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This chapter analyses appropriate regulatory instruments for public transport markets under monopoly
and competition, respectively. For the monopoly case, the operator chooses too low supply, compared to
welfare optimum. In contrast, for the competition case the operators choose too high supply, at least for
the competition model that we have considered most appropriate. It is found that under monopoly
a subsidy should be applied, while under competition taxation should be applied.
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1. Introduction

Is public transport characterised by market failure, so there is
a reason for government intervention? If so, does intervention
mean subsidisation or taxation?

We are in this study concerned solely with pure economic
incentives to correct the behaviour of profit maximising operators.
We disregard other possible regulatory measures, thus leaving the
operators maximum freedom.

Much concern has been dedicated to public transport services,
both from the general public and politicians in most countries.
Should they be state owned or private? Should they be supported
financially?

In most industrialised countries, the responsibility for local and
regional public transport gradually became in to the hands of
a Public Transport Authority, where a driving force was growing car
ownership and consequently lower public transport demand and
revenues. In many of these countries, the authority is also still in
charge of both planning and operations of the services.

During the last two decades, another trend has flourished:
deregulation. In Western Europe, this trend commenced within local
and regional public transport. The privatisation of the English urban
bus industry represents the ‘‘full market solution’’, where both supply,
prices and the operation are in the hands of competing profit max-
imising firms. In Scandinavian countries and in London, and to some
extent in other countries, the decision over local and regional public
transport supply and prices has been kept in the hands of a public
ental Agency for Innovation
ments by Roger Pyddoke and

on).

All rights reserved.
authority, while the actual operation is left for competition through
tendering. Typically, these services need local or central government
grants for financing and there is economic reason for subsidisation,
partly due to the so-called Mohring effect (See Mohring, 1972), i.e.,
positive external effects of public transport.

The approach by Mohring has then been followed by, e.g.,
Jansson (1984) and Turvey and Mohring (1975) who deal with price
and service frequency, assuming one passenger group. Nash (1978)
optimises price and output in terms of miles operated for frequent
urban bus services, contrasting maximum profit and maximum
welfare solutions and assuming demand in terms of passenger
miles to be dependent on price and bus miles operated. Jansson
(1991) considers and contrasts frequent and infrequent services,
and takes into account a variety of passenger groups. Panzar (1979)
analyses infrequent airline services, assuming demand to be
dependent on price and service frequency and allowing for
a distribution of ideal departure times.

The other reason, for subsidisation, most relevant for urban public
transport, is the second-best argument, i.e., that public transport
should be subsidised when motorists do not pay the full social costs.
The second-best argument is not discussed in this chapter.

In many developing countries, the typical situation is that urban
public transport is both planned and operated by profit maximising
firms.

For long-distance public transport, the circumstances and the
economically efficient policy are less clear. Most long-distance
public transport operators are commercial profit maximisers,
private or state owned. Airlines, railway, coach services often
compete in some ranges of distance. Is there a cause for govern-
ment intervention?

Rail transport, urban and long-distance, has in most countries so
far been left in the hands of governmentally controlled bodies, but
two exceptions are Great Britain and Sweden. In both countries, the
railway has been split into a governmental authority in charge of
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the infrastructure and one or more operating companies. These
companies compete through competitive tendering, in Sweden
though only for regional commuter train services.

The analysis and the results in this chapter are valid for all kinds
of scheduled public transport. We analyse the scope for interven-
tion for a monopolistic and a competitive situation, respectively.
We ignore the income effect and excess burden of public financing.
We find that monopolies should be subsidised and competitive
operators be taxed, in order to achieve the social welfare optimum.
This chapter is organised as follows.

In Section 2, we specify our basic modelling of utility and
demand.

In Section 3, we study a profit maximising public transport
operator who acts under monopoly, facing imperfect elastic
demand. This section follows Jansson (1993) in the basic modelling
approach, where price, service frequency and ride time as a func-
tion on load factor are welfare optimised, but here we also contrast
welfare and profit maximisation in order to find the appropriate
regulatory instrument. We find that a profit maximising operator
chooses a higher price and a lower seat capacity than what
a welfare maximiser would do. We find that the regulatory
instrument for achieving a social optimum is to subsidise the profit
maximising operator through the price paid by passengers. This
subsidy can achieve a social optimum for all the relevant variables:
price, service frequency and transport unit size, while a production-
related subsidy cannot yield a social optimum. Some authors
assume that the appropriate regulatory instrument is a subsidy
related to production, see for example, Carlquist (2001) for appli-
cations in Norway. Larsen (2001) finds that both a production
related subsidy and a subsidy related to the passengers should be
applied. Else (1985) and Wallis and Gale (2001) on the other hand,
argue that the subsidy should be related to the passengers only.

In Section 4, we study two profit maximising public transport
operators who compete (‘‘Bertrand competition’’) with heteroge-
neous transport modes. Heterogenity here stems from the differ-
ence between randomly distributed ideal departure times and
actual departure times for the competing routes or modes and from
randomly distributed taste for the routes or modes. Since no
analytical solution to the optimisation problem is available in this
case, we employ numerical calculations. The conclusion in this case
is significantly different compared to the monopolistic case in
Section 3. Under competition, we find that welfare optimising
frequencies are below the frequencies that the operators would
choose. That competition may imply too much supply from a social
welfare point of view is not surprising and found in other studies;
see for example, Jansson (1997) who employs a numerical example
to demonstrate this. Under competition, we find that taxation
instead of subsidies should be applied in order to correct a profit
maximising operator. However, we cannot rule out that this result
is model dependent, but we believe that the assumption of Ber-
trand competition is the most realistic.

In Section 5, we discuss the results from a theoretical point of
view and provide examples for possible real-world applications.

