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ABSTRACT. We study the spectral properties of Jacobi matrices. By
using ”higher order” trace formulae we obtain a result relating the prop-
erties of the elements of Jacobi matrices and the corresponding spectral
measures. Complicated expressions for traces of some operators can be
magically simplified allowing us to apply induction arguments. Our the-
orems are generalizations of a recent result of R. Killip and B. Simon
[17].

1. INTRODUCTION

Let S be the shift operator inl2(N), N = {0, 1, 2, ...}, whose action on
the canonical orthonormal basis{en}∞n=0 is given bySen = en+1. Let A,
B be selfadjoint diagonal operators,Aen = αnen, Ben = βnen, αn > −1,
β ∈ R. We study the spectral properties of the operator

J = S + S∗ +Q, where Q = SA+ AS∗ +B.

This operator can be identified with the following Jacobi matrix

(1.1) J =


β0 1 + α0 0 0 · · ·

1 + α0 β1 1 + α1 0 · · ·
0 1 + α1 β2 1 + α2 · · ·
...

...
...

...
...

 .

If the entries of this matrix are bounded, thenJ is a bounded operator in
l2(N). To every such operatorJ we associate the following measureµ given
by

(1.2) mµ(z) := (e0, (J − z)−1e0) =

∫
dµ(t)

t− z
, z ∈ C.

The spectral significance of this function can be seen from the equality

(1.3) µ(δ) = (EJ(δ)e0, e0),
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whereEJ denotes the spectral measure ofJ and δ ⊂ R is a Borel set.
Obviously,

µ(R) = ‖e0‖2 = 1.

Conversely, for each probability measureµ, whose support is compact
and contains infinitely many points, there is a standard procedure of con-
structing a Jacobi matrix via the corresponding orthogonal polynomials (see
[1], [24] and also [17] for historical references and bibliography).

Since there is a one-to-one correspondence between Jacobi matrices and
probability measures, it is natural to ask how the properties of entries of
Jacobi matrices are related to the properties of probability measures. We
are interested in a class of matricesJ ”close” to the ”free” matrixJ0 for
whichαn = 0 andβn = 0, n = 0, 1, . . . .

It is convenient to replacemµ by

Mµ(k) = −mµ

(
z(k)

)
= −mµ

(
k + k−1

)
=

∫
k dµ(t)

1− tk + k2
, |k| < 1.

(1.4)

It is known (see [25]) that the limit

M(eiθ) = lim
r→1

Mµ(reiθ), r < 1,

exists almost everywhere on the unit circle and that ImM(eiθ) ≥ 0 for
θ ∈ (0, π). Moreover, sinceM(e−iθ) = M(eiθ), we obtain ImM(eiθ) ≤ 0
for θ ∈ (−π, 0).

In order to formulate our main result we denote bySp the standard Shat-
ten classes of compact operators:

Sp = {T : tr (T ∗T )p/2 <∞ }.

Theorem 1.1. Let J be a Jacobi matrix and letµ be the corresponding
measure(1.3). Assume that the operatorQ = J − J0 satisfies

(1.5)

{
Q ∈ S3 if rankA =∞,
Q ∈ S4 if rankA <∞.

Then

(1.6)
∑
n

(αn + · · ·+ αn+m−1)2 +
∑
n

(βn + · · ·+ βn+m−1)2 <∞

if and only ifµ satisfies the following three properties:
(1) The support ofµ is [−2, 2] ∪ {E+

j }
N+

j=1 ∪ {E−j }
N−
j=1, where±E±j > 2,

0 ≤ N± ≤ ∞.
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(2) (Quasi-Szeg̈o Condition)∫ π

−π
log

[
sin(θ)

Im M(eiθ)

]
sin2 mθ dθ <∞.

(3) (Lieb–Thirring Bound)
N+∑
j=1

|E+
j − 2|3/2 +

N−∑
j=1

|E−j + 2|3/2 <∞.

It is interesting that with the growth ofm the Quasi-Szeg̈o condition (2)
becomes weaker and weaker allowing ImM to have exponential zeros at
πn
m

, n = −m, . . . ,m− 1. Moreover the condition (1.6) withm = l implies
the corresponding condition withm = 2l but not conversely. In particular,
this means that there are Jacobi matrices satisfying (1.6) withm = 2l such
that the function ImM vanishes at least at one of the pointsπ(2n+1)

2l
, n =

−l, . . . , l − 1.
The main technical parts of the proof of Theorem 1.1 are Lemmas 2.1

and 2.2, see Sections 2.2-2.5. It is really surprising how after some involved
calculations one can simplify rather complicated formulae and finally use
induction arguments.

Although Theorem 1.1 is a natural generalization of a recent result of
Killip-Simon [17], it has some disadvantages. Namely, for a given measure
µ we are not able to check in advance whether the conditions (1.5) are
fulfilled for the corresponding Jacobi matrixJ .

However, in the casem = 2 we are able to avoid this obstacle and obtain
a stronger result where we do havea priori the condition (1.5).

