LECTURE NOTES

Warwick, April 3-8, 2005

A. Laptev

1. LECTURE

Sobolevé& Lieb-Thirring Inequalities, Mass Transportation

Letz; € RY, [ =1,...,N. Consider many-body Sabainger
operator

—ZAHFZ T — x7),

k>l

defined on normallzed fermions, functiop&e, . . .,z ) anti-
symmetric with respect te;. Special important example: let
1; be orthonormal functions in?(R?), then

@, ..., ax) = (N) 72 Detfy;(2) ]y

The condition of orthogonality is caused by the Pauli exclusion
principle.

One of the proofs of the problem of stability of matter is based
on a so-called generalized Sobolev inequality:

(11)/ ij dx<CdNZ/ Vb ()| da.

If 7 =1 then (1.1) becomes

22+d)
/WJ‘ T da < Cd,1/|V1/J\2dx, ||| = 1.
1
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If d > 3, then the usual "critical” Sobolev ineg: Holder ineq.
imply

su [1vurarz ([loiar) ™ > [ al e

Lieb-Thirring’s conjecture (open)?rove thatup Cyn < Sy,
d > 3.

1D case

Let {+;}7_, be in orthonormal system of function ir¥ (R) and

let .
=D ¥j@)

Generalised Sobolev inequality in 1D case:
Theorem 1.1(Eden& Foias)

[ dw—/(Z\wj 23dxsji;éw',j<x>|2dx.

Proof. We first derive a so-called Agmon inequality

]| e < (]| 357 11242

Indeed

1 ! / > / / /
@l =5| [ wera- [Cweral < [lelvide< el
Let nowé = (&1, &, ..., &,) € R". Then by Agmon inequality

7= jh=1 =
= (Z @2)1/4(271: €j€k<¢;,wg))1/ '
j=1

Jk=1



If we set¢; = ¢;(z) then the latter inequality becomes

:i\wm)\? < (Z (@ wj,w)

7,k=1
Thus

Integrating both sides we arrive at

/(i%(aw)gdx = Zn;/|¢;'2da:.

Spectrum of Schivdinger operators

Let {¢;}52, be the orthonormal system of eigenfunctions cor-
responding to the negative eigenvalues of the &dinger op-

erator
d2
—5t = Vil = =,

where we assume th&t > 0. Then by using the latter result
and Hblder’s inequality we obtain

/(Zn:Wj(x)’z)i*dx—(/vs/Q dx>2/3/(z": ij(x)|2)3dx)l/3
Z/(W * - V|¢j|2) dr=—S" A

Denote
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then the latter inequality can be written as
2/3
X3 - (/V3/2da:> x<-Y
j

o : : 1/3
Maximizing the left hand side we findl = — (f V3/2 dx) .
This implies

1 1 2
— [ V32 dx——/V3/2 dr = ——/v3/2 de < =Y )\
3\/3/ V3 3v/3 - z]: !

and we finally obtairy_ \; < % [ V32 da.
This is the best known constant in Lieb-Thirring’s inequality.



Mass Transportation and Functional Inequalities

We shall consider two examples of functional inequalities with
sharp constants:
"Critical” Sobolev inequality withp > 1, p* = n”—jp:
. 1/p
p dx)

*

0 ey = (

1/p
< Sup)( [ VAP dr) " =1V o
Brézis - Lieb - Sobolev inequality:
[Nl e ) < Su@IIV fllzr) + Co@) | £l 2550,

wherep = % andd is locally Lipschitz.

Main idea:
We use the following statement:

Let 1, and v be two probability measures dR" ([g, du =

Jgn dv = 1).
Letdu(x) = F(x)dx anddv(y) = G(y) dy. Then there exists
a convex functiorp such that

(1.2) F(z) = G(Ve(x)) det(Vp(x)),

whereV?2y is a Hessian of.
The latter equation is known as Monge-Aeamp equation.
It is highly non-linear.

Optimal transportation

Let (X, ) and (Y, v) be two measure space with probability
measures

u(X)=1 v(Y)=1.

1) ForanyA ¢ X andB C Y, u(A) andv(B) measure the
"mass” of the subsetd and B respectively.
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2) ¢(x,y) - cost function - tells how much it costs to transport
one unit of mass from to .

