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Inverse Spectral Problems for Schrödinger Operators with
Energy Depending Potentials

A. Laptev, R. Shterenberg, and V. Sukhanov

Abstract. We study an inverse problem for a class of Schrödinger operators
with energy depending potentials. In particular, we show that introduction
of the discrete spectrum generically does not lead to singularities of the cor-
responding soliton solutions. In our last chapter we derive some new trace
formulas which could be considered as generalization of a standard trace for-
mulas for Schrödinger operators.

1. Introduction

In this paper we consider the inverse problem for the operator

(1.1) −ψ′′xx(x, k) +
(
2ku(x) + v(x)

)
ψ(x, k) = k2ψ(x, k), x ∈ R.

In what follows we assume that the potential functions u and v are real-valued,
smooth and exponentially decay at infinity together with all their derivatives

(1.2)
∣∣∣∣

dj

dxj
u(x)

∣∣∣∣,
∣∣∣∣

dj

dxj
u(x)

∣∣∣∣ ≤ Cj exp(−ε|x|)

for j ∈ N and some ε > 0. In (1.1) k is a spectral parameter and if for some k ∈ C
there is a L2 solution of this equation, then we say that k is an eigenvalue.

Such operators are sometimes called Schrödinger operators with energy de-
pending potentials and the scattering problem for them has been considered in the
papers by Jaulent [3], Jaulent and Jean [4], Kaup [5] and also by Sattinger and
Szmigielski [6, 7]. In [3, 4, 6] the authors used the Gel′fand – Levitan – Marchenko
approach for the inverse problem on the line given in [2].

In fact, the inverse problem has been completely solved in [6] for the regular
case (when the eigenvalues are absent) by using a so-called “vanishing lemma.” If
the data of the inverse problem have bound state, then the situation with solvability
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becomes significantly more complicated. The main problem is that method for con-
structing the solution at the first step automatically gives a number of singularities.
As it has been found in [6], for one-soliton solution these singularities generically
cancel in the final formulas and for a two-soliton or more solutions problem, the
cancellation of singularities has been stated as a conjecture.

The main aim of this paper is to clarify the situation where there is a finite
number of eigenvalues. As it has been done in [7] we will use the Riemann – Hilbert
as a method of solving inverse problem. The matrix solution of this problem has
singularities in x if the data of the inverse problem contain the discrete spectrum.
However we prove (see Theorem 4.1) that these singularities generically cancel at
the second step of our construction.

In Section 4 we consider a class of reflectionless potentials and prove that the
solutions u and v are generically smooth functions. We also consider a so-called
“dressing up” transform (addition of one eigenvalue to the data of the inverse prob-
lem) and also prove that such a transform generically does not lead to singularities
of the potential functions u and v.

In the end of the paper we derive some new trace formulas involving the poten-
tial functions u and v. If u ≡ 0 then these formulas coincide with the corresponding
trace formulas for Schrödinger operators.

2. Properties of scattering data

In this section we recall some standard fact, cf. [7]. We begin with defining the
Jost solution of the equation (1.1). Let us consider its two solutions satisfying the
properties

f(x, k) = eikx
(
1 + o(1)

)
, x→ +∞,(2.1)

g(x, k) = e−ikx
(
1 + o(1)

)
, x→ −∞.(2.2)

We also introduce

(2.3) α(x) = exp
{

i
∫ ∞

x

u(s) ds
}
, α0 = lim

x→−∞
α(x).

Since u is a real function α−1
0 = α0.

For a real-valued k we have two pairs of linear independent solutions:

{f(x, k), f(x, k)}, {g(x, k), g(x, k)}.
In particular, the functions f and f̄ could be written as linear combinations of g
and ḡ

f(x, k) = a(k)g(x, k) + b(k)g(x, k),(2.4)

f(x, k) = a(k)g(x, k) + b(k)g(x, k).(2.5)

Let us define the Wronskian

(2.6) W [ϕ,ψ](x, k) = ϕ′x(x, k)ψ(x, k)− ϕ(x, k)ψ′x(x, k).

Proposition 2.1. The following fundamental identity holds true

(2.7) |a(k)|2 − |b(k)|2 = 1.

Proof. The Wronskian of the functions f and f̄ is constant with respect to x.
Comparing the asymptotic behavior of W [f, f̄ ] at +∞ and −∞ we complete the
proof. ¤
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In follows from (1.1) that the function f satisfies the following Volterra equation

(2.8) f(x, k) = eikx −
∫ ∞

x

sin k(x− y)
k

(
ku(x) + v(x)

)
f(y, k) dy.

