traders and aca-
demics. Investors and investment banks invested $1.3 billion in the fund and
after two years returns was running close to 40%. Early 1998 the net asset
value stands at $4 billion but at the end of the year the fund had lost sub-
stantial amounts of the investors equity capital and the fund was at the brink
of default. The US Federal Reserve managed a $3.5 billion rescue package to
avoid the threat of a systematic crisis in th world financial system. (Source:
www.erisk.com) |

1.3 Regulators and supervisors

To be able to cover most financial losses most banks and financial institutions
put aside a buffer capital, also called regulatory capital. The amount of buffer
capital needed is of course related to the amount of risk the bank is taking, i.e. to
the overall P&L distribution. The amount is regulated by law and the national
supervisory authority makes sure that the banks and financial institutions follow
the rules.

There is also a strive to develop international standards and methods for
computing regulatory capital. This is the main task of the so-called Basel Com-
mittee. The Basel Committee, established in 1974, does not possess any formal
supernational supervising authority and its conclusions does not have legal force.
It formulates supervisory standards, guidelines and recommends statements of
best practice. In this way the Basel Committee has large impact on the national
supervisory authorities.

e In 1988 the first Basel Accord on Banking Supervision [2] initiated an im-
portant step toward an international minimal capital standard. Emphasis
was on credit risk.

e In 1996 an amendment to Basel I prescribes a so—called standardized model
for market risk with an option for larger banks to use internal Value-at-
Risk (VaR) models.

e In 2001 a new consultative process for the new Basel Accord (Basel II)
is initiated. The main theme concerns advanced internal approaches to
credit risk and also new capital requirements for operational risk. The new
Accord aims at an implementation date of 2006-2007. Details of Basel II
is still hotly debated.



1.4 Why the government cares about the buffer capital

The following motivation is given in [6].

“Banks collect deposits and play a key role in the payment system. National
governments have a very direct interest in ensuring that banks remain capable
of meeting their obligations; in effect they act as a guarantor, sometimes also
as a lender of last resort. They therefore wish to limit the cost of the safety
net in case of a bank failure. By acting as a buffer against unanticipated losses,
regulatory capital helps to privatize a burden that would otherwise be borne by
national governments.”

1.5 Types of risk

Here is a general definition of risk for an organization: any event or action that
may adversely affect an organization to achieve its obligations and execute its
strategies. In financial risk management we try to be a bit more specific and
divide most risks into three categories.

e Market risk — risks due to changing markets, market prices, interest rate
fluctuations, foreign exchange rate changes, commodity price changes etc.

e Credit risk — the risk carried by the lender that a debtor will not be able
to repay his/her debt or that a counterparty in a financial agreement can
not fulfill his/her commitments.

e Operational risk — the risk of losses resulting from inadequate of failed
internal processes, people and systems of from external events. This in-
cludes people risks such as incompetence and fraud, process risk such as
transaction and operational control risk and technology risk such as sys-
tem failure, programming errors etc.

There are also other types of risks such as liquidity risk which is risk that
concerns the need for well functioning financial markets where one can buy or
sell contracts at fair prices. Other types of risks are for instance legal risk and
reputational risk.

1.6 Financial derivatives

Financial derivatives are financial products or contracts derived from some fun-
damental underlying; a stock price, stock index, interest rate, commodity price
to name a few. The key example is the European Call option written on a
particular stock. It gives the holder the right but not the obligation at a given
date T to buy the stock S for the price K. For this the buyer pays a premium
at time zero. The value of the European Call at time T is then

C(T) = max(St — K, 0).

Financial derivatives are traded not only for the purpose of speculation but is
actively used as a risk management tool as they are tailor made for exchanging



risks between actors on the financial market. Although they are of great impor-
tance in risk management we will not discuss financial derivatives much in this
course but put emphasis on the statistical models and methods for modeling
financial data.



2 Loss operators and financial portfolios

Here we follow [12] to introduce the loss operator and give some examples of
financial portfolios that fit into this framework.

2.1 Portfolios and the loss operator

Consider a given portfolio such as for instance a collection of stocks, bonds or
risky loans, or the overall position of a financial institution.

The wvalue of the portfolio at time ¢ is denoted V' (¢). Given a time horizon
At the profit over the interval [t,t + At] is given by V(¢ + At) — V(t) and the
distribution of V(t 4+ At) — V (¢) is called the profit-and-loss distribution (P&L).
The loss over the interval is then

Ligiyng = —(V(t+ At) = V(1))

and the distribution of Lj; ;1 Ay is called the loss distribution. Typical values
of At is one day (or 1/250 years as we have approximately 250 trading days in
one year), ten days, one month or one year.

We may introduce a discrete parameter n =0,1,2,... and use t, = nAt as
the actual time. We will sometimes use the notation

Lpy1 =1L = Lipat,mtayg = —(V((n + 1)At) — V(nAt)).

tn,tn+1]
Often we also write V,, for V(nAt).

Example 2.1 Consider a portfolio of d stocks with «; units of stock number 1,
t=1,...,d. The stock prices at time n are given by S, ;, ¢ =1,...,d, and the
value of the portfolio is

d
Vnz E aiSn,i.
i=1

In financial statistics one often tries to find a statistical model for the evolution
of the stock prices, e.g. a model for S,,4+1,; — Sp,, to be able to compute the
loss distribution L, ;. However, it is often the case that the so-called log
returns X, y1; = InS,41,; — InS,,; are easier to model than the differences
Sp+1,i—Sn,i. With Z,, ; =In S,, ; we have S, ; = exp{Z,;} so the portfolio loss
Lypy1 = —(Vyg1 — V) may be written as

d
Ly ==Y ai(exp{Znt1i} — exp{Zn,})
=1
d
==Yy exp{Zpi}(exp{Xpni1:} — 1)
=1
d
==Y oiSnilexp{Xpi1i} — 1).

=1



The relation between the modeled variables X,, 11 ; and the loss L, is nonlin-
ear and it is sometimes useful to linearize this relation. In this case this is done
by replacing e® by 1+ x; recall the Taylor expansion e* = 1+ x + O(x?). Then
the linearized loss is given by

d
A
Ln—l—l = — Z OéiSn’an+1’i.

=1

2.2 The general case

A general portfolio with value V,, is often modeled using a d-dimensional random
vector Z,, = (Zp 1, ..., Zn,a) of risk-factors. The value of the portfolio is then
expressed as

Vn - f(tna Zn)

for some known function f and t,, is the actual calendar time. As in the example
above it is often convenient to model the risk-factor changes X, 11 = Zps+1—"2ip.
Then the loss is given by

Ly = _(Vn—l—l - Vn) = _(f(tn—l—la Z, + Xn-i-l) - f(tm Zn))

The loss may be viewed as the result of applying an operator [j,(-) to the
risk-factor changes X,,11 so that

Ln+1 - l[n] (Xn—l—l)

where

l[n](X) = _(f(tn—l—l, Z, +x)— f(tn, Zn))

The operator I, (+) is called the loss-operator. If we want to linearize the relation
between L, and X, ;1 then we have to differentiate f to get the linearized
loss

d
L3y = —(filtn, Zo) AL+ fo(tn, Zn) Xns1 ).
=1

Here fi(t,z) = 0f(t,z)/0t and f,,(t,z) = O0f(t,z)/0z. The corresponding
operator given by

d
1860 =~ (fultns Z)AUE S (b Zo)s)
=1

is called the linearized loss-operator.



Example 2.2 (Portfolio of stocks continued) In the previous example of a
portfolio of stocks the risk-factors are the log-prices of the stocks Z,, ; =1In S, ;
and the risk-factor-changes are the log returns X,, 11 ; =InS,,41,;, —In S, ;. The
loss is Ly+1 = I (Xy41) and the linearized loss is L5, = l[ﬁ](XnH), where

d d
I (x) = =Y aiSpiexp{z;i} —1)  and If(x) = =) aiSyw:
=1 =1

are the loss operator and linearized loss operator, respectively. [ ]

The following examples may convince you that there are many relevant ex-
amples from finance that fits into this general framework of risk-factors and
loss-operators.

Example 2.3 (A bond portfolio) A zero-coupon bond with maturity T is a
contract which gives the holder of the contract $1 at time 7. The price of the
contract at time ¢ < T' is denoted B(t,T) and by definition B(7,7) = 1. To a
zero-coupon bond we associate the continuously compounded yield

y(t,T) = — InB(t,T),

T—1

B(t,T) =exp{—(T —t)y(t,T)}.

To understand the notion of the yield, consider a bank account where we get a
constant interest rate r. The bank account evolves according to the differential
equation

dd—S: =T St, So =1

which has the solution S; = exp{rt}. This means that in every infinitesimal time
interval dtf we get the interest rate r. Every dollar put into the bank account
at time ¢ is then worth exp{r(T" — t)} dollars at time 7. Hence, if we have
exp{—r(T—t)} dollars on the account at time ¢ then we have exactly $1 at time
T. The yield y(t,T) can be identified with r and is interpreted as the constant
interest rate contracted at ¢ that we get over the period [¢t,T]. However, the
yield may be different for different maturity times 7. The function 7" — y(¢,T)
for fixed t is called the yield-curve at t. Consider now a portfolio consisting of
d different (default free) zero-coupon bonds with maturity times 7; and prices
B(t,T;). We suppose that we have «; units of the bond with maturity 7; so
that the value of the portfolio is

d
Vo =Y aiB(tn,T)).

=1



It is natural to use the yields Z,, ; = y(t,,T;) as risk-factors. Then

d
Vn — Z 673 eXp{_(T'i - tn)Zn,z} - f(tna Zn)
=1

and the loss is given by (with X,,11,; = Z,41, — Zn,; and At =41 — 1)

d
Lus1 == 3 oi(exp{=(Ts = tu1) (Zui + Xns1.0)} = exp{~(T; = n) Zni})

i=1
d
= — Z OéiB<tn, Ti)<exp{Zn,iAt — <T'z — tn+1)Xn+1,i} — 1) .
i=1

The corresponding loss-operator is then

d
Uy (x) = — Z a; B(ty, T;) <eXp{Zn,iAt — (T = tny1)zi} — 1)
i=1

and the linearized loss is given by

d
Lﬁﬂ = — Z a; B(t,, T;) (Zn,iAt —(T; — tn—l—l)Xn—l—l,i)-
i—1

Example 2.4 (European call and put) In this example we will consider a
portfolio consisting of one European call or put option on a nondividend paying
stock with price S; for one share at time ¢, with maturity date 7' > t and strike
price K. A European call option is a contract which pays max(Sr — K,0) to
the holder of the contract at time 7. A European put option pays the holder
max (K — Sr,0) at time 7". The price at time ¢ < T for the contract is evaluated
using a function C (for call) or P (for put) depending on some parameters.
In the Black-Scholes model C = C(t,T, Sy, K,r,0) and P = P(t,T, S, K,r,0),
where the time to maturity 7" — ¢ is measured in years, r is the continuously
compounded interest rate per year and o is the volatility (corresponding to the
standard deviation of the one-year log return for the stock price). We have

C(t,T,S, K,r,0) = $;®(d1) — Ke " T ®(dy),
P(t,T, Sy, K,r,0)=Ke "I 0d(—dy) — S, ®(—d),
In(S¢/K) + (r+02/2)(T —t)
di = , do=dy —oVT —t.
: VT -1 PmhTe
In this case with time measured in years we may set t = t,, = nAt and T =

tnik = (n+k)At, where At = 1/250 years (approximately 250 trading days per
year). In this case we may put

Z, =(InS,,r,,0,)
Xn+1 = (ln Sn—l—l —In Sna Tn+1 = Tn; Onp4+1 — Un)-




The value of the portfolio is V,, = C(t,,, T, Sy, K, rp, 0y,) for the call option and
Vo= P(tn, T, Sy, K,ry,0,) for the put option. The linearized loss is given by
Lﬁq_l — _(CtAt + CSXn—i—l,l + Can+1,2 + CJXn—i—l,?))a

Lr%ﬂ = —(PAt+ Ps X111+ P Xpt12 + PoXng1,3)
for the call and put option, respectively. The partial derivatives are usually

called the “Greeks”. C} is called theta; Cg is called delta; C, is called rho; C,
is called vega (although this is not a Greek letter). [

10



3 Risk measurement

What is the purpose of risk measurement?

e Determination of risk capital — determine the amount of capital a financial
institution needs to cover unexpected losses.

e Management tool — Risk measures are used by management to limit the
amount of risk a unit within the firm may take.

Next we present some common measures of risk.

3.1 Elementary measures of risk
Notional amount

Risk of a portfolio is measured as the sum of notional values of individual secu-
rities, weighted by a factor for each asset class. The notional amount approach
is used for instance in the standard approach of the Basel Committee where risk
weights 0%, 10%, 20%, 50% and 100% are used (see [2]). Then the regulatory
capital should be such that

regulatory capital

> 8%.

risk-weighted sum —

Example 3.1 Suppose we have a portfolio with three claims each of notional
amount $1 million. The first claim is on an OECD central bank, the second on
a multilateral developed bank and the third on the private sector. According to
the risk-weights used by the Basel document the first claim is weighted by 0%,
the second by 20% and the third by 100%. Thus the risk-weighted sum is

0 x 10° +0.20 x 10° + 1 x 10° = 1200 000,
and the regulatory capital should be at least 8% of this amount, i.e. $96 000. H

Advantage: easy to use.

Disadvantage: Does not differentiate between long and short positions. There
are no diversification effects; a portfolio with loans to m independent obligors
is considered as risky as the same amount lent to a single obligor.

Factor sensitivity measures

Factor sensitivity measures gives the change in portfolio value for a predeter-
mined change in one of the underlying risk factors. If the value of the portfolio
is given by

Vi = f(tna Zn)

then factor sensitivity measures are given by the partial derivatives

0
fzi (tna Zn) = a—zfi@n7 Zn)

11



The “Greeks” of a derivative portfolio may be considered as factor sensitivity
measures.

Advantage: Factor sensitivity measures provide information about the robust-
ness of the portfolio value with respect to certain events (risk-factor changes).
Disadvantage: It is difficult to aggregate the sensitivity with respect to changes
in different risk-factors or aggregate across markets to get an understanding of
the overall riskiness of a position.

Scenario based risk measures

In this approach we consider a number of possible scenarios, i.e. a number of
possible risk-factor changes. A scenario may be for instance a 10% rise in a
relevant exchange rate and a simultaneous 20% drop in a relevant stock index.
The risk is then measured as the maximum loss over all possible (predetermined)
scenarios. To assess the maximum loss extreme scenarios may be down-weighted
in a suitable way.

Formally, this approach may be formulated as follows. Fix a number N
of possible risk-factor changes, X = {xi,x2,...,xx5}. Each scenario is given
a weight, w; and we write w = (wyq,...,wy). We consider a portfolio with
loss-operator [[,,)(-). The risk of the portfolio is then measured as

'QD[DC,W] = max{wll[n] (X1>, cee ,U)Nl[n] (XN)}

These risk measures are frequently used in practice (example: Chicago Mercan-
tile Exchange).

Example 3.2 (The SPAN rules) As an example of a scenario based risk
measure we consider the SPAN rules used at the Chicago Mercantile Exchange
[1]. We describe how the initial margin is calculated for a simple portfolio con-
sisting of units of a futures contract and of several puts and calls with a common
expiration date on this futures contract. The SPAN margin for such a portfolio
is compute as follows: First fourteen scenarios are considered. Each scenario
is specified by an up or down move of volatility combined with no move, or an
up move, or a down move of the futures prices by 1/3, 2/3 or 3/3 of a specific
“range”. Next, two additional scenarios relate to “extreme” up or down moves
of the futures prices. The measure of risk is the maximum loss incurred, using
the full loss of the first fourteen scenarios and only 35% of the loss for the last
two “extreme” scenarios. A specified model, typically the Black model, is used
to generate the corresponding prices for the options under each scenario.

The account of the investor holding a portfolio is required to have sufficient
current net worth to support the maximum expected loss. If it does not, then
extra cash is required as margin call, an amount equal to the “measure of risk”
involved. [

Loss distribution approach

This is the approach a statistician would use to compute the risk of a portfolio.
Here we try model the loss L,4; using a probability distribution F7. The

12



parameters of the loss distribution are estimated using historical data. One can
either try to model the loss distribution directly or to model the risk-factors
or risk-factor changes as a d-dimensional random vector or a multivariate time
series. Risk measures are based on the distribution function Fj. The next
section studies this approach to risk measurement.

3.2 Risk measures based on the loss distribution
Standard deviation

The standard deviation of the loss distribution as a measure of risk is frequently
used, in particular in portfolio theory. There are however some disadvantages
using the standard deviation as a measure of risk. For instance the standard
deviation is only defined for distributions with E(L?) < oo, so it is undefined for
random variables with very heavy tails. More important, profits and losses have
equal impact on the standard deviation as risk measure and it does not discrim-
inate between distributions with apparently different probability of potentially
large losses. In fact, the standard deviation does not provide any information
on how large potential losses may be.

Example 3.3 Consider for instance the two loss distributions L; ~ N(0,2)
and Ly ~ t4 (standard Student’s t-distribution with 4 degrees of freedom).
Both L; and L, have standard deviation equal to v/2. The probability density
is illustrated in Figure 1 for the two distributions. Clearly the probability of
large losses is much higher for the ¢4 than for the normal distribution.

0000 0.005 0010 0015 0020 0025 0030 0.035

Figure 1: Left/Middle: The density function for a N(0,2) and a t4 distribution.
The t4 is highly peaked around zero and has much heavier tails. Right: The
“log-ratio” In[P(Ls > x)/ P(L; > )] is plotted.

Value-at-Risk

We now introduce the widely used risk measure known as Value-at-Risk.

13



Definition 3.1 Given a loss L and a confidence level a € (0,1), VaR, (L) is
given by the smallest number | such that the probability that the loss L exceeds
[ is no larger than 1 — «, 1.e.
VaRy(L) =inf{l e R: P(L>1)<1—a}
=inf{lleR:1-Fr(l)<1—a}
=inf{l e R: Fr(]) > a}.

0.4

0.3

0.2

0.1

95% VaR

0.0

-4 -2 0 2 4

Figure 2: Illustration of VaRg g5.

We might think of L as the (potential) loss resulting from holding a portfolio
over some fixed time horizon. In market risk the time horizon is typically one day
or ten days. In credit risk the portfolio may consist of loans and the time horizon
is often one year. Common confidence levels are 95%, 99% and 99.9% depending
on the application. The BIS (Bank of International Settlements) proposes, for
market risk, to compute ten-day VaR with confidence level o = 99%. The time
horizon of ten days reflects the fact that markets are not perfectly liquid.

Definition 3.2 Given a nondecreasing function F' : R — R the generalized
inverse of I' is given by

F~(y)=inf{z e R: F(z) >y}
with the convention inf ) = oo. [ ]

If F is strictly increasing then F~ = F~! i.e. the usual inverse. Using the
generalized inverse we define the a-quantile of F' by

§o(F) = F (o) =inf{zx e R: F(x) > a}, «a€(0,1).

14



We note also that VaR,(F') = ¢o(F), where F is the loss distribution. Notice
that for a > 0 and b € R,

VaRqo(aL +b) =inf{l e R: P(aL+b<1) > a}
=inf{lce R:P(L<(I—-b)/a) > a}
{let I' = (I —b)/a}
=inf{al'’ +beR:P(L <) > a}
=ainf{l' eR:P(LLI')>a}+b
=aVaR,(L) +b.
Hence, the risk measured in VaR for a shares of a portfolio is a times the risk of

one share of this portfolio. Moreover, adding (b < 0) or withdrawing (b > 0) an
amount |b| of money from the portfolio changes this risk by the same amount.

Example 3.4 Suppose the loss distribution is normal, L ~ N(u,o?). This
means that L = p+ oL/, where L' ~ N(0,1). Since VaR, (L") = ®~!(a), where
® is the distribution function of a standard normal random variable, we may
compute the Value-at-Risk as VaR, (L) = p+ c®1(a). |

Example 3.5 Suppose that the distribution function F' is given by

0 x<0,
F(x) = 1/2 x€]0,1),
1 z>1.

Then F*~(u) =0 on (0,1/2] and F*(u) =1 on (1/2,1). (F is the distribution
function of a random variable X with P(X =0)=P(X =1) =1/2.) [

Example 3.6 You hold a portfolio consisting of a long position of @ = 5 shares
of stock A. The stock price today is Sy = 100. The daily log returns

X1 =1In(51/S0), X2 = In(S2/51), ...

of stock A are assumed to be normally distributed with zero mean and standard
deviation ¢ = 0.1. Let Ly be the portfolio loss from today until tomorrow. For
a standard normal random variable Z ~ N(0, 1) we have F;*(0.99) =~ 2.3.