Theorem 1.2. Let J be a Jacobi matrix and letµ be the corresponding
measure(1.3). Then the conditions

(1.7)

{∑
n α

4
n +

∑
n βn

4 <∞∑
n(αn + αn+1)2 +

∑
n(βn + βn+1)2 <∞

hold if and only ifµ satisfies the following three properties:
(1) The support ofµ is [−2, 2] ∪ {E+

j }
N+

j=1 ∪ {E−j }
N−
j=1, where±E±j > 2,

0 ≤ N± ≤ ∞.
(2) (Quasi-Szeg̈o Condition)∫ π

−π
log

[
sin(θ)

Im M(eiθ)

]
sin2 2θ dθ <∞.

(3) (Lieb–Thirring Bound)
N+∑
j=1

|E+
j − 2|3/2 +

N−∑
j=1

|E−j + 2|3/2 <∞.
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This theorem defines a one-to-one correspondence between a class of
probability measures and the class of Jacobi matrices satisfying the condi-
tion (1.7).

Given a singular measureρs on [−2, 2] with total mass less than one, we
are able to construct a Jacobi matrix with the properties (1.7) such that the
singular component of the measureµ on this interval coincides withρs. The
corresponding fact was noticed in [17] for Jacobi matrices withQ ∈ S2 and
in [9] for Schr̈odinger operators with a class ofL2 potentials.

The next theorem is an immediate corollary of our main results. Let the
measureµ be decomposed into the sumµ = µac + µpp + µsc of absolutely
continuous, pure point and singular continuous components with respect to
the Lebesgue measure. Then

Im M(eiθ) =
dµac(t)

dt
, t = 2 cos θ.

The conditions (1.5) and (1.6), in particular, imply the quasi-Szegö con-
dition from Theorem 1.1 and thereforedµac(t)

dt
6= 0 almost everywhere on

(−2, 2). Thus we obtain:

Theorem 1.3. Letm > 0 be an integer number and letQ = 2Re(SA) +
B satisfy the condition(1.5). If the operators

∑m
n=0 S

nA(S∗)n and∑m
n=0 S

nB(S∗)n are of the Hilbert-Schmidt class, then the spectral mea-
sure of the operatorJ does not vanish on subsetsK ⊂ R+ = (−2, 2)
whose Lebesgue measure is positive.

Remark 1. If m = 2 the previous theorem can be strengthen. In this case
Theorem 1.2 allow us to replace (1.5) and (1.6) by (1.7).

Remark 2. Closely related results can be found in [16], Theorem 4, where
the author used a ”locally spectral technique” in order to obtain a continuous
version of Theorem 1.3.

When proving our main results we use high order trace formulae for Jacobi
matrices (Case’s sum rules [4], [5]). Note that the usefulness of trace formu-
lae in the study of a.c. properties of the spectrum of discrete Schrödinger
operators was first observed by P. Deift and R. Killip [8], where the au-
thors found that the conditions{βn}∞n=0 ∈ l2, αn = 0, ∀n, guarantee
that a.c. spectrum is essentially supported by[−2, 2]. The sharpness of
this result is confirmed by examples constructed in B. Simon [27], where
the author shows that for eachε > 0 there is a potentialB satisfying
|βn| = O(n−1/2+ε) and such that the operatorH = S + S∗ + B has a pure
point spectrum. Previously a class of such perturbations were also studied
by A. Kiselev in [18]. Some results on spectral properties of a class of op-
eratorsS+S∗+2Re(SA) were obtained in J. Janas and S.N. Naboko [14].
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Recently S. Belov and A. Rybkin [2] have considered WKB-asymptotics of
generalized eigenfunctions which implies preservation of the a.c. spectrum
for the caseαn, βn = O(n−2/3−ε). Notice that the conditions which were
imposed onA andB in [2], [14] were much stronger than those in Theo-
rem 1.3. There is also a possibility of investigating the a.c. spectrum with
the help of the Gilbert-Pearson [13] theory, see also [15]. It was established
in [13] (see also [21]) that the a.c. spectrum is related to the absence of
subordinate solutions.

The paper [8] was also a culmination of a long sequence of papers con-
cerning a.c. spectral properties of Schrödinger operators inL2(0,∞) (see,
for example, [6], [7] and [26]). It was proved in [8] that for the operator
−d2/dx2 + V , the conditionV ∈ L2 suffices for the a.c. spectrum to be
essentially supported by(0,∞). In both discrete and continuous cases P.
Deift and R. Killip used trace formulae for Schrödinger operators involv-
ingL2-norms of the corresponding potentials. This result has been recently
generalized by S. Molchanov, M. Novitskii and B. Vainberg, [22], where
the authors used higher order trace formulae involving first KDV integrals.
The structure of trace formulae for Jacobi matrices is somewhat surprising.
In contrast to the continuous case where the high order trace formulae in-
volve the derivatives of the potential, the corresponding trace formulae for
Jacobi matrices can be rearranged in a such a way that they involve the mean
values of its entries.

