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KENDALL’S TAU FOR ELLIPTICAL DISTRIBUTIONS*

FILIP LINDSKOG, ALEXANDER MCNEIL, AND UWE SCHMOCK

ABSTRACT. By using well known properties of elliptical distributions we show
that the relation between Kendall’s tau and the linear correlation coefficient
for bivariate normal distributions holds more generally (subject to only slight
modifications) for the class of elliptical distributions. We mention applications
of this result to calibrating elliptical distributions and their copulas in the
context of multivariate financial time series models and portfolio credit risk
models in particular.

1. INTRODUCTION

It is well known, and easily demonstrated, that for the two-dimensional normal
distribution with linear correlation coefficient p the relation

2 :
T = — arcsin g, (1)
T

between Kendall’s tau and the linear correlation coefficient holds (cf. [2, p. 290],
where the calculations are traced back to publications of T.J. Stieltjes from 1889
and W.F. Sheppard from 1898). However, it does not seem to be at all well known
that the elegant relationship (1) also holds (subject to only slight modifications) for
all non-degenerate elliptical distributions, and this is the main result (Theorem 2)
of this short communication.

The result is not only of theoretical interest; it is also extremely useful for sta-
tistical purposes. For example, it can be used to build a robust estimator of linear
correlation for elliptically distributed data.

Many multivariate datasets encountered in practice, such as financial time series
data for market and credit risk management, are not multivariate normally distrib-
uted but may plausibly be modelled by another member of the elliptical family with
heavier tailed margins. In this situation it is well known that the standard estima-
tor of correlation, based on normal assumptions and maximum-likelihood theory,
is both inefficient and lacks robustness; many alternative covariance and correla-
tion estimators have been proposed including M-estimators, estimators based on
multivariate trimming and estimators based on variances of sums and differences of
standardized variables (cf. [3] for an overview). Formula (1) provides an appealing
bivariate method; we simply estimate Kendall’s tau using the standard textbook
estimator and invert the relationship to get the Kendall’s tau transform estimate of
p. Simulation studies suggest that this simple method performs better than most
of its competitors, see Figure 1 and [8]. Note that, unlike almost all other methods
of correlation estimation, the Kendall’s tau transform method directly exploits the
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Ficure 1. For 3000 independent samples of size 90 from a bi-
variate t3-distribution with linear correlation 0.5, the upper graph
shows the standard estimator and the lower graph Kendall’s tau
transform estimator for the linear correlation.

geometry of elliptical distributions and does not require us to estimate variances
and covariances. This is advantageous when interest focusses explicitly on correla-
tions, as it often does in financial derivative pricing applications. More generally the
relationship can be used to calibrate the correlation matrices of higher dimensional
elliptical distributions, although in some cases the matrix of pairwise correlations
must be adjusted to ensure that the resulting matrix is positive definite; see [8] and
[10] for details.

In the context of portfolio credit risk modelling, elliptical distributions—in par-
ticular t-distributions—and their copulas have been suggested to describe the de-
pendence structure of latent variables representing asset values (or their proxies)
in so-called structural models of defaults [7]. In these models, pioneered by Black
and Scholes (1973) and Merton (1974) in the univariate case, defaults are caused by
firms’ asset values falling below their liabilities. Standard industry models (KMV,
CreditMetrics) implicitly assume multivariate normal dependence, and the differ-
ence between such models and models based on latent variables with other elliptical
distributions can be profound, see the simulation studies in [6] and [7]. When we
implement latent variable models based on multivariate ¢- or more general elliptical
distributions, we require statistically robust and computationally feasible methods
for calibrating them to asset value data, or other suitable proxy data such as equity
returns; see [9] for practical applications of this approach.

In Section 2 of this note we review the definition and some properties of elliptical
distributions. The new result is stated in Section 3 and proved in Section 4.
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2. DEFINITIONS AND BASIC PROPERTIES

All random variables mentioned in this paper are real or R™-valued and all ma-
trices have real entries. Furthermore, all random variables mentioned are assumed
to be defined on a common probability space (€2, .4, P).

Definition 1. If X is a p-dimensional random (column) vector and, for some vector
1 € RP some p X p nonnegative definite symmetric matrix > and some function
¢ : [0,00) — R, the characteristic function px_, of X — p is of the form px_,(t) =
#(tTXt), we say that X has an elliptical distribution with parameters u, ¥ and ¢,
and we write X ~ E,(p, X, ¢).