2. Utility and demand

Without loss of generality, we assume that calculations of
assignment, demand and consumer surplus refer to one passenger
group in one origin–destination pair. This group should be as
homogeneous as possible with respect to valuation of time in
relation to price. For real-world analyses and applications, it is
evident that passengers have to be segmented according to valua-
tions of time and the segment specific ticket price they have to pay.
We ignore the income effect, which is standard in transport anal-
ysis. All travel time components are expressed in terms of money or
time by conversion with values of time.
Demand is specified for certain periods, such as the average
weekday afternoon peak hour in wintertime, the average Saturday
etc. Only one type of chargeda per-trip pricedis considered.

The operating firm reaches decisions about relevant inputs and
prices well ahead of implementation because of a necessary plan-
ning lag. All factors of production that are variable between deci-
sion and implementation are, therefore, considered relevant for the
joint decision on the magnitude of policy variables. These factors
include, we assume, the frequency and the size of transport unit,
including the personnel required.

The generalised cost, i.e., the sum of price and travel time
components expressed in monetary terms or time, for a journey
from door to door has one part G common to all passengers, and
one idiosyncratic part ei specific for passenger i. Thus the general-
ised cost for traveller i is:

Gi ¼ Gþ ei:

Each individual is assumed to have a utility of travel from origin
to destination, i.e., the utility of the journey itself, which is denoted
ni. The net utility for individual i is:

vi � Gi ¼ vi � ei � G:

Let ui¼ ni� ei and denote by f[u] the density of ui. Individual i
chooses to travel if ui�G, so the aggregate demand, X, is the inte-
gral of f[u] above G:

X½G� ¼
ZN
G

f ½u�du: (2.1)

Note that X is a function of G only, and that

X0½G� ¼ �f ½G� < 0: (2.2)

The consumer surplus, S, is thus:

S ¼ S½G� ¼
ZN
G

ðu� GÞf ½u�du:

It follows that

vS
vG
� ðG� GÞf ½G� �

ZN
G

f ½u�du ¼ �X½G�: (2.3)

3. Public transport under monopoly

3.1. Introduction

Our aim in this section is to find the appropriate regulatory
instrument under monopoly. First, we compare optimal price and
quality according to welfare maximisation optimum and profit max-
imisation optimum, respectively. Quality is here understood as wait
time and ride time as a function of the load factor (seats per departure).
The discrepancies between optima provide the ground for the basic
aim: to find a regulatory instrument that makes the profit maximising
operator behave according to welfare optimum criteria.

3.2. Notation and assumptions

We introduce the following notation:
p is the price for a trip.
s is a subsidy paid to the operator per journey.
X is the number of passengers during a period of time,

thought of as 1 h.
F is frequency in number of departures per hour.



1 The marginal effect on occupancy rate of, for example, the frequency F is
vZ=vF ¼ FvX=vF � X=F2N ¼ XðeF�1Þ=F2N; which is negative only if eF< 1.

2 Topkis’ theorem, in the form we use it here, says that if vf ½x =vxi � vg½x =vx1�� and
either vf ½x =vxi� is increasing in xj for all j s i, or the same is true for g[x], then
argmax f[x] � argmax g[x].
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N is the number of seats per departure.
U is the product FN, i.e., the number of seats per hour.
Z is the load factor, Z ¼ X=U ¼ X=ðFNÞ:
I is the variable infrastructure cost per departure.
e is the external cost per departure.
f is the fee paid by the operator per departure, including

infrastructure costs, external costs and a possible
production-related subsidy.

c is a cost proportionate to number of passengers, mainly
sales costs.

r is the ride time cost; an affine or convex function of Z.
T is the cost of frequency delay (wait time).
C[N] is the variable cost per departure directly related to the

size of the transport unit, assumed to be an affine or
convex function of N.

ep is the own-price elasticity of demand. vX=vpp=X;
eF is the frequency elasticity of demand.vX=vFF=X;
eN is the elasticity of demand with respect to number of

carriages vX=vNN=X:
Arguments of functions are delimited by [ ], while expressions

are grouped by parentheses ( ).

3.2.1. Authorities
The Public Transport Authority is assumed to be welfare max-

imising and responsible for infrastructure, which is subject to a user
charge, f.

3.2.2. The operating firms
The operating firms may be either welfare or profit maximising.

In both cases, it optimises prices, service frequency and the number
of seats or carriages.

We deal with consumption efficiency related to determination
of optimal prices, optimal frequency, optimal transport unit size
and possible subsidies and infrastructure charges, assuming that
production is efficient, irrespective of whether the actual producer
is welfare or profit maximising.

3.2.3. The passengers
Aggregate demand and consumers’ surplus are expressed as

functions of the common generalised cost G¼ (ticket price
p)þ (time costs). Time costs are here assumed to comprise ride
time and ‘‘frequency delay’’, which is the time interval between
ideal and actual departure time.

The cost of ride time is:

r ¼ r
�

X
FN

�
:

The cost of ride time, r, is thus assumed to depend on the load factor
(occupancy rate,) Z ¼ X=ðFNÞ, where r is an increasing and convex
function, i.e., r0[Z]> 0 and r00[Z]� 0. We ignore that there are several
passenger groups. This simplification will substantially facilitate
the expressions derived without disturbing the purpose of the
analysis (the optimal welfare maximisation conditions when
various distances travelled by different passenger groups are taken
into account can be found in Jansson (1991)).

The interval between departures is 1/F h. Ideal departure times,
t, are uniformly distributed within this interval. In this section, we
assume that the delay cost is a function of frequency only, i.e.,
T¼ T[F]. In Section 4, we will, however, consider the individual
variations of delay times.

If p denotes the price, the generalised cost of travel for a group
(index omitted) at time t is:

G½p; F;N�hpþ r
�

X
FN

�
þ T½F�: (3.1)
Note here that G is a function of occupancy rate, which is a function
of demand, X, which in its turn is a function of frequency and price.
That is, price affects demand and thus the riding time cost.

