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1. Introduction

The notion of Fourier integral operator (FIO) arises in the theory of partial differ-

ential equations in two contexts. Firstly, the FIO’s realize quantization of classical

canonical transformations (Egorov’s theorem) (while pseudo-differential operators

can be said to arise from quantization of classical observables). More precisely,

a transformation of a pseudo-differential operator, P , induced by a change of its

symbol under a canonical transformation can be realized, in the leading order, by

the conjugation, FPF−1, by an appropriate FIO F . Secondly, the FIO’s give a

natural construction of approximate fundamental solutions (parametrices) for hy-

perbolic problems. These two applications are related. Indeed, on the level of

symbols (i.e. the level of classical observables) a hyperbolic equation is reduced in

the leading order to Hamilton equations. The solution of the latter equations gives

a Hamiltonian flow. The latter is a family of canonical transformations (labelled

by the time variable). Lifting this family to the level of operators yields a desired

approximate solution. This lifting is valid only for sufficiently small times. In gen-

eral, the construction of a FIO from a flow breaks down at some moment of time

due to presence of focal points or caustics. To overcome this problem one either
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constructs a Maslov canonical operator or a global FIO. Both procedures are rather

labor intensive and subtle (see [12, 13, 19, 21]).

In this paper we propose a fairly elementary construction of global FIO’s

giving, in particular, approximate fundamental solutions (or propagators) to the

Schrödinger equation

iα
∂ψ

∂t
= Hαψ , (1.1)

where α is a semiclassical parameter and Hα is an α-differential operator in Rn

(see, e.g. [5, 7, 10, 20, 21, 26, 28]), in terms of semiclassical FIO’s. The simplic-

ity of our construction is achieved by using, in our FIO’s, complex phases with

quadratic imaginary parts. Our approach is inspired by works [17] and [18], where

the global parameterization of homogeneous Langrangian distributions was intro-

duced for construction of fundamental solutions of wave equations. Oscillatory

integrals with complex phases having quadratic imaginary parts were first consid-

ered in [1, 2, 3, 8, 9, 16, 20, 25, 27] in connection with the problem of propagation

of Gaussian wave packets. In another development, FIO’s with complex phases

were studied in [22, 31] in relation to the problem of propagation of singulari-

ties for pseudodifferential operators with complex symbols. It seems that none of

the works above have isolated the very useful class of FIO’s with complex phases

having quadratic imaginary parts nor did they use FIO’s with complex phases in

order to overcome the problem of caustics in deriving quasiclassical or short-wave

asymptotics.

Finally we note that in order to avoid the problem of infinite speed of propa-

gation of singularities or oscillations, in the semiclassical context, we localize the

construction of an approximate Schrödinger propagator to a part of the phase space,

T ∗Rn, in which the momentum (i.e. the cotangent variable) is bounded (cf. [15]).

This paper is organized as follows. In Sec. 2 we introduce our main construction

and formulate our main theorem. This theorem is proven in Sec. 3 modulo an

important classical statement of independent interest, whose proof is given in Sec. 4.

We use our construction in Sec. 5 in order to obtain semiclassical asymptotics of

solutions of Schrödinger Eq. (1.1) with highly oscillating initial conditions. This is

a classical problem treated in many texts (see [6, 19, 20, 21] and references therein)

which allows a comparison of our method with standard treatments. In Sec. 6 we

apply our construction to time-dependent Hamiltonians of a “quadratic type”. Our

approach allows us to obtain a precise formula for the fundamental solution of the

corresponding Schrödinger equation via an oscillatory integral. In the last section

we clarify the nature of the phase shift appearing in analysis of the motion of a

particle in a singular magnetic potential concentrated at the origin. Some other

applications will be presented elsewhere.

In what follows we will be dealing with (vector) functions on Rn and on R2n =

T ∗Rn. For a function h(x, ξ) from R2n to R, hx denotes the n-vector ( ∂h∂x1
, . . . , ∂h∂xn )

(gradient of h in x) and hxξ the (n× n)-matrix ( ∂2h
∂xi∂ξj

, i = 1, . . . , n, j = 1, . . . , n).

For a vector function x(y, η) from R2n to Rn, xη stands for the (n × n) matrix

(
∂xj
∂ηi

, i = 1, . . . , n, j = 1, . . . , n), etc. ‖ · ‖ will denote the norm in L2(Rn) as
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well as the norm of operators on this space, x · y = (x, y) will denote the real dot

product of vectors in Rn.

2. Main Result

In this section we present the main result of this paper. We begin with some

basic definitions. Let h(t, x, ξ) be a real, smooth function on R1 × T ∗Rn called a

Hamiltonian function. We only assume that there are m > 0 and Cµν > 0, such

that for every (t, x) ∈ R1 ×Rn

|∂µx∂νξ h(t, x, ξ)| < Cµν(1 + |ξ|)m . (2.1)

As usual we denote Dx = −i ∂
∂x

. Let Hα(t) be the α-pseudodifferential operator

with the symbol h(t, x, ξ), i.e.