When p = 1, the class of elliptical distributions coincides with the class of one-
dimensional symmetric distributions.

Theorem 1. X ~ E,(u, X, ¢) with rank(X) = k if and only if there exist a ran-
dom wvariable R > 0 independent of U, a k-dimensional random vector uniformly
distributed on the unit hypersphere {z € R¥|2T2 =1}, and a p x k matriz A with
AAT =%, such that
X £+ RAU. (2)
For the proof of Theorem 1 and details about the relation between R and ¢, see
Fang, Kotz and Ng (1987) [5] or Cambanis, Huang and Simons (1981) [1].

Remark 1. (a) Note that the representation (2) is not unique: if O is an orthogonal
k x k matrix, then (2) also holds with A’ = AQ and U’ £ OTU.

(b) Note that elliptical distributions with different parameters can be equal: if
X ~ Ep(p, %, ¢), then X ~ E,(u1,¢%, ¢.) for every ¢ > 0, where ¢.(s) = ¢(s/c) for
all s > 0.

For X = (X1,...,Xp)T ~ E, (1,2, ¢) with P{X; = p;} <1 and P{X; = p;} <
1, we call p;; S Yij/\/Xii2;; the linear correlation coefficient for X; and X;. If
Var(X;) and Var(X;) are finite, then g;; = Cov(X;, X;)/+/ Var(X;) Var(X;).
Definition 2. Kendall’s tau for the random variables X, X5 is defined as

(X1, Xo) 2 P{(X; — X1)(X2 — X2) > 0} — P{(X; — X;)(X2 — X2) < 0},

where (X1, X3) is an independent copy of (X1, X5).

3. MAIN RESULTS

The main result of this note is the following theorem; its proof is a combination
of Lemmas 2 and 7 below. For the case of normal distributions, see also Lemma 6.

Theorem 2. Let X ~ E,(u, X, ¢). If 4,5 € {1,...,p} satisfy P{X; = pu;} <1 and
P{X, = p;} <1, then

(X, Xj) = (1 - Z(P{Xi = x})Q) %arcsin 0ij, (3)

z€eR

where the sum extends over all atoms of the distribution of X;. If in addition
rank(X) > 2, then (3) simplifies to

2
7(Xi, X;j) = (1 — (P{X; = ,ui})Q) — arcsin g;;, (4)
T
which further simplifies to (1) if P{X; = p;} = 0.
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The following lemma states that linear combinations of independent elliptically
distributed random vectors with the same dispersion matrix ¥ (up to a positive
constant, see Remark 1) remains elliptical. This lemma is of independent interest.

Lemma 1. Let X ~ E,(u, %, ¢) and X ~ E,(fi,c%, ) for ¢ > 0 be independent.

Then for a,b € R, aX +bX ~ E,(apu + b1, ¥, ¢*) with ¢*(u) = ¢(au) p(b?cu).
Proof. For all t € RP,
Pax 46X —ap—bi(t) = Pa(x—p) () Py 5 - ) (t)
= ¢((at)TS(at)) H((bt)T(cZ)(bt))
= ¢(a*tTSt) (B2 ctTEt). O

4. PROOF OF THEOREM 2

The following lemma gives the relation between Kendall’s tau and the linear cor-
relation coefficient for elliptical random vectors of pairwise comonotonic or coun-
termonotonic components. It proves Theorem 2 for the case rank(X) = 1.

Lemma 2. Let X ~ E,(u,%,¢) with rank(X) = 1. If P{X; = u;} < 1, and
P{X, = p;} <1, then

(X, Xj) = (1 =) (P{X; = m})2> % arcsin g;;. (5)

zeR

Proof. Let X be an independent copy of X. Let X £ ;1 + RAU and X < i+ RAU
be stochastic representations according to Theorem 1, where (R,U) denotes an
independent copy of (R,U). In particular, A is a p X 1 matrix and U is symmetric
{1, —1}-valued. Furthermore, P{X; = p;} <1 and P{X; = p;} < 1 imply A;; # 0
and A;; # 0. Therefore,
. 2 .