(a) Compute VaRO.gg(Ll).

We have shown that L1 = —aSg(e*t—1) = —500(eX1 —1). We have VaR,,(L;) =
FL_l1 (u) and to compute FL_ll(u) we use that F,, (FL_ll(u)) = u.
P(—500(eX1 — 1) <1)
(et >1-1/500)
(X1 > In(1 —1/500))
~ Fx, (In(1 — 1/500)).

Fr, (1)

[Tl
'—"'U"U
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Figure 3: Plot of the function e* for x € [—0.5,0.5].
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Figure 4: Plot of the function e for z € [-3, 3].
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Hence,
1— Fx, (In(1 — F; ' (u)/500)) = u
& In(l—F!(u)/500) = Fx'(1—u)
& 1= FyM(u)/500 = efxi (17w
& Fpl(u) =500(1 — efxi 070y,

Since X; is symmetric about 0 we have Fgll(l —u) = —Fgll(u) Hence,

Fy(u) = 50001 — e 51 @), Using that F'(0.99) = 0.1+ F;(0.99) ~ 0.23
and with the help of Figure 3,

F1(0.99) = 500(1 — e Fx1 (099))
~ 500(1 — e %23) =~ 500(1 — 0.8) = 100.
Hence, VaRg g9(L1) =~ 100.

You decide to keep your portfolio for 100 (trading) days before deciding what
to do with the portfolio.

(b) Compute VaRg.99(L100) and VaRg.g9(L5), where Ligy denotes the loss
from today until 100 days from today and L%, denotes the corresponding lin-
earized 100-day loss.

We have
Lo = —aSp(e*1° — 1),
where Xjgg is the 100-day log return. Notice that

X100 = InS100/S0 = InS190 —InSp
=1nS1/So+ -+ InSi00/S99,
i.e. X100 is a sum of 100 independent normally distributed random variables

with mean zero and standard deviation 0.1. Hence, Xi99 = Z, where Z is
normally distributed with zero mean and standard deviation one. We have

VaRg.99(L100) = 500(1 — e~ 21(0-99))
~ 500(1 — 6—2-3)_
Using Figure 4 we find that e 23 = 1/62.3 ~ 0.1. Hence, VaRg.99(L100) ~
500(1 — e~23) ~ 450.

We have L$,, = —500Z. Hence, VaRg.g9(L%,) = 500F,*(0.99) ~ 500 - 2.3 =
1150. One sees that using the linearized loss here gives a very bad risk estimate.
|
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Example 3.7 Consider a portfolio consisting of one European put option on a
stock market index. If ¢ = 0 is the time today, then the Black-Scholes price of
the put option is

P(T, Sy, K,r,0) = Ke "1 ®(—dy) — Sy®(—d1),
_ In(So/K) + (r +0%/2)T
B oVT ’

with the notation of Example 2.4. What is the Value-at-Risk at confidence level
0.99 for the portfolio loss L from today until time At¢? Let X be the log return
for the stock price over this period. If T is much larger than At, then we may
assume that r and ¢ remain constant until time At and so

dy dy =dy —oVT

L=—P(T - At, Soe™, K,r,0) + P(T, So, K,7,0) = ljg)(X).

For a European put option we have P/9S < 0 (negative delta), so the loss
operator [[g) above is a continuous and strictly increasing function. This gives

F1.(y) = Fx (lig] (y)) and F ' (p) = lo)(Fx ' (p))-
Hence,
VaRo.g9(L) = —P(T — At, Soexp{Fx'(0.99)}, K,r,0) + P(T, Sy, K, 7,0).
]

Expected shortfall

Although Value-at-Risk has become a very popular risk measure among practi-
tioners it has several limitations. For instance, it does not give any information
about how bad losses may be when things go wrong. In other words, what is
the size of an “average loss” given that the loss exceeds the 99%-Value-at-Risk?

Definition 3.3 For a loss L with continuous loss distribution function Fy, the
expected shortfall at confidence level o € (0,1) is given by

ESo(L) = E(L | L > VaRq(L)).

We can rewrite this as follows:

ES.(L) = E(L | L > VaRu(L))
E(LIq. (1),00) (L))
P(L > qo(L))

1
E(LIg.(1),00) (L))

11—«

:11 / 1dF, (D),

— Q@ Jga (L)
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where 14 is the indicator function: I4(x) =1 if x € A and 0 otherwise.
For a loss L with continuous distribution function F7, expected shortfall is
given by

1 1
S (L) = / VaR,(L)dp.
l—a/,

To see this we use the facts that L = F;~(U) if U is uniformly distributed on
(0,1), and F}~ is strictly increasing if Fy, is continuous.

1

ESa(L) = 1— E(LIjga(r),00) (L))
1 _ _
= B (U)o (Fi (U)

= L B(F] () (1)

= VaR,,(
1—a/ &

For a discrete distribution there are different possibilities to define expected
shortfall. A useful definition called generalized expected shortfall, which is a
so-called coherent risk measure, is given by

GESa (L) = = (BLTi 19,000 (1)) + () (1 — @~ P(L > qua(D)))).

If the distribution of L is continuous, then the second term vanishes and GES,, =
ES,.

Exercise 3.1 (a) Let L ~ Exp()\) and calculate ES, (L).
(b) Let L have distribution function F(z) =1 — (14+~z)~Y/7, 2 >0, v € (0, 1),
and calculate ES, (L).

Answer: (a) A™1(1 —In(1 —a)). (b) v (1 —a)7(1—7)"t —1].

Example 3.8 Suppose that L ~ N(0,1). Let ¢ and ® be the density and
distribution function of L. Then

BS, (L) = — Al()zdw)

11—«

1 /OO
= lop(1)dl
1l -« d—1(a) ( )

1 /oo ]_ —l2/2
= dl
1l -« (o) Vi
_ 1 |:_ ]_ e_l2/2:|oo
11—« \ 2 b—1(a)
1 oo
T l-« [ B gb(l)h}_l(a)
9@ (a))

o 11—«

19



Suppose that L’ ~ N(u, 0?). Then

ESo(L') = E(L' | L' > VaRo(L'))
=E(p+oL|p+oL>VaR,(u+ol))
=E(u+oL| L >VaR,(L))
=p+oES,(L)

o2 (@)

=pu+o T

Exercise 3.2 Let L have a standard Student’s t-distribution with v > 1 degrees
of freedom. Then L has density function

(v +1)/2) 2\ —(+1)/2
9(®) =~ ) < _> '

v

Show that

B (1) = 201 0) (v (22 ()Py

11—« v—1

where t,, denotes the distribution function of L.
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4 Methods for computing VaR and ES

We will now introduce some standard methods for computing Value-at-Risk and
expected shortfall for a portfolio of risky assets. The setup is as follows. We
consider a portfolio with value

Vm = f(tm7 Zm)a

where f is a known function and Z,, is a vector of risk-factors. The loss L,,11
is then given by

Lm+1 = l[m] (Xm—l—l)-

Suppose we have observed the risk factors Z,,, _n+1, ..., Z,. These observations
will be called historical data. How can we use these observations to compute
Value-at-Risk or expected shortfall for the loss L,,11 7

4.1 Empirical VaR and ES

Suppose we have observations x1,...,x, of iid random variables Xi,..., X,
with distribution F'. The empirical distribution function is then given by

1 n
Fa(@) = = > Tix,00) (@)
k=1

The empirical quantile is then given by
¢o(Fy) =inf{zx e R: F,(z) > a} = F, (a).

If we order the sample Xy,...,X,, such that X; , > --- > X, ,, (if F' is con-
tinuous, then X; # Xj a.s. for j # k), then the empirical quantile is given
by

Ga(Frn) = Xin(—a)+1,ns @ € (0,1),

where [y] is the integer part of y, [y] = sup{n € N: n <y} (the largest integer
less or equal to y). If F' is strictly increasing, then ¢, (F,) — qo(F) a.s. as
n — oo for every a € (0, 1). Thus, based on the observations 1, ..., x, we may
estimate the quantile g, (F) by the empirical estimate go(F) = Z{n1—a))+1,n-
The empirical estimator for expected shortfall is given by

[n(l—a)]+1
BSq(F) = =1 Do
Sa(F) n(l—a)]+1

which is the average of the [n(1 — a)] + 1 largest observations.

The reliability of these estimates is of course related to a and to the number
of observations. As the true distribution is unknown explicit confidence bounds
can in general not be obtained. However, approximate confidence bounds can be
obtained using nonparametric techniques. This is described in the next section.
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4.2 Confidence intervals

Suppose we have observations x1,...,z, of iid random variables Xi,..., X,
from an unknown distribution F' and that we want to construct a confidence
interval for the risk measure o(F). That is, given p € (0,1) we want to find a
stochastic interval (A, B), where A = fa(X1,...,X,) and B = fp(Xy,...,X,,)
for some functions fa, fp, such that

P(A< o(F) < B) =p.

The interval (a,b), where a = fa(x1,...,2,) and b = fg(z1,...,x,), is a confi-
dence interval for o(F) with confidence level p. Typically we want a double-sided
and centered interval so that

P(A<o(F)<B)=p, P(A>o(F))=PB<oF))=(1-p)/2

Unfortunately, F' is unknown so we cannot find suitable functions fa, fg. How-
ever, we can construct approximate confidence intervals. Moreover, if o(F)
is a quantile of F' (Value-at-Risk), then we can actually find exact confidence
intervals for o(F"), but not for arbitrary choices of confidence levels p.

4.2.1 Exact confidence intervals for Value-at-Risk

Suppose we have observations z1,...,x, from iid random variables X1,..., X,
with common unknown continuous distribution function F. Suppose further
that we want to construct a confidence interval (a,b) for the quantile g, (F),
where a = fa(x1,...,2,) and b = fg(z1,...,x,) such that

P(A< qu(F) < B)=p, P(AZ qu(F)) = P(B < qu(F)) = (1-p)/2,

where p is a confidence level and A = fa(X1,...,X,) and B = fp(X1,..., Xn).
Since F' is unknown we cannot find a and b. However, we can look for ¢ > j and
the smallest p’ > p such that

P(Xin < qu(F) < X;0) =1,
P(Xin 2 qa(F)) < (1—p)/2, P(Xjn < qu(F)) < (1-p)/2. (4.1)

Let Y, = #{Xk > ¢o(F)}, i.e. the number of sample points exceeding g, (F).
It is easily seen that Y, is Binomial(n, 1 — «)-distributed. Notice that

)7
)7

P(Xl,n S Qa(F)) - P(Yoz

0
P(XQ,n < Qa(F)) = P(Yoz 1

IN

P(X;0 < gu(F)) = P(Ya < j — 1).
Similarly, P(X;,, > ¢u(F)) = 1 —P(Y, < i—1). Hence, we can compute

P(X;n < qo(F)) and P(X; ,, > qo(F)) for different i and j until we find indices
that satisfy (4.1).
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Figure 5: Upper: Empirical estimates of VaRg g9 for samples of different sizes
and from different distributions with VaRg 99 = 10. Lower: Simulated 97.6%
confidence intervals (15,1000, 4,1000) for VaRg.g9(X) = 10 based on samples of
size 1000 from a Pareto distribution.

Example 4.1 Suppose we have an iid sample Xi,..., X9 with common un-
known continuous distribution function F' and that we want a confidence interval
for go.s(F') with confidence level p’ > p = 0.75. Since Yj g is Binomial(10, 0.2)-
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distributed and P(X 10 < go.s(F)) = P(Yo.s < j — 1) we find that
P(X1710 < qu(F)> ~ 0.11 and P(X4710 Z qu(F>) ~ 0.12.

Notice that max{0.11,0.12} < (1 — p)/2 = 0.125 and P(X410 < qos(F) <
X1,10) = 0.77 s0 (24,10, %1,10) is a confidence interval for g () with confidence
level 77%. [ |

4.2.2 Using the bootstrap to obtain confidence intervals

Using the so-called nonparametric bootstrap method we can obtain confidence
intervals for e.g. risk measures such as Value-at-Risk and expected shortfall.
The nonparametric bootstrap works as follows.

Suppose we have observations z1, ..., z, of iid random variables X,..., X,
and we want to estimate some parameter 6 which depends on the unknown dis-
tribution F' of the X’s. For instance 6 could be the a-quantile 8 = g, (F"). First
an estimator 5(:1:1, ..., xy,) of O is constructed, e.g. 5(91:1, o Tn) = T(1—a)]+1,n
Now we want to construct a confidence interval for # with confidence level p
(for instance p = 0.95). To construct a confidence interval we need to know
the distribution of 8(X1,...,X,). If F was known this distribution could be
approximated arbitrarily well by simulating from F' many (N large) times to

construct new samples X( ) cee )?7(3), t=1,...,N, and compute the estimator
for each of these samples to get 0; = O(Xfl), . ,Xff)), i=1,...,N. As N — o0
the empirical distribution

Z 17, 00y (@)

of (X1, ..., X,) will converge to the true distribution of 8(X,..., X,,). The
problem s that F' is not known.

What is known is the empirical distribution F;, which puts point masses 1/n
at the points X1,...,X,. If n is relatively large we expect that F,, is a good
approximation of F'. Moreover, we can resample from Fj, simply by drawing
with replacement among X7, ..., X,,. We denote such a resample by X7,..., X.
Then we may compute 6* = a(Xf ..., X). Since F,, approximates the true
distribution F' we expect the distribution of a(X ¥, ..., X)) to approximate the
true distribution of §(X1, ..., Xy). To obtain the distribution of g(Xf, X

we resample many (N large) times to create new samples Xf(i), e X:;(Z), i =
1,...,N. For each of these samples we compute the corresponding estimate of

0,ie 0F = ( x:@, ..,X{;(i)). The empirical distribution F§, given by

1 N
=¥ Zﬂ[ez 0 ()

=1

is then an approximation of the true distribution of @\(X 1y Xn ) denoted F°.
A confidence interval is then constructed using A = g _p)/2( %) and B =
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q(1+p)/2(Fg]>. This means that A = 0y, )91 xy a0d B = 0y 0141w
where 07 v > -+ > 0} y is the ordered sample of 0%,...,0%.

The nonparametrlc bootstrap to obtain confidence intervals can be summa-
rized in the following steps: Suppose we have observations z1,...,z, of the
iid random variables X1, ..., X, with distribution F' and we have an estimator
0(x1,...,x,) of an unknown parameter 6.

e Resample N times among x1, ..., T, to obtain new samples xf(i), . ,xfl(i),

i=1,...,N.

e Compute the estimator for each of the new samples to get

~

0r = (xi(i), ) ..,mfl(i)), 1=1,...,N.
e Construct a confidence interval I, with confidence level p as

Ly = (Ol (1+p) /241,80 O N (1—p) /2041,8)5

*

where 07 y > -+ > 0 y is the ordered sample of 07, ..., 0.

4.3 Historical simulation

In the historical simulation approach we suppose we have observations of risk-
factors Z,,—n, . . ., Z;y and hence also the risk-factor changes X,,, 41, ..., Xom-
We denote these observations by X,,—n+1, ..., Xm. Using the loss operator we
can compute the corresponding observations of losses [ = l[m](xm_k+1), k =
1,...,n. Note that [; is the loss that we will experience if we have the risk
factor change X,,_r+1 over the next period. This gives us a sample from the
loss distribution. It is assumed that the losses during the different time intervals
are iid. Then the empirical VaR and ES can be estimated using

\78’\R‘Q<L) = aa(FL”) = l[n(l—a)]—i—l,n
Z[n(l—a)]—l—l I

IEES

where 1y , > -+ > [, 5, is the ordered sample.

Similarly we can also aggregate over several days. Say, for instance, that we
are interested in the Value-at-Risk for the aggregate loss over ten days. Then
we simply use the historical observations given by

ESa(L) =

1
ll(glo) = l[m) me—n-l—lO(k—l)-i-j , k=1,...,[n/10],
7j=1

to compute the empirical VaR and ES.

Advantage: This approach is easy to implement and keeps the dependence struc-
ture between the components of the vectors of risk-factor changes X,,,_.
Disadvantage: The worst case is never worse than what has happened in history.
We need a very large sample of relevant historical data to get reliable estimates
of Value-at-Risk and expected shortfall.
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4.4 Variance—Covariance method

The basic idea of the variance—covariance method is to study the linearized loss

d
Lﬁ—i—l = l[%n](Xerl) = —(c+ ZwiXmH,i) = —(c+ WTXm+1)
i=1

where ¢ = ¢,,, W; = Wy, ; (i.e. known at time m), w = (wq, ..., wq)"

and X401 = (Xomt1,15-- -5 Xm+1,d)T the risk-factor changes.

It is then assumed that X,,+1 ~ Ng(p, X), i.e. that the risk-factor changes
follow a multivariate (d-dimensional) normal distribution. Using the properties
of the multivariate normal distribution we have

are weights

WX ~ Nwlip, wisw).

Hence, the loss distribution is normal with mean —c—w7 u and variance w' Xw.
Suppose that we have n+1 historical observations of the risk-factors and the risk-
factor changes X,,_n11,- .., X;m. Then (assuming that the risk-factor changes
are iid or at least weakly dependent) the mean vector g and the covariance
matrix Y can be estimated as usual by

1 n
AZ':— Xm_ ) izl,...,d,
i n; b1,

n

Z(Xm—k:—i—l,i - ﬁi)(Xm—k:—i—l,j - ﬁ])? l?j = 17 ceey d.
k=1

1
n—1

\g);
|

ij =
The estimated VaR is then given analytically by

\@Q(L) = —<c—wi+ VwISwd (a).

Advantage: Analytic solutions can be obtained: no simulations required. Easy
to implement.

Disadvantage: Linearization not always appropriate. We need a short time
horizon to justify linearization (see e.g. Example 3.6). The normal distribution
may considerably underestimate the risk. We need proper justification that the
normal distribution is appropriate before using this approach. In later chapters
we will introduce elliptical distributions, distributions that share many of the nice
properties of the multivariate normal distribution. The Variance-Covariance
method works well if we replace the assumption of multivariate normality with
the weaker assumption of ellipticality. This may provide a model that fits data
better.

4.5 Monte-Carlo methods

Suppose we have observed the risk-factors Z,, _,, . . ., Z,, and risk-factor changes
Xin—nt1,-- -5 Xm. We suggest a parametric model for X,,, 1. For instance, that
X,n+1 has distribution function F' and is independent of X, _n4+1,..., X;n.
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When an appropriate model for X,,, 1 is chosen and the parameters esti-
mated we simulate a large number N of outcomes from this distribution to
get X1,...,Xy. For each outcome we can compute the corresponding losses
l1,...,Iny where I, = I (Xx). The true loss distribution of L, is then ap-
proximated by the empirical distribution F~ given by

N
1
FLN ({L’) = N Z ]I[lhoo)(x)
k=1

Value-at-Risk and expected shortfall can then be estimated by

VaRy (L) = qu(Fpv) = IN(—a)+1,N

. LN(ll—a)]—i—l L
ES.(L) = = !
(L) IN(1—a)]+1

Advantage: Very flexible. Practically any model that you can simulate from is
possible to use. You can also use time series in the Monte-Carlo method which
enables you to model time dependence between risk-factor changes.
Disadvantage: Computationally intensive. You need to run a large number of
simulations in order to get good estimates. This may take a long time (hours,
days) depending on the complexity of the model.

Example 4.2 Consider a portfolio consisting of one share of a stock with stock
price S; and assume that the log returns X1 = InSiy1 — In Sy are iid with
distribution function Fy, where 6 is an unknown parameter. The parameter 6
can be estimated from historical data using for instance maximum likelihood
and given the information about the stock price Sy today, the Value-at-Risk for
our portfolio loss over the time period today-until-tomorrow is

VaRq(L1) = So(1 — exp{F; (1 - a)}),

i.e. the a-quantile of the distribution of the loss L1 = —Sp(exp{X1} —1). How-
ever, the expected shortfall may be difficult to compute explicitly if F,~ has
a complicated expression. Instead of performing numerical integration we may
use the Monte-Carlo approach to compute expected shortfall. |

Example 4.3 Consider the situation in Example 4.2 with the exception that
the log return distribution is given by a GARCH(1, 1) model:

2 2 2
Xk—i—l =Jk+1zk+1, Uk-i—l :a0+a1Xk+b10k,

where the Z;’s are independent and standard normally distributed and aq, aq
and b; are parameters to be estimated. Because of the recursive structure it is
very easy to simulate from this model. However, analytic computation of the
ten-day Value-at-Risk or expected shortfall is very difficult. |
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5 Extreme value theory for random variables
with heavy tails

Given historical loss data a risk manager typically wants to estimate the prob-
ability of future large losses to assess the risk of holding a certain portfolio.
Extreme Value Theory (EVT) provides the tools for an optimal use of the loss
data to obtain accurate estimates of probabilities of large losses or, more gen-
erally, of extreme events. Extreme events are particularly frightening because
although they are by definition rare, they may cause severe losses to a finan-
cial institution or insurance company. Empirical estimates of probabilities of
losses larger than what has been observed so far are useless: such an event will
be assigned zero probability. Even if the loss lies just within the range of the
loss data set, empirical estimates have poor accuracy. However, under certain
conditions, EVT methods can extrapolate information from the loss data to ob-
tain meaningful estimates of the probability of rare events such as large losses.
This also means that accurate estimates of Value-at-Risk (VaR) and Expected
Shortfall (ES) can be obtained.