Hα(t)f(t, x) = h(t, x, αDx)f(t, x)

= (2πα)−n
∫

Rn

∫
Rn

h(t, x, ξ)ei(x−y)ξ/αf(y)dydξ , (2.2)

defined first on functions f ∈ C∞0 (Rn). We assume that Hα(t), for every t, has

a self-adjoint extention which we continue denoting by the same symbol Hα(t).

Let U(t, s) be the (Schrödinger) propagator for Hα(t), i.e. the family of operators

solving the equation

αi
∂

∂t
U(t, s) = Hα(t)U(t, s) and U(s, s) = I , (2.3)

where I stands for the identity operator.

Our task is to construct α-FIO’s, UN (t), which approximate U(t, 0) within

O(αN+1−n) for any N ≥ 1. In what follows (xt, ξt) denote the solutions of the

Hamiltonian equations
dxt

dt
=
∂h

∂ξ
,

dξt

dt
= −∂h

∂x
, (2.4)

subject to the initial conditions

xt
∣∣
t=0

= y , ξt
∣∣
t=0

= η . (2.5)

Let gt denote the flow generated by h, i.e. gt(y, η) = (xt, ξt).

Consider the action function S defined as

S(t, y, η) =

∫ t

0

(hξ(s, x
s, ξs) · ξs − h(s, xs, ξs))ds . (2.6)

Definition 2.1. Given T > 0 and Ω ⊂ T ∗Rn, denote by φ the class of functions

(phase functions) ϕ = ϕ(t, x, y, η) ∈ C∞([0, T ) ×Rn × Ω) satisfying the following

conditions:

(1) ϕ(t, xt(y, η), y, η) = S(t, y, η),

(2) ϕx(t, x
t(y, η), y, η) = ξt(t, y, η),
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(3) i−1ϕxx(t, x, y, η) ≥ 0, and is independent of x,

(4) det(ϕxη(t, x
t(y, η), y, η)) 6= 0 for (t, y, η) ∈ [0, T )× Ω.

Condition (3) implies that phase functions ϕ ∈ φ are polynomials of the second

degree with respect to x. Expanding ψ satisfying (1)–(3) in x around the point

xt = xt(y, η), we find the following expression:

ϕ(t, x, y, η) = S(t, y, η) + (x− xt) · ξt + i(x− xt) ·B(x− xt)/2 , (2.7)

where B = B(y, η, t) is a non-negative definite n× n matrix (= i−1ϕxx(t, x, y, η)).

Vice versa, functions of ψ of form (2.7) with B ≥ 0 and independent of x,

satisfy conditions (1)–(3). We shall show in Lemma 4.1 below that if B > 0, then

the condition (4) is fulfilled as well and therefore the class φ is not empty.

Remark 2.1. Instead of the condition (3) we could have considered a more general

condition <(i−1ϕxx(t, x, y, η)|x=xt) ≥ 0. This would lead to a wider class of phase

function which is useful for analysis on manifolds. However, the class which is

introduced in Definition 2.1 is sufficient for our purposes. In particular, for our

purposes we can choose B > 0 and independent of y, η and t.

The following matrix, appearing in (4), plays an important role in our analysis

Z(t, y, η) = ϕxη(t, x, y, η)
∣∣
x=xt(y,η)

. (2.8)

Note that condition (4) implies that Z is always nonsingular. Differentiating con-

dition (2) with respect to η, we obtain the following representation of Z:

Z(t, y, η) = ξtη(y, η)− ixtη(y, η)B(t, y, η) , (2.9)

where we use our convention that (xη)ij =
∂xj
∂ηi

(see the end of the introduction)

and, recalling condition (3), denote

B(t, y, η) = i−1ϕxx(t, x, y, η) . (2.10)

At t = 0 we obviously have that Z|t=0 = I. To be able to consider the square

root of detZ we introduce the following agreement.

Agreement 2.1. We choose the branch for the function argdetZ which is con-

tinuous in t for 0 ≤ t < T , and which yields zero for t = 0. This choice allows

us to define the value of (detZ)1/2 uniquely for all the values of the parameter t,

0 ≤ t < T .

We consider a bounded subset Ω of the phase-space T ∗Rn and a number T > 0

satisfying the following condition:

(H) Hamiltonian Eqs. (2.4) and (2.5) have solutions for every (y, η) ∈ Ω and for

0 ≤ t < T , and the Hamiltonian function h is C∞ on the set
⋃

0≤t<T gt(Ω).

We introduce cut-off functions χ, θ ∈ C∞0 (Ω), χ, θ ≥ 0 and s.t. θ ≡ 1 on suppχ.

