An inverse spectral problem coming from seismology

(problem session at the Matrei conference July 9, 2005).

Yves Colin de Verdière *

Let $q \in C^{\infty}(]-\infty, 0],]0, \infty[$) be so that $q(x) \equiv 1$ for $x \ll 0$ and q(x) is not everywhere ≥ 1 .

Let h be a > 0 number and L_h be the following family of self-adjoint operator:

$$L_h = -h^2 \partial_x q \partial_x + q$$

with Neumann boundary condition at x = 0.

Let $\sigma_q(h) \subset]$ inf q, 1[be the discrete spectrum of L_h . We ask the following question:

is it possible to recover q from the spectra $\sigma_q(h)$ supposed to be known for all h > 0?

Using semi-classical asymptotics $h \to 0$ given be the Weyl law, one can check that the answer is yes if q is decaying.

A more difficult question would be the same problem, but assuming only the knowledge of the spectra of L_h for $h \in [h_0, h_1]$ with $h_0 > 0$.

References

[1] Yves Colin de Verdière, Hearing the noise of the earth: mathematical models, preprint 2005.

^{*}Institut Fourier, Unité mixte de recherche CNRS-UJF 5582, BP 74, 38402-Saint Martin d'Hères Cedex (France); yves.colin-de-verdiere@ujf-grenoble.fr