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ABSTRACT. We prove a version of Hardy’s type inequality in a domain
Ω ⊂ Rn which involves the distance to the boundary and the volume of
Ω. In partucular, we obtain a result which gives a positive answer to a
question asked by H.Brezis and M.Marcus.

0. INTRODUCTION

Let Ω be a domain inRn with Lipschitz boundary. It is known that the
following extension of Hardy’s inequality is valid∫

Ω

|∇u(x)|2 dx ≥ µ

∫
Ω

|u(x)|2

δ2(x)
dx, ∀u ∈ H1

0 (Ω),(0.1)

whereµ is a positive constant andδ(x) = dist(x, ∂Ω). The best constant
µ = µ(Ω) in (0.1) depends on the domainΩ. It is also known that for convex
domainsµ(Ω) = 1/4, but there are smooth domains such thatµ(Ω) < 1/4
(see[6], [7]).

H.Brezis and M.Marcus [3], Theorem I, have shown that for every do-
mainΩ of classC2 there exists a constantλ = λ(Ω) ∈ R such that∫

Ω

|∇u(x)|2 dx ≥ 1

4

∫
Ω

|u(x)|2

δ2(x)
dx+ λ

∫
Ω

|u(x)|2 dx,(0.2)

∀u ∈ H1
0 (Ω).

Note that there are examples ([6], [7]) which confirm that there are smooth
domains withλ ≤ 0. However, ifΩ is convex then it is proved in [3] (see
Theorem II) that

λ(Ω) ≥ 1

4 diam2(Ω)
.(0.3)

In this paper Brezis and Marcus have asked whether the diameter ofΩ, in
(0.3) can be replaced by an expression depending on|Ω| := vol Ω, namely,
whetherλ ≥ c |Ω|−2/n with somec = c(n) > 0.
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The aim of this short article is to prove that this is the case indeed and that
for convex domains

λ ≥ c(n)

|Ω|2/n
, c(n) =

n(n−2)/ns
2/n
n−1

4
,(0.4)

wheresn−1 := |Sn−1|. In particular, ifn = 2 thenc(2) = π/2.
The proof of this result is based on a one-dimensional version of Hardy’s

inequality which is obtained in Section 1. In Section 2 we extend the
one-dimensional result to the many-dimensional case using arguments of
E.B.Davies [4], Ch.5.3. In Section 3 we prove (0.4) and consider some
other generalizations of this result.

Note that various types of Hardy’s inequalities can be found in books [8]
and [9] and in the recent review article [5]. Some results from [3] were
recently extended to cases with weights in [2] and toLp spaces in [1].

1. ONE DIMENSIONAL RESULTS

We start with a simple statement which is just a corollary of the Cauchy-
Schwarz inequality and partial integration.

Let f be a function defined on(0, b), b > 0, and whose derivative is finite
on (0, b). We say thatf belongs to the classΦ(0, b) if f is real valued and
there is a constantC = C(f) such that

sup0<t≤b (t|f(t)|+ t2|f ′(t)|) ≤ C.(1.1)

Lemma 1.1. Letu ∈ C1(0, b), b > 0, u(0) = 0 and letf ∈ Φ(0, b). Then∫ b

0

∣∣∣du
dt

∣∣∣2 dt ≥ 1

4

(
∫ b

0
f
′
(t)|u|2 dt)2∫ b

0
(f(t)− f(b))2|u|2 dt

.(1.2)

Proof. For any constantc taking into account (1.1) we have

(
(f(b)− c)|u(b)|2 −

∫ b

0

f ′(t) |u|2 dt
)2

=
(∫ b

0

(f(t)− c) (|u|2)′ dt
)2

=
(∫ b

0

(f(t)− c) (u′ū+ uū′) dt
)2

≤ 4
(∫ b

0

|u′|2 dt
)(∫ b

0

(f(t)− c)2 |u|2 dt
)
.

We complete the proof by substitutingc = f(b).

The next result shows that (1.2) is often sharp unlikely many other
Hardy’s type inequalities.
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Lemma 1.2. Let us assume thatf ∈ Φ(0, b) and

•
∫ b
t
f(s)ds→ +∞, ast→ 0.

• There is a constanta, a > 0 such that

f(t)e−a
∫ b
t f(s) ds ∈ L2(0, b).

Then Lemma 1.1 is sharp.