2. TRACE FORMULAE

1. In this section we assume thatS is the shift operator inl2(Z) whose action
on the standard orthonormal basis{en}∞n=−∞ is given bySen = en+1. Then,
in particular,S∗ = S−1. LetA andB be finite rank diagonal operators on
l2(Z). Let

(2.1) H0 = S + S∗ and H = H0 +Q,

on l2(Z), whereQ = SA+AS∗+B . Without loss of generality (since one
can always pass fromQ to SmQS−m) we can assume thatαn = βn = 0 for
n < 0. For everyk ∈ C \ {0} there exists a solutionψ = {ψn}∞n=−∞ of the
equation

(2.2) (1 + αn)ψn+1 + (1 + αn−1)ψn−1 + βnψn = (k + 1/k)ψn, n ∈ Z,

such thatψn = k−n to the right of the ”support” ofQ. For n < 0 this
solution can be written as a linear combination ofk−n andkn

(2.3) ψn = a(k)k−n + b(k)kn,
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wherea andb depend analytically onk 6= 0. We substituteψn by ψn =
ζnφn, where

ζn =

{∏n−1
j=0 (1 + αj), if n ≥ 1,

1, if n ≤ 0.

Then

(1 + αn)2φn+1 + φn−1 + βnφn = (k + 1/k)φn.

We can now rewrite this equation as

(2.4) vn = τ − k

k2 − 1

∞∑
m=n

(1− k2(n−m))
(
βmvm +

2αm + α2
m

k
vm+1

)
,

wherevn = knφn andτ =
∏∞

0 (1 + αk)
−1.

For |k| > 1 (2.4) can be solved by repeated substitution (or Neumann
series), from which we conclude that

a = lim
n→−∞

vn = τ
(

1− trB

k
+

1

k2
{tr (I − (I + A)2)+∑∑ (1− k2|n−m|)

2
βmβn}

)
+O

( 1

k3

)
, as k →∞.

Therefore

τ−1a =1− trB

k
− 1

k2

{
tr((I + A)2 − I)

+
(trB2 − (trB)2)

2

}
+O

( 1

k3

)
,

(2.5)

ask →∞.
Let us denote

D(z) = det (I +Q(H0 − z)−1), z = k + k−1.

The standard scattering matrixσ(z) for the pair of operatorsH0 andH can
be expressed in terms of the coefficientsa andb defined in (2.3)

σ(z) =

(
1

a(k)
− b(1/k)

a(k)
b(k)
a(k)

1
a(k)

)
.

Introducing the Wronskian

Wn = Wn(ψ, ψ) = ψnψn−1 − ψn−1ψn,

we observe that fork = eiθ, θ ∈ (0, π), the relation
∑

n(Wn+1 −Wn) = 0
implies

|a|2 − |b|2 = 1.
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Considering (2.2) fork ∈ S1 we also easily conclude that{
a(eiθ) = a(e−iθ)

b(eiθ) = b(e−iθ)
.

Then, in particular, fork = eiθ, z ∈ (−2, 2), we have

(2.6) detσ(z) = a(k)a(k)−1 = e−2i arga(k).

It is well known [29], Section 8.2, that forλ ∈ (−2, 2) the limit

lim
ε→+0

argD(λ+ iε),

exists. The following equality is known as the Birman-Krein formula [3]

(2.7) log detσ(λ) = −2iargD(λ), λ ∈ (−2, 2).

The latter formula together with (2.6) implies

argD(2 cos θ) = arga(eiθ).

The zeros of functionsD(k+k−1) anda(k) coincide and according to (2.5)

D(k + k−1)− τ−1a(k) = O(|k|−2), as|k| → ∞.
This implies

τ−1a(k) = det(I +Q(H0 − z)−1), z = k + k−1,

and thus

(2.8) log(a(k)) = log(τ) +
∞∑
n=1

(−1)n+1

n
tr
(
Q(H0 − z)−1

)n
, z →∞.

2. The coefficientsΛn in the following expansion

(2.9) log(a(k)) = −
∞∑
j=0

Λjk
−j, k →∞,

were introduced for example in [12] (see also [5] for Jacobi matrices). The
coefficientsΛn can be obtained by expanding each term of (2.8) into Lau-
rent series ink and could be expressed via Chebyshev polynomials of the
first kind (see [17]). For our purposes it is not sufficient to know a finite
number of coefficientsΛn or to have above mentioned implicit representa-
tion . We need to study the structure of these coefficients and their depen-
dence on the perturbation. Therefore we establish the following two results.

Lemma 2.1. LetA = 0. Then the coefficientΛ2m can be written in the form

Λ2m =
1

2
tr
(m−1∑
n=0

S−nBSn
)2

+ F2m(B),

whereF2m is finite whenB ∈ S4.
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For the general case whenA 6= 0 we prove:

Lemma 2.2. LetQ = SA + AS−1 + B. Then the coefficientΛ2m admits
the representation

Λ2m−2 tr log(I+A) =
1

2
tr
(m−1∑
n=0

S−nBSn
)2

+2 tr
(m−1∑
n=0

S−nASn
)2

+Ψ2m(Q),

whereΨ2m(Q) is finite whenB,A ∈ S3.

