A GEOMETRICAL VERSION OF HARDY'S INEQUALITY
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ABSTRACT. We prove a version of Hardy'’s type inequality in a domain
Q C R™ which involves the distance to the boundary and the volume of
Q. In partucular, we obtain a result which gives a positive answer to a
guestion asked by H.Brezis and M.Marcus.

0. INTRODUCTION

Let ©2 be a domain iR™ with Lipschitz boundary. It is known that the
following extension of Hardy’s inequality is valid

©1 [ IVu@Pdrzu |

wherey is a positive constant ant{xz) = dist(x, 0€2). The best constant
= p(€2) in (0.1) depends on the domdin It is also known that for convex
domainsu(§2) = 1/4, but there are smooth domains such thg?) < 1/4
(see[6], [7]).

H.Brezis and M.Marcus [3], Theorem |, have shown that for every do-
main of classC? there exists a constait= \(Q2) € R such that

2 1 [ |u(z)? 2
(0.2) /Q|Vu(x)| dr > 1/, 2@ der/\/Q|u(x)| dx,

Vu € Hy(Q).

lu

(=)? 1
52(x) dz, Yu € Hy(Q),

Note that there are examples ([6], [7]) which confirm that there are smooth
domains withA < 0. However, if() is convex then it is proved in [3] (see
Theorem II) that

1
A(Q) > T

In this paper Brezis and Marcus have asked whether the diameferiof
(0.3) can be replaced by an expression dependin@pr= vol €2, namely,
whether) > ¢|Q|~%/™ with somec = ¢(n) > 0.

(0.3)
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The aim of this short article is to prove that this is the case indeed and that
for convex domains
c(n) nn=2)/ng/n

ope = 4

wheres,,_; := |S"7!|. In particular, ifn = 2 thenc(2) = /2.

The proof of this result is based on a one-dimensional version of Hardy’s
inequality which is obtained in Section 1. In Section 2 we extend the
one-dimensional result to the many-dimensional case using arguments of
E.B.Davies [4], Ch.5.3. In Section 3 we prove (0.4) and consider some
other generalizations of this result.

Note that various types of Hardy’s inequalities can be found in books [8]
and [9] and in the recent review article [5]. Some results from [3] were
recently extended to cases with weights in [2] andXspaces in [1].

(0.4) A >

1. ONE DIMENSIONAL RESULTS

We start with a simple statement which is just a corollary of the Cauchy-
Schwarz inequality and partial integration.

Let f be a function defined of®, b), b > 0, and whose derivative is finite
on (0,b). We say thatf belongs to the clas$(0,b) if f is real valued and
there is a constart = C'(f) such that

(1.1) SUR<i<s (L F (1) + £ f(1)]) < C.

Lemma 1.1. Letu € 01(0 b),b >0, u(()) =0andletf € ®(0,b). Then

. ([ £ (8)|ul? dt)?
(1.2) - 0 .
/ ’ Y (f(t)— £(6))2ul? dt
Proof. For any constant taking into account (1.1) we have
b 2
() = ) ulp) /f (1) uf? i —(/0 (F(1) =) (lul?)
— (/0 (f(t)—¢) (uu+uﬂ’)dt>2

< 4(/0b |u’|2dt> (/Ob(f(t) —o)? |u|2dt>.

We complete the proof by substituting= f(b).

The next result shows that (1.2) is often sharp unlikely many other
Hardy’s type inequalities.
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Lemma 1.2. Let us assume thgt € (0, b) and

. ftbf(s)ds — +00, ast — 0.
e There is a constant, « > 0 such that

Ftyemali Fe)ds ¢ 1200, 1),
Then Lemma 1.1 is sharp.

Proof. The Cauchy-Schwarz inequality which has been used in the proof
of Lemma 1.1 is sharp if there exists a real valued functisnch that/(t)
andu(t)(f(t) — f(b)) are linearly dependent

(1.3) u'(t) = au(@)(f(t) — f(b)).
Solving (1.3) we obtain
U(t) _ Ce—aftb f(s) ds—af(b)t.
If now a > 0, then the first assumption implieg0) = 0. The second one
provides the inclusiodu/dt € L*(0,b).

