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Note 1: No Arbitrage Pricing

Let us consider a two period market model. A contract is defined by a stochastic
payoff X – a bounded stochastic variable – at a future time T (“maturity”) and a
price of that contract p which is paid today.

We assume that one contract is a “bank account”, a contract which gives a
secure payoff of 1 at maturity, and whose price today p = e−rT , where typically
r > 0. Of course, r is interpreted as the interest rate from now to maturity.

The market consists of a set of contracts, and we assume that we can compose
arbitrary portfolios of contracts, i.e., if we have contracts 1, . . . , n with payoffs
X1, . . . , Xn and prices p1, . . . , pn then we can compose a portfolio consisting of
λi units of contract i, i = 1, . . . , n where λ1, . . . , λn are arbitrary real numbers.
I.e., we assume that we can take a short position in any contract, and ignore any
divisibility problems. The total cost of such a portfolio is of course

∑n
1 λipi and

the total payoff is
∑n

1 λiXi. We call also such portfolios “contracts”, so the set of
contracts, defined as pairs (p,X), constitute a linear space.

We assume that the market is arbitrage free in the following sense:

1. There is no contract (p,X) such that X ≥ 0 almost surely (a.s.) and p < 0.

2. There is no contract (p,X) such that X ≥ 0 a.s., E [X] > 0 and p = 0.

It is easy to see that condition 1 in particular implies the law of one price: if
X1 = X2 a.s., then p1 = p2. We denote by p(X) the unique price of a contract
whose payoff is X.

Now we define an operator E∗[X] on all payoffs of contracts by E∗[X]
def=

erT p(X). Now we establish the following properties of this operator:

Properties of operator E∗.

1. E∗ is linear; i.e., E∗[αX + βY ] = αE∗[X] + βE∗[Y ], where α and β are real
numbers and X and Y are payoffs of contracts.

2. E∗ is positive; i.e., if X ≥ 0 a.s., then E∗[X] ≥ 0.

3. E∗[1] = 1.

4. For any payoff X such that X ≥ 0 a.s. E∗[X] = 0⇔ E [X] = 0.
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Proof

1. The law of one price implies that p(αX + βY ) = αp(X) + βp(Y ). Now
multiply both sides by erT to get the required relation.

2. Assume that X ≥ 0 a.s. Then, by arbitrage condition 1, p(X) ≥ 0, and
hence E∗[X] = erT p(X) ≥ 0.

3. We have by definition p(1) = e−rT , hence E∗[1] = erT p(1) = 1.

4. Assume that X ≥ 0 a.s. If E∗[X] = 0 then p(X) = 0 and hence E [X]
must be = 0, else E [X] would be > 0 which would be an arbitrage type 2. If,
on the other hand, E [X] = 0, then X = 0 almost surely, and since we don’t have
arbitrage type 1, p(X) ≥ 0. But since also −X = 0 almost surely, p(−X) ≥ 0, i.e.,
p(X) ≤ 0, so in fact p(X) = 0. But then it follows that E∗[X] = erT p(X) = 0,
and the proof is complete.

Recall that the operator E∗ is defined only on stochastic variables that are payoffs
of contracts. But assume for a moment that any bounded stochastic variable X
is the payoff of a contract on the arbitrage-free market under study. Then we

could define a probability measure P∗ by P∗(A)
def= E∗[1A] for any (measurable)

set A, where 1A denotes the indicator function of A. It is easy to verify, using
the properties of E∗, that the axioms for a probability measure is satisfied. The
value E∗[X] will then be the expected value of X with respect to the measure
P∗. Property 4 of the operator E∗ implies that P∗(A) = 0 ⇔ P (A) = 0, where
P denotes the original probability measure, i.e., the two probability measures P∗

and P are equivalent. This means, by the Radon-Nikodym theorem, that there
is a stochastic variable Z > 0 such that E [Z] = 1 and E∗[X] = E [ZX] for any
bounded stochastic variable X. For this reason, we will here call the operator
E∗[X] the equivalent risk-neutral expected value of X, even if not all bounded
stochastic variables are payoffs of contracts. We will come back to the issue of the
existence of an equivalent probability measure later.

We have thus proved that if the market is arbitrage free, then there exists an
equivalent expectation E∗ such that p = e−rTE∗[X] for any contract (p,X). Now
we prove the opposite, which is quite easy: If there exists an an equivalent expec-
tation E∗, i.e., an operator E∗ satisfying p = e−rTE∗[X] and properties 1 – 4, then
the market is arbitrage free. Indeed, if X ≥ 0 almost surely, then by property 2,
E∗[X] ≥ 0, hence p = e−rTE∗[X] ≥ 0, so we can not have an arbitrage type 1.
Nor can we have an arbitrage type 2, since if X ≥ 0 a.s. and E [X] > 0, then, by
property 2, E∗[X] ≥ 0, and by property 4, E∗[X] 6= 0 and thus p = e−rTE∗[X] > 0.

In summary:

Theorem 1.

A two period market, with a bank account giving the fixed interest rate r,
is arbitrage free if and only if there is an operator E∗, which we call an
equivalent risk-neutral expectations operator, which satisfies properties 1 – 4
and p = e−rTE∗[X].
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An Application to Futures and Forwards

Let us divide up the time spell from now to maturity T in small time spells
now = t0, t1, . . . , tn = T . A contract is any portfolio composed now, whose payoff
is realized at maturity T , however, we allow re-allocating the portfolio at each
time tk. A re-allocation here means that we sell some assets and buy some assets
such that the net cost is zero. No net cash flow thus takes place at other times
than now and maturity.

Consider first a forward contract on some underlying asset whose spot price at
maturity is ST . A forward contract is a contract whose price (value) today is zero,
and whose payoff at maturity is ST − G0 where G0 is the forward price. Hence,
we have the equality 0 = e−rTE∗[ST −G0], hence 0 = E∗[ST −G0] = E∗[ST ]−G0,
since G0 is a constant, so E∗[G0] = G0 E∗[1] = G0. The forward price is thus the
same as the risk-neutral expected spot price: G0 = E∗[ST ].