Therefore f can be written as a convergent series obtained by standard iterations
and this immediately implies that f is an analytic function with respect to k ∈ C+

in the upper half plane and can be continuously extended on the real line. In
particular, this also implies the analyticity of the scattering coefficients a(k) in
C+ and therefore a(k̄) in C−. Similarly we find that the solution g is an analytic
function in C+.

It is well known that if u ≡ 0 then f(x, k) → exp(ikx) as k →∞ (Im k > 0). If
u 6≡ 0 then we obtain the following.

Proposition 2.2. For Im k > 0 functions f(x, k) and g(x, k) satisfy following
asymptotic relations

f(x, k) = eikx exp
{

i
∫ ∞

x

u(s) ds
}(

1 + o(1)
)
, k →∞;(2.9)

g(x, k) = e−ikx exp
{

i
∫ x

−∞
u(s) ds

}(
1 + o(1)

)
, k →∞.(2.10)

Similarly we find asymptotic properties of the functions a(k) and b(k).

Proposition 2.3. The scattering coefficients a and b satisfy the asymptotic
behavior as k →∞

lim
k→∞

a(k) = α−1
0 , Im k ≥ 0,

lim
k→∞

b(k) = 0, Im k = 0.

From the asymptotical behavior of f at ±∞ we immediately find

Proposition 2.4. Zeros of the scattering coefficient a in C+ coincide with the
eigenvalues of the operator (1.1).

Remark 2.5. Due to the assumption (1.2) the scattering coefficient a(k) is
also an analytical function for Im k > −ε, k 6= 0, where ε > 0 is introduced in (1.2).
Point k = 0 can be a pole for function a(k) or it is regular point. Therefore it can
only have a finite number of zeros in C+.

3. Riemann – Hilbert problem

Here we describe the inverse problem by using Riemann – Hilbert approach,
see also [7]. Let us assume that the scattering coefficient a(k) has N simple zeros
{κj}Nj=1, κj ∈ C+. Denote by Ψ(x, k) =

(
ψ1(x,k)
ψ2(x,k)

)
the vector defined by

Ψ(x, k) =
(

f(x, k)
g(x, k)/a(k)

)
, for k ∈ C+,

Ψ(x, k) =

(
g(x, k̄)/a(k̄)
f(x, k̄)

)
, for k ∈ C−.

By using the analytical properties of the functions f and g and also the properties of
the scattering coefficients a and b described in the previous section, we find that the
vector Ψ is meromorphic in C± and can be continuously extended to the boundary.
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Let Ψ+(x, k) and Ψ−(x, k) be the limits of the function Ψ(x, k) as k approaches
the real axis from upper and lower complex half plane respectively. One finds that
the this vector satisfies following relation

Ψ+(x, k) = G(k)Ψ−(x, k),(3.1)

G(k) =
(

1 −r(k)
r(k) 1− |r(k)|2

)
,(3.2)

where

(3.3) r(k) = − b(k)
a(k)

, k ∈ R.

It follows from Proposition 2.1 that if k ∈ R \ {0}, then |r(k)| < 1. Moreover, if we
denote by σ3 =

(
1 0
0 −1

)
, then using (2.9) and (2.10) we find

(3.4) Ψ(x, k) = exp{iσ3kx}
(

α(x)(
α(x)

)−1

) (
1 + o(1)

)
, as k →∞.

For the discrete spectrum we obtain

(3.5) resk=κj ψ2(x, k) = Cjψ1(x,κj), resk=κj ψ1(x, k) = Cjψ2(x,κj),
Cj 6= 0, j = 1, . . . , N.

Therefore meromorthic vector function Ψ(x, k) is the solution of the Riemann –
Hilbert problem: (3.1), (3.4), (3.5). In order to exclude the direct appearance of
the function α(x) from it we consider its matrix version which is slightly different.
Namely, let us introduce a meromorthic in C+ and C− matrix

(3.6) Ξ =
(
ξ11(x, k) ξ12(x, k)
ξ21(x, k) ξ22(x, k)

)
,

such that

Ξ+ = G(k)Ξ−, k ∈ R,(3.7)

Ξ = exp{iσ3kx}
(

1 0
0 1

)
(1 + o(1)) , k →∞.

resk=κj ξ21(x, k) = Cjξ11(x,κj), resk=κj ξ22(x, k) = Cjξ12(x,κj),

resk=κj ξ11(x, k) = Cjξ21(x,κj), resk=κj ξ12(x, k) = Cjξ22(x,κj),
(3.8)

Cj 6= 0, j = 1, . . . , N.