Proof. The Cauchy-Schwarz inequality which has been used in the proof
of Lemma 1.1 is sharp if there exists a real valued functionu such thatu′(t)
andu(t)(f(t)− f(b)) are linearly dependent

u′(t) = a u(t)(f(t)− f(b)).(1.3)

Solving (1.3) we obtain

u(t) = Ce−a
∫ b
t f(s) ds−af(b) t.

If now a > 0, then the first assumption impliesu(0) = 0. The second one
provides the inclusiondu/dt ∈ L2(0, b).

Example.
If f(t) = 1/t anda > 1/2, then substituting in (1.2)

u(t) = tae−at/b

we find that the left and the right hand sides of this inequality are the same.
Moreover,u(0) = 0, u ∈ C1(0, b) and therefore the inequality (1.1) has an
extremizer.

Although in many cases Lemma 1.1 gives sharp results, the right hand
side in the inequality (1.2) is not linear with respect tou. We would now
like to give the following linearized version of this inequality.

By using (1.2) we obviously have∫ b

0

|u′|2 dt ≥ 1

4

∫ b

0

(
2f ′(t)− (f(t)− f(b))2

)
|u|2 dt.(1.4)

If we rewrite this inequality for the interval[b, 2b] with u ∈ C1(b, 2b),
u(2b) = 0, then∫ 2b

b

|u′|2 dt ≥ 1

4

∫ 2b

b

(
2f ′(2b− t)− (f(2b− t)− f(b)2

)
|u|2 dt.(1.5)

Adding up (1.4) and (1.5) and by using standard density arguments we can
finally state our main one-dimensional result.

Lemma 1.3. Letu ∈ H1
0 (0, 2b), b > 0 and letf ∈ Φ(0, b). Then∫ 2b

0

|u′(t)|2 dt ≥ 1

4

∫ 2b

0

(
2f ′(ρ(t))− (f(ρ(t))− f(b))2

)
|u|2 dt,(1.6)

where
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ρ(t) = min(t, 2b− t).

2. A RESULT FOR HIGHER DIMENSIONS

Let Ω be a domain inRn. In order to formulate the main result of this
section we need some notations. Denote byτν(x) the distance between
x ∈ Ω and its nearest point belonging to the boundary∂Ω in the direction
ν ∈ Sn−1,

τν(x) = min{s > 0 : x+ sν 6∈ Ω}.(2.1)

Let us also introduce the “distance” to the boundaryρν and the “diameter”
Dν along the line defined byν via:

ρν(x) = min(τν(x), τ−ν(x))(2.2)

Dν(x) = τν(x) + τ−ν(x).(2.3)

By dω(ν) we denote the normalized measure on the unit sphereS
n−1,∫

Sn−1 dω(ν) = 1.

Theorem 2.1. Let Ω be a domain inRn, D ∈ (0,∞] be its diameter and
f ∈ Φ(0, D/2). Then for anyu ∈ H1

0 (Ω) we have∫
Ω

|∇u|2 dx ≥ n

4

∫
Ω

(∫
Sn−1

(2f ′(ρν(x))− f 2(ρν(x)) + 2f(ρν(x))f(Dν(x)/2)

− f 2(Dν(x)/2)) dω(ν)
)
|u(x)|2 dx,(2.4)

Proof. We proceed by using E.B.Davies’ arguments (see [4]). Let∂ν denote
partial differentiation in the directionν ∈ Sn−1. Then Lemma 1.3 implies∫

Ω

|∂νu|2 dx ≥
1

4

∫
Ω

(
2f ′(ρν(x))− f 2(ρν(x)) + 2f(ρν(x))f(Dν(x)/2)

− f 2(Dν(x)/2)
)
|u|2 dx,

where the functionρν andDν are defined in (2.2) and (2.3). Let us introduce
an orthonormal basis{ēj}nj=1 in Rn. Then∫

Ω

|∇u|2 dx ≥ 1

4

n∑
j=1

∫
Ω

(2f ′(ρēj(x))− f 2(ρēj(x))

+ 2f(ρēj(x))f(Dēj/2)− f 2(Dēj/2))|u|2 dx.
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Averaging both sides of the last inequality over orthonormal bases using the
groupO(n) we complete the proof.

