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ABSTRACT. We consider spectral properties of a Schrödinger operator
perturbed by a potential vanishing at infinity and prove that the corre-
sponding spectral measure satisfies a Szegő type condition.

1. INTRODUCTION

In this paper we consider a multidimesional Schrödinger operator in
L2(Rd) and introduce a version of a Szegő condition (2.5), which is well
known for spectral measures of Jacobi matrices (see, for example [4], [10],
[11], [12], [13], [15]). Our condition seems to be comparable with the clas-
sical Szeg̋o integrability only for small energies. The corresponding condi-
tion for large energies is much weaker than the expected one and cannot be
obtained by the methods of this paper.

One of the motivations of this article is the conjecture of B. Simon for-
mulated in [13].

Conjecture:Let V be a real function onRd, d ≥ 2, which obeys

(1.1)
∫
|x|−d+1|V (x)|2 dx <∞.

Then−∆ + V has the a.c. spectrum of infinite multiplicity essentially sup-
ported by[0,∞).

Note that for spherically symmetric potentials this result follows from
the paper by P. Deift and R. Killip [3], where this conjecture is solved for
d = 1. Ford ≥ 2 it is still open.

The assumptions imposed on the potential in our main Theorem 2.1 are
much more restrictive than those in (1.1). In fact they are close to the con-
ditions under which absolute continuity of the spectrum can be proven by
the methods of the scattering theory. However our work differs from the
results obtained in the scattering theory in a critical way: we prove a certain
estimate showing that the spectral measure of the Schrödinger operator can
not be too small and this estimate turns to be of an independent interest. It
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is known that there are so called Lieb-Thiring bounds for the eigenvalues of
the operator−∆ + V :∑

j

|λj|γ ≤ C

∫
|V (x)|d/2+γ dx, γ > 0.

The Szeg̋o condition (2.5) can be interpreted as a version of Lieb-Thirring
inequalities for the a.c. part of the spectrum.

Although we start the proof considering a class of smooth potentialsV ,
the final result does not assume any smoothness ofV .

When proving the main result we are able to use an analog of
Buslaev-Faddeev-Zakharov trace formulae well known for one-dimensional
Schr̈odinger operators. The multidimensional case is reduced to a problem
for a second order elliptic intergo-differential operator. One of the main dif-
ficulties of this appoach is the treatment of the “potential” type term which
appears to be a dissipative integral operator depending on the spectral pa-
rameter. The corresponding Fredholm equation for the Jost functions might
be not solvable for a discrete subset of the complex upper half plane. There
is a hope that the corresponding contribution into trace formulae coming
from this subset can be controled by some Lieb-Thirring ineqaulities. For-
tunately the positivity of the imaginary parts of the points from this subset
appears together with the ”right” sign in the so-called ”first” trace formula.
The contribution of these points in the ”second” trace formula is distructive
and requires some upper estimates. This explains why in our main theorem
we obtain condition involving the first power of the potentialV rather than
V 2.

2. THE MAIN RESULT

Let Ω1 be the unit ball inRd andV be a real valued function onRd \Ω1.
We consider the operatorH = H0 + V = −∆ + V onL2(Rd \ Ω1), with
the Dirichlet boundary conditions on∂Ω1 = S

d−1. We can assume without
loss of generality that there isc1 > 1 such that

(2.1) V +
αd
|x|2

= 0 for 1 < |x| < c1,

whereαd = (d−1)2

4
− d−1

2
. LetEH(δ), δ ⊂ R, be the spectral projection of

the operatorH. We construct a measureµ on the the real line such that for
spherically symetric functionsf

(2.2) (EH(δ)f, f) =

∫
δ

|F (λ)|2dµ(λ), δ ⊂ R+ = (0,∞),
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where
(2.3)

F (λ) =
1

k

∫ c1

0

sin(k(r−1))f(r) r(d−1)/2dr, suppf ⊂ {x : 1 < |x| < c1}.

andk2 = λ > 0.
LetQ = [0, 1)d. Then cubesQn = Q+n, n ∈ Zd, form a partition ofRd

with which we associate the classes of functionsu such that the sequence of
(quasi)norms{‖u‖Lq(Qn)}∞n=1 belongs tò p, 0 < p, q ≤ ∞. These classes
are denoted bỳp(Zd;Lq(Q)). When proving the main result we need the
boundedness of the operators in (7.4). For example this can be provided by
the following local condition onV from [2]

(2.4) V ∈ `∞(Zd;Lq(Q)), q > d/2,

which can be weakened by using the characterization of weak Hardy’s
weights in terms of capacities obtained by V.Maz’ya (see [8]). Note that
if (2.4) is satisfied then the operatorH can be defined in the sense of qua-
dratic forms (see [2]).