As before we denote by Ξ±(x, k), k ∈ R, the limits in k of Ξ(x, k) from the upper
and the lower complex half plane.

The asymptotic formulas for the functions ξjs(x, k), j, s = 1, 2, as k →∞, are
given by

ξjs(x, k) = exp{(−1)j−1ikx}
(
δjs +

ϕjs(x)
k

+O(k−2)
)
.

The vector Ψ and the matrix Ξ are related as follows

(3.9) Ψ(x, k) =
(
ψ1(x, k)
ψ2(x, k)

)
= α(x)

(
ξ11(x, k)
ξ21(x, k)

)
+

(
α(x)

)−1
(
ξ12(x, k)
ξ22(x, k)

)
.
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Let us now substitute the functions ψ1(x, k), ψ2(x, k) into the equation (1.1).
Since they are solutions of this equation, then comparing the terms of order k0, we
obtain

(
α(x)

)′′
α(x)

+ 2i
(
ϕ11(x)

)′ + 2i
(
(α(x))−2

)′
ϕ12(x)

+ 2i(α(x))−2(ϕ12(x))′ = v(x),

(3.10)

((
α(x)

)−1
)′′

(
α(x)

)−1 − 2i
(
ϕ22(x)

)′ − 2i
(
(α(x))2

)′
ϕ21(x)

− 2i
(
α(x)

)2(
ϕ21(x)

)′ = v(x).

(3.11)

Note that due to the symmetry of the Riemann –Hilbert problem, the equation
(3.11) is complex conjugated to the equation (3.10). Note also that the function

(3.12) m(x, k) = det Ξ(x, k) = ξ11(x, k)ξ22(x, k)− ξ12(x, k)ξ21(x, k)

is analytic in C± and solves the trivial Riemann – Hilbert problem

m+(x, k) = m−(x, k), k ∈ R, m(x, k) → 1, k →∞.

Thus m(x, k) ≡ 1 and therefore comparing the terms of order k−1 and in view of
(3.12) we derive

(3.13) ϕ11(x, k) + ϕ22(x, k) = 0.

Using (3.10), (3.11) and (3.13) we obtain that the function t(x) :=
(
α(x)

)2 satisfies
the Riccati equation

(3.14) (t(x))′ + 2iϕ21(x)(t(x))2 + 2iϕ12(x) = 0, t(x) → 1, as x→ +∞.

Solving this equation leads to finding the potential u

u(x) =
i
2
t′(x)
t(x)

.

The latter formula is not very explicit and relies on the solution of the equation
(3.14). Therefore we use a different approach (see [6]). Obviously f(x, 0) = f(x, 0)
and thus

α(x)ψ+
11(x, 0) +

(
α(x)

)−1
ψ+

12(x, 0) = α(x)ψ−21(x, 0) +
(
α(x)

)−1
ψ−22(x, 0).

Thus

(3.15) t(x) =
(
α(x)

)2 = exp
{
−2i

∫ x

∞
u(s) ds

}
=
ξ−22(x, 0)− ξ+12(x, 0)
ξ+11(x, 0)− ξ−21(x, 0)

.

Remark 3.1. We emphasize that |t(x)| = 1 and thus potential u is regular.

Remark 3.2. Assume now that the inverse problem does not contain eigenval-
ues. If reflection coefficient r(k) satisfies the conditions which are usually imposed
for the Schrödinger operator then the similar arguments as in the Schrödinger opera-
tor case show that the Riemann – Hilbert problem can be solved and thus potentials
u and v can be uniquely reconstructed. We do not go into details. The complete
proof via Gel′fand – Levitan equations can be found in [6]. The close result in terms
of Riemann – Hilbert problem has been obtained in [7].
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4. Class of reflectionless potentials

In [6] a particular example of one-soliton solution was constructed. It was
pointed out that the determinant of the system which appears when solving Rie-
mann – Hilbert problem (3.7) – (3.8) (or the corresponding Gel′fand – Levitan prob-
lem) has zeros if the eigenvalues are included.

It has been proved in [6] that if there is only one soliton solution then this
singularity cancels after substituting it into (3.9).