In this and the following two chapters we will present aspects of and estima-
tors provided by EVT. In order to present the material and derive the expres-
sions of the estimators without a lot of technical details we focus on EVT for
distributions with “heavy tails” (see below). Moreover, empirical investigations
often support the use of heavy-tailed distributions.

Empirical investigations have shown that daily and higher-frequency returns
from financial assets typically have distributions with heavy tails. Although
there is no definition of the meaning of “heavy tails” it is common to consider
the right tail F(z) = 1 — F(z), = large, of the distribution function F heavy if

lim F(@

T—00 6_)‘

=oo for every A > 0,

i.e. if it is heavier than the right tail of every exponential distribution. It is
also not unusual to consider a random variable heavy-tailed if not all moments
are finite. We will now study the useful class of heavy-tailed distributions with
reqularly varying tails.

5.1 Quantile-quantile plots

In this section we will consider some useful practical methods to study the
extremal properties of a data set. To illustrate the methods we will consider
a dataset consisting of claims in million Danish Kroner from fire insurance in
Denmark. We may observe that there are a few claims much larger the ’every-
day’ claim. This suggests that the claims have a heavy-tailed distribution. To
get an indication of the heaviness of the tails it is useful to use so-called quantile-
quantile plots (qq-plots).

Suppose we have a sample X1, ..., X,, of iid random variables but we don’t
know the distribution of X;. One would typically suggest a reference distri-
bution F' and want to test whether it is reasonable to assume that the data is
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Figure 6: Claims from fire insurance in Denmark in million Danish Kroner.

distributed according to this distribution. If we define the ordered sample as
Xnn < Xpoin < --- < Xy p, then the qg-plot consists of the points

{ (K P (2540 sk 1)

If the data has a similar distribution as the reference distribution then the qqg-
plot is approximately linear. An important property is that the plot remains
approximately linear if the data has a distribution which is a linear transforma-
tion of the reference distribution, i.e. from the associated location-scale family
F,o(x) = F((x—p)/o). Thus, the qq-plot enables us to come up with a suitable
class of distributions that fits the data and then we may estimate the location
and scale parameters. If the data comes from the reference distribution, with
distribution function F', then the qqg-plot should be aproximately linear with in-
tercept 0 and slope 1. If the data is a sample from F), ,(x) = F((x—p)/o), then
the qq-plot is still approximately linear since F; " (p) = u+ 0o F~(p). Moreover,
the parameters pu and o can be estimated from the intercept and slope of the
qq-plot.

The qqg-plot is particularly useful for studying the tails of the distribution.
Given a reference distribution F, if F' has heavier tails than the data then the
plot will curve down at the left and/or up at the right and the opposite if the
reference distribution has too light tails.

Exercise 5.1 Consider the distribution functions F' and G given by F(x) =
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Figure 7: Quantile-quantile plots for the Danish fire insurance claims. Upper
left: qg-plot with standard exponential reference distribution. The plot curves
down which indicates that data has tails heavier than exponential. Upper right,
lower left, lower right: qg-plot against a Pareto(«)-distribution for o = 1, 1.5, 2.
The plots are approximately linear which indicates that the data may have a
Pareto(a)-distribution with a € (1, 2).

l—e®(zx>0)and G(z)=1—2"2 (x > 1). Plot

(- (e () k=)

and interpret the result.

5.2 Regular variation
We start by introducing regularly varying functions.
Definition 5.1 A function h : (0,00) — (0,00) is regularly varying at oo with
index p € R (written h € RV, ) if
h(tz)
oo h(t)

=z for every x > 0. (5.1)
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The lower four plots: F' = Exp(1).
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If p = 0, then we call h slowly varying (at co). Slowly varying functions are
generically denoted by L. If h € RV, then h(z)/2” € RVy. Hence, setting
L(z) = h(x)/x” we see that a function h € RV, can always be represented as
h(z) = L(z)z?. If p < 0, then the convergence in (5.1) is uniform on intervals
[b, 00) for b > 0, i.e.

—zf| =0.

lim sup ‘
t_)oome[b,oo)

The most natural examples of slowly varying functions are positive constants
and functions converging to positive constants. Other examples are logarithms
and iterated logarithms. The following functions L are slowly varying.

(a)

(b) L(z) = In(1 + ).

(¢) L(z) =In(1 + In(1 + z)).
(d) L(z) =In(e+ z) + sinz.

lim, o L(z) = c € (0, 00).

Note however that a slowly varying function can have infinite oscillation in the
sense that liminf, .. L(z) =0 and limsup,_, . L(x) = co.

Example 5.1 (1) Let F'(z) = 1—2~%, for # > 1 and o > 0. Then F(tx)/F(t) =
x~% for t > 0. Hence F' € RV_,,.
(2) Let n

Definition 5.2 A nonnegative random variable is said to be regularly varying
if its distribution function F' satisfies F' € RV_,, for some o > 0. |

Remark 5.1 If X is a nonnegative random variable with distribution function
F satisfying F' € RV_,, for some a > 0, then

E(Xf) <oo ifB<a,
E(Xf) =00 if B> a.

Although the converse does not hold in general, it is useful to think of regqularly
varying random variables as those random wvariables for which the B-moment
does not exist for B larger than some o > 0.

Example 5.2 Consider two risks X; and X5 which are assumed to be nonneg-
ative and iid with common distribution function F'. Assume further that F' has
a regularly varying right tail, i.e. ' € RV_,. An investor has bought two shares
of the first risky asset and the probability of a portfolio loss greater than [ is
thus given by P(2X; > 1). Can the loss probability be made smaller by changing
to the well diversified portfolio with one share of each risky asset? To answer
this question we study the following ratio of loss probabilities:

P(X, + X2 > 1)
P(2X1 > l)
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for large I. We have, for € € (0,1/2),
P(X1+ Xo>1)
=2P(X1 +Xo > 1, X, §€l)+P(X1 + Xo > 1, X1 >el, Xy >€l)
<2P(X, > (1 —e)l) + P(X; > el)>

and
P(X;+Xo>1)>P(X;>1lor Xo >1)=2P(X; >1) - P(X; >1)>
Hence,
2P(X; > 1) —P(X; >1)? - P(X1 + Xy > 1)
P(2X; > 1) - P(2X;>1)
g(ce)
< 2P(X2 > (1 — 8)[) + P(Xl > €l)2
- P(2X1 > l) '
h(ae)
We have
. . P(Xl > l) 1—
1 [)=21lim — " 7 =2l-@
fm gles e l) =2 lim 5o =775

and similarly lim; o h(o,€,1) = 217%(1 — ¢)~*. Since ¢ > 0 can be chosen
arbitrary small we conclude that

l—o0 P(2X1 > l)

This means that for & < 1 (very heavy tails) diversification does not give us a
portfolio with smaller probability of large losses. However, for a@ > 1 (the risks
have finite means) diversification reduces the probability of large losses. ]

Example 5.3 Let X; and X5 be as in the previous example, and let o € (0, 1).
We saw that for [ sufficiently large we have P(X; + X2 > 1) > P(2X; > ).
Hence, for p € (0, 1) sufficiently large

VaR,(X1) + VaR,(X2) = 2 VaR,(X1) = VaR,(2X;)
=inf{le R:P(2X; >1) <1—p}
<inf{leR:P(X; + Xy >1)<1-p}
= VaRp(X1 +X2)-
|

Example 5.4 Let X and Y be positive random variables representing losses
in two lines of business (losses due to fire and car accidents) of an insurance
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company. Suppose that X has distribution function F which satisfies F' € RV_,
for o > 0. Moreover, suppose that E(Y*) < oo for every k > 0, i.e. Y has finite
moments of all orders.

The insurance company wants to compute lim, oo P(X >z | X +Y > x)
to know the probability of a large loss in the fire insurance line given a large
total loss.

We have, for every ¢ € (0,1) and = > 0,

PX4+Y>z2)=P(X+Y >z, X>(1—-¢)2)+P(X+Y >z, X <(1—-¢)z)

<PX+Y>z, X>1—-¢e)x)+P(X+Y >z,Y > ex)
<P(X >({1—-¢)z)+PY >ex).
Hence,
P(X+Y > )
1= P(X > z)
P(X>(1—-¢)x) P >ex)
- P(X>ux) P(X > z)
P(X > (1—¢)x) E(Y2%)

<

ST PX>a) @)RPX >

—(1—¢)7*+0
as ¢ — o00. At the second to last step above, Markov’s inequality was used.
Since this is true for every e € (0,1), choosing ¢ arbitrarily small gives

P(X+Y
lim X+Y>a)

=1.
z—oo  P(X > )

Hence,

P(X >z, X+Y >z
lim P(X X+Y =l

_ P(X>z)
T P(X Y >a3)

We have found that if the insurance company suffers a large loss, it is likely that
this is due to a large loss in the fire insurance line only. |
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6 Hill estimation

Suppose we have an iid sample of positive random variables X1, ..., X,, from
an unknown distribution function F' with a regularly varying right tail. That
is, F(x) = 27“L(z) for some a > 0 and a slowly varying function L. In this
section we will describe Hill’s method for estimating a.

We will use a result known as the Karamata Theorem which says that for
g < —1

/ 2P L(z)dz ~ —(8+ 1) WP L(u) as u — oo,

where ~ means that the ratio of the left and right sides tends to 1. Using
integration by parts we find that

! /oo(lnx —Inu)dF(zx)

F(u)
= % <[ — (Inx — lnu)F(x)Eo —|—/u @dx)
= U—%L(u) /uoo r” 1 L(x)d.
Hence, by the Karamata Theorem,
% /uoo(lnx —Inu)dF(z) — é as u — 00. (6.1)

To turn this into an estimator we replace F' by the empirical distribution func-
tion

1
k=1

and replace u by a high data dependent level X}, ,,. Then

k—1

1 oo

= Inx —In Xy ,)dF, () = —— InX,;, —InXg,).
i), (1 Kk ) = 2 D00 I Ko

If k = k(n) — oo and k/n — 0 as n — oo, then X}, — 0o a.s. as n — oo and
by (6.1)

N

—1
1
—_— (InX;, —InXg,) RN

as n — 00.
k-1 f

Q|+

<.
Il

The same result holds if we replace k — 1 by k. This gives us the Hill estimator

~(H) _ (1
o = (5

J

-1
(InX;, — lnXk,n)> )

k
=1
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6.1 Selecting the number of upper order statistics

We have seen that if k = k(n) — oo and k/n — 0 as n — oo, then

~H) _ (1
Yk T <E
J

k
-1
(In X, — lnXk,n)) L a asn— oo.
=1

In practice however we have a sample of fixed size n and we need to find a
suitable k such that aﬁffj is a good estimate of a. The plot of the pairs

{(k,a,(ci)):k::l...,n}

is called the Hill plot. An estimator of « is obtained by graphical inspection
of the Hill plot and an estimate of o should be taken for values of £ where the
plot is stable. On the one hand, k£ should not be chosen too small since the
small number of data points would lead to a high variance for the estimator.
On the other hand, k£ should not be chosen too large so the estimate is based on
sample points from the center of the distribution (this introduces a bias). This
is illustrated graphically in Figure 9. We now construct an estimator for the
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Figure 9: Hill plot of the Danish fire insurance data. The plot looks stable for

all k (typically this is NOT the case for heavy-tailed data). We may estimate

a by &t = 1.9 (k= 50) or a7} = 1.5 (k = 250).

tail probability F'(x), for x large, based on the sample points Xj,..., X,, and
the the Hill estimate Ei,(fg Notice that

_ _ €T €T e
F =F Xin | = F(Xin
(x) <Xk:n k’) <Xk,n) ( k’ )

(H) ~(H)

€T _ak,n - kn €T _ak,n
~ Fro(Xipn) = — .
<Xk,n) ( " ) n <an)
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This argument can be made more rigorously. Hence, the following estimator

seems reasonable:
g k €T _ak»n
F(x)=— .
@)= (an)

This leads to an estimator of the quantile ¢,(F') = F (p).

@:inf{xER:F/(\x)gl_p}

k T

x i
:'f{ R: — <1-— }
misx € n<Xk:,n) < p

~(H)

= (%(1 - p)) _1/%"Xk:,n-

More information about Hill estimation can be found in [8] and [12].
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7 The Peaks Over Threshold (POT) method

Suppose we have an iid sample of random variables X1, ..., X, from an unknown
distribution function F' with a regularly varying right tail. It turns out that the
distribution of appropriately scaled excesses X — u over a high threshold u
is typically well approximated by a distribution called the generalized Pareto
distribution. This fact can be used to construct estimates of tail probabilities
and quantiles.

For v > 0 and B > 0, the generalized Pareto distribution (GPD) function
G 3 is given by

Gyp(@)=1—(1+~z/3) Y7 forz>0.

Suppose that X is a random variable with distribution function F' that has a
regularly varying right tail so that lim, .. F'(Au)/F(u) = A=% for all A > 0
and some o > 0. Then

lim P

uU—o0

X —u . P(X >u(l+z/a))
(G =71 X >w) =l =g o)

=(1+z/a) = 51/a,1($)-

The excess distribution function of X over the threshold w is given by

u/a

F(z)=P(X—u<z|X >u) forz>0.
Notice that

— F(u+ ) B F(u(l+x/u))

Since F is regularly varying with index —a < 0 it holds that F(Au)/F(u) — A\~
uniformly in A > 1 as u — o0, i.e.

lim sup |[F(\u)/F(u) — A~ = 0.

Uu—00 A>1
Hence, from expression (7.1) we see that

lim sup |F_u<x) - év,ﬁ(u) ($)| =0, (72)

where v = 1/a and B(u) ~ u/a as u — oo.

We now demonstrate how these findings lead to natural tail- and quantile
estimators based on the sample points X7i,...,X,,. Choose a high threshold u
and let

N,=#{ie{l,...,n}: X; > u}
be the number of exceedances of u by Xi,...,X,,. Recall from (7.1) that

Fu+2z)=F(u)F,(z). (7.3)
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If w is not too far out into the tail, then the empirical approximation F(u) ~
F,(u) = N, /n is accurate. Moreover, (7.2) shows that the approximation

Fu(x> ~ G'y,ﬂ(u) (ZL') ~ a;%/é‘({lf)

-1/7
o)
s

where 7 and 3 are the estimated parameters, makes sense. Relation (7.3) then
suggests a method for estimating the tail of I’ by estimating F',(z) and F(u)
separately. Hence, a natural estimator for F'(u + z) is

— 1/7
Flu+ 1) = % (1 + ﬁ%) . (7.4)

Expression (7.4) immediately leads to the following estimator of the quantile
ap(F) = F~(p).

L — —

gp(F) =inf{z e R: F(z) <1—p}

=influ+zeR: Flu+z)<1-—p}

N, R -1/5
:u—i—inf{xER:—(l—f—vi) Sl—p}
n B

:u+§<(]\%(l—p))_ﬁ—1>- (7:5)

The POT method for estimating tail probabilities and quantiles can be summa-
rized in the following recipe. Each step will be discussed further below.

(i) Choose a high threshold u using some statistical method and count the
number of exceedances N,,.

(ii) Given the sample Y7, ..., Yy, of excesses, estimate the parameters v and

.
(ii) Combine steps (i) and (ii) to get estimates of the form (7.4) and (7.5).

The rest of this section will be devoted to step (i) and (ii): How do we choose a
high threshold u in a suitable way? and How can one estimate the parameters
~v and 37

7.1 How to choose a high threshold.

The choice of a suitable high threshold w is crucial but difficult. If we choose
u too large then we will have few observations to use for parameter estimation
resulting in poor estimates with large variance. If the threshold is too low then
we have more data but on the other hand the approximation F, (z) ~ @% B(u) ()
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will be questionable. The main idea when choosing the threshold u is to look at
the mean-excess plot (see below) and choose u such that the sample mean-excess
function is approximately linear above wu.

In the example with the Danish fire insurance claims it seems reasonable to
choose u between 4.5 and 10. With u = 4.5 we get N, 5 = 101 exceedances
which is about 5% of the data. With u = 10 we get N9 = 24 exceedances
which is about 1.2% of the data. Given the shape of the mean-excess plot we
have selected the threshold u = 6 since the shape of the mean-excess plot does
not change much with u € [4.5,10] we get a reasonable amount of data.

7.2 Mean-excess plot

If E(X) < oo, then we can define the mean excess function as

E((X — u)(y,00) (X))
E(H(u,oo) (X))

For a nonnegative random variable Z with distribution function F', integration
by parts show that

e(u) =E(X —u| X >u) =

B(Z) = /OOO dF(2) = /OOO 21— F)(2) = /OOO AT (2)

_ [_ zF(z)} T /OOO F(z)dz = /OOO P(Z > z)d-. (7.6)

0

We now study the mean excess function for a random variable X with a regularly
varying right tail, P(X > x) = L(z)z~?, for a > 1.

~ E(XTy,00)(x))
‘W="px>u

1 u o0
= — P(XTI dz — P(XI dz | —
P(X > u) (/0 ( (u,00)(X) > Z) < /u ( (u,00)(X) > Z) Z) u

1

= m/u P(X > z)dz

_ ﬁ /u T L(2)dz

as u — 00, where in the second to last step we applied the Karamata theorem.
Hence, the mean excess plot is approximately linear for large u.
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Example 7.1 For the GPD G, g, with v < 1, integration by parts gives
B(X — )l (X)) = [~ = )1 +92/8) 77| ™+ [ (14 q/) 7

= [Ta+aw/m

p —1/v+1
= 1 y+1
T, (L+u/B)
Moreover, E(I(,,)(X)) = P(X > u) = (1 + ~yu/B)"Y/7. Hence, e(u) = (8 +
yu)/(1 — ). In particular, the mean excess function is linear for the GPD. W

A graphical test for assessing the tail behavior may be performed by studying
the sample mean-excess function based on the sample Xq,...,X,. With N,
being the number of exceedances of u by Xi,...,X,, as above, the sample
mean-excess function is given by

en(u) = Ni > (X w0 ()

The mean-excess plot is the plot of the points
{( Xk, en(Xkn)) :k=2,...,n}.

If the mean-excess plot is approximately linear with positive slope then X; may
be assumed to have a heavy-tailed Pareto-like tail.

7.3 Parameter estimation

Given the threshold u we may estimate the parameters v and § in the GPD
based on the observations of excesses Yi,...,Yn, over u. We assume that
the excesses have distribution function G, g and hence the likelihood function
becomes

g g

Instead of maximizing the likelihood function we can maximize the log-likelihood
function given by

Nu 1 y —1/y-1
L(77ﬁ7Y177YNu):Hg'y,ﬁ(}/;), g’y,ﬁ(y): — (14—7_) .
i=1

N.

1 u
lnL<77ﬁ7Y177YNu):_Nulnﬁ_<_+1) g ln<1+%y;)

v =1

Maximizing the log-likelihood numerically gives estimates 7 and B The MLE
is approximately normal (for large N,,)

(ﬁy\_f%g — 1) ~ NQ(O,E_I/Nu>7 2_1 = (1 +’Y> < 1j—1/y _21 )
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Figure 10: Mean-excess plot of data simulated from a Gaussian distribution.
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Figure 11: Mean-excess plot of data simulated from an exponential distribution.
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Figure 12: Mean-excess plot of data simulated from a Pareto(1) distribution.

Using the threshold u = 6 (gives N, = 56) we obtain the following estimates
for the Danish fire insurance data:

7 =0.58, 3 = 3.60.
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Having estimated the parameters we can now visually observe how the approx-
imation (7.4) works, see Figure 14.
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Figure 13: Mean-excess plot of the Danish fire insurance data. The plot looks
approximately linear indicating Pareto-like tails.
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Figure 14: The empirical tail of the Danish data and the POT approximation.

7.4 Estimation of Value-at-Risk and Expected shortfall

Recall that Value-at-Risk at confidence level p for a risk X with distribution
function F is, by definition, the quantile ¢, (F'). Hence, the POT method gives
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the Value-at-Risk estimator

— n -7
VaRp,POT =u-+ = (F(l — p)) —-11.

