ON NEW RELATIONS BETWEEN SPECTRAL PROPERTIES OF
JACOBI MATRICES AND THEIR COEFFICIENTS

A. LAPTEV!, S. NABOKC?, O. SAFRONOV

ABSTRACT. We study the spectral properties of Jacobi matrices. By
using "higher order” trace formulae we obtain a result relating the prop-
erties of the elements of Jacobi matrices and the corresponding spectral
measures. Complicated expressions for traces of some operators can be
magically simplified allowing us to apply induction arguments. Our the-
orems are generalizations of a recent result of R. Killip and B. Simon
[17].

1. INTRODUCTION

Let S be the shift operator if*(N), N = {0, 1,2, ...}, whose action on
the canonical orthonormal basfs, }>° , is given bySe, = e,.1. Let A,
B be selfadjoint diagonal operatotde,, = a,e,,, Be, = Gnen, ap, > —1,
G € R. We study the spectral properties of the operator

J=S5S+5"+Q, where Q=S5A+AS"+ B.

This operator can be identified with the following Jacobi matrix

ﬁo 1—|—Oéo 0 0
1—{—@0 ﬁl 1—|—Oé1 0

(11) J = 0 1 + oy 62 1 + g

If the entries of this matrix are bounded, théns a bounded operator in
I2(N). To every such operatorwe associate the following measuyrgiven

by
12 )=l e = [P,

The spectral significance of this function can be seen from the equality
(1.3) 1(0) = (E;(d)eo, €o),
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where E/; denotes the spectral measureoindd C R is a Borel set.
Obviously,

WR) = [leoll* = 1.

Conversely, for each probability measurewhose support is compact
and contains infinitely many points, there is a standard procedure of con-
structing a Jacobi matrix via the corresponding orthogonal polynomials (see
[1], [24] and also [17] for historical references and bibliography).

Since there is a one-to-one correspondence between Jacobi matrices and
probability measures, it is natural to ask how the properties of entries of
Jacobi matrices are related to the properties of probability measures. We
are interested in a class of matricésclose” to the "free” matrixJ, for
whicha,, =0andg, =0,n=0,1,....

It is convenient to replace:,, by

My (k) = —my, (2(k)) = —my,(k + k")

(1.4) B kdu(t)
N / 1—th+ k2’

It is known (see [25]) that the limit
M(e"?) = lirr% M, (re"), r <1,

|k| < 1.

exists almost everywhere on the unit circle and thatAfe?) > 0 for
6 € (0,7). Moreover, sinceM (e=*) = M (e*), we obtain ImM (e?) < 0
for 6 € (—m,0).

In order to formulate our main result we denote®ythe standard Shat-
ten classes of compact operators:

G, ={T: tr(T"T)"* < 0 }.

Theorem 1.1. Let J be a Jacobi matrix and let. be the corresponding
measurg1.3). Assume that the operatqf = J — J, satisfies

(1.5) Q € 63 if rank A = o0,
' Q € 6, if rank A < co.

Then
(16) Z(an+ "'+&n+m71)2+2(ﬁn+"' +6n+m71)2 <00

if and only if u satisfies the following three properties:
(1) The support ofi is [-2,2] U {E] }2, U {E; })5;, where£E* > 2,
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(2) (Quasi-Szeg Condition)

B sin(6) . 5
/ log{lm M(ew)} sin“ m# df < oo.

—Tr

(3) (Lieb—Thirring Bound)

Ny N_
dOIES =22+ ) B + 2P < oo

j=1 j=1

It is interesting that with the growth of, the Quasi-Szegcondition (2)
becomes weaker and weaker allowing Mhto have exponential zeros at
™, n=—m,...,m— 1. Moreover the condition (1.6) witlm = [ implies
the corresponding condition with, = 2[ but not conversely. In particular,
this means that there are Jacobi matrices satisfying (1.6)with 2/ such
that the function Im\/ vanishes at least at one of the poiﬁ%;—l), n =
—l,...,l—1.

The main technical parts of the proof of Theorem 1.1 are Lemmas 2.1
and 2.2, see Sections 2.2-2.5. Itis really surprising how after some involved
calculations one can simplify rather complicated formulae and finally use
induction arguments.