Theorem 2.1.LetV be a real valued function onRd \Ω1 which obeys(2.4)
and such that∫

Rd\Ω1

V
(d+1)/2
− (x) dx <∞,

∫
Rd\Ω1

V+|x|−d+1 dx <∞,

where2V± = |V | ± V . Then

(2.5)
∫ ∞

0

log(1/µ′(t)) dt

(1 + t3/2)
√
t
<∞,

whereµ is defined in(2.2). If (2.1) is satisfied then(2.5) is equivalent to

(2.6)
∫ ∞

0

log
(
d
dλ

(EH(λ)f, f)
)
dλ

(1 + λ3/2)
√
λ

> −∞,

for any bounded spherically symmetric functionf 6= 0 with suppf ⊂ {x :
1 < |x| < c1}.

Remark 1. The inequality (2.5) guaranties that the a.c. spectrum ofH is
essentially supported by[0,∞), sinceµ′ > 0 almost everywhere and gives
a quantative information about the measureµ.
Remark 2. The equivalence of (2.5) and (2.6) follows from the fact that
if F is defined as in (2.3), then the function(1 + λ2)−1 log(|F (λ)|) is in
L1(R+) see, for example, P. Koosis [5] (section IIIG2).
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3. REDUCTION TO A ONE-DIMENSIONAL PROBLEM

In this section we assume thatV ∈ C∞0 and often use polar coordinates
(r, θ), x = rθ ∈ Rd, θ ∈ Sd−1. Denote by{Yj}∞j=0 the orthonormal in
L2(Sd−1) basis of (real) spherical funcions and letPj be the orthogonal
projection given by

Pju(r, θ) = Yj(θ)

∫
Sd−1

Yj(θ
′)u(r, θ′) dθ′.

ClearlyP0u depends only onr. Denote

V1 = P0V P0, H0,1 = P0H0P0,

V1,2 = P0V (I − P0), V2,1 = V ∗1,2,

V2 = (I − P0)V (I − P0), H0,2 = (I − P0)H0(I − P0).

Then the operatorH − z can be represented as a matrix:

H − z =

(
H0,1 + V1 − z V1,2

V2,1 H0,2 + V2 − z

)
,

and the equation
(H − z)u = P0f, Im z 6= 0,

is equivalent to

(3.1) (H0,1 +Tz−z)P0u = P0f, (H0,2 +V2−z)−1V2,1P0u = (P0−I)u.

Here the operatorTz is defined by

Tz = V1 − V1,2(H0,2 + V2 − z)−1V2,1

onL2((1,∞), rd−1 dr).
By using the unitary operator from L2((1,∞), dr) to

L2((1,∞), rd−1 dr),
Uu(r) = r−(d−1)/2u,

we reduce (3.1) to the problem for the following one-dimensional
Schr̈odinger operator inL2(1,∞)

(3.2) Lzu(r) = −d
2u

dr2
+Qzu, u ∈ L2(1,∞), u(1) = 0,

where

Qz = V1 +
αd
r2
−V1,2(U∗H0,2U +V2− z)−1V2,1, αd =

(d− 1)2

4
− d− 1

2
.

By considering the potential

V − αd
r2

instead of V
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without loss of generality we can assume that

(3.3) Qz = V1 − V1,2(S + V2 − z)−1V2,1,

where

(3.4) Su = −d
2u

dr2
− ∆θu

r2
, u(1, θ) = 0.

Note that the conditions of Theorem 2.1 onV won’t be changed.
According to (3.1) we obtain

(3.5) P0(H − z)−1P0 = U(Lz − z)−1U∗.