Similarly, the POT method leads to an estimator for Expected shortfall. Recall
that

=D ®)

E(XI(g,,50) (X))
E(T(g,,00) (X)) ’
where ¢, = VaR, (X)) and we have E(I(, (X)) = F(gp). If p is sufficiently

large so that g, > u, then (7.6) can be applied to the nonnegative random
variable X1, )(X). This gives

ES,(X) = E(X | X > VaR, (X)) =

BXTg,00()) = 0, Fay) + [ P00

dp

=q,F(q,) + /OO F(u)F,(t — u)dt.

dp

Hence,

ES,(X)=9¢q,+ = / F,(t—wdt=gq,+ —%= .
P P Flgy) ap : Fu(gp —u)

We may now use the estimator F,(t —u) = G 3(t —u) to obtain, with ¢, =

=2)

—_

VaRp,POT?

= 2 +A—w/B) A
POT =(p + ——— ~———— =
3 T (A —w)/B) YA 3

More information about the POT method can be found in [8] and [12].

L B+AG —u)

-5

= (=)
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8 Multivariate distributions and dependence

We will now introduce some techniques and concepts for modeling multivariate
random vectors. We aim at constructing useful models for the vector of risk
factor changes X,,. At this stage we will assume that all vectors of risk factor
changes (X,,)nez are iid but we allow for dependence between the components
of X,,. That is, typically we assume that X, ; and X, ; are dependent whereas
Xp,i and X,y j, are independent (for k£ # 0).

8.1 Basic properties of random vectors

The probability distribution of d-dimensional random vector X = (X1,..., Xy)
is completely determined by its joint distribution function F

F(x)=F(x1,...,2q) =P(X1 <z1,...,Xg < x4) = P(X < x).
The ith marginal distribution F; of F'is the distribution of X; and is given by
Fi(x;)) =P(X; <z;) = F(00,...,00,2,00,...,00).

The distribution F' is said to be absolutely continuous if there is a function
f >0, integrating to one, such that

X1 Xq
F(xl,...,wd):/ / fluy, ... ,ug)duy .. .dug

and then f is called the density of F'. The components of X are independent if
and only if

d
P =[] Fila)

or equivalently if and only if the joint density f (if the density exists) satisfies

d
f(x) = Hfz’(l“z‘)-

Recall that the distribution of a random vector X is completely determined by
its characteristic function given by

ox(t) = E(exp{itTX}), teR™

Example 8.1 The multivariate normal distribution with mean g and covari-
ance matrix 3 has the density (with |X| being the absolute value of the deter-
minant of X)

fx) = ——

Ve h

Its characteristic function is given by

[ 56-w™s x—p)}, xer’

1
dx (t) = exp {itTu - §tTEt}, t € R
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8.2 Joint log return distributions

Most classical multivariate models in financial mathematics assume that the
joint distribution of log returns is a multivariate normal distribution. How-
ever, the main reason for this assumption is mathematical convenience. This
assumption is not well supported by empirical findings. To illustrate this fact
we study daily log returns of exchange rates. Pairwise log returns of the Swiss
franc (chf), German mark (dem), British pound (gbp) and Japanese yen (jpy)
quoted against the US dollar are illustrated in Figure 15. Now we ask whether
a multivariate normal model would be suitable for the log return data. We
estimate the mean and the covariance matrix of each data set (pairwise) and
simulate from a bivariate normal distribution with this mean and covariance
matrix, see Figure 16. By comparing the two figures we see that although the
simulated data resembles the true observations, the simulated data have too
few points far away from the mean. That is, the tails of the log return data are
heavier than the simulated multivariate normal data.

Another example shows that not only does the multivariate normal distri-
bution have too light tails but also the dependence structure in the normal
distribution may be inappropriate when modeling the joint distribution of log
returns. Consider for instance the data set consisting of log returns from BMW
and Siemens stocks, Figure 17. Notice the strong dependence between large
drops in the BMW and Siemens stock prices. The dependence of large drops
seems stronger than for ordinary returns. This is something that cannot be
modeled by a multivariate normal distribution. To find a good model for the
BMW and Siemens data we need to be able to handle more advanced depen-
dence structures than that offered by the multivariate normal distribution.

8.3 Comonotonicity and countermonotonicity

Let (X1, X2) be a bivariate random vector and suppose there exist two monotone
functions «, f : R — R and a random variable Z such that

(X1, X2) = (a(2), B(2)).

If both @ and  are increasing, then X; and X5 are said to be comonotonic. If
the distribution functions F; and Fy are continuous, then Xo = T'(X7) a.s. with
T = FQ(_ e} Fl.

If « is increasing and (3 is decreasing, then X; and X5 are said to be coun-
termonotonic. If the distribution functions F; and F5 are continuous, then
X2 = T(Xl) a.s. with T' = Fé_ e} (1 — Fl)

8.4 Covariance and linear correlation

Let X = (Xi,...,Xq)" be a random (column) vector with E(X?) < oo for
every k. The mean vector of X is p = E(X) and the covariance matrix of X
is Cov(X) = E[(X — u)(X — u)t]. Here Cov(X) is a d x d matrix whose (i, j)-
entry (ith row, jth column) is Cov(X;, X;). Notice that Cov(X;, X;) = var(X,),
i.e. the variance of Xj.
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Figure 15: log returns of foreign exchange rates quotes against the US dollar.

Covariance is easily manipulated under linear (affine) transformations. If B
is a constant k x d matrix and b is a constant k-vector (column vector), then
Y = BX + b has mean E(Y) = Bu + b and covariance matrix

Cov(Y) = E[(Y = E(Y))(Y - E(Y))'] = E[B(X — p)(X — p)" B"]
= BIE(X — u)(X — u)"]BT = BCov(X)B™.
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Figure 16: Simulated log returns of foreign exchange rates using bivariate normal
distribution with estimated mean and covariance matrix.

If var(X1), var(X2) € (0,00), then the linear correlation coefficient or, (X1, X2)
is

COV(Xl, X2>
Vvar(X,) var(Xs)

or(X1,Xs) =

If X; and X, are independent, then g7 (X1, X2) = 0 but the converse is false;
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Figure 17: log returns from BMW and Siemens stocks.

0r,(X1, X3) = 0 need not imply that X; and X5 are independent.
Example 8.2 If X; ~ N(0,1) and X5 = X7, then

COV(Xl,XQ) = E[(Xl — )(XQ — 1)] = E(XlXQ) —-0-1

o 1 2
=E(X?) = z3 e 2z = 0.
(X7) Y-
Hence, o1, (X1, X3) = 0 but clearly X; and X, are strongly dependent. [ |

Moreover |or (X7, X2)| = 1 if and only if X; and X, are perfectly linear depen-
dent. That is, if and only if there exist a € R and b # 0 such that X5 = a+bX;.
The linear correlation coefficient is invariant under strictly increasing linear
transformations. In particular, for a1, as € R and by, by # 0 we have

QL(al + lel, an + b2X2) = Sign(blbg)QL(Xl, XQ),

where sign(bibs) = b1by/|b1ba| if b1bs # 0 and 0 otherwise. However, linear
correlation is not invariant under nonlinear strictly increasing transformations
T : R — R. That is, for two random variables we have in general

or(T(X1),T(X3)) # or(X1, X2).

This is a weakness of linear correlation as a measure of dependence. If we trans-
form X; and X5 by a strictly increasing transformation we have only rescaled
the marginal distributions, we have not changed the dependence between X
and X5. However, the linear correlation between T'(X;) and T(X2) may have
changed (falsely) indicating that the dependence has changed.
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Proposition 8.1 Let (X1, X2) be a random vector with marginal distribution
functions Fy and Fy, and an unspecified dependence structure. Assume further
that var(Xy), var(Xs) € (0,00). Then

(1) The set of possible linear correlations is a closed interval (0L min, OL max)
with 0 € [QL,mina QL,max]-

(2) The minimum linear correlation or, min s obtained if and only if Xy and
Xa are countermonotonic; the mazimum o1, max if and only if X1 and Xs
are comonotonic.

The following example illustrates Proposition 8.1.

Example 8.3 Let X; ~ Lognormal(0, 1) and X5 ~ Lognormal(0, 0?) with o >
0. Let Z ~ N(0,1) and note that

Xl = GZ
d

)
X2 oZ d —oZ

€ (&

oZ

Note that e and €% are comonotonic and that eZ and e~ ?% are countermono-

tonic. Hence, by Proposition 8.1,

)

7 —oZ e ” -1
OL,min = OL\€ ,€

’ & ' e 1
z az) e’ —1

N )

In particular, or min /" 0 and 01 max \, 0 as ¢ /" oco. See Figure 18 for a
graphical illustration of these bounds as functions of o. |

8.5 Rank correlation

Rank correlations are measures of concordance for bivariate random vectors.
Given two points in R?, (z1,22) and (Z1,Z2), we say that the two points are
concordant if (x; — Z1)(z2 — T2) > 0 and discordant if (x1 — T1)(z2 — T2) < 0.
Hence, concordance (discordance) means that the line connecting the two points
have a positive (negative) slope. Now consider two independent random vectors
(X1, X2) and (X1, X,) with the same bivariate distribution. The Kendall’s tau
rank correlation is given by

0-(X1, Xo) = P ((X1 X)) (X — X)) > 0) _P <(X1 X)) (X — Xs) < 0).
If X5 tend to increase with X; we expect the probability of concordance to be
high relative to the probability of discordance, giving a high value of g, (X1, X3).

Another measure of concordance/discordance is Spearman’s rho rank corre-
lation where one introduces a third independent copy of (X7, X2) denoted by
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Figure 18: Bounds for the linear correlation coefficient.

(X1, X5) and consider the concordance/discordance of the pairs (X1, X») and
(X1, X3). Spearman’s rho is defined by

05(X1, X2)=3{P (X1 =X1)(Xo— %) > 0) =P (X1 = X1)(Xo—%p) < 0) }.

Kendall’s tau and Spearman’s rho have many properties in common listed below.
They also illustrate important differences between Kendall’s tau and Spearman’s
rho on the one hand and the linear correlation coefficient on the other hand.

o 0,(X1,X5) €[—-1,1] and p5(X7, X2) € [—1,1]. All values can be obtained
regardless of the marginal distribution functions, if they are continuous.

e If the marginal distribution functions are continuous, then o, (X1, X3) =
0s(X1, X3) = 1 if and only if X; and X5 are comonotonic; o, (X1, Xa2) =
0s(X1,X5) = —1if and only if X; and X, are countermonotonic.

e If X; and X5 are independent then o, (X1, X2) = 0 and pg(X;, X3) =0,
but the converse is not true in general.

o If T, Ts are strictly increasing then o, (71 (X1),T2(X2)) = 0-(X7, X5) and
05(T1(X1), Tx(X2)) = 05(X1, X2).

Estimation of Kendall’s tau based on iid bivariate random vectors Xy,..., X,
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is easy. Note that

0r (Xk1, Xi2) =P((Xp1 — Xi1) (X2 — Xi2) >0)
— P((Xk,1 — X11)(Xi2o — X1 2) <0)
= E(sign((Xk,l — Xl71)(Xk’2 — Xl’g))).

Hence, we obtain the following estimator of Kendall’s tau or = 0 (Xk,1, Xk 2)

o = (Z) ) Z sign((Xg,1 — X1,1) (X2 — Xi2))

1<k<i<n

= (Z)_ Z_: Z sign((Xe,1 — Xi,1)(Xk2 — Xi2)).

k=1Il=k+1

We will return to the rank correlations when we discuss copulas in Section 10.

8.6 Tail dependence

Motivated by the scatter plot of joint BMW and Siemens log returns above we
introduce a notion of dependence of extreme values, called tail dependence.

Let (X7, X2) be a random vector with marginal distribution functions Fj
and Fy. The coefficient of upper tail dependence of (X7, Xs) is defined as

)\U(Xl,Xg) = 1{l/‘Hll P(XQ > Fé_(u) | Xl > Ff_(u)),

provided that the limit Ay € [0, 1] exists. The coefficient of lower tail dependence
is defined as

AL(X1, Xo) = ii{%P(Xz < Fy(uw) | X1 < Fy(w),
provided that the limit Ay, € [0, 1] exists. If Ay > 0 (A > 0), then we say that

(X1, X5) has upper (lower) tail dependence.
See Figure 19 for an illustration of tail dependence.
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Figure 20: Ilustration of two bivariate distributions with linear correlation
or, = 0.8 and standard normal marginal distributions. The one to the left
has tail dependence \iy = A, = 0.62 and the one to the right has A\y = A\, = 0.



9 Multivariate elliptical distributions

9.1 The multivariate normal distribution

Recall the following three equivalent definitions of a multivariate normal distri-

bution.

(1) A random vector X = (X1,..., X4)T has a normal distribution if for every

vector a = (a1, ...,aq)" the random variable a’X has a normal distribution.
The notation X ~ Ng(u,X) is used to denote that X has a d-dimensional

normal distribution with mean vector g and covariance matrix 2.

(2) X ~ Ng(p, 2) if and only if its characteristic function is given by

ox(t) = B(exp{it"X}) = exp {it " - %tTZt}.

(3) A random vector X with E(X) = p and Cov(X) = X, such that || > 0,
satisfies X ~ Ng(u, ) if and only if it has the density

b xR ()
) = T 1 2 }

Next we list some useful properties of the multivariate normal distribution.
Let X ~ Ng(p, X).

o Linear transformations. For B € R¥*? and b € R¥ we have

BX +b ~ Ny(Bu +b, BEBT).

e Marginal distributions. Write XT = (XT, X7) with X; = (X1,..., Xx)",
Xy = (Xpt1,...,Xq)T and write

b b
T __ T T _ 11 12
H = (,*1'17/1’2)7 Y= ( 221 222 )

Then X1 ~ Nk<[1/1, 211) and X2 ~ Nd—k(ﬂ/z, 222).

e Conditional distributions. If ¥ is nonsingular (|3| > 0), then X5|X; =
x1 ~ Ng—k(Ho,1, ¥22,1), where

Mo1 = fo + IS0 (x1 — py) and Sop1 = Tpp — U917 Tia.

e Quadratic forms. If ¥ is nonsingular, then
D? = (X —p)"S 1 (X - p) ~ x5

The variable D is called the Mahalanobis distance.

e Convolutions. If X ~ Ny(p,¥) and Y ~ Ng(p, ) are independent, then

X+Y ~Ng(p+p, 2+ X).
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9.2 Normal mixtures

Note that if X ~ Ng(u, X)), then X has the representation X = pu + AZ, where
Z ~ N;(0,T) (I denotes the identity matrix) and A € R%*¥ is such that AAT =
Y. If ¥ is nonsingular, then we can take k = d.

Definition 9.1 An R%-valued random vector X is said to have a multivariate
normal variance mizture distribution if X < pu + WAZ, where Z ~ Np(0,1),
W > 0 is a positive random variable independent of Z, and A € R™* and
€ RY are a matriz and a vector of constants respectively. ]

Note that conditioning on W = w we have that X|W = w ~ Ng(u, w?Y),
where ¥ = AAT.

Example 9.1 If we take W2 = v/S, where S ~ x2 (Chi-square distribution
with v degrees of freedom), then X has the multivariate ¢-distribution with v
degrees of freedom. We use the notation X ~ t4(v, u,3). Note that ¥ is not
the covariance matrix of X. Since E(W?) = v/(v — 2) (if v > 2) we have
Cov(X) = [v/(v —2)]%. [

9.3 Spherical distributions

Many results on spherical (and elliptical) distributions can be found in the book
[9].

Definition 9.2 A random vector X = (X1,...,Xq)T has a spherical distribu-
tion if there exists a function v of a scalar variable such that the characteristic
function of X satisfies ¢px (t) = Yp(tTt) = (3 + - +13). |

We write X ~ Sy(1) to denote the X has a spherical distribution with charac-
teristic function ¥ (tTt).

Proposition 9.1 The following statements are equivalent.
(1) X has a spherical distribution.
(2) For every vector a € R%, aTX £ ||a|| X with ||a]|?> = a? +...a2.

(3) X has the stochastic representation X = RS, where S is uniformly dis-
tributed on the unit sphere S™! = {x € R? : ||x|| = 1} and R > 0 is
independent of S.

The implication (1) = (2) can be shown as follows. Recall that two random
variables (and vectors) have the same distribution if and only if their character-
istic functions are the same. Let X ~ S;(¢). Then

burx(5) = E(exp{isaTX}) = Blexp{i(sa)TX}) = 1(s?aTa).
Note that ||a]|X; = tTX with tT = (]|al|,0,...,0). Hence,
Dlaix, (5) = E(exp{istTX}) = B(expli(st)TX}) = (st T¢)
= 1(s%||al|?) = ¢(s*aTa).
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Example 9.2 Let X ~ Ny4(0,I). Then X ~ Sy(v) with ¢(z) = exp{—x/2}.
The characteristic function of the standard normal distribution is

dx(t) = exp {itTO — %tTIt} = exp{—tTt/2} = p(tTt).

From the stochastic representation X = RS we conclude that ||X||> = R? and
since the sum of squares of d independent standard normal random variables
has a chi-squared distribution with d degrees of freedom we have R? ~ x2. W

The stochastic representation in (4) is very useful for simulating from spheri-
cal distributions. Simply apply the following algorithm. Suppose the spherically
distributed random vector X has the stochastic representation X < RS.

(i) Simulate s from the distribution of S.
(ii) Simulate 7 from the distribution of R.
(iii) Put x = rs.

This procedure can then be repeated n times to get a sample of size n from
the spherical distribution of X. We illustrate this in Figure 21. Note that a
convenient way to simulate a random element S that has uniform distribution on
the unit sphere in R? is to simulate a d-dimensional random vector Y ~ Ng4(0,I)
and then put S=Y/|Y].

9.4 Elliptical distributions

Definition 9.3 An R%-valued random vector X has an elliptical distribution if
X 2 pu+ AY, where Y ~ S(), A € R™>** gnd p € RY. [ |

When d = 1 the elliptical distributions coincide with the 1-dimensional sym-
metric distributions. The characteristic function of an elliptically distributed
random vector X can be written as

Px (t) = E(exp{itTX})

= E(exp{it" (u + AY)})

= exp{itT pu} E(exp{i(ATt)TY})

— exp{itTp}(ETSH),
where ¥ = AAT. We write X ~ E4(u,X,v). Here p is called the location
parameter, Y is called the dispersion matrix and @ is called the characteris-
tic generator of the elliptical distribution. If E(Xj) < oo, then E(X) = pu.
If E(X;) < oo, then Cov(X) = ¢X for some ¢ > 0. Note that elliptically
distributed random vectors are radially symmetric: if X ~ FE4(u, 3, 1), then

X —p2p—X. If Ac R is nonsingular with AAT = X, then we have the
following relation between elliptical and spherical distributions:

X~ Eg(p,2,1) <= AN X —p) ~ Sy(1), AecR> AAT =%,

a7



0.5}

Figure 21: Simulation from a spherical distribution using the stochastic rep-
resentation. First we simulate independently n times from the uniform dis-

tribution on the unit sphere to obtain si,...,s, (above). Then, we simulate
ri,...,T, from the distribution of R. Finally we put x; = rgs; for k=1,....,n
(below).

It follows immediately from the definition that elliptical distributed random vec-
tors have the following stochastic representation. X ~ Ey(u, 3, ) if and only if
there exist S, R, and A such that X = pu+ RAS with S uniformly distributed on
the unit sphere, R > 0 a random variable independent of S, A € R4** a matrix
with AAT = ¥ and p € R%. The stochastic representation is useful when simu-

lating from elliptical distributions. Suppose X has the stochastic representation
X £ p+ RAS.

(i) Simulate s from the distribution of S.
(ii) Multiply s by the matrix A to get As.
(iii) Simulate r from the distribution of R and form rAs.

(iv) Put x = pu + rAs.

This procedure can then be repeated n times to get a sample of size n from the
elliptical distribution of X. We illustrate this in Figure 22.

Example 9.3 An R?valued normally distributed random vector with mean g
and covariance matrix ¥ has the representation X < p + AZ, where AAT =%
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Figure 22: Simulation from a spherical distribution using the stochastic repre-
sentation. First we simulate independently n times from the uniform distribu-

tion on the unit sphere to obtain sy, ..., s, (above, left). Then, we multiply each
sample by A to get the points Asy, ..., As, (above, right). Next, we simulate
T1,...,Ty from the distribution of R to obtain rpAsy for k = 1,...,n (below,

left). Finally we add p to obtain x; = p+rgAsg for k = 1,...,n (below, right).

and Z ~ Ng(0,I). Since Z has a spherical distribution it has representation
Z = RS, where R? ~ x%. Hence, X has the representation X = p + RAS and
we conclude that X ~ E4(u, 3, ¢) with ¢ (x) = exp{—z/2}. |

Example 9.4 A random vector Z ~ N4(0,I) has a spherical distribution with
stochastic representation Z = VS. If X is a normal variance mixture, then
we see from the definition that it has representation X < pu + VW AS, with
V2 ~ x2. Hence, it has an elliptical distribution with R = VWW. An example
given earlier is the multivariate t,-distribution where W2 = v/S with S ~ 2.
This means that for the multivariate t-distribution R?/d < V2W?2/d has an
F(d,v)-distribution (see e.g. Problem 10, Chapter 1 in [11]). |

9.5 Properties of elliptical distributions

Next we list some useful properties of elliptical distributions. Many of them
coincide with the properties of the multivariate normal distribution. This is
perhaps the most important argument for using the elliptical distributions in
applications. Let X ~ Eg(w, 3,1).