With χ we associate the α-pseudodifferential operator χ = χ(x, αDx):

(χf)(x) = (2πα)−n
∫∫

ei(x−y)·η/αχ(y, η)f(y)dηdy . (2.11)

Now we are ready to formulate our main result:
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Theorem 2.1. Assume condition (H) to be satisfied. Fix functions χ and θ as

described above. For any function ϕ ∈ φ and integer N ≥ 0 there is an operator

UN(t) such that (i) the Schwartz kernel of UN (t) is of the form

UN(t, x, y) = (2πα)−n
∫
eiϕ/αuN (t, y, η, α)dη , (2.12)

where uN =
∑N
k=0 α

kv(k)(detZ)1/2 with v(k) smooth functions supported in [0, T )×
Ω and, in particular,

v0(t, y, η) = e
−i
∫ t

0
subh(s,xs,ξs)ds

θ(y, η) (2.13)

with subh = − 1
2i Trhxξ, the subprincipal symbol of h, and (ii) the operators UN(t)

approximate the propagator U(t, 0) on Ω in the sense that for any T0 < T

sup
0≤t≤T0

‖(U(t, 0)− UN(t))χ‖ ≤ CαN−2n , (2.14)

where C = C(h,Ω, T0).

The proof of this theorem is given in the next section.

We leave out an important question of how the constant in (2.14) depends on

h, Ω and T , which requires a rather involved analysis. Notice also that (2.12) gives

a family of approximate fundamental solutions depending on a choice of the phase

function ϕ (or the matrix B in (2.7)).

3. Proof of Theorem 2.1

We begin with deriving some simple equalities needed in the proof.

Lemma 3.1. For all (t, y, η) ∈ [0, T )× Ω the action function S defined in (2.6),

satisfies the following identities :

Sη = xtηξ
t (3.1)

and

Sy = xtyξ
t − η . (3.2)

Proof. In the proof below we suppress the superindex t. Both sides of (3.1) are

equal to zero when t = 0 since S|t=0 = 0 and xη · ξ|t=0 = yη · η = 0. Using (2.6), we

find

St = hξ(t, x, ξ) · ξ − h(t, x, ξ) . (3.3)

Thus in view of (2.4)

∂

∂t
Sη =

∂

∂η
(hξξ − h)

= ẋξη + ẋηξ − xηhx − hξξη

= ẋηξ + xη ξ̇ =
d

dt
(xηξ) .
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This leads to (3.1).

Analogously both sides of (3.2) are equal to zero when t = 0. Using now (3.3)

and (2.4) we have

∂

∂t
Sy =

∂

∂y
(hξ · ξ − h) = ẋξy + ẋyξ − xyhx − hξξy

= ẋyξ + xy ξ̇ =
d

dt
(xyξ) ,

which completes the proof. �

Now we proceed directly to the proof of Theorem 2.1. The proof is straight-

forward and standard except for one little twist. Since the integration in η is over

bounded sets, all the estimates occuring below are elementary. We shall separate

the proof into three parts.

Step 1. Substitution.

We look for a α-FIO UN (t) given by the integral kernel (2.12) which solves the

equation (
αi
∂

∂t
−Hα(t)

)
UN (t) = RN (t) , (3.4)

where RN is a α-FIO with the phase ϕ and a symbol αN+2rN , where rN = O(1)

and rN (t, ·, ·) ∈ C∞0 (Ω). First we compute the integral kernel of the operator

(αi ∂
∂t
−Hα(t)) UN (t). Taking into account (2.12), the fact that the phase function

ϕ is a quadratic function with respect to x and applying the standard formula

for the action of a pseudodifferential operator on an exponential function (see for

example [13]), we obtain(
αi
∂

∂t
−Hα(t)

)
UN (t, x, y) = (2πα)−n

∫
eiϕ/α

[
αi
∂

∂t
uN − (g +O(α2))uN

]
dη ,

(3.5)

where

g = ϕt + h(t, x, ϕx) +
α

2

(
(B∂ξ, ∂ξ)h

)
(t, x, ϕx) .

Since ϕ is a non-degenerated phase function and due to condition (2.1), the r.h.s.

of (3.5) can be understood as an oscillatory integral. Using (2.4), (2.6) and (2.7),

we find that

ϕt = hξ(t, x
t, ξt) · ξt − h(t, xt, ξt)− ẋt · ξt + (x− xt) · ξ̇t

− iẋtB(x− xt) +
i

2
(x− xt) · Ḃ(x− xt)

= −h(t, xt, ξt)− (x− xt) · hx(t, xt, ξt)− ihξ(t, xt, ξt)B(x− xt)

+
i

2
(x− xt) · Ḃ(x− xt) , (3.6)
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where Ḃ = ∂B
∂t

. Applying the Taylor formula, we obtain that the third and the

fourth terms on the right-hand side of (3.5) can be written as follows:

h(t, x, ϕx) = h(t, x, ξt + iB(x− xt))

= h(t, xt, ξt) + hx(t, x
t, ξt) · (x− xt) + ihξ(t, x

t, ξt) ·B(x− xt)

+
1

2

∑
|ν1+ν2|=2

(∂ν1
x ∂

ν2

ξ h)(x− xt)ν1(iB(x− xt))ν2 +O(|x− xt|3)

(3.7)

and

α

2

(
(B∂ξ, ∂ξ)h

)
(t, x, ϕx) =

α

2

(
(B∂ξ, ∂ξ)h

)
(t, xt, ξt) + αO(|x − xt|) . (3.8)

Summing up the expressions (3.6)–(3.8), we find that the terms with α0 and with

(x− xt) cancel. The rest can be rewritten as

g = g1 +
α

2

(
(B∂ξ, ∂ξ)h

)
(t, xt, ξt) +O(|x− xt|3) + αO(|x− xt|) , (3.9)

where

g1 =
1

2

∑
|ν1+ν2|=2

(∂ν1
x ∂

ν2

ξ h)(x− xt)ν1(iB(x− xt)
)ν2

+
i

2
(x− xt) · Ḃ(x− xt) . (3.10)

Step 2. Integration by parts.