Some explicit formulae for coefficientsΛm, m ≤ 4, can be found in the
literature (see, for example, [12], p. 155). Let us introduce the operator

L = (I + A)2 − I.
Then

Λ0 = − log(τ), Λ1 = trB,

Λ2 =
1

2
trB2 + tr(L),

Λ3 =
1

3
trB3 + tr (B + S∗BS)

(1

2
I + L

)
,

Λ4 =
1

4
tr
(
(B2 + L+ SLS∗)2 + 2(B + S∗BS)2(L+ 1)

)
+

1

4
tr
(
(L+ SLS∗)2 − 2(L2 − 2L)

)
.

(2.10)

As we shall see later, the analysis of coefficientsΛm for the Srchr̈odinger
operator will lead to the analysis of similar coefficients for Jacobi matrices
and vice versa.

The functiona(k) vanishes whenk + 1/k is an eigenvalue of (2.2). Let
{κn} be the zeros ofa(k) lying in the domain|k| > 1. We introduce the
Blaschke product

G =
∏
n

κn − k
1− κnk

κn

|κn|
, (κn = κn).

Clearly |G| = 1 on the unit circle and Re
(
log(G/a)

)
is an odd function of

θ whenk = eiθ. Thus, by using (2.9) we find

2

π

∫ π

−π
log |a| sin2(mθ)dθ =

1

2πi

∫
|k|=1

log(G/a)
(k2m − 1)2

k2m+1
dk

= 2 log(τ) + Λ2m −
∑
n

f(κ2m
n ),

wheref(t) = 1/2(t− t−1)− log(t) > 0 for t > 1.

3. Assume for a moment that

Q = B, B = diag{βn}.
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The resolvent of the free discrete Schrödinger operator can be written as

(H0 − z)−1 = −1

k
(I − S/k)−1(I − S−1/k)−1

= −1

k

∞∑
j=0

∞∑
m=0

Sj−m

kj+m
= −

∞∑
p=0

1

kp+1

p∑
m=0

Sp−2m.
(2.11)

This implies that the term withn = 2 in the decomposition (2.8) has the
following representation

trQ(H0 − z)−1Q(H0 − z)−1 =

∞∑
p=0

1

kp+2
tr
( p∑
n=0

S−nBSn
n∑

m=0

S−2mB

p−n∑
j=0

Sp−2j
)

=:
∞∑
p=0

Γp+2

kp+2
.

If p is odd, thenp−2m is also odd and sinceQ = B is a diagonal perturba-
tion, we obtainΓp = 0. Therefore we shall only studyΓp with even values
of p. Clearly

Γ2(p+1) = tr

2p∑
n=0

S−nBSn
n∑

m=0

S−2mB

2p−n∑
j=0

S2p−2j

(2.12) = tr

2p∑
n=0

S−nBSn
n∑

m=0

S−2mB

p∑
l=n−p

S2l.

If 0 ≤ n ≤ p, then the terms in the last sum of (2.12) withl 6= m cancel.
For p + 1 ≤ n ≤ 2p we obtain that in the summation with respect tom in
(2.12) survives only ifm = l. This implies

Γ2(p+1) = tr

p∑
n=0

S−nBSn
n∑

m=0

S−2mBS2m+tr

2p∑
n=p+1

S−nBSn
p∑

l=n−p

S−2lBS2l.

On the other hand we notice that the latter two traces are almost equal.
Indeed,

tr

2p∑
n=p+1

S−nBSn
p∑

l=n−p

S−2lBS2l

= tr

2p∑
n=p+1

S−nBSn
2p−n∑
m=0

S−2(m+n−p)BS2(m+n−p)

= tr

2p∑
n=p+1

Sn−2pBS2p−n
2p−n∑
m=0

S−2mBS2m = tr

p−1∑
n=0

S−nBSn
n∑

m=0

S−2mBS2m.



10 LAPTEV, NABOKO, SAFRONOV

Therefore (2.12) can be rewritten as

Γ2(p+1) = tr

p∑
n=0

S−nBSn
n∑

m=0

S−2mBS2m+tr

p−1∑
n=0

S−nBSn
n∑

m=0

S−2mBS2m.

It is now easy to expressΓ2(p+1) via Γ2p

Γ2(p+1) = Γ2p+trS−pBSp
p∑

m=0

S−2mBS2m+trS−p+1BSp−1

p−1∑
m=0

S−2mBS2m

= Γ2p + trS−pBSp
2p∑
m=0

S−mBSm,

which magically becomes

= Γ2p + 2trB

p∑
m=1

S−mBSm + trB2.

Obviously
Γ2 = trB2

and by using induction we obtain that

(2.13) Γ2(p+1) = tr
( p∑
n=0

S−nBSn
)2

.

Finally

(2.14) trQ(H0 − z)−1Q(H0 − z)−1 =
∞∑
p=0

Γ2(p+1)k
−2(p+1),

whereΓ2(p+1) is given by (2.13).

4. Let us make another temporary assumption, that is

Q = SA+ AS−1, A = A∗.

Then

(2.15) trQ(H0 − z)−1Q(H0 − z)−1 = 2trA(H0 − z)−1A(H0 − z)−1

+trSA(H0 − z)−1SA(H0 − z)−1 + trAS−1(H0 − z)−1AS−1(H0 − z)−1.

