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ABSTRACT. We find a subclass of potentials satisfying the CLR type inequalities for
the number of negative eigenvalues of the operator (—A)! 4 |z| =2/ =V, 1 € N, in R¢
for the limiting case when d = 2I.

1. INTRODUCTION

1.1. CLR-type inequalities. We study the selfadjoint operator in L?(R?)
(1.1) H=Hy=(-A)+blz| -V, 1N, beR,

where V is a nonnegative, locally integrable function (potential) in R?. The oper-
ator (1.1) can be accurately defined by its quadratic form. Denote by Ny(V') the
number of negative eigenvalues of the operator (1.1).

If 21 < d and V € LY?(R%), then for any b > —((d — 2)...(d — 21))2/2% the
following inequality holds

(1.2) Ny (V) < C(b, d,l)/vd/2’ dz.

For [ =1 (1.2) is known as the Cwikel-Lieb-Rozenblum (CLR) inequality.

If 21 > d and b > 0, then the inclusion V € L%2?/(R?%) does not imply (1.2). In
fact, this inclusion does not guarantee even the semiboundedness of the operator
(1.1) from below. For 2] > d some different type estimates of the number of the
negative eigenvalues were obtained in [BS1] for d odd and in [BLS]| for d even. In
the case 2] = d the corresponding results are less complete (see [BL], [BLS], [L] and
[S1,2]). It was first shown in [S1,2], and then in a sharper form in [BL] and [BLS],
that if 2l = d and b = 0, then the problem can be separated into two problems.
The first one is defined by the restriction of the operator (1.1) to the subspace of
functions depending on |z| and, hence, is reduced to a well studied one-dimensional
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differential operator with the potential equal to the mean value V of V over S4-1.
In particular, for this class of operators there are (see [BS1]) necessary and sufficient
conditions on the potential V which give No(aV) = O(a), as & — oo. The second
problem is defined by a class of functions whose mean values over S¢~! are equal to
zero. On this subspace we have the Hardy inequality which automatically provides
us with the “supporting” term b|z|~2! with some b > 0. This suggests that in order
to study the case 2l = d, we have to pay special attention to the operator (1.1),
where b > 0.

The purpose of this paper is to find a subclass of potentials from L!(R%), such
that the inequality (1.2) holds for d = 2 and b > 0. We shall always assume that
b = 1. For an arbitrary b > 0 all the statements of this paper remain true but the
constants depend on b. For b =1 (1.2) takes the form

(1.3) N(V) = Ni(V) < C(d) / V(z)dz.

The right hand side of (1.3) does not require more than V' € L'(R). We prefer to
deal with the problem

(1.4) Hy = (=0) + 2|7 — p,

where 4 is a nonnegative, finite measure in R%. If ;4 is an absolutely continuous
measure, dy = Vdz, and b = 1, then (1.4) coincides with (1.1). Let |Viu|? :=
> i</ 3!)0u|?. We shall impose such conditions on u that the quadratic form

(15) ulusad = [ + ol ) dz ~ [ fuf dy

defined on H!(R?) (see(1.8)) is semibounded and closed in L?(R%) and, hence,
defines a selfadjoint operator H,,. Notice that necessary and sufficient conditions of
closability and semiboundedness of a wide classes of quadratic forms were obtained
in [M, Ch.8 and 12].

For b = 0 the operator (1.1) has already been studied in [S1,2], where some
estimates of Ny(V') were obtained in terms of Orlicz classes. This paper deals with
the problem of finding a class of potentials, such that the prescribed inequality
(1.3) is satisfied. Our conditions are different, and the results of this paper and
those obtained in [S1,2] complement each other. In particular, if duy = Vdz and
V(z) = V(|z|) € L*(R?), d = 21, then our results imply the inequality (1.3) (see
also [L]).

1.2. The main results. In order to formulate the main result we introduce the
following definition and notation.
The open ball with centre at € R? and radius 7 > 0 is denoted by B(z,7),

B(z,r) ={yeR?: |y — x| < r}.