Next consider a futures contract on the same underlying asset. In this case
the marking to market gives a cash-flow Fk − Fk−1 in each period tk, where Fk
is the futures price noted at tk. Consider the following contract: at time tk−1

we enter a long position on a futures contract, and at time tk we collect the
cash flow Fk − Fk−1 (which may be negative), and close out the contract (for
instance by taking an opposite short position.) The dividend Fk−Fk−1 is deposited
(or borrowed) in a bank account until maturity. The final payoff at maturity is
thus (Fk − Fk−1)er(T−tk). Since the cost of this contract is zero, we have 0 =
e−rTE∗[(Fk − Fk−1)er(T−tk)], i.e., 0 = E∗[Fk − Fk−1], i.e., E∗[Fk] = E∗[Fk−1].
Thus we have

F0 = E∗[F0] = E∗[F1] = . . . = E∗[FT ] = E∗[ST ]

so the futures price F0 is also equal to the risk-neutral expected spot price: G0 =
E∗[ST ]. So, we have proved:

Theorem 2.
If the interest rate is deterministically constant, the futures price and the
forward price coincide.
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Note 2: The No Arbitrage Theorem

In lecture note 1 we proved the existence of an “equivalent expectations operator”
E∗ which is defined on the stochastic payoffs of contracts. Under “reasonable
conditions” it is true that there is a probability measure P∗, defined on the given
sample space and sigma algebra of measurable sets, such that P∗ is equivalent to
the original probability measure P and E∗ is the expectations operator with respect
to P∗. We will now prove that this is true under the much simplifying condition
that the sigma-algebra of measurable sets is finitely generated, i.e., there is a finite
number of subsets A1, . . . , Am such that the sigma algebra consists of arbitrary
unions of such sets. This assumption is not “unrealistic”, but for mathematical
reasons too restrictive.

For the proof we need a

Lemma:
Assume that V is a subspace of Rn with the “alternating sign property:” every
non zero vector of V has both strictly negative and strictly positive entries.
Then there is a vector λ̄ with all entries strictly positive which is orthogonal
to V with respect to the natural inner product on Rn.

Proof
Let K be the subset of Rn K = {ū ∈ Rn | u1 + . . . + un = 1 and ui ≥

0 for all i}. Obviously K and V have no vector in common. Let λ̄ be the vector
of shortest Euclidean length such that λ̄ = k̄ − v̄ for some vectors k̄ and v̄ in K
and V respectively. The fact that such a vector exists needs a proof, but we leve
that out. We write λ̄ = k̄0 − v̄0 where k̄0 ∈ K and v̄0 ∈ V.

Now note that for any t ∈ [0, 1] and any k̄ ∈ K, v̄ ∈ V , the vector tk̄ + (1 −
t)k̄0 ∈ K and tv̄ + (1 − t)v̄0 ∈ V, hence |(tk̄ + (1 − t)k̄0) − (tv̄ + (1 − t)v̄0)| as a
function of t on [0, 1] has a minimum at t = 0, by definition of k̄0 and v̄0, i.e.,
|t(k̄− v̄) + (1− t)λ̄|2 = t2|k̄− v̄|2 + 2t(1− t)(k̄− v̄) · λ̄+ (1− t)2|λ̄|2 has minimum
at t = 0 which implies that the derivative w.r.t. t at t = 0 is ≥ 0. This gives
(k̄ − v̄) · λ̄− |λ̄|2 ≥ 0 or, equivalently k̄ · λ̄− |λ̄|2 ≥ v̄ · λ̄ for all v̄ ∈ V and k̄ ∈ K.
But since V is a linear space, it follows that we must have v̄ · λ̄ = 0 for all v̄ ∈ V. It
remains to prove that λ̄ has strictly positive entries. But we have k̄ · λ̄− |λ̄|2 ≥ 0
for all k̄ ∈ K, in particular we can take k = (1, 0, . . . , 0) which shows that the first
entry of λ̄ is > 0 and so on. This completes the proof of the lemma.

Proof of the main statement
A payoff X has constant values on each of the sets Ai, let us denote it X(Ai).

This means that X(ω) =
m
∑

1

X(Ai)1Ai(ω) where 1A denotes the indicator func-

tion of the set A. Some of the sets Ai may have zero probability; for notational
convenience let P(Ai) > 0 for i = 1, . . . , n and P(Ai) = 0 for i = n+ 1, . . . ,m.

We associate each contract with the n + 1-vector
(

− p,X(A1), . . . , X(An)
)

,
i.e., we ignore X:s values on the zero sets. The set of such vectors constitute a
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linear subspace of Rn+1 and has the alternating sign property. Indeed; assume
that at least one X(Aj) is positive and none is negative; then X ≥ 0 a.s. and
E [X] > 0, hence p > 0 by arbitrage condition 2, so the first entry of the vector is
negative, and we have at least one negative and at least one positive entry.

If at least one X(Aj) is negative and none is positive, we can look at the
negative of the contract

(

p,−X(A1), . . . ,−X(An)
)

and the situation is brought
back to the previous case.

Finally, if all X(Aj):s are = 0, then p = 0 by arbitrage condition 1.
Hence, by the lemma, there are positive numbers λ0, . . . , λn such that

−λ0p+ λ1X(A1) + . . .+ λnX(An) = 0

for all contracts. We can now write, for any contract

p =
n
∑

1

λi
λ0
X(Ai) = d

n
∑

1

qiX(Ai) (1)

where d =
∑n

1 λi/λ0 and qi = λi/(dλ0) for i = 1, . . . , n. Note that
∑n

1 qi = 1, so
if we define qj = 0 for j = n+1, . . . ,m, we can thus interpret qi as new “artificial”
probabilities qi = P∗(Ai) of the events Ai, i = 1, . . . ,m. Now (1) can be written

p = dE∗[X]

where E∗ denotes expectation with respect to the P∗-measure. Note also that
P∗(Ai) = 0 ⇔ P(Ai) = 0, so the two measures are equivalent. The Radon-

Nikodym derivative of P∗ with respect to P,
dP∗

dP
=

qi
P(Ai)

on the sets Ai, i =

1 . . . , n and may be defined as any number on Aj for j = n+ 1, . . . ,m which we
may choose positive so as to get a strictly positive Radon-Nikodym derivative.