3. APLICATIONS OFTHEOREM 2.1

3.1. On a question of Brezis and Marcus.Let

f(t) = −1/t, t > 0.(3.1)

Then the integral overSn−1 in the right hand side of (2.4) becomes equal to∫
Sn−1

(
2f ′(ρν)− f 2(ρν) + 2f(ρν)f(Dν/2)− f 2(Dν/2)

)
dω(ν)

=

∫
Sn−1

( 1

ρ2
ν

+
4

ρνDν

− 4

D2
ν

)
dω(ν).(3.2)

Let us consider the last two terms. It is clear thatρν(x) ≤ τν(x), x ∈ Ω,
where the functionsρ and τ are defined in (2.2) and (2.1). SinceDν =
τν + τ−ν (see (2.3)) we obtain

1

ρνDν

− 1

D2
ν

≥ 1

τν(τν + τ−ν)
− 1

(τν + τ−ν)2

=
τ−ν

τν(τν + τ−ν)2
.

This implies∫
Sn−1

( 1

ρν(x)Dν(x)
− 1

D2
ν(x)

)
dω(ν) ≥

∫
Sn−1

τ−ν
τν(τν + τ−ν)2

dω(ν)

=
1

2

∫
Sn−1

( τ−ν
τν(τν + τ−ν)2

+
τν

τ−ν(τν + τ−ν)2

)
dω(ν)

≥ 1

4

∫
Sn−1

1

τντ−ν
dω(ν).

In order to estimate the latter integral we apply the Cauchy-Schwarz in-
equality twice and obtain

1 ≤
∫
Sn−1

τντ−ν dω(ν)

∫
Sn−1

1

τντ−ν
dω(ν)

≤
∫
Sn−1

τ 2
ν dω(ν)

∫
Sn−1

1

τντν
dω(ν),

where we have used that
∫
Sn−1 τ

2
ν dω(ν) =

∫
Sn−1 τ

2
−ν dω(ν).



6 M. HOFFMANN-OSTENHOF, T. HOFFMANN-OSTENHOF AND A. LAPTEV

When now applying Ḧolder’s inequality we recall that
∫
Sn−1 dω(ν) = 1.

Therefore∫
Sn−1

1

τν(x)τ−ν(x)
dω(ν) ≥

(∫
Sn−1

τ 2
ν (x) dω(ν)

)−1

≥
(∫

Sn−1

τnν (x) dω(ν)
)−2/n

.

Let us introduce the domainΩx ⊆ Ω defined as a part ofΩ which can be
“seen” from pointx

Ωx := {y ∈ Ω : x+ t(y − x) ∈ Ω, ∀t ∈ [0, 1]}.(3.3)

Then ∫
Sn−1

τnν (x) dω(ν) =
n

sn−1

|Ωx|,

which finally gives us∫
Sn−1

( 4

ρν(x)Dν(x)
− 4

D2
ν(x)

)
dω(ν) ≥

(sn−1

n

)2/n 1

|Ωx|2/n
.(3.4)

Now (2.4), (3.2) and (3.4) imply the following reformulation of Theorem
2.1 in the case when the functionf is defined by (3.1).

Theorem 3.1. For anyΩ ⊂ Rn and anyu ∈ H1
0 (Ω) we have∫

Ω

|∇u|2 dx ≥ n

4

∫
Ω

∫
Sn−1

1

ρ2
ν(x)

dω(ν) |u(x)|2 dx

+
n(n−2)/ns

2/n
n−1

4

∫
Ω

|u(x)|2

|Ωx|2/n
dx.(3.5)

Clearly in (3.5) the value|Ωx| can always be replaced by|Ω|. If Ω is
convex then it is known (see for example [4] Exercise 5.7 and [5]) that

n

4

∫
Sn−1

ρ−2
ν (x) dω(ν) ≥ 1

4

1

δ2(x)
,(3.6)

Moreover, in this caseΩx = Ω, x ∈ Ω, and we obtain

Theorem 3.2. For any convex domainΩ ⊂ Rn and anyu ∈ H1
0 (Ω)∫

Ω

|∇u|2 dx ≥ 1

4

∫
Ω

|u(x)|2

δ2(x)
dx +

n(n−2)/ns
2/n
n−1

4 |Ω|2/n

∫
Ω

|u(x)|2 dx.

Note that the domainΩ in Theorem 3.1 can be unbounded and it is valid
for a variety of domains with fractal boundaries, for example, such as the
Koch snowflake inR2. So often the inequality (3.6) might hold true with a
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constantµ < 1/4 instead of1/4 in the right hand side, whereas the second
integral of the inequality (3.5) is very stable.