Condition (*). Let u be a nonnegative measure in R?, d > 1, whose support
F = supp p is a bounded set. We say that the measure p satisfies Condition (x)
with constants v; and 72, where 71, 72 > 1, if for any z € R? and r < 7, ldiam F

we have that
ST NN ~ a DD A\)Y)
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Denote
Qey ey = {x €RY: ¢ < 2| < 2} = B(0,¢2) \ B(0,¢y), 0<c1 <cg < oo,
Qp :=Q¢, ¢,, where ¢ = k=l ey =2F keZ
and

ﬁk = Q¢ ,co, Where ¢ = k=2 =281 L eZ
Our main result is the following statement:

Theorem 1.1. Let i be a finite, nonnegative Borel measure in R?, d even, whose
restrictions ,u|§k, k € Z satisfy Condition (%) with constants v, and 7y, independent

of k. Then the quadratic form (1.5) is semibounded from below, closed on H'(R?)
and the number of negative eigenvalues N () of the corresponding operator

(1.6) H, = (—A) + |27 — l=d/2 €N,
satisfies
(1.7) N(p) < C u(R?),

where C = C(vy1,72,d).
The proof of this theorem of is given in Section 4.

Remark 1.1. It can be easily checked (see Section 5) that Condition (*) is satisfied
for any spherically symmetric measure. In particular, if 4 is the d-function of S4—1,
then the constants v; and v, can for example, be chosen as 73 = 79 = 2. In
fact, Condition (x) is satisfied for the J-function of an arbitrary compact smooth
submanifold of R? of a positive dimension.

The next result is related to absolutely continuous measures u = V dx. Its proof
follows from Theorem 1.1, but requires some additional technical preparations (see
Section 5). Let us introduce a class of functions L'(R,, LP?(S~1)) defined in polar
coordinates in R?, z = (r,0), r € R, = (0,00), as

° 1/p
1l ry, Lo(sa-1)) = / (/ |f(r,0)7 d9> r¢ldr < co.
0 \Jsa-

Theorem 1.2. Letd be even, [ =d/2, V >0 andV € LY(Ry, LP(S%71)), 1 < p <
o0o. Then the number of the negative eigenvalues of the operator (1.1) with b = 1
satisfies

NV) < OVl w,, Le(si—1y)s

where C' = C(d, p).
In particular, we immediately obtain the following

Corollary 1.3. Letl=d/2 €N, V >0 and V(z) = V(|z|). If V € L*(R?), then
the inequality (1.3) is fulfilled.

Remark 1.2. Even for the class of spherically symmetric potentials the inequality

(1.3) fails if we do not introduce the “supporting” term |z|~2!. Indeed, as it was

shown in [BL] and in [BLS], if 4 = V(x)dx and V is a smooth potential, such that
V(x) ~ |2/~ In"? |z|(nln |z]) 719, as |z| — o0, ¢q>1,

then the number of negative eigenvalues of the operator (—A)! — V satisfies the

following asymptotic formula

No(aV') = alcy + o(af), a— 00,

1411 Y7 o — T1/sm™AdN 6 A M1 e e e 4 e
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1.3. Some notation. We shall denote by LP(R%, ) the class of LP-integrable
functions with respect to a measure pu. If i coincides with the Lebesgue measure,
then we omit p and write LP (R, 1) = LP(R?). Let G be an open subset of R?. By
H'(G) we denote the Sobolev class of the order [ equipped by the standard Hilbert
metric

'@ ={r: /G(|vlfy2+|f|2) dr < oo},

The integral over the whole space is written without indicating the domain of inte-
gration. The class of functions H!(R%), I = d/2, | € N, is a so-called homogeneous
H' class and defined by

(1.8) HY(RY) = {f: /<|vlf|2+%> dm<oo}.

C and c will be different constants whose values are unimportant. By P! is denoted
the class of polynomials in R? of degree less than or equal to I. By vy we denote
the volume of the unit ball in R¢,
. d/2

:=|B(0,1)] = vol R : <l}=—=——-—.
Acknowledgments. The authors are grateful to L.I. Hedberg, V.G. Maz’ya and
M. Solomyak for useful remarks and discussions.

2. COVERING LEMMAS

Let us first recall a classical result of Besicovitch [B1,2] (see also [G], Ch.1)

Lemma 2.1. Let A C R?, d > 1, be a compact set and r be a positive function on
A. Then there exists a finite subset J C A and a family of balls {B(z,r(x))}zes,
such that the following two conditions are fulfilled:

(1) UsesB(z,r(x)) > A,
(2) for anyy € A
#{z: xecJ and B(z,r(z)) 3>y} <C,
where the constant C' = C(d) depends only on the dimension d.