Although Theorem 1.1 is a natural generalization of a recent result of
Killip-Simon [17], it has some disadvantages. Namely, for a given measure
1 we are not able to check in advance whether the conditions (1.5) are
fulfilled for the corresponding Jacobi matrik

However, in the caser = 2 we are able to avoid this obstacle and obtain
a stronger result where we do haweriori the condition (1.5).

Theorem 1.2. Let J be a Jacobi matrix and let, be the corresponding
measurgl1.3). Then the conditions

(17) Zn&i+2nﬁn4<oo
' 2on(om + ong1)? + 37, (Bn + Bas)® < 00
hold if and only ifu satisfies the following three properties:
(1) The support ofu is [-2,2] U {E} }}7 U {E; }), where£EF > 2,
(2) (Quasi-Szeg Condition)

/_7r log [%] sin? 260 df < oo.
(3) (Lieb—Thirring Bound)

Ny N_
SOIEF 2P+ B + 2P < o
j=1

j=1
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This theorem defines a one-to-one correspondence between a class of
probability measures and the class of Jacobi matrices satisfying the condi-
tion (1.7).

Given a singular measuye on [—2, 2] with total mass less than one, we
are able to construct a Jacobi matrix with the properties (1.7) such that the
singular component of the measuren this interval coincides with,. The
corresponding fact was noticed in [17] for Jacobi matrices with G, and
in [9] for Schivdinger operators with a class bt potentials.

The next theorem is an immediate corollary of our main results. Let the
measurg: be decomposed into the sym= /.. + 1, + 115 Of @absolutely
continuous, pure point and singular continuous components with respect to
the Lebesgue measure. Then

Im M () = dﬂzi;(t), t =2cosb.
The conditions (1.5) and (1.6), in particular, imply the quasi-8zeon-
dition from Theorem 1.1 and therefoﬂé%(t) # 0 almost everywhere on
(—2,2). Thus we obtain:

Theorem 1.3.Letm > 0 be an integer number and €1 = 2Re(SA) +

B satisfy the condition(1.5). If the operators) "  S™A(S*)" and
o, S"B(S*)™ are of the Hilbert-Schmidt class, then the spectral mea-
sure of the operatot/ does not vanish on subsefs ¢ R, = (—2,2)
whose Lebesgue measure is positive.

Remark 1 If m = 2 the previous theorem can be strengthen. In this case
Theorem 1.2 allow us to replace (1.5) and (1.6) by (1.7).

Remark 2 Closely related results can be found in [16], Theorem 4, where
the author used a "locally spectral technique” in order to obtain a continuous
version of Theorem 1.3.

When proving our main results we use high order trace formulae for Jacobi
matrices (Case’s sum rules [4], [5]). Note that the usefulness of trace formu-
lae in the study of a.c. properties of the spectrum of discreted8otger
operators was first observed by P. Deift and R. Killip [8], where the au-
thors found that the condition§3,}>>, € %, a,, = 0, Vn, guarantee
that a.c. spectrum is essentially supportedbg,2]. The sharpness of
this result is confirmed by examples constructed in B. Simon [27], where
the author shows that for eaech > 0 there is a potentiaB satisfying

13.| = O(n~1/%*¢) and such that the operatéf = S + S* + B has a pure
point spectrum. Previously a class of such perturbations were also studied
by A. Kiselev in [18]. Some results on spectral properties of a class of op-
eratorsS 4+ S* +2Re (S A) were obtained in J. Janas and S.N. Naboko [14].
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Recently S. Belov and A. Rybkin [2] have considered WKB-asymptotics of
generalized eigenfunctions which implies preservation of the a.c. spectrum
for the casev,, 3, = O(n=2/3~¢). Notice that the conditions which were
imposed on4 and B in [2], [14] were much stronger than those in Theo-
rem 1.3. There is also a possibility of investigating the a.c. spectrum with
the help of the Gilbert-Pearson [13] theory, see also [15]. It was established
in [13] (see also [21]) that the a.c. spectrum is related to the absence of
subordinate solutions.

The paper [8] was also a culmination of a long sequence of papers con-
cerning a.c. spectral properties of Satinger operators ih?(0, ) (see,
for example, [6], [7] and [26]). It was proved in [8] that for the operator
—d?/dz* + V, the conditionV € L? suffices for the a.c. spectrum to be
essentially supported by, co). In both discrete and continuous cases P.
Deift and R. Killip used trace formulae for Sdtinger operators involv-
ing L2-norms of the corresponding potentials. This result has been recently
generalized by S. Molchanov, M. Novitskii and B. Vainberg, [22], where
the authors used higher order trace formulae involving first KDV integrals.
The structure of trace formulae for Jacobi matrices is somewhat surprising.
In contrast to the continuous case where the high order trace formulae in-
volve the derivatives of the potential, the corresponding trace formulae for
Jacobi matrices can be rearranged in a such a way that they involve the mean
values of its entries.