59



o Linear transformations. For B € R**¢ and b € R* we have

BX +b~ E,(Bu+b,BEBY,v).

e Marginal distributions. Write XT = (XT, XJ) with X; = (X1,..., Xx)",
Xy = (Xpt1,...,Xq)T and write

by by
T __ T T _ 11 12
24 _(“17“’2>7 Y= ( 221 222 )

Then X1 ~ Ek<[1/1, 211, w) and X2 ~ Ed—kz(l’/Q; 222, w)

e Conditional distributions. Assuming that ¥ is nonsingular, X5|X; = x7 ~
Eaq (Mo 1,¥22,1,%), where

Mo1 = fo + IS0 (x1 — ) and Sop1 = Tp — B9t 7' Tia.
Typically J is a different characteristic generator than the original 1.
e Quadratic forms. If ¥ is nonsingular, then
D?*=(X-p)'2 (X - p) = R
The variable D is called the Mahalanobis distance.

e Convolutions. If X ~ E4(u,3,¢) and Y ~ E4(m, 3, IZ) are independent,
then X +Y ~ Ey(p + [, 2, ), with ¢(x) = ¢(x)(z). Note that the
dispersion matrix ¥ must (in general) be the same for X and Y.

IMPORTANT: Contrary to the multivariate normal distribution it is not
true that the components of a spherically distributed random vector X ~
E4(0,1,7) are independent. In fact, the components of X are independent
only if X has a multivariate normal distribution. For instance, assume X =
(X1, X2)" ~ Na(p,I). Then the linear correlation coefficient or (X1, X2) = 0
and X; and X, are independent. However, if X = (X1, X5)T ~ Ey(u,1,9)
is not normal, then o7 (X7, X2) = 0 (if o5 (X1, X2) exists) but X; and X, are
dependent.

9.6 Elliptical distributions and risk management

Suppose we have the possibility today at time 0 to invest in d risky assets by
taking long or short positions. We consider a fixed holding period of length T’
and let X = (X1,..., Xy) be the future asset returns at time 7. Suppose that
X has a (finite) nonsingular covariance matrix ¥ and mean vector E(X). Let P
be the set of all linear portfolios w'X for w € R? and let

d
Wr:{WERd:WTu:r,Zwizl} and P, ={Z=w'X:weW,}

=1
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Hence, P, is the set of of all linear portfolios with expected return r with the
normalization constraint 2?21 w; = 1.

How can we find the least risky portfolio with expected portfolio return r?
The mean-variance (Markowitz) approach to portfolio optimization solves this
problem if we accept variance (or standard deviation) as our measure of risk.
The minimum variance portfolio is the portfolio that minimizes the variance
var(Z) = wrEw over all Z € P,.. Hence, the portfolio weights of the minimum-
variance portfolio is the solution to the following optimization problem:

min wlXw.

weWw,.
This optimization problem has a unique solution, see e.g. p. 185 in [3]. As al-
ready mentioned, the variance is in general not a suitable risk measure. We
would typically prefer a risk measure based on the appropriate tail of our port-
folio return. It was shown in [7] that the “minimum-risk” portfolio, where risk
could be e.g. VaR or ES, coincides with the minimum-variance portfolio for
elliptically distributed return vectors X. Hence, the mean-variance approach
(Markowitz) to portfolio optimization makes sense in the elliptical world. In
fact we can take any risk measure o with the following properties and replace
the variance in the Markowitz approach by o. Suppose o is a risk measure that
is translation invariant and positively homogeneous, i.e.

o(X +a)=p0(X)+aforr e Rand p(AX) = Ao(X) for A > 0.

Moreover, suppose that o(X) depends on X only through its distribution. The
risk measure o could be for instance VaR or ES.

Since X ~ Eg(p, %, 1) we have X = p + AY, where AAT = ¥ and Y ~
Sq(v). Hence, it follows from Proposition 9.1 that

WX =wip+wrAY =wip+ (AT™wW)'Y £ wlp 4+ [|ATw|| V7. (9.1)
Hence, for any Z € P, it holds that
o(Z) =r+ ||ATw|o(Y1) and var(Z) = ||ATw|*var(Y;) = w' Swvar(Y7).

Hence, minimization with respect to ¢ and minimization with respect to the
variance give the same optimal portfolio weights w:

argming ., 0(Z) = argming, .,y |ATw||
= argmin, ¢y [|[ATW|* = argmin,cp var(2).
Example 9.5 Note also that (9.1) implies that for w;, wo € R? we have

VaR, (w1 X +woX) = wip +wy pu+ ||[ATw; + ATws|| VaR, (Y1)
< wip+wy pt [ ATwi | VaRp (Y1) + [ AT w2 VaR,, (Y1)
= VaR,(w] X) + VaR,(wy X).

Hence, Value-at-Risk is subadditive for elliptical distributions. |
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Example 9.6 Let X = (X, X5)” be a vector of log returns, for the time
period today-until-tomorrow, of two stocks with stock prices S; = Sy = 1 today.
Suppose that X ~ Es(u, X, 1) (elliptically distributed) with linear correlation

coefficient p and that
2 2
_ _(o® %
n=0, Z—(Uzp 02)~

Your total capital is 1 which you want to invest fully in the two stocks giving
you a linearized portfolio loss L® = L® (w1, ws) where w; and wy are portfolio
weights. Two investment strategies are available (long positions):

(A) invest your money in equal shares in the two stocks: wa; = was = 1/2;
(B) invest all your money in the first stock: wp; = 1, wpe = 0.

How can we compute the ratio VaRO,gg(Lﬁ)/VaRo_gg(Lé), where Lﬁ and L%
are linearized losses for investment strategies A and B, respectively?

We have

LA = —w'X £ wi'X
since X ~ E5(0,%,1). Moreover, by (9.1) it holds that
wiX L VwIiswZ,

where Z ~ E1(0,1,%). Hence, VaR,(wTX) = VwTXw VaR,(Z). This yields

VaR(),gg (WZ;X) o \/ WE,ZL;EWA
VaRQ,gg (WEX) /wig EWB .

We have wiYXw4 = 0%(1+ p)/2 and wiXwp = o2, Hence

VaRo.99(L4) _ VaRo.g9(W)X)
VaRg99(L5)  VaRg.g9(WwEX)

=V (1 +p)/2
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10 Copulas

We will now introduce the notion of copula. The main reasons for introduc-
ing copulas are: 1) copulas are very useful for building multivariate models
with nonstandard (nonGaussian) dependence structures, 2) copulas provide an
understanding of dependence beyond linear correlation.

The reader seeking more information about copulas is recommended to con-
sult the book [13].

10.1 Basic properties

Definition 10.1 A d-dimensional copula is a distribution function on [0,1]%
with standard uniform marginal distributions. ]

This means that a copula is the distribution function P(U; < uq,...,Ug < uq)
of a random vector (Uy,...,Uy) with the property that for all k it holds that
P(Ux <u) =wu for u € [0,1].

A bivariate distribution function F with marginal distribution functions is
a function F' that satisfies

(Al) F(z1,z2) is nondecreasing in each argument xj.
(A2) F(z1,00) = Fi(x1) and F(oo,x2) = Fy(xs).
(A3) For all (a1,as), (b1, b2) € R? with a; < bs, we have:

F(bl,bg) — F(al,bg) — F(bl,ag) + F(al,ag) Z 0

Notice that (A3) says that probabilities are always nonnegative. Hence a copula
is a function C' that satisfies

(B1) C(uq,u2) is nondecreasing in each argument u.
(B2) C(u1,1) =uy and C(1,uz) = us.
(B3) For all (ay,az), (b1, b2) € [0,1]? with aj < by we have:

C(bl,bg) - C(al,bg) — C(bl,ag) + C’(al,ag) Z 0

Let h : R — R be nondecreasing. Then the following properties hold for the
generalized inverse h™ of h.

(C1

h is continuous if and only if A~ is strictly increasing.

)
C2) h is strictly increasing if and only if A~ is continuous.
) If h is continuous, then A(h™ (y)) = y.

)

(
(C3
(

C4) If h is strictly increasing, then h™ (h(z)) = =.
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Recall the following important facts for a distribution function G on R.

(D1) Quantile transform. If U ~ U(0, 1) (standard uniform distribution), then
P(G—(U) < z) = G(x).

(D2) Probability transform. If Y has distribution function G, where G is con-
tinuous, then G(Y') ~ U(0,1).

Let X be a bivariate random vector with distribution function F' that has con-

tinuous marginal distribution functions Fi, Fs. Consider the function C' given
by

Clur, ug) = F(Fy (wn), Fy (u2)).
It is clear that C' is nondecreasing in each argument so (B1) holds. Moreover,
Cur,1) = F(F{ (u1),00) = P(Xy < Fi~ (u1))

= P(F1(X1) < Fu(Fy (w))) = P(F1(X1) < )

= U
and similarly C(1,us) = ug. Hence, (B2) holds. Since F is a bivariate distribu-
tion function (B3) holds. Hence, C is a copula.

The following result known as Sklar’s Theorem is central to the theory of

copulas. It also explains the name “copula”: a function that “couples” the joint
distribution function to its (univariate) marginal distribution functions.

Theorem 10.1 (Sklar’s Theorem) Let F' be a joint distribution function

with marginal distribution functions Fi, ..., Fy. Then there exists a copula C
such that for all x1,...,xq € R = [—00, 00|,

F(zy,...,xq) = C(Fi(z1), ..., Fa(za)). (10.1)
If Fy,..., F; are continuous, then C' is unique. Conversely, if C is a copula
and Fy, ..., Fy are distribution functions, then F defined by (10.1) is a joint
distribution function with marginal distribution functions Fy,..., Fy.

Definition 10.2 Let F' be a joint distribution function with continuous margi-
nal distribution functions Fy, ..., Fq. Then the copula C in (10.1) is called the
copula of F'. If X is a random vector with distribution function F, then we also

call C the copula of X. |

By (C3) above, if F} is continuous, then Fj(F; (u)) = u. Hence, if F is
a joint distribution function with continuous marginal distribution functions
Fy, ..., Fy, then the unique copula of F'is given by

Cuyy...,uq) = F(Fy (u1),...,F; (uq))-

Much of the usefulness of copulas is due to the fact that the copula of a ran-
dom vector with continuous marginal distribution functions is invariant under
strictly increasing transformations of the components of the random vector.
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Proposition 10.1 Suppose (X1, ..., Xq) has continuous marginal distribution
functions and copula C' and let T, ..., Ty be strictly increasing. Then also the
random vector (T1(X1),...,T4(Xy4)) has copula C.

Proof. Let Fj denote the distribution function of X and let ﬁk denote the
distribution function of Ty (Xj). Then

Fy(z) = P(Te(Xy) < 2) = P(Xy < T () = Fu(T (@),

i.e. F}, = Fj, o1} is continuous. Since F,..., Fy are continuous the random

vector (Ty(X1),...,T4(X4)) has a unique copula C. Moreover, for any x € Ed,

C(Fi(z1),...,Fy(zq)) = PI(X1) <z1,...,Ta(Xq) < z4)
= P(Xy <Ty (21),...,Xa < T35 (24))
= C(FroTy (x1),...,Fg0T; (xq))
= C(Fy(z1), ..., Fy(zq)).

Since, for k = 1,...,d, F}, is continuous, ﬁk(ﬁ) = [0, 1]. Hence C =Con [0, 1]¢.
[

Example 10.1 Let C' be a d-dimensional copula and let Uy, ..., U be random
variables that are uniformly distributed on [0, 1] with joint distribution function
C. Let Fy,...,Fy be univariate continuous distribution functions. Then, for
each k, F; (Uy) has distribution function Fj, (the quantile transform). More-
over, for each k, F}~ is strictly increasing (C1). Hence, the random vector
(Fy(Uy),...,F;7 (Ug)) has marginal distribution functions Fi,..., Fy and, by
Proposition 10.1, copula C. |

Example 10.2 Let (X3, X2) be a random vector with continuous marginal
distribution functions F, Fy and copula C Let g; and go be strictly decreasing
functions. Determine the copula C of (g1(X1), g2(X2))?

The distribution- and quantile function of g (X}) is given by

Fr(z) = P(gp(X3) < ) = P(X), > g5 ' (2)) = 1 — Fr(g;, ' (2)),

Hence,

Clut,uz2) = P(g1(X1) < Fy (w1, g2(X2) < Fy ' (ug))
P(X1 > F (1 —u),Xo> Fy (1 —ug))
1)

P( 1( Z 1 —Ul,Fg(Xg) > 1 —Ug)
1-— (1 ) (1—UQ)+C<1—U1,1—U2)
C( —ul,l—u2)—f—u1—f—u2—1.
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Notice that
Cur,uz) = P(F1(X1) < uy, Fo(X2) < ug),

6(U1,U2) == P(l - F1<X1) S Uy, 1-— FQ(XQ) S Ug).
See Figure 23 for an illustration with g1 (x) = g2(z) = —z and Fy(x) = Fy(z) =
®(z) (standard normal distribution function). [

X2
-X2
-1 0

-3

u2
1-U2

00 02 04 06 08 10
00 02 04 06 08 10

Figure 23: (U1, Us) has the copula C' as its distribution function. (X7, X2) has
standard normal marginal distributions and copula C. Samples of size 3000
from (X1, X2), (—X1,—X3), (U1,Us) and (1 — Uy, 1 — Us).

Example 10.3 Let X ~ N;(0, R) where R is a correlation matrix. Denote by
® i and @ the distribution functions of X and X respectively (the d-dimensional
standard normal distribution function and the 1-dimensional standard normal
distribution function). Then X has the so-called Gaussian copula C'S* given by

CHau) =P(®(X1) < up,y. .., B(Xy) Sug) = Pp(@ ug),..., 0  (ug)).
(10.2)
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Let Y = p + XX, where for some o1,...,04 > 0,

g1 0 0
Y 0 g9 0 0
0 0 0d

Then Y ~ Ny(p,XRY). Note that Y has linear correlation matrix R. Note
also that Ty (x) = pp + ok is strictly increasing and that

Y = (Ty(X1),..., Ta(Xa)).

Hence if C'y denotes the copula of Y, then by Proposition 10.1 we have Cy =
CS2. We conclude that the copula of a nondegenerate d-dimensional normal
distribution depends only on the linear correlation matrix. For d = 2 we see
from (10.2) that C§? can be written as

) p 2 (u2) — (22 — 2pxy20 + 23
*(uy,uz) / / 1/2 exp{ (71 2(1'0_1&2) 2)}dx1dx2,

1f,0:R12 € (—1,1). [ |

The following result provides us with universal bounds for copulas. See also
Example 10.5 below.

Proposition 10.2 (Fréchet bounds) For every copula C' we have the bounds

d
maX{Zuk —d+1,0} < Cluy,...,ug) < min{ug,...,uq}.

k=1
For d > 2 we denote by W, the Fréchet lower bound and by M, the Fréchet

upper bound. For d = 2 we drop the subscript of Wy and Ms, i.e. W = W5 and
M = M,.

Example 10.4 Let W, be the Fréchet lower bound and consider the set func-
tion ) given by
2 2
Q([a1,b1] x - -+ X [aq, ba]) Z Z R (ugg, s - Uaky)s

for all (a1, ...,aq), (b1,...,bq) € [0,1]¢ with ay < by where u;j; = a; and ujs =
b; for j € {1,...,d}. Wy is a copula (distribution function) if and only if @ is
its probability distribution. However,

Q(1/2,1]Y) = max(1+---+1—d+1,0)
—dmax(1/2+1+---+1—-d+1,0)

+<‘2l) max(1/24+1/2+1+---+1—d+1,0)

+max(1/2+---+1/2—-d+1,0)
= 1-d/2.
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Hence, @) is not a probability distribution for d > 3 so W is not a copula for
d> 3. |

The following result shows that the Fréchet lower bound is the best possible.

Proposition 10.3 For any d > 3 and any u € [0,1]%, there exists a copula C
such that C(u) = Wy(u).

Remark 10.1 For any d > 2, the Fréchet upper bound My is a copula.

For d = 2 the following example shows which random vectors have the
Fréchet bounds as their copulas.

Example 10.5 Let X be a random variable with continuous distribution func-
tion Fx. Let Y = T'(X) for some strictly increasing function 7" and denote by
Fy the distribution function of Y. Note that

Fy(z) = P(T(X) < 2) = Fx (T~ (2))
and that Fy is continuous. Hence the copula of (X, T(X)) is
P(Fx(X) <u, Fy(Y) <) =P(Fx(X) <u, Fx(THT(X))) < v)
= P(Fx(X) < min{u,v})
= min{u, v}.

By Proposition 10.1 the copula of (X,7T(X)) is the copula of (U,U), where
U~U(0,1). Let Z = S(X) for some strictly decreasing function S and denote
by Fz the distribution function of Z. Note that

Fz(x) =P(S(X)<z)=P(X >S5S Y2))=1— Fx (S (z))
and that Fz is continuous. Hence the copula of (X, S(X)) is
P(Fx(X) <u, Fz(Z) <v) =P(Fx(X) <u,1 - Fx(S7'(5(X))) <v)
(Fx(X) < U,Fx(X) >1-— U)
(Fx(X) <wu)—P(Fx(X) <min{u,1 —v})
u —min{u,1 — v}

max{u +v —1,0}.

=P
=P

By (a modified version of) Proposition 10.1 the copula of (X, S(X)) is the copula
of (U,1—-U), where U ~ U(0,1). |

10.2 Dependence measures

Comonotonicity and countermonotonicity revisited

Proposition 10.4 Let (X, X5) have one of the copulas W or M (as a possible
copula). Then there exist two monotone functions o, 5 : R — R and a random
variable Z so that

(X1, X3) = (a(2), B(2)),

68



with « increasing and (3 decreasing in the former case (W) and both a and [
increasing in the latter case (M ). The converse of this result is also true.

Hence, if (X7, X5) has the copula M (as a possible copula), then X; and X5
are comonotonic; if it has the copula W (as a possible copula), then they are
countermonotonic. Note that if any of F; and Fy (the distribution functions of
X1 and Xo, respectively) have discontinuities, so that the copula is not unique,
then W and M are possible copulas. Recall also that if F} and F5 are continuous,
then

C=W & X,=T(Xy)as.,T=F; o(l— Fy) decreasing,
C=M & X,=T(Xy)as.,T=F, olF) increasing.

Kendall’s tau and Spearman’s rho revisited

To begin with we recall the definitions of the concordance measures Kendall’s
tau and Spearman’s rho.

Definition 10.3 Kendall’s tau for the random vector (X1, Xs2) is defined as
0:(X1, X3) = P((X; — X[)(Xa — X}) > 0) — P((X; — X])(X5 — X}) < 0),

where (X1, X1%) is an independent copy of (X1,Xs2). Spearman’s rho for the
random vector (X1, X2) is defined as

0s(X1, X2) =3 (P((X1 — X1)(Xz — X3) > 0) — P((X1 — X7)(X2 - X7) <0)),
where (X1, X%) and (X, XY) are independent copies of (X1, X2). |

An important property of Kendall’s tau and Spearman’s rho is that they are
invariant under strictly increasing transformations of the underlying random
variables. If (X1, X5) is a random vector with continuous marginal distribution
functions and T} and T3 are strictly increasing transformations on the range
of X7 and X respectively, then o, (11(X1),T2(X32)) = 0-(X1, X2). The same
property holds for Spearman’s rho. Note that this implies that Kendall’s tau
and Spearman’s rho do not depend on the (marginal) distributions of X; and
X5. This is made clear in the following two results.

Proposition 10.5 Let (X1, X5) be a random vector with continuous marginal
distribution functions and with copula C. Then

QT(Xl,Xg) = 4 [ ] C(Ul,Ug)dC(Ul,UQ) —1= 4E(C(U1, Ug)) — 1,
0,1]2

0s(X1,X2) = 12/
[0,1]2

= 12E(U,Us) — 3,

U1U2dC(U1, UQ) -3 = 12/ C(Ul, UQ)duldUQ -3
[0,1]?

where (U1, Us) has distribution function C.
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Remark 10.2 Note that by Proposition 10.5, if Iy and Fy denotes the distri-
bution functions of X1 and Xo respectively,

Qs(Xl,XQ) = 12/ ) U1UQdC(U1, Ug) — 3
[0,1]

= L2E(f1(X1)F2(X2)) -3
E(F(X1)F2(X2)) —1/4
1/12
E(F1(X1)F2(X2)) — E(F1(X1)) E(F2(X2))
Vvar(Fi(Xy))y/var(Fa(X2))
= a(F1(X1), F2(X2)).