Example.
If f(t) =1/t anda > 1/2, then substituting in (1.2)

u(t) = tee /b

we find that the left and the right hand sides of this inequality are the same.
Moreover,u(0) = 0, u € C*(0,b) and therefore the inequality (1.1) has an
extremizer.

Although in many cases Lemma 1.1 gives sharp results, the right hand
side in the inequality (1.2) is not linear with respectitoWe would now
like to give the following linearized version of this inequality.

By using (1.2) we obviously have

as [ s / (210 - (710~ FO)F) uf .

If we rewrite this inequality for the intervab, 2b] with u € C*(b,2b),
u(2b) = 0, then

2b 2b
(1.5) /b |u’]2dt2%/b <2f’(2b—t)—(f(2b—t)—f(b)2>|u|2dt.

Adding up (1.4) and (1.5) and by using standard density arguments we can
finally state our main one-dimensional result.

Lemma 1.3. Letu € HJ(0,2b),b > 0 and letf € ®(0,b). Then

2b 2b
we) [Pz [ (200) - Fo0) - 707l

where
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p(t) =min(t,2b —t).

2. A RESULT FOR HIGHER DIMENSIONS

Let ©2 be a domain ifR™. In order to formulate the main result of this
section we need some notations. Denoterbir) the distance between
x € €2 and its nearest point belonging to the boundagyin the direction
vesS—1

(2.1) T,(x) =min{s > 0:x + sv € Q}.

Let us also introduce the “distance” to the boundaryand the “diameter”
D,, along the line defined by via:

(2.2) pu(x) = min(r, (@), 7, ()

(2.3) D,(z) =1,(z) + 17—, ().

By dw(v) we denote the normalized measure on the unit spBere,
Jon-1 dw(v) = 1.

Theorem 2.1. Let Q2 be a domain inR", D € (0, o] be its diameter and
f € ®(0,D/2). Then for any. € H;(2) we have

Liwukar=5 [([ @) - Fod) + 2 ) Du)2)
(2.4) — F(D,(@)/2)) do(v)) [u(a) | dr,

Proof. We proceed by using E.B.Davies’ arguments (see [4]) dL.elenote
partial differentiation in the direction € S*~!'. Then Lemma 1.3 implies

/Q|3V“|2 d = %/Q@fl(ﬁu(ff)) — P(pu(@)) + 2f (0 (@) f(Dy() /2)
~ JA(D()/2) ) ul* d.

where the functiop, andD,, are defined in (2.2) and (2.3). Let us introduce
an orthonormal basige; }7_, in R™. Then

Jvr ez 32 [ @r @) - P @)
+2f(pe, (1)) (De, /2) ~ 2(De, 2))luf da
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Averaging both sides of the last inequality over orthonormal bases using the
groupO(n) we complete the proof.

3. APLICATIONS OFTHEOREM2.1
3.1. On a question of Brezis and Marcus. Let
(3.1) flit)=-1/t, t>0.

Then the integral ove$™ ! in the right hand side of (2.4) becomes equal to

/ (27(p) = 12(p0) + 20 (0)(D)2) = f3(D,/2)) do(v)

(3.2) - /s(Pl_2 + pi)y ;) dw(v).

Let us consider the last two terms. Itis clear thatr) < 7,(z), x € ,
where the functiong andr are defined in (2.2) and (2.1). Sln@, =
T, + 7_, (see (2.3)) we obtain

1 1 S 1 1
oD, D2~ 1,(r+71) (1,+7-,)?
T_y

(T +7,)2%

This implies

1 1 T

/sm <pu( )D, () Dg(x)> dw(v) 2 /SM Py E T dw(v)
1 T—y Ty

= 2 /S" 1 <7-U(7-V + Tiu)Q + 71,,(7'1, T Tu)2) dw(l/)

1 1
> — d )
— 4 /Snl TuT—y w<l/)

In order to estimate the latter integral we apply the Cauchy-Schwarz in-
equality twice and obtain
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When now applying lder’s inequality we recall thaf,, , dw(v) = 1.
Therefore

| e = ([ o)

> </Sn1 () dw(l/)>_2/n.