We know that own-price elasticities, denoted ep, are negative,
ep< 0. We assume, based on solid empirical evidence for most
situations, that demand elasticities with respect to frequency and
transport unit size, denoted eF and eN, are such that 0< eF< 1,
0< eN< 1, implying that vZ=vF < 0; vZ=vN < 0. This means that an
increase in frequency or unit size will not generate so many
passengers that occupancy rate is unchanged or increases.1

3.3. Welfare and profit optima

3.3.1. Objective functions
Below we present the objective functions of the welfare max-

imisation and the profit maximisation models. The maximisation
relates to one service during a period normalised to 1 (h). The
analysis may then be repeated for other periods and routes.

Infrastructure costs of rail operation is I$F. The operation gives
rise to external costs eF. The operators are supposed to pay the
infrastructure charge f F, where not necessarily f¼ Iþ e. Fixed costs
are not taken into account in the model since they are not affected
by the operation decisions. The welfare objective function is
expressed as:

W ¼ S½G� þ ðp� cÞX � FðC½N� þ I þ eÞ:

The objective function for profit maximisation includes only pro-
ducer’s surplus, taking into account the infrastructure fee, f:

p ¼ ðp� cÞX � F C½N� � fF:

3.3.2. Relations between welfare and profit optima
We will now examine the relations between optimal price,

frequency and unit size for welfare and profit maximisation, respec-
tively. In other words, we want to know whether price, frequency and
transport unit size is larger or smaller for welfare or profit max-
imisation, respectively. For this purpose, we employ Topkis’ theorem.2

We differentiate the welfare and profit functions with respect to
the variables X, F and U h FN; i.e., we transform the variables F and
N into one, so that U reflects the total capacity per hour in terms of
number of seats.

Of course, X is endogenous, but in the calculations below we
consider X, F and U to be exogenous, and p endogenous. Thus, when we
differentiate w.r.t. X, we keep U and F fixed, but let p vary. Similarly,
when we differentiate w.r.t. F, we keep X and U fixed, and let p vary (so
as to keep X fixed.) Note that whenwe differentiatew.r.t. Fand U, since X
is fixed, also G is fixed (cf. Eq. (2.1);) so for instance v=v FS½G ¼ 0� .

Note that when employing Topkis’ theorem, we should compare
the derivatives of the objective functions, i.e., the comparison
should be at the same point (not their respective optimum points).

In the case of no subsidy, s¼ 0, we have, employing Eqs. (2.2)
and (2.3):

v

vW
ðW�pÞ ¼ v

vX
ðS½G�þFðf � I�eÞÞ ¼ S0½G�G0½X� ¼�XG0½X�

¼� X
X 0 ½G�>0: (3.2)
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As long as the infrastructure charge, f, is equal to, or larger than,
the marginal infrastructure and external cost, we have that:

v

vF
ðW � pÞ ¼ v

vF
ðS½G� þ Fðf � I � eÞÞ ¼ f � I � e � 0: (3.3)

Next, we differentiate with respect to U:

v

vU
ðW � pÞ ¼ v

vU
ðS½G� þ Fðf � I � eÞÞ ¼ 0: (3.4)

We are now almost prepared to conclude that at welfare
optimum, X, F and U is greater (or possibly equal) to the situation
with profit maximisation. The first condition in Topkis’ theorem2 is
satisfied, as is seen from Eqs. (3.2), (3.3), and (3.4). However, we
must also check the cross effects for one of the objective functions,
and we choose W. First, we compute vW=vF:

vW
vF
¼ vp

vF
X � C½N� þ NC0½N� � I � e:

In order to compute pF, we note that by Eq. (3.1):

0 ¼ vG
vF
¼ vp

vF
þ T 0½F�

i.e.,

vp
vF
¼ �T 0½F�:

Hence,

vW
vF
¼ �XT 0½F� � C½N� þ NC0½N� � I � e:

Now we can compute v2W=vFvX and v2W=vFvU:

v2W
vFvX

¼ �T 0½F� > 0;

v2W
vFvU

¼ N
F

C00½N� � 0:

The computation of vW=vU is similar to that of vW=vF:

vW
vU
¼ vp

vU
X � C0½N�:

Here vp=vU can be computed in the same way as vp=vF:

0 ¼ vG
vU
¼ vp

vU
� r0

�
X
U

�
X

U2;

i.e.,

vp
vU
¼ r0

�
X
U

�
X

U2;

hence,

v2W
vUvX

¼ v

vX

 
r0
�

X
U

�
X2

U2 � C0½N�
!
¼ r00

�
X
U

�
X2

U3 þ 2r0
�

X
U

�
X

U2 > 0:

To conclude: The profit maximiser has too few passengers and too
low frequency from a welfare point of view. He has also lower
capacity FN than the welfare maximiser; however, given the fewer
passengers, this may or may not be sub-optimal.

3.3.3. Welfare and monopoly equilibria
The first order conditions referring to price, frequency and unit

size for a welfare optimiser are, respectively,
0 ¼ vW ¼ �X
vGþ ðp� cÞX0½G�vGþ X (3.5a)
vp vp vp

0 ¼ vW
vF
¼ �X

vG
vF
þ ðp� cÞX0½G�vG

vF
� ðC½N� þ I þ eÞ (3.5b)

0 ¼ vW
vN
¼ �X

vG
vN
þ ðp� cÞX0½G�vG

vN
� FC0½N�: (3.5c)

The first order conditions referring to price, frequency and unit
size for a monopolist are, respectively,

0 ¼ vp

vp
¼ ðp� cÞX0½G�vG

vp
þ X (3.6a)

0 ¼ vp

vF
¼ ðp� cÞX0½G�vG

vF
� C½N� � f (3.6b)

0 ¼ vp

vN
¼ ðp� cÞX0½G�vG

vN
� FC0½N�: (3.6c)

Note that it is impossible to achieve the welfare optimum by
adjusting f away from Iþ e. This is seen by a reductio ad absurdum:
assume that we can achieve welfare optimum by the profit max-
imiser by a suitable value of f. It then follows that Eqs. (3.5a) and
(3.6a) are evaluated at the same values of p, F and N, and hence that
XGp¼ 0 at this point, which is clearly absurd. Hence, one cannot
apply a subsidy only related to frequency in order to achieve
a welfare optimum. If the monopolist enjoys a subsidy s of the price,
his objective function is

p ¼ ðpþ s� cÞX � FC½N� � fF;

hence, the first order conditions become

0 ¼ vp

vp
¼ ðpþ s� cÞX0½G�vG

vp
þ X (3.7a)

