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Abstract

It is known that the classical Hardy inequality fails in R2. We show that
under certain non-degeneracy conditions on vector potentials, the Hardy
inequality becomes possible for the corresponding magnetic Dirichlet form.

0. Introduction. Let a be a magnetic vector potential and let ρ be a non-
negative function on Rd, d ≥ 2. In this short note we consider the Hardy type
estimates∫

Rd

ρ|u|2dx ≤ Ch(a)[u] := C

∫
Rd

|(i∇+ a)u|2dx, u ∈ C∞0 (Rd), (1)

where the constant C might depend on a, d and ρ but not on u. If a = 0, ρ =
|x|−2 and d ≥ 3, then (1) coincides with the classical Hardy inequality where
C = C(d) = 4(d − 2)−2. It is also known from Kato’s inequality [K] (see also
[AHS]), that (1) for a = 0 implies the same inequality (with the same constant C)
for a 6= 0.

If d = 2 then the classical Hardy inequality is no longer true. The standard
form of this inequality can be given by (1) with ρ(x) = |x|−2(1+ log2 |x|)−1, a = 0
and under some additional assumptions on u. For example we have∫

R2

|u|2

|x|2(1 + log2 |x|)
dx ≤ C

∫
R2
|∇u|2 dx,

∫
{|x|=1}

u(x) dx = 0. (2)

It was observed in [S1] that the logarithmic factor in (2) is needed only for functions
u depending on |x| and can be removed for functions u satisfying

∫
{|x|=r} u(x) dx =

0 for any r > 0.
The main result of this paper shows that by introducing a non-trivial mag-

netic field a, we sometimes are able to remove the unpleasant logarithmic factor
in (2) and prove the inequality∫

R2

|u|2

|x|2
dx ≤ C

∫
R2
|(i∇+ a)u|2 dx, u ∈ C∞0 (R2 \ {0}), (3)

without any other additional assumptions on u. An important example where (3)
can be used is the study of the negative spectrum of two-dimensional Schrödinger
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operators (see [BL], [S2] and [LN]). In [LN] the authors were forced to implant
the Hardy term |x|−2 into their class of Schrödinger operators in order to ob-
tain a CLR-type inequality. The inequality (3) automatically gives this term and
therefore leads to natural applications to the corresponding magnetic Schrödinger
operator.

Another application of our results concerns the problem of the existence of
resonance states. In particular, (3) implies that the class of vector potentials a
considered in this paper, “takes off” the resonance state at 0 for the corresponding
two-dimensional magnetic Schödinger operator. This is, however, a partial case of
a more general result obtained in [W], where it was proved that any non-trivial
vector potential a removes the resonance state at 0. This fact follows from the
following Hardy-type inequality∫

|x|<1

|u|2 dx ≤ C
∫
R2
ω|(i∇+ a)u|2 dx

holding for any a which cannot be gauged away (see [W]) and any positive weight
ω for which ω + ω−1 is locally bounded.

Notice that the spectral properties of the operator Kr defined in (6) and the
corresponding decompositions (9), (10) were used in [LS] when studying the spec-
tral asymptotics of magnetic two-dimensional Schrödinger operators with respect
to a small coupling constant at the corresponding vector potential.

Acknowledgments. Almost all the ideas of the proof of the main result of this
paper were achieved during the two weeks conference at the International Erwin
Schrödinger Institute in June 1998. The authors would like to express their grat-
itude to T. Hoffman-Ostenhof for inviting them to participate in this conference.
The first author is also grateful to I.Herbst for many stimulating discussions.

1. The main result. Most of our discussions will be described in polar coordi-
nates (r, θ) ∈ [0,∞)× S1. We denote by er = x/r the radial unit vector and by eθ
the unit vector which completes er up to the oriented orthonormal basis at x 6= 0.
We work in the transversal (or Poincaré) gauge (see [T, Section 8.4.2]). In this
gauge the radial component of the vector potential a is equal to zero and therefore

(a, er) = 0 and (a, eθ) =: a.

Applying Stokes’ formula we find

Φ(r) := (2π)−1

∫
S

a(r, θ) r dθ = (2π)−1

∫
|x|<r

b(x) dx, b = curl a, (4)

where by Φ = Φ(r) we denote the normalized magnetic flux through the disk
B(0, r) = {x ∈ R2 : |x| < 1}. The quadratic form h(a) introduced in (1) can be
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written in a more convenient form by using the polar coordinate

h(a)[u] =
∫ ∞

0

∫ 2π

0

(
|u′r|2 + r−2|iu′θ + r a u|2

)
r dθ dr. (5)

When studying the form (5) we use spectral properties of the selfadjoint differential
operator Kr defined on H1(S) by

Krϕ = i
∂

∂θ
ϕ+ raϕ, 0 ≤ θ < 2π. (6)

The spectrum of this operator is discrete and its eigenvalues {λk}k∈Z and the
complete orthonormal system of eigenfunctions {ϕk}k∈Z are given by

