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ABSTRACT. A non-linear functionalQ[u, v] is given that governs the
loss, respectively gain, of (doubly degenerate) eigenvalues of fourth or-
der differential operatorsL = ∂4 + ∂ u ∂ + v on the line. Apart from
factorizingL asA∗A+E0, providing several explicit examples, and de-
riving various relations betweenu, v and eigenfunctions ofL, we findu
andv such thatL is isospectral to the free operatorL0 = ∂4 up to one
(multiplicity 2) eigenvalueE0 < 0. Not unexpectedly, this choice ofu, v
leads to exact solutions of the corresponding time-dependent PDE’s. Re-
moval of eigenvalues allows us to obtain a sharp Lieb-Thirring inequality
for a class of operatorsL whose negative eigenvalues are of multiplicity
two.

1. FACTORIZATION OF THE OPERATORL = ∂4 + ∂ u ∂ + v.

Let us assume thatu andv are real-valued functions andu, v ∈ S (R),
whereS (R) denotes the Schwartz class of rapidly decaying functions. Let
L be a linear fourth order selfadjoint operator inL2 (R)

(1.1) L := ∂4 + ∂ u ∂ + v

defined on functions from the Sobolev classH4(R).
A general inverse theory for higher order operators on the line was con-

sidered in [1], [2] and [5]. In [3] Lieb-Thirring inequalities for (matrix)
Schr̈odinger operators were proven by using factorization of second order
operators into products of first order operators.

Let us assume that the lowest eigenvalueE0 < 0 of the operator (1.1)
is of double multiplicity and therefore there exist two orthogonal inL2(R)
eigenfunctionsψ+ andψ− satisfying the equation

(1.2) Lψ = E0 ψ.

As shown in the appendix, the Wronskian

(1.3) W (x) := ψ+(x)ψ′−(x)− ψ−(x)ψ′+(x)
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is necessarily non-vanishing,W (x) 6= 0, x ∈ R. Let us try to factorize
L− E0 as

(1.4) A∗A =
(
−∂2 − f∂ + g − f ′

) (
−∂2 + f∂ + g

)
,

with f andg real-valued. Clearly,

(1.5)

{
f ′ + f 2 + 2g = −u
g2 − (fg + g′)′ = v − E0.

Instead of discussing these non-linear differential equations directly, let us
expressf, g, u andv in terms of the functionsψ+, ψ−. Straightforwardly,
one finds that sinceψ+ andψ− are eigenfunctions ofA∗A with eigenvalue
0, we haveAψ+ = Aψ− = 0, which implies

(1.6)

{
f W = W ′

−gW = ψ′+ ψ
′′
− − ψ′′+ ψ′− =: W12,

while (L− E0)ψ+ = (L− E0)ψ− = 0 implies

(1.7)

{
uW = 2W12 −W ′′ + ε

(v − E0) W = uW12 +W ′′
12 −W23,

whereε is an integration constant and

(1.8) W23 := ψ′′+ ψ
′′′
− − ψ′′′+ ψ′′−

is expressible in terms ofW andW12 via

(1.9) W W23 = W ′
12 W

′ −W12 W
′′ +W 2

12.

Equations (1.6) say that

(1.10) f =
W ′

W
, g = −W12

W
.

SinceuW + W ′′ − 2W12 vanishes at infinity,ε has to be0, and one finds,
using equations (1.7)-(1.9), that

u =
2W12 −W ′′

W
(1.11)

v − E0 =
W 2

12

W 2
+

(
W ′

12

W

)′
.(1.12)

Note that

(1.13) L̃ := AA∗ + E0 = L+ 4 ∂ f ′ ∂ + 2 f g′ − f f ′′ + f ′′′
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will be isospectral toL, apart fromE0, which has been removed. To see
why E0 is not an eigenvalue of̃L, let us for simplicity assume thatu, v ∈
C∞0 (R), say that suppu, suppv ⊂ (−c, c). Then,

ψ+(x) = α1 e
−κx cos (κx) + β1 e

−κx sin (κx)
ψ−(x) = α2 e

−κx cos (κx) + β2 e
−κx sin (κx)

, x > c,

whereE0 = −4κ4, k > 0. This implies

W (x) = κ e−2κx (α1 β2 − β1 α2)
W12(x) = 2κ3 e−2κx (α1 β2 − β1 α2)

, x > c.