If there is a bank account with a fixed interest rate r, the discount factor d is
identified as d = e−rT . Q.E.D.
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Note 3: Change of numéraire and martingale pricing

Now assume that there are several points in time t0, . . . , tn = T when trading can
take place. We consider first contracts (recall that portfolios are also contracts)
which pay a stochastic payoff X at time T , and look at the market price pk at tk
for k = 1...T . These prices are stochastic variables which are realized at tk. [In
a more fancy language: we have a filtration of sigma algebras . . .Ft ⊂ Ft+1 . . .
representing the information available at time . . . t, t+ 1 . . ., and the price process
{pt} is adapted to this filtration.]

We assume that the market is arbitrage free, and in view of earlier notes, that
there is an equivalent probability measure P∗ with expectations operator E∗ such
that p0 = dE∗[X] for all contracts. Here d is the discount factor, which is equal to
e−ρT if there is a zero coupon bond with maturing at T and ρ is the corresponding
zero rate.

We now assume that there is a money market account, a bank account (or
bond) which pays a (continuous) interest rate — the short interest rate — rt
between two consecutive time periods t − 1 and t. The short interest rate rt is a
stochastic variable which is realized in period t− 1, i.e., when I invest an amount
at time t − 1 I know the interest I will receive in the next period, but the short
rate at later time periods are stochastic. In other words, the short rate process rt
is predictable.

A trading strategy is a plan telling us what to invest at each period t of
time, depending on the state of the world as of that time. For instance, a trading
strategy might say that “if event A occurs at time t, then go long £x in paper
X and go short £y in paper Y.” A self financing trading strategy is one where
after the initial investment, all further trading is self financing until the end date,
i.e., in each of the periods 1, 2, . . . , T − 1, the net investment is zero. Thus, what
we have called “contracts” are in fact portfolios following a self financing trading
strategy.

Now we introduce a new measure by a change of numéraire: First, note that
E∗[d exp(ΣT1 ri)] = 1, for an investment of 1 in the bank account will eventually
end up with a wealth of exp(ΣT1 ri). Now define a new equivalent measure ˜P
by d˜P = d exp(ΣT1 ri) dP∗. This means that for any bounded stochastic variable
Y , ˜E [Y ] = dE∗[exp(ΣT1 ri)Y ], hence, if (p,X) is any contract, we can let Y =
exp(−ΣT1 ri)X to get ˜E [exp(−ΣT1 ri)X] = dE∗[X] = p:

p = ˜E [exp(−ΣT1 ri)X]

for any contract. What we have done is called a change of numéraire: the measure
P∗ has the zero coupon bond as numéraire, whereas ˜P has the money market
account (short rate) as a numéraire.

Now consider a contract whose price in each period t is a stochastic variable
pt, t = 0, 1, . . . , T which is realized in period t. Consider the following trading
strategy: If the event A has occurred in period t, then buy er1+...+rt units of
the corresponding portfolio at the price pt per unit, and finance the purchase by
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borrowing at the short rate rt+1 and roll the debt forward by renewing the debt
in each period at the short interest rate. Then sell the securities at time s and
invest the amount at the short rate and roll forward until time T. This means that
at time T the net value is

−pter1+...+rT + pser1+...+rt+rs+1+...+rT

if the event A did occur at time t, and 0 otherwise. We may write this as

(−pter1+...+rT + pser1+...+rt+rs+1+...+rT )1A

where 1A is the indicator function of the event A. Since there is no initial invest-
ment and all payoffs take place at time T , we have

˜E [(−pt + pse−rt+1−...−rs) 1A] = 0.

Let ˜E t denote expectation conditional on all information realized at t (i.e., condi-
tional on the sigma algebra Ft). Employing the “iterated expectations formula”
and using the fact that A is realized at t, we get

0 = ˜E
[

˜E t[(−pt + pse−rt+1−...−rs) 1A]
]

= ˜E
[

1A ˜E t[−pt + pse−rt+1−...−rs ]
]

and since this is true for any A realized at t, we conclude that

˜E t[−pt + psert+1−...−rs ] = 0

Since in particular pt is realized at time t, we can re-write this as

pt = ˜E t[pse−rt+1−...−rs ]

pt = ˜E t[pt+1e−rt+1 ]in particular,

This says that if the market is arbitrage free, then there is an equivalent probability
measure ˜P such that the discounted price process {pt exp(−Σt1 ri)} of any contract
(i.e., any portfolio under self financing re-allocation) is a martingale.

For this reason, we call ˜E the Equivalent Martingale Measure. It is trivial
to see that the opposite is true: If there is a probability measure under which
the discounted price process of any contract is a martingale, then there are no
arbitrage possibilities.

Forward and futures prices.
As an example, we will describe the futures and forward prices of a security in

terms of the Martingale measure. In order to ease notation somewhat we introduce

R(s, t)
def= ers+1+...+rt . First consider a zero coupon bond with par value 1 maturing

at time T. The price P (0, T ) of this bond at time 0 is P (0, T ) = ˜E [R(0, T )−1 · 1].
Now consider a forward contract written today (t = 0), and let G0 be the

forward price and ST the stochastic price of the underlying asset at time T . Since
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the price of the contract today is zero, we must have 0 = ˜E [R(0, T )−1(ST −G0)],
i.e.,

G0 = P (0, T )−1
˜E [R(0, T )−1ST ]

Now consider a futures contract on the same underlying asset. In this case,
the amount Ft−Ft−1 is paid to the long holder of the contract at time t = 1, . . . , T.
Here Ft is the futures price at time t. If we go long one such contract at time t
and close it out (go short one contract) at the end of time period t + 1, then the
amount invested in period t is zero, and the payoff in period t + 1 is Ft+1 − Ft.
Hence 0 = ˜E t[e−rt+1(Ft+1 − Ft)]. But rt+1 is known at time t (recall that rt
is predictable) so it can be regarded as a constant; hence, ˜E t[Ft+1 − Ft] = 0,
or, since also Ft is is realized in period t, Ft = ˜E t[Ft+1]. This means that the
sequence {Ft}T0 is a martingale under the ˜P-measure. Hence F0 = ˜E [FT ], i.e.,
since by definition FT = ST ,

F0 = ˜E [ST ]

Note that if the interest rate R(0,T) is deterministic, then G0 = F0, for then
P (0, T ) = R(0, T )−1, so

G0 = P (0, T )−1
˜E [R(0, T )−1ST ]

= P (0, T )−1P (0, T )˜E [ST ]

= ˜E [ST ] = F0.