2. TRACE FORMULAE

1. In this section we assume thits the shift operator if¥(Z) whose action
on the standard orthonormal bagis }>° _ __ is given bySe,, = e,,11. Then,

in particular,S* = S~!. Let A and B be finite rank diagonal operators on
I*(Z). Let

(21) H0:S+S* and H:H0+Q,

onl*(Z), whereQQ = SA+ AS* + B . Without loss of generality (since one
can always pass froi) to S™QS~"™) we can assume that, = 3, = 0 for

n < 0. For everyk € C\ {0} there exists a solution = {¢,,}>° ___ of the
equation

(22) (1 + O‘n)djn-i-l + (1 + O‘n—l)wn—l + ﬁnwn = (k + 1/k>¢n7 ne Za

such that),, = k=" to the right of the "support” of). Forn < 0 this
solution can be written as a linear combinatiorkof andk™

(2.3) o = a(k)k™™ + b(k)K",
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wherea andb depend analytically o # 0. We substitute),, by ¢, =
Ca®n, Where

‘(o {Hj;gu tag), inz1,
1, if n <0.
Then
(14 an)’Gni1 + o1 + Bndn = (k + 1/k) by
We can now rewrite this equation as

Eo _ 200, + a2,
(24) Up =T — 21 Z(l — /{2(“ m)) <6mvm + T’Uerl),

wherev,, = k"¢, andr = [[;7(1 + o) "
For |k| > 1 (2.4) can be solved by repeated substitution (or Neumann
series), from which we conclude that

trB 1 9
(1—T+ﬁ{tr(l—(I+A) )+

ZZ wﬂmﬁnw + O(%), as k — oo.

Therefore

a= lim v, =17
n——oo

T la=1- @ o iz{tr((l + A)2 =)
(2.5) (trkB2 —kétrB)z) 1
+ 9 } * O(E)’
ask — oo.

Let us denote
D(z) =det (I +Q(Hy — 2)7 1), s =k 4+ kL

The standard scattering matriXz) for the pair of operatoré/, and H can
be expressed in terms of the coefficiemt@ndb defined in (2.3)

1 /K

a(k) a(k)

o

Introducing the Wronskian

WTL = Wn(@/%@) = wnan—l - wn—lanv

we observe that fok = ¢, ¢ € (0, ), the relationy . (W,,11 —W,) =0
implies
laf?> = b = 1.
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Considering (2.2) fot: ¢ S! we also easily conclude that

{D = a(e)
b(e?) = b(e)

Then, in particular, fok = ¢, > € (-2,2), we have

(2.6) detr(z) = a(/{:)a(k’)_l — p—2iarga(k)
It is well known [29], Section 8.2, that for € (—2, 2) the limit
EIEEO argD(\ + ig),

exists. The following equality is known as the Birman-Krein formula [3]
(2.7) logdeto(\) = —2iargD()\), X € (—2,2).
The latter formula together with (2.6) implies
argD(2cos ) = arga(e™).
The zeros of function® (k + k') anda(k) coincide and according to (2.5)
D(k+ k™) — 17 a(k) = O(|k|™?), as|k| — oo.
This implies
(k) =det(I + Q(Hoy—2) "), z=k+k ",

and thus
n+1

(2.8) log(a(k)) = log(r +Z Q(Ho—2)™")", 2 — o0
n=1

2. The coefficients\,, in the following expansion

(2.9) log(a ZA k7 k— oo,

were introduced for example in [12] (see also [5] for Jacobi matrices). The
coefficientsA,, can be obtained by expanding each term of (2.8) into Lau-
rent series irk and could be expressed via Chebyshev polynomials of the
first kind (see [17]). For our purposes it is not sufficient to know a finite
number of coefficientd,, or to have above mentioned implicit representa-
tion . We need to study the structure of these coefficients and their depen-
dence on the perturbation. Therefore we establish the following two results.