(note that the bracket does not vanish, sinceψ+ andψ− are linearly inde-
pendent.) This (and a similar investigation at the other end) implies that

f(x) = ∓2κ, g(x) = −2κ2, for ± x > c.

SinceL̃ψ = E0 ψ impliesA∗ψ = 0, we obtain

ψ′′ − 2κψ′ + 2κ2ψ = 0, x > c.

It clearly follows thatψ cannot be inL2 (R) unless it vanishes identically.

Before giving some explicit examples, let us make some comments con-
cerning the problem of actually findingf andg, orψ+ andψ−, whenu and
v are given. Instead of solving the non-linear system (1.5), or the spectral
problem (1.2), one may also try to solve the Hirota-type equation which
follows from (1.11), (1.12)

(1.14) 4 (v − E0) =

(
W ′′

W
+ u

)2

+ 2

(
W ′′′

W
+ u′ + u

W ′

W

)′
,

and which foru ≡ 0 reads

4 (v − E0) W 2 = 2 (W ′′′′W −W ′′′W ′) +W ′′2.

OnceW (6= 0) is obtained,f andg can be given by the equations (1.10).
With f andg defined in this way, equation (1.5) is satisfied and the factor-
ization (1.4) is valid.

Note also the following: the functionsψ+ andψ− are solutions ofAψ =
0, i.e.

−ψ′′ + f ψ′ + g ψ = 0.

By writing
ψ± =

√
W φ±,

one finds thatφ+ φ
′
− − φ′+ φ− = 1 and thatφ± are (oscillating) solutions of

the equation in Liouville form

−φ′′ +

(
g +

3

4

(
W ′

W

)2

− 1

2

W ′′

W

)
φ = 0,
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i.e. associated to a second order self-adjoint differential operator.

2. ADDITION AND REMOVAL OF EIGENVALUES.

Although adding and removing eigenvalues may be thought to be a pro-
cedure that can be read both ways (symmetrically), the steps involved are
actually quite different in both cases (in particular, it is not yet clear, which
conditions onu andv allow for the addition of a doubly degenerate eigen-
value below the spectrum of∂4 + ∂ u∂ + v). Let us therefore ‘summarize’
them separately, in both cases starting from a given operator

Ln := ∂4 + ∂ un∂ + vn, n ∈ N,

and the equation (1.14) withu, v replaced byun, vn. This equation shall be
referred to as (1.14)n.

Removal of eigenvalues:
1. Solve (1.14)n

(
with E0 → E

(n)
0 = −4κ4

n

)
for Wn := W (→ 0) at in-

finity and defineW (n)
12 as 1

2
(Wn un +W ′′

n ), as is natural in accordance with

equation (1.11)n. Alternatively, ifψ(n)
± are known, calculateWn andW (n)

12

via their definitions, i.e. as

Wn = ψ
(n)
+ ψ

(n)
−
′
− ψ(n)

− ψ
(n)
+

′

W
(n)
12 = ψ

(n)
+

′
ψ

(n)
−
′′
− ψ(n)

+

′′
ψ

(n)
−
′
.

2. Definefn andgn according to (1.10)n, thus solving the system (1.5), and
obtaining the factorization

Ln = A∗nAn − 4κ4
n.

3. The operator

L̃n = AnA
∗
n − 4κ4

n =: Ln−1

will then be isospectral toLn apart form the lowest eigenvalueE(n)
0 = −4κ4

n

(of multiplicity 2), which has been removed.