In particular, following E.B.Davies, Lemma 3 from [5] we can obtain:

Corollary 3.1. Suppose that there is a constantκ such that for eachy ∈ ∂Ω
and eacha > 0 there exists a disjoint fromΩ ballB with centrez and radius
β ≥ aκ, where|z − y| = a. Then there exists a constantµ ≤ 1/4 such that

n

4

∫
Sn−1

ρ−2
ν (x) dω(ν) ≥ µ

1

δ2(x)

and hence∫
Ω

|∇u|2 dx ≥ µ

∫
Ω

|u(x)|2

δ2(x)
dx+

n(n−2)/ns
2/n
n−1

4

∫
Ω

|u(x)|2

|Ωx|2/n
dx.

3.2. Some refined inequalities.The next application of Theorem 2.1 con-
cerns the function

f(t) = −1

t
+

1

t(1− ln(αt/D))
, 0 < t < D/2,(3.7)

whereD = diamΩ and0 < α ≤ 2. In this case the expression appearing
in the right hand side of (2.4) is equal to

2f ′(ρν)− f 2(ρν) + 2f(ρν)f(Dν/2)− f 2(Dν/2)

=
1

ρ2
ν

+
1

ρ2
ν (1− ln(αρν/D))2

+ 4
( ln(αρν/D) ln(αDν/2D)

ρνDν(1− ln(αρν/D))(1− ln(αDν/2D))
− ln2(αDν/2D)

D2
ν(1− ln(αDν/2D))2

)
≥ 1

ρ2
ν

+
1

ρ2
ν (1− ln(αρν/D))2

+ 4
( 1

ρνDν

− 1

D2
ν

) ln2(α/2)

(1− ln(α/2))2
.

Theorem 2.1 therefore gives∫
Ω

|∇u|2 dx

≥ n

4

∫
Ω

∫
Sn−1

( 1

ρ2
ν(x)

+
1

ρ2
ν (1− ln(αρν/D))2

)
dω(ν) |u(x)|2 dx

+
n ln2(α/2)

(1− ln(α/2))2

∫
Ω

∫
Sn−1

( 1

ρνDν

− 1

D2
ν

)
dω(ν) |u(x)|2 dx.

Application of (3.4) leads to a more refined version of Theorem 3.1.
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Theorem 3.3. Let 0 < α ≤ 2. Then for anyΩ ⊂ Rn and anyu ∈ H1
0 (Ω)

we have∫
Ω

|∇u|2 dx

≥ n

4

∫
Ω

∫
Sn−1

( 1

ρ2
ν(x)

+
1

ρ2
ν (1− ln(αρν/D))2

)
dω(ν) |u(x)|2 dx

+
n(n−2)/ns

2/n
n−1 ln2(α/2)

4 (1− ln(α/2))2

∫
Ω

|u(x)|2

|Ωx|2/n
dx.

Remark. Theorem 3.3 is a stronger result than Theorem 3.1. Indeed, we
obtain Theorem 3.1 from Theorem 3.3 if we letα→ 0.

For Ω convex we obtain via (3.6) that

n

4

∫
Sn−1

1

ρ2
ν(x)

(
1 +

1

(1− ln(αρν(x)/D))2

)
dω(ν)

≥ 1

4

1

δ2(x)

(
1 +

1

(1− ln(αδ(x)/D))2

)
.

The latter inequality and Theorem 3.3 implies a version of Theorem 3.2:

Theorem 3.4. Let 0 < α ≤ 2. For any convex domainΩ ⊂ Rn and any
u ∈ H1

0 (Ω)∫
Ω

|∇u|2 dx ≥ 1

4

∫
Ω

|u(x)|2

δ2(x)

(
1 +

1

(1− ln(αδ(x)/D))2

)
dx

+
n(n−2)/ns

2/n
n−1 ln2(α/2)

4 (1− ln(α/2))2

1

|Ω|2/n

∫
Ω

|u(x)|2 dx.(3.8)

Remark. The last statement is an improvment of Theorem 5.1 from [3],
where for convex domainsΩ andu ∈ H1

0 (Ω) the authors obtain the in-
equality∫

Ω

|∇u(x)|2 dx ≥ 1

4

∫
Ω

|u(x)|2

δ2(x)

(
1 +

1

(1− ln(δ(x)/D))2

)
dx.(3.9)

Indeed, if we chooseα = 1 in Theorem 3.4, then the first integral in the
right hand side of (3.8) coincides with the right hand side of (3.9). However,
α = 1 still allows to have an additional non-zero term in (3.8).
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