Consider the last term in the right hand side of the latter equality and apply
the identity (2.11) for the resolvent(H0 − z)−1. Then

trAS−1(H0 − z)−1AS−1(H0 − z)−1

= trSAS−1(H0 − z)−1AS−1(H0 − z)−1S−1 =:
∞∑
p=2

Υp

kp
,
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where by using the same arguments as in (2.12) we have

Υ2(p+1) = tr

2p∑
n=0

S−n+1ASn−1

n∑
m=0

S−2mA

p∑
j=n−p

S2j−2

= tr

2p∑
n=0

S−n+1ASn−1

n∑
m=0

S−2mA

p−1∑
j=n−p−1

S2j

+tr

p−1∑
n=0

S−n+1ASn−1

n∑
m=0

S−2mAS2m+tr

2p∑
n=p+1

S−n+1ASn−1

p−1∑
m=n−p−1

S−2mAS2m

+trS−p+1ASp−1

p−1∑
m=0

S−2mAS2m.

Let us consider the second trace of the last expression. A simple computa-
tion leads us to

tr

2p∑
n=p+1

S−n+1ASn−1

p−1∑
m=n−p−1

S−2mAS2m

= tr

2p∑
n=p+1

Sn−2p−1AS2p−n+1

2p−n∑
m=0

S−2mAS2m

and substitutingj = 2p− n we find

= tr

p−1∑
j=0

S−j−1ASj+1

j∑
m=0

S−2mAS2m.

Thus,
Υ2(p+1) = Υ2p+

+trS−p+2ASp−2

p−1∑
m=0

S−2mAS2m + trS−pASp
p−1∑
m=0

S−2mAS2m

−trS−p+2ASp−2

p−2∑
m=0

S−2mAS2m + trS−p+1ASp−1

p−1∑
m=0

S−2mAS2m

Clearly

trS−p+2ASp−2

p−1∑
m=0

S−2mAS2m − trS−p+2ASp−2

p−2∑
m=0

S−2mAS2m

= trSpAS−p.
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Moreover

trS−pASp
p−1∑
m=0

S−2mAS2m + trSpAS−p + trS−p+1ASp−1

p−1∑
m=0

S−2mAS2m

= trS−pASp
p∑

m=0

S−2mAS2m + trS−pASp
p−1∑
m=0

S−2m−1AS2m+1

= trS−pASp
2p∑
m=0

S−mASm.

By using symmetry

trS−pASp
2p∑
m=0

S−mASm = 2 trA

p∑
m=1

S−mASm + trA2,

which finally gives us

Υ2(p+1) = Υ2p + 2 trA

p∑
m=1

S−mASm + trA2.

Since
Υ2 = 0 = trA2 − trA2,

we find that magic works even this time and gives us

Υ2(p+1) = tr
( p∑
n=0

S−nASn
)2

− trA2.

Similarly we obtain that the termtrSA(H0−z)−1SA(H0−z)−1 appearing
in (2.15), has exactly the same Laurent series. For the coefficients in the
corresponding expansion of the first term in the right hand side of (2.15) we
can use (2.14). It implies

trQ(H0 − z)−1Q(H0 − z)−1 = 2
∞∑
p=2

Ip
kp
,

where

I2(p+1) = 2tr
( p∑
n=0

S−nASn
)2

− trA2.

5. Finally we consider the general case, whenQ = SA+AS−1 +B where
A 6= 0, B 6= 0. By using (2.11) we find

trQ(H0 − z)−1 = −tr (SA+ AS−1 +B)
∞∑
p=0

1

kp+1

p∑
m=0

Sp−2m
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= −2trA
∞∑
m=0

1

k2m
− trB

∞∑
m=0

1

k2m+1
.

Let us denote byF2m(Q) the coefficient atk−2m in the decomposition of

2m∑
n=3

(−1)n+1

n
tr
(
Q(H0 − z)−1

)n
.

This coefficient is finite if one of the two following conditions hold

i) B ∈ S3, A ∈ S3

or

ii) B ∈ S4, A = 0.

(2.16)

Therefore the constantsΛ2m appearing in (2.9) are equal to

(2.17) Λ2m = 2trA+ Γ2m/2 + I2m + F2m(Q).

3. PROOF OFTHEOREM 1.1

1. LetA andB be matrices of finite rank whose elementsαn = βn = 0 for
n < 0 and let us denote byΛn(J) the coefficients in the expansion for the
Fredholm determinant

log det
(
I +Q(J0 − z)−1

)
= −

∞∑
n=1

Λn(J) k−n, z = k + k−1.

SupposeH andH0 are the operators defined in (2.1). We would now like to
compare the coefficientsΛn(J) with Λn = Λn(H) defined by in (2.9) and
appearing in the corresponding decomposition for the operatorsH andH0.
For a fixedm let us introduce

R2m(Q) = Λ2m(J)− Λ2m(H).