In the present section we show that this cancellation is generic. Note also that,
in general, one cannot expect the global solvability. The difficulties appearing here
are similar to the difficulties when considering the Schrödinger operator with com-
plex potential. We prove that generically we obtain smooth reflectionless potentials
but if we choose some “wrong” coefficients, then potential functions u and v can be
singular. Already the case of one-soliton potential shows that, in general, the set of
“wrong” coefficients although “small” but its structure is sufficiently complicated.

Assume that r(k) = 0 and the set of simple eigenvalues {κj}, Im(κj) > 0,
j = 1, . . . , N , is given. Since the potentials u and v are real functions we obtain

ξ11 = eikx

(
1 +

N∑

j=1

hj(x)
k − κj

)
, ξ12 = eikx

N∑

j=1

wj(x)
k − κj ,(4.1)

ξ21 = e−ikx
N∑

j=1

wj(x)
k − κj , ξ22 = e−ikx

(
1 +

N∑

j=1

hj(x)
k − κj

)
.(4.2)

We define h := (h1, . . . , hN )t, w := (w1, . . . , wN )t. Let B = B(x) be the block
(2N × 2N)-matrix such that

(4.3)
B11 = B22 = A, B12 = B21 = J ;

Ajs = − 1
κj − κs , J = diag{C−1

j e−2iκjx}.

It follows from (3.8) that

(4.4) B

(
h
w

)
=

(
1
0

)
.

By using the properties (4.3), we find that the determinant d(x) := detB(x) is
real-valued. Zeros of d define points of singularity of vector-valued functions h and
w. We are going to show that these singularities generically cancel.

Let us define

(4.5) p = d

(∑

j

wj
κj

−
∑

j

hj
κj

)
.

Note that functions d hj and dwj , j = 1, . . . , N , do not have singularities. It follows
from (3.15), (4.1) – (4.2) that

(4.6) α2 =
d+ p̄

d+ p
.

The function α is regular and thus the potential u is regular. We are going to prove
the regularity of ψ1(x, k), ψ2(x, k). It follows from (3.9) that it is sufficient to prove
regularity of the vector-valued function s := α2h+ w.

Theorem 4.1. Let d(x0) = 0. Assume that
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(1) d′(x0) 6= 0.
(2) dim kerB(x0) = 1.
(3) p(x0) 6= 0.

Then (sd)(x0) = 0 and thus s and, correspondingly, ψ1 and ψ2 are regular functions
at x0.

Proof. From (4.4) and the equality d(x0) = 0 we obtain that vector
(
dh
dw

)
(x0)

belongs to the kernel of B(x0). It follows from the structure of B (see (4.3)) that the
vector

(
dw
dh̄

)
(x0) also belongs to the kernel of B(x0) (recall that d is real-valued).

Due to the condition (2) there exists a constant σ such that

(4.7)
(
dh
dw

)
(x0) = σ

(
dw
dh̄

)
(x0).

Note that if
(
dh
dw

)
(x0) = 0 then theorem is proved. Otherwise, it follows from (4.7)

that (dh)(x0) = σ(dw)(x0) = |σ|2(dh)(x0) and thus,

(4.8) |σ| = 1.

Now, the direct calculations show that (4.5) – (4.8), the equality d(x0) = 0 and the
condition (3) imply

(ds)(x0) = 0.
Indeed,

(ds)(x0) = α2(x0)(dh)(x0) + (dw)(x0) =
(
p(x0)
p(x0)

σ + 1
)

(dw)(x0)

=

((∑
j(dwj)(x0)/κj − σ

∑
j(dwj)(x0)/κj∑

j(dwj)(x0)/κj − σ
∑
j(dwj)(x0)/κj

)
σ + 1

)
(dw)(x0) = 0.

Now it follows from (1) that s is a regular function at x0. ¤

5. “Dressing up” process

Now we proceed to the general case. Let u and v be regular potentials corre-
sponding to some scattering data with eigenvalues κj , j = 1, . . . , N and coefficient
of reflection r(k). Let matrix {ξjs}, j, s = 1, 2, solve the Riemann – Hilbert problem
(3.7) – (3.8). We would like to consider the possibility to add one more eigenvalue.
So, let κ0 ∈ C+, κ0 6= κj , j = 1, . . . , N . We are going to construct new potentials
ũ, ṽ by extended initial data. Let {ξ̃js}, j, s = 1, 2, solve the Riemann – Hilbert
problem (3.7) – (3.8) with additional condition

(5.1)
resk=κ0 ξ̃21(x, k) = C0ξ̃11(x,κ0), resk=κ0 ξ̃22(x, k) = C0ξ̃12(x,κ0),

resk=κ0 ξ̃11(x, k) = C0ξ̃21(x,κ0), resk=κ0 ξ̃12(x, k) = C0ξ̃22(x,κ0),
C0 6= 0.