Addition of eigenvalues:
1. Solve (1.14)n

(
with E0 → E

(n+1)
0 = −4κ4

n+1

)
for Ŵn+1 := W ∼

e±2κn+1x, asx→ ±∞, i.e. Ŵn+1 diverging at infinity and non-vanishing for
finite x. (As mentioned above, conditions onun, vn ensuring the existence
of Ŵn+1 are still unclear.)
2. DefineWn+1 := 1

Ŵn+1
, which will then solve the (more complicated
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looking) equation

40
W ′4

W 4
− 2

W ′′′′

W
+ 14

W ′′′W ′

W 2
+ 13

W ′′2

W 2
− 64

W ′′W ′2

W 3
+(2.1)

2u′′ + u2 − 2u′
W ′

W
+ 2u

(
W ′2

W 2
− 2

(
W ′

W

)′)
= 16κ4 + 4v

(with u, v→ un, vn andκ→ κn+1). In fact, (2.1) is equivalent to

− 2f ′′′ + 6ff ′′ + 7f ′2 − 8f ′f 2 + f 4 + 2u
(
f 2 − 2f ′

)
− 2u′f + u2 + 2u′′

= 4v + 16κ4(
via f =

W ′n+1

Wn+1
=: fn+1, u, v → un, vn andκ→ κn+1

)
that arises in the

factorization ofLn+1.
3. Write

Ln = An+1A
∗
n+1 − 4κ4

n+1

(implying 2 gn+1 := 3 f ′n+1 − f 2
n+1 − un).

4. Then,

Ln+1 := A∗n+1An+1 − 4κ4
n+1,

will be isospectral toLn apart from having one additional (doubly degener-
ate) eigenvalueE(n+1)

0 below the spectrum ofLn.

3. A NON-LINEAR FUNCTIONAL Q AND A SYSTEM OF PDE’S
ASSOCIATED WITH THE OPERATORL.

As observed 100 years ago [7], the operatorL = ∂4 + ∂ u ∂ + v has a
unique 4’th root in the formL1/4 := ∂ +

∑∞
k=1 lk(x)∂−k. DefineM to be

the positive (differential operator) part of any integer power ofL1/4. Then
it is well known, that

Lt = [L,M ] ,

whereLt is the operator defined byLt ϕ = ∂ ut ∂ ϕ + vt ϕ, consistently
defines evolution equations (foru = u(x, t), v = v(x, t)) that have infinitely
many conserved quantities (i.e. functionals ofu and v, and their spatial
derivatives, that do not depend ont). We shall make use of this by letting

M := 8
(
L3/4

)
+

= 8 ∂3 + 6u ∂ + 3u′,

and focusing on the quantity
(3.1)

Q[u, v] :=
1

48

∫
R

(
48 v2 +

5

4
u4 − 12u2 v − 40u′′ v +

13

2
u2 u′′ + 9u′′2

)
dx.
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This quantity does not change whenu andv evolve according to

(3.2)

{
ut = 10u′′′ + 6uu′ − 24 v′

vt = 3 (u′′′′′ + uu′′′ + u′ u′′)− 8 v′′′ − 6u v′.

The functionalQ appears in the power series expansion for the Fredholm
determinantdet(L − z)(∂4 − z)−1 and is one of the infinite number of
integrals of motion for the dynamical system (3.2).

4. A L IEB-THIRRING INEQUALITIY

It is clear that formula (1.13) for̃L = ∂4 + ∂ ũ ∂ + ṽ implies that

(4.1)

{
ũ− u = 4 f ′

ṽ − v = 2 f g′ − f f ′′ + f ′′′.

By using the asymptotic properties off andg (f → ∓2κ, g → −2κ2, as
x→ ±∞), one can show that

(4.2) δQ :=
(
Q[ũ, ṽ]−Q[u, v]

)
= 2(4κ4)7/4 64

21
√

2
.

This result is similar to that for Schrödinger operators [3] and reflects the
loss of a doubly degenerate eigenvalueE0 = −4κ4, when going fromL to
L̃.

