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Continuous case
Consider the problem of finding functions x(t) = (z1(t),...,x,(t)) and u(t) =
(up(t),...,um(t)) so as to maximize the integral

/b F(x(t),u(t),t)dt
subject to
zj(t) = gj(z(t),u(t),t) j=1,...,n
/ab by (a(), u(t), ) dt = Q) j =1, ],
hi(x(t),u(t),t) =0 j=1,...,Js
u(t) € I'y TI'; some convex subset of R™

Of course, J; = 0 means that there are no integral restrictions, and similarly if
Jo = 0. Define the Hamiltonian H as

H (), u(t), M), p, v(t), ) = f((t), u(t),t) + A) - g(2(t), u(t), 1)
+ - k(x(t), u(t), t) +v(t) - h(z(t), u(t), t)

where we of course have used vector notation: ¢(-) = (g1(-),...,9.(")); A(t) =
(A1(t),..., An(t)), etc. Note that the Lagrangean multipliers A\; and v; are func-
tions of ¢, whereas the p;’s are constants.

Assumption: The Hamiltonian H is concave in the variables (x,u) and contin-
wously differentiable wrt x.

Lemma 1. Let u € argmax H(x,u, A\, p,v,t). Then, for any @ € Ty,
uel"t

H(z,u, A\, p,v,t) — H(Z, a4, A\, p, v, t) > Hp(z,u, A\, v, t) - [z — ]



Proof. Let Ax =2 — x, Au = u — u. For any positive integer m,

A Au
H(m+—x u+ — )\,u,yt)

1
ZH(IL‘,U,)\,ILL,V,t)—f-—[H(f,fb,)\,ﬂ,yﬂf)—H(CC,U,)\,/L7V,t)]
m
Au 1
> H(z,u+ — A\ p,v,t) + —[H(Z, 4, \, p, v, t) — H(x,u, A\, p, v, t)]
m

The first mequahty comes from the concavity, the second from the definition of w;
note that u —l— 4 e I'y since I'; is convex. Hence

H(z,u,\ p,v,t) — H(Z, 0, A\, p, v, t)

Zm[H(xu—i—A JA v t) — H(x —|—&u—|—A A, v, )]

A
= —H, (T, u+ —, A\, u,v,t) - Az
m

where Z,, is some point on the straight line connecting z and x + ; the equality
comes from the mean value theorem of calculus. Now, letting m — 00 using the
fact that H, is continuous, we get the result of the lemma; Q.E.D.

It is easy to verify that

b b
/ F(a(t), u(t),t) dt = / ()~ Mt) - #(0)] dt — pQ

Hence, if (z(t),u(t)) is a fixed feasible pair with

u(t) € ar;g;gax H(xz(t),u(t), A(t), u,v,t)

and (Z(t),u(t)) is any feasible pair, then

b b
/f(x(t),u(t),t)dt—/ f(@(t),a(t),t)dt

/ {H(z S A(E), s v(t),8) — H(Z(t), a(t), M), p, v (1), )} dt



The following conditions on (z(t),u(t), A\(t), u,v(t)) are obviously sufficient for
the last expression in the chain of relations above to be 0, and hence sufficient
conditions for (x(t),u(t)) to be a solution to the mazximization problem:

(Ex;)  Hy, (z(t),u(t), \(1), g, v(t),t) + Nj() =0 j=1,....n

(Mu)  u(t) € arfgaxH(x(t),u(t), At), pu,v(t),t) a<t<b

b

for-any j=1,...,n, either z;(b) = x} is given, or else

(TUz;) A;(b) =0

for-any j=1,...,n, either x;(a) = x$ is given, or else
(TLz;) Xj(a) =0

If there is no restriction x;(b) = x?, then b is called a free boundary for xz;,
and the condition (TUz;) and (TLz;) are called transversality conditions. The
E-equations are called Fuler equations.