We see also that if suppV ⊂ {x ∈ Rd : c1 < |x| < c2}, c1 > 1, then for
the operator (3.3) we have

Qz = Qzχ = χQz,

whereχ is an operator of multiplication by the characteristic function of the
interval(c1, c2), c1 > 0. It is impotant for us thatQz is an analytic operator
valued function ofz with a negative imaginary part in the upper half plane
and which has a positive imaginary part in the lower half plane.

4. GREEN’ S FUNCTION.

Let us consider the equation

(4.1) − d2

dr2
ψ(r) + (Qzψ)(r) = zψ(r), r ≥ 1, z ∈ C,

with Qz given by (3.3) and letψk(r) be the solution of the equation (4.1)
satisfying

ψk(r) = exp (ikr), k2 = z, Im k > 0, ∀r > c2.

Then this solution also satisfies the following “integral” equation

(4.2) ψk(r) = eikr − k−1

∫ ∞
r

sin k(r − s)(Qzψk)(s) ds.

According to the analytic Fredholm theorem (see, for example, Theorem
VI.14, [9]) we conclude that the equation (4.2) is uniquely solvable for all
k except perhaps a discret sequence of points and its solutionψk is a mero-
morphic with respect tok function, Imk ≥ 0.

Consider the resolvent operatorR(z) = (Lz − z)−1, whereLz is defined
in (3.2). Ifχc1 is the operator of multiplication by the characteristic function
of (1, c1). ThenR(z)χc1 is an integral operator with the kernel:

(4.3) Gz(r, s) =

{
ψk(s)
ψk(1)

sin(k(r−1))
k

, for r < s < c1,
ψk(r)
ψk(1)

sin(k(s−1))
k

, for s < min{c1, r}.
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Indeed, assuming that supp(f) ⊂ (1, c1) we can easily check that the func-
tion

u(r) =
1

ψk(1)

{∫ ∞
r

sin(k(r − 1))

k
ψk(s)f(s) ds+

∫ r

1

ψk(r)
sin(k(s− 1))

k
f(s) ds

}
satisfies the equation

(4.4) − d2

dr2
u(r) + (Qzu)(r)− zu(r) = f(r), r ≥ 1, z ∈ C,

and moreoveru(1) = 0.

5. WRONSKIAN AND PROPERTIES OF THEM -FUNCTION.

Let as in (3.3)

Qz = V1 − V1,2(S + V2 − z)−1V2,1.

The function

M(k) =
ψ′k(1)

ψk(1)

is called the WeylM -function of the operator (4.1). Let us consider the
Wronskian

(5.1) W [ψk, ψk](r) = ψ′k(r)ψk(r)− ψk(r)ψ
′
k(r).

Note thatψk satisfies the equation (4.1) withQz andz instead ofQz andz.
Sinceψk is a solution of the equation (4.1) we find

d

dr
W [ψk, ψk](r) = (z−z)ψk(r)ψk(r)+(Qzψk)(r)ψk(r)−ψk(r)(Qzψk)(r).

So we obtain

(5.2) ±Im {W [ψk, ψk](c2)−W [ψk, ψk](c1)} ≥ 0, for ± Im z ≥ 0+,

which means that for allk we have the following inequality

k

Im M(k)
≤ |ψk(1)|2.

Moreover, if we represent the solutionψk for realk in the form

(5.3) ψk(x) = a(k)eikx + b(k)e−ikx, x < c1,

then it follows from (5.2) that

|a|2 − |b|2 ≥ 1.

Then fork2 = z

M(k) = ψ′k(1)(ψk(1))−1 = ik(1−ρ(k))(1+ρ(k))−1, ρ(k) := e−2ikb(k)a(k)−1.
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The latter implies

ρ(k) = (ik −M(k))(ik +M(k))−1.

Since|a|2 − |b|2 ≥ 1 we obtain that for realk

|a(k)|−2 ≤ 1− |ρ(k)|2 =
4kIm M

|ik +M(k)|2
.