0 ¼ vp

vF
¼ ðpþ s� cÞX0½G�vG

vF
� C½N� � f (3.7b)

0 ¼ vp

vN
¼ ðpþ s� cÞX0½G�vG

vN
� FC0½N�: (3.7c)

We see that if the subsidy s is set to S ¼ �X=X0½G� at the
welfare optimum and f¼ Iþ e, then the three Eqs. (3.5a), (3.5b),
and (3.5c) coincide with Eqs. (3.7a), (3.7b), and (3.7c), and hence
the profit optimum coincides with the welfare optimum. The
passenger related subsidy can thus yield the social optimum with
respect to all the relevant policy variables: price, frequency and
transport unit size. The expression for the subsidy s can be
expressed in various ways:

s ¼ � X
X 0 ½G� ¼ �

G
eG
¼ �p

ep
� r0½Z�Z

where p is the price of the welfare optimiser. The last equality
follows from the fact that vG=vp ¼ 1þ r0½Z Zep=p

�
.

If, for example, the elasticity with respect to price would be
around �1, the subsidy would be equal to the chosen price minus
a term that depends on the marginal congestion cost. Wallis and
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Gale (2001) find, like us, that the passenger related subsidy is
�G=eG, but also that the subsidy can be expressed as �p=ep. Our
result includes an additional term related to the marginal conges-
tion cost, this, since we explicitly take this quality variable into
account.

Else (1985) finds an optimal subsidy related to passengers, but
which differs from ours.
4. Public transport under competition

When dealing with competition between operators or modes
a crucial issue is what factors affect the passengers’ choice. Clearly
travel time components and price matter, among other factors, and
time and price are not valued the same by all individuals. These are
important facts that should not be ignored.

There are various ways that one can take care of variations of
travel time and price, as well as other factors: Apply randomness
for taste variations within each group, segment passenger groups
with different values of travel time, i.e., take taste into account in
this way, apply randomness to the passengers’ different ideal
departure or arrival times.

A popular way to model taste variation is the so-called logit
model (belonging to the extreme value family). Here we have
chosen a different approach though, since we believe the logit
model has shortcomings when applied to public transport3.

We, basically, take into account randomness with respect to the
difference between passengers’ ideal departure or arrival times,
bearing in mind that the analysis can be repeated for a number of
segments.
4

4.1. Basic micro-economic model

In Section 3, we defined generalised cost as:

G½p; F;N� ¼ pþ r
�

X
FN

�
þ T ½F�:

In this section, we ignore that ride time cost may depend on in-
vehicle congestion, and call pþ r travel cost R. That is, R¼ pþ r. We
also ignore the size of the vehicle, N. Instead, we take into account
that the wait time is variable, i.e., dependent on t, the difference
between ideal departure or arrival time and actual departure or
arrival time. We model competition by using the fact that the
passengers will choose the competitor that has the smallest total
travel cost Rþ t.

We assume that the individual differences between ideal and
actual departure or arrival times are randomly, uniformly
distributed.

Each travel alternative in a specific origin–destination pair has
a total travel cost and each passenger chooses the alternative with
minimum total cost. In order to simplify notation and calculations,
we assume that there are only two alternatives, 1 and 2.

The total cost of alternative j (j¼ 1, 2) for each individual i is the
sum of travel cost Rj (including all travel time components plus
price, except wait time) and a random variable, tj

i , the time between
ideal arrival time and actual arrival time. With a valuation of time,
wait time, ride time, and transfer time can all be expressed in
monetary units, or conversely monetary units can be thought of as
measures of time. In the following, all quantities are measures of
time but we may, and often do, describe them as costs.

When each individual chooses the alternative with the
minimum total cost, the effective cost becomes:
3 See Jansson et al. (2008).
min
h
R1 þ t1

i þ R2 þ t2
i

i
:

We now assume that (t1, t2) is uniformly distributed on [0,
H1]� [0, H2], where headway Hi¼ 1/Fi. This, since we have no
knowledge of the true distribution of ideal departure or arrival
times for the period of time (peak hours or non-peak hours for
example) we are analysing.4

Notation
H1 headway of route 1.
H2 headway of route 2.
R1 travel time (including price expressed in minutes) of

route 1.
R2 travel time (including price expressed in minutes) of

route 2.
t1 time to departure of route 1.
t2 time to departure of route 2.

The probability for choosing alternative 1 is then:

Pr½1� ¼ 1
H1H2

Z H1

0

Z H2

0
h
h
R2 � R1 þ t2 � t1

i
dt2dt1 (4.1)

where h[s] is the Heaviside function, defined by:

h½s� ¼
�

1 if s � 0
0 if s < 0

:

The model thus assumes that passengers know the timetable and
choose route, stop and mode, taking into account all travel time
components and price and how well ideal departure times relate to
actual departure times.

Here, the expected wait time, T, can be expressed as:

T ¼ 1
H1H2

Z H1

0

Z H2

0
h
h
R2 � R1 þ t2 � t1

i�
t1 � t2

�
þ t2dt2dt1:

In general, if there are k acceptable routes and the travel cost for
route j is Rj and the probability of choice of route j is denoted Pr[j],
the expected travel time R, and the expected wait time T are given
by:

R ¼
Xk

j¼1

Pr½j�Rj; T ¼
Xk

j¼1

Pr½j�E½tjj� (4.2)

respectively, where E[$jj] denotes expectation conditioned on route
number j being chosen.

