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ABSTRACT. We obtain an inequality for the number of the negative eigenvalues of a
two-dimensional Schrédinger operator with circular symmetric potentials.

1. Introduction and the main result. Let H = H} v be a Schrodinger operator
in L2(R%), d > 2,

(1.1) Hyy =—-A+blz|> -V, 2zcR% beER,

where V' > 0 is a locally integrable function in R?. Denote by Ny(V) the number of
the negative eigenvalues of the operator (1.1). If d > 3 and b > —(d — 2)?/4, then

(1.2) Ny (V) < C(b,d) /R V42 dy

is known as the Cwikel-Lieb-Rosenblum inequality (see [C],[L] and [R]).

It is also known that if d = 2 and b = 0, then an arbitrary small perturbation
by a nonnegative potential V' € L'(IR?) generates at least one negative eigenvalue
and therefore one cannot expect the inequality (1.2) to be true.

It was shown in [S1,2] and in a sharper form in [BL] that under some additional
conditions on V if d = 2 and b = 0, then the problem can be separated in two
problems. The first one is defined by the restriction of the operater (1.1) to the

subspace of functions depending on |z| and thus is reduced to a well studied one-
dimensional Schrodinger operator with the potential 17(7“) = % f|l,|:T Vdh. In
particular, for this class of operators there are necessary and sufficient conditions
in [BS] describing when the asymptotics Np—o(aV) = O(a), as a@ — oo is true.
The second problem is defined by a class of functions whose mean values over S*
are equal zero. For the function from this subspace we have Hardy’s inequality
(see [Mz], [OK]) which automatically gives the “supporting” term b|z|~2 with some
b> 0.

All this suggests that in order to study the case d = 2, we have to pay special

attention to the operator (1.1), where b > 0.
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Notice, however, that if we “take off” the resonance state at 0 by choosing b > 0,
then the condition V € L*(IR?) still does not guarantee even the semiboundness of
(1.1) from below.

Let H!(R?) be a so-called homogeneous H? class of functions defined by

(1.3) H(R?) = {u : /(!Vu]z + w) dx < oo}.

>

It turns out that for a circular symmetric potential V = V(|z|), V € L'(R?), the
quadratic form

(1.4) hb,v[u]:/ (\Vu|2+b]a:|_2|u]2)da:—/ Viuf? dz
R2 R2

defined on H'(R?) is semibounded and closed in L?(R?) and, hence, defines a
selfadjoint operator Hj v .

The aim of this note is to show that for the operator Hy y defined by the qua-
dratic form (1.4), the estimate (1.2) is fulfilled.

Our main result is the following theorem:

Theorem. Letd=2,b>0 and V(z) =V (|z|) > 0. Then

Ny(V) < %}:) /R2 V(z) dx,

where

(1.5) A(b):sup{u_1/2- <#{n: n?4+b—p<0, nEZ})}.

u>0

Remark 1. Notice that A(b) — oo, as b — 0. In particular, A(b) = pu~ /2, if
b<pu<1+0.

Remark 2. Theorem gives a simple class of potentials in two-dimensional case where
the inequality (1.2) is fulfiled. For its generalization see [LN].

2. An auxiliary result. When proving Theorem we use the limiting case of the
Lieb-Thirring inequality for a one-dimensional Schrédinger operator. Namely, let

(2.1) Lo(t) = —v"(t) — W(t) v(t), W >0, teR

be a selfadjoint operator in L?(R) whose negative spectrum is descrete. Denote by
{—pr}32 1, the negative eigenvalues of the operator L.

Lemma. If W € L'(RY) and W > 0, then

(2.2) Zk:u}f < %/W(t) dt.

The constant 1/2 appearing in the right hand side in (2.2) is sharp and this was

recently proved in [HLT]. The upper estimate for >, ,u,lg/ ® via |W]| L1 (r1) With some
constant greater than 1/2 was first proved in [W]. Notice also that the equality in
(2.2) is achieved when W (t) = §(¢) and we have only one negative eigenvalue equal
(—1/4). Both proves obtained in [HLT] and [W] are based on the Birman-Schwinger
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3. Proof of Theorem. Let us consider the quadratic form (1.4) and introduce

the polar coordinates x = (r,0), r € Ry, 6 € [0,27]. Then the form (1.4) can be
rewritten as

(3.1) hy v |u] = /OOO /027r<|u;\2 + 72 (Jupl® + (b — TQV(T))|u]2)) rdrdf.

Let {—\,} be the negative eigenvalues of H. Then in view of the variational
principal we obtain

Ny(V) =#{n: -\ (H) <0} =dim{u: (Hu,u) <0, u € C;°(R*\ {0})}.

This allows us to assume that u € C§°(R? \ {0}) when estimating the number of
the negative eigenvalues generated by the form (3.1). Changing variables r = ¢!
and denoting w(t,0) = u(et,0), t € R, 6 € [0,27], we transfer the form (3.1) to

(3.2) E[w] = /_00 /Sl <|wl’5|2 + (\wé\Q + (b— 17)|w|2)> dt do,
where
(3.3) V(t) = 2V (et).

Let {—pux(V)} and {vk(t)}, k € N be the eigenvalues and eigenfunctions of the
operator (2.1) where W := V. Separating variables we find that the eigenfunctions

of the operator defined by the quadratic form h are equal to vy (t)e’™, n € Z, k = N,
and the corresponding eigenvalues are b +n? — p;,. Thus we obtain

N(WV)=#{(k,n): b+n*— u, k€N, neZ}

=20 / / *‘fj) | v

where A(b) is defined in (1.5).
The proof is complete. [
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