In order to obtain the transport equations we integrate by parts in the integral

involving g1. Notice that

∂

∂η
eiϕ/α =

i

α
eiϕ/αϕη =

i

α
eiϕ/α

(
Sη − xtηξt + ξtη(x− xt)− i(B(x− xt), xtη)

)
.

By Lemma 3.1 we find Sη−xtηξt = 0. Therefore taking into account (2.9), we obtain

(x− xt)eiϕ/α = −iαZ−1 ∂

∂η
eiϕ/α . (3.11)

Using this equation and integrating twice by parts in order to convert all powers of

(x− xt) into powers of α, we obtain∫
eiϕ/αg1uNdη =

α

2i

∫
eiϕ/α

Tr[Z−1(hxx + iBhxξ

+ ihxξB −BhξξB + iḂ)xtη]uN +
∑
|β|≤2

O(α)∂βuN

dη .

(3.12)
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Note that the leading order here is produced when the η-derivative is switched from

eiϕ/α onto the remaining (first) power of x−xt. Differentiating Hamilton Eq. (2.4)

with respect to η, we obtain

ẋtη = xtηhxξ + ξtηhξξ , ξ̇tη = −xtηhxx − ξtηhξx .

(Remember that according to our convention established at the end of the intro-

duction, we have, e.g., (xtη)ij =
∂xtj
∂ηi

and (hxξ)ij = ∂2η
∂xi∂ξj

.) This implies

xtη(hxx + iBhxξ + ihxξB −BhξξB + iḂ)

= (xtηhxx + ξtηhxξ) + iB(xtηhxξ + ξtηhξξ) + ixtηḂ

− (ξtη − xtηiB)hxξ − (ξtη − iBxtη)iBhξξ

= − Ż − Zhxξ − ZiBhξξ . (3.13)

Finally, collecting together (3.5), (3.9), (3.12) and (3.13) and using (3.11) and inte-

gration by parts in order to convert the powers of x− xt in the remainder in (3.9)

into powers of α, we derive(
αi
∂

∂t
−Hα(t)

)
UN (t, x, y)

= i(2π)−nα−n+1

∫
eiϕ/α

[
∂

∂t
− 1

2
Tr(Z−1Ż + hxξ) +O(α)

]
uNdη , (3.14)

where O(α) is a differential operator in η with coefficients of order α. Consequently,

Eq. (3.4) can be rewritten as

iα

[
∂

∂t
− 1

2
Tr(Z−1Ż + hxξ) +O(α)

]
uN = αN+2rN . (3.15)

Now we write uN =
∑N
k=0 α

ku(k) and equate in Eq. (3.15) the terms containing

the same power of the parameter α, starting with α and ending with αN+2. As a

result we obtain the recurrent system of transport equations. The terms with the

multiplier αk+1 yield the equation

∂

∂t
u(k) −

1

2
Tr(Z−1Ż + hxξ))u(k) = O(1)u(k−1) , (3.16)

where k = 0, 1, . . . , N , u(−1) = 0 and O(1) is a differential operator in η with

coefficients of order 1 (O(1) = − 1
α
O(α), where O(α) is the same as in (3.15)).

Setting rN = −O(1)u(N), we arrive at Eq. (3.4) for UN (t).

Next, we require that

UN (0) = θ(x, αDx) +O(αN+1) , (3.17)

where θ is a smooth function supported in Ω and s.t. θ ≡ 1 on suppχ (see the

paragraph containing Eq. (2.11)) and O(αN+1) stands for a bounded operator whose
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norm is bounded by CαN+1. This leads to initial conditions for Eq. (3.16), to

derivation of which we proceed.

Using Eq. (2.7) for the phase ϕ, we obtain

UN (0, x, y) = (2πα)−n
∫
ei(x−y)·η/αe−(B(0,y,η)(x−y),x−y)/2αuN (0, y, η)dη . (3.18)

Expanding the function exp[−(B(0, y, η)(x − y), x − y)] in the Taylor series and

integrating by parts, we obtain

UN (0, x, y) = (2πα)−n
∞∑
`=0

α`

`!