Infinite horizon
Let in the previous case b = oo. The only impact this has on the analysis

above is on the last expression —[A(t) - (z(t) — i(t))]z A sufficient condition for

this expression to be > 0 as b — oo is, in addition to (7'Lz;) above
I (TU>x;) litm inf A(t) - Z(t) > 0 for all feasible T(t) and tlim A(t)-z(t) =0

The envelope theorem

Let V = max ff f(z(t),u(t),t)dt and let o be a parameter which does not
influence Q, a, b, I'y, 22, if a is not a free boundary, z® if b is not a free bound-
ary. Assume that the sufficient conditions given above are satisfied and that w is
uniquely defined by (Mu) and locally bounded as a function of a. Then

dv ’

= [ Halal0.00: 700, 1)
CCZZ—Z = —H(.CC(CL), U(CL), )\(a)7 s Z/(CL), a)

W ), ut) AB) 1. 0(0). 0

dV;L = \;(a) (if a is not a free boundary)
d.fl?j

d_Vb = —X\;(b) (if b is not a free boundary)
da:j

A%

G =1,
de M]j 9 sy J1



Lemma 2. If 3 is any parameter (i.e., § may influence a, zy, Q, etc.), then

b
/[Hx-wg—l—H)\‘)\g—l-HM-,ug—l—HV'Vg—)\g'ii—)\'ig]dt—ug-Q

= Ma) - zg(a) = A(b) - 25(b)

Proof. The term H, = k(z,u,t) whose integral is @ and H, = h(z,u,t)
which is = 0. Hence we are left with

b b
/ [Hy-xg+Hx-Ag—Ag-2—A-&g] dt :/ [(Hy+N)-xg+(Hx—1)-A\g] dt—[A(t) -.Q?/g(t)]z
The integral is = 0, since H, + A = 0 by (Ex) and Hy — & = g(x,u,t) — & = 0. So
we are left with A(a) - xg(a) — A(b) - 25(b) Q.E.D.

Proof of the the envelope theorem.
By the “usual” envelope theorem, we can treat u as constant when we differ-
entiate, hence

b b
Z—V:/ Hadt—l—/ (Hy-xo+Hx - Aa+H, pio+H, vo—Xo-&—X-To] dt — 1o - Q
@ a a

Using lemma 2, we get

b
%:/a Ho dt 4 Xa) - za(a) = X(D) - za/(b)

If a is a free boundary, then A(a) = 0; if z(a) = 2% is given, then z,(a) = 0, since
x® is independent of o by assumption. In any case, the product \(a) - z4(a) = 0,
and similarly A(b) - z,(b) = 0, which proves the dV/da part.

= %{/gbw(-) A0 dt— - Q)

= H(x(b), u(b), \(b), j1, v, b) — A(b) - &(b)

b
—|—/ [Hw-.CL‘b—{—H)\-)\b—}—H“'Mb—I—HV-Vb—)\b-i—)\-j}b]dt—,ub-Q

Using lemma 2, we get

av .
—p = H(@(0),u(b), A(b), 1, v,b) = A(b) - £(b) + A(a) - z6(a) — A(b) - 26(D)

Here the term A(a) - x,(a) = 0, by the same argument as in the previous case. If b
is a free boundary, then A(b) = 0. In order to analyze the situation when b is not a
free boundary, we introduce the temporary notation x(¢; b) for the optimal function
x(t) given that the upper limit of integration is b. In this case x(b; b) = T where T is
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a number independent of b. Hence, by differentiation w.r.t. b, (b, b) 4+ x(b; b) = 0.
We see that in all cases the sum —A(b) - (b) — A(b) - 2(b) = 0, which proves the
dV/db part. Of course, the dV/da part is proven similarly.