Problem: Minimize the cost of transporting to Y.
Mathematical formulation:

Let dn(x,y) be a probability measure which measures the
amount of mass transfered frarto y.

We say thatr is admissible € € II) if

/Y dr(z,y) = du; /X dr(z,y) = dv.

or equivalently
(1.3)

//)(xY<¢(x)+¢(y))dW($7y) - /X%D(l‘) dﬂ($)+/yw(y) dv(y).

The problem of minimizing the cost of transportation is equiv-
alent to finding

;12% I[7] = //XXY c(x,y)dr(z,y).

- L.V. Kantorovich ( Nobel Prize 1975).
Finding 7 gives optimal transport plan.

Theorem 1.2. (Kantorovich Duality)

Let
M= [ aman

Kot = [ o) dute) + [ v avty)
and let®, be a class of functions such that

.= {(p,¥); plz) +¥(y) < c(z,y)}



Then

inf I[r] = sup J(p, ).
mell (EXIS

More restrictive problem:

Consider a subclass of measures II such that to each lo-
cationx we assign a unique locatian(no mass split). This
means that there exists a measurable vector fun@tionY —
Y such that

dm(z,y) = drr(z,y) = dp(z)o(y — T(z)).
Then obviously
I = [ ela Tw) duto
and (1.3) is equivalent to
| e@ oy [ vt ivy) = [ (wlerro@a@)) duta)
or
@ [ o) = [ v )
which is the same as
v(B) = u(T1(B)), BcCY.

Remark 1. If du(zx) = F(x)dx anddv(y) = G(y)dy, y =
Tx, then (1.4) is equivalent to

(1.5) Awﬂwm@mzﬁwwmm@

_ /X O(T(2))G(T(2))| det VT(2)]| d.
This implies
(1.6) F(z) = G(T(2))| det VT(x)).
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Remark 2. If T'(z) = V¢ theng is a solution of the Monge-
Ampere equation (1.2).

Quadratic cost

Let X =Y = R" and the cost function be quadratic

|z — y\2
2

c(x,y) =
Assume that

2 2
M, :/ ﬂal,u(x) + v dv(y) < oo.

Then obviously the total cog{r|, = € I, is bounded

2
// 2 y\ dr(z,y) // (|z[*+|y?) dr(z, y) = 2Ms.
R2n R2n

In particular,
[z — gy’
(p) €@ & o) +d(y) < —
2 2
& z-y< [% - 90(33)} + [‘%' - ¢(y)}
% M

Let us define

o= {(p.¢): x-y < o(x)+9y)}

inf I[r] = M, —sup// r-ydn(z,y),
11 11 R2n

sup J(p, ) = My — inf  J(p, ).
D, (p)c®

Then

and



Double convexification trick

Kantorovich’s duality is equivalent to

sup//Rznrc-ydﬂ(x,y) = inf _J(p, 7).

II P, ED
Clearly )
(p,)e® =
& YY) >zy—pl) = Yy > ilel)g[x-y—w(x)] =" (y),

wherey* is the Legendre transform gfand therefore convex.
We also obtain that

T(p, 1) = J(, 7).
The pair (¢, ¢*) € ®. If we shall go on one more time we
arrive at

p(z) > Slelg[x Y=Yy =T () =

J(p.¢") 2 J(¢*.¢") and (9, ¢") € D,
where both functiong** andy* are convex.

Remarks
If © Is convex thernp = ¢**. Moreover

Ve (y) = (Vo) (y).
Indeed
zy=9@)+¢(y) =
y=Vip(x) x=Vyu'(y) =
y=Voo(Vyp'(y)) = Vy'(y) = (Vo) ' (y).

Lemma 1.1. The following equality holds true

(1.7) inf J(p,¥) =inf J(¢™, ¢*) = inf J(p, ")
(p)e® ¢ peConv.f.
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Corollary 1.1. If F andG are measurable function

| Fwis= [ cway=1
then there exists a convex functigrsuch that
F = G(Vy)det |V%g|.
Proof. Letting T = V we apply Kantorovich duality, the last
Lemma and (1.6).