∫
ei(x−y)·η/αA`uNdη , (3.19)

where the operator A is defined by

(Ag)(η) =
n∑

k,`=1

∂2
ηkη`

(bk`(0, y, η)g(η))

with bk` being the matrix elements of B. Comparing this with (3.17), using the

standard definition of a pseudodifferential operator in terms of its symbol, and

writting uN =
∑N
k=0 α

ku(k), we obtain

u(0)(0, y, η) = θ(y, η) (3.20)

and, for k = 1, 2, . . . , N ,

u(k)(0, y, η) = −
k∑
`=1

1

`!
A`u(k−`)(0, y, η) . (3.21)

Linear differential Eq. (3.16) with initial conditions (3.20) and (3.21) can be

solved explicitly. In particular,

u(0)(t, y, η) = (detZ(t, y, η))1/2e
−i
∫ t

0
subh(s,xs,ξs)ds

θ(y, η) , (3.22)

where, recall subh = − 1
2i Trhxξ, and similarly for u(k), k ≥ 1. The explicit form of

the solutions shows that u(k)(t, ·, ·) ∈ C∞0 (Ω) for k ≥ 0 and 0 ≤ t ≤ T .

Remark 3.1. Since every |x−xt|2 is traded for at least the first power of α, when

integrating by parts, Eq. (3.16) involves no more than 2(N − k + 1) derivatives of

the coefficients u(k).

Step 3. Error estimate (2.14).

Since uN(t, ·, ·) ∈ C∞0 (Ω) and Ω is compact, we have that UN(t, x, ·) ∈ C∞0 (Rn).

Writing x as x − xt + xt and integrating by parts with a help of (3.11), it is easy

to convince oneself that UN(t, ·, y) is in the Schwartz class S(Rn). The last two

properties can be combined into the formula

UN (t, ·, ·) ∈ S(Rn, C∞0 (Ω)) . (3.23)
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The definition of rN (see the paragraph after Eq. (3.16)) and an argument similar

to one presented above show that

sup
0≤t≤T

‖RN(t)‖ ≤ C(h,Ω, T )αN+1−n . (3.24)

Now integrating Eq. (3.4), we obtain

UN (t)− U(t, 0)UN(0) =
1

iα

∫ t

0

U(t, s)RN (s)ds . (3.25)

Multiplying this by the operator χ from the right and using Eq. (3.24) and the fact

that the norm of U(t, s) is uniformly bounded (in fact, is one), we obtain

‖(UN(t)− U(t, 0)UN (0))χ‖ ≤ CαN−2n (3.26)

with C = C(h,Ω, T ), Finally, due to (3.17) and the fact that θ ≡ 1 on suppχ,

‖UN (0)χ− χ‖ ≤ CαN−2n (3.27)

and therefore (2.14) follows. �

4. Z-Matrix

The main result of this section is the following:

Lemma 4.1. If B > 0, then the r.h.s. of (2.9) defines a non-singular matrix-

function. Consequently, the matrix-function Z introduced in (2.8) is non-degenerate

for all values (t, y, η) ∈ [0, T )× Ω.

Proof. In this proof we write xt as x(t) and similarly for ξt and often do not display

this argument. First we show that

ξηx
T
η = xηξ

T
η , (4.1)

where ξTη is the transpose of the matrix ξη. Indeed, xη|t=0 = 0 and (4.1) is obviously

fulfilled for t = 0. Differentiating equations (2.4) with respect to η, we find

d

dt
xη = xηhxξ + ξηhξξ ,

and
d

dt
ξη = −xηhxx − ξηhξx .

Using these equations it is easy to verify that d
dt

(ξηx
T
η ) = ( d

dt
xηξ

T
η ) and consequently

(4.1) is true for all t. This proves (4.1) for all t, 0 ≤ t < T .

Since B is a non-degenerate matrix, it suffices to show that KerZB−1Z∗ = ∅.
Using (4.1), we obtain

ZB−1Z∗ = (ξη − ixηB)B−1(ξTη + iBxTη ) = ξηB
−1ξTη + xηBx

T
η . (4.2)
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Let us assume for a moment that ZB−1Z∗c = 0 for some vector c ∈ Cn and s,

0 < s < T . Then, since B > 0, (4.2) implies that ξTη (s)c = xTη (s)c = 0. Therefore

the system of ordinary differential equations

ẋTη c = hξxx
T
η c+ hξξξ

T
η c ,

ξ̇Tη c = −hxxxTη c− hxξξTη c

for xTη (t)c and ξTη (t)c, obtained by differentiating (2.4) w.r. to η, implies that

xTη (t)c = 0 and ξTη (t)c = 0 for all t ∈ [0, T ]. This contradicts the relation

ξη|t=0 = I. �

5. Quasi-classical Asymptotics

In this section we study asymptotic behaviour of solutions of the Schrödinger

equation

iα
∂Ψ

∂t
= Hα(t)Ψ (5.1)

with initial conditions of the form Ψ|t=0 = Ψ0α = α−n/2Ψ0((x−y0)/α) for some y0 ∈
Rn and Ψ0 ∈ C∞0 (Rn). Let ρ(x) be a smooth cut-off function, such that ρ ≡ 1 on

suppΨ0α. We write Ψ0α as Ψ0α(x) = Ψ0α(x)ρ(x) = (2π)−nρ(x)
∫

Ψ̂0(ξ)e
i(x−y0)·ξ/α

dξ, where Ψ̂0(ξ) is the Fourier transform of Ψ0(x). Thus it suffices to consider the

initial condition

Ψ
∣∣
t=0

= Ψ(0) := ρ(x)eix·η0/α (5.2)

for a fixed vector η0 ∈ Rn (= T ∗y0
Rn). For α→ 0, such an initial condition is a fast

oscillating function.