Lemma2.1.Let A = 0. Then the coefficient,,, can be written in the form
m—1
1 2
Bom = 5tr (;:0: S‘”BS”) + Fyn(B),

wherers,, is finite whenB € &,.
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For the general case wheh+£ 0 we prove:

Lemma 2.2. LetQ = SA + AS~! 4+ B. Then the coefficient,,, admits
the representation

m—1 m—1
Aom—2trlog(T+A) = %tr (> S"BS”>2+2 (> S"AS”)2+\I/2m<@),
n=0 n=0

whereV,,, (Q) is finite whenB, A € &;.

Some explicit formulae for coefficients,,, m < 4, can be found in the
literature (see, for example, [12], p. 155). Let us introduce the operator

L=(I+A*-1.

Then
Ao = —log(1), Ay =trB,

Ay = %trB2 + tr(L),
1
As = gtrB3 +tr (B +5°BS)(5 I+L)

1
Ay =—tr (B> + L+ SLS*)*+2(B+ S*BS)*(L+1))
(2.10) 4

+ itr ((L+ SLS*)* —2(L* — 2L)).

As we shall see later, the analysis of coefficiefits for the Srchodinger
operator will lead to the analysis of similar coefficients for Jacobi matrices
and vice versa.

The functiona(k) vanishes whetk + 1/k is an eigenvalue of (2.2). Let
{5¢,} be the zeros of (k) lying in the domain|k| > 1. We introduce the
Blaschke product

G = H — (52, = ).

1-— %nk \%n]

Clearly|G| = 1 on the unit circle and Rélog(G /a)) is an odd function of
9 whenk = ¢, Thus, by using (2.9) we find

2 ™ 1 (k?m _ 1)2
_/ log |a| sin®(mf)df = —/k| 1log(G/a)W dk

T J_ 2mi
= 2log(T) + Ao — Z f(s

wheref(t) = 1/2(t —t') — log(t) > Ofort > 1.
3. Assume for a moment that
Q =B, B=diag{3,}.
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The resolvent of the free discrete Sgtlinger operator can be written as

(Hy— )™ = — (T = /K (T = 57 /k)
(211) S]— oo 1 b
—2m
Z Z Litm Lp+1 Z CHIE
j =0 m=0 p=0

This implies that the term withh = 2 in the decomposition (2.8) has the
following representation

trQ(Ho — 2)'Q(Ho — 2) 7' =
Z tr (Z S BS" zn: S Z 1) = Do
kp+2 o Ep+2°
p=0
If pis odd, therp — 2m is also odd and sm@ = Bis a diagonal perturba-
tion, we obtain’, = 0. Therefore we shall only study, with even values
of p. Clearly

2p—n

Ta(pi1) = tr Z S™"BS" Z S™"B Z S22

(2.12) = tr ZS ”BS”ZS 2m B Z S

l=n—p

If 0 < n < p, then the terms in the last sum of (2.12) witk: m cancel.
Forp +1 < n < 2p we obtain that in the summation with respectiidn
(2.12) survives only ifn = [. This implies

P n 2p P
Dapeny =tr 3 ST"BS™ Y S"BS™™4tr »  ST"BS" Y SBS™.
n=0 m=0 n=p+1 l=n—p

On the other hand we notice that the latter two traces are almost equal.

Indeed,
2p D
tr Z S"BS" Z S2pg2

n=p+1 l=n—p
2p 2p—n
=tr » ST'BS" Y §mtnr) pgrmin-r)
n=p+1 m=0
2p 2p—n p—1

=tr »  S"FBSTTY " SMBSM =tr> ST"BS" Z S—2mpgem.

n=p+1 m=0 n=0 m=0
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Therefore (2.12) can be rewritten as

n —1 n
Togpin) = tr i ST"BS"Y ST BS Mt pz ST"BS" Y STmBS™
n=0 m=0 n=0 m=0

It is now easy to expreds,(, 1) vial'y,

P p—1
Dy(pe1) = Dopttr SPBSP Y~ ST2mBS* Mty SPHBSP Y~ SRS
m=0 m=0
2p
=Ty +trSPBSP Y S~ BS™,
m=0
which magically becomes
p
=Ty +2trBY S "BS™ + trB’,
m=1
Obviously
FQ =1tr 82
and by using induction we obtain that
P 2
(2.13) Tapiny = tr (D S7"BS")
Finally
(2.14) trQ(Ho — 2)~'Q(Ho — 2) Z Togenyk =200,
p=0

wherel'y, 1) is given by (2.13).