Otherwise, we can do the following computation:

G0 = P (0, T )−1
˜E [R(0, T )−1ST ]

= P (0, T )−1(
˜E [R(0, T )−1]˜E [ST ] + c̃ov[R(0, T )−1, ST ]

)

= F0 + P (0, T )−1c̃ov[R(0, T )−1, ST ]

So G0 = F0 + correction term, where the correction term is positive or negative
depending on the sign of the correlation between the interest rate and the spot
price of the underlying asset.
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Note 4: Black’s pricing model

Consider a derivative of a variable whose value is V. Let T be the maturity date
of the derivative, G the forward price for a contract maturing at T , G0 the value
of G at time zero, e−rT the discount factor from time zero to T (equivalently,
e−rT is the price of a zero coupon bond with face value 1 maturing at T ). Black’s
model assumes that the value of V at time T , VT , is stochastic, with a log-normal
probability w.r.t. the risk-adjusted probability measure P∗, i.e., with the zero
coupon bond as numeraire: VT = Aeσ

√
T z, where A is some constant and σ is

also a constant referred to as “the volatility” of V and z is a stochastic variable
which has a normal (0,1) distribution w.r.t. the P∗-measure.

Since a forward contract has a zero price when it is written, we have

0 = e−rTE∗[Aeσ
√
T z −G0]

i.e., G0 = E∗[Aeσ
√
T z] = Aeσ

2T/2

Assume that the value of the derivative at maturity is some function Φ(VT ) of VT ,
e.g., if it is a European call option, then Φ(VT ) = max[VT −K, 0] where K is the
strike price. The price of the derivative at time 0 must then be

p0 = e−rTE∗[Φ(Aeσ
√
T z)]

Substituting G0e−σ
2T/2 for A from the relation above yields

P0 = e−rTE∗[Φ(G0 e−σ
2T/2+σ

√
T z)]

=
e−rT√

2π

∫ ∞

−∞
Φ(G0 e−σ

2T/2+σ
√
T z) e−z

2/2 dz

This is Black’s pricing formula. Note that the price is independent of the parameter
A — it is already incorporated in the price G0.

Black-Scholes pricing formula
Let us use Black’s pricing formula to price a European option on a stock. We

use the same notation and assumptions as in the previous section, and also that
the underlying stock pays no dividend between now and matuirity of the option.

Let the price of the stock today be S and the forward price G0 so that

S = e−rTE∗[ST ] and 0 = e−rTE∗[ST −G0]

from which we infer that G0 = SerT

The value of the option at maturity is some function Φ(ST ) of the stock price,
so the current price p of the option is

p =
e−rT√

2π

∫ ∞

−∞
Φ(Se(r−σ2/2)T+σ

√
T z) e−z

2/2 dz
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which is the famous Black-Scholes pricing formula for European options. Note
that the price of the option is independent of the expected growth rate (under the
true probability measure) of the stock value. However, in order to compute the
price, we need to know the volatility σ of the stock price under the risk adjusted
measure P∗. If trading is possible in continuous time until maturity, and if log(S)
follows an Itô process, it turns out that this volatility is the same as that under
the true probability measure P ; this is essentially a consequence of Girsanov’s
theorem, as we will see later.
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Note 5: Binomial tree as a numerical solution
to Black-Scholes’ model

Assume that we want to calculate the price and hedging portfolio for a European
option, using a binomial tree model. The underlying security is assumed to either
go up by a factor ex∆t+σ

√
∆t or down by a factor ex∆t−σ

√
∆t in each period. The

value of x depend on the exact model employed, and σ is the volatility of the
underlying asset. In doing so, we come up with a value V0 of the hedging portfolio
in period 0. In the next period, period 1, we re-calculate the value of the hedging
portfolio, again using the binomial tree. If the security price has indeed increased
by the factor ex∆t+σ

√
∆t or ex∆t−σ

√
∆t, then the re-balanced portfolio in that

period will cost exactly the same as the currently held portfolio, i.e., the trading
strategy is self-financing, since we will be using the same binomial tree. A problem
arises if this doesn’t happen, but the price dynamics has deviated from that of
the binomial tree model. We then have to re-calculate the value of the hedging
portfolio V1(S) in a new binomial tree, starting at the then current value S of the
underlying security. V1(S) is thus the cost of the new hedging portfolio we want
to hold in period 1.

Let us introduce some notation: The known period 0 price of the security is
S0, the stochastic price in period 1 is S. Now, whether or not S has followed the
binomial dynamics, we can calculate the value V1(S) of the hedging portfolio in
period 1 using the binomial tree model based on the then current security price
S. Let v = V1(S) − V be the difference between the cost of the new hedging
portfolio in period 1 and the value in period 1 of the portfolio held from the
previous period. If the value S of the underlying security follows the binomial
dynamics exactly, then v = 0, for the portfolio strategy is then self financing
by construction. We now assume that the true dynamics of S is that of Black
Scholes, i.e., S = S0eν∆t+σ

√
∆t θ where θ is a N(0,1)-variable. The value of v will

then depend on the movement of S: v = v(ν∆t + σ
√

∆t θ), and v = 0 if the
dynamics exactly matches that of the binomial tree model, i.e., if θ = x−ν

σ
√

∆t ±1.