Using lemma 2, we have

b .
av :/ [Hx-a—x—l—HA-ﬂ—{—HM-a—u+HV~i—2-i’—>\-£]dt

dxf Ox§ Ox§ Ox§ Ox§  Ox§ Ox§
Ox
Q- 527
Oz(a) 0x(b)
— A -
@ TG 0
) ) e . 0x(b) e .
Here either A(b) is = 0 (if b is a free boundary) or St 0 (if b is not a free
J
boundary) Hence % = A(a) - agé;) = \j(a). The formula for @ is of course

proven similarly.
Finally, employing lemma 2 once again, we have

e %{/j[ﬂ(-) A0 dt— - Q)

b b
:/ Hth+/ [Hw-l'Q—i—H)\-)\Q—i-HM',LLQ+HV-VQ—/\Q-i'—)\~.Ci‘Q]dt

—Q - po —p
= Ma) - zq(a) — A(B) - 2q(b) — i = —p
The argument for the last equality is the same as in previous cases. Q.E.D.

Discrete case
Consider the problem of finding sequences z; = (z},...,27) and u; =
(u},...,ul) so as to maximize the sum

T
> Flaeug,t)

subject to the constraints

vl =g (xunt), t=s,....,T j=1,...n

T
ij(xtauht):Qj j:]-a"'ajl

W (xy,ue,t) =0 t=s,..., T j=1,...,J2

us € I'y T’y some convex subset of R™

Of course, J; = 0 means that there are no summation restrictions, and similarly
if Jo = 0. Define the Hamiltonian

H(xtautv)‘t-i-l?:u’?l/tvt) = f(xtvutat)+)‘t+1'g(xt7utat)+u'k(xt7utat)+yt'h(xt7ut7t)

5



where we of course have used vector notation: g(-) = (g'(-),...,9"()); X\t =
(A}, ..., ), etc. Note that the Lagrangean multipliers N7 and 17 are functions of
t, whereas the p/’s are constants. It is easy to verify that

T

T
Do e t) =) TH() = At - o] = pQ

S

Assumption: The Hamiltonian H is concave in the variables (x,u) and contin-
wously differentiable wrt x.

By lemma 1, if u; € argmax H(x¢, ug, Aey1, i, V¢, t) and (24, 4) is any feasible pair,
uel"t
then

H(z,u,\, p,v,t) — H(Z, a4, A\, p, v, t) > Hy(z,u, N\, gy v, t) - [z — T
Hence, if (x4, us) is a fixed feasible pair such that u; € argmax H (x4, ug, Adg41, 4, Vi, t)

uel’y
and (T4, Uy) is any feasible pair, then

T T
Z f(.Tt,Ut,t) - Z f('itvﬁtat)

T
= Z {H(IEt,Ut, )‘t+17,ua Vtat) - H(jtvaty )\t+17,u7 Vtat)}

S

T
— Z At41 - [Te41 — Trga]
S

T T
> Hu(we, up Ay iy vest) - 20 = 3] = Y A - [0 — Fo]
S

[Hx(xt,uta At41, 1y Vt7t) - /\t] ) [act - ft] + As - [% - $s]

I
mM’ﬂ »

—Ari1c [@r41 — Trga]

The following conditions on (x¢, us, A¢, 4, ) are obviously sufficient for this ex-
pression to be = 0, and hence sufficient conditions for (z;,u:) to be a solution to
the maximization problem:

(Exj) Hm‘j (Ihutu >‘t+17 2 Vtat) - )‘g =0 1
(Mu)  wu; € argmax H (x4, ug, Adpy1, pb Vs, 1) t=s,...,T"

Il
\‘QIJ

N
o,
I
\.'—‘
=

uel'y
forany j=1,...,n, either :71;3“rl 18 given, or else
(TUx?) M1 =0
for any j = 1,...,n, either 2 is given, or else

(TLz?) N =0

* In contrast to the continuous case, this is not a necessary condition if H is not
concave.