λk = λk(r) = k + (2π)−1 r

∫ 2π

0

a(r, θ) dθ = k + Φ(r) (7)

and

ϕk = ϕk(r, θ) = (2π)−1/2e−i(θ λk(r)−r
∫ θ
0 a(r,η) dη). (8)

For any function u ∈ L2(R2) we introduce the following decomposition

u(r, θ) =
∑
k∈Z

uk(r)ϕk(r, θ). (9)

Obviously if u ∈ H1(R2), then by Parseval’s identity

h(a)[u] =
∫
R2
|u′r|2 dx+

∑
k∈Z

∫ ∞
0

|λk(r)|2|uk(r)|2 r−1dr. (10)

Let ε ∈ (0, 1/2). Denote

M(ε) = {r > 0 : min
k∈Z
|k − Φ(r)| < ε}. (11)

If Φ is a continuous function (which normally follows from our assumptions), then
the set M(ε) consists of not more than a countable number of open intervals.

Theorem 1 Let a be continuous on R2 and curl a ∈ L1
loc(R2). Assume that

there exist A = A(ε) > 0, ε ∈ (0, 1/2) and a finite or infinite number of open
intervals Ij = (αj , βj), j = 1, . . . , N , N ≤ ∞, possibly accumulating at infinity,
such that

1) M(ε) ⊂ ∪Nj=1Ij,

2) βj−1 < αj < βj <∞, j = 1, . . . , N ,

3) |Ij | = βj − αj ≤ A min{1 + αj , αj − βj−1, αj+1 − βj}, j = 1, . . . , N ,
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where formally β0 := β1 − α2. Then the following magnetic Hardy-type inequality
holds ∫

R2

|u|2

1 + |x|2
dx ≤ C

∫
R2
|(i∇+ a)u|2 dx, u ∈ C∞0 (R2), (12)

where C = C(ε,A).

Remark. The condition 3) forbids the flux Φ (see (4)) to stabilize at integers. For
example, if the magnetic field b is compactly supported and its total flux is not
an integer, then the number of intervals Ij is finite, all the conditions 1)-3) of
Theorem 1 are satisfied and the inequality (12) holds true.

Before proving Theorem 1 we would like to illustrate the conditions 1)-3) by
giving the following example: Assume that for each j ∈ N there exists a gauge
such that a(x) = 0 for x ∈ {αj < |x| < βj}, where βj < αj+1 and βj/αj → ∞ as
j →∞. Introduce

ψj(x) = min {ln+(|x|α−1
j ), 1, ln+(βj |x|−1)}, j ∈ N.

Then h(a)[ψj ] = h(0)[ψj ] ≤ 4π, while
∫
|ψj |2(1 + |x|2)−1 dx → ∞ as j → ∞ and

thus the inequality (12) fails. In this case the magnetic flux Φ satisfies Φ(r) ∈ Z
if αj < r < βj , which is the course of the magnetic field being trivial on long
intervals.

2. Proof of Theorem 1. Fix now a smooth function χ such that 0 ≤ χ(t) ≤ 1,
χ(t) = 1 for 0 ≤ t ≤ 1 and χ(t) = 0 for t < − 1

2A or t > 1 + 1
2A . Denote

χj(r) := χ(|Ij |−1(r − αj)) and ψ(r) :=
N∑
j=1

χj(r).

From the condition 3) it follows that the supports of the functions χj are disjoint.
The function 1− ψ “cuts off” the “bad” set where the eigenvalues λk introduced
in (7) are less than ε. Thus ψ(r) 6= 1 implies |λk(r)| > ε and we conclude

1
2

∫
R2

|u|2

1 + |x|2
dx ≤

∫
R2

|ψu|2

1 + |x|2
dx+

∫ ∞
0

(1− ψ(r))2

1 + r2

∑
k∈Z

|uk(r)|2 r dr

≤
∫
R2

|ψu|2

1 + |x|2
dx+ ε−2

∫ ∞
0

∑
k∈Z

λ2
k(r)|uk(r)|2 dr

r

≤
∫
R2

|ψu|2

1 + |x|2
dx+ ε−2h(a)[u].

(13)
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It remains to estimate the term
∫

(1 + |x|2)−2|ψu|2dx. Since the supports of the
functions χj are disjoint, it is sufficient to consider their contributions separately.
We now use that if u ∈ H1(α, β), u(β) = 0, β > α ≥ 0, then∫ β

α

|u(r)|2 r dr ≤ 2−1(β − α)2

∫ β

α

|u′(r)|2 r dr

For any fixed θ ∈ S we have suppχju(·, θ) ⊂ (αj − |Ij |/2A, βj + |Ij |/2A) and thus
the latter inequality implies∫

|χj(r)u(r, θ)|2 r dr ≤ 2−1|Ij |2(1 +A−1)2

∫ ∣∣∣∣ ∂∂r (χj(r)u(r, θ))
∣∣∣∣2 r dr

≤ 2−1(1 +A−1)2

(
|Ij |2

∫
χj 6=0

∣∣∣∣∂u∂r
∣∣∣∣2 r dr + (max |χ′|2)

∫
χ′j 6=0

|u|2 r dr

)
.