We employ the following result from calculus: if the function f(x) = 0 for
two values x1 and x2 of x, then f(x) = 1

2f
′′(c)(x − x1)(x− x2) for some c in the

smallest interval containing x, x1 and x2. We conclude that

v(ν∆t+ σ
√

∆t θ) =
σ2

2
∆t v′′(ν∆t+ σ

√
∆t ξ)(θ − 1− x−ν

σ
√

∆t)(θ + 1− x−ν
σ
√

∆t)

where ξ is a stochastic variable whose value is somewhere in the smallest interval
containing x−ν

σ
√

∆t ± 1 and θ. We write this as

v =
σ2

2
∆t v′′(0)(θ2 − 1) + η

where η is a stochastic variable with small norm: ‖η‖ = O(∆t3/2). Note that
E [θ2 − 1] = 0, so we have
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v = χ+ η

where E [χ] = 0 and Var [χ] = O(∆t2). Now we add up all v:s for all periods 1 . . . n:

‖
n
∑

i=1

vi‖ = ‖
n
∑

i=1

χi + ηi‖ ≤ ‖
n
∑

i=1

χi‖+
n
∑

i=1

‖ηi‖

Note that the θ:s for different periods are assumed to be stochastically independent,
hence the χ:s are uncorrelated. Thus:

‖
n
∑

i=1

vi‖ =
√

∑n
i=1 Var [χi] +

n
∑

i=1

‖ηi‖ =
√

nO(∆t2) + nO(∆t3/2) = O(
√

∆t).

This proves the main result of this note:

Binomal tree and Blasc-Scholes dynamics:

Under the Black Scholes dynamics assumption, the binomial tree model will
yield a trading strategy which is not fully self-financing, but the total cash
flow is of the order of magnitude O(

√
∆t). More precisely, the total cash flow

is a stochastic variable whose norm is O(
√

∆t). The relation is: the security
price in the binomial model either goes up by a factor ex∆t+σ

√
∆t or down by

the factor ex∆t+σ
√

∆t, where σ is the volatility of the security price, and x can
be chosen arbitrarily in order to achieve desirable values of the risk adjusted
probabilities.

We note in particular that, just as in Black Scholes’ pricing formula, the growth
rate ν of the Black Scholes security dynamics doesn’t enter anywhere in the bino-
mial computation.
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Note 6: Ho-Lee’s Interest Rate Model in Discrete Time

Ho–Lee’s model is a model of the short interest rate, and is a no arbitrage model;
the parameters of the model can be chosen such that the current term structure
is correctly represented.

Time is discrete: t0, t1, . . . , tn+1 = T . The interest rate rk from tk−1 to tk is
assumed to be

rk = θk + σ
k
∑

2

bj k = 1, . . . , n

where {bk} are stochastic variables, bk is realized at time k − 1 (fancy language:
{bk} is a predictable stochastic process) and σ and θk are real numbers; i.e., they
are parameters of the model. The probability distribution of bk is given for the
equivalent matringale measure ̂P with the money market account as a numeraire:
bk = 1 with (risk-adjusted) probability 0.5 and bk = −1 with probability 0.5; and
they are thus assumed to be statistically independent.

We can now compute the price Z4 at t0 of a zero coupon bond maturing at
t4 with face value 1:

Z4 = ˜E [e−r1−r2−r3−r4 · 1] = ˜E [e−θ1−θ2−θ3−θ4−σ(3b2+2b3+b4)]

= e−θ1−θ2−θ3−θ4˜E [e−3σb2 ] ˜E [e−2σb3 ] ˜E [e−σb4 ]

= e−θ1−θ2−θ3−θ4 cosh(3σ) cosh(2σ) cosh(σ)

And, by the same token, in general

Zk = e−θ1−···−θk cosh
(

(k − 1)σ
)

· . . . · cosh(σ)

Combining with the same expression for Zk−1 we get

Zk
Zk−1

= e−θk cosh
(

(k − 1)σ
)

θk = fk + ln
[

cosh
(

(k − 1)σ
)]

i.e., (1)

where fk
def= ln

[Zk−1

Zk

]

is the forward rate from tk−1 to tk.

Thus, if the parameters θk are chosen according to (1), then the the model
reflects the current term structure. The parameter σ is typically chosen to be the
(estimated) volatility of the one period rate.

Once we have the parameters of the model, we can price any interest rate
derivative in a binomial tree. We show the procedure by an example, where we
want to price a European call option maturing at t2 with strike price 86 on a zero
coupon bond maturing at t4 with face value 100 when the following parameters
are given: θ1 = 0.06, θ2 = 0.061, θ3 = 0.062, θ4 = 0.063, σ = 0.01. We represent
the interest rates in a binomial tree:

t0 t1 t2 t3
0.06 0.071 0.082 0.093

0.051 0.062 0.073
0.042 0.053

0.033

13



The interest rate from one period to the next is obtained by going either one step
to the right on the same line, or step to the right to the line below; each with a
(risk adjusted) probability of 0.5. We can compute the value at t2 of the bond:
since its value at t4 is 100, the value at t3 and t2 is obtained recursively backwards:

t2 t3
84.794 91.119
88.254 92.960
91.856 94.838

96.754

The value of the option can now also be obtained by backward recursion:

t0 t1 t2
2.309 1.050 0

3.853 2.254
5.856

The value of the option is thus 2.309. It is easy to price also American or other
more exotic derivatives in this binomial tree model.
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Note 7: The Black-Scholes-Merton Pricing Formula

I will derive the Black-Scholes-Merton Pricing Formula, using martingales and Itô
calculus – however, I’m trying to use as little mumbo-jumbo as possible. This
means that I have to invoke Itô’s representation formula and some Itô calculus,
but I avoid e.g. Girsanov’s theorem and changes of measure. The reason for
this is that I want to make the idea as transparent as possible; the cost is that
the computations are more technically involved than proofs relying on change of
measures and Girsanov’s theorem that can be found in many text books. Of
course, the proofs are the same, it is just the presentation that differ. A good way
to understand what is going on is – I hope – to first read this presentation, and
then the text-book.