The point of taking the initial condition of the form α−n/2Ψ0(
x−y0

α
) is that in

this case the average momentum∫
Ψ̄0α(−iα∇)Ψ0αd

nx

is bounded. Another type of the initial condition with bounded average momentum

is a direct generalization of (5.2) as

ρ(x)eiν(x)/α , (5.3)

where ν is a smooth function. Although Theorem 5.1 below deals with the initial

condition (5.2) a generalization to initial condition (5.3) amounts to the changing

just a new notation.

Now observe that the initial value problem (5.1) and (5.2) has the unique solution

Ψ = Uα(t, 0)Ψ(0) ,

where, recall, Uα(t, 0) is the propagator from 0 to t associated with (5.1). Due to

Theorem 2.1 this propagator is approximated by a global Fourier integral operator
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UN(t) given in Theorem 2.1. Thus we are interested in asymptotic behaviour as

α→ 0 of the function

(UN (t)Ψ(0))(x) =

∫
UN (t, x, y)ρ(y)eiy·η0/αdy .

The latter is given in Theorem 5.1 below.

Theorem 5.1. Let the conditions of Theorem 2.1 be satisfied and let UN be the

approximate evolution operator (2.12). Let a point (t, y0, η0) ∈ [0, T ) × Ω be s.t.

det(xty(y0, η0)) 6= 0. Let Vxt0 and Vy0 be neighbourhoods of the points xt0 := xt(y0, η0)

and y0 s.t. the equation x = xt(y, η0) has a unique solution for y in Vy0 for any x ∈
Vxt0 . Then for any smooth function ρ(y), supp ρ ⊂ Vy0 ,

∫
UN (t, x, y)ρ(y)eiy·η0/αdy =

0(α∞) unless x ∈ {xt(y, η0) | y ∈ Vy0}. In the latter case we have∫
UN(t, x, y)ρ(y)eiy·η0/αdy

= ρ(ȳ)eiȳ·η0/αeiS(t,ȳ,η0)/αei sub(t)ei
π
2m(t,ȳ,η0)|det xty(t, ȳ, η0)|−1/2 +O(α) ,

(5.4)

where ȳ = ȳ(t, x, η0) is the unique solution of the equation xt(y, η0) = x, sub(t) =∫ t
0

subh(s, xs(ȳ, η0), ξ
s(ȳ, y0))ds and m(t, y, η) ≡ m(γt) is the Morse index of the

trajectory γt = {xs(y, η) | 0 ≤ s ≤ t}.

Proof. We use representation (2.12) for UN (t, x, y) with B ≡ 1
i
ϕxx > 0. Substi-

tuting it into the l.h.s. of (5.4), we conclude that the latter is equal to

(2πα)−n
∫∫

eiψ/αuN (t, y, η, α)ρ(y)dηdy , (5.5)

where ψ(t, x, y, η) = ϕ(t, x, y, η) + y · η0. We want to apply the stationary phase

expansion to this integral. To this end we have to find stationary points of the

phase ψ in η and y and the Hessian, Hessψ, of ψ at those points. We begin with

the former. Using (2.7), (3.1), (2.9) and the fact that B is symmetric, we obtain

ψη = ϕη = Sη − xtηξt + ξtη(x− xt)− ixtηB(x− xt) +
i

2
(x− xt) ·Bη(x− xt)

= Z(x− xt) +O(|x− xt|2) . (5.6)

Since detZ 6= 0, then in a sufficiently small neigbourhood Vxt0 of xt0 we have

ψη = 0 ⇒ x = xt(y, η) . (5.7)

Furthermore, (2.7) and (3.2) imply

ϕy = Sy − xtyξt + ξty(x− xt)− ixtyB(x− xt) +
i

2
(x− xt) ·By(x− xt)

= −η + Y (x− xt) +O(|x− xt|2) , (5.8)
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where

Y (t, y, η) = ξty(y, η)− ixty(y, η)B .

Hence

ψy = ϕy + η0 = 0 and (5.7) ⇒ η = η0 .

Thus on supp ρ× Rn, the phase ψ has a unique stationary point

z̄ = (ȳ, η0) , where ȳ = ȳ(t, x, η0) is the solution to xt(y, η0) = x , (5.9)

if x ∈ {xt(y, η0)|y ∈ Vy0} and no stationary points otherwise. �

Now we compute the Hessian of the phase function ψ at the stationary point

(5.9). First we notice that

Hessψ = Hessϕ .