4. Let us make another temporary assumption, that is
Q=SA+AS™!, A=A

Then

(2.15) trQ(Hy—2) "Q(Hy — 2) ' =2tr A(Hy — 2) ' A(Hy — 2)™*

+tr SA(Hy — 2) 'SA(Hy — 2) ' +tr ASTH(Hy — 2) P AS™H(Hy — 2) 7t

Consider the last term in the right hand side of the latter equality and apply
the identity (2.11) for the resolveit/, — z)~'. Then

tr AS™H(Hy — 2) PASTH(Hy — 2) 7!

—tr SAS™H(Hy — 2) PAS Y (Hy — 2) 'S = Z o
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where by using the same arguments as in (2.12) we have

2 n
Togprr) = tr Zp S Agnt Z S—2m g i G2i—2

n=0 m=0 j=n—p
= tr ZS ntl g gn- 125 2m A Z 52
j=n—p—1
p—1 n 2p p—1
Htr Y STTIASTTEY T GTEmAS gy Yy STHAST Y g A

n=0 m=0 n=p+1 m=n—p—1

p—1
+tr SPH A 5P Z S72m A G2m

m=0

Let us consider the second trace of the last expression. A simple computa-
tion leads us to

2p p—1
tr Yy STTASTT Y 3T A
n=p+1 m=n—p—1
2p—n
= tr Z SrTLAGI TN S g A g
n=p+1 m=0
and substituting = 2p — n we find

p—1
= tr Z SRy Ve ias Z S2m A G2,
m=0
Thus,
Topt1) = Topt
p—1 p—1
Hr STPTPASPT Y T STIMASY 4 tr STPASP Y STIMAST
m=0 m=0
p—2 p—1
—tr STPPPASPTE N © ST AST  tr STPHLAGPTE Y © g A
m=0 m=0
Clearly
p—1 p—2
trSTPFPASPTEY T STIMASP — tr STPRRASTT Y C G A
m=0 m=0

=tr SPAS™P.
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Moreover
p—1 p—1

trSTPASP Y STIMAS 4 tr SPASTP 4 tr STPTIASPTLY C g mAGET
m=0 m=0

p—1
= tr STPAS? Z STEMASP 4 tr STPASP Y © T ASP

m=0 m=0

2p
—trSPASP Z S AS™.

m=0
By using symmetry
2p
trSPASPY " STAS™ = 2trAZ STMAS™ 4 tr A%
m=0 m=1

which finally gives us

Togpr1) T2p+2trAZS mAS™ 4 tr A2,

m=1

Since
Ty =0=trA% —tr A%
we find that magic works even this time and gives us

P 2
Taginy = tr (Y S7"AS") — tr A2
n=0
Similarly we obtain that the termx SA(H, — 2)"'SA(H, — 2)~! appearing
in (2.15), has exactly the same Laurent series. For the coefficients in the

corresponding expansion of the first term in the right hand side of (2.15) we
can use (2.14). Itimplies

tr Q(Hy — 2) ' Q(Hy — 2) zz Pt
where

Iypg1) = 2tr (zp: S_”AS">2 —tr A%
n=0

5. Finally we consider the general case, wiiga- SA + AS~! + B where
A #0, B #0.Byusing (2.11) we find

trQ(Ho —z)" = —tr (SA+ AS™' + B) ka—l—l ZS”‘M
=0

m=0
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= -2trA E Tam tr B g T

Let us denote by, (Q) the coefficient at~2™ in the decomposition of

Z %tr (Q(HO — z)_l)n.

This coefficient is finite if one of the two following conditions hold
i) BeG;, Ac Gy

(2.16) or
i) B€ &, A=0.

Therefore the constants,,,, appearing in (2.9) are equal to

(2.17) Aom = 2trA + T2 /2 + Loy + For(Q).

3. PROOF OFTHEOREM1.1

1. Let A and B be matrices of finite rank whose elements= (,, = 0 for
n < 0 and let us denote b, (.J) the coefficients in the expansion for the
Fredholm determinant

logdet(I+Q(Jo—2)") ==Y M(N)E™",  z=k+k"
n=1

Supposéd andH,, are the operators defined in (2.1). We would now like to
compare the coefficients,, (J) with A,, = A, (H) defined by in (2.9) and
appearing in the corresponding decomposition for the operatasd H,.