0ij = AnAj1 [\ A} A3, = sign(An Ajr) = — arcsin 0;j, (6)
(Xz — Xz)(XJ — XJ) < AﬂAjl(RU — R[NJ)2 and

P{RU = RU} = Y (P{RU = 2})* = > (P{X; = 2}). (7)

zE€R zER
If A;1Aj1 > 0, then by Definition 2

7(X;, X;) =P{(RU — RU)?> >0} =1 —P{RU = RU}
Using (6) and (7), the result (5) follows. If A;;1A;; <0, then
7(Xi, Xj) = —P{(RU — RU)? > 0}
and the result (5) follows in the same way. O

Lemma 3. Let X ~ E,(u, %, $) with rank(X) = k > 2 and let X be an indepen-
dent copy of X. If P{X; = u;} <1, then P{X; = X;} = (P{X; = u;})%.

Proof. Let X = u+ RAU be a stochastic representation according to Theorem 1.
Define A; = (A;1,..., Aix) and a £ A;AT. Since P{X; = u;} < 1, the case a = 0 is
excluded. By choosing an orthogonal k x k matrix O whose first column is A} /a
and using Remark 1(a) if necessary, we may assume that A; = (a,0,...,0), hence
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X; £ p; + aRU;. Note that U; is a continuous random variable because k > 2.
Hence P{aRU; =z} =0 for all x € R\ {0}, and it follows that

P{X; =X} =) (P{X; =2})’ = ) (P{aRU\ = 2})* = (P{X; = m;})*.

rz€R r€R u

Lemma 4. Let X ~ E,(u, %, ¢) with rank(X) = k > 2, and let X be an indepen-
dent copy of X. If P{X; = p;} <1 and P{X; = p;} <1, then

(X5, X;) = 2P{(X; — X)) (X; — X;) > 0} — 1+ (P{X; = pu;})*. (8)

Proof. Since Y £ X — X ~ E,(0,%,¢*) by Lemma 1, there exists a stochastic
representation Y = RAU according to Theorem 1. By Lemma 3, P{Y; = 0} =
(P{X; = pi})?* < 1 and similarly P{Y; = 0} < 1. Define A4, 2 (A, ..., Ay) and

A

A;j = (Aj1,...,Aj;). With the same arguments as in the proof of Lemma 3, it
follows that A;U and A;U are continuous random variables, which implies that
P{A;U =0} =0 and P{A;U = 0} = 0. Therefore,

P{Y;Y; = 0} = P{R = 0} = P{Y; = 0} = (P{X; = pui})".
Since 7(X;, X;) = 2P{Y;Y; > 0} — 1 + P{Y;Y; = 0}, the conclusion follows. O

Lemma 5. Let X ~ E,(0,%,¢) and X ~ E,(0,¢c%,¢) with rank(X) > 2 and
c>0. If P{X; =0} <1 and P{X; =0} < 1, then

P{X;X; > 0}(1 — P{X; = 0}) = P{X;X; > 0}(1 — P{X; = 0}).
Proof. Take X £ RAU according to Theorem 1 and set W £ AU. Then
=P{RW;RW; >0|R >0} P{R > 0}
= P{WZWJ > 0} ]P){R > 0}

Furthermore, X < \/¢cRW according to Theorem 2, and a similar calculation shows
P{X;X; > 0} = P{cR*W,W; > 0| R > 0} P{R > 0} = P{W,W; > 0} P{R > 0}.

As in the proof of Lemma 3, it follows that W; has a continuous distribution.
Therefore, P{R > 0} = 1 — P{X; = 0} and P{R > 0} = 1 — P{X; = 0}, and
Lemma 5 follows. O

Although the next result for normal distributions is well known, we give a proof
for completeness of the exposition and for showing where the arsine comes from.

Lemma 6. Let X ~ N, (p,X). If P{X; = p;} <1 and P{X; = pu;} <1, then
~ ~ 2
T(Xi,Xj) = QP{(Xl — XZ>(X] — X]) > 0} —1=- arcsingij,
T

where X is an independent copy of X.
PT‘OOf. USiIlg g; £ v B > 0, 0 £ \/ Ejj > 0 and 0ij £ Eij/aiaj7 we have

wij _ (i i ) _ o7 0i0;0i;
Zji 2y 0i0j0ij 0} ’
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Define Y 2 X — X and note that (V;,Y;) ~ N(0,2%%). Furthermore, (Y;,Y;) =

V2(o;V cos ;i + oW sin i, 0, W), where ¢;; & arcsing;; € [—n/2,7/2] and
Pij ¥Pij» T Pij J