Note that since ImM ≥ 0, then for anyk > 0 we have

|ik +M(k)|2 = k2 + |M |2 + 2kIm M ≥ k2

and therefore

(5.4) |a(k)|−2 ≤ 4k−1
(
Im M

)
, k > 0.

Note also that

(5.5) ImM(k) > 0 if Im k2 > 0.

Thus, there are constantsC0 ∈ R andC1 ≥ 0 and a positive measureµ,
such that ∫ ∞

−∞

dµ(t)

1 + t2
<∞,

where

(5.6) M(k) = C0 + C1z +

∫
R

( 1

t− z
− t

1 + t2

)
dµ(t), k2 = z.

Finally, note thatR(z) = P0(U∗H0U + V − z)−1P0 and therefore we can
write formally that

M(k) =
∂2

∂r∂s
Gz(r, s)|(1,1) = (P0(U∗H0U + V − z)−1P0δ

′
1, δ
′
1),

whereδ′1 is the derivative ofδ(r−1). Letχc1 be the characteristic function of
(1, c1). The representation (4.3) for the resolvent operator gives us the rep-
resentation for the operatorχc1P0EU∗H0U+V (δ)P0χc1, whereEU∗H0U+V (δ)
is the spectral measure ofU∗H0U + V :

(5.7) (P0EU∗H0U+V (δ)P0f, f) =

∫
δ

|F (λ)|2dµ(λ)

and where

F (λ) =
1

k

∫ c1

0

sin(k(r − 1))f(r) dr, suppf ⊂ (1, c1), k2 = λ.

SinceF is a boundary value of an analytic function, we obtain thatF (λ) 6=
0 for a.e.λ. This means thatEH(δ) 6= 0 if µ′ > 0 a.e. onδ.
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6. A TRACE INEQUALITY

In this section we assume thatV is not a potential but the operator∑n
j=0 PjV

∑n
j=0 Pj, which approximatesV for largen. It can be inter-

preted as an operator of multiplication by a matrix valued function ofr.
In this case the functionV1 remains the same as before. SincePj are pro-
jections on real spherical functions, this matrix is real and therefore the
the inequality (5.4) holds true. Moreover we substitute the term−∆θ/r

2

on (1,∞) by a ”compactly supported” approximation−ζε(r)∆θ/r
2 where

ζε ∈ C∞0 (1,∞) andζε(r)/r2 → 1/r2 in L1(1,∞) asε → 0. Then the co-
efficienta(k) introduced in (5.3) will depend onε and we shall writeaε(k)
instead ofa(k). From (4.2) and (3.3) we find that

exp(−ikr)ψk(r) = 1− 1

2ik

∫ ∞
r

(1− e2ik(s−r))V1(s) ds+ o(1/k)

and thus

aε(k) = lim
r→−∞

exp(−ikr)ψk(r) = 1− 1

2ik

∫
V1 dr + o(1/k),

ask → ∞. Now let iβm andγj be zeros and poles ofaε(k). Note that
−γj are also poles ofaε(k) (this will follow from (6.2)). We shall see in a
moment thatβm > 0. Let B be the corresponding Blaschke product

B(k) =
∏
m

(k − iβm)

(k + iβm)

∏
j

(k − γj)
(k − γj)

.

Clearly|B(k)| = 1, B(k) = B(−k), k ∈ R, and we obtain

(6.1)
∫ +∞

−∞
log(aε(k)/B(k)) dk =

π

2

∫
V1 dr+2π

(∑
βn−

∑
Im γj

)
,

provided that for some integerl ≥ 0 the coefficientaε(k) has an expansion
aε(k) =

∑
j≥−l cjk

j at zero. The existance of such an expansion as well as
the condition|aε(k)| − 1 = O(1/|k|2) ask → ±∞ will be proven later.