Hence Spearman’s rho is simply the linear correlation coefficient of the proba-
bility transformed random variables.
Tail dependence revisited

We now return to the dependence concept called tail dependence. The concept
of tail dependence is important for the modeling of joint extremes, particularly
in portfolio Risk Management. We recall the definition of the coefficient of tail
dependence.

Let (X7, X2) be a random vector with marginal distribution functions Fy
and Fy. The coefficient of upper tail dependence of (X7, Xs) is defined as

M (X1, Xp) = lim P(Xy > Fy~(u) | X1 > Fi~ (u),

provided that the limit Ay € [0, 1] exists. The coefficient of lower tail dependence
is defined as

AL(X1, Xp) = lim P(Xp < Fo~(u) | Xy < Fy(u)),
provided that the limit A\;, € [0, 1] exists. If Ay > 0 (A > 0), then we say that
(X1, X5) has upper (lower) tail dependence.

Proposition 10.6 Let (X7, X2) be a random vector with continuous marginal
distribution functions and copula C'. Then

Av(Xq, Xo) (1 —-2u+C(u,u))/(1 —u),

= lim
u, 1

provided that the limit exists, and

AL(Xi1, X2) = }}{%C(Ua u)/u,

provided that the limit exists.

That the limit need not exist is shown by the following example.
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Example 10.6 Let Q be a probability measure on [0, 1]? such that for every
integer n > 1, ) assigns mass 27", uniformly distributed, to the line segment
between (1 —27",1—27"*!) and (1 —27"*! 1 —27"). Define the distribution
function C' by C(ui,u2) = Q([0,u1] x [0,us]) for ui,us € [0,1]. Note that
C(u1,0) = 0 = C(0,uz2), C(u1,1) = uy and C(1,uz) = ug, i.e. C' is a copula.
Note also that for every n > 1 (with C(u,u) = 1 — 2u + C(u,u))

C(1—2 "t 1 —27nthy/o=ntl —
and
C(1—3/2"tt 1 —3/2" ) /(3/2" 1) = 2/3.
In particular lim, ~ C(u,u)/(1 — u) does not exist. |
Example 10.7 Consider the so-called Gumbel family of copulas given by
Co(ur,uz) = exp(—[(—Inuy)? + (—Inuy)?*/?),

for 8 > 1. Then

1—2u+Co(u,u) 1 — 2u + exp(2Y/9 Inu) 1 —2u+u?’’

1—u 1—u 1—u

and hence by "'Hospitals rule

. B N — 9 T 1/0,2°~1 _ o _ 91/0
il/ml(l 2u+ Cy(u,u)) /(1 —u) =2 11L1/H112 u 2—27.

Thus for 8 > 1, Cy has upper tail dependence: Ay = 2 — 21/¢. Moreover, again
by using 1'Hospitals rule,

lim Cyp(u,u)/u = lim 21/0,2"" — 0,
u\,0 u\,0

i.e. A\p = 0. See Figure 24 for a graphical illustration. |

Example 10.8 Consider the so-called Clayton family of copulas given by
Co(ur,uz) = (uy” +uz” —1)71/°,
for § > 0. Then Cy(u,u) = (2u—% — 1)~/% and hence, by I'Hospitals rule,

: _n —9 _ 1\-1/6
il{% Co(u,u)/u il{lr%)@u 1) Ju

i.e. \p = 2~1/%. Similarly one shows that Ay = 0. See Figure 24 for a graphical
illustration. |
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Figure 24: Samples from two distributions with Gamma(3,1) marginal dis-
tribution functions, linear correlation 0.5 but different dependence structures.
(X1,Y1) has a Gumbel copula and (X2,Y2) has a Clayton copula.

10.3 Elliptical copulas

Definition 10.4 Let X ~ E4(w, X, %) with distribution function F and with
continuous marginal distribution functions Fy, ..., Fy. Then the copula C given
by C(u) = F(Fy (u1),-..,Fy (uq)) is said to be an elliptical copula. [

Note that an elliptical copula is not the distribution function of an elliptical
distribution, but rather the copula of an elliptical distribution.

The copula of the d-dimensional normal distribution with linear correlation
matrix R is

Clga<u) = (I)%((I)_l(ul), T (I)_l(ud)),

where <I>‘f% denotes the joint distribution function of the d-dimensional standard
normal distribution function with linear correlation matrix R, and ®~! denotes
the inverse of the distribution function of the univariate standard normal distri-
bution. Copulas of the above form are called Gaussian copulas. In the bivariate
case the copula expression can be written as

“Hur) p@ 7 (u2) _(1.2 _9 2
g pT1T2 + T3)
C5™(u1, uz) / / (1= 2 exp { ) }dxldwz,

if p= Rys € (—1, 1)

Proposition 10.7 (i) If (X1, X2) is a normally distributed random vector, then
Av (X1, Xo) = Ap (X1, X2) =0.

(i) If (X1, X2) has continuous marginal distribution functions and a Gaussian
copula, then A\y (X1, X2) = Ap (X1, X2) =0.
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If X has the stochastic representation

\/;
X =4 p+ Y= AZ, 10.3
ant s (10.3)

where p € R? (column vector), S ~ x2 and Z ~ Ng(0,I) (column vector)
are independent, then X has an d-dimensional t,-distribution with mean p (for
v > 1) and covariance matrix 25 AAT (for v > 2). If v < 2, then Cov(X) is not

defined. In this case we just interpret ¥ = AAT as being the shape parameter
of the distribution of X. The copula of X given by (10.3) can be written as

Ci,R(u) = tg,R(trjl(ul)a ce 7t;1<ud))7

where R;; = ¥;;/v/2iux,; for i,j € {1,...,d} and where tl‘f’R denotes the
distribution function of \/vAZ/v/S, where AAT = R. Here t, denotes the

(equal) margins of ti ry ie. the distribution function of \/vZ;/v/S. In the
bivariate case the copula expression can be written as

1

t, t(u) pt,(v) 1 229 2y —(¥+2)/2
t _ 1 prT1T2 + T4
AR R I e e e e B

if p = Ri2 € (—1,1). Note that Rj2 is simply the usual linear correlation
coefficient of the corresponding bivariate t,-distribution if v > 2.

Proposition 10.8 (i) If (X1, X5) has a t-distribution with v degrees of freedom
and linear correlation matriz R, then

Ao (X1, X2) = Az (X1, Xa) = 2,41 <\/1/ F1V1— Rio//1+ R12> . (10.4)

(ii) If (X1, X2) has continuous marginal distribution functions and a t-copula
with parameters v and R, then Ay (X1, Xs3) and A (X1, X5) are as in (10.4).

From this it is also seen that the coefficient of upper tail dependence is increasing
in R15 and decreasing in v, as one would expect. Furthermore, the coefficient of
upper (lower) tail dependence tends to zero as the number of degrees of freedom
tends to infinity for Ris < 1.

The following result will play an important role in parameter estimation in
models with elliptical copulas.

Proposition 10.9 (i) If (X1, X3) ~ Ea(p, X, ) with continuous marginal dis-
tribution functions, then

2
QT(Xl,XQ) = — arcsin ng, (105)
T

where R12 = 212/\/211222.

(ii) If (X1, X2) has continuous marginal distribution functions and the copula
of Eo(p, X,1), then relation (10.5) holds.

73



10.4 Simulation from Gaussian and t-copulas

We now address the question of random variate generation from the Gaussian
copula C’ga. For our purpose, it is sufficient to consider only strictly positive
definite matrices R. Write R = AA™ for some dxd matrix A, and if Z, ..., Z; ~
N(0, 1) are independent, then

p+ AZ ~ Ng(p, R).

One natural choice of A is the Cholesky decomposition of R. The Cholesky
decomposition of R is the unique lower-triangular matrix L with LLT = R.
Furthermore Cholesky decomposition routines are implemented in most mathe-
matical software. This provides an easy algorithm for random variate generation
from the d-dimensional Gaussian copula C'$2.

Algorithm 10.1
e Find the Cholesky decomposition A of R: R = AAT.

Simulate d independent random variates Z, . .., Z, from N(0, 1).

Set X = AZ.

Set Uy, = ®(X),) fork=1,....d.

U = (Uy,...,Uq) has distribution function C'$?.

As usual ¢ denotes the univariate standard normal distribution function. 0
Equation (10.3) provides an easy algorithm for random variate generation
from the t-copula, CJ, 5.

Algorithm 10.2
e Find the Cholesky decomposition A of R: R = AAT.

e Simulate d independent random variates Z1, . .., Zq from N(0,1).
e Simulate a random variate S from x2 independent of Z1, ..., Z,.
o Set Y = AZ.

SV
e Set X = \/§Y'

Set Uy, Zt,/(Xk) fork=1,...,d.

U = (Uy,...,Uq) has distribution function C}, .
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10.5 Archimedean copulas

As we have seen, elliptical copulas are derived from distribution functions for
elliptical distributions using Sklar’s Theorem. Since simulation from elliptical
distributions is easy, so is simulation from elliptical copulas. There are how-
ever drawbacks: elliptical copulas do not have closed form expressions and are
restricted to have radial symmetry. In many finance and insurance applica-
tions it seems reasonable that there is a stronger dependence between big losses
(e.g. a stock market crash) than between big gains. Such asymmetries cannot
be modeled with elliptical copulas.

In this section we discuss an important class of copulas called Archimedean
copulas. This class of copulas is worth studying for a number of reasons. Many
interesting parametric families of copulas are Archimedean and the class of
Archimedean copulas allows for a great variety of different dependence struc-
tures. Furthermore, in contrast to elliptical copulas, all commonly encountered
Archimedean copulas have closed form expressions. Unlike the copulas discussed
so far these copulas are not derived from multivariate distribution functions us-
ing Sklar’s Theorem. A consequence of this is that we need somewhat technical
conditions to assert that multivariate extensions of bivariate Archimedean cop-
ulas are indeed copulas. A further disadvantage is that multivariate extensions
of Archimedean copulas in general suffer from lack of free parameter choice in
the sense that some of the entries in the resulting rank correlation matrix are
forced to be equal. We begin with a general definition of Archimedean copulas.

Proposition 10.10 Let ¢ be a continuous, strictly decreasing function from
[0,1] to [0, 00| such that ¢(0) = oo and p(1) = 0. Let C : [0,1]%> — [0, 1] be given
by

Clur,uz) = o~ (p(ur) + p(uz)). (10.6)
Then C is a copula if and only if ¢ is convex.

Copulas of the form (10.6) are called Archimedean copulas. The function ¢ is
called a generator of the copula.

Example 10.9 Let ¢(t) = (—1Int)?, where § > 1. Clearly o(t) is continuous
and ¢(1) = 0. ¢/(t) = —0(—Int)’~11, so ¢ is a strictly decreasing function
from [0, 1] to [0,00]. ¢”(t) > 0 on [0, 1], so ¢ is convex. Moreover ¢(0) = co.

From (10.6) we get
Cy™ (ur,uz) = ¢ (p(u1) + p(uz)) = exp(—[(— Inuy)? + (= Inuy)?]'/?).

Furthermore C = II (IT(u1,u2) = wjue) and limg_oo Cop = M (M (uy,uz) =
min(uy,uz)). This copula family is called the Gumbel family. As shown in
Example 10.7 this copula family has upper tail dependence. [ |

Example 10.10 Let ¢(t) = t=% — 1, where # > 0. This gives the Clayton
family

~1/6

C§'(ur,ug) = (i =D+ (uy’ =)+ 1) = (uy’ +uy? = 1)V, (10.7)
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Moreover, limy_.g Cy = II and limg_,o, Cy = M. As shown in Example 10.8 this
copula family has upper tail dependence. |

Recall that Kendall’s tau for a copula C' can be expressed as a double integral
of C. This double integral is in most cases not straightforward to evaluate.
However for an Archimedean copula, Kendall’s tau can be expressed as a one-
dimensional integral of the generator and its derivative.

Proposition 10.11 Let (X5, X3) be a random vector with continuous marginal

distribution functions and with an Archimedean copula C' generated by ¢. Then
Kendall’s tau of (X1, X2) is given by

p(t)
¢'(t)
Example 10.11 Consider the Gumbel family with generator ¢(t) = (—Int)?,

for @ > 1. Then ¢(t)/¢'(t) = (t1nt)/0. Using Proposition 10.11 we can calculate
Kendall’s tau for the Gumbel family.

dt.

1
0-(X1,X3) =1 +4/
0

1 2 1
tint 4 (rt 1 t 4 1

As a consequence, in order to have Kendall’s tau equal to 0.5 in Figure 25 (the
Gumbel case), we put § = 2. |

Example 10.12 Consider the Clayton family with generator op(t) = t=¢ — 1,
for § > 0. Then (t)/¢'(t) = (t°+1 —t)/6. Using Proposition 10.11 we can
calculate Kendall’s tau for the Clayton family.

Lgo+1 4 1 1 0
QT(H)_1+4/O 7 dt—1+§(m—§)—m.

A natural question is under which additional conditions on ¢ we have that
the most simple multivariate extension of bivariate Archimedean copulas,

e (p(ur) + - + p(ua)),

is a copula for d > 3. The following results address this question and show why
inverses of Laplace transforms are natural choices for generators of Archimedean
copulas.

Definition 10.5 A function g : [0,00) — [0,00) is completely monotonic if it
is continuous and if for any t € (0,00) and k=0,1,2,...,
dk:
—1)F  — > 0.
0 (G0 | 2
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Figure 25: The upper left plot shows BMW-Siemens daily log returns from
1989 to 1996. The other plots show samples from bivariate distributions with
t4-margins and Kendall’s tau 0.5.

Proposition 10.12 Let ¢ : [0,1] — [0, 00| be continuous and strictly decreasing
such that p(0) = oo and ¢(1) = 0. Then, for any d > 2, the function C :
[0,1]¢ — [0,1] given by

C(u) = o H(p(ur) + - + p(uq))

1

is a copula if and only if =" is completely monotonic on [0,00).

The following result tells us where to look for generators satisfying the conditions
of Proposition 10.12.

Lemma 10.1 A function ¥ : [0,00) — [0,00) is the Laplace transform of a
distribution function G on [0,00) if and only if ¥ is completely monotonic and

T(0) = 1.

Proposition 10.13 Let G be a distribution function on [0,00) with G(0) = 0
and Laplace transform

U(s) = /000 e **dG(z), s=>0.

Consider a random variable X with distribution function G and a set of [0, 1]-
valued random variables Uy, ...,Uyg which are conditionally independent given
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X with conditional distribution function given by Fy, | x—,(u) = exp(—2 ¥~ (u))
foru e [0,1]. Then

P(Ui <up,...,Ug <ug) = V(U () + -+ T (ug)),

so that the distribution function of U is an Archimedean copula with generator
s

Proof.
P(Ul Sulw":Ud Sud>

:/ P(U; <uy,...,Us <ug | X =2)dG(x)

0

:/ Py <y | X =2)...P(Us < ug | X = 2)dG(x)
0

_ / (e (U ) -+ U (1)) }AC )

= WU () 4+ T ().

10.6 Simulation from Gumbel and Clayton copulas

As seen from Proposition 10.13, the following algorithm shows how to simulate
from an Archimedean copula C of the form

Clu) = (p(ur) + - + p(uq)),

1

where ¢~ ' is the Laplace transform of a distribution function G on [0, c0) with

G(0) =0.
Algorithm 10.3

e Simulate a variate X with distribution function G such that the Laplace
transform W of GG is the inverse of the generator ¢ of the required copula C'.

e Simulate independent standard uniform variates Vi, ..., Vy.
e U= (¥(—In(1)/X),...,¥(—1In(Vy)/X)) has distribution function C.
To verify that this is correct, notice that with Uy = ¥(—In(V%)/X) we have

P(U(—In(Vk)/z) < uk)
(—InVj > 20 H(uy))
(Vi < exp{—2¥™" (up)})
= exp{—2¥ (uy)}.

P
P
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As we have seen, the generator ¢(t) = t=% — 1, § > 0, generates the Clayton
copula C§'(u) = (u7?+---+uz? —d+1)""? Let X ~ Gamma(1/6,1), i.e. let
X be Gamma-distributed with density function fx(z) = z/%~le=*/T(1/6).
Then X has Laplace transform

E(e %) = /OOO e_”ﬁxl/e_le_mdx =(s+ 1)_1/9 = 1(s).
Hence, the following algorithm can be used for simulation from a Clayton copula.
Algorithm 10.4

e Simulate a variate X ~ Gamma(1/6,1).

e Simulate independent standard uniform variates Vi, ..., Vy.

o IfU(s) = (s + 1)1/, then U = (¥(—In(V1)/X), ..., U(In(Vy)/X)) has
distribution function C{'.

This approach can also be used for simulation from Gumbel copulas. How-
ever, in this case X is a random variable with a nonstandard distribution
which is not available in most statistical software. However, one can simu-
late from bivariate Gumbel copulas using a different method. Take # > 1 and
let F(z) =1~ F(x) = exp(—2'/?) for & > 0. If (Z1,2,) = (VS?, (1 —-V)SY)
where V' and S are independent, V' is standard uniformly distributed and S has
density h(s) = (1—1/0+(1/6)s) exp(—s), then (F(Z), F(Z,)) has distribution
function C§™, where

OS5 (u1, uz) = exp(—[(—Inu1)? + (= Inuy)?)/?).

This leads to the following algorithm for simulation from bivariate Gumbel
copulas.

Algorithm 10.5

e Simulate independent random variates V1, Vo ~ U(0, 1).

Simulate independent random variates W1, Wo, where Wy, ~ Gamma(k, 1).

Set S = Tive<i/oeWh + L1/ W
Set (Zl, Zg) = (‘/159, (1 — Vl)Se)

U= (exp(—le/O), exp(—Z;/O)) has distribution function C$.
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10.7 Fitting copulas to data

We now turn to the problem of fitting a parametric copula to data. Clearly,
first one has to decide which parametric family to fit. This is perhaps best done
by graphical means; if one sees clear signs of asymmetry in the dependence
structure as illustrated in Figure 24, then an Archimedean copula with this
kind of asymmetry might be a reasonable choice. Otherwise, see e.g. Figure 26,
one might go for an elliptical copula. It is also useful to check whether the data
shows signs of tail dependence, and depending on whether there are such signs
choose a copula with this property.

Gaussian t

Y1
0

Figure 26: Samples from two distributions with standard normal margins, R15 =
0.8 but different dependence structures. (X1,Y1) has a Gaussian copula and
(X2,Y2) has a tao-copula.

We will consider the problem of estimating the parameter vector 6 of a
copula Cy given an iid sample {X1, ..., X,,} where X ~ F for some distribution
function F' with continuous marginal distribution functions Fi, ..., Fy and hence
a unique representation F'(x) = Co(Fi(z1), ..., Fi(xq)).

We have seen that for Gaussian-, t-, Gumbel- and Clayton copulas there are
simple relations between Kendall’s tau and certain copula parameters:

Clga<u) = (I)%((I)_l(ul), SRR (I)_l(ud)), Rij = Sin(”(QT)ij/2)7
Ch(u) = t& p(t,  (ur), .., ;" (ua)), Ri; =sin(m(0r)ij/2),
Cg™(u) = exp(=[(=Inuy)? + -+ (= Inwg)?]/), 0 =1/(1- (0r)ij),
C§'(w) = (uy” + -+ uy® —d+1)71°, 0 =2(0r)ij/(1 = (or)iz),

where (0;)ij = 0+(Xk,i, Xi,j). Hence parameter estimates for the copulas above
are obtained by simply replacing (o-);; by its estimate (g;);; presented in Sec-
tion 8.5.
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10.8 Gaussian and t-copulas
For Gaussian and t-copulas of high dimensions, it might happen that E, with
R;; = sin(m0;,;/2), is not positive definite. If this is the case, then one has to

replace R by a linear correlation matrix R* which is in some sense close to R.
This can be achieved by the so-called eigenvalue method.

Algorithm 10.6

e Calculate the spectral decomposition R = TATI'T, where A is a diagonal
matrix of eigenvalues of R and I" is an orthogonal matrix whose columns are
are eigenvectors of R.

e Replace the negative eigenvalues in A by some small value § > 0 to obtain A.

e Calculate R = TATT which will be symmetric and positive definite but not
necessarily a linear correlation matrix since its diagonal elements might differ
from one.

o Set R = DED, where D is a diagonal matrix with Dy, j, =1/ Ekk

After having estimated R (with R possibly modified to assure positive definite-
ness) it remains to estimate the degrees of freedom parameter. We construct a

pseudo-sample {61, e ﬁn} of observations from the copula by componentwise
transformation with the estimated marginal distribution functions Fi, ..., Fy as
follows.