Functional inequalities

Theorem 1.3. (Critical Sobolev inequality)Letp € (1,n)
andp* = ”—pp. Then

In order to prove Theorem 1.3 we need the following statement:

Theorem 1.4. (Mother Inequality I)

Letp € (1,n),q = Z% andp* = n”—_f’p Assume thaf andg are

two normalized functions, such thiat||,- = ||g|/, = 1. Then

[lgI ™ dy  _ pn—1)
1/q — _
(f lylolglay) ™"~ ")

Proof. Since|V|f|| = |V f| we can assume that bothg > 0.
Denote

dp(z) = F(z)de = f7 (z)dz,  dv(y) = Gly)dy = ¢ (y) dy.

Mass transportation theory implies that there exists a convex
functionp such that

F(z) = G(Ve(x)) det V().

(1.8) IV flp-
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Notice that for a Hermitiam x n matrix A we havedet'/” A <
%TrA. Therefore

1
GTV"(Vy) = F7Y™(det V2p)Y" < - F7YnAp.

Multiplying both sides byF' and integrating the latter inequal-
ity we obtain

1

/ GV (Vo)F(z)dr < — / FUnAp da.

n

Identity (1.5) implies

1 1
/Gl—l/”(y) dy < - /Fl—l/"A<pdx <= /V(Fl—l/n)wdx.

n

Substitutingl’ = 7" andG = ¢” and using Hlder’s inequal-
ity we have

pnl p(n—1) —1 p n(p—1
/g plnt) dy_/g(np dy<—p(n—p)/f5%p)Vf~Vgpdx

n(n —p)
__p(n—l
(1.9) = “nn=p) /f Vf-Vedr
— . /
< B, ([ 19t as)

Finally, by using the mass transportation identity (1.5) again
we arrive at

[a ay < Byl ([ o wloitan)

which completes the proof.

Let

(1.10) hy(x) =
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whereo, is chosen such thajh,||,- = 1. It is easy to check
that if we substitutef = g = h, into the Mother Inequality |
we obtain identity.

Choosing nowy = h, and lettingf — f/|f|/,» we prove
Theorem 1.3.

Brézis - Lieb - Sobolev Inequality

Theorem 1.5.Letp € (1,n), p* = & andp = =Lp Then

n n

for anyQ2 C R”, with locally Lipschitz boundary(?

1Nl e ) < Sn@IV fllze) + Co@) fll 2o o0 -

For proving this inequality with sharp constants(p) and
C\(p) one needs

Theorem 1.6. (Mother inequality I1)

Assume thaf and ¢ are two normalized functions, such that
| fllpr ) = |9|lp>mny = 1. Then for anyy, € R™ there exists
a constantR such that

. ~ ) /g
gl ey < 5 ( / ¢ ly—wol*dy) IVl o)+ RIS L ocon

The proof of this theorem uses the same idea. The boundary
term appears when integrating by parts as in (1.9).

One more inequality

If ||g||, = 1 then the Mother Inequality | (Theorem 1.4) im-
plies that there exists a constarntsuch that

p—1
/|g|p5?—5) dySC(/ ly|71|g]" dy) "

Lettingg — g/ gll,- we have
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Corollary 1.2. There exists a constaut such that following
inequality holds true:

p—1
p(n=1) r_, | .
(1.11) /yg| = dy < O(/Iy\Pl\g\w dy) g

p*-

Remarks.

e The best constant in (1.11) can be found by substituting
in (1.8) f = h, defined by (1.10).

e A.Nazarov has noticed that (1.11) could be considered as
known. After rearrangement it reduces to functions de-
pending only onx| which is a particular case of Bellman
Ineq. (Duke, v.10 (1943), 547-550). The sharp constant
was found by Levin (DAN SSSR, v. 59 (1948), 635-
639).

An Open Problem

Find the best constant, ; in the inequality

(d—p) 1

pld=1) p(d—1) P

(/ || @) dx’) < de(/ |VulP dx) :
xq=0 zq>0

wherez = (2/,14) € R%, d > 2,p € (1,d).
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2. LECTURE

Lieb-Thirring inequalities

2.1. Consider a Schdinger operator iL?(R)

d2
Hu = —@quVu—)\u
whereV is a real function,;V' — 0 rapidly enough. Then
typically the spectrum off might have negative eigenval-
ues{—A;}32; and is continuous on the intervdl, co). Lieb-

Thirring inequalities

(2.1) ZM ZM / VI gy
Semi-classmal formula

Z Aj(aV) ~ao Lfyl’1 /(oaV_)7+1/2 dx

(27)~ / (&2 + aV)? déda.