In order to prove thatβm > 0 let us show that−β2
m are the eigenvalues

of a certain selfadjoint operator of a Schrödinger type. Namely, letP =∑n
j=0 Pj and letĤε be the operator inL2(R, PL2(Sd−1))

Ĥεu = −d
2u

dr2
− ζε

∆θu

r2
, (I − P0)u(1, ·) = 0, u(r) ∈ PL2(Sd−1), ∀r,

whereζε is the same as above. Obviously, ifs < c1 < c2 < r, then the
kernel of the operatorP0(Ĥε + V − z)−1P0 equals

(6.2) g(r, s, k) = −exp ik(r − s)
2ikaε(k)

.
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The proof of the latter relation is a couterpart of the proof of (4.3). On the
other hand we can consider the expansion ofg near the eigenvalue−β2

m.
Denote byφm,j(r, θ), j = 1, 2 . . . n the orthonormal system of eigenfunc-
tions corresponding to−β2

m. If φ(0)
m,j =

∫
Sd−1 φm,j(r, θ) dθ then

g(r, s, k) =

∑n
j=1 φ

(0)
m,j(r)φ

(0)
m,j(s)

k2 + β2
m

+ g0(r, s, k), s < c1 < c2 < r,

whereg0(r, s, k) = O(1), ask → iβm. This proves thataε(k) is a mero-
morphic funcion in the upper half plane and its zeros correspond to the
eigenvalues−β2

m of the operatorĤε + V . Moreover the multiplicities of
these zeros are equal to one. The latter arguments were inspired by [6].

Let us introduce marticesA(k) andB(k) defined in the spacePL2(Sd−1),
such that the solution of the equation (for the matrix valued functionΦ)

(6.3) −d
2Φ

dr2
− ζε

∆θΦ

r2
+ V Φ = k2Φ, Φ = exp(ikr)P, r > c2,

equalsexp(ikr)A(k) + exp(−ikr)B(k) for r < c1.
We prove in the appendix of the paper that

(6.4)
1

aε(k)
P0 = P0

(
A(k) + (I − P0)e−2ikB(k)

)−1
P0.

We shall also see thatA(k) andB(k) both have at most a simple pole at
zero and therefore by (6.4)aε(k) could also have a pole at zero. Moreover
we shall prove that

|aε(k)| − 1 = O
( 1

|k|2
)
,

ask → ±∞, which, in particular, means thatlog |aε(k)| ∈ L1(R).
Observe that whenε → 0 the eigenvalues of̂Hε + V converge to the

eigenvalues of the operator̂H + V , whereĤ is the following operator in
L2(R, L2(Sd−1))

Ĥ = −d
2u

dr2
− ζε

∆θu

r2
, (I − P0)u(1, ·) = 0.

Denote the eigenvalues of̂Hε by−
(
β

(0)
m

)2
, whereβ(0)

m > 0. Let us prove
that by using Lieb-Thirring inequalities [7] we can obtain

(6.5)
∑

β(0)
m ≤ C

(∫
Rd

V
(d+1)/2
− dx+

∫
Rd

V−|x|−d+1dx
)
.

Indeed, letW− =
√
V−. Then

W−(Ĥ − z)−1W− = W−(S − z)−1W− +W−Θ(z)W−,
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whereS is defined in (3.4) andΘ(z) is the operator of rank one with the
integral kerneleik(r+s−2)/2ik, k2 = z. Therefore

(6.6) ||W−Θ(z)W−|| ≤
C√
|z|

∫
V−|x|−d+1 dx, z < 0.

Now for any compact operatorT and s > 0 denote n+(s, T ) =
rankET (s,∞). Then∑

β(0)
m =

∫ ∞
0

n+(1,W−(Ĥ + t)−1W−)
dt

2
√
t
≤

≤
∫ ∞

0

(
n+(1/2,W−(S + t)−1W−) + n+(1/2,W−Θ(−t)W−)

) dt
2
√
t
.

Now the inequality (6.5) follows from∫ ∞
0

n+(1/2,W−(S + t)−1W−)
dt

2
√
t
≤ C

∫
Rd

V
(d+1)/2
− dx,

which is the classical Lieb-Thirring inequality and from∫ ∞
0

n+(1/2,W−Θ(−t)W−)
dt

2
√
t
≤ C

∫
V−|x|−d+1 dx,

which is implied by (6.6). Consequently, since Imγj ≥ 0 the trace formula
(6.1) together with (6.5) leads to the inequality

lim sup
ε→0

∫ +∞

−∞
log |aε(k)| dk ≤ π

2

∫ +∞

−∞
V1 dr+

+C
(∫

Rd

V
(d+1)/2
− dx+

∫
Rd

V−|x|−d+1dx
)
.