(V, W) is standard normally distributed. By the radial symmetry of (Y;,Y;),

7(Xi, X;) =2P{Y;Y; >0} —1=4P{Y; >0,Y; >0} -1
=4P{V cosg;; + Wsing;; >0, W > 0} — 1.
If ® is uniformly distributed on [—7,7), independent of R = v/ V2 + W2, then
(V,W) = R(cos ®,sin ®) and
(X, X;j) = 4P{COS(I)COS ©ij +sin®sinp;; > 0, sin @ > 0} -1

g $id +m/2
27

which simplifies to (2/7) arcsin g;;. O

=4P{® € (pij — /2,55 +7/2)N(0,m)} — 1 = 1,

Lemma 7. Let X ~ E,(11, %, ¢) with rank(X) =k > 2. If P{X; = p;} <1 and
P{X, = pu;} <1, then

T(XZ', XJ) = (1 — (]P{XZ = ,uz})Z) %arcsin Oij- (9)

Proof. Let X be an independent copy of X. By Lemma 4, we can use (8). By
Lemmas 1 and 3, X — X ~ E,(0,%, ¢*) with P{X; = X;} = (P{X; = u;})? < 1
and P{X; = X;} = (P{X; = u; )2 < 1. If Z, Z ~ N,(u,X/2) are independent,
then Z — Z ~ N,(0,%). By Lemma 5,

P{(X; — Xi)(X; — X;) > 0} = P{(Zi — Z))(Z; — Z;) > O}(1 — (P{X; = pu:})?).
Substituting this into (8) and using Lemma 6, the result (9) follows. O

Remark 2. After completion of this note we found that relation (1) was already
proved by a different method in [4, Theorem 3.1] for elliptical distributions having
a density. The extensions (3) and (4) are not given in [4].

REFERENCES

1. S. Cambanis, S. Huang, and G. Simons, On the theory of elliptically contoured distributions,
J. Multivariate Anal. 11 (1981), 368—-385.
. H. Cramér, Mathematical Methods of Statistics, Princeton University Press, Princeton, 1946.
. S.J. Devlin, R. Gnanadesikan, and J. R. Kettenring, Robust estimation of dispersion matrices
and principal components, J. Amer. Statist. Assoc. 76 (1981), 354-362.
4. H.-B. Fang, K.T. Fang, and S. Kotz, The meta-elliptical distributions with given marginals,
J. Multivariate Anal. 82 (2002), no. 1, 1-16.
5. K.-T. Fang, S. Kotz, and K.-W. Hg, Symmetric Multivariate and Related Distributions, Chap-
man & Hall, London, 1987.
6. R. Frey and A. McNeil, VaR and expected shortfall in portfolios of dependent credit risks:
conceptual and practical insights, Journal of Banking & Finance 26 (2002), 1317-1334.
7. R. Frey, A. McNeil, and M. Nyfeler, Copulas and credit models, Risk 10 (2001), 111-114.
8. F. Lindskog, Linear correlation estimation, Research report, RiskLab Switzerland, August
2000, http://www.risklab.ch/Papers.html#LCELindskog.
9. R. Mashal and A. Zeevi, Beyond correlation: extreme co-movements between financial assets,
Preprint, Columbia Graduate School of Business, 2002, http://www.columbia.edu/~rm586.
10. P.J. Rousseeuw and G. Molenberghs, Transformation of non positive semidefinite correlation
matrices, Comm. Statist. A—Theory Methods 22 (1993), no. 4, 965-984.

w N



KENDALL’S TAU FOR ELLIPTICAL DISTRIBUTIONS 7

(F. Lindskog) RiSkLAB, DEPARTEMENT MATHEMATIK, ETH ZENTRUM, HG F 42.3, CH-8092
ZURICH, SWITZERLAND

E-mail address: 1indskog@math.ethz.ch

URL: http://www.math.ethz.ch/~1lindskog/

(A. McNeil) DEPARTEMENT MATHEMATIK, ETH ZenTrRUM, HG G 32.3, CH-8092 ZURICH,
SWITZERLAND

FE-mail address: mcneil@math.ethz.ch

URL: http://www.math.ethz.ch/~mcneil/

(U. Schmock) RiskLAB, DEPARTEMENT MATHEMATIK, ETH ZENTRUM, HG F 42.1, CH-8092
ZURICH, SWITZERLAND

E-mail address: schmock@math.ethz.ch

URL: http://www.math.ethz.ch/~schmock/