The solution can be written in the following form.(
ξ̃11
ξ̃21

)
=

(
ξ11
ξ21

)(
1 +

h1

k − κ0
+

h2

k − κ0

)
+

(
ξ12
ξ22

)(
w1

k − κ0
+

w2

k − κ0

)
,(5.2)

(
ξ̃12
ξ̃22

)
=

(
ξ11
ξ21

)(
w2

k − κ0
+

w1

k − κ0

)
+

(
ξ12
ξ22

)(
1 +

h2

k − κ0
+

h1

k − κ0

)
.(5.3)
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Since ξ̃11, ξ̃12 are analytic in C+ and ξ̃22, ξ̃21 are analytic in C− we get two additional
equations

(5.4) ξ11(κ0)h1 + ξ12(κ0)w1 = 0, ξ21(κ0)h2 + ξ22(κ0)w2 = 0.

Similarly to (3.15) we have

(5.5) α̃2 := exp
{
−2i

∫ x

∞
ũds

}
=
ξ̃−22(0)− ξ̃+12(0)

ξ̃+11(0)− ξ̃−21(0)
.

The potential ũ is always regular. Note that α̃2 = α̃−2. Recall also that

(5.6) ξ11ξ22 − ξ12ξ21 = 1,

and due to the fact that both potentials u and v are real

(5.7) ξ11(k) = ξ22(k̄), ξ12(k) = ξ21(k̄).

Using (5.4) we express h1 and w2 via w1 and h2 correspondingly. Substituting it into
(5.2), (5.3) and taking into account (5.6), (5.7) we arrive after simple calculations
at the equalities(

ξ̃11
ξ̃21

)
=

(
ξ11
ξ21

)
+

χ1

k − κ0

(
ξ11(κ0)

(
ξ12
ξ22

)
− ξ12(κ0)

(
ξ11
ξ21

))

+
χ2

k − κ0

(
ξ11(κ0)

(
ξ11
ξ21

)
− ξ12(κ0)

(
ξ12
ξ22

))
,

(5.8)

(
ξ̃12
ξ̃22

)
=

(
ξ12
ξ22

)
+

χ2

k − κ0

(
ξ11(κ0)

(
ξ12
ξ22

)
− ξ12(κ0)

(
ξ11
ξ21

))

+
χ1

k − κ0

(
ξ11(κ0)

(
ξ11
ξ21

)
− ξ12(κ0)

(
ξ12
ξ22

))
.

(5.9)

Here, χ1 = w1/ξ11(κ0), χ2 = h2/ξ11(κ0). Substituting it into (5.1) we obtain the
system

(5.10) B̃

(
χ1

χ2

)
=

(
C0ξ11(κ0)
C0ξ12(κ0)

)
,

where B̃ is 2× 2-matrix with the following entries

(5.11)
B̃11 = B̃22 = 1− C0

(
ξ12(k)ξ11(κ0)− ξ12(κ0)ξ11(k)

k − κ0

)∣∣∣∣
k=κ0

,

B̃12 = B̃21 = C0
|ξ11(κ0)|2 − |ξ12(κ0)|2

κ0 − κ0
.

Denote d̃ := det B̃. Obviously, d̃ is real-valued. In general, d̃ must have zeros
and thus χ1, χ2 are singular. But the theorem below shows that generically the
vector-valued function (the solutions of the equation)

(5.12) Ψ̃(x, k) =

(
ψ̃1(x, k)
ψ̃2(x, k)

)
:= α̃(x)

(
ξ̃11(x, k)
ξ̃21(x, k)

)
+ (α̃(x))−1

(
ξ̃12(x, k)
ξ̃22(x, k)

)

will be regular and so will be the potential ṽ.
Define

(5.13) s̃(x) := d̃(x)(α̃2(x)χ1(x) + χ2(x)),
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and

(5.14) p̃(x) := d̃(x)(ξ̃+11(x, 0)− ξ̃−21(x, 0)).