Let us introduce the domai, C () defined as a part &2 which can be
“seen” from pointz

(3.3) Q={yeQ:z+t(ly—2)cQ, Vt[0,1]}.
Then

/ ) dw() = |0,
§n—1 Sp—1

which finally gives us

Sp_1\2/m
8o | Gonw me) “0z (%) mp

Now (2.4), (3.2) and (3.4) imply the following reformulation of Theorem
2.1 in the case when the functigns defined by (3.1).

Theorem 3.1. For any() C R" and anyu € H;(Q) we have

/]Vu]de> // v) |u(x)|? dx
Sn—1 py

sl ru< >12d

(3.5) +

Clearly in (3.5) the value(2,| can always be replaced B9|. If Q2 is
convex then it is known (see for example [4] Exercise 5.7 and [5]) that

(36) T @) = {5

Moreover, in this cas@, = 2, x € €2, and we obtain

Theorem 3.2. For any convex domaift C R™ and anyu € H}(Q)
1 |u($)|2 (n—2)/ng 2/”
2de > - d / 2d
/Q\Vu| T2 L 20) x 4|Q|2/n |u(z)|* dx.

Note that the domaif in Theorem 3.1 can be unbounded and it is valid
for a variety of domains with fractal boundaries, for example, such as the
Koch snowflake irlR?. So often the inequality (3.6) might hold true with a
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constaniu < 1/4 instead ofl /4 in the right hand side, whereas the second
integral of the inequality (3.5) is very stable.
In particular, following E.B.Davies, Lemma 3 from [5] we can obtain:

Corollary 3.1. Suppose that there is a constarguch that for eacly € 052
and each: > 0 there exists a disjoint frot ball B with centrez and radius
B > akx, where|z — y| = a. Then there exists a constant< 1/4 such that

n 1

@) = i

and hence

2 (n—2)/n G2/n ’u(l’)P
fivuras 2 [ Span e 2 [ G Tn

3.2. Some refined inequalities. The next application of Theorem 2.1 con-
cerns the function
1 1

@GN JO= i Ty Ot

whereD = diam(2 and0 < a < 2. In this case the expression appearing
in the right hand side of (2.4) is equal to

2f,<pu) - f2(pu) + Qf(pl/)f(DV/Q) - f2(Du/2)

1 1
Ak
S ( In(ap,/D) In(aD, /2D) ~ In’(aD,/2D) )
pvD,(1 —In(ap,/D))(1 —In(aD,/2D)) D2(1 —In(aD,/2D))?

1 1 1 1y In*(e/2)
2 2 T A —(ap D) <pVDy Dz) (1= n(a/2))2

Theorem 2.1 therefore gives
/|Vu|2dx
Q
27, / G Uzu—miapy/m)z)d”(”) e
s | G )

Applicatlon of (3.4) leads to a more refined version of Theorem 3.1.
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Theorem 3.3. Let0 < a < 2. Then for any2 € R™ and anyu € H}(Q)
we have

/|Vu\2d:z:

21 L G * ) W) Wl

/s <a/2> [u(z)? |
= In(@/2P Jo P

+

Remark. Theorem 3.3 is a stronger result than Theorem 3.1. Indeed, we
obtain Theorem 3.1 from Theorem 3.3 if we {et— 0.

For 2 convex we obtain via (3.6) that

n 1 1
1L 2 T ) )

1 1 1
= ZW(l Tz m(a(s(x)/p))?)‘

The latter inequality and Theorem 3.3 implies a version of Theorem 3.2:

Theorem 3.4. Let0 < « < 2. For any convex domaift C R™ and any
u e H ()

/'V“‘de> |1§2(()|) <1+(1_1n(ojs @)/D ))2>d”“"

nmn=2)/ng 2/n

ln
3.8 )2 d
(3:8) i 4(1—ln(a/2 |Q|2/n/|“ o)l de.

Remark. The last statement is an improvment of Theorem 5.1 from [3],
where for convex domain€ andu € H}(Q2) the authors obtain the in-
equality

2 Ju(z)]? 1
(3.9) /Q|Vu(x)| dx> S0 (1+ (1_1n(5(x)/D))2>dx.

Indeed, if we choose: = 1 in Theorem 3.4, then the first integral in the
right hand side of (3.8) coincides with the right hand side of (3.9). However,
« = 1 still allows to have an additional non-zero term in (3.8).
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