In particular this |mpI|esL
It is known that
ey = 1/2 & L, = 2L = 1/2 (Weidl,
Hundertmark-Lieb-Thomas).
ey >3/2 & L, = LY (Lieb-Thirring, Lieb-
Aizenman).
o if 1/2 <~y < 3/2,thenL,; are unknown.
Remark. If v < 1/2, then L-Th inequalities (2.1) do not hold.
However, if0 < v < 1/2, then there are finite constarftsjl,

such that
/ VI dy < Loy N,

J
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(Damanik-Remling '05). It known thalil/z1 = 4. Other val-
ues ofL are unknown.

L-Th inequalities for v = 3/2

There are three proofs of Lieb-Thirring inequalities for=
3/2.

Buslaev-Faddeev-Zakharov trace formula
Let ) solves the equation

etk asr — oo

a(k)e* +b(k)e **  asr — —oo.

d2
UtV =Ry, e k) = {

Fundamental property: )
if & € RthenW i, y] = ¢’ — '1p = const.

This impliesl = |a|? — |b]* < |a| > 1.
Let

—)\j = (i/—ij)Q, Kj > 0.
BFZ trace formula

3 2 2 3 2
o k“1n |al dk—i—Z/ﬁl 6 V*dx,

which , in particular, implies

3/2 _ 3. 9 2
;)\j Zj:mjgl—(afv dx.

Proof. Let Hy = —-L, and B(k) = HJZZZ One can prove
that
a(k) = det(H — k*)(Hy — k)~
Then
In(B(k)a(k)) = i/m lnla / a(s)|s" ds
iT ) o S— k”“
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— B+ Tr 1n<[ V(Hy - k;2)‘1)

(i) - S e T

Lettingk = i7, 7 > 0, 7 — oo, and comparing the terms with
the same powers df, we obtain an infinite number of trace
formulae. ]

[I. Factorization method (Benguria & L0SS)

Let suppV C (—c¢,c), ¢ > 0and let—)\; < Ay < -+ <
Ay be negative eigenvalues. if, > 0 is the eigenfunction
corresponding td; then

() = cle_\/A_lz, T > c,
! 026\/)‘—1367 T < —c.
Let /
f1=¢—1 = fi+fi=V+A.
Besides
! oA, 1< —c.

From the Riccati equation we obtain that

Ht )\ = (—i + f1> (i n fl):: AXA,.

dx dx
CommutingA; and A; we find
_ . d?
HI:AlAl—)\lz—@‘i‘V—Qf{.

/(V—zf{)2da;:/v2da;+4/f{(f{—V)d:c
:/Vde+4/f{()\1—ff)dx
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_ /VQd:c+4(—2A1¢AT+§(¢AT)3> = /VQda:—lg—GAi’/?

Finally we have

3 3
ZA?’/Q 16/v2 ZA?’/? 1—6/(v 21V dx = ...

[ll. Soliton’s approach (Lieb & Thirring, Lax, Kruskal)
Let us consider the KdV equation
Ut — 6UUJC - Uxmx; U‘t:O =V.

Then
d? d? d d
L), where ar— 15 a(v Ly L)
U; { dx2+U where 73 3 de de
e Discrete spectrum is independenttof
2 2

x(- dd2+U> A (- dd2+v)
o a(k,t) = (k. 0).
o [U(zx,t)dx = [V?(z)dx

Itis known thatl (x, t) ~; . Z;V:l Uj(z—4\t)+ U, where
o |Uxlls < e(t) —t—c 0 @andU; are solitons

U;(x) = —2)jcosh™*(y/A\jz).
o (—% + Uj) cosh ' (\/\jz) = —\; cosh™ ' (1/\;z).

Finally, sincet [ cosh ™z dr = 16/3, we obtain

N N
/V2dx> > :/Uzdx:EE PR
— J 3 J

j=1 j=1
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Lieb-Thirring inequalities for v = 1/2

Theorem 2.1.LetH = —d*/dz*+V,V < 0andV € L'(R).
Then

1
> VA 2L, / V]de =3 / V| dz.
j
The proof is based on a Monotonicity Lemma due to [HLT].