Lemma 2.1 was first applied for the problem of spectral estimates in [BS2]. The
next result follows from Lemma 2.1 and already appeared in [R] for absolutely
continuous measures. It will be used in the proof of Theorem 1.1.

Lemma 2.2. Let pu be a finite, continuous, nonnegative Borel measure in R?.
Suppose that its support F' = suppp is a bounded set. Then for any m € N
there exists a finite set J C F and a family of balls {B(xz,r(x))}zcs satisfying the
following conditions:

(1) UzesB(x,r(x)) D F,
(2) w(B(x,r(2)) < “E2 < p(Ba,r(x), zel,
(3) for any y € R?
#{x:z€J and y € B(z,r(x))} < C1(d),

(4) #{z : = € J} < Ca(d)m. Here the constants C; and Cy depend only on
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Proof. For an arbitrary « € F' and m € N define

d
(2.1) r(z) = sup {r(x) eRy: pu(B(z,r(z)) < 'u(i )}
Then 4
w(B(z,7(z))) < ’“‘ﬁ ). ser
and obviously
(2.2) w(B(z,7(z))) > “<5d), zeF.

Applying now Lemma 2.1 we find a finite set J such that (1)—(3) are fulfilled. Since
the support of F' is a compact set, then (3) and (2.2) imply (4). The proof is
complete. [

Remark 2.1. If suppu C Q3 = B(0,2) \ B(0,1), then in Lemma 2.2 we could
choose the family of covering balls {B(z,r(z))}, x € J, such that their supports
were lying in Int Q1 = Int (B(0,4) \ B(0,1/2)). Indeed, when introducing 7(z), we
could require in addition that the supremum is taken over r(z) < 1/2. Then the
proof of the conditions (1)-(3) remains the same. The estimate for the number of
points x € J satisfying (4) with 7(z) < 1/2 is the same, but the number of balls
with 7(z) = 1/2 is bounded.

3. SOME INEQUALITIES FROM REAL ANALYSIS

We collect here preliminary material which prevents us from being distracted
while proving the main result.

The next statement is a version of the well-known Poincaré inequality (see, for
example, [M, Ch.1.1.11] or [AH, Ch.8.1]).

Lemma 3.1. For anyl € N and any ball B(0,7) C R%, r > 0, there exists a linear
operator (orthogonal projection in L?(B(0,r))
(3.1) T: L*B(0,r)) — P71,
such that
1f = Tf72(0.y) < C@)r? IV 7280y

The proof of the following statement is due to Adams [A] (see also [M, Ch.§]
and [AH, Th. 7.2.2] where there are also many other related results). It concerns
Sobolev spaces H* of any (not necessarily integer) positive order «.

Theorem 3.2. Let a < d/2 and p be a finite, nonnegative measure in RY, F =
supp u C B(0,1) and suppose that there is a constant C, such that for some 3 > 0
and any r, 0 <r < oo

u(B(z,r)) < Curf,  xeF.
If% = g —a, p> 2, then the embedding operator

H*(B(0,1)) — LP(B(0,1), u)
18 bounded and its norm does not exceed cC’i/p, where ¢ = c¢(a, d, 3) is independent
of the measure .

In particular, this theorem implies the following weaker result for the case 2a =

r'ayi 71
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Corollary 3.3. Let | = d/2 and p be a finite, non-negative measure in R?, F =
supp u C B(0,1) and suppose there exists a constant C, such that for some 3 >0
and any r, 0 < r < o0,

u(B(z,r) < Cu®,  x€F.
Then the embedding operator
H'(B(0,1)) = L*(B(0,1), )

18 bounded and its norm does not exceed C’C’i/2, where C' = C(l, ).

