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Continuous case
Consider the problem of finding functions x(t) = (x1(t), . . . , xn(t)) and u(t) =

(u1(t), . . . , um(t)) so as to maximize the integral

∫ b

a
f(x(t), u(t), t) dt

subject to

ẋj(t) = gj(x(t), u(t), t) j = 1, . . . , n
∫ b

a
kj(x(t), u(t), t) dt = Qj j = 1, . . . , J1

hj(x(t), u(t), t) = 0 j = 1, . . . , J2

u(t) ∈ Γt Γt some convex subset of Rm

Of course, J1 = 0 means that there are no integral restrictions, and similarly if
J2 = 0. Define the Hamiltonian H as

H(x(t), u(t), λ(t), µ, ν(t), t) =f(x(t), u(t), t) + λ(t) · g(x(t), u(t), t)

+ µ · k(x(t), u(t), t) + ν(t) · h(x(t), u(t), t)

where we of course have used vector notation: g(·) = (g1(·), . . . , gn(·)); λ(t) =
(λ1(t), . . . , λn(t)), etc. Note that the Lagrangean multipliers λj and νj are func-
tions of t, whereas the µj ’s are constants.

Assumption: The Hamiltonian H is concave in the variables (x, u) and contin-
uously differentiable wrt x.

Lemma 1. Let u ∈ argmax
u∈Γt

H(x, u, λ, µ, ν, t). Then, for any ũ ∈ Γt,

H(x, u, λ, µ, ν, t)−H(x̃, ũ, λ, µ, ν, t) ≥ Hx(x, u, λ, µ, ν, t) · [x− x̃]
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Proof. Let ∆x ≡ x̃− x,∆u ≡ ũ− u. For any positive integer m,

H(x+
∆x
m
, u+

∆u
m
, λ, µ, ν, t)

≥ H(x, u, λ, µ, ν, t) +
1
m

[H(x̃, ũ, λ, µ, ν, t)−H(x, u, λ, µ, ν, t)]

≥ H(x, u+
∆u
m
, λ, µ, ν, t) +

1
m

[H(x̃, ũ, λ, µ, ν, t)−H(x, u, λ, µ, ν, t)]

The first inequality comes from the concavity, the second from the definition of u;
note that u+ ∆u

m ∈ Γt since Γt is convex. Hence

H(x, u, λ, µ, ν, t)−H(x̃, ũ, λ, µ, ν, t)

≥ m[H(x, u+
∆u
m
, λ, µ, ν, t)−H(x+

∆x
m
, u+

∆u
m
, λ, µ, ν, t)]

= −Hx(x̂m, u+
∆u
m
, λ, µ, ν, t) ·∆x

where x̂m is some point on the straight line connecting x and x+ ∆x
m ; the equality

comes from the mean value theorem of calculus. Now, letting m → ∞ using the
fact that Hx is continuous, we get the result of the lemma; Q.E.D.

It is easy to verify that

∫ b

a
f(x(t), u(t), t) dt =

∫ b

a
[H(·)− λ(t) · ẋ(t)] dt− µQ

Hence, if (x(t), u(t)) is a fixed feasible pair with

u(t) ∈ argmax
u∈Γt

H(x(t), u(t), λ(t), µ, ν, t)

and (x̃(t), ũ(t)) is any feasible pair, then

∫ b

a
f(x(t), u(t), t) dt−

∫ b

a
f(x̃(t), ũ(t), t) dt

=
∫ b

a
{H(x(t), u(t), λ(t), µ, ν(t), t)−H(x̃(t), ũ(t), λ(t), µ, ν(t), t)} dt

−
∫ b

a
λ(t) · [ẋ(t)− ˙̃x(t)] dt

≥
∫ b

a
Hx(x(t), u(t), λ(t), µ, ν(t), t) · [x(t)− x̃(t)] dt−

∫ b

a
λ(t) · [ẋ(t)− ˙̃x(t)] dt

=
∫ b

a
[Hx(x(t), u(t), λ(t), µ, ν(t), t) + λ̇(t)] · [x(t)− x̃(t)] dt

−
[

λ(t) · (x(t)− x̃(t))
]b
a
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The following conditions on (x(t), u(t), λ(t), µ, ν(t)) are obviously sufficient for
the last expression in the chain of relations above to be 0, and hence sufficient
conditions for (x(t), u(t)) to be a solution to the maximization problem:

(Exj) Hxj (x(t), u(t), λ(t), µ, ν(t), t) + λ̇j(t) = 0 j = 1, . . . , n

(Mu) u(t) ∈ argmax
u∈Γt

H(x(t), u(t), λ(t), µ, ν(t), t) a ≤ t ≤ b

for any j = 1, . . . , n, either xj(b) = xbj is given, or else

(TUxj) λj(b) = 0

for any j = 1, . . . , n, either xj(a) = xaj is given, or else

(TLxj) λj(a) = 0

If there is no restriction xj(b) = xbj , then b is called a free boundary for xj ,
and the condition (TUxj) and (TLxj) are called transversality conditions. The
E-equations are called Euler equations.