U, = (ﬁl(Xk,l)a . --,ﬁ’d(Xk,d)), E=1,...,n

Either ﬁk can be taken as a fitted parametric distribution function or as a
version of empirical distribution function:

Fk( ) F(ﬁ)( - n+ﬁz {X;,x<x}s

where (5 € (0,1] which guarantees that the pseudo-sample data lies within the

unit cube, i.e. that Uk € (0,1)% Given a pseudo-sample from the t-copula,
the degrees of freedom parameter v can be estimated by maximum likelihood
estimation (MLE). A ML estimate of v is obtained by maximizing

lnL(fa ﬁla SRR Gn) = Zlﬂ Cg’ﬁ(ﬁk)
k=1

with respect to £, where c¢ g denotes the density of a t-copula with { as degrees
of freedom parameter. The log-likelihood function for the t-copula is given by

InL( R, Uy,...,U,)

:Zlﬂgg,R(tgl(Uk,1),~ de ZZIHQ& t§ Uk;]))

k=1 k=1 j5=1
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where g¢ r denotes the joint density of a standard t-distribution with distri-
bution function tg’ r and ge denotes the density of a univariate standard t-
distribution with distribution function ?¢. Hence an estimate of the degrees
of freedom parameter v is obtained as the { € (0,00) that maximizes the log
likelihood function In L(¢, R, Uy, ..., U,).
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11 Portfolio credit risk modeling

What is credit/default risk? The following explanation is given by Peter Crosbie
and Jeffrey R. Bohn in [5]:

Default risk is the uncertainty surrounding a firm’s ability to service its debts
and obligations. Prior to default, there is no way to discriminate unambiguously
between firms that will default and those that won’t. At best we can only make
probabilistic assessments of the likelihood of default. As a result, firms generally
pay a spread over the default-free rate of interest that is proportional to their
default probability to compensate lenders for this uncertainty.

If a firm (obligor) can not fulfill its commitments towards a lender, or coun-
terparty in a financial agreement, then we say that the firm is in default. Credit
risk also includes the risk related to events other than default such as up- or
down moves in credit rating.

The loss suffered by a lender or counterparty in the event of default is usually
significant and is determined largely by the details of the particular contract or
obligation. In most cases the obligor is able to repay a substantial amount of
the loan, so only a certain fraction of the entire loan is lost. For example, typical
loss rates in the event of default for senior secured bonds, subordinated bonds
and zero coupon bonds are 49%, 68%, and 81%, respectively.

In this chapter we will introduce a general framework for modeling portfolios
subject to credit risk.

11.1 A simple model

Consider a portfolio consisting of n loans (or bonds) subject to default. That
the loan is subject to default means that with some probability p;, obligor ¢ will
not be able to repay his debt. Each loan has a certain loan size L;. If there
is a default then the lender does not lose the entire amount L; but rather a
proportion 1 — \; of the loan size. We call A; € [0, 1] the recovery rate of loan i.
The loss-given-default for loan number ¢ which is the amount lost by the lender
in the case of default is given by

LGD; = (1 — A\;)L;.

At some time T', say one year from now, each obligor can be in either of two
states, default or nondefault. We model the state of each obligor at time T by
a Bernoulli random variable

1 if obligor ¢ is in default,
X, = .
0 otherwise.

The default probability of obligor 7 is then given by p; = P(X; = 1). The total
loss at time T due to obligors defaulting is then given by

L= anxi LGD; = anxiu — \i)Ls.
=1 =1

83



An important issue in quantitative credit risk management is to understand the
distribution of the random variable L. Given that we know the size L; of each
loan we need to model the multivariate random vector (X1,..., X, A1,..., An)
in order to derive the loss distribution of L. Most commercial models in use
today assume the recovery rates \; to be independent of X = (Xy,...,X,,)
and independent of each other. This leaves essentially the joint distribution of
default indicators X to be modeled.

The most simple model we may think of is when all loan sizes are equal
L; = Ly, all recovery rates are deterministic and equal A\; = A\; and all default
indicators X; are iid with default probability p. Then the loss is given by
L =LGD; N, where N = >"" | X, is Binomial(n, p)-distributed. Below we will
study some more sophisticated models for the default indicators X.

11.2 Latent variable models

Since it is practically impossible to obtain historical observations of the default
indicator X; for a given obligor 4 (it is rather unusual that the firm has defaulted
many times before) it is a good idea to divide all obligors into m homogeneous
groups. Within each group all obligors (firms) have the same default probability.
Estimation of default probabilities can then be based upon how many obligors
that have defaulted within each group, leading to larger sample sizes. To this
end we may introduce a state variable S = (S1,...,S,), where S; represents
the state of the obligor i. We suppose that the state is an integer in the set
{0,...,m} with S; = 0 indicating that obligor i is in the default state. The
other states may be thought of as the obligor being in different rating classes.
We let X; denote the default indicator of obligor 1, i.e.

{0 S £0,
X"—{1 if S; = 0.

The vector X = (X71,...,X,,) is the vector of default indicators and the default
probability is p; = P(X; = 1).

Often the state variables S = (51, ..., S,) are modeled using a vector of so-
called latent variables Y = (Y7,...,Y,); Y; representing for instance the value
of the assets, or asset returns, of obligor i. Typically we have a number of
thresholds d;j, i =1,...,n, j =0,...,m+ 1, with dip = —oc and d;(;,4.1) = 0.
The state of .S; is then given through Y; by

S; = J ify; € (dijadi(j—i—l)]'

Let F; denote the distribution of Y;. Default occurs if Y; < d;; and hence the
default probability is given by p; = F;(d;;). The probability that the first k
obligors, say, default is then given by (the F;s are assumed to be continuous)
pr.k =P <di,..., Y, < dpa)
=C(Fi(d11), ..., Fr(dk1),1,...,1)
=C(p1,.-,pr,1,...,1),
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where C' denotes the copula of Y. As the marginal default probabilities F;(d;1)
are small, the joint default probability will depend heavily on the choice of
copula C.

Example 11.1 Consider a loan portfolio with n = 100 obligors where the credit
risk is modeled using a latent variable model with copula C. Suppose that C' is
an exchangeable copula, i.e. that

Clut, ... up) = CUr(r), -, Un(n)),

where 7 is an arbitrary permutation of {1,...,n}. Suppose further that the
individual default probability of each obligor is equal to p = 0.15, i.e. p; =
p = 0.15. Let N denote the number of defaults and let p,(Y;,Y;) = 7, i # j
denote Kendall’s tau between any two latent variables (which are assumed to
have continuous distribution functions). We assume that 7 = 0 and we simulate
the number of defaults 10° times and illustrate the distribution of the number
of defaults in a histogram when

(a) C is a Gaussian copula and (b) C' is a t4 copula. The histograms are shown
in Figure 27. One clearly sees that zero correlation is far from independence if
the dependence structure is nonGaussian.

11.3 Mixture models

The random vector X = (X,...,X,,) follows a Bernoulli mixture model if
there is a random vector Z = (Z1,...,Zy), m < n, and functions f; : R™ —
[0,1], 4 € {1,...,n} such that conditional on Z, X is a vector of independent
Bernoulli random variables with

P(Xi=112) = fi(Z), P(Xi=0]Z)=1- fi(Z).

For x = (z1,...,%,) € {0,1}" we then have
P(X = x| 2) = [[ 121" (1~ £i(2)"
i=1
The unconditional distribution is then given by
P(X = x) — E(P(X = x| 2)) = B( [[ #(2)(1 - £(Z)'*).
i=1

If all the functions f; are equal, f; = f, then, conditional on Z, the number of
defaults N = Y"1" | X; is Bin(n, f(Z))-distributed.

The random vector X = (X7q,...,X,) follows a Poisson mixture model
if there is a random vector Z = (Z1,...,Zy,), m < n, and functions \; : R™ —
(0,00), 3 € {1,...,n} such that conditional on Z, X is a vector of independent

Po(\;(Z))-distributed random variables. In this case we have

(Z)" .
P(Xi:xi|2):&e M(Z) g e N,
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Figure 27: Histograms of the number of defaults: (a) Gaussian copula (upper)
and (b) t4 copula (lower).
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For x = (z1,...,2,) € N” we then have

n

PX=x|2)=]]

=1

Ai(Z)* o (Z)

The unconditional distribution is then given by

n

P(X =x) = E(P(X = x | Z)) = E(H Me—MZ)).

;!
i=1 v

The use of Poisson mixture models for modeling defaults can be motivated as
follows. Suppose that X = (X1,..., X,,) follows a Poisson mixture model with

factors Z. Put X; = Ij o0)(X;). Then X = (X1,...,X,) follows a Bernoulli
mixture model with

fi(Z)=1—e N2,

If the Poisson parameters \;(Z) are small then N = Sy X, is approximately

equal to the number of defaulting obligors and conditional on Z, NV is Poisson(\)-
distributed with \(Z) = >_7" | Xi(Z).

Example 11.2 A bank has a loan portfolio of 100 loans. Let X} be the default
indicator for loan k such that X, = 1 in case of default and 0 otherwise. The
total number of defaults is N = X1 + - 4+ Xj00.

(a) Suppose that Xq,..., Xjp0 are independent and identically distributed with
P(X; =1) =0.01. Compute E(N) and P(N = k) for k € {0,...,100}.

(b) Consider the risk factor Z which reflects the state of the economy. Suppose
that conditional on Z, the default indicators are independent and identically
distributed with P(X; =1 | Z) = Z, where

P(Z=0.01)=09 and P(Z=0.11) = 0.1.
Compute E(N).

(c) Consider the risk factor Z which reflects the state of the economy. Suppose
that conditional on Z, the default indicators are independent and identically
distributed with

P(X,=1|2)=2°,

where Z is uniformly distributed on (0, 1). Compute E(N).

Solution (a): We have N ~ Binomial(100,0.01). Hence, E(N) = 100-0.01 =1
and

1
P(N =k) = ( 20)0.01’“0.99100—@
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Solution (b): We have N | Z ~ Binomial(100, Z). Hence,
E(N) = E(E(N | Z)) = E(100Z) = 100 E(Z)
— 100(0.01-0.9+0.11-0.1) = 0.9 + 1.1 = 2.
Solution (c): We have N | Z ~ Binomial(100, Z%). Hence,

E(N) = E(E(N | Z)) = E(100Z°) = 100 E(Z?)
=100-0.1 = 10.

11.4 One-factor Bernoulli mixture models

In this section we will consider the Bernoulli mixture model where Z is univari-
ate, Z = Z, i.e. we only have one factor and all the functions f; are equal, f; = f.
This means that all marginal default probabilities are equal and the number of
defaults N satisfies N | Z ~ Binomial(n, f(Z)). Moreover, the unconditional
probability that only the first k& obligors defaults is given by

P(X1=1,...,X,=1,Xp01=0,...,X, =0)
—EP(X;=1,...,Xs=1,X441=0,...,X,=0| 2))

=E(f(2)* (1~ f(Z))" 7).

To determine the unconditional default probabilities, number of defaults, etc. we
need to specify the distribution function G of Z. Given G, the unconditional
probability that the first k obligors defaults is given by

P(X;=1,...,X,=1,X3,1=0,...,X,,=0) = / F(2)F(1 = f(2)"*G(d2)
and the number of defaulting obligors N has unconditional distribution
n > _
P =0 = (1) [ M0 fer o)

Notice also that

COV(XZ', X]) = E(XZX]) — E(XZ) E(XJ)
= B(E(X.X; | 2)) - E(E(X, | 2))E(E(X; | 2))
=E(f(2)*) - E(f(2))* = var(f(2)).
We have N =E(N | Z)+ N —E(N | Z) and
E(N) = E(E(N | 2)) = nE(f(2)) = np,

var(N)

(
E(var(N | Z)) 4+ var(E(N | Z))
=E(nf(2)(1 - f(2))) + var(nf(Z))
nE(f(Z2)1 - f(2))) +n*var(f(Z)).
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Notice that by Markov’s inequality

PN/ - 1(2)] > ¢ | 2) < N1 2)_ DA 1(Z),

Hence, for every ¢ > 0,

E(f(2)( - f(2)))

ne2

P(IN/n— f(Z)] > ¢) = E(P(IN/n— f(Z)| > | 2)) <

Hence, N/n = f(Z) as n — oo which justifies the approximation N/n ~ f(Z)
for n large. (In fact it hold that N/n — f(Z) a.s. as n — 00.)

11.5 Probit normal mixture models

In several portfolio credit risk models (see the section about the KMV model
below) the default indicators X;, i = 1,...,n, have the representation X; = 1
if and only if \/0Z + /T — oW; < di1, where ¢ € [0,1] and Z,W1,..., W,
are iid and standard normally distributed. Assuming equal individual default
probabilities p = P(X; = 1) we have d;; = ®~!(p) and hence

Xi =T _oo,0-1(p))(V0Z + /1 — 0oWj).
This gives
f(Z2)=P(Xi=1|2)=P(oZ+\/1-oW; <27 (p) | 2)

- (o)

This leads to

Vioo T UT

Setting ¢ = 0.999 and using the approximation N/n ~ f(Z) motivated above,
we arrive at the “Basel formula” for capital requirement as a fraction of the
total exposure for a homogeneous portfolio with individual default probabilities

p:

VaRq(f(Z)>=<I>( VO g-1(g) 4 <I>—1<p>).

: . 0 1 —1

Capital requirement = ¢jco [q) < Ve $7(0.999) + o (p)) —p} ,
v1i—o 1—0p

where ¢; is the fraction of the exposure lost in case of default and c5 is a constant

for maturity adjustments. The asset return correlation coefficient p is assigned

a value that depends on the asset type and also the size and default probability

of the borrowers.
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11.6 Beta mixture models

For the Beta mixing distribution we assume that Z ~ Beta(a,b) and f(z) = z.
It has density

9(z) = 22711 -2 a,b> 0,2 € (0,1),
where
1
ﬂ(aa b) = / Za_1<1 — z)b_ldz = w
0

and hence, using that I'(z + 1) = 2I'(z2),

E(Z) 1 /1 21— 2)P7ldz = Bla+1,b)

~ B(a,0) Jo B(a,b)
_Tle+1)I®)(a+b)  a
- T(a+b+1)T(a)T(b) a+b’

ala+1)

B(Z%) = (a+b)(at+b+1)

We immediately get that the number of defaults N has distribution

P(N = k) = (Z) /01 F(1— 2R g(2)de

_ (" 1 ' atk—171 _ \n—k+b—1
= (k:) ﬂ(a,b)/o z (1—2) dz
_ <n)ﬂ(a+k,b+n—k)

k A(a,b) ’

which is called the beta-binomial distribution. This probability function is il-
lustrated in Figure 28. The expected number of defaults is easily computed.

a
a+b

E(N) = B(E(N | Z)) = nE(E(X, | Z)) =nE(Z) = n
If we have estimated the default probabilities P(X; = 1) and P(X; = X; = 1),
i # j, then the parameters a and b can be determined from the relations

ala+1)
(a+b)(a+b+1)

P(X; = 1) = E(Z) = CLLH P(X;=X; =1) = E(22) =

Moreover, the linear correlation coefficient is o, (X;, X;) = (a+ b+ 1)71. If we
specify the individual default probability p and the linear correlation coefficient
0, then we obtain the parameters a and b of the Beta distribution as functions

of (p, 0):

1-0
a = (1_p)—g 5 b:p—.
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Figure 28: The probability function for the number of defaults in a Beta mixture

model with n = 1000 obligors and (a, b) = A(1,9).
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Example 11.3 Notice that if we only specify the individual default probability
p = P(X; = 1), then we know very little about the model. For example,
p=10.01 =a/(a+b) for (a,b) = (0.01,0.99), (0.1,9.9), (1,99), but the different
choices of (a, b) leads to quite different models. This is shown in the table below
which considers a portfolio with n = 1000 obligors.

(a,b) p  corr(Xy, X;)  VaRg.ggi)(IN) VaRg.g9p9)(n2)
(1,99) [ 0.01 0.01 47 [70] 45 [67]
(0.1,9.9) | 0.01 0.09 155 [300] 155 [209]

(0.01,0.99) | 0.01 0.5 371 [908] 371 [908]

Notice also how accurate the approximation N ~ nZ is!

Both Example 11.3 and Figure 28 illustrate that only specifying the indi-
vidual default probability p says very little about the distribution of N. Notice
that every choice of (a,b) = A(1, (1 — p)/p), A > 0, gives default probability p.
Let Zy be Beta(A, A(1 — p)/p)-distributed. Then, for every € > 0,

var(Zy) _ p (Ap+p
2 2\ \+p

P(|Zx —p| >¢) < p)—>0as>\—>oo.

Hence, Z) — p in probability as A — oco. This implies here that, with N being
the total number of defaults,

n

Py =m) =B ( ()220 ) = (1) as -

m

or equivalently that N, converges in distribution to a Binom(n, p)-distributed
random variable as A — oo. This is also seen in Figure 28.
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12 Popular portfolio credit risk models

In this chapter we will present the commercial models currently used by prac-
titioners such as the KMV model and CreditRisk™. Interesting comparisons of
these models are given in [6] and [10].

12.1 The KMV model

A popular commercial model for credit risk is the so-called KMV model provided
by Moody’s KMV (www.moodyskmv.com). It is an example of a latent variable
model where the state variables S = (S1,...,S5,) can only have two states
(m = 1). The latent variables Y = (Y7,...,Y,,) are related to the value of the
assets of each firm in the following way.

The Merton model

It is assumed that the balance sheet of each firm consist of assets and liabilities.
The liabilities are divided into debt and equity. The value of the assets of the
ith firm at time 7" is denoted by V4 ,(7"), the value of the debt by K; and the
value of the equity of the firm at time T" by Vg (7). It is assumed that the
future asset value is modeled by a geometric Brownian motion

Vai(T) = Vai(t) exp { (Mi - %) (T —t)+ oa, (Wi(T) - Wi(t)>} (12.1)

where g4 ; is the drift, o4 ; the volatility and (W;(¢);0 < ¢t < T') a Brownian
motion. In particular this means that W;(T') — W;(¢t) ~ N(0,7 — t) and hence
that InV, ;(T) is normal with mean InVy(t) + (pa; — 0%,/2)(T —t) and
variance 0% ;(T —t). The firm defaults if at time T the value of the assets are
less than the value of the debt. That is, the default indicator X; is given by

Xi = oo, k) (Va(T)).
Writing

we get Y; ~ N(0,1) and
Xi = (oo, k) (Va,i(T)) = [(—co,— DD,) (V)
with

InK; —InVa,(t) + (012471-/2 —pay) (T —1)
L oaiVT —1 .
The quantity DD, is called the distance-to-default. In principle the default
probability can then be computed as P(Va ;(T) < K;) = P(Y; < —DD;). Hence,

in the general setup of a two state latent variable model we have Y; ~ N(0,1)
and default thresholds d;; = — DD;.
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Computing the distance-to-default

To compute the distance-to-default we need to find V4 ;(t), o4, and pa,. A
problem here is that the value of the firms assets V4 ;(¢) can not be observed
directly. However, the value of the firms equity can be observed by looking
at the market stock prices. KMV therefore takes the following viewpoint: the
equity holders have the right but not the obligation, at time 7', to pay off the
holders of the other liabilities and take over the remaining assets of the firm.
That is, the debt holders own the firm until the debt is paid off in full by the
equity holders. This can be viewed as a call option on the firm’s assets with a
strike price equal to the debt. That is, at time 7" we have the relation

VE’Z<T) = maX(VAJ(T) — Ki, 0)

The value of equity at time ¢, Vi ;(t), can then be thought of as the price of a
call option with the value of assets as underlying and strike price K;. Under
some simplifying assumptions the price of such an option can be computed using
the Black-Scholes option pricing formula. This gives

VE,Z(t) - C(‘/A,z(t)a OA,i» T)?
where

C(VA’i(t), UA,i, T‘) = VA’i(t)q)(el) — Kie_r(T_t)q)<€2),
anA,i(t) —InK; + (7“ + 0'124 i/2)(T — t)
e = ’
OAi T—t

€y — €1 —O’A’i\/T—t,

® is the distribution function of the standard normal and r is the risk free inter-
est rate (investors use e.g. the interest rate on a three-month U.S. Treasury bill
as a proxy for the risk-free rate, since short-term government-issued securities
have virtually zero risk of default). KMV also introduces a relation between the
volatility o ; of Vg ; and the volatility o4,; of V4 ; by

ogi=9Vai(t),04,,1),

where g is some function. Using observed/estimated values of Vg ;(t) and o ;
the relation

Vi,i(t) =C(Va(t),0a,,7)
opi =9(Va,i(t),o4,,7)
is inverted to obtain V4 ;(t) and o4 ; which enables computation of the distance-
to-default DD;.
The expected default frequency

To find the default probability corresponding to the distance-to-default DD;
KMV do not actually use the probability P(Y; < —DD;). Instead they use
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historical data to search for all companies which at some stage in their history
had approximately the same distance-to-default. Then the observed default
frequency is converted into an actual probability. In the terminology of KMV
this estimated default probability p; is called Expected Default Frequency (EDF).