Proof. The proof is very simple. Choose p > 1 and ¢/, such that | > o/ = d/2 —
B/2p > 0. Applying the Holder inequality with ¢ = p/(p — 1) and Theorem 3.2 we
find

1/2 1/2
lull 20,00 < Null2e(Bo.0),0) £1729(B(0,1)) < cCL*P|lull o (po1y) o'

< CCY ull g (0.1

This completes the proof. [J
Using dilation and Corollary 3.3 we obtain (see [M, Lemma 1.4.7])

Lemma 3.4. Let | = d/2 € N, 8 > 0, p nonnegative, finite measure in R? and
suppp C B(0,7), r > 0. Then there exists a constant C = C(f3,d), such that

(32 W 2a@omm <O M (IV B0 + 71 B2 s00) )
where
(3.3) M = sup &W
z€R?, p>0 P
and C = C(l, ).

Lemmas 3.1 and 3.4 immediately give us

Corollary 3.5. Let T be the orthogonal projection defined in (3. 1),_[ =d/2 € N,
B >0, let u be a nonnegative, finite measure in R* and supppu C B(0,r), r > 0.
Then there exists a constant C = C(3,d), such that

(3.4) 1f =T 12000 < Cr’ MV fll2 500

where M is given by (3.3) and C' = C(l, 3).

Remark 3.1. When proving the next lemma we use the following simple remark: if
u satisfies Condition (*) with the constants (71, 72), then there are constants a > 0
and > > 0 such that for any 0 < r < 0o, v > 1 and yr < 1 diam F'/~y, we have

(3.5) u(B(x,yr)) = sy u(B(z, 1)),  z€R™

L T D T 1 /1. 1 14 /a0
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Let m,L € N, A > 1 be constants satisfying the inequalities AY/m < 1 <
AL+ /m and let C;(d) be the constant appearing in Lemma 2.1. By using Lemma
2.2 we choose a family of balls B, j = B(xyj,7v;), Tvj € R4, ry; >0,v=0,1,...,L,
7 =1,2,...,n,,s0 that for any v = 0,1, ..., L the following conditions are fulfilled:

(3.6) ny, < C(A,dymA™",

FcUj2 By, #{j:1<j<ny,yecBy;}<Ci(d)
for any y € R? and

A?p(RE _ .
/’L(BUJ) < # < M(B’U,j)a J= 1727" <y Ty

Let A = A(d) denote the maximum number of balls with the following properties:

i) radii of the balls do not exceed 1/2; ii) all the balls intersect B(0,1); iii) any
point z € R? belongs to not more than C;(d) balls.

Lemma 3.6. Let 1 be a finite, nonnegative measure in R¢, F = suppu be a
bounded set and p satisfies Condition (x) with the constants (y1,7v2). Let A, m,

L, A(d) be the constants and {B,;} 2, v = 0,1,...,L, be the families of balls

introduced above. Then for any ball B(x,r) satisfying

u(Ba.r) > K1ED

there exists a ball By ; = B(Tyi,Tui), 0 <u < L—1,1< i< n,, with the properties

r

”
|x — x| < 3r and 2u > Ty = @,

where ¢ is defined by ((/2)%» = KA and K > max (A(d), A).

Proof. From the assumptions

Ku(RY R4 .
K > A(d)a ,U/(B(ﬁ,’l“)) = %7 /J/(BO,j) < M(m )7 J = ]-727‘ -+ 1o,

it follows that there exists jo such that By j;, N B(z,r) # @ and rpj, < r/2. If
roj, = T/C, then the statement of the lemma is fulfilled if we take B, ; = By j,-

Thus we can assume that ro;, < /(. Let us introduce a new ball By = B(z1,r/2) =
B(zgj,,7/2). Then (3.5) implies

"u(®Y) _ K Ap(®)

u(B1) > %<r—> #(Bo,jo) > %<—)
and
|lxy — x| <r+71/2.
At the next step we repeat our arguments for the ball B(x1,r/2) instead of B(z, )
and the family {B; ;}., instead of {By ;}72,. By using the inequalities

d
AR oy < AKR(RT)
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Ap(R?
w(By;) < “ﬁn ) i1

we find j; such that B(zq,7/2) N B(x1j,,715,) # @ and 75, < r/4. If ri;, > r/2¢,
then the statement of the lemma is fulfilled if we take B, ; = B; ;. Thus we can
assume that r1;, < r/2¢ and introduce By = B(x2,7/4) = B(x1j,,7/4). Then by
again applying (3.5) we obtain

¢

a d 2 d
(Ba) > %(§> A p(R?) L KA p(R)

m m

and
v — x| < |1 — 2|+ |ze — x| < T 4+ 7r/2+7r/2+1/4.