Infinite horizon

Let in the previous case T' = oco. The only impact this has on the analysis
above is on the last expression —Ap41 - [T7p41 — Zr41]. A sufficient condition for
this expression to be > 0 as T — oo is, in addition to (T'Lz?) above,

I (TU>27) litm inf \; -2 >0 for all feasible T; and tlim A2 =0

The envelope theorem

Let V = max ZST f(x¢,ug, t) and let o be a parameter which does not influ-
ence ), s, T, I'y or any of the boundary values of x, if any are given as constraints.
Assume that the sufficient conditions given above are satisfied and that u] is
uniquely determined by (Mu) and locally bounded in . Then

T
dV
ZH xt7uta)‘t+lau7yt7t)
av ; ;
=X if x is given as a constraint
dxs
av ; ;
e = _)‘jT+1 if :vgmrl 18 given as a constraint
LT41
dv
o= j=1,..,0
dQ;

Proof. Using the “usual” envelope theorem as to the variation in wu,

dOé dO{ Z f xt?“’t?

T
d
= %{Z [H(xtyuta)\t'f'l;M,Vt,t) — )\t+1 . xt«l»l] — - Q}

T d dx d\ dp
= H, ) 7)‘ Rz {Hw Suind Hy - A H
28: (@, Uty A1, [y Vs )‘F; don + ) + -

do da
th d/\tJrl dCCt+1 d/jJ
H, — - 22t S W } _
+ do do T+l t+l do do @
d d dm d\
= Z Ho (g, up, M1, oy vy, t +Z — A\t] - - +Z [H)x — x441] - Hl

S

T dz drriq
H{(XZ#)-e }—+ZH T T

S

T T
Using (Ex), Hx —xi41 = g(z¢, ug, t) — 2441 = 0, Z H,-Q= Z k(xe,ue, t) —Q
=0and H, =h(...) =0, we get

dz ) drriq
do T+t do

T
Z ot ey A1, 14, Ve, 1) + A



Here, either As = 0 (if s is a free boundary) or dzs/da = 0 (if x, is given); hence
the As-term = 0, and similarly the Arii-term = 0. The other derivatives are
shown similarly. Q.E.D.

Uncertainty

Let t be time, &; a stochastic process, E; the expectations operator conditional
on I;, the information set available at time ¢; in particular, ¢’ < t = Iy C I,.
Consider the problem of finding sequences x; = (zj,...,z}) and u; = (uy, ..., u}")
so as to maximize the sum

T

E, Z f(xe,ue, &, t)  where zy, uy € Iy, subject to the constraints
S

xi+1:9j(33taut=§t7t)a t:S,~..7T j:1,...,n

T
ij(xtvutafht):Qj jzl,...,Jl

W (xg,up,&,t) =0 t=s,....T j=8,...,J2
us €'y € I, T some convex subset of R

Of course, J; = 0 means that there are no summation restrictions, and similarly
if Jo = 0. Define the Hamiltonian

H (e, ug, §ey A1, 1y Ves t) = (e, us, 66, 1) + Aeyr - 9(2e, u, &b, 1)
o k(@ ug, &, 1) + v - W@, ug, &, )
where we of course have used vector notation: ¢(-) = (g1(:),...,9.(-)); A\e =
(AL,...,A), etc. The Lagrangean multipliers N and v’ are stochastic processes

and the p’ : s are stochastic variables (i.e., independent of t) such that u € I, and
At € I;. Tt is easy to verify that

T

T
Es)  f(xeueé&nt) =B Y [H() = Avr - @isa] —p- Q

S

Assumption: The Hamiltonian H(xy,...,t) is concave in the variables (zy,uy)
and continuously differentiable wrt x.

By lemma 1, if u; € argmax FyH (s, ug, &y A1, o, Ve, t) and (T4, Gy ) is any feasible
uel"t
pair, then

EyH (e, ue, E M 11, sy Vs t) — EeH (T4, U, §¢y Mg, 1, Vg, t)
Z Eth(l't, Ug, 5757 )‘tJrl’ M, Vi, t) ' [xt - i‘t]
Hence, if (x4, us) is a fixed feasible pair such that

uy € argmax EyH (xy, ug, &, A1, 1, Vg, 1)
uel'y



and (T4, Uy) is any feasible pair, then
T T
ES Z f(xtvutagtut) - ES Z f(jtvatagtut)