The proof of (4.2), just as the derivation of (3.1), involves very lengthy
calculations. When deriving (4.2) we have used (1.5) and (4.1) to write the
expression forδQ as an integral of terms involving only the functionsf
andg, and their spatial derivatives. The crucial step then is to note that the
integrand is a pure derivative ofx, i.e. δQ =

∫
Q
′ dx for some function

Q, which makes it possible to evaluate the integral solely from the limits of
f andg at infinity. Thus, to computeδQ, we have selected the terms inQ
which are free of derivatives, as those are the only ones that contibute. The
terms inQ still containing derivatives, for instance the ones quadratic ing
and linear inf ,

1

48

∫ (
(96− 48) g2 f ′′′ − 2 · 96 f g′ g′′ − 8 · 12 g′′ f ′ · 2g − 4 · 40 f ′′′ g2

+ 160 g′′ g′ f − 16 · 26 f ′′ g′ g − 16 · 13 g′2 f ′
)
dx,

give zero.
The constant in the right hand side of (4.2) is related to the semiclassical

constantLcl4,7/4,1 appearing in the asymptotic formula

lim
α→∞

α−2 Tr (∂4 + αv)
7/4
− = Lcl4,7/4,1

∫
v2
− dx,
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where

Lcl4,7/4,1 = (2π)−1

∫ 1

−1

(1− ξ4)7/4 dξ =
21
√

2

128
.

This constant also appears in the trace formula for a fourth order differential
operator∂4 + v considered in [6] and its generalization for the operator
∂4 + ∂u∂ + v.

If we assume that the operatorL = ∂4 + ∂ u ∂ + v hasn negative eigen-
values of multiplicity two, we can annihilate them by using the procedure
described in Section 2 and obtain new potentialsun, vn. Formula (4.2) al-
lows us to state the following result:

Theorem 4.1. LetL be an operator(1.1) that has2n negative eigenvalues
{λj}2n

j=1, counted with their multiplicity and let all of them be of multiplicity
two, λ2k−1 = λ2k, k = 1, 2, . . . , n. Assume thatQ[un, vn] ≥ 0, where
un and vn are obtained by using the removal of eigenvalues described in
Section 2. Then

(4.3)
2n∑
j=1

|λj|7/4 ≤ 2Lcl4,7/4,1 Q[u, v].

If u andv are reflectionless potentials for which we end up withun = vn ≡
0 (see Section 6), then instead of inequality in (4.3) we obtain equality.

Corollary 4.1. The constant2Lcl4,7/4,1 in Theorem 4.1 cannot be improved.

Note thatQ is the integral of a quadratic form inv, u2 andu′′ which has two
positive but one (very small) negative eigenvalue, soQ is not obviously pos-
itive for all u andv. The eigenvalues of this quadratic form approximately
are 1

48
(57.2566, 1.1592,−0.1657).

Rather involved functionsu andv have recently been constructed [4] for
which (3.1) is actually negative.

5. SOME EXAMPLES.

Example 1.The operator

L = ∂4 − 5 ∂2 + ∂
12

cosh2 x
∂ − 6

cosh2 x
= A∗A− 4

with
A = −∂2 − 3 tanhx ∂ − 2

has 2 linearly independent eigenfunctions with eigenvalueE0 = −4,

ψ+(x) =
1

cosh2 x
, ψ−(x) =

sinh x

cosh2 x
.
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One can easily check thatAψ± = 0 and thatu, v are reflectionless, as

L̃ = AA∗ − 4 = ∂4 − 5 ∂2

(note thatψ+ and ψ− have different fall-off behaviour at∞ and that
W (x) = cosh−3 x).
Example 2.The operator

L = ∂4 + 16 ∂
1

cosh2 x
∂ +

40

cosh4 x
− 88

cosh2 x
= A∗A− 64

with

A = −∂2 − 4 tanhx ∂ − 8 +
2

cosh2 x
has 2 linearly independent eigenfunctions with eigenvalueE0 = −64,

ψ+(x) =
cos 2x

cosh2 x
, ψ−(x) =

sin 2x

cosh2 x
.