Continuing this process we either find a ball B, ;, 0 < u < L —1, 1 <@ < ny,
satisfying the statement of the lemma or arrive at a ball By, with the property

KAL J AL—H

u(Br) > p(RY) > u(RY).

The last inequality is impossible since AL*1/m > 1 and, therefore, the proof is
complete. [

Let 20 € R4, 0 < rg < 0o and 0 < B < a. Denote

(3.7) ©(B(zo,70)) = rg sup T_BILL(B(I', r) N B(xo, ro)>.
z€B(z0,r0),0<r<rg

Correspondingly the value o(B(xg,70)) is defined by (3.7), where the open ball
B(z,r) is changed by B(z, ).

Lemma 3.7. Letl=d/2 € N, u be a nonnegative, finite measure satisfying Con-
dition (x) with the constants (v1,72) and supp u C Q1. Then for any m € N there
exists a subspace E C Hl(ﬁl), such that dim E < C' - m and for any f € Hl(ﬁl),
f L E we have

/ @) du(z) < ¢ HEB) / V()2 d
(951 m Q4

where C' = C'(d,y1,72), C = C(d,71,72).
Proof. Let us assume that we can find a family of balls {By}?_, satisfying the
properties:

(3.9) F C U{_, By,

/7y 1N\ 1. 1 -~ 1 -~ ¢ — DY -~ 7Y [ I\
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for any y € R? and

(3.11) ¢(Bk) <

Denote by FE the orthogonal complement of the subspace H l(ﬁl) defined by
ka fpdr =0,k =1,...,5, where p € P!=!, (see Lemma 3.1). It follows from
Corollary 3.5 and (3.11) that for any function f L F

]Rd
/ 72 < B | 9.
Bk m Bk

Then using the last inequality, (3.9) and (3.10) we obtain the required statement.
Therefore in order to finish the proof of the lemma we need to construct a family
of balls satisfying conditions (3.8)-(3.11).
From (3.5) and (3.7) it is easy to see that lim,_,o p(B(x,r)) = 0. By applying
Lemma 2.2, where ¢ is used instead of u, we find a family of balls {By}7_, such
that (3.9)-(3.11) are fulfilled. We only need to check (3.8).

Choose 0 < § < (%/K)B*La. Let us split the family {By}7_, into two sets of
balls which after renumbering satisfy

_ R4
(3.12) W(By < 2MED e
m
and 4
__su®
W(By s R ke
m

The condition (3.10) gives us S — s < Ci(d)/édm. Thus in order to complete the
proof of (3.8) it is enough to verify the estimate

(3.13) s < Cym.

From now on we use the notations from Lemma 3.6. Let us claim that for any
By = B(zg,rk), 1 < k < s, there is a ball B, ;, = B(Zu,iy,Tugi,) With the
properties

T — Ty, | < AT, TR/C2Y < Ty, <TE/2Y

Then from these inequalities and (3.10) we find that for any 0 < v < L — 1 and
I1<i<n,

#{k:1<k<s,up =0, i, =7} <Cys(d)Ci(d) = Cs.

Hence by (3.6)

L—-1
s<Cs(ng+mn1+-+np1) <CC(Ad)m Y A" < Co(A, d)ym

v=0

N R Y Y 2 B I A T, |



10 BY A. LAPTEV AND YU. NETRUSOV

Let us prove our claim. From (3.11) we conclude that for any 1 < k < s there
exists a ball B(yg, px), such that pp < 7, yx € By and

pRY)

(3.14) 1(B(yrs pr) O Bk, 1)) (13 p1)° > -

The latter and (3.12) imply

(3.15) (;—’;)B 5> 1.

Using now (3.5), (3.14) and (3.15) we obtain

n(Blw ) 2 (1) w(Blye, )

> %<;—i>a 1#(B(yk, pr) N Bz, 1))

S %(T_k>°‘5 p(RY)
Pk m
S (ﬁ%)aﬁ u(ﬁd) S Ku;Rd)

Y

where the last inequality follows from the choice of the constant §. By applying
Lemma 3.6 to B(yx, ) we find the required ball B, ;, and hence prove the claim
and the lemma. [

From Lemma 3.4 and Condition (*) also we obtain the following statement:

Lemma 3.8. Letl =d/2 € N and let u be a nonnegative, finite measure satisfying
Condition (x) with the constants (y1,7v2) and supp u C 1. Then

| 1f@P du@) < € w@) ([ IV @R da s [ 5P ).