(6.7)

Therefore for any pair of finite numbersr2 > r1 ≥ 0

∫ r2

r1

1

2
log

k

4Im M(k)
dk ≤ lim sup

ε→0

∫ +∞

−∞
log |aε(k)| dk ≤ π

2

∫ +∞

−∞
V1 dr

+C
(∫

Rd

V
(d+1)/2
− dx+

∫
Rd

V−|x|−d+1dx
)
,

(6.8)

where the first inequality follows from Corollary 5.3 [4].

7. THE END OF THE PROOF OFTHEOREM 2.1

Assume that our perturbationV is an arbitrary function satisfying the
conditions of Theorem 0.1. Then the Weyl functionM can be defined for
example asM(k) = ∂2

∂r∂s
Gz(r, s)|(1,1) whereGz is the integral kernel of the

operatorP0(U∗HU − z)−1P0. The next proposition allows us to approxi-
mateV by compactly supported smooth functionsVn.



SZEGŐ CONDITION 11

Proposition 7.1. Let V satisfy the conditions of Theorem 2.1. Then there
exists a sequenceVn of compactly supported smooth functions converging
to V so that

(7.1)
∫

(Vn)
(d+1)/2
− dx < C(V ) and

∫
(Vn)+ |x|−d+1 dx < C(V )

and such that the Weyl functionsMn corresponding toVn converge uni-
formly whenk2 belongs to any compact subset of the upper half plane:

Mn(k)→M(k).

Therefore the sequence of measuresµn converges weakly to the spectral
measureµ.

Proof. Let W± =
√
V±. Since the classC∞0 is dense inLp for anyp > 0,

we can find a pair of sequencesW−
n andW+

n ∈ C∞0 satisfying

W−
n → W− inL(d+1)(Rd); W+

n → W+ inL2(Rd, |x|−d+1dx)

W±
n → W± in `∞(Zd;Lp(Q)), p > d.

(7.2)

Introduce a sequence of functions{Vn}∞n=1

Vn = (W+
n )2 − (W−

n )2.

ThenVn ∈ C∞0 and the relations (7.4) hold true. Suppose now thatΓ0(z)
andΓn(z) are the resolvent operators ofS = U∗(−∆)U − αd/r2 andSn =
S + Vn respectively. Denote byδ′1 the derivative of the delta functionδ(r−
1). The expressionΓ0(z)δ′1, Im z 6= 0, can be understood as the function

Γ0(z)δ′1 = − exp(ik(r − 1)).

According to assumptions (7.2) we have that

W±
n Γ0(z)δ′1 → W±Γ0(z)δ′1,

in L2(Rd) (with respect to any weight). Thus in order to prove that the Weyl
functions

Mn(k) =
∂2

∂r∂s
Gn,z(r, s)|(1,1) = (Γn(z)δ′1, δ

′
1)

= (Γ0(z)δ′1, δ
′
1)− ((W+

n −W−
n )Γ0(z)δ′1, (W

+
n +W−

n )Γn(z)δ′1)

converge, it is sufficient to show that

(7.3) (W+
n +W−

n )Γn(z)δ′1 → (W+ +W−)(S + V − z)−1δ′1

in L2(Rd).
Let us denoteWn = W+

n + W−
n andWn

(0) = W+
n −W−

n . Clearly, if
W±
n → W± in the class (2.4) withq > d, asn→∞, then

(7.4) WnΓ0(z)W (0)
n → (W+ +W−)Γ0(z)(W+ −W−)

in the operator norm topology.
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Then (7.3) follows from the identity

WnΓn(z)δ′1 = (I +WnΓ0(z)W (0)
n )−1WnΓ0(z)δ′1.

�

Similarly we can prove the following

Proposition 7.2. Let V be a compactly supported smooth function. Then
the Weyl functionsMl corresponding to

∑l
j=0 PjV

∑l
j=0 Pj converge uni-

formly toM whenk2 belongs to any compact subsetK of the upper half
plane

Ml(k)→M(k)

and therefore the sequence of measuresµl converges weakly to the spectral
measureµ constructed forV .

