A SZEGO CONDITION FOR A MULTIDIMENSIONAL
SCHRODINGER OPERATOR

A. LAPTEV, S. NABOKO AND O. SAFRONOV

ABSTRACT. We consider spectral properties of a Sittinger operator
perturbed by a potential vanishing at infinity and prove that the corre-
sponding spectral measure satisfies a 82gge condition.

1. INTRODUCTION

In this paper we consider a multidimesional Sidinger operator in
L*(R4) and introduce a version of a SZegondition (2.5), which is well
known for spectral measures of Jacobi matrices (see, for example [4], [10],
[11], [12], [13], [15]). Our condition seems to be comparable with the clas-
sical Szeg integrability only for small energies. The corresponding condi-
tion for large energies is much weaker than the expected one and cannot be
obtained by the methods of this paper.

One of the motivations of this article is the conjecture of B. Simon for-
mulated in [13].

Conjecture:Let V be a real function oiR?, d > 2, which obeys
(1.1) /|gzc|_d+1|V(x)|2 dr < oo.

Then—A + V has the a.c. spectrum of infinite multiplicity essentially sup-
ported by|0, co).

Note that for spherically symmetric potentials this result follows from
the paper by P. Deift and R. Killip [3], where this conjecture is solved for
d = 1. Ford > 2 itis still open.

The assumptions imposed on the potential in our main Theorem 2.1 are
much more restrictive than those in (1.1). In fact they are close to the con-
ditions under which absolute continuity of the spectrum can be proven by
the methods of the scattering theory. However our work differs from the
results obtained in the scattering theory in a critical way: we prove a certain
estimate showing that the spectral measure of thed8aiger operator can
not be too small and this estimate turns to be of an independent interest. It
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is known that there are so called Lieb-Thiring bounds for the eigenvalues of
the operatorA + V:

SN0 V@l dn o
J

The Szed condition (2.5) can be interpreted as a version of Lieb-Thirring
inequalities for the a.c. part of the spectrum.

Although we start the proof considering a class of smooth poteritials
the final result does not assume any smoothness of

When proving the main result we are able to use an analog of
Buslaev-Faddeev-Zakharov trace formulae well known for one-dimensional
Schibdinger operators. The multidimensional case is reduced to a problem
for a second order elliptic intergo-differential operator. One of the main dif-
ficulties of this appoach is the treatment of the “potential” type term which
appears to be a dissipative integral operator depending on the spectral pa-
rameter. The corresponding Fredholm equation for the Jost functions might
be not solvable for a discrete subset of the complex upper half plane. There
is a hope that the corresponding contribution into trace formulae coming
from this subset can be controled by some Lieb-Thirring ineqaulities. For-
tunately the positivity of the imaginary parts of the points from this subset
appears together with the "right” sign in the so-called "first” trace formula.
The contribution of these points in the "second” trace formula is distructive
and requires some upper estimates. This explains why in our main theorem
we obtain condition involving the first power of the potentiatather than
V2,

2. THE MAIN RESULT

Let Q, be the unit ball inR¢ andV be a real valued function d&? \ ;.
We consider the operatdf = H, +V = —A + V on L*(R? \ ), with
the Dirichlet boundary conditions a#); = S?~!. We can assume without
loss of generality that there és > 1 such that

2.1) v+§—|‘12:0 for 1< |z]<ei,
wherea, = % — €1 Let Ey(0), 6 C R, be the spectral projection of

the operatorr/. We construct a measureon the the real line such that for
spherically symetric functiong

22)  (Ea()f.f) = / FO)[Pdu(), 8 C R, = (0,00),
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where

(2.3) .

F(\) = %/ sin(k(r—1))f(r) r(d_l)/zdn suppf C{z: 1 < |z| <1}
0

andk? = X > 0.