The probability in expression Eq. (4.1) and the conditional
expectation E[tjjj] used in Eq. (4.2) can be calculated explicitly. This
is illustrated when having two alternative modes. The first route is
selected when R1þ t1< R2þ t2, that is when t2> t1þ (R1� R2). For
different values of d¼ R1� R2, the probabilities of t2> t1þ d and the
conditional expectations are given by:

(i) if d>H2 then

Pr½1� ¼ 0
The result that follows for choice probability and expected wait time has also
been presented, without specific derivation, by Hasselström (1981). The principles
for taking into account randomness of ideal departure times have been implementd
in the public transport network softwares Vips and Visum.
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E t1j1 is undefined

h i

E
h
t2j2

i
¼ H2=2;

(ii) if H2> d>max [H2�H1, 0] then

�
H2 � d

�2
Pr½1� ¼
2H1H2

E
h
t1j1

i
¼ H2 � d

3

E
h
t2j2

i
¼

d3 � 3d
�

H2
�2
�H2

�
3H1H2 � 2

�
H2
�2�

3
�

d2 � 2dH2 � 2H1H2 þ
�

H2
�2� ;

(iii) if max [H2�H1, 0]> d> 0 then

Pr½1� ¼ 1�
�

H1=2þ d
�
=H2

E
h
t1j1

i
¼

3dH1 þ H1
�

2H1 � 3H2
�

3
�

2dþ H1 � 2H2
�

h
2
i 3d2 þ 3dH1 þ

�
H1
�2
E t j2 ¼
3H1 þ 6d

;

(iv) if 0> d> �max [H1�H2, 0] then

Pr½1� ¼
�

H2=2� d
�
=H1

E
h
t1j1

i
¼

3d2 � 3dH2 þ
�

H2
�2

3
�

H2 � 2d
�

E
h
t2j2

i
¼
�3dH2 þ H2

�
2H2 � 3H1

�
3
�
� 2dþ H2 � 2H1

� ;

(v) if �max [H1�H2, 0]> d> �H1 then

Pr½1� ¼ 1�

�
H1 þ d

�2

2H1H2

E
h
t1j1

i
¼
�d3 þ 3d

�
H1
�2
�H1

�
3H1H2 � 2

�
H1
�2�

� � �2�

3 d2 þ 2dH1 � 2H1H2 þ H1
E
h
t2j2

i
¼ H1 þ d

;

3

(vi) if �H1> d then

Pr½1� ¼ 1
E
h
t1j1

i
¼ H1=2

E
h
t2j2

i
is undefined:

Below we provide an example concerning the choice between
two alternatives. We assume that the headways for both routes 1
and 2 are 15 min, i.e., H1¼H2¼15, but the travel times for the
routes differ; for route 1 it is R1¼15 min, for route 2 it is
R2¼ 20 min.

Route 1 is selected if R1þ t1� R2þ t2, where t1 and t2 are inde-
pendent and uniformly distributed on [0, H1] and [0, H2], respec-
tively. Hence, if t1�5 then:

Pr
h
1
���t1
i
¼ Pr

�
t2 � R1 � R2 þ t1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

�0

���t1
�
¼ Pr

h
t2 � 0

���t1
i
¼ 1:

Furthermore, when 5� t1�15 then:

Pr
h
1
���t1
i
¼ Pr

�
t2 � R1 � R2 þ t1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

�0

���t1
�
¼ 1� R1 � R2 þ t1

H2

¼ 20� t1

15
:

This gives,

Pr½1� ¼
Z N

�N
Pr
h
1
���t1
i
f
h
t1
i
dt1 ¼

Z 15

0
Pr
h
1
���t1
i
,

1
15

dt1

¼
Z 5

0
1,

1
15

dt1 þ
Z 15

5

20� t1

15
,

1
15

dt1 ¼ 1
3
þ 4

9
¼ 7

9
:

Fig. 1 below illustrates points of time, headway and travel times
of the two routes. The total bar lengths represent the maximal costs
associated with the routes. We assume that the two routes arrive at
the same time (0). The passengers’ ideal departure times are along
the x-axis; the wait time for each alternative is a uniformly
distributed random variable over the light coloured parts of the
bars. The passengers chose the alternative where this wait time
variable is closest to the origin, having smallest total cost. For ideal
departure times between 15 and 20 min only route 1 is chosen. For
other times the passengers are split between the two alternatives
according to the proportions Pr[1jt1] and 1� Pr[1jt1].

The conditional probability of selecting route 1 is shown in
Fig. 2.

Let u denote the net utility, measured in pecuniary terms, of
a journey for an individual. The total consumer surplus S for travel
is then:

S ¼ X
H1H2

Z H2

0

Z H1

0
u�min

h
R1 þ t1;R2 þ t2

i
dt1dt2

¼ X
Z 1

0

Z 1

0
max

h
u� R1 � H1s1;u� R2 � H1s2

i
ds1ds2:

Since v=vx max½x; y ¼ h½x� y�� we have
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Fig. 1. Travel time and headway for routes 1 and 2. For each alternative the wait time is
a random variable uniformly distributed over the yellow (light coloured) parts of the
bars.
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vS
vR1 ¼ �X

Z 1

0

Z 1

0
h
h
R2 þ H2s2 � R1 � H1s1

i
ds1ds2

¼ �X,Pr½1� ¼ �X1

and

vS
vH1

¼ �X
Z 1

0

Z 1

0
s1h
h
R2 þ H2s2 � R1 � H1s1

i
ds1ds2

¼ � 1
H1E

h
t1j1

i
X1:

Note that E[t1j1] is shorter than H1=2, since there is another alter-
native! Hence, in order to compute the change DS in consumer
surplus due to a change DR of Ri, one can integrate the demand
function Xi for mode i:

DS ¼ �
Z RiþDR

Ri
XidRi

and similarly for a change in headway Hi by DH:

DS ¼ � 1
Hi

Z HiþDH

Hi
XiE
h
tiji
i
dHi: (4.3)

Note, however, that in Eq. (4.3) we must take into account that
E[tiji] depends on what other alternative travel modes there are, so
the mode i cannot be considered in isolation.