Let Wt be a Wiener process, 0 ≤ t ≤ T defined on a probability space
(Ω,F , P ) equipped with a filtration

[

Ft
]T
t=0 which is generated by the Wiener

process Wt. Consider now a bounded stochastic variable X, measurable w.r.t.
F = FT which is the payoff of a contract (or a self financing portfolio of contracts)
written at time t. We will derive an expression for the price p of that contract in
terms of the prices of two other contracts whose prices at time t are Bt and St
respectively. The prices of these assets are assumed to be defined by the following
Itô processes:

{

dSt = µtStdt+ σtStdWt

dBt = rtBtdt

Here µt, σt and rt are bounded adapted processes and σt > 0. The asset Bt can
be thought of as a bond, and St an asset whose value is underlying that of the
derivative X.

First we introduce some notation:

λt =
µt − rt
σt

(the “market price of risk”)

ut = e−
∫ t

0
λs dWs− 1

2

∫ t

0
λ2
s ds

vt = u−1
t = e

∫ t

0
λs dWs + 1

2

∫ t

0
λ2
s ds

˜Bt = e−
∫ t

0
rs dsBt, ˜St = e−

∫ t

0
rs dsSt, ˜X = e−

∫ T

0
rs dsX

Itô’s formula now gives

dut = −λtut dWt

dvt = λ2
t vt dt+ λtvt dWt

d˜St = (µt − rt)˜St dt+ σt ˜St dWt

d ˜Bt = 0

Now we employ Itô’s representation formula on the stochastic variable uT ˜X:

uT ˜X = A+
∫ T

0
ht dWt
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for some adapted process ht and constant A. Define

Yt = A+
∫ t

0
hs dWs

We are now in a position to create a self financing portfolio of the assets Bt and
St which replicates X. The portfolio consists of ϕt of the asset Bt and ψt of the
asset St, the value of the portfolio at any time t is thus

Vt = ϕtBt + ψt St

˜Vt = e−
∫ t

0
rs ds Vt = ϕt ˜Bt + ψt ˜Sti.e.,

We will chose ϕt and ψt such that two conditions are satisfied: first, ˜Vt = vtYt,
and second: the portfolio is self financing. The first condition then implies that
the portfolio replicates X, indeed, ˜VT = vTYT = ˜X, so VT = X. Now, by Itô’s
formula

d(vtYt) = (dvt)Yt + vt dYt + d〈vy, Yt〉
= λtvt(λtYt + ht) dt+ vt(λtYt + ht) dWt

On the other hand,

ϕt d ˜Bt + ψt d˜St = ψt(µt − rt)˜St dt+ ψtσt ˜St dWt

So if we choose ψt such that ψtσt ˜St = vt(λtYt + ht) then

d(vtYt) = ϕt d ˜Bt + ψt d˜St

and if we now choose ϕt such that ϕt ˜Bt + ψt ˜St = vtYt, then

d˜Vt = ϕt d ˜Bt + ψt d˜St

which implies that the portfolio is self financing, and ˜Vt = vtYt, so it replicates X.
The value of the derivative must hence – if there is no arbitrage – be that

of the replicating portfolio. If pt is the value at time t and p̃t = pte
−
∫ t

0
rsd s the

discounted value, then p̃t = vtYt = vtEt [YT ] = vtEt [uT ˜X]:

Theorem:
The discounted price p̃t of the derivative is given by

p̃t = vtEt [uT ˜X]

It is common practice to introduce an equivalent probability measure whose Radon-
Nikodym derivative w.r.t. the true measure is uT . Note that uT > 0 and E [uT ] =
1, so it is a permissible Radon-Nikodym derivative. If we denote expectation w.r.t.
this measure by ̂E we can write the above
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Corollary:

The discounted price p̃t of the derivative is given by

p̃t = ̂E t[ ˜X]

Proof:
Note first that ut is a martingale, since du = −λu dW . Now, for any event A

realized at t

E{1A Et[ ˜XuT ]} = E{Et[1A ˜XuT ]} = E[1A ˜XuT ]

E{1Aut ̂E t( ˜X)} = E{1A Et(uT ) ̂E t( ˜X)} = E{Et[1A ˜XuT ]}and

= E[1A ˜XuT ]

Since A is any event realized at t this shows that Et[ ˜XuT ] = ut ̂E t( ˜X), which
proves the corollary.

I.e., the discounted prices {p̃t}Tt=1 is a martingale under the new probability mea-
sure; the equivalent martingale measure.

The Black-Scholes Pricing Formula for a European Option

Assume that µ, σ and r are constants. The price p of a European option on
the underlying asset ST , giving the return F (ST ) at time T is then

p =
e−rT√

2π

∫ ∞

−∞
F
(

S0e(r− 1
2σ

2)T+σ
√
Tx
)

e−x
2/2 dx

Proof:
We define W0 = 0. Now uT = e−λWT− 1

2λ
2T . Hence

p = E
[

e−λWT− 1
2λ

2T e−rTF
(

S0e(µ−σ2/2)T+σWT
)

]

=
e−rT√

2π

∫ ∞

−∞
e−λ
√
Tz− 1

2λ
2T F

(

S0e(µ− 1
2σ

2)T+σ
√
Tz
)

e−z
2/2 dz

=
e−rT√

2π

∫ ∞

−∞
F
(

S0e(µ− 1
2σ

2)T+σ
√
Tz
)

e−
1
2 (z+λ

√
T )2

dz

= [make change of variable z + λ√T = x in integral] . . .

=
e−rT√

2π

∫ ∞

−∞
F
(

S0e(r− 1
2σ

2)T+σ
√
Tx
)

e−x
2/2 dx

Quad Erat Demonstrandum
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Note 8: Ho-Lee’s Interest Rate Model
in Continuous Time

This is a continuation on Lecture Note 5. Let r(t) denote the stochastic instan-
taneous short rate at time t as seen from now. The Ho-Lee model in continuous
time is

r(t) = θ(t) + σW (t), W (0) = 0

where W (t) is a standard Wiener process (Brownian motion) under the martingale
measure (“the risk adjusted probability measure”) with the money market account
(short rate) as numéraire. The function θ(t) is deterministic, and chosen so that
the model correctly reflects the current term structure.