According to Lemma 2.12, [17], the coefficientsΛn(J) andΛn(H) coincide
with the coefficientscn(H,H0) andcn(J, J0) given by

cn(K,K0) =
2

n
tr
(
Tn

(1

2
K
)
− Tn

(1

2
K0

))
,

whereTn are Chebyshev polynomials. This implies thatR2m(Q) is a poly-
nomial of at most firstm elements of the matricesA andB, i.e. is a
polynomial ofβ0, β1, . . . , βm−1 andα0, α1, . . . , αm−1. Indeed, this can be
seen from the following “splitting argument”. If we subtract the operator
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W = 2Re(·, e0)e−1 fromH, then the result is decomposed into the orthog-
onal sum of two operatorsJ−⊕J defined onl2(Z−) andl2(N) respectively,
whereZ− = Z \ N. ThenΛn(J−) = 0. Therefore

2

n
tr
(
T2m

(1

2
(H−W )

)
−T2m

(1

2
(H0−W )

))
= Λ2m(J−)+Λ2m(J) = Λ2m(J),

and our statement follows from the fact that the difference

tr
(
T2m

(1

2
(H −W )

)
− T2m

(1

2
(H)

))
is a polynomial of at mostm elements ofA andB.

Let J (N) be an operator which realization in the standard basis{en}∞n=0

is given by

(3.1) J (N) =


βN+1 1 + αN+1 0 . . .

1 + αN+1 βN+2 1 + αN+2 . . .
0 1 + αN+2 βN+3 . . .
. . . . . . . . . . . .


and let

PN,2m(Q) := Λ2m(J)− Λ2m(J (N))− 2
N∑
k=0

log(1 + αk).

The “tails” in the sumsΛ2m(J) andΛ2m(J (N)) cancel each other, so that the
elements of the matricesB andA do not enter in this differencePN,2m(Q)
starting from the indexN +m.

ThusPN,2m(Q) is a continuous function of at mostN +m first elements
of the matricesB andA and can be extended to arbitrary matricesB,A.
BelowPN,2m(Q) is extended for anyB andA. Denote

(3.2) Φ2m(µ) =
1

π

∫ π

−π
log
∣∣∣ sin θ

Im Mµ

∣∣∣ sin2 mθ dθ +
∑
n

f(ξ−2m
n ),

whereξn are the poles ofMµ in D = {z : |z| < 1} andf(t) = 1/2(t −
t−1)− log(t). It is important for us that

(3.3) Φ2m(µ)− Φ2m(J (N)) = PN,2m(Q)

for the functionMµ meromophic in the neighbourhood of the unit disc. The
identity (3.3) is valid ifQ is of a finite rank. The arbitrary case follows from
Proposition 4.3 and Theorem 4.4 [17].
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Notice thaty 7→ − log(y) is convex. Employing Jensen’s inequality we
find

1

π

∫ π

−π
log

[
sin(θ)

Im Mµ(eiθ)

]
sin2 mθ dθ = − 2

π

∫ π

0

log

[
Im Mµ

sin θ

]
sin2(mθ) dθ

≥ − log

[
2

π

∫ π

0

(Im Mµ) sin(θ) dθ

]
− 2

π

∫ π

0

log

[
sin2(mθ)

sin2(θ)

]
sin2(mθ) dθ

= − log[µac(−2, 2)]− 2

π

∫ π

0

log

[
sin2(mθ)

sin2(θ)

]
sin2(mθ) dθ ≥

− 2

π

∫ π

0

log

[
sin2(mθ)

sin2(θ)

]
sin2(mθ) dθ =: C(m),(3.4)

where we use thatµac(−2, 2) ≤ 1.
Formulae (3.3) and (3.4) imply

PN,2m(Q) ≤ Φ2m(µ)− C(m).

The latter inequality was obtained forMµ meromophic in the neighbour-
hood of the unit disc. However this inequality can also be extended to ar-
bitrary measuresµ satisfying Conditions (1)-(3) of Theorem 1.1. We apply
here the same argument as in [17], Section 8, repeating the corresponding
proof for the sake of completeness.

Let µ be a probability measure obeying Condition (1) of Theorem 1.1
and let

(3.5) µ ≥ γµ0,

whereµ0 is the “free” Jacobi measure (the measure withMµ0(z) = z),
γ > 0. Then

(3.6) PN,2m(Q) ≤ Φ2m(µ)− C(m).

Indeed, given anyJ and associated to itM -functionM(z), there is a natural
approximating family ofM -functions meromorphic in a neighborhood of
the closure of the unit disc̄D. The next result is proved in [17], Lemma 8.3.

Lemma 3.1. LetMµ be theM -function of a probability measureµ obeying
Condition (1) of Theorem 1.1. Define

(3.7) M (r)(z) = r−1Mµ(rz)

for 0 < r < 1. Then, there is a family of probability measuresµ(r) such that
M (r) = Mµ(r) .

It is also proved in [17] that

(3.8) lim sup
r↑1

∫
− log |Im Mµ(r)(eiθ)| dθ ≤

∫
− log |Im Mµ(eiθ)| dθ.
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The poles ofMµ(r) are given by

ξj(µ
(r)) =

ξj
r
,

where we consider only thosej for which |ξj| < r. Thus
∑
f(ξ−2m

j (µ(r)))
is monotonically increasing function ofr whose limit is equal to∑
f(ξ−2m

j ), asr ↑ 1.
Let us substitutesin2 mθ = 1−cos2 mθ in (3.2). Then by using (3.8) and

Fatou’s lemma we obtain

(3.9) Φ2m(µ) ≥ lim sup Φ2m(µ(r)).