Theorem 5.1. Let d̃(x0) = 0. Assume that
(1) d̃′(x0) 6= 0.
(2) dim ker B̃(x0) = 1.
(3) p̃(x0) 6= 0.

Then ξ̃ and thus ṽ is regular at point x0.

Proof. It follows from (5.8), (5.9), and (5.12) that to prove regularity of Ψ̃ at
point x0 it is sufficient to show that the function α̃2(x)χ1(x) + χ2(x) is regular at
x0. Due to the condition (1) of the theorem the result will follow if we prove the
equality s̃(x0) = 0. The same arguments as in the proof of Theorem 4.1 show that
conditions (1), (2) together with the equality d̃(x0) = 0 imply the identity

(5.15) (d̃χ2)(x0) = σ̃(d̃χ1)(x0)

for some constant σ̃ such that

(5.16) |σ̃| = 1.

Substituting (5.8), (5.9), (5.15) into (5.5) and taking into account (5.16) and con-
dition (3) of the theorem we obtain that

(5.17) α̃2(x0) =

(
d̃(x)

(
ξ̃−22(x, 0)− ξ̃+12(x, 0)

))
(x0)(

d̃(x)
(
ξ̃+11(x, 0)− ξ̃−21(x, 0)

))
(x0)

= −σ̃.

From here and (5.13), (5.15) we obtain the result. ¤

6. Trace formulas

Let us rewrite the equation (1.1)

−f ′′xx(x, k) + (2ku(x) + v(x))f(x, k) = k2f(x, k)

in the terms of function h(x)

f = exp
(

ikx− i
∫ x

∞
u(t) dt+

∫ x

∞
h(t) dt

)
.

Then

(6.1) u2 − h2 − 2ikh+ 2iuh+ v + iu′ − h′ = 0.

Due to asymptotic properties of the function f(x, k) function h(x, k) has the fol-
lowing asymptotic expansion as k →∞

h(x) =
∞∑

j=1

hj
kj
.

Substituting it to the equation (6.1) we have

u2 + v − 2ih1 + iu′ = 0,

−
l−1∑
p=1

hphl−p − 2ihl+1 + 2iuhl − h′l = 0, l > 0.
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In particular, we obtain

h1 =
1
2i

(u2 + v + iu′),

h2 =
1
2i

(u3 + vu) + uu′ +
1
4
(v′ + iu′′),

h3 =
1
2i

(2ih2 − h2
1 − h′2)

=
1
2i

(
u4 + vu2 +

1
4
(u2 + v)2 − h′2

)
+

1
4
(vu)′ +

5
12

(u3)′ − 1
8i

(2uu′′ + (u′)2).

On the other hand, due to analytical properties of the function a(k) it follows that

a(k) =
n∏
1

k − kl

k − kl
exp

(
i
∫ ∞

−∞
u(x) dx+

1
2πi

∫ ∞

−∞

ln |a(s)|2
s− k

ds
)
.

Let us consider asymptotic expansion of a(k) as k →∞

ln a(k) = i
∫ ∞

−∞
u(x) dx+

∞∑
1

aj
kj
.

A simple calculation shows that

(6.2) aj =
−2i
j

n∑

l=1

Im(kjl )−
1

2πi

∫ ∞

−∞
ln |a(s)|2sj−1 ds.

Note that for Im k > 0

(6.3)
∫ ∞

−∞
h(x) dx = i

∫ ∞

−∞
u(x) dx− ln a(k).

From (6.2) and (6.3) it follows that

∫ ∞

−∞
hj(x) dx =

2i
j

n∑

l=1

Im(kjl ) +
1

2πi

∫ ∞

−∞
ln |a(s)|2sj−1 ds.

These relations are trace formulas for equation (1.1). In particular, first three trace
formulas have the following form

∫ ∞

−∞

1
2i

(u2 + v) dx = 2i
n∑

l=1

Im(kl) +
1

2πi

∫ ∞

−∞
ln |a(s)|2 ds,

∫ ∞

−∞

1
2i

(u3 + vu) dx = i
n∑

l=1

Im(k2
l ) +

1
2πi

∫ ∞

−∞
ln |a(s)|2s ds,

∫ ∞

−∞

1
2i

(
u4 + vu2 +

1
4
(
(u2 + v)2 + (u′)2

))
dx

=
2
3
i
n∑

l=1

Im(k3
l ) +

1
2πi

∫ ∞

−∞
ln |a(s)|2s2 ds.
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