Let Z(t) denote the current price of a zero coupon bond maturing at t with
par value 1. We denote by ˜E expectation w.r.t. the martingale measure. We have

Z(t) = ˜E [e−
∫ t

0
r(s) ds]

so we start by computing the integral. Using “integration by parts” of Itô calculus,
we get

∫ t

0
r(s) ds =

∫ t

0
θ(s) ds+ σ

∫ t

0
W (s) ds =

∫ t

0
θ(s) ds+ σ

∫ t

0
(t− s) dW (s)

˜Var
(

∫ t

0
r(s) ds

)

= σ2
∫ t

0
(t− s)2 ds =

σ2

3
t3and hence

Since the E[z] = ea+σ2
2 if z ∼ N(a, σ2) we get

Z(t) = ˜E [e−
∫ t

0
r(s) ds] = e−

∫ t

0
θ(s) ds

˜E [e−σ
∫ t

0
(t−s) dW (s)] = e−

∫ t

0
θ(s) ds+σ2

6 t
3

from which follows

θ(t) = − d
dt

lnZ(t) +
σ2

2
t2 (1)

Equation (1) defines the function θ such that the model is calibrated with the

current term structure. Note that the term − d
dt

lnZ(t) = f(t) is defined as the
short forward rate, the the interest rate for a infinitesimally short forward rate
agreement (FRA) maturing at t.
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Forward and futures prices of a zero coupon bond

As an example we will compute the forward price and the futures price of a
zero coupon bond using Ho-Lee’s model. The forward price G0 of a zero coupon
bond with par value 1 to be bought at t and maturing at T > t is, in any model,

G0 =
Z(T )
Z(t)

. We now proceed to compute the futures price F0. If pt denotes the

(stochastic) price of the bond at t, We have

pt = ˜E t[e
−
∫ T

t
r(s) ds]

F0 = ˜E [pt]and

where ˜E t denotes expectation conditional on the information available at time t.
Combining these and using the “law of iterated expectations” we get

F0 = ˜E t[e
−
∫ T

t
r(s) ds] = e−

∫ T

t
θ(s) ds

˜E [e−σ
∫ T

t
W (s) ds]

Employ integration by parts of Itô calculus on the last integral to get

F0 = e−
∫ T

t
θ(s) ds

˜E [e−
∫ T

t
W (s) ds]

= e
∫ T

t
( dds lnZ(s)−σ2

2 s
2) ds

˜E [e−σ
∫ T

t
(T−s) dW (s)−σ(T−t)W (t)]

=
Z(T )
Z(t)

e−
σ2
6 (T 3−t3) e

σ2
2

∫ T

t
(T−s)2 ds+σ2

2 (T−t)2t

=
Z(T )
Z(t)

e−
σ2
2 t

2(T−t) = G0e−
σ2
2 t

2(T−t)

We see that, as anticipated, the futures price is lower than the forward price (the
bond price is negatively correlated with the interest rate), with a conversion factor

e−
σ2
2 t

2(T−t).
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Note 9: Ho-Lee’s Interest Rate Model
in Continuous Time, continued

This is a continuation of Lecture Note 8. The aim is to compute the price
of a European option on a zero coupon bond. Let Z(t, T ) be the price at time t
of a zero coupon bond maturing at T with face value 1. In order to compute the
expression for Z(t, T ) we first note that

∫ T

t
r(s) ds =

∫ T

t
θ(s) ds+ σ

∫ T

t
W (s) ds

=
∫ T

t
(− d
ds

lnZ(s) +
σ2

2
s2) ds+ σ

∫ T

t
W (s) dt

= ln
( Z(t)
Z(T )

)

+
σ2

6
(T 3 − t3) + σ

∫ T

t
(T − s) dW (s) + σ(T − t)W (t)

Hence

Z(t, T ) = ˜E t[e
−
∫ T

t
r(s) ds]

= Z(T )
Z(t) e

−σ2
6 (T 3−t3) e−σ(T−t)W (t)

˜E t
[

e−σ
∫ T

t
(T−s) dW (s)]

= Z(T )
Z(t) e

−σ2
2 (T−t)Tt e−σ(T−t)W (t)

We are now in a position to write down a formula for the price of a European
option on a zero coupon bond maturing at T (the bond) maturing at time t (the
option). Let Φ

(

Z(t, T )
)

be the payoff of the option at maturity t. The price of
that option today is then

p = ˜E
[

Φ
(

Z(t, T )
)

e−
∫ t

0
r(s) ds] = Z(t)˜E

[

Φ
(

Z(t, T )
)

e−
σ2
6 t

3−σ
∫ t

0
(t−s) dW (s)]

The problem is to find an analytical expression for this expectation. At the end of
Lecture Note 7 we found the Black-Scholes-Merton pricing formula for a European
option on a stock. In that case, we were able to find an integral expression for the
relevant expected value, since only one integral of dW appeared in the expression,
namely W (t) =

∫ t
0 dW (s). It was then an easy task to write down an integral for-

mula, and clean it up by making a change of variables in the integral. This change
of variables was actually a derivation of a special case of Girsanov’s theorem.