Ql Q Q1
where C" = C(d,y1,72).

4. PROOF OF THEOREM 1.1

According to the variational principle, in order to prove Theorem 1.1 it is suffi-
cient to show that there exists a subspace Ey C H'(R?), dim Ey < C p(R?), such
that for any F € H! and f L Ey in L?(R?) we have the following inequality

2
(4.1) / |f]2du</ |Vlf|2dx+/ W 4
R4 R4 re |z]?

Let us denote by uyj the restriction of p on the set 2. Introduce

o= (s el > 5

oy o~y T A e aAa



ON THE NEGATIVE EIGENVALUES OF SCHRODINGER OPERATORS 11

Lemma 3.7 implies that for any £ € K and any m = my € N we can find a
C(d) - my, - dimensional subspace Ej C L?({)), such that for f L Ej we have

(4.2) / (@) dpu(ar) = / £ )| du(2* )

931

k
<C (2 91)/

mi ﬁl

IViF2F 2)|?de < C M/
mi O

Qp

V' f ()] da.

Notice that if we now choose my = 3[(1+ C') - ()], then

(1.3 L @R i < g [ 9k,
and moreover
(4.4) > e <3(1+C) - p(RY.

ke

Assume now that k ¢ K. Then Lemma 3.8 and the definition of the set K give us

(4.5) /Q F(@)? dpu(z) = /Q £ )| du(2* )

< ) ( / V(25 ) 2 d + / 72 ) de
= ¢ () ( / V(@) do + 2 / F@)? d)
< 2¢C" () </§ |Vlf(ac)|2da:+/§k %dx).

This inequality and the definition of I imply

a0 [ P <3 ([ wreras [ 98 w)

o Q

Summing up the inequalities (4.3) and (4.6) we obtain (4.1). Besides, (4.4) gives
dim By = Y dim By = Y, oo e < C(d)p(R?). The theorem is proved. [

5. PROOF OF THEOREM 1.2

5.1. Some properties of L? classes of functions. Let Q = (0,1)¢, d € N. We
begin with an auxiliary statement.

Proposition 5.1. Let f > 0 and f € LP(Q), 1 < p < oo. Then there exists
g € LP(Q), such that g > f a.e.,

l9llzr @) < Cp, )| fllzr (@)

and the measure g dz satisfies Condition (x) with some constants v, = y1(p,d) and
o N



12 BY A. LAPTEV AND YU. NETRUSOV

Proof. Let u € LP(R?) and let Pu = xgu = u|g be the restriction of u to the cube
Q. Introduce the Hardy-Littlewood maximal function

M f(x) = sup

BT |f(y)] dy.
p>0 ’B(x7 p)| B(z,p)

Then by using the Hardy-Littlewood-Wiener theorem (see for example Th.I.1 in
[St]) we find that there is a constant A = A(p), such that

[PM fllp < IM Fllp < AllfllLe@)-

Define (cf. [GR])
(5.1) glz) =Y 27 FATHPM)* f(a).
k=0

Obviously suppg C @, f < g ae., |lgll, < 2]/ f|, and
(5.2) PMg(z) < 2A¢g(x).

It only remains to check that the measure gdz satisfies Condition (x). Thus we
should find constants (y1,72), such that for any zo € R? and r < 75 'Vd

(5.3) / g(x)dx > 2/ g(x) dx.
B(zo,v1T) B(zo,r)

Let 71 = 79 = 7 > 1 be a constant whose value is to be found. Then for any
x € QN{B(xg,yr) \ B(xo,r)} the inequality (5.2) implies

g(x) > !