4.1.1. Demand
We consider two competing firms providing public transport

meeting a fixed total demand. The modes of transport differ in
some respect, i.e., one firm may transport by air and another by
railway. We denote the two transport firms 1 and 2. The basic
model is now extended to include a taste variation. Each traveller
0 5 10 15
0

1/3

1

Wait time of route 1, t1

P
r
 
[
 
1
 
|
 
t
1
 
]

Fig. 2. The conditional probability of selecting route 1 as a function of t1.
has a taste parameter q which is interpreted as a disutility
(measured in pecuniary measure, i.e., a ‘‘cost’’) for travel: q is the
disutility for travel with 1, and L� q the disutility for travel with
firm 2. The taste parameter q over individuals is assumed to be
uniformly distributed in the interval 0� q� L.

Each traveller has also an ideal departure time, and the differ-
ence between the ideal departure (arrival) time and the most
convenient actual departure (arrival) time of firm i is denoted ti.
Furthermore, the travel time and ticket price for firm i are denoted
ri and pi. With these parameters, the total travel cost Ri is given by
Ri¼ riþ pi. The traveller will chose the firm offering the lowest
generalised cost: he will chose firm 1 if

p1 þ r1 þ t1 þ q < p2 þ r2 þ t2 þ L� q

and firm 2 otherwise.
The random variables t1, t2, and q are assumed to be uniformly

distributed on [0, H1]� [0, H2]� [0, L]. Here Hj is the headway of
firm j.

We can now express the demand for the two firms. There is
a total cohort of X individuals, all of whom will travel with either
firm. The number of travellers choosing firm 1 is

X1 ¼ X
LH1H2

Z L

0

Z H2

0

Z H1

0
h
h�

p2 þ r2 þ t2 þ L� q
�

�
�

p1 þ r1 þ t1 þ q
�i

dt1dt2dq

where h[x] is again the Heaviside function. The demand for firm 2 is
obviously X2¼ X� X1.

4.1.2. Welfare
In order to study the welfare effects, we have to compute the

welfare function. In this case, with inelastic demand, it is conve-
nient to calculate welfare costs, i.e., we set the travellers’ utility of
travel to zero (this number will not affect welfare changes) and
compute the negative of the welfare.

The total welfare costs for the travellers is:

Cc ¼
X

LH1H2

Z L

0

Z H2

0

Z H1

0
min

h
p1 þ r1 þ t1 þ q;p2 þ r2 þ t2 þ L

� q
i
dt1dt2dq:

The total welfare cost is then

Wc ¼ Cc � profit of firm1� profit of firm2

þ external costs ðpollution; noise; etc:Þ

4.2. Competition

There are three common models of competition in the literature.
The Bertrand model, the Cournot model and the Stackelberg model. In
the Bertrand model, each firm takes the other firms’ prices as given
(fixed,) and maximise their own profit under that assumption by
choosing the relevant price. That is, each firm’s price is optimal (i.e.,
profit maximising) given the other firms’ prices. The equilibrium
outcome is the Bertrand equilibrium. The Bertrand competition is very
strong; if all firms produce the same good (perfect substitutes,) then
the price is driven down to marginal cost, even with only two firms in
the market. If firms have different marginal costs, only the firm(s)
with minimum marginal cost(s) will stay in the market. Therefore,
one usually assumes that products are imperfect substitutes, so that
an equilibrium with prices above marginal cost results.

No model, including Stackelberg and Cournot, is perfectly
convincing intuitivelydindeed, they produce differing equilibria,
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so they cannot all prevail at the same time. In the literature, it is our
impression that the Bertrand model is the most favoured when
products are differentiated (imperfect substitutes), and since
transport modes are heterogeneous, this is the model we choose in
this study.

In order to compute the Bertrand equilibrium values of p1, p2, H1

and H2, we first consider firm 2’s decision problem, given some
(arbitrarily chosen) values of p1 and H1; he maximises profit:

argmax
H2;p2

X2
h
p1; p2;H1;H2

i�
p2 � c2

�
� C2

h
H2
i

where X2 is the demand for the given values of parameters, c2 is the
cost per passenger, and C2[H2] the cost associated with the depar-
ture interval H2. The outcome produces firm 2’s price and headway
as functions of the corresponding values chosen by firm 1:�

p1;H1
�

1
�

p2;H2
�

(4.4)

Now the decision problem of firm 1 is similar; he maximises his
profit, given p2 and H2:

argmax
H1;p1

X1
h
p1; p2;H1;H2

i�
p1 � c1

�
� C1

h
H1
i
:

The outcome produces firm 1’s price and headway as functions of
the corresponding values chosen by firm 2:�

p2;H2
�

1
�

p1;H1
�
: (4.5)

Now we have to find values of p1, p2, H1 and H2, such that both Eqs.
(4.4) and (4.5) are satisfied simultaneously. Technically, we do this
by fixed point iteration: we start with some initial values of p1 and
H1, compute the resulting values of p2 and H2 according to Eq. (4.4),
use these values in Eq. (4.5) to compute new values of p1 and H1, use
these values in turn to compute new values of p2 and H2 employing
Eq. (4.4), and so on, iteratively, until the values converge.
4.3. Numerical evaluation and results

This section contains results obtained by numerical computa-
tion of Bertrand equilibrium for competing public transport
services, as well as numerical values of minimal welfare cost for
such competitors. Several computations are performed to reflect
how the equilibrium and obtained welfare vary when fundamental
parameters change.

The basic set of parameter values are chosen to resemble the
situation for train and airline operators in Sweden, specifically on
the route between Stockholm and Gothenburg, the capital and the
second largest city. The numbers seem reasonable according to
Table 1
Assumed fixed and variable parameters.

Fixed parameters

Costs

Operating (SEK/km) Passengers (SEK/pass)

Rail 163 40
Air 211 40

Variable parameters

Values of time Ride time weight Infrastructure charg

Travel (SEK/h) Wait (SEK/h)

Rail 100 50 1.00 5.00
Air 110 55 1.10 0.36

Total
information from the Swedish National Rail Administration (Ban-
verket) and literature on airline costs. The external costs are those
normally applied by Banverket and the Swedish Institute for
Transport and Communications Analysis (SIKA). We also use the
infrastructure charges applied in Sweden.