Proof. Let us denoteVl =
∑l

j=0 PjV
∑l

j=0 Pj let Γ0(z) and letΓl(z) be the
resolvent operators ofS = U∗(−∆)U − αd/r

2 defined in (3.4) andSl =
S+Vl respectively. As in Proposition 7.1 the expressionΓ0(z)δ′1, Im z 6= 0,
is understood as the functionΓ0(z)δ′1 = − exp(ik(r−1)). According to our
assumptions

VlΓ0(z)δ′1 =
l∑

j=0

PjV Γ0(z)δ′1 → V Γ0(z)δ′1

in L2(Rd). Thus in order to prove that the Weyl functions

Ml(k) =
∂2

∂r∂s
Gn,z(r, s)|(1,1) = (Γl(z)δ′1, δ

′
1)

= (Γ0(z)δ′1, δ
′
1)− (VlΓ0(z)δ′1,Γl(z)δ′1)

converge, it is sufficient to show thatΓl(z)δ′1 converges to(S + V − z)−1δ′1
in L2(Rd) uniformly on compact subsetsK of the complex plane. The latter
follows from the identity

Γl(z)δ′1 = (S + V − z)−1δ′1 − Γl(z)(Vl − V )(S + V − z)−1δ′1 =

= (S + V − z)−1δ′1 + Γl(z)(I −
l∑

j=0

Pj)V (S + V − z)−1δ′1+

+Γl(z)
l∑

i=0

PiV (I −
l∑

j=0

Pj)(S + V − z)−1δ′1

and from the bound

||Γl(z)|| ≤ 1

Im z
≤ C, z ∈ K.

�
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Finally according to inequality (6.8) and Propositions 7.1, 7.2 we observe
that there exists a sequence of measuresµl weakly convergent toµ, such that
for any fixedc > 0 ∫ c

0

log(1/µ′l(t)) dt

(1 + t3/2)
√
t
< C(V ), ∀l,

whereC(V ) is independent ofc. Therefore due to the statement on the
upper semicontinuity of an entropy (see [4]) we obtain∫ ∞

0

log(1/µ′(t)) dt

(1 + t3/2)
√
t
<∞.

The proof of Theorem 2.1 is complete.

8. APPENDIX

1. LetG(r, s, k) be the kernel of the operator(Ĥε + V − z)−1χc1, where
χc1 is the operator of multiplication by the characteristic function of(1, c1).
Then

G(r, s, k) =

{
Ψ(r, k)Z1(s, k), as r < s < c1

−Φ(r, k)Z2(s, k), as s < c1, s < r.

HereΨ(r, k) = e−ikrP0 + k−1 sin(k(r − 1))(P − P0) for r < c1 and
Φ(r, k) = eikrP for r > c2. The matricesZ1(s, k) andZ2(s, k) are chosen
such thatG(r, s, k) is continuous at the diagonal and

lim
r→s−0

G′r(r, s, k) = lim
r→s+0

G′r(r, s, k) + P.

The two latter equations are equivalent to

[e−ikrP0 + k−1 sin(k(r − 1))(P − P0)]Z1+

[e−ikrB(k) + eikrA(k)]Z2 = 0;

[−ike−ikrP0 + cos(k(r − 1))(P − P0)]Z1+

[−ike−ikrB(k) + ikeikrA(k)]Z2 = P

(8.1)

and are uniquely solvable if and only ifk2 is not an eigenvalue of̂Hε + V .
The first equation of the system (8.1) gives

Z1 = −
[
eikrP0 +

k

sin(k(r − 1))
(P − P0)

][
e−ikrB(k) + eikrA(k)

]
Z2.

Therefore we obtain from the second equation of (8.1) that[
ikP0 − k ctg (k(r − 1))(P − P0)

][
e−ikrB(k) + eikrA(k)

]
Z2

+[−ike−ikrB(k) + ikeikrA(k)]Z2 = P,
(8.2)
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or equivalently

(P−P0)
[(
−k ctg(k(r−1))−ik

)
e−ikrB(k)+

(
−k ctg(k(r−1))+ik

)
eikrA(k)

]
Z2

+2ikP0e
ikrA(k)Z2 = P.