> 9(y) dy
2A |B($, T+ ‘SC - .’L’o‘)| B(z,r+|x—zo|)

> L / (v)d
~ 2Avy (r 4+ |x — x0])® B(wom)g v

Integrating this inequality over the set Q N {B(xo,7r) \ B(xo,r)} we obtain

g(x)dx

/QFW{B(IO,W)\B(IOJ)}
s . ),
> dx 9(y) dy
24v4 J (B (z0,yr)\B(zo,r)} (T + [T — T0])? B(zo,r)
), ),
> dzx 9(y) dy
24 Avg J B (2o yr)\Baor) (M + |2 =20} JB(ag.r)

Udd yr ud—l /
= d d
2d+1AUd/f,~ (r + u)d U - 9(y) dy

d rogd-l d
> / ——— du / 9(y)dy = ———In~ / g(y) dy.
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If we now choose -, such that
dln~y > 224424,

then (5.3) is satisfied and therefore the proof is complete. [J

When defining Condition (%) we used the family of balls. There is a natural
question whether instead of balls we can use other families of sets. The next lemma
answers this question.

Let 0 € G C R? be a domain, such that

(5.4) B(0,7) C G C B(0,r3)
with some 0 < r; < ry < 0o. Define
(5.5) G(m,r):{yE]Rd: (y—xz)/r €G,}, r > 0.

Lemma 5.2. Let G be a set satisfying (5.4) and let u be a non-negative measure,
F = supp p. The following two properties are equivalent:

(i) There exist constants vy, and 2, such that Condition (%) holds with constants

(71, 72)-
(ii) There exist constants | and ~yh, such that for any x € R? and r < diamF/~

we have
(5.6) (G (z, 1)) = 2 (G (,7)).

diamF
Y272

Proof. Suppose (i) is satisfied. Let us check (ii). For any 2 € supp R% and r <
we have that

w(G (@, nrer/r1)) 2 p(B(x, gire ) 2 2u(B(x,r2r)) 2 2u(G (7).
The latter implies v{ = ~17r2/r1 and 4 = r272. The converse statement can be
proved analogously. [J

In the proof of the next statement it is convenient to use a family of cubes

Qz,r) ={y eR*: |y —x|/r € (-=1,1)%},
Q1($1,7‘) = {yl € ]Rdl : ’yl - :L’1|/7‘ € (_171)d1}7
Qa(z2,7) ={y2 € R% . lya — xa|/r € (-1, 1)d2}.

Proposition 5.3. Let Q = Q1 x Q2 = (0,1)% x (0,1)%, d =dy +da, f >0 and
fe LY (Q1,LP(Q2)), 1 < p < oo. Then there exists g € L' (Q1, LP(Q2)), such that
g=f ae.,

191121(Qu, L7 (@) < Clpydu, d2) | fllLr(@u. L7 (@)

and the measure gdx satisfies Condition (%) with the constants v1 = v1(p, ds,d2)
and 2 = y2(p, d1, dz).
Proof. For the functions f(z1,-) € LP(Q2), 1 € @1, we introduce g(z1,-) € LP(Q2)

according the construction in Proposition 5.1. Clearly g(x1,z2) dzo satisfies Con-
dition (x) for the family of cubes Qa(x2,7), 22 € R, Wlth constants (y1,y2) uni-

c. 1  *y1 44—y T 1. 41 1 . N . 41 . g
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we prove (5.6) for the family of cubes Q(z,7), x = (21, 22). Indeed, for any x € R?
and r < V/d/v, we have

/ g(y) dy = / / 9(y1,y2) dyadip
Q(z,y17) Q1(z,v17) Y Q2(x,717)
> 2/ / (Y1, y2) dy2dyy
Qi(z,vim) JQ2(x,7)

> 2/ / (Y1, y2) dya2dy: .
1(z,r) 2(z,r)

The proposition is proved. [

Corollary 5.4. The statement of Proposition 5.3 holds true if we replace the cube
Q2 by S®.

5.2. Proof of Theorem 1.2. In the polar coordinates x = (r,0) € Rt x
S4=1, every set € turns into [2%,2F+1) x S471. According to Proposition 5.3
we find functions g, € L((2%,2%+1), LP(S?71)), such that g := >, g = V a.e.,
19l L1, L (sa-1)) < C(0, )|V L1, Lr(se-1)) and the measures gi dx satisfy Con-
dition () with constants (v1,72) which are independent of k. Finally we have

N(V)<N(g) <Ch /g(flf) dz < CallgllLr @, Lrsa-1)) < C3 IV (®y,Lrsi-1)),

where C; = C;(d,p), j = 1,2,3. This completes the proof. [
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