The total demand is 4000 travellers per day. The taste parameter
(the disutility) is uniformly distributed on the interval (0, 500) SEK,
i.e., some passengers are willing to pay up to 500 SEK extra to avoid
a particular operator. The parameters of importance are presented
in Table 1 below.

Table 2 summarises the effect of different settings of the policy
variables on the frequencies of the operators. From the table one
finds that a low tax (or high subsidy) yields operating frequencies
for both operators that are higher than what is optimal from
a welfare perspective. Conversely, a high tax yields too low
frequencies. The infrastructure charge behaves similarly.

The competition with an airline operator made the train operate
at a frequency higher than optimal regardless of the value of travel
time or wait time. For high values of the travel/wait time the airline
operated with too low frequencies though.

The basic results are as follows. Since we assume a constant total
demand, the welfare is unaffected by the level of prices as long as
their difference is the same. We can thus compute the welfare
optimising price difference, but not a level. We find that under
competition, this price difference is the same as under welfare
optimisation, but that welfare optimising frequencies are below the
frequencies that the operators would choose.

The last result can be explained in terms of negative externali-
ties: when one firm increases its frequency, it imposes a negative
externality on the other firm, in that it decreases that other firm’s
demand. Since this cost is not internalised by the first firm, it
chooses a higher frequency than is optimal.

4.3.1. The numerical procedure
The numerical computations are performed as follows. When

calculating the Bertrand equilibrium, an operator’s action and the
competitor’s reaction are calculated successively until the equilib-
rium is reached. The equilibrium thus obtained is a fix point. In each
step of the iteration, a competitor’s reaction is determined by
searching a grid of price and interval pairs for the values that
maximise the profit of the operator. As the algorithm converges, the
search is made on a finer and finer grid, allowing the optimal price
and interval to be accurately determined.

The minimal welfare cost is determined by an exhaustive search
on a grid of distinct interval lengths for the operators and their
price difference. The welfare optimum is the particular triple of
interval lengths and price difference that minimise the welfare cost.
The search is then performed repeatedly on a finer parameter grid,
centered on the previously obtained parameter triple, until the
optimum is determined with sufficient accuracy.
Distance (km) Travel time (h) External Costs (SEK/km)

455 4.50 1.30
394 3.50 8.00

e (SEK/km) Demand No of passengers Taste parameter Max (SEK/journey)

500
500

4,000



Table 2
An overview of how different settings of the policy variables affect the frequencies of
the operators.

Low High

Train Air Train Air

Tax þ þ � �
Infrastructure charge þ þ � �
Value of travel time þ þ þ �
Value of waiting time þ þ þ �
Demand þ � þ þ
Taste/disutility þ � þ �

A ‘þ’-sign indicates that the frequency is higher than optimal for the operator and
parameter setting, conversely a ‘�’-sign indicates a too low frequency.

K. Jansson et al. / Research in Transportation Economics 23 (2008) 30–4038
In these numerical computations, the headways, H1 and H2, are
not allowed to be greater than 16 h, thus bounding the maximal
time interval between departures, or putting a lower bound on
the frequency of departures. When a time interval for a compet-
itor is set to 16 h by the computer programme, it usually signifies
that the actual (optimal) interval is greater, possibly infinite.

4.3.2. Effects of tax/subsidy on departures
A subsidy or tax on prices did nothing but change the ticket price

with the corresponding amount. The operators did not change their
behaviour and consequently did not come any closer to an optimal
welfare cost. This is an artifact of two model specifications: (1) the
total demand is inelastic and (2) the demand for the individual
firms depend only on the price difference (Fig. 3).

A lowered subsidy or increased tax on departures when having
two equal (train) operators decreased the frequency but did not
affect the ticket price (cf. subsidy or tax on prices). The profits
decreased as the taxes increased. The optimal welfare cost is not
affected by taxes but the obtained welfare is, and the least differ-
ence between obtained and optimal welfare costs is achieved when
the tax is 10–20 SEK/km higher per departure than the current tax
level.

For two different operators, a lowered subsidy or increased tax
decreases the frequencies. Again, the least difference between
obtained and optimal welfare costs is achieved when the tax is
0
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Fig. 3. Illustration of the difference between the welfare obtained by the p
increased by 10–20 SEK/km per departure from the current tax
level.

4.3.3. Infrastructure charge
As an alternative to add taxes/subsidies relative to the current

level of taxation, one may subject every mode to an infrastructure
charge, equal to the external costs of the mode. This makes the
modes internalise the external costs. In this setting, the infra-
structure charge is varied around the zero level where the external
costs are fully compensated.

Changing the infrastructure charge does not affect the ticket
price when having two equal operators, similar to the behaviour
with tax on departures. Profits decrease when the charge is
increased. The optimal welfare cost is unaffected by any such
charge, and the minimal difference between obtained and optimal
welfare costs is achieved when there is a charge around 20 SEK/km
and departure.

For two different operators, an increased charge decreased the
frequencies. Again, the least difference between obtained and
optimal welfare costs is achieved when the charge is around
20 SEK/km per departure.

4.3.4. Value of travel time
When having two equal operators, larger travel time values give

higher welfare costs, both under competition and optimality, but
constant difference between them. The ticket price and frequency
of operation were not affected by the changes in travel time values,
and thus, the profits of the operators are constant.

The optimal welfare, having both an air and a train operator and
travel time values above 260 SEK/h, is obtained if the train does not
operate. Under competition, the ticket price decreases for train but
increases for air operators, as the travel time value increases.

The total cost of travel increases with larger travel time values.
The difference in total cost of travel between operators is zero when
the travel time value is 20 SEK/h. When the travel time value is
larger than 20 SEK/h then the obtained total price difference
between the operators is smaller than the optimal price difference.
The frequency of trains decreases but for flights increases, as the
travel time value increases. Under competition the train operates
more frequently than what is optimal, but the airline less, at least
20 30 40 50 60

cle km   

, SEK 

rofit maximiser and the welfare maximiser for various subsidy levels.
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for large values of the travel time value. For small travel time values,
even the airline is too frequent.