For a fixedm let us introduce

R2m(@) = A2m<J> - A2m<H)

According to Lemma 2.12, [17], the coefficients(/) andA,,(H) coincide
with the coefficients:,(H, Hy) andc,(J, Jy) given by
2 1 1
(K Ko) = ot (T (55) = T (5K0) )
whereT,, are Chebyshev polynomials. This implies tti&t, (@) is a poly-
nomial of at most firstn elements of the matriced and B, i.e. is a

polynomial of 5y, 51, . .., Bn—1 @ndag, aq, ..., a,,_1. Indeed, this can be
seen from the following “splitting argument”. If we subtract the operator
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W = 2Re(-, eg)e_, from H, then the result is decomposed into the orthog-
onal sum of two operatoré ¢ J defined on?(Z_) andi?*(N) respectively,
whereZ_ = Z \ N. ThenA,,(J_) = 0. Therefore

%tr (sz(%(H—W))—TQm(%(HO—W))> — Ao () Bom(J) = Mg (J),

and our statement follows from the fact that the difference

1 1
tr (Tgm(é(H —W)) - sz(§(H))>
is a polynomial of at most: elements ofA and 5.
Let J®™) be an operator which realization in the standard bési$c°
is given by

BN+1 I+anp 0
I1+any  Byso 1+ anie
3.1 J(N) _ + + +
(3.-1) 0 I1+any  Byss

and let

N
P om(Q) 1= Ao () = Ao (J™N) = 23 "log(1 + ).
k=0

The “tails” in the sums\,,, (J) andA,,,(J)) cancel each other, so that the
elements of the matrice8 and A do not enter in this differenc€y s,,(Q)
starting from the indexXV + m.

Thus Py 2, (Q) is a continuous function of at most + m first elements
of the matricesB and A and can be extended to arbitrary matridgsA.
Below Py 2, (Q) is extended for any3 and A. Denote

1 [ sin ¢
@2 Gal = [ log|

i, sin? mé df + En: Flem,

where¢,, are the poles o/, in D = {z : |z] < 1} and f(¢) = 1/2(t —
t=1) —log(t). Itis important for us that

(3.3) Doy (1) — P (JN)) = Pryom(Q)

for the function),, meromophic in the neighbourhood of the unit disc. The
identity (3.3) is valid ifQ is of a finite rank. The arbitrary case follows from
Proposition 4.3 and Theorem 4.4 [17].
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Notice thaty — — log(y) is convex. Employing Jensen’s inequality we
find

ol [
> —1og[§ /Oﬂ(lm M,,)sin(6) d@}—;/ hﬁg?‘))} sin?(mf) do
sin?(m0)

~ —togl(-2.2) - 2 ["1og [W} sin(mé) o >

(3.4) 2 /0 ’ log{w] sin(mf) df —: C(m),

T sin?(0)

] sin®(md) do

where we use that,.(—2,2) < 1.
Formulae (3.3) and (3.4) imply

Prom(Q) < Pop(p) — C(m).

The latter inequality was obtained faZ,, meromophic in the neighbour-
hood of the unit disc. However this inequality can also be extended to ar-
bitrary measureg satisfying Conditions (1)-(3) of Theorem 1.1. We apply
here the same argument as in [17], Section 8, repeating the corresponding
proof for the sake of completeness.

Let 1 be a probability measure obeying Condition (1) of Theorem 1.1
and let

(3.5) K= Yo

where i is the “free” Jacobi measure (the measure with, (z) = 2),
~v > 0. Then

(36) PN,2m(Q) S (I)2m(ruf) - C(m)

Indeed, given any and associated to i/-functionM (z), there is a natural
approximating family of)d/-functions meromorphic in a neighborhood of
the closure of the unit disP. The next resultis proved in [17], Lemma 8.3.

Lemma 3.1. Let M, be theM-function of a probability measure obeying
Condition (1) of Theorem 1.1. Define

(3.7) M(T)(z) = T‘_IMM(TZ)
for 0 < r < 1. Then, there is a family of probability measuf€® such that

M(T’) — M,LL(T> .

Itis also proved in [17] that

(3.8) limsup /—log||m M, (e")| d < /—log||m M, (e?)| db.

rTl
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The poles ofV/ ., are given by

&) = %,

where we consider only thogefor which |¢;| < r. Thus}_ f(&;*"(u™"))
is monotonically increasing function of whose limit is equal to
S f(&2™), asr 1 1.