One easily verifies thatAψ± = 0, and that

L̃ = AA∗ − 4 = ∂4 − 40

cosh2 x
.

A computation gives that

Q =
28

7
· 229, Q̃ =

26

3
· 100, δQ = −217

21

(
= −2 (κ = 2)7 29

21

)
.

Example 3.The operator

L = ∂4 +
(
45 Ψ4 − 40 Ψ2

)
= A∗A− 4

with

W = Ψ2 :=
1

cosh2 x
, W12 = 2 Ψ2 − 3 Ψ4

and
A = −∂2 − 2 tanhx ∂ − 2 + 3 Ψ2

has a doubly degenerate eigenvalueE0 = −4. One easily verifies, that

L̃ = ∂4 − 8 ∂Ψ2 ∂ + 25 Ψ4 − 16 Ψ2.

Example 4.The operator

L = ∂4 − ∂2 + 4 ∂
1

cosh2 x
∂ +

6

cosh2 x
− 8

cosh4 x
= A∗A

with

A = −∂2 − tanhx ∂ − 1

cosh2 x
= ∂ (−∂ − tanhx)

has a unique ground-stateE0 = 0 with eigenfunction

ψ(x) =
1

coshx
.
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The second solution ofAψ = 0 is ψ = tanhx 6∈ L2 (R). One easily
verifies, that

L̃ = ∂4 − ∂2.

Example 5.For anyk > 0, the operator

L = ∂4 + ∂ u ∂ + v

with{
u(x) = 2

(
1 + 2

k

)
Ψ2
(
x
k

)
v(x) = −4

(
1 + 1

k
− 1

k3

)
Ψ2
(
x
k

)
+
(
1− 1

k

) (
1 + 5

k
+ 6

k2

)
Ψ4
(
x
k

)
,

where

Ψ(x) :=
1

coshx
,

has a doubly degenerate ground-state,E0 = −4, with eigenfunctions

ψ
(k)
± (x) = e±ix

(
1

cosh x
k

)k
.

6. FOLLYTONS.

In order to findu andv such thatL = A∗A+E0 is ’conjugate’ to the free
operatorL̃ = ∂4 =: L0 one has to solve (1.5) withu = v = 0. Eliminating
g and writingE0 = −4κ4 one obtains the ODE

2 f ′′′ + 6 f f ′′ + 7 f ′2 + 8 f ′ f 2 + f 4 = 16κ4.

One may reduce the order by takingf as the independent variable, and
F (f) := f ′ as the dependent one, yielding

2
(
F ′′ F 2 + F ′2 F

)
+ 6F F ′ f + 7F 2 + 8F f2 + f 4 = 16κ4,

but both forms seem(ed) to be too difficult to solve. By using (1.14), how-
ever, it takes the form

16κ4 W 2 = 2 (W ′′′′W −W ′′′W ′) +W ′′2;

a 4-parameter-class of solutions can be obtained via the ansatz

W = a+ be2κx + ce−2κx + d cos 2κx+ e sin 2κx

(yielding4bc+ d2 + e2 = a2/2). Let us take

Ŵ = const ·
(√

2 + cosh (2κx)
)

as its ‘prototypical’ solution. Correspondingly,

f̂ :=
Ŵ ′

Ŵ
= 2κ

sinh (2κx)√
2 + cosh (2κx)

.
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As interchangingA∗ andA (as far asf is concerned) only changes the sign
of f ,

f(x) = −2κ
sinh (2κx)√

2 + cosh (2κx)
.

The Wronskian of the two ground-statesψ± (of L = ∂4 + ∂ u ∂ + v, conju-
gate toL0 = ∂4) is simply the inverse of̂W , i.e. (choosing the constant in
Ŵ to be1),

W (x) =
1√

2 + cosh (2κx)
=: χ (2κx) .