The welfare cost decreases as the travel time value decreases.
The difference between obtained and optimal welfare cost is at
a minimum when the travel time value is 30 SEK/h.

4.3.5. Value of wait time
Generally, when the wait time value is small, the competitors

operate with a low frequency, i.e., they have long intervals
between departures. As the wait time value increases, so does the
frequency for both operators. The welfare cost increases with the
wait time value and also the difference between obtained welfare
cost under competition and minimal welfare cost, determined by
optimisation. We note that the intervals obtained under compe-
tition are shorter than the corresponding intervals under welfare
optimisation.

An analysis of a competition between two equal operators (train
services) reveals that when the value of the wait time is large, i.e., it
is expensive to wait, it is not optimal to have two operators. That is,
for wait time values larger than 230 SEK/h, say, it is better in
a welfare sense to have a single firm operate at, more or less, the
double frequency.

The analysis of the competition between a train and an airline
operator exhibits similar behaviour. When having large wait time
values (150 SEK/h or more) it is optimal to have only an airline
operator. It is worth noting that, under optimality, the difference in
price between the operators is constantly 65 SEK, irrespective of
the wait time value. The 65 SEK is the difference in travel time
value, meaning that optimally the operators should have the same
ticket price.

4.3.6. Demand
The ticket price for two competing train operators decreases as

the demand increases, but never falls below 540 SEK. The
frequency increases as the demand increases, and the difference
between obtained and optimal welfare cost decreases in absolute
numbers.

It is worth noting that for very small demand it is probably not
optimal to run any services at all. When having two different
operators and a demand in the range from 600 to 1000 travellers
per day, it is optimal in the welfare cost sense to only run a single
airline operator. The ticket price for the train is constantly
decreasing while the ticket price for the airline company has
a minimum when the demand is around 1100–1300 passengers
per day. As the demand increases, so does the frequency, and
when it is optimal to have two operators, both operate too
frequent.

4.3.7. Taste/disutility
The welfare cost increases as passengers are more willing to pay

for avoiding a particular operator. The difference between obtained
and optimal welfare cost decreases with the willingness to pay.

Two equal operators: the frequencies are not affected by
a change in the taste parameter, but the prices increase when the
willingness to pay increases, hence, the profits increase. If the
willingness to pay is small, it is optimal to have only a single
operator.

Two different operators: the prices (and profits) increase but the
difference in frequency diminishes; a train increases the number of
departures, an airline lowers the frequency. Yet, when the taste
parameter is small the train runs too frequent and the airline too
seldom.

4.3.8. Comfort
A measure of comfort is the time value of a mode. High time values

indicate that passengers are willing to pay a lot for a reduction of time,
i.e., the mode is uncomfortable. The ratio of time values for airline and
train is 1.1 in the standard setting; signifying that travelling by airplane
is 10% more uncomfortable than by train, in a sense.

Varying the ratio between the time values for airline and train
shows that small values (train uncomfortable compared to
airplane) give a welfare optimum with no train, and high values
a welfare optimum with no airline. Only for values of the ratio in the
range [0.9, 1.4] optimality is obtained with two operators. When
the airplane is 20% more uncomfortable than the train (ratio 1.2),
the operators split the demand in two equal parts.

5. Discussion

We have found that profit maximisng public transport operators
should be subsidised if they are monopolies, but they should be
taxed if they operate in competitive markets. The fact that
a monopoly charges too high a price comes as no surprise; maybe
less obvious is the fact that the regulatory instrument is a subsidy
upon the pecuniary price the operator chooses, which makes the
operator choose welfare optimal price and frequency as well as
transport unit size. We believe that this result is reasonably robust
to model specifications.

The situation is different under competition, where we find that
supply tend be too high. If one operator increases the frequency of
departures, the competitor will suffer a loss as a consequence of
fewer passengers, and this negative externality causes the equi-
librium to show too high frequencies. In order to come closer to
welfare optimum, a tax per departure is suggested. It is, however,
a common experience that comparative statics results in compe-
tition models can be very sensitive to model specifications, in
particular to the mode of competition (competition in prices versus
supply,) so further investigation of models with other modes of
competition is called for.

In some cases, demand is too low to sustain more than one
operator. For instance, if travel time values are high, people will
prefer the fast mode, air instead of rail, for example, and there may
be no room for the slow mode. So, according to our modelling,
when a competitive situation shifts to monopolistic situation, also
the optimal policy shifts from taxation to subsidisation.

What about real-world examples and possible applications?
For local and regional transport, the situation where a private

profit maximising firm virtually has monopoly, like in many cities in
Great Britain, a passenger related subsidy may be considered.

On the other hand, in cities where there is real on-road
competition, like in many developing countries and in some places
in Great Britain for example, taxation may be considered.

With respect to long-distance public transport, we can give two
examples from Scandinavia.

There are many long-distance transport markets where
competition is fierce. One example is Stockholm centre – Gothen-
burg centre in Sweden where there are three airlines (1 h plus
access time), one railway operator (3 h) and several coach operators
(6 h.) The supply here may be too large and inefficiently costly.
Taxation would reduce the number of departures and maybe also
squeeze out some operators. One would achieve resource saving
that increases overall welfare.

In many places in the sparsely populated Norway, for example,
mountains, islands and fjords make rail-, coach- and car transport
very expensive or impossible. Only air transport is efficient. In these
cases, most of the origin–destinations have only one operating
airline. The simple reason is that more than one operator could not
survive due to the low demand. Consequently prices are very high
and should be subsidised, which they actually also are to some
extent.

With respect to both urban and long-distance transport where
competitive tendering for operation under gross-cost contract is
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applied, one may consider subsidisation of ticket prices under net-
cost contract as an alternative.
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