The current situation is somewhat more complicated, for two different inte-
grals of dW appear: first W (t) =

∫ t
0 dW (s) appears in the expression for Z(t, T ),

and the integral
∫ t

0 (t− s) dW (s) appears in the exponent stemming from the dis-
counting. The remedy is again a change of variables, but infinitely many such,
and that process is the content of Girsanov’s theorem.
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Changing measure and employing Girsanov’s theorem

We will change measure to the one having the zero coupon bond as a
numéraire. This is the reverse of what we did in note 3 – we will go from the
money market account as a numéraire to the zero coupon bond as numéraire. We
denote expectations operator with respect to the risk adjusted probability measure
for contracts maturing at time t with zero coupon bond as a numeraire by E(t)

(in note 3 we used the notation E∗ ), and the relation between the two measures
is expressed by

Z(t)E(t) [Y ] = ˜E [Y e−
∫ t

0
r(s) ds]

= Z(t)˜E
[

Y e−
σ2
6 t

3−σ
∫ t

0
(t−s) dW (s)]

for any stochastic variabke Y realized at t. Hence

E(t) [Y ] = ˜E
[

Y e−
σ2
6 t

3−σ
∫ t

0
(t−s) dW (s)]

Note that the factor appearing in the expectation above is

e−
σ2
6 t

3−σ
∫ t

0
(t−s) dW (s) = e−

σ2
2

∫ t

0
(t−s)2 ds−σ

∫ t

0
(t−s) dW (s)

Girsanov’s theorem now says: under the new probability measure

dP (t) def= e−
σ2
2

∫ t

0
(t−s)2 ds−σ

∫ t

0
(t−s) dW (s) d ˜P , the Wiener process W (s) is equal to

W (t)(s)−σ
∫ s

0 (t−u) du = W (t)(s)−σ(ts− 1
2s

2) where W (t)(s) is a Wiener process
under the new P (t)-measure.

Thus, under the P (t)-measure, the price at time t of a zero coupon bond
maturing at T is

Z(t, T ) = Z(T )
Z(t) e

−σ2(T−t)Tt/2 e−σ(T−t)(W (t)(t)−σt2/2)

= Z(T )
Z(t) e

−σ2(T−t)2t/2−σ(T−t)W (t)(t)

Hence, we can write:

p = Z(t)E(t) [Φ
(Z(T )
Z(t) e

−σ2(T−t)2t/2−σ(T−t)W (t)(t)
)]

=
Z(t)√

2π

∫ ∞

−∞
Φ
(

G0e−σ̂
2t/2+σ̂

√
t z) e−z

2/2 dz

where G0 = Z(T )
Z(t) is the forward price of Z(t, T ) and σ̂

def= σ(T − t).
Note that this expression for the price of the option coincides with that of

Black’s pricing formula (see Lecture note 4) if the volatility of the underlying asset
Z(t, T ) is set to σ̂ = σ(T − t).
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Note 10: Looking Back and some PDE:s

In Lecture note 7 we introduced a new measure ̂P . We saw that the discounted
price p̃t at time t of a contract is a martingale under this new measure. The mea-
sure is thus the Equivalent Martingale Measure (EMM) when the money market
account is the numéraire. Elsewhere we have denoted this measure by a ˜ rather
than ,̂ but in order to not confuse with the notation for discounting, we continue
to use the ̂ symbol here. The pricing formula p̃t = ̂E t[ ˜X] can also be written as

pt = ̂E t[Xe
−
∫ T

t
rs ds]

in more conformity with the notation used elsewhere in these notes.
The true probability measure P and the EMM are related by the Radon-

Nikodym derivative uT = e−
1
2

∫ T

0
λ2
s ds−

∫ T

0
λs dWs . By Girsanov’s theorem, this

implies that the underlying Wiener process Wt can be written as

dWt = d̂Wt − λ ds

where ̂Wt is a Wiener process under the EMM-measure. In particular, it means
that

dS = µS dt+ σS dW = µS dt+ σS(d̂W − λ ds)

= rS dt+ σS d̂W

This shows that the drift of the underlying asset S is equal to the risk free rate
(which we already knew) and that the volatility of the asset inder the EMM-
measure is the same as under the true measure, in accordance with what we
claimed earlier (note 4.) It now follows easily that the expected rate of return
under the EMM measure of the derivative is also r. Indeed, with the notation
from note 7,

dpt = dVt = φt dBt + ψt dSt = φtrtBt dt+ ψt(rtSt dt+ σtSt d̂Wt)

= rtVt dt+ ψtσtSt d̂Wt = rtpt dt+ ψtσtSt d̂Wt

This fact is true not only under the Black-Scholes model, but for any contract.
Indeed, under the EMM measure, the discounted price p̃t of any contract is a
martingale. Hence, the actual price pt satisfies

dpt = d(e
∫ t

0
rs ds p̃t) = rt e

∫ t

0
rs ds p̃t dt+ e

∫ t

0
rs ds dp̃t

Since
∫ t

0
rs ds is realized at t and ̂E t[dp̃t] = 0 (since p̃t is a martingale), we get,

with somewhat sloppy notation,

̂E t[dpt] = rt e
∫ t

0
rs ds p̃t dt = rt pt dt
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The PDE:s

Let f(St, t) be the price of a derivative of the underlying asset St at time t.
We assume that the price of the derivative only depends of the current value of
the underlying asset. At time dt later, the price is

f(St + dSt, t+ dt) = f(St, t) + ft(St, t) dt+ fS(St, t) dSt + 1
2fSS(St, t) dS2

t

Taking expectation w.r.t. the EMM-measure gives, since the price trend of the
derivative f also must be that of the risk free rate:

f + rf dt = f + ft dt+ rSfS dt+ σ2

2 S
2
t fSS dt

since the expected value of dS2 is σ2S2 dt. The calculation is a somewhat informal
way of using Itô’s formula. Hence we have the Black-Scholes-Merton differential
equation:

rf = ft + rSfS + σ2

2 S
2
t fSS

By the very same token, if f(r, t) is the price of a interest rate derivarive, depending
only on the current short rate r, we get

rf = ft + µfr + σ2

2 frr

where σ is the volatility of the short rate; µ is the trend of the interest rate
under the EMM-measure! This equation is called “the Term Structure Equation”.

Someimes one defines λ =
ν − µ
σ

where ν is tha true trend of the short rate, and
thus have µ = ν − λσ, and calls λ “the market price of risk”. However, interest
rate models typically model the dynamics of the interest w.r.t. the EMM-measure
directly, so they doesn’t specify what the “market price of risk” is.
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