Moreover, the convergenceMµ(r)(z)→Mµ(z) is uniform on compact sub-
sets of upper half ofD, which means that the coefficients of Jacobi matrices
must converge. Thus for anyN

PN,2m(Q) = lim
r↑1

PN,2m(Q(r))

≤ lim inf Φ2m(µ(r))− C(m) ≤ Φ2m(µ)− C(m).

For a fixedγ ∈ (0, 1) let µγ = (1 − γ)µ + γµ0. Sinceµγ obeys (3.5) and
Condition (1) of Theorem 1.1, we find

(3.10) PN,2m(Qγ) ≤ Φ2m(µγ)− C(m).

LetMγ := Mµγ and note that

Im Mγ(e
iθ) = (1− γ)Im M(eiθ) + γ sin θ.

It implies

log |Im Mγ(e
iθ)| = log(1− γ) + log

∣∣∣∣Im M(eiθ) +
γ

1− γ
sin θ

∣∣∣∣.
We see that up to the convergent to zero termlog(1 − γ), the function
log |Im Mγ(e

iθ)| is monotone inγ. By using the monotone convergence
theorem we then find

(3.11) Φ2m(µ) = lim
γ↓0

Φ2m(µγ)

(the eigenvalue term is independent ofγ, since the point masses ofµγ have
the same positions as those ofµ).

On the other hand, sinceµγ → µ weakly,

(3.12) PN,2m(Q) = lim
γ↓0

PN,2m(Qγ).
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Finally we observe that according to Lemmas 2.1, 2.2 there exists an inde-
pendent ofN functionZ2m(Q) such that∣∣∣PN,2m(Q)− 1

2

N∑
j=0

(βj+, . . . , βj+m−1)2 − 2
N∑
j=0

(αj + . . . αj+m−1)2
∣∣∣

≤ Z2m(Q)

andZ2m is finite if eitherA = 0 andB ∈ S4, orA = S3 andB ∈ S3. The
latter inequality together with (3.10)–(3.12) imply that if Conditions (1)-(3)
of the theorem are satisfied, then

1

2

∞∑
j=0

(βj + · · ·+ βj+m−1)2 + 2
∞∑
j=0

(αj + · · ·+ αj+m−1)2 <∞.

Let Πn be the orthogonal projector onto the span of the vectors
{e0, e1, . . . , en} and letA(n) = ΠnA,B(n) = ΠnB andQ(n) = SA(n) +
A(n)S∗ +B(n). We have shown the following result:

Corollary 3.1. Let the conditions (1)-(3) of Theorem 1.1 are fulfilled and
m ≥ 1. Then there exists a constantC = C(m,Q) > 0 such that

Λ2m(Q(n))− 2 tr log(I + A(n)) ≤ C, ∀n.

2. Conversely, suppose that the conditions (1.6) and (1.5) are fulfilled. We
would like to establish that

(3.13)
1

π

∫ π

−π
log

[
sin(θ)

Im Mµ(eiθ)

]
sin2 mθ dθ <∞.

Definition.Let ν, µ be finite Borel measures on a compact Hausdorff space
X. The entropyS(ν | µ) of ν relative toµ is defined by

(3.14) S(ν | µ) =

{
−∞ if ν is notµ-ac,

−
∫

log( dν
dµ

)dν if ν is µ-ac.

The following result is proved in the paper of Simon and Killip, [17],
Corollary 5.3.

Lemma 3.2. S(ν | µ) is weakly upper semicontinuous inµ, that is, if
µn

w−→ µ, then
S(ν | µ) ≥ lim sup

n→∞
S(ν | µn).

Let us use the fact that the trace formulae are valid at least for finite rank
operatorsA,B. Suppose now thatA,B are arbitrary compact selfadjoint
operators such that (1.5) and (1.6) hold. It is clear then that

(3.15) Λ2m + 2 log(τ) <∞.
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Note that the sequences of operatorsA(n), B(n) converge toA andB in
S3 or S4 (depending on which part of the theorem we prove), so that the
sequences of operators

∑m−1
j=1 SjA(n)(S∗)j and

∑m−1
j=1 SjB(n)(S∗)j con-

verge inS2. Let

Jn = S + S∗ +Q(n), and µn(δ) = (EJn(δ)e0, e0),

whereδ is an arbitrary Borel set. We first notice that

Λ2m(Jn)− 2Λ0(Jn)

converges to

Λ2m(J)− 2Λ0(J), as n→∞.
As always we assume thatαj > −1, j ∈ N. Since(Jn − z)−1 converges to
(J − z)−1 uniformly on compact subsets of the upper half-plane we obtain
thatµn is weakly convergent toµ,

µn
w−→ µ, as n→∞.

Indeed, the difference between the resolvents is the operator

(Jn − z)−1 − (J − z)−1 = (Jn − z)−1(Q−Q(n))(J − z)−1,

whose norm can be estimated byC0||Q−Q(n)||, whereC0 is independent
of n. Thereforemµn converges uniformly tomµ on compact subsets of the
upper half plane.