Obviously

−k ctg(k(r − 1))± ik = − ke∓ik(r−1)

sin k(r − 1)
.

This implies

(P −P0)
[ −k

sin k(r − 1)

(
e−ikB(k)+eikA(k)

)]
Z2 +2ikP0e

ikrA(k)Z2 = P.

Multiplying both sides of this identity by

− sin k(r − 1)

k
e−ik(P − P0) +

e−ikr

2ik
P0

we derive

P0Z2(r, k)P0 = (2ik)−1e−ikrP0

(
A(k) + e−2ik(P − P0)B(k)

)−1
P0.

Finally, since
P0Z2(r, k)P0 = (2ikaε)

−1e−ikrP0

we obtain (6.4).

2. In this subsection we adapt the argument from [6]. The solution
Φ(r, k) of (6.3) satisfies the integral equation

(8.3) Φ(r, k) = eikrP −
∫ ∞
r

k−1 sin k(r − s)Ṽ (s)Φ(s, k) ds,

whereṼ = V − r−2ζε P ∆θ. Denote

X(r, k) = e−ikrΦ(r, k)− P .
Then

(8.4) X(r, k) =

∫ ∞
r

K(r, s, k) ds+

∫ ∞
r

K(r, s, k)X(s, k) ds,

where

(8.5) K(r, s, k) =
e2ik(s−r) − 1

2ik
Ṽ (s) .

Note that

(8.6) ‖K(r, s, k)‖ ≤ C1(Ṽ , n)/(1 + |k|)
for all k with Im k ≥ 0 and allk with 1 < r ≤ s. Here and below‖ · ‖
denotes the norm of an operator inPL2(Sd−1).
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Solving the Volterra equation (8.4) we obtain the following convergent
series

X(r, k) =
∞∑
m=1

∫
· · ·
∫

r≤r1≤···≤rm

m∏
l=1

K(rl−1, rl, k) dr1 · · · drm .

From (8.6) we see that|X(r, k)| ≤ C2(Ṽ ) for all 1 < r. ObviouslyX(r, k)
is an entire function ink. Inserting this estimate back into (8.4), we con-
clude that the inequality

(8.7) ‖X(r, k)‖ ≤ C3(Ṽ , n)(1 + |k|)−1

holds for allr with 1 < r and allk with Im k ≥ 0.
If we rewrite (8.3) as follows

Φ(r, k) = eikr
[
P − 1

2ik

∫ ∞
r

Ṽ (s) ds− 1

2ik

∫ ∞
r

Ṽ (s)X(s, k) ds

](8.8)

+
e−ikr

2ik

[∫ ∞
r

e2iksṼ (s) ds+

∫ ∞
r

e2iksṼ (s)X(s, k) dx

]
,

then the expressions in the brackets in the r.h.s. do not depend onr for
r ≤ 1. From (8.8) it follows that

A(k) = P − 1

2ik

∫ +∞

−∞
Ṽ (s) ds− 1

2ik

∫ +∞

−∞
Ṽ (s)X(s, k) ds ,(8.9)

B(k) =
1

2ik

∫ +∞

−∞
e2iksṼ (s) ds+

1

2ik

∫ +∞

−∞
e2iksṼ (s)X(s, k) ds .(8.10)

Recall that supp̃V ⊂ (1,∞). Thus for sufficiently large|k| the smooth-
ness ofV and (8.7) imply∥∥∥∥A(k)− P +

1

2ik

∫ +∞

−∞
Ṽ (s)ds

∥∥∥∥ ≤ C4(Ṽ , n)|k|−2, Im k ≥ 0 ,(8.11) ∥∥e−2ikB(k)
∥∥ ≤ C5(Ṽ , n)|k|−2 , Im k ≥ 0 .(8.12)

Note that from (6.4), (8.11) and (8.12) we now obtain thataε(k) is a
meromorphic function in a neighborhood of zero and|aε(k)| tends to 1 as
O(1/|k|2) whenk → ±∞.
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