Using expressions (5.7) and (5.9), we compute the matrix Hessϕ at the point

(t, x, y, η) s.t. xt(y, η) = x:

Hessϕ = −
(
Y xty I + Y xtη

Zxty Zxtη

)
. (5.10)

Note that the relation ϕηy = (ϕyη)
T implies the constraint

I + Y xtη = (Zxty)
T . (5.11)

Matrix (5.10) can be factorized as follows:

Hessϕ = −
(
Y xty I

Zxty 0

) (
I (xty)

−1xtη

0 I

)
, (5.12)

provided xt(y, η) = x, which implies

det(Hessϕ) = detZ · detxty , provided xt(y, η) = x . (5.13)

The next lemma provides the last component needed to assemble the proof.

Lemma 5.1. Let the matrix xty(y0, η0) be nonsingular. Then, thinking of the sign

as +1 or −1, we have

signdetxty(y0, η0) = (−1)m(γt) (5.14)

where γt is the trajectory {xs(y0, η0) | 0 ≤ s ≤ t} and m(γt), recall, its Morse index.

Proof. By the definition of the Morse index (see [23, 24])

m(γt) =
∑

multiplicity (conjugate point)

where the sum is taken over all conjugate points along γt. Recall that a conju-

gate point is a point xs0(y0, η0), 0 < s0 < t, at which detxs0y (y0, η0) = 0, and the

multiplicity of a conjugate point xs0(y0, η0) is the multiplicity of the zero s = s0
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of detxsy(y0, η0). Since detxsy(y0, η0)|s=0 = 1 and since passing through a conju-

gate point the sign of the determinant changes by (−1)multiplicity (conjugate point), we

conclude that at the end of the path we have (5.14).

Now we are ready to apply the stationary phase formula (see e.g. [12, Sec. 7.7])

to oscillatory integral (5.5). We use Theorem 2.1 to expand the amplitude uN and

Eqs. (5.9) and (5.10) for the critical points and Hessian of the phase. We make two

observations. Firstly we note that (detZ)
1
2 coming out of uN (see Theorem 2.1)

cancels (detZ)−
1
2 coming out of (detHessϕ)−

1
2 (see Eq. (5.13)) (remember that Z

is a non-singular matrix). Secondly we see that the second factor on the r.h.s. of

(5.13) and Lemma 5.1 leads to

(det xty)
− 1

2 = |det xty|−
1
2 e−i

π
2m(γt) , (5.15)

where, recall, m(γt) is the Morse index of the trajectory γt = {xs|0 ≤ s ≤ t}. This

completes the proof of the theorem. �

6. Quadratic Hamiltonians

Let Q(t) be a smooth, Hermitian 2n× 2n matrix function and R(t), a smooth real

2n vector function. Let z = (x, ξ) ∈ R2n and introduce a quadratic Hamiltonian

function by the formula

h(t, z) =
1

2
z ·Q(t)z +R(t) · z . (6.1)

In this case Hamiltonian system (2.4) with the initial conditions (2.5) can be rewrit-

ten as the following system of linear equations

ż = J(Q(t) · z +R(t)) , z
∣∣
t=0

= z0 = (y, η) , (6.2)

where J =
(

0 I

−I 0

)
. LetM(t) be the fundamental matrix of system (6.2), i.e.M(t)

solves the initial value problem: Ṁ(t) = JQ(t) = M(t) and M(0) =
(
I 0

0 I

)
. Due

to the Liouville–Jacobi formula,

detM(t) = exp

(∫ t

0

TrJQ(s)ds

)
,

M(t) is a non-degenerate matrix. The solutions zt of (6.2) can be represented in

terms of M(t) as

zt = M(t)

(
z0 +

∫ t

0

M−1(s)JR(s)ds

)
. (6.3)

Let mij(t), i, j = 1, 2, be the matrix elements of M(t). According to (2.7) and (2.8)

we find

Z(t, y, η) = m22(t)− iB(t, y, η)m12(t) .

If we use a matrix B which is independent of (y, η), then the matrix Z is also inde-

pendent of (y, η) and the first term of the approximation (2.12) to the fundamental

solution of Schrödinger Eq. (1.1) gives, in fact, the exact formula for this solution.
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Theorem 6.1. Let h be the Hamilton function defined in (6.1) and let B = B(t)

from (2.7) be an arbitrary positive definite matrix independent of (y, η) for t ≥ 0.

Then the Schwartz kernel of the Schrödinger Eq. (1.1) is given by the following

oscillatory integral

U(t, x, y) = (2πα)−n(detZ(t))1/2

∫
eiϕ/αdη , (6.4)

where the phase function ϕ is defined in (2.7) and (2.6).