The functiong is given by

g =
1

2

(
3 f ′ − f 2

)
= −2κ2

(
1 +
√

2W − 2W 2
)
.

Insertion into equation (1.5) yields the reflectionless ’potentials’

(6.1)

{
uκ = 16κ2

(√
2W −W 2

)
vκ = 16κ4

(√
2W − 12W 2 + 16

√
2W 3 − 8W 4

)
with L = ∂4 + ∂ uκ ∂ + vκ having exactly one doubly degenerate negative
eigenvalue−4κ4. While in most other examples we scaledκ to be equal
to 1 it is, in this case (due to the appearance of2κ in W ) easiest to choose
κ = 1

2
, i.e. to take

(6.2)

{
u = 4

(√
2χ− χ2

)
v =

(√
2χ− 12χ2 + 16

√
2χ3 − 8χ4

)
and, when needed, use formulas like

χ′′ = χ
(
1− 3

√
2χ+ 2χ2

)
χ′2 = χ2

(
1− 2

√
2χ+ χ2

)
χ′′′ = χ′

(
1− 6

√
2χ+ 6χ2

)
χ′′′′ = χ

(
1− 15

√
2χ+ 80χ2 − 60

√
2χ3 + 24χ4

)
.

(Note that redefiningχ by a factor of−
√

2 would make all the coefficients
positive (integers)). These formulas are useful when checking thatu(x+4 t)
andv(x + 4 t), with u andv given by (6.2), are exact solutions of the non-
linear system of PDE’s (3.2) (just asuκ(x+ 16κ2 t), vκ(x+ 16κ2 t)).

APPENDIX.W 6= 0

We shall prove here that the Wronskian type function defined in (1.3) never
equals zero.

Theorem. Letψ± be two linear independent eigenfunctions of the operator
(1.1)corresponding to the lowest eigenvalueE0 of double multiplicity. Then

W [ψ+, ψ−](x) := ψ+(x)ψ′−(x)− ψ−(x)ψ′+(x) 6= 0, x ∈ R.



FOLLYTONS AND THE REMOVAL OF EIGENVALUES 11

In order to prove this result we need

Lemma. Let E0 be the lowest eigenvalue of the operatorL and letψ ∈
L2(R) be a solution of the equation(1.2) satisfyingψ(x0) = ψ

′
(x0) = 0

for somex0 ∈ R. Thenψ(x) ≡ 0.

Proof. Indeed, the function

ψ̃(x) =

{
−ψ(x), if x ≤ x0,

ψ(x), if x ≥ x0,

is linear independent withψ. Obviously∫
R

(
|ψ̃′′|2 + u|ψ̃′|2 + v|ψ̃|2

)
dx = E0

∫
R

|ψ̃|2 dx.

This implies thatψ1 = ψ̃+ψ is also anL2(R) eigenfunction of the operator
L with the eigenvalueE0 and thereforeψ1 = ψ̃ = ψ ≡ 0. �

Remark. In the last Lemma the conditionsψ(x0) = ψ
′
(x0) = 0 split the

problem for the operatorL in L2(R) into two Dirichlet boundary value
problems on semiaxesL2((x0,∞)) andL2((−∞, x0)). Therefore, the low-
est eigenvalue moves up.

Proof of Theorem.
Letψ±, be two linear independent eigenfunctions corresponding to the low-
est eigenvalueE0 of the operatorL. Then

W [ψ+, ψ−] = det

(
ψ+ ψ−
ψ′+ ψ′−

)
.

If W [ψ+, ψ−](x0) = 0 then there are constantsα andβ, not both zero, such
that

α

(
ψ+(x0)
ψ′+(x0)

)
= β

(
ψ−(x0)
ψ′−(x0)

)
.

Therefore the functionψ1(x) = αψ+(x)− βψ−(x) and its derivative equal
zero atx0. By Lemmaψ1 ≡ 0 which contradicts the fact thatψ+ andψ−
are linearly independent. The proof is complete.�
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