T
= By Y {H (@i, u, & Mgy o ves t) = (&, G, &, My, o v, 1) }

s
T

—E; Z Aig1 - [Teg1 — T

S

— Es {EtH(xta Ug, €t7 )‘t-i-l? M, Ve, t) - EtH('%b fbt, é'ta )‘t-i-l? My Vi, t)}

qu

—Fs Att1 - [@eg1 — Teqa)

qu

T
By Hoyp (@, u, 6, Mgt 1, v, ) - [0 — B = Bs > Mg - [e41 — F41]

E

v
S|

S

T
= I Z (B Hy (24,0, E, Mgy 1, Vs t) — Ng] - [0 — T4

S

+Xs - [Ts — &s) — Es{ A1 - [w741 — Tr4a]}

The following conditions on (x¢,ut, A¢, i, ) are obviously sufficient for this ex-
pression to be > 0, and hence sufficient conditions for (x¢,u;) to be a solution to
the maximization problem:

(Bxi)  EyHg(zg,up, & Agr, povist) =X =0 t=s,....,T j=1,....n
(Mu)  u; € argmax EyH (xy, ug, &, A1, by v, t) t=s,...,T
uel“t
for any j=1,...,n, either x{FH s given, or else
(TUx?) Ny, q =0

forany 3 =1,...,n, either xJ is given, or else

(TLz?) N =0

Infinite horizon

Let in the previous case T = oo. The following transversality condition re-
places (TUz’) as a sufficient condition, and the derivation parallels that of the
case with no uncertainty:

I (TU>®z7) litm inf B\ - Ty > 0 for all feasible Ty and tlim E N2, =0VT



The envelope theorem

Let V = max F, Zz fxe,up, &, t) and let « be a parameter which does not
influence Q, s, T, I'y, & or any of the boundary values of z, if any are given
as constraints. Assume also that the probability measures of ¢, us, &, Ay, 4, V4
conditional on I; are independent of «, of 27 if 27 is given as a constraint, and of
w7 if 7., is given as a constraint. Assume that the sufficient conditions given
above are satisfied and that u; is uniquely determined by (Mu). Then

av d
% = FE; Z Ha(xta Ug, 67 )‘t—l-lv Hy Ve, t)
S
dVv . .
] =X if 2l is given as a constraint
Ls
awv BN g o .
7 = —Ls A if Tpyq 1S gwen as a constraint
T+1
av .
@ =—p j=1...,]1
J

The proof parallels that of the certainty case, so we omit it.

Bellman’s approach to the uncertainty case

A popular way to treat the uncertainty case is to use Bellman’s equation. We
now show that Bellman’s approach often leads to the same equations as Pontrya-
gin’s, i.e., those we have derived. Let us look at the maximization problem in
the uncertainty case again, where we only have the first type of constraint, i.e.,
zy = g7 (2, u, &, t), and x, is given. Let

T
V(zs;s) = max E Z f(x,ug, &4, t)

Then Bellman’s principle states that V' satisfies the functional equation
V(l’t, t) = maXEt{f(a:t, U, gt, t) + V(ZEH_l;t + 1)} (FE)
where 7, = G (x4, ug, &, 1)

We assume that the probability measure of &; conditional on I; is independent of
u; and x¢. The first order condition for this maximization problem is then

B ful@e, ue, &, t) + Va(zgrs t + 1) gl (2, up, &, 1)} = 0
We introduce the notation A\;11 = V,(z411;t + 1) (cf. the envelope theorem), so
this equation becomes
E{ fu(ze, ue, &, 1) + Aeg10d (2o, ur, &, 1) }
which is the same as our equation (Mu): EiH,(x¢,ut, & Aey1,t) = 0. If we
differentiate the functional equation (FE) wrt x4, using the envelope theorem, we
get .
Va(@i;t) = Ee{ fo(me, ue, &, 1) + Ve (@5t + 1) g (2, ue, §e, 1) }
which with our A-notation becomes

Ao = E{fo(zs,ue, &, 1) + Ny 9% (4, ug, &6, 1)}
which is precisely our equation (Ex): EyH,(x¢,ut, &ty Ary1,t) — A = 0.
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