To summarize: In order to compute the probability of default with the KMV
model the following steps are required:

(i) Estimate asset value and volatility. The asset value and asset volatility of
the firm is estimated from the market value and volatility of equity and
the book of liabilities.

(ii) Calculate the distance-to-default.

(iii) Calculate the default probability using the empirical distribution relating
distance-to-default to a default probability.

The multivariate KMV model

In the Merton model above we did not introduce any dependence between the
value of the assets for different firms. We only considered each firm separately.
To compute joint default probabilities and the distribution of the total credit
loss it is natural to introduce dependence between the default indicators by
making the asset value processes V4 ; dependent. The following methodology
is used by KMV. Let (W;(t) : 0 <t < T,j = 1,...,m) be m independent
standard Brownian motions. The evolution (12.1) of asset i is then replaced by

0%, .
VaalT) = V@) exp { (1as = =2 ) (T = 1) + 3 0y (W) = W5(1)) }.
j=1
where
0,24,1 = Zai,i,j'
j=1

Here, 04 ,; ; gives the magnitude of which asset 7 is influenced by the jth Brow-
nian motion. The event Vy ;(1) < K; that company i defaults is equivalent
to

2
04

2

> o (Wi(T) = Wi(t)) < K —InVai(t) + (=52 = juai ) (T ).

If we let

> iy 04, (Wi(T) — Wi(t))
OA T—1t

then Y = (Y1,...,Y,) ~ N,,(0, %) with

Y, =

Y

m
E” — Zk:]_ O-Aaiako-Aajak
1] T
OAiTA,j

95



and the above inequality can be written as

o3 .
_ InK; —InVy,(t) + ( 5t — ,UA,i)(T— t)
oaiVT —1 .

[ J/

—DD;

7

Hence, in the language of a general latent variable model the probability that
the first k firms default is given by

P(Xl = 1,...,Xk = 1) :P(Yl < —DDl,...,Yk < —DDk)
= CSY®(—DDy),...,®(—DDy),1...,1),
where C’g ¢ is the copula of a multivariate normal distribution with covariance
matrix Y. As in the univariate case KMV do not use that default probability

resulting from the latent variable model but instead use the expected default
frequencies EDF;. In a similar way KMV use the joint default frequency

JDF, ;= CS*(EDFy,...,EDFy,1...,1),

as the default probability of the first k firms.

Estimating the correlations

Estimating the correlations of the latent variables in Y is not particularly easy
as the dimension n is typically very large and there is limited available histor-
ical data. Moreover, estimating pairwise correlations will rarely give a positive
definite correlation matrix if the dimension is large. A way around these prob-
lems is to use a factor model where the asset value, or more precisely the latent
variables Y is divided into k key factors and one firm specific factor. The key
factors are typically macro-economic factors such as

e Global economic effects
e Regional economic effects

e Sector effects

Country specific effects
e Industry specific effects
If we write
k
Yi§Zaiij+biUi, izl,...,n,
j=1

where Z = (Z1,...,Zk) ~ Ng(0,A) is independent of U = (Uy,...,U,) ~
N,,(0,T). then the covariance matrix of the right hand side is given by AAAT+D
where A;; = a;; and D is a diagonal (n X n) matrix with entries D;; = b3.
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12.2 CreditRisk™ — a Poisson mixture model

This material presented here on the CreditRisk™ model is based on [6], [10] and
[4].

CreditRisk+ is a commercial model for credit risk developed by Credit Suisse
First Boston and is an example of a Poisson mixture model. The risk factors
Z1,...,Zy, are assumed to be independent Z; ~ Gamma(a;, 3;) and we have

m m
Z Z zyzlaaijzo-

fori=1,...,n. Here \; > 0 are constants. The density of Zj; is given by
2%~ Lexp{— z/ﬁj}
ﬁ%r(o‘y>

The parameters «;, (; are chosen so that a;3; = 1 and then E(Z;) = 1 and
E(X\;(Z)) = X\;. Notice that the expected number of defaults, E(N), is given by

fi(z) =

E(N) = E(E(N | Z)) ZE (X, | 2))

= ZEO‘z(Z)) = in Zaij E(Z;) = ZXZ

The loss-given-default LGD; of obligor i is modeled as a constant fraction 1—\;
of the loan size L;,

Here ); is the (deterministic) expected recovery rate. Each loss amount is then
expressed as an integer multiple v; of a fixed base unit of loss (e.g. one million
dollars) denoted Lg. Then we have

LGD; = (1 — \)L; = {&
Lo

:|L0:UiLQ, izl,...,n,
where [z] denotes the nearest integer of z (x — [z] € (—1/2,1/2]). In this way
every LGD; can be expressed as a fixed integer multiple v; of a predefined base
unit of loss Ly. The main idea here is to approximate the total loss distribution
by a discrete distribution. For this discrete distribution it is possible to compute
its probability generating function (pgf) g

Recall the definition of the pgf for a discrete random variable Y with values

in {ylv . '7ym}7

gy () =E(t") =) " P(Y =y,)
=1

Recall the following formulas for probability generating functions.
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(i) If Y ~ Bernoulli(p) then gy (t) =1+ p(t — 1).
(ii) If Y ~ Poisson(\) then gy (t) = exp{A(t — 1)}.
(iii) If Xq,..., X, are independent random variables then

n
9x1+x, () = [ [ ox.(0).
=1

(iv) Let Y have density f and let gx|y—,(t) be the pgf of X|Y" = y. Then
ax() = [ gxiv=y ().

(v) If X has pgf gx(t) then

1

d¥g(t)
g Eg 3 .

(), with g™ () = —7

P(X = k)

The pgf of the loss distribution

Let us derive the pgf of the loss distribution

L= Xn: XiUZ'L().
i=1

First we determine the conditional pgf of the number of defaults N = X7 +---+
X, given Z = (Z1,...,Zy). Given Z the default intensities A\1(Z),..., A\, (Z)
are known so conditional on Z the default indicators are independent and
Poisson(\;(Z))-distributed. Hence

gx2(t) = exp{M(Z)(E~ D)}, i=1....n.

For N we now obtain

gn|z(t) = ngi\z = Hexp{)\i(Z)(t — 1)} =exp{u(t-1)},

p= ZM(Z)-
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Next we use (iv) to derive the unconditional distribution of the number of de-
faults V.

:/Ooo.../oooex {it-1) zn: X Zamzj b f(em)de - da,
:/0*.../0°°ex {(t-1) i Zw Vo) o

- / T / Texp{(t — Dy} fulz)dzn - exp{(t — Dimzm } o (zn)dzn

i=1 7o

Each of the integrals in the product can be computed as
/000 53% exp{zp;(t —1)}2% Lexp{—2z/B;}dz
- | e e - e - D3
= {u=2(87" = it - 1)}

“Lexp{—uldu

gn(t) = ﬁ (f:gt) . (12.2)

Similar computations will lead us to the pgf of the loss distribution. Conditional
on Z the loss of obligor 7 is given by

Since the variables X;|Z, i = 1,...,n, are independent so are the variables L;|Z,
i=1,...,n. The pgf of L;|Z is
gL, z(t) = E(t"'|2) = E(t"Y|Z) = gx,12(t").
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Hence, the pgf of the total loss conditional on Z is

9r1z(t) = gri 4+ 1,2t HQL 1z (t HQX 1z (t

— exp { f:Zj(inaij(t”i - 1))}.

Similar to the previous computation we obtain

i 1—9; o v;
gr(t) = H <T/\j(t)> ) Iu] ;A Gt

with p1; and ¢; as above. The loss distribution is then obtained by inverting the
pgf. In particular, the pgf gy (¢) uniquely determines the loss distribution.

Example 12.1 Consider a portfolio that consists of n = 100 obligors. Recall
the probability generating function (12.2) for the number of defaults N in the
CreditRisk™ model. In order to compute the probabilities P(N = k), k > 0, we
need to compute the derivatives

k
k), d¥gNn

It can be shown that 5\7)(0) satisfies the recursion formula

k—1

=0

(show this!) Assume that \; = A = 0.15, a; =a =1, 3; = 3 =1, a;; =
a = 1/m. To better understand the model we plot the function P(N = k) for
k=20,...,100 when m = 1 and when m = 5. The result is shown in Figure 29.

One can interpret the plot as follows. With only one risk factor, m = 1,
to which all default indicators are linked, we either have many default or we
have few defaults. Having approximately E(N) = 15 defaults is unlikely. With
m = b independent risk factors there is a diversification effect. In this case it is
most likely that we have approximately E(N) = 15 defaults.

Example 12.2 Consider a homogeneous portfolio with 100 loans and let NV be
the total number of defaults one year from now. To model the default risk we
consider the CreditRisk+ model with one single Gamma(a, 3)-distributed risk
factor Z with density function

Zoz—le—z/ﬁ

fz(z) = BT (a)

z2>0,aa>0,0>0,
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Figure 29: P(N = k) for k =0,...,100 for m = 1 and m = 5. For m = 1 the
probability P(N = k) is decreasing in k, for m = 5 the probability P(N = k)
first increasing in k£ and then decreasing.

and mean E(Z) = af. We assume that the CreditRisk+ model is chosen so that
it is a Poisson mixture model with A;(z) = z/100 for i = 1,...,100. Moreover,

a=1/4.
Notice that the X; | Z are Poisson(Z/100)-distributed and independent.
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Hence, N | Z is Poisson(Z)-distributed and

P(N:k):E(P(N:k|Z)):/OOOP(N:k\Z:z)fZ(z)dz

1 [ yat(k—1)—2(1+1/B)
“ul T
1 B&I’(&) 0© La-1y—2/
= — Nid

K 3T (a) / Fr@a
_15°T(@)
" K BoT(a)’

where a = o + k and 3: G/(1+ ). Hence,
P(N=0)=(1+p8)"%=(1+p)"Y~

k—1
PN = k) = 2641 +5) " [[(a+)
| 1

—6‘“ (1+8)710" ‘“H H(1+58)

~Lae s T a s
. 1

Similarly, the individual default probability and the probability of joint default
is computed as

P(X;>1)=1-P(X;=0)=1-E(P(X; =0 2))

100 \”?
—1—FE —Z/100 -1
(e ) 100+58)

P(X; >1,X; > 1) = E((1 — e~ %/190)2)

g 200 NP 50 NP
a 100 + 3 50+8)

If X; = 1[1,00)(X5) is the default indicator for obligor 7 in the corresponding
Bernoulli mixture model, then

P(X;=1)=P(X; >1)
P(X;=1,X;=1)=P(X; >1,X; > 1),
-~ ~. PX;=1,X;= P(X; =1)2
QL(XZ,X]): ( J ) ( ) ,



and these quantities can be computed from the above expressions. Notice that

~ 100 \”?
PX;=1)=1——_ ~0.01
(Xi=1) (100+ﬁ)

and the accuracy of the approximation is better the smaller 3 is.

Default probability in CR+
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Linear correlation between default indicators in CR+

corr
0.06 0.08
| |

0.04
|

0.02
|

0.00
|

o 4
N -
~ -
o -
o -
84

beta

Figure 30: The default probability P(X; = 1) = 1 — (100/(100 + 38))*/? and
linear correlation coefficient o7, (X;, X;) as functions of 3.
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A A few probability facts

A.1 Convergence concepts

Let X and Y be random variables (or vectors) with distribution functions F'y
and Fy. We say that X = Y almost surely (a.s.) if Pw € Q : X(w) =
Y(w)}) = 1. We say that they are equal in distribution, written X = Y, if
Fx = Fy. Notice that X = Y a.s. implies X £ Y. However, taking X to be
standard normally distributed and Y = —X we see that the converse is false.

Let X, X1, Xs,... be a sequence of random variables. We say that X,
converges to X almost surely, X,, — X a.s., if

P({w e Q: Xp(w) — X(w)}) = 1.

We say that X,, converges to X in probability, X,, — X, if for all € > 0 it holds
that

P(|X, — X|>¢) — 0.

We say that X,, converges to X in distribution, X,, % X, if for all continuity
points z of Fx it holds that

FXn(QZ) — Fx(l’)
The following implications between the convergence concepts hold:

X,—Xas. = X,5X = X,%X

A.2 Limit theorems and inequalities

Let X3, Xo,... be iid random variables with finite mean E(X;) = p, and let
Sp = X1+ -+ X,. The (strong) law of large numbers says that

Sp/n — p a.s. as n — oo.
If furthermore var(X;) = 02 € (0,00), then the central limit theorem says that
(Sn —np)/(ov/n) = Z as n — oo,

where the random variable Z has a standard normal distribution.
For a nonnegative random variable V' with E(V") < oo Markov’s inequality
says that

E(VT)

P(V>e¢) < =

for every € > 0.

For a random variable X with finite variance var(X) this leads to

P(IX — B(X)| > £) < EIX _;(X))z] - Varg(ZX) for every ¢ > 0.

This inequality is called Chebyshev’s inequality.
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B Conditional expectations

Suppose that one holds a portfolio or financial contract and let X be the payoff
(or loss) one year from today. Let Z be a random variable which represents some
information about the state of the economy or relevant interest rate during the
next year. We think of Z as a future (and hence unknown) economic scenario
which takes values in a set of all possible scenarios. The conditional expectation
of X given Z, E(X | Z), represents the best guess of the payoff X given the
scenario Z. Notice that Z is unknown today and that E(X | Z) is a function of
the future random scenario Z and hence a random variable. If we knew Z then
we would also know ¢(Z) for any given function g. Therefore the property

9(Z)E(X | 2) = E(9(2)X | 2)

seems natural (whenever the expectations exist finitely). If there were only a
finite set of possible scenarios zj, i.e. values that Z may take, then it is clear
that the expected payoff E(X) may be computed by computing the expected
payoff for each scenario z and then obtain E(X) as the weighted sum of these
values with the weights P(Z = z;). Therefore the property

E(X) = E(E(X | 2))

seems natural.

B.1 Definition and properties

If X is a random variable with E(X?) < oo, then the conditional expectation
E(X | Z) is most naturally defined geometrically as an orthogonal projection of
X onto a subspace.

Let L? be the space of random variables X with E(X?2) < co. Let Z be a
random variable and let L?(Z) be the space of random variables Y = g(Z) for
some function g such that E(Y?) < co. Notice that the expected value E(X)
is the number p that minimizes the expression E((X — u)?). The conditional
expectation E(X | Z) can be defined similarly.

Definition For X € L2, the conditional expectation E(X | Z) is the random
variable Y € L?(Z) that minimizes E((X — Y)?).

We say that X,Y € L? are orthogonal if E(XY) = 0. Then E(X | Z) is
the orthogonal projection of X onto L?(Z), i.e. the point in the subspace L?(Z)
that is closest to X. Moreover, X — E(X | Z) is orthogonal to all Y € L?(Z),
ie. EY(X —E(X | Z2))) =0 for all Y € L?(Z). Equivalently, by linearity of
the ordinary expectation,

E(YE(X|Z2))=E(YX) forallY € L*(2). (B.1)

This relation implies the following three properties:

106



(i) If X € L2, then E(E(X | 2)) = E(X).
(ii) If Y € L2(Z), then YE(X | Z) = E(Y X | Z).

(iii) If X € L? and we set var(X | Z) = E(X? | Z) — E(X | Z)?, then
var(X) = E(var(X | Z)) 4+ var(E(X | Z)).

This can be shown as follows:

(i) Choosing Y = 1 in (B.1) yields E(E(X | Z)) = E(X).

(ii) With Y replaced by YY (with Y € L2(Z)), (B.1) says that E(YY X) =
E(YY E(X | Z)). With Y replaced by Y and X replaced by Y X, (B.1) says

that E(YY X) =E(YE(YX | Z)). Hence, for X € L? and Y € L2(Z),
EYYE(X |2)=EYE(YX|Z) forallY € L*(Z).

Equivalently, E(Y[Y E(X | Z)—E(Y X | Z)]) = 0for all Y € L2(Z); in particular
for V = YE(X | Z)—E(YX | Z), which gives E(Y E(X | Z)—~E(Y X | Z))?) =
0. This implies that Y E(X | Z) = E(Y X | Z).

(iii) Starting with the right-hand side we obtain

E(var(X | 2)) + var(B(X | 2))
—E(B(X?|2) - B(X | 2)*) + (B(E(X | 2)*) - E(E(X | 2))%)
= B(E(X? | 2)) - E(B(X | 2))?
= E(X?) — E(X)? = var(X).

Hence, we have shown the properties (i)-(iii) above.

As already mentioned there are other ways to introduce the conditional
expectation E(X | Z) so that the properties (i) and (ii) hold. In that case the
statement in the definition above follows from properties (i) and (ii). This is seen
from the following argument. If W € L?(Z), then WE(X | Z) = E(WX | Z)
and hence E(WE(X | Z2)) = E(E(WX | Z)) = E(WX). Hence,

EW(X —-E(X |Z2))=0 forall We L*(2). (B.2)

IfY € L2(Z) and W = Y — E(X | Z), then

B((X -Y)*) =E((X - E(X | 2) - W)?)
(X —E(X | 2))*) - 2E(W(X - E(X | 2))) + E(W?)

(X —B(X | 2))*) + E(W?).

B
B

Hence, E((X — Y)?) is minimized when W = 0, i.e., when Y = E(X | Z).

B.2 An expression in terms the density of (X, 7)

It is common in introductory texts to assume that X and Z has a joint density
and derive the conditional expectation E(X | Z) in terms of this joint density.
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Suppose that the random vector (X, Z) has a density f(x, z). Write h(Z) for
the conditional expectation E(X | Z). From (B.2) we know that E(g(Z)(X —
h(Z))) =0 for all g(Z) € L*(Z), i.e.

0= //g(z)(m — h(2)f(x, 2)dwdz = /g(z) (/(x () f(a, z)dm) dz.

Hence,

O:/xf(x,z)dx—/h(z)f(x,z)dx:/xf(xzdx— /f:z:z
or equivalently h(z) = [z f(x,z)dz/ [ f(z, z)dz. Hence,

B.3 Orthogonality and projections in Hilbert spaces

Orthogonality and orthogonal projections onto a subspace in the Euclidean
space R? is well known from linear algebra. However, these concepts are mean-
ingful also in more general spaces. Such spaces are called Hilbert spaces. The
canonical example of a Hilbert space is R? and our intuition for orthogonality
and projections in R3 works fine in general Hilbert spaces.

A nonempty set H is called a (real) Hilbert space if H is a linear vector
space, so that elements in H may be added and multiplied by real numbers,
and there exists a function (x,y) — (x,y) from H x H to R with the properties:

(i
(ii

) (z,z) >0 and (x,z) =0 if and only if z = 0;
)«
(iii) (A\x,y) = Mz, y) for all x,y € H and X € R;
)«
) I

x4y, z) = (r,2)+ (y,2) for all z,y,z € H;
(iv) (z,y) = (y,z) for all z,y € H;

f {z,} C H and lim,, n—oo(Tn — T, Ty — Tmy) = 0, then there exists
x € H such that lim,, . {(x, — x,z, —x) = 0.

(v

The function (x,y) — (x,y) is called an inner product and |z|g = (z,z)*/? is

the norm of x € H. For all z,y € H it holds that |(z,y)| < |z|g|y|g. fz,y € H
and (z,y) = 0, then z and y are said to be orthogonal and we write z L y.

The projection theorem Let M be a closed linear subspace of a Hilbert
space H. For every oy € H there exists a unique element yg € M such that
|xo — yolg < |xo —y| for all y € M. The element yq is called the orthogonal
projection of xg onto the subspace M, and xg — yo L y for all y € M.

Let L? be the Hilbert space of random variables X with E(X?) < co equipped
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with the inner product (X,Y) — E(XY). Let Z be a random variable and
consider the set of random variables Y = g(Z) for continuous functions g such
that E(g(Z)?) < co. We denote the closure of this set by L?(Z) and note that
L?(Z) is a closed subspace of L?. The closure is obtained by including elements
X € L? which satisfy lim,, .., E((gn(Z) — X)?) = 0 for some sequence {g,} of
continuous functions such that E(g,(Z)?) < oo.
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