Proof. The proof can be seen from (3.9). Since the Hamiltonian function is

quadratic with respect to (x, ξ), we have that g = g1. Moreover, if both B and

Z are independent of (y, η), then the terms appearing in the sum in (3.12) are equal

to 0. �
Notice that (6.4) gives us a family of solutions of the Schrödinger equation

depending on the choice of an axiliary matrix B. If for example

h(x, ξ) =
1

2
(|ξ|2 + |ωx|2) (6.5)

and ω is a matrix independent of t, then the matrix M(t) in (6.3) can be easiely

found to be

M(t) =

(
cos ωt ω−1 sin ωt

−ω sin ωt cos ωt

)
.

If now the matrix B is chosen so that B = ω, then we obtain that Z has a particu-

larly simple form

Z(t, y, η) = cos ωt− i sin ωt = e−itω

and therefore

(detZ)1/2 = e−itTrω/2 .

Remark 6.1. Notice that xt(y, η) and ξt(y, η), defined in (6.3), are linear func-

tions with respect to the initial conditions (y, η). Therefore, the phase function in

ϕ in (6.4) is quadratic and the integral (6.4) can be computed. In particular, if h is

defined by (6.5), then we obtain the well-known Mehler formula for the propagator

of the harmonic oscillator.

7. Schrödinger Operator with Magnetic Potentials

Now we consider the motion of a particle in a singular magnetic potential concen-

trated at the origin and having the total flux ψ0. Then the corresponding vector

potential is A(x) = (A1(x), A2(x)) = ψ0(−x2, x1)/|x|2. The Schrödinger operator

for a particle moving in such a magnetic field is

H0α =
1

2
(αDx −A(x))2 , (7.1)

and the corresponding Hamiltonian function is h0(x, ξ) = 1
2 (ξ − A(x))2. It is a

smooth function on T ∗R2 outside the fiber, {(x, ξ) : (x, ξ) = (0, ξ), ξ ∈ R2}, over 0.

The Hamiltonian equations are
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ẋtk = ξtk −Ak , xtk|t=0 = yk ,

ξ̇tk = (ξt −A) · (A)xk , ξtk
∣∣
t=0

= ηk ,
k = 1, 2 . (7.2)

This system obviously reduces to the system of ordinary differential equations of

the second order

ẍtk =
2∑
j=1

(ξtj −Aj)[(Aj)xk − (Ak)xj ]

= (−1)k+12π(ξt3−k −A3−k(x
t))ψ0δ(x

t) , k = 1, 2 ,

xt|t=0 = y , ẋt|t=0 = η −A(y) . (7.3)

If we assume that xt stays away from zero, then Eq. (7.3) can be easily solved

xt(y, η) = (η −A(y))t + y , ξt(y, η) = η +A(xt)−A(y) . (7.4)

From (7.4) we see that xt(y, η) = 0 for some t if and only if η ∧ y := η1y2 − η2y1 =

−ψ0. Therefore we assume that in our construction

Ω ⊂ {(y, η) : η ∧ y 6= −ψ0} .

Using (2.6) and (7.4), we obtain the expression for the action function

S(t, y, η) =
1

2
|η −A(y)|2t+

∫ t

0

(η −A(y)) ·A(xs)ds

=
1

2
|η −A(y)|2t− (η ∧ y + ψ0)ψ0

∫ t

0

|xs|−2ds . (7.5)

The integral on the right-hand side multiplying ψ0 is a correction term to the free

motion due to the magnetic flux through the origin.

Simple calculations show that

ξtη =

(
(ξt1)η1 (ξt2)η1

(ξt1)η2 (ξt2)η2

)
=

(
1 + 2xt1x

t
2|xt|−4tψ0 ((xt2)

2 − (xt1)
2)|xt|−4tψ0

((xt1)
2 − (xt2)

2)|xt|−4tψ0 1− 2xt1x
t
2|xt|−4tψ0

)
.

Therefore the determinant,

det ξη = 1− t2ψ2
0|xt|−4 ,

degenerates on the “sphere” |xt| =
√
t|ψ0|. At these points of degeneracy a non-

trivial matrix B is necessary for our constructions of the corresponding fundamental

solution.

Now we consider a particle in R2 moving in the singular magnetic field with the

vector potential A(x), given above, and in a quadratic “electric” potential:

Hα =
1

2
(αDx −A(x))2 +

1

2
|x|2 . (7.6)
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The corresponding Hamiltonian function is

h(x, ξ) =
1

2
(ξ −A(x))2 +

1

2
|x|2 . (7.7)

The solution of the Hamiltonian Eqs. (2.4) and (2.5) for y and η, s.t. xt avoids the

origin, is

xt = cos(t)y + sin(t)(η −A(y)) (7.8)

and

ξt = − sin(t)y + cos(t)(η −A(y)) +A(xt) . (7.9)

The action function for this model is equal to

S(t, y, η) =

∫ t

0

(hξ · ξ̇s − h)ds =
1

4
sin(2t)(|η −A(y)|2 − |y|2)

+
1

2
(cos(2t)− 1)y · η − ψ0(η ∧ y + ψ0)

∫ t

0

|xs|2ds .

By analogy with the previous example we see that the integral on the right-hand

side of the last expression can be interpreted as a correction term to the motion

generated by the harmonic oscillator.
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