Let A > 0 be compact in a Hilbert spadeé and let||A||,, =
>i—1 Hj(A). The functionalg| - [|,, » = 1,2,..., are norms
and thus for any unitary it operatorU we have||U*AU||,, =
| All

We say thatd majorizesB or B < A, iff

1B, < ||All,  foralln € N.

Lemma 2.1(Majorization) Let{U(w)},cq be a family of uni-
tary operators and ley be a probability measure ofl. Then

B = / U (w)AU (w) g(dw)
Q
IS majorized byA.
Proof. This is a simple consequence of the triangle inequality
1Blln < /Q |U(w)AU (W) [n g(dw) = g()[|Alln = [ Al -

O
LetWW = /|V| and denote
&\
Loi=W |2z( =+ ]W.

72

Obviously, £. is a trace class operator and its trace equals
TrL. = [|V(z)]d.

Lemma 2.2(Monotonicity). If 0 <&’ < ¢, then
L. <Ly
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Proof. Let A be the operator given by the kerné(z,y) :=
W (xz)W (y) (rank one operator). Introduce the following prob-
ability measure

9:(§) d¢ = e(n(&+¢7)) 7" d¢
and let(U (&)y)(x) = e %*(x). Then
£o= [ U(©AU© ) de
We haveg. (t) = e~°l. Thusg. = g.. * g._ and we find that
L= [ ULV goo )y < Lo
Indeed, letC.(z, y) the kernel of the operatdi.. Then

(z,v) // W ()W (y) ger (€ — ) ge—er(n) dédn
- / / DIV (W () g (0)go-or (1) dpdly

/ein(xy)/eip(xy)W(x)W(y)gg/(p) dp g (1) dn.

L(z)
This completes the proof. O

Proof of Theorem 2.1
Let
d? -1
Kp = Z\F,cf W[(—@+E> ]W.
By Birman-Schwinger principle
1= Mj(ICAj)
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for all negative eigenvalues-);}; of the Schodinger opera-
tor H. Multiplying this equality by2,/A; and summing ovef

we obtain
ZZ\/)TJ-: Z/,Lj(ﬁ\/rj).

By using the monotonicity we obtain
1L x 1l = (Qm) < i (£m>,
AH(E¢E>‘+FQ<£VXJ Slﬂ(£¢x>'%ﬂ2<£¢g)

—ILmlls < (L) + 12 (Ly5;),
etc. In the end this yields

Z,u]([,\/g) < Z'LL](’C\/E) foralln € N.

Jjs=n Jjs=n

Hence

B RVAVES TV gTr/;m:/_oo W2(x) da
= /OO |V (x)| de.

(0.¢]

Multidimensional Lieb-Thirring inequalities

The main argument is based on 1D matrix Lieb-Thirring ineq.
Let ) > 0 be am x m matrix-function and lef = —A — Q.
Then

3 .
;A?/Q(H )< 15 / TrQ*(z)dz  (Lapt& Weidl),

(can be proven by using BZF approach or by using factoriza-
tion (B&L)).

SONAH) < %/Tr@(a:) dz  (Hundertmark Lapt& Weidl).
j
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Lifting argument with respect to dimension
Let for simplicity d = 2, V € C°(R?), V > 0, z = (21, 2).
Then

H=-A-V=-0

11 (82 )
N————

$212
H(Z‘l)

Spectrumy (H) of H(ml) has a finite number of positive eigen-
valuesy (). ThusH, (z,) has a finite rank. Let, for instance,

v=13/2
S < S

Tr 2 (21) doy < —L21//V3/2“ ) d.

R,_/

Lgl/z 2

16

Summary. Best known values of the constarts ;:
o Lieb: Lyg4, (Los = 0.1156, compare with).0780 given
by the Sobolev ineq.).
e Hundertmark-Lieb-Thomas.; »; = 2L, .
o Eden-Foias:L;; < ;7= = 1.85L{,, whereas [HLT]
estimate gived,; ; <2 le1
e Aizenmann-Lieb, Lieb-ThirringL%l = Lﬁll, v > 3/2.
e Laptev-Weidl: L. ; = L¢ oo foranyd € N, v > 3/2.
e Hundertmark-Laptev- WeldIL a4 < 2L7d, 1 < v <

3/2andL. 4 < 4L7{d, 1/2 < v <1, foranyd € N.
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3. LECTURE

Inequalities for the Absolute Continuous Spectrum,
Some Hardy Inequalities

Let H? be a selfajoint operator iL?(R,) with Dirichlet
boundary condition at zero

2

d
(3.1) HPy = —ogut Vu, u|y—o = 0,

where V is a real function decaying at infinity. Spectrum
o(HP) c R and we are interested in the properties of its a.c.
part belonging taR . .

If 2 € C\ R, then the resolventi? — zI)~! is bounded in
L*(R,). Letus fix a functionf € L*R,), ||f|| = 1, and

consider
(7= .g) = [0

t—z
Properties:
o 1f(R) = 1andclos {t : ps(t) > 0} C ouc(HP).
Theorem 3.1. (Deift& Killip)

If V€ L*(Ry), then there existg, such that, > 0 almost
everywhere ofR , .

The proof is based on the BZF trace formula. Hf =
—d?/dx? + V in L3(R), then (lecture 1)

3 2 2 3 _ 3 2
3 k“1In |a| dk+;@jﬁ/v dz,

which allows us to control the absolute continuous spectrum

3 2 2 3 2
5 /k In |a|” dk 16/V dz



23

Let us define thentropy

B
(sl 8) = [ logs(3)dn

«

By Jensen’s inequality

S, o) < o[

(0%

W) dA) <logpugle, B <0, [a, 4] C Ry

Therefore eitheS(py, [, 5]) = —oo, or u(A) > 0 a.e. on
[, B].

In order to prove Theorem 3.1 it is enough to prove that

S(up, [0, 8) > ~C [ V2(a)do - Cal1).
Letz = X+ i7. Then

Im ((HD—Z)—lf,f) — Im /dt“f(? dt:/(t jdf)g@ 5 dt — (M),

ast — 0. Lety; and, be solutions of the equation
— " + Vp = 21, 2=k, Imk>0.

Assume that/(z) = 0, for 0 < x < 9,6 > 0. Then for suche
the kernel of the integral operatoH” — z)~! equals

K(z,y) = {wl(m)wy)’ y>z,

Va(z)n(y), y <=z

where
sin kx

i) = —

and .
sin kx

k Y
Here M is the Weyl function chosen such that(x) — 0,
Imk > 0, asz — oo. Let us choos¢g satisfying

e suppf C [0,6) andf = f.

Uo(x) = coskx + M (k)
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Then
lim Im ((HD _ )y, f) — Im M(VN)|F(VA)? = miy (),

7—0

where

* sin kx
F(k):/o . f(x)dx

F (k) is an analytic function fok € C\ {0}. Therefore for any
(o, B) C Ry ff log |F(v/A)] d\ is finite and we now obtain

5 5
S(,uf,(oz,ﬁ)):/ log,u'f(/\)dAZ/ log Im M (VX)) dA—Cs(f).

« «

It only remains to show that

p
/ log Im M (VX) d\ > —01/1/2(3:) dz.

Let
e“m, T — 00,
via) = {a(k)e“”’ +b(k)e ** 2 € (0,06).
Then

e The WronskiariV [y, 1] = ' — %)’ is independent of
x andfork € R

1 n 2 2
_ = — = 1
W[, 0] = la(k) - (k) = 1,
e By using trace formula we have

/j k*log |a(k)| dk < /V2(::r;) dx.

Now, since bothyy(z), ¥ (x) — 0, asx — oo, Imk > 0,
theny, = Cy. Fromis(z) = coskx + M (k)22 we find

_ ¥5(0) _ ¢'(0)
M(k) = T = wp- If k € Rthen

m>@@n_gwmmm_ k

P
$(0) w2 WO [RO))

ImM(k):%[
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Thus by usinda|? = |b> + 1 we havelb|?* < |a|?> and therefore
Im M (k) 1 1 1
= > > .
k la+ b = 2(|al? + [b]?) = 4]al?
We finally obtain

foimM p 1
/ long(k)dkzz/ 10g4| Pdkz—(]/v?(x)dx.
(0% « a

Open problem (Simon’s conjecture):If d > 1, then

/ V2 (x)|z|* " dx < oo,
Rd

then there is an infinite number of functiorfs such that
() > 0.
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Hardy’s type Inequalities for many particles