Let us substitutein® md = 1 — cos? md in (3.2). Then by using (3.8) and
Fatou’s lemma we obtain

(3.9) Doy (1) > limsup oy (™).

Moreover, the convergencd¥ . (z) — M,(z) is uniform on compact sub-
sets of upper half oD, which means that the coefficients of Jacobi matrices
must converge. Thus for any

PN,2m(Q) = 11}%1 PN,2m(Q(T)>
< liminf @y, (1) — C(m) < oy (1) — C ().

For a fixedy € (0,1) let i, = (1 — v)p + ypo. Sincep., obeys (3.5) and
Condition (1) of Theorem 1.1, we find

(3.10) Py om(Qy) < Pop(pty) — C(m).
Let M, := M, and note that

Im M., (") = (1 — y)Im M (e") + ysin 6.
Itimplies

v

log |Im M., (e")| = log(1 — ~) + log|Im M (&) + T sin 0].

We see that up to the convergent to zero téog(1 — ), the function
log [Im M. (¢*)| is monotone iny. By using the monotone convergence
theorem we then find

~10

(the eigenvalue term is independentgiince the point masses pf have
the same positions as thoseQf
On the other hand, singe, — 1 weakly,

(3.12) Py om(Q) = lim Py om(Q-)-
710
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Finally we observe that according to Lemmas 2.1, 2.2 there exists an inde-
pendent ofV function Z,,,(Q) such that

N

Py om(Q) — % Z(ﬁﬂ—? o Bimo1)? =2

Jj=0

(@ + .. Qpmr)?

-

andZ,,, is finite if eitherA = 0 andB € &4, or A = &3 andB € &3. The
latter inequality together with (3.10)—(3.12) imply that if Conditions (1)-(3)
of the theorem are satisfied, then

o0

D B4 A Brem1)® +2) (a+ -+ i)’ < 0.
=0

J=0

(NN

Let /7, be the orthogonal projector onto the span of the vectors
{eo,e1,...,e,} and letA(n) = I, A, B(n) = II,BandQ(n) = SA(n) +
A(n)S* + B(n). We have shown the following result:

Corollary 3.1. Let the conditions (1)-(3) of Theorem 1.1 are fulfilled and
m > 1. Then there exists a constafit= C'(m, )) > 0 such that

Ao (Q(n)) — 2tr log(I + A(n)) < C, vn.

2. Conversely, suppose that the conditions (1.6) and (1.5) are fulfilled. We
would like to establish that

[ sin(6) .5

—T

Definition. Let v, u be finite Borel measures on a compact Hausdorff space
X. The entropyS(v | ) of v relative tou is defined by

— 0 if v is notu-ac
3.14 =
(3.14) S| n) {_flog(g_;)dy if vis p-ac

The following result is proved in the paper of Simon and Killip, [17],
Corollary 5.3.

Lemma 3.2. S(v | p) is weakly upper semicontinuous jn that is, if
n — 1, then
S| p) > limsup S(v | ).
Let us use the fact that the trace formulae are valid at least for finite rank
operatorsA, B. Suppose now thatl, B are arbitrary compact selfadjoint
operators such that (1.5) and (1.6) hold. It is clear then that

(3.15) Aoy + 21og(7) < 00.
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Note that the sequences of operatdi$:), B(n) converge toA and B in
&3 or &4 (depending on which part of the theorem we prove), so that the
sequences of operatops™ " S7A(n)(S*)7 and Y73 S7B(n)(S*)’ con-
verge inG,. Let
Jo=S5+5+Q(n), and p,(8) = (Ey,(5)eos o),
whered is an arbitrary Borel set. We first notice that
Ao (Jn) — 20M0(J,)

converges to

Ao (J) — 2Mo(J), as n — oo.

As always we assume that > —1, j € N. Since(.J,, — z)~' converges to
(J — 2)~! uniformly on compact subsets of the upper half-plane we obtain
that,, is weakly convergent tg,

Hn = n, as mn — oo.
Indeed, the difference between the resolvents is the operator
(Jo=2)" = (J=2) " = (Ju—2) Q= Q(n))(J — 2) 7",

whose norm can be estimated @y||Q) — Q(n)||, whereC, is independent
of n. Thereforem,,,, converges uniformly ten, on compact subsets of the
upper half plane.