(14)

The condition 3) gives us, in particular, |Ij | < 1+αj . If we integrate the inequality
(14) over S and estimate the values of |x| according to the two side inequalities
αj − (2A)−1 < |x| < βj + (2A)−1 = αj + |Ij | + (2A)−1 as x ∈ suppχj , then we
obtain∫

R2

|χju|2

1 + |x|2
dx =

∫ 2π

0

∫ ∞
0

|χju|2

1 + |r|2
r dr dθ

≤ C1

∫ 2π

0

∫
χj 6=0

∣∣∣∣∂u∂r
∣∣∣∣2 r drdθ + C2

∫
χ′j 6=0

∑
k∈Z

|uk(r)|2 dr
r
,

where the constants Cl = Cl(A), l = 1, 2. By using again χj1χj2 = 0 for j1 6= j2
and the inequality |λk(r)| > ε as χ′k(r) 6= 0, we conclude

N∑
j=1

∫
R2

|χju|2

1 + |x|2
dx ≤ C1

∫
R2

∣∣∣∣∂u∂r
∣∣∣∣ dx+ C2ε

−2

∫ ∞
0

N∑
j=1

λ2
j (r)|uj(r)|2

dr

r

≤ C3h(a)[u],

where C3 = max(C1, C2ε
−2). This together with (13) completes the proof. �

3. A local Hardy inequality We can now easily obtain a version of Hardy’s
inequality for a set of functions with supports in a bounded set. By analogy with
(11) we introduce

L(ε) = {r > 0 : min
k∈Z
|k − Φ(r)| < ε}, ε ∈ (0, 1/2).

Theorem 2 Let a be continuous on R2 \ {0} and curl a ∈ L1
loc(R2 \ {0}).

Assume that there exist A = A(ε) > 0, ε ∈ (0, 1/2) and a finite or infinite number
of open intervals Ij = (αj , βj), j = 1, . . . , N , N ≤ ∞, possibly accumulatins at
zero, such that
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1) L(ε) ⊂ ∪Nj=1Ij,

2) 0 < βj+1 < αj < βj <∞, j = 1, . . . , N ,

3) |Ij | = βj − αj ≤ A min{αj , αj − βj+1, αj−1 − βj}, j = 1, . . . , N ,

where α0 := α1 +β1−β2. Then the following magnetic Hardy-type inequality holds∫
R2

|u|2

|x|2
dx ≤ C

∫
R2
|(i∇+ a)u|2 dx, u ∈ C∞0 (B(0, R) \ {0}), (15)

where C = C(ε,A,R).

Proof. Let us consider the change of variables x = 1/y, v(y) = u(1/y). Then
the class of function C∞0 (B(0, r0) \ {0}) maps onto C∞0 (R2 \ B̄(0, 1/r0)), all the
conditions of Theorem 2 become equivalent to the corresponding conditions of
Theorem 1 and the inequality (15) turns into (12). The theorem is proved. �

Remark. The conditions of Theorem 2 are satisfied only if the magnetic field b =
curl a has a singularity at x = 0. Otherwise for any ε > 0 and r0 > 0 there exists
δ > 0 such that [0, δ) ⊂ L(ε, r0). This contradicts the condition 2) which states,
in particular, that all the intervals Ij are separated from 0.

Combining Theorems 1 and 2 we obtain a result concerning the inequality
(3).

Corollary 1 Under the conditions of Theorems 1 and 2 the two-dimentional
magnetic Hardy inequality (3) holds.

4. Aharonov-Bohm-type magnetic fields. Finally we would like to give here
a simple example. Let a be an Aharonov-Bohm-type magnetic field, namely,

(a, eθ) = a(r, θ) =
Ψ(θ)
r

, Ψ ∈ L∞(S). (16)

In this case the corresponding magnetic field b is equal to zero everywhere except
x = 0. Denote by Ψ̄ the mean value of the function Ψ over S

Ψ̄ = (2π)−1

∫ 2π

0

Ψ(θ) dθ.

Theorem 3 Let us assume that the vector potential a is given by (16) and
Ψ̄ 6= k, for any k ∈ Z. Then∫

R2

|u|2

|x|2
dx ≤ A

∫
R2
|(i∇+ a)u|2 dx, u ∈ C∞0 (R2 \ {0}),

where A = (mink∈Z |k − Ψ̄|)−2. The constant A is sharp.
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Proof. In this case the eigenvalues defined in (7) are independent of r and equal
λk = k + Ψ̄. Then using (9) and (10) we obtain∫

R2

|u|2

|x|2
dx ≤ A

∫ ∞
0

∑
k∈Z

λ2
k|uk(r)|2 dr

r
≤ Ah(a)[u].

Let us assume that the constant A is achieved at k0, A = |k0 + Ψ̄|−2. Then it easy
to see that the constant A is sharp on the class of functions φ(r) exp(iθk0), where
φ ∈ C∞0 (0,∞). The proof is complete. �
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