LetQ = [0,1)4. Then cube®),, = Q+n, n € Z4, form a partition ofR?
with which we associate the classes of functiarssich that the sequence of
(quasi)norms{||u|| Le(q,) }o2; belongs to?, 0 < p,q < oco. These classes
are denoted by?(Z<; L4(Q)). When proving the main result we need the
boundedness of the operators in (7.4). For example this can be provided by
the following local condition oV from [2]

(2.4) Ve 2z LNQ), q>df2,

which can be weakened by using the characterization of weak Hardy’'s
weights in terms of capacities obtained by V.Maz'ya (see [8]). Note that
if (2.4) is satisfied then the operatéi can be defined in the sense of qua-
dratic forms (see [2]).

Theorem 2.1.LetV be areal valued function oR¢\ ©2; which obey%2.4)
and such that

/ VD2 () do < oo, Vi |z| = d < oo,
Rd\Q1 Rd\Ql
where2V, = |V| £ V. Then
*log(1/p/(t)) dt
25 [ st
o (L+832)Vt

wherey is defined in(2.2). If (2.1)is satisfied theif2.5)is equivalent to
/OO log(K(Ea(Nf, ) dN
0 (14 A3/2)V/A ’

for any bounded spherically symmetric functipgé 0 with suppf C {z :
1< ’Q?‘ < Cl}.

(2.6)

Remark 1. The inequality (2.5) guaranties that the a.c. spectrury aé
essentially supported b9, c0), sincey’ > 0 almost everywhere and gives
a quantative information about the measure

Remark 2. The equivalence of (2.5) and (2.6) follows from the fact that
if Fis defined as in (2.3), then the functioh + \?)~!log(|F()\)|) is in
L'(R,) see, for example, P. Koosis [5] (section I11G2).
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3. REDUCTION TO A ONE-DIMENSIONAL PROBLEM

In this section we assume thte C§° and often use polar coordinates
(r,0), = = v € R 0 € S*"'. Denote by{Y;}>*, the orthonormal in
L*(S?1) basis of (real) spherical funcions and Bt be the orthogonal
projection given by

Pju(r,0) = Y](Q)/ Y; (0 )u(r,0) do'.

Sd—1
Clearly Pyu depends only on. Denote

Vi=RVF, Hy=FRHh,
Vie=RV(I-F), V=V,
Vo=(I—-PFR)V(I—-PF), Hya=I—-PFR)H/(I-§RK).
Then the operatoll — = can be represented as a matrix:

s Ho1+Vi—z Vi
Vo Hoo+Vo—2)7

and the equation
(H—2u=Ff, Imz#D0,
is equivalent to
(3.1) (Ho1+T.—2)Pyu= Pof, (Hoo+Va—2)""Va1Pou= (Py—1I)u.
Here the operatdf’, is defined by
T,=Vi—Vig(Hoo+ Vo — Z>_1‘/2,1

on L?((1, 00), 741 dr).
By using the unitary operator from L?((1,00),dr) to
L*((1, 00), 741 dr),
Uu(r) = r— @172,
we reduce (3.1) to the problem for the following one-dimensional
Schibdinger operator ii*(1, co)

2
(3.2) Lu(r) = —% +Q.u, u€ L*1,00), u(l) =0,
r
where
d—1)? d-1
Qz:V1+%—%,Q(U*Ho,QUvLVz—Z)_lVQ,h ogq = ( 1 ) Ty

By considering the potential

V — a—j instead of V
r
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without loss of generality we can assume that

(3.3) Q. =Vi = Via(S+Vo—2) oy,
where
v Agu

Note that the conditions of Theorem 2.1 Brwon'’t be changed.
According to (3.1) we obtain

(3.5) Py(H — 2)"'Py = U(L, — 2)"'U".

We see also that if sugp € {x € R?: ¢ < |z| < &2}, ¢ > 1, then for
the operator (3.3) we have

Qz = QZX = XQza

wherey is an operator of multiplication by the characteristic function of the
interval (cy, ¢o), ¢; > 0. Itis impotant for us thaf), is an analytic operator
valued function of: with a negative imaginary part in the upper half plane
and which has a positive imaginary part in the lower half plane.