Applying Lemma 3.2 we obtain that if = sin*(m#)df and y is the
spectral measure of, then

S| p) > —oc0.

This is exactly what is needed for (3.13).

In order to complete the proof of Theorem 1.1 we only have to show that
(1.6) and (1.5) imply Condition (3). Obviously for finite rank matric&3:)
andB(n), if N is large enough, then (3.2) takes the form

1 [ sinf | ., Com
;/_ﬂ logllm M, sin m@d@—l—;f([{j(n)] )

= Aom(Jn) =2 ) log(1 + a;(n)).

J=0

Letp € N. Sincef(t) > 0 for ¢t > 1 then from (3.4) we obtain

Z (&™) < M) =2 ) log(L + ay(n)) — C(m),

J=0
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where¢;(n) € (—1, 1) are the poles ol/-function of the Jacobi matrix,,.
Now for a fixed finitep we can pass in this inequality to the limitas— oo
and obtain

p o]
D L™ < Ao () = 2) log(1 + o) — C(m).
j=1 =0
Since the eigenvalu@f are the points; + 1/¢;, this inequality leads to
the Lieb-Thirring bound, i.e. Condition (3) of Theorem 1.1.
The proof of Theorem 1.1 is complete.

In the end of this Section we would like give a converse statement to
Corollary 3.1.

Corollary 3.2. Assume that» > 1 is an integer number. Let the operators
A and B be compact in?(N) and letC' = C(m,Q) > 0 be a positive
constant such that

(3.16) Ao (Q(n)) — 2tr log(I + A(n)) < C, Vn.
Then the conditions (1)-(3) of Theorem 1.1 are satisfied.

Remark If Conditions (1)-(3) of Theorem 1.1 are satisfied, then by
Rakhmanov’s theorem [11] both operatotsand B are compact. This
means that Corollaries 3.1 and 3.2 are converse to each other and therefore
estabish a one to one correspondence between classes of measures satisfy-
ing Conditions (1)-(3) and operatorsand B with properties (3.16).

4. PROOF OFTHEOREM1.2

Let ), = (1+a,)?—1 be the eigenvalues of the operator= (I+A)*—T1
and leta = {a, }22, B = {6.}5%0, A = {\n}2,. By using Rakhmanov's
theorem for Jacobi matrices [11], we find that bath 5, — 0, asn — oo.
Therefore without loss of generality we can assume that the ngdiihs:
and||3||;~ are sufficiently small.

Applying (2.10) let us compute the difference
(4.1)

Ay —2trlog(I + A)

1
=1 Z((An + A1+ 68222 4280 + Bac1)? A+ 1) + (A + Auy)?
_é 3 4 5
N+ AL+ O(A| )
1 1
=3 Z((An + A1)+ §(ﬁn4+Ai) + O 4 Ae1)Bn? + Adnc1 (O + A1)

n
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_é(xn F A0+ (B + Ba1)* O+ 1) + O

= % ;((An + )\n—l)Q + (ﬁn + 671_1)2()\” -+ 1) + %(ﬁn4 + /\i)

(4:2) +0n+ 2 ) B>+ A 20 1) =X +O( A+ Pt A )

> %Z((An+An_1)2+<ﬁn+ﬁn—1)2(An“)* % (5"4+Ai)_2is(A”+A”‘l) 2

n

—(B? = 22+ MO+ Aa1)? + OAL + [+ M),

as||Al|;= — 0. Obviously
(5n2_)‘i+/\n()‘n+)‘nfl))2 < (6n2_)‘31)2""0(‘@1‘4"’"‘)‘n‘4+|)‘n+)‘n71|2)-

We now use that3,” — \2)? < ,* + 1. Therefore choosing, for example,
e = 3/4 we obtain

1 1
Ay —2trlog(l + A) = 3 (= + Auet)? + 758" + A7)

Z (B + Bu1)?n + 1) + 0(18a]* + Al + A + Aa]?).

This implies that if||3,[;~ and||A, ||~ are sufficiently small, ther, —
2trlog(/ + A) can be estimated from below by a constant times

(4.3) D A+ A1)+ (B + Bar)® + Bt + A3

The required upper estimate by a constant times (4.3) follows from (4.2).
Finally Corollaries 3.1 and 3.2 imply the proof of Theorem 0.2.
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