Applying Lemma 3.2 we obtain that ifdν = sin2(mθ)dθ andµ is the
spectral measure ofJ , then

S(ν | µ) > −∞.

This is exactly what is needed for (3.13).
In order to complete the proof of Theorem 1.1 we only have to show that

(1.6) and (1.5) imply Condition (3). Obviously for finite rank matricesA(n)
andB(n), if N is large enough, then (3.2) takes the form

1

π

∫ π

−π
log
∣∣∣ sin θ

Im Mµn

∣∣∣ sin2 mθ dθ +
∑
j

f([ξj(n)]−2m)

= Λ2m(Jn)− 2
∞∑
j=0

log(1 + αj(n)).

Let p ∈ N. Sincef(t) ≥ 0 for t > 1 then from (3.4) we obtain
p∑
j=1

f([ξj(n)]−2m) ≤ Λ2m(Jn)− 2
∞∑
j=0

log(1 + αj(n))− C(m),
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whereξj(n) ∈ (−1, 1) are the poles ofM -function of the Jacobi matrixJn.
Now for a fixed finitep we can pass in this inequality to the limit asn→∞
and obtain

p∑
j=1

f(ξ−2m
j ) ≤ Λ2m(J)− 2

∞∑
j=0

log(1 + αj)− C(m).

Since the eigenvaluesE±j are the pointsξi + 1/ξi, this inequality leads to
the Lieb-Thirring bound, i.e. Condition (3) of Theorem 1.1.

The proof of Theorem 1.1 is complete.

In the end of this Section we would like give a converse statement to
Corollary 3.1.

Corollary 3.2. Assume thatm ≥ 1 is an integer number. Let the operators
A andB be compact inl2(N) and letC = C(m,Q) > 0 be a positive
constant such that

(3.16) Λ2m(Q(n))− 2tr log(I + A(n)) ≤ C, ∀n.
Then the conditions (1)-(3) of Theorem 1.1 are satisfied.

Remark. If Conditions (1)-(3) of Theorem 1.1 are satisfied, then by
Rakhmanov’s theorem [11] both operatorsA andB are compact. This
means that Corollaries 3.1 and 3.2 are converse to each other and therefore
estabish a one to one correspondence between classes of measures satisfy-
ing Conditions (1)-(3) and operatorsA andB with properties (3.16).

4. PROOF OFTHEOREM 1.2

Letλn = (1+αn)2−1 be the eigenvalues of the operatorL = (I+A)2−I
and letα = {αn}∞n=0, β = {βn}∞n=0, λ = {λn}∞n=0. By using Rakhmanov’s
theorem for Jacobi matrices [11], we find that bothαn, βn → 0, asn→∞.
Therefore without loss of generality we can assume that the norms‖α‖l∞
and‖β‖l∞ are sufficiently small.

Applying (2.10) let us compute the difference

Λ4 − 2tr log(I + A)

=
1

4

∑
n

(
(λn + λn−1 + βn

2)2 + 2(βn + βn−1)2(λn + 1) + (λn + λn−1)2

−4

3
λ3
n + λ4

n +O(|λn|5)
)

=
1

2

∑
n

(
(λn + λn−1)2 +

1

2
(βn

4+λ4
n) + (λn + λn−1)βn

2 + λnλn−1(λn + λn−1)

(4.1)
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−1

3
(λn + λn−1)3 + (βn + βn−1)2(λn + 1) +O(|λn|5)

)
=

1

2

∑
n

(
(λn + λn−1)2 + (βn + βn−1)2(λn + 1) +

1

2
(βn

4 + λ4
n)

(4.2) +(λn+λn−1)(βn
2 +λn(λn+λn−1)−λ2

n)+O(|λn|5 +|λn+λn−1|3)
)

≥ 1

2

∑
n

(
(λn+λn−1)2+(βn+βn−1)2(λn+1)+

1

2
(βn

4+λ4
n)− 1

2ε
(λn+λn−1)2

−ε
2

(βn
2 − λ2

n + λn(λn + λn−1))2 +O(|λn|5 + |λn + λn−1|3)
)
,

as‖λ‖l∞ → 0. Obviously

(βn
2−λ2

n+λn(λn+λn−1))2 ≤ (βn
2−λ2

n)2+o(|βn|4+|λn|4+|λn+λn−1|2).

We now use that(βn
2−λ2

n)2 ≤ βn
4 +λ4

n. Therefore choosing, for example,
ε = 3/4 we obtain

Λ4 − 2tr log(I + A) ≥
∑
n

(
1

6
(λn + λn−1)2 +

1

16
(βn

4 + λ4
n))

+
∑
n

(
1

2
(βn + βn−1)2(λn + 1) + o(|βn|4 + |λn|4 + |λn + λn−1|2)).

This implies that if‖βn‖l∞ and‖λn‖l∞ are sufficiently small, thenΛ4 −
2tr log(I + A) can be estimated from below by a constant times

(4.3)
∑
n

{(λn + λn−1)2 + (βn + βn−1)2 + βn
4 + λ4

n}.

The required upper estimate by a constant times (4.3) follows from (4.2).
Finally Corollaries 3.1 and 3.2 imply the proof of Theorem 0.2.
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