Infinite horizon
Let in the previous case b = ∞. The only impact this has on the analysis

above is on the last expression −[λ(t) · (x(t)− x̃(t))]ba. A sufficient condition for
this expression to be ≥ 0 as b→∞ is, in addition to (TLxj) above

(TU∞xj) lim inf
t→∞

λ(t) · x̃(t) ≥ 0 for all feasible x̃(t) and lim
t→∞

λ(t) · x(t) = 0

The envelope theorem
Let V = max

∫ b
a f(x(t), u(t), t) dt and let α be a parameter which does not

influence Q, a, b, Γt, xa, if a is not a free boundary, xb if b is not a free bound-
ary. Assume that the sufficient conditions given above are satisfied and that u is
uniquely defined by (Mu) and locally bounded as a function of α. Then

dV
dα

=
∫ b

a
Hα(x(t), u(t), λ(t), µ, ν(t), t) dt

dV
da

= −H(x(a), u(a), λ(a), µ, ν(a), a)

dV
db

= H(x(b), u(b), λ(b), µ, ν(b), b)

dV
dxaj

= λj(a) (if a is not a free boundary)

dV
dxbj

= −λj(b) (if b is not a free boundary)

dV
dQj

= −µj j = 1, . . . , J1
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Lemma 2. If β is any parameter (i.e., β may influence a, xaj , Q, etc.), then

∫ b

a
[Hx · xβ +Hλ · λβ +Hµ · µβ +Hν · νβ − λβ · ẋ− λ · ẋβ ] dt− µβ ·Q

= λ(a) · xβ(a)− λ(b) · xβ(b)

Proof. The term Hµ = k(x, u, t) whose integral is Q and Hν = h(x, u, t)
which is ≡ 0. Hence we are left with
∫ b

a
[Hx·xβ+Hλ·λβ−λβ ·ẋ−λ·ẋβ ] dt =

∫ b

a
[(Hx+λ̇)·xβ+(Hλ−ẋ)·λβ ] dt−[λ(t) ·xβ(t)]ba

The integral is = 0, since Hx + λ̇ = 0 by (Ex) and Hλ − ẋ = g(x, u, t)− ẋ = 0. So
we are left with λ(a) · xβ(a)− λ(b) · xβ(b) Q.E.D.

Proof of the the envelope theorem.
By the “usual” envelope theorem, we can treat u as constant when we differ-

entiate, hence

dV
dα

=
∫ b

a
Hα dt+

∫ b

a
[Hx ·xα+Hλ ·λα+Hµ ·µα+Hν ·να−λα · ẋ−λ · ẋα] dt−µα ·Q

Using lemma 2, we get

dV
dα

=
∫ b

a
Hα dt+ λ(a) · xα(a)− λ(b) · xα(b)

If a is a free boundary, then λ(a) = 0; if x(a) = xa is given, then xα(a) = 0, since
xa is independent of α by assumption. In any case, the product λ(a) · xα(a) = 0,
and similarly λ(b) · xα(b) = 0, which proves the dV/dα part.

dV
db

=
d
db

{

∫ b

a
[H(·)− λ(t) · ẋ(t)] dt− µ ·Q

}

= H(x(b), u(b), λ(b), µ, ν, b)− λ(b) · ẋ(b)

+
∫ b

a
[Hx · xb +Hλ · λb +Hµ · µb +Hν · νb − λb · ẋ− λ · ẋb] dt− µb ·Q

Using lemma 2, we get

dV
db

= H(x(b), u(b), λ(b), µ, ν, b)− λ(b) · ẋ(b) + λ(a) · xb(a)− λ(b) · xb(b)

Here the term λ(a) · xb(a) = 0, by the same argument as in the previous case. If b
is a free boundary, then λ(b) = 0. In order to analyze the situation when b is not a
free boundary, we introduce the temporary notation x(t; b) for the optimal function
x(t) given that the upper limit of integration is b. In this case x(b; b) = x̂ where x̂ is
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a number independent of b. Hence, by differentiation w.r.t. b, ẋ(b, b)+xb(b; b) = 0.
We see that in all cases the sum −λ(b) · ẋ(b) − λ(b) · xb(b) = 0, which proves the
dV/db part. Of course, the dV/da part is proven similarly.

Using lemma 2, we have

dV
dxaj

=
∫ b

a

[

Hx ·
∂x
∂xaj

+Hλ ·
∂λ
∂xaj

+Hµ ·
∂µ
∂xaj

+Hν ·
∂ν
∂xaj
− ∂λ
∂xaj
· ẋ− λ · ∂ẋ

∂xaj

]

dt

−Q · ∂x
∂xaj

= λ(a) · ∂x(a)
∂xaj

− λ(b) · ∂x(b)
∂xaj

Here either λ(b) is = 0 (if b is a free boundary) or
∂x(b)
∂xaj

= 0 (if b is not a free

boundary) Hence
dV
dxaj

= λ(a) · ∂x(a)
∂xaj

= λj(a). The formula for
dV
dxbj

is of course

proven similarly.
Finally, employing lemma 2 once again, we have

dV
dQ

=
d
dQ

{

∫ b

a
[H(·)− λ(t) · ẋ(t)] dt− µ ·Q

}

=
∫ b

a
HQ dt+

∫ b

a
[Hx · xQ +Hλ · λQ +Hµ · µQ +Hν · νQ−λQ · ẋ−λ · ẋQ] dt

−Q · µQ − µ
= λ(a) · xQ(a)− λ(b) · xQ(b)− µ = −µ

The argument for the last equality is the same as in previous cases. Q.E.D.