4. GREEN S FUNCTION.

Let us consider the equation
2

(4.1) —% (r) + (Q.0)(r) = 2¢(r), r>1, z€C,

with @, given by (3.3) and let)(r) be the solution of the equation (4.1)
satisfying

Up(r) = exp (ikr), k* =z, Imk >0, Vr > c,.
Then this solution also satisfies the following “integral” equation

4.2) Up(r) = e*r — k7! /OO sin k(r — s)(Q,¥x)(s) ds.

According to the analytic Fredholm theorem (see, for example, Theorem
V1.14, [9]) we conclude that the equation (4.2) is uniquely solvable for all
k except perhaps a discret sequence of points and its solutiea mero-
morphic with respect té function, Imk > 0.

Consider the resolvent operatBtz) = (L, — z)~!, whereL, is defined
in (3.2). If x., is the operator of multiplication by the characteristic function
of (1,¢1). ThenR(z)x., is an integral operator with the kernel:

m(i) Sin(k(kr—l))’
(43) GZ<7"> S) = ﬁzgr; sin(k(s—1))

m — for s < miH{C1, T}.

forr < s < ¢y,
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Indeed, assuming that sugp C (1, c;) we can easily check that the func-
tion
1 < sin(k(r — 1)) " sin(k(s — 1))
ur) = ol | @) e [ ) = (s}
satisfies the equation
2

(4.4) —%u(r) (Q.u)(r) — zu(r) = f(r), r>1, z€C,

and moreover(1) = 0.

5. WRONSKIAN AND PROPERTIES OF THEV/-FUNCTION.
Letasin (3.3)
Q.=Vi = Via(S+ Vo — 2)71‘/2,1-
The function

()

Yr(1)
is called the WeylM -function of the operator (4.1). Let us consider the
Wronskian

(5.1) W [0, e (r) = W (r)voe(r) — Gu(r) ().

Note thaty, satisfies the equation (4.1) with. andz instead ofQ), andz.
Since,, is a solution of the equation (4.1) we find

%W[%, Yil(r) = (2=2)0u(r)n(r) + Q=) (r) v (r) =i (r) (Qthr) ()

So we obtain
(5.2) +Im {W i, ¥e)(ca) = Wi, ] (c1)} > 0, for +1m 2z > 0+,
which means that for alt we have the following inequality

M (k)

i < P
Moreover, if we represent the solutign for realk in the form
(5.3) Yr(w) = a(k)e™ + b(k)e ™™z < ¢,
then it follows from (5.2) that
jal* = [b]* > 1.

Then fork? = 2
M (k) = . (D)(r(1) " = ik(1=p(k))(1+p(k)) ", p(k) == e **b(k)a(k)™".
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The latter implies
p(k) = (ik — M (k))(ik + M (k)™
Sincela|* — |b|> > 1 we obtain that for reat

_ 4klm M
ik 4+ M (k)]
Note that since Im\/ > 0, then for anyk > 0 we have

ik + M (k)|* = k* + |M|* + 2kim M > k?

la(k)[72 < 1—[p(k)[?

and therefore

(5.4) la(k)|7? < 4k7'(Im M), k> 0.
Note also that
(5.5) ImM (k) >0 if Imk* > 0.
Thus, there are constants; € R andC; > 0 and a positive measuye
such that
> dpu(t)
/_oo 1+ t2 < 0

where
(5.6) M(k) =C, —I—C’z+/ ( ! —L)du(t) k=2

' o L\t — 142 ’ '

Finally, note thatR(z) = Py(U*HoU + V — 2)~' P, and therefore we can
write formally that

2

~ Ords

where); is the derivative of(r—1). Let x., be the characteristic function of
(1,¢1). The representation (4.3) for the resolvent operator gives us the rep-
resentation for the operatt, Po Ev+myv+v (0) Poxe,, WhereEy g, v (9)

is the spectral measure 6f HyU + V:

M(k?) GZ(’T’, 8)‘(171) = (P()(U*H(]U + V — Z)—lpoéi, (51),

5.7) (P v OFf, 1) = [ 1FO)Pdn()
and where
1 [ 2
F(\) = E/o sin(k(r —1))f(r)dr, suppf C (1,¢1), k%= A\

SinceF is a boundary value of an analytic function, we obtain thiat) -
0 for a.e.\. This means thaky (9) # 0if ¢/ > 0 a.e. orn.
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6. A TRACE INEQUALITY

In this section we assume th&t is not a potential but the operator
> =0 PV 30—y Pj, which approximated” for largen. It can be inter-
preted as an operator of multiplication by a matrix valued function. of
In this case the functiof; remains the same as before. Sir¢eare pro-
jections on real spherical functions, this matrix is real and therefore the
the inequality (5.4) holds true. Moreover we substitute the terfy /r?
on (1, 00) by a "compactly supported” approximatior(. (r)Ay/r? where
(. € C5°(1,00) and(.(r)/r* — 1/r*in L'(1,00) ase — 0. Then the co-
efficienta(k) introduced in (5.3) will depend onand we shall write:. (k)
instead ofu(k). From (4.2) and (3.3) we find that

. [~ (s
exp(—ikr)yg(r) =1 — %k (1 — e =NV (s) ds + o(1/k)
and thus

1
a.(k) = lim exp(—ikr)ig(r) =1 — %k Vidr +o(1/k),
r——00 1

ask — oo. Now leti3,, and~,; be zeros and poles af (k). Note that

—7; are also poles ai. (k) (this will follow from (6.2)). We shall see in a
moment that3,, > 0. LetB be the corresponding Blaschke product

(k= i) 17 (k=)
30 =G e

Clearly|®B(k)| = 1, B(k) = B(—k), k € R, and we obtain

(6.1) /_:0 log(a-(k)/B(k)) dk = g/%dH—Qﬂ(Zﬁn—Z”n ’Yj);

provided that for some integér> 0 the coefficient:. (k) has an expansion
as(k) =3 ;5 ¢;k? at zero. The existance of such an expansion as well as
the conditiona. (k)| — 1 = O(1/|k|*) ask — 400 will be proven later.

In order to prove tha,, > 0 let us show that-32, are the eigenvalues
of a certain selfadjoint operator of a Sédinger type. Namely, leP =
> 5o Pjand letd. be the operator i3 (R, PL*(S* 1))

2

% - gs%, (I — Po)u(l,-) =0, wu(r)e PL*S*"), vr,
where(. is the same as above. Obviouslysif< ¢; < ¢; < r, then the
kernel of the operatoPo(H8 +V —2)"' P equals

m

H.ou=—

_expik(r —s)

(6.2) g(r;s, k) = 2ika. (k)
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The proof of the latter relation is a couterpart of the proof of (4.3). On the
other hand we can consider the expansiom okar the eigenvalue 32 .
Denote byg,, ;(r,0), j = 1,2...n the orthonormal system of eigenfunc-

tions corresponding te-32,. If ¢£2?j = Jou1 Om;(r,0) d6 then

2?21 ¢£2?j(r)¢£g?j (s)
K+ 6,

wheregy(r, s, k) = O(1), ask — if3,,. This proves that.(k) is a mero-

morphic funcion in the upper half plane and its zeros correspond to the

eigenvalues- 32 of the operatot/. + V. Moreover the multiplicities of

these zeros are equal to one. The latter arguments were inspired by [6].
Let us introduce marticed(k) andB(k) defined in the spacBL?(S* 1),

such that the solution of the equation (for the matrix valued funcbipn

d>® JAVLI)
— 7 CE% + VO =E®, & =exp(ikr)P, 1> c,
r r

equalsexp(ikr)A(k) + exp(—ikr)B(k) for r < ¢;.
We prove in the appendix of the paper that

g(r, s, k) = + go(r, s, k), s<c <cy<r,

(6.3)

(6.4) Py = Py(A(k) + (I — Ry)e 2 B(k)) ™" R

ac(k)
We shall also see that(k) and B(k) both have at most a simple pole at

zero and therefore by (6.4) (k) could also have a pole at zero. Moreover
we shall prove that

0] =1 = 077

ask — +oo, which, in particular, means thatg |a. (k)| € L' (R).
Observe that whea — 0 the eigenvalues ofi. + V' converge to the

eigenvalues of the operatdf + V, whereH is the following operator in
L*(R, L*(871))

. d*u Agu

H:—W—CETT, (I—P())u(l,):()

Denote the eigenvalues &f. by — (ﬁf,?))z, wheresY) > 0. Let us prove
that by using Lieb-Thirring inequalities [7] we can obtain

(6.5) S B0 < (J( / VD2, 4 /
Rd

R‘i
Indeed, let?_ = /V_. Then
W_(H — 2)"W_ = W_(S — 2)"'W_ + W_0(2)W_,

V_|x|_d+1dx> :
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where S is defined in (3.4) an®(z) is the operator of rank one with the
integral kernek™(+5=2) /2, l<:2 = z. Therefore

(6.6) IW_0()W_|| < —— /v ||~ dx, 2z <.

Now for any compact operatoT and s > 0 denoten.(s,T) =
rank Fr(s,00). Then

S0 = [t
0

\/— <
g/ (ns(1/2, W_(S 4+ 1) 7'Wo) 4+ ny(1/2, W_O(=t)IW_))
0
Now the inequality (6.5) follows from

* dt /2
12, W_(S+t)"'W_ <C dz,
| mapwis gt Zcc [ vt

which is the classical Lieb-Thirring inequality and from

/Ooon+(1/2W@( HWw —<C/V|x| T,

which is implied by (6.6). Consequently, since 4> 0 the trace formula
(6.1) together with (6.5) leads to the inequality

limsup/ log |a-(k)| dk < 5/ Vi dr+
(6.7) =0 e o

+C< / VD2, 4 / V,\x]_dem).
R4 Rd

Therefore for any pair of finite numbers > r; > 0
(6.8)

T2 1 k +oo T +o00
—log——dk <1 1 < —
[ 5 108 V) dk < 1r§1jélp/_m ogla-(k)|dk < 2/_00 Vi dr

1
+C</ VD2 gy —i—/ V,\x]_d“da:),
Rd Rd

where the first inequality follows from Corollary 5.3 [4].

dt
2/t

7. THE END OF THE PROOF OHHEOREM 2.1

Assume that our perturbatiovi is an arbitrary function satisfying the
conditions of Theorem 0.1. Then the Weyl functibdh can be defined for
example as\/ (k) = 8‘2—28Gz(r, s)|a,1) whereG', is the integral kernel of the
operatorPy(U*HU — z)~'P,. The next proposition allows us to approxi-
mateV’ by compactly supported smooth functioris
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Proposition 7.1. Let V' satisfy the conditions of Theorem 2.1. Then there
exists a sequendé, of compactly supported smooth functions converging
to V' so that

(7.1) / (V)2 g < C(V)  and / (Vo) ||~ de < C(V)
and such that the Weyl functiordd,, corresponding tol;,, converge uni-
formly whenk? belongs to any compact subset of the upper half plane:
M, (k) — M(k).
Therefore the sequence of measungsconverges weakly to the spectral
measure..
Proof. Let W, = /V.. Since the clas€° is dense inL? for anyp > 0,
we can find a pair of sequencHB§, andW, € C§° satisfying
W — W_ in LYRY; W — W, in L2(RY, 2|~ dx)
Wy — Wein(>(Z% LP(Q)), p>d.
Introduce a sequence of functiofig, }°° ,
Vo= (W) = (W)

n

ThenV,, € Cg° and the relations (7.4) hold true. Suppose now fhat)
andl',,(z) are the resolvent operators §f= U*(—A)U — ag4/r? andS,, =
S + V, respectively. Denote by the derivative of the delta functiof{r —
1). The expressioiiy(2)d;, Im z # 0, can be understood as the function

[o(2)0] = —exp(ik(r — 1)).
According to assumptions (7.2) we have that
Wi To(2)0 — Walo(2)d,

in L?(R%) (with respect to any weight). Thus in order to prove that the Weyl
functions

(7.2)

82 ! !
Mn(k) = %Gn,Z(n S)|(171) = (Fn(2>51751)

= (Po(2)d1,01) — (W = W,))To(2)dy, (W, + W, )T (2)6)
converge, it is sufficient to show that
(73) W +W L), — Wy +W)S+V —2)"1
in L2(RY),
Let us denotéV,, = W, + W, andW, Y = W+ — W.. Clearly, if
W= — W, in the class (2.4) witly > d, asn — oo, then

(7.4) Wo.Lo(Z)WO — (W, + W) (W, — W)
in the operator norm topology.
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Then (7.3) follows from the identity
Wol'n(2)8) = (I + W, To(Z)W )1, I (2)6).
O
Similarly we can prove the following

Proposition 7.2. Let V' be a compactly supported smooth function. Then
the Weyl functions/; corresponding toy~_, P,V 3"'_ P; converge uni-
formly to M whenk? belongs to any compact subdgg&tof the upper half
plane

M (k) — M(k)
and therefore the sequence of measuresonverges weakly to the spectral
measureu constructed fol/ .

Proof. Let us denotd; = >°' | P,V 3\  P; letTy(z) and letl’;(z) be the
resolvent operators of = U*(—A)U — «ag4/r? defined in (3.4) and; =
S+V, respectively. As in Proposition 7.1 the expresdigfz)d;, Im z # 0,
is understood as the functidiy(z)d; = — exp(ik(r—1)). According to our
assumptions

l
ViTo(2)8) =Y PVTo(2)8; — VTo(2)d}

§=0

in L2(R4). Thus in order to prove that the Weyl functions
82 ! !

M(k) = =G )1 = (Ti(2)5,67)

= (Po(2)dy,01) — (Vil'o(2)d1, T'u(Z) 1)
converge, it is sufficient to show thBt(z)d; converges t¢S + V — z) 16}
in L2(R%) uniformly on compact subsets of the complex plane. The latter
follows from the identity

[(Z)0, = (S+V -2 -T/@)(V, - V)(S+V —2)7 1, =

=(S+V =2 +TiE) I =D _P)V(S+V —2) '8+

j=0
1) i PV(I ~ i P)(S+V -2
and from the bound - =
INEI< <0 ek
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Finally according to inequality (6.8) and Propositions 7.1, 7.2 we observe
that there exists a sequence of measuregeakly convergent tp, such that
for any fixedc > 0

“log(1/p(t)) dt
.ATﬁﬁaﬁ<mw,w

whereC(V) is independent of. Therefore due to the statement on the
upper semicontinuity of an entropy (see [4]) we obtain

/m%wmmw<m
o (L+12)

The proof of Theorem 2.1 is complete.

8. APPENDIX

1. Let G(r, s, k) be the kernel of the operat¢H. + V — z)~'x.,, where
Xc, IS the operator of multiplication by the characteristic functiofilof; ).
Then

U(r,k)Zi(s, k), as r<s<ac
—O(r, k) Zs(s, k), as s<cg, s<T.

G(r,s, k) = {

HereU(r, k) = e * Py + k~tsin(k(r — 1))(P — R) for r < ¢; and
®(r, k) = e P for r > c,. The matricesZ; (s, k) andZ,(s, k) are chosen
such thatz(r, s, k) is continuous at the diagonal and

lim G.(r,s,k)= lim G.(r,sk)+ P.
0 r—s+0

rT—8—

The two latter equations are equivalent to
[e™ ™ Py + k' sin(k(r — 1))(P — Py)]Z1+
[e* " B(k) + " A(k)] Zy = 0;
[—ike ™" Py 4 cos(k(r — 1)) (P — Py)]Z,+
[—ike™*" B(k) + ike™* A(k)]| Z, = P

(8.1)

and are uniquely solvable if and only/it is not an eigenvalue of/. + V.
The first equation of the system (8.1) gives

kR
sin(k(r — 1))
Therefore we obtain from the second equation of (8.1) that

[ikPy — kctg (k(r — 1))(P — Ry)] [e* B(k) + " A(k)] Zs
+[—ike *" B(k) + ike™* A(k)|Zy = P,

Zy = —[e"" Py + (P — Py)| [e”™ B(k) + e* A(k)] Zo.

(8.2)
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or equivalently
(P—Py) [(—k ctg(k(r—1))—ik)e " B(k)+(—k ctg(k(r—1))+ik) e“““A(k)} Z

+2ik Poe™*" A(k) Zy = P.

Obviously
. LeFik(r—1)
—kectg(k(r —1)) £ ik = Ry E—
This implies
—k
sink(r —1)
Multiplying both sides of this identity by

—sink(r—1) _, etk
JE— 1 P _ P
o Rl

(P— Po)[ (e‘““B(k) +e“fA(/<;))] Zo+2ik Poe™ A(k) Zy = P.

Py
we derive
1

PoZs(r, k) Py = (2ik) " 'e ™ Py(A(k) + e > (P — Py)B(k)) D.
Finally, since
PyZs(r, k) Py = (2ika.) e " B,
we obtain (6.4).
2. In this subsection we adapt the argument from [6]. The solution
o (r, k) of (6.3) satisfies the integral equation
(8.3) O(r,k) = e*" P — / k~lsink(r — )V (s)®(s, k) ds,

whereV =V — r—2¢. P A,. Denote
X(r k) =e " ®(r,k) - P.
Then

(8.4) X(r k) = /OO K(r, s, k)ds + /OO K(r,s, k)X (s, k) ds,

where

- " " €2ik(s—r) —1-

( . ) (7‘,8, )_ 22]{3 V(S)
Note that

(8.6) K (r,s,k)|| < Ci(V,n)/(1+ |k|)

for all £ with Im £ > 0 and allk with 1 < r < s. Here and below - ||
denotes the norm of an operatorfd.?(S?1).
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Solving the Volterra equation (8.4) we obtain the following convergent
series

X(rk)y=> // & kydry - dr, .
M=l <oy 51

From (8.6) we see thak (r, k)| < Co(V) forall 1 < r. ObviouslyX (r, k)
is an entire function irk. Inserting this estimate back into (8.4), we con-
clude that the inequality

(8.7) I X (r, k)| < C5(V,n)(1+ |k])~"

holds for all» with 1 < r and allk with Im & > 0.
If we rewrite (8.3) as follows

(8.8)
1 o - o

“ o ). V(s)ds — — V(s)X (s, k) ds}

@/{j:lkTP
<r,>e[ i/

—ikr eS] ~ oo
+ 62.k [/ e?* 5V (s) ds —i—/ e** <V (5) X (s, k) dx] ,
? T T

then the expressions in the brackets in the r.h.s. do not depend@an
r < 1. From (8.8) it follows that

1 +oo 1 +oo
(8.9) A(k)=P— o V(s)ds — oF V(s)X(s,k)ds,
1 [t ., - 1 [T . -
(8.10) B(k) = 5T / e** <V (s) ds + 57 e** <V (5)X (s, k) ds .
v —00 —00

Recall that supp” C (1, 00). Thus for sufficiently largék| the smooth-
ness ofl” and (8.7) imply

+oo 5
(8.11) HA(k) — P+ % V(s)ds|| < Cy(V,n)|k|™%, Imk>0,
? —0oQ
(8.12) e **B(k)|| < C5(V,n)[k|™>, Imk>0.

Note that from (6.4), (8.11) and (8.12) we now obtain thgt) is a
meromorphic function in a neighborhood of zero aad k)| tends to 1 as
O(1/|k|?) whenk — 4oc.
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