Jointly with Maria and Thomas Hoffmann-Ostenhof
and Jesper Tidblom

Let z € R™, o = (x1,29,...,75) Where thex; =
(%i1,...,x;n) are points inR". Denoter;; = |r; — ;| and
let Ny = {z = (21,2,...,2y) € RY | 2; = ; for some
i #J}

Theorem 3.2. (1D Hardy ineq. with N particles) Let
u € HYRN \ Ny), whereNy = {z = (z1,79,...,25) €
RN | z; = z; for somei # j}. Then

1

— |dx.

r2> v

(3.2) /RN Vu|?dz > %/RN W( 3

1<i<j<N 't

Remark. The constantil/2 appearing in (3.2) is better than
1

=——— Which can be obtained by adding up inequaliﬁeﬁ%—

2(N—1)
H? 11
Pz 2 2y
Let ]
- re.
1<i<j<N W
and

B(n, N) — Z Z (.Ij — xZ)Q (Zajj — ZCk)

r-.r
=1 ik, ik ik

Define now
B(3,N)

2A(3,N)’

Theorem 3.3. (3D Hardy ineq. with N particles)Letu €
H(R3Y), then

1 1
2 2
Vul“de > ——— E —d
\/RSN‘ U’ x_2—|—2K(N)\/RsN‘u‘ 7“2 s

1<i<j<N 4

K(N) = max
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where(2 + 2K(N))~' > 1/N.

e Note that this is already a substantial improvement of
the factor(2NV — 2)~! which we would have gotten by
adding up.

e For N = 3 and4 the estimatg2 + 2K(N))™! > 1/N
Is optimal. Things are different folN larger and the
asymptotics of (V) is an interesting problem.

e K(N) ~y_o ¢N. Indeed, we can obtain thatd™ =
0,1)"

(x — 2) -1
inf N-K (N // / dxdydz // d:cdy} :
N g Ix—y\ Iaf z[? 6 !fc—yl2

Finding the sharp value of (N) is an interesting prob-
lem from geometrical combinatorics.

Theorem 3.4. (3D Coulomb case with N particles)
Letu € WH2(R3Y). Then

/RSN \Vul*dr — Q/RSN (Z i) lu|? dx

— Tj
1<)
N(N -1
—(7( )+L(N))/ ul? da,
2 -~

>

where

Y Y ),

J=1 ik, i.k#j rwr‘jk
Remark. The sharp value of.(N) is unknown except of
N = 3,4,5. However, we can show that

S N(N = 1)(N —2) < L(N) < { N(N ~ 1)(N ~ ).
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2D Hardy Inequality

Following Alano Ancona we present here a result from his pa-
per J.London Math. Soc (B4 (1986) 274-290, page 278, on
Hardy’s inequality.

Theorem 3.5.Let() C R? be a simply connected domain,c
H}(Q2). Then

2
/'V e 2 g5 w(l@ &

whered (&) is the distance from to the boundary)?.

In order to prove this theorem we apply a version of Koebe’s
theorem. LeD = {2z € C: |z| <1} andC, = {z =z +iy €
C: z > 0}.

Lemma 3.1.Let f be a conformal map fror®, to (2. Then
X
0(f(2) =5 1f (=), z€Cy

Proof. Indeed, the standard version of Koebe’s one quarter the-
orem claims that iy : D — € is a conformal mapping, then

(3.3 59(0)) = 1 9 (O)]

For any conformal mapping : C,. —  we can now consider

14+ e P
wherew € D, z = z + iy € C, andf = argz, —7/2 < 0 <
/2.
For a fixedz = |z|e'
1+ e w
ha(w) = 2 1 —efw

mapsD ontoC,..
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Clearlyh(0) = z, g.(0) = f(z) and

ng)::zf%z)Ofﬂf+ew)::QCosezf%z)
Therefore by using (3.3) we obtain

|z| cos

5((2)) = 8(g-(0)) > 1 164(0)] = 2552 () = S 172
[

Proof of Theorem 3.5.

If f: C, — Qis a conformal mappingf(z) = u(z,y) +
w(x,y), &€ = (u,v), then by using Hardy’s inequality for half-
plane we obtain

00 o0 o0 2
/legsonf:/ / Vol dyde > // L
0 _

p]? 2 qyde > o
/ / rrapiap G dvd NGk

The proof is complete.

Open problem: for non-convex case find the best constant
in the inequality

/\v |2dg>K/ oF
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