Discrete case
Consider the problem of finding sequences xt = (x1

t , . . . , x
n
t ) and ut =

(u1
t , . . . , u

m
t ) so as to maximize the sum

T
∑

s

f(xt, ut, t)

subject to the constraints

xjt+1 = gj(xt, ut, t), t = s, . . . , T j = 1, . . . , n
T
∑

s

kj(xt, ut, t) = Qj j = 1, . . . , J1

hj(xt, ut, t) = 0 t = s, . . . , T j = 1, . . . , J2

ut ∈ Γt Γt some convex subset of Rm

Of course, J1 = 0 means that there are no summation restrictions, and similarly
if J2 = 0. Define the Hamiltonian

H(xt, ut, λt+1, µ, νt, t) = f(xt, ut, t)+λt+1 ·g(xt, ut, t)+µ·k(xt, ut, t)+νt ·h(xt, ut, t)
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where we of course have used vector notation: g(·) = (g1(·), . . . , gn(·)); λt =
(λ1
t , . . . , λ

n
t ), etc. Note that the Lagrangean multipliers λj and νj are functions of

t, whereas the µj ’s are constants. It is easy to verify that
T
∑

s

f(xt, ut, t) =
T
∑

s

[H(·)− λt+1 · xt+1]− µQ

Assumption: The Hamiltonian H is concave in the variables (x, u) and contin-
uously differentiable wrt x.

By lemma 1, if ut ∈ argmax
u∈Γt

H(xt, ut, λt+1, µ, νt, t) and (x̃t, ũt) is any feasible pair,

then

H(x, u, λ, µ, ν, t)−H(x̃, ũ, λ, µ, ν, t) ≥ Hx(x, u, λ, µ, ν, t) · [x− x̃]

Hence, if (xt, ut) is a fixed feasible pair such that ut∈argmax
u∈Γt

H(xt, ut, λt+1, µ, νt, t)

and (x̃t, ũt) is any feasible pair, then
T
∑

s

f(xt, ut, t)−
T
∑

s

f(x̃t, ũt, t)

=
T
∑

s

{H(xt, ut, λt+1, µ, νt, t)−H(x̃t, ũt, λt+1, µ, νt, t)}

−
T
∑

s

λt+1 · [xt+1 − x̃t+1]

≥
T
∑

s

Hx(xt, ut, λt+1, µ, νt, t) · [xt − x̃t]−
T
∑

s

λt+1 · [xt+1 − x̃t+1]

=
T
∑

s

[Hx(xt, ut, λt+1, µ, νt, t)− λt] · [xt − x̃t] + λs · [xs − x̃s]

−λT+1 · [xT+1 − x̃T+1]

The following conditions on (xt, ut, λt, µ, νt) are obviously sufficient for this ex-
pression to be = 0, and hence sufficient conditions for (xt, ut) to be a solution to
the maximization problem:

(Exj) Hxj (xt, ut, λt+1, µ, νt, t)− λjt = 0 t = s, . . . , T j = 1, . . . , n

(Mu) ut ∈ argmax
u∈Γt

H(xt, ut, λt+1, µ, νt, t) t = s, . . . , T ∗

for any j = 1, . . . , n, either xT+1
j is given, or else

(TUxj) λjT+1 = 0

for any j = 1, . . . , n, either xjs is given, or else

(TLxj) λjs = 0
∗ In contrast to the continuous case, this is not a necessary condition if H is not
concave.
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Infinite horizon
Let in the previous case T = ∞. The only impact this has on the analysis

above is on the last expression −λT+1 · [xT+1 − x̃T+1]. A sufficient condition for
this expression to be ≥ 0 as T →∞ is, in addition to (TLxj) above,

(TU∞xj) lim inf
t→∞

λt · x̃t ≥ 0 for all feasible x̃t and lim
t→∞

λt · xt = 0

The envelope theorem
Let V = max

∑T
s f(xt, ut, t) and let α be a parameter which does not influ-

ence Q, s, T, Γt or any of the boundary values of x, if any are given as constraints.
Assume that the sufficient conditions given above are satisfied and that ujt is
uniquely determined by (Mu) and locally bounded in α. Then

dV
dα

=
T
∑

s

Hα(xt, ut, λt+1, µ, νt, t)

dV

dxjs
= λjs if xjs is given as a constraint

dV

dxjT+1

= −λjT+1 if xjT+1 is given as a constraint

dV
dQj

= −µj j = 1, . . . , J1

Proof. Using the “usual” envelope theorem as to the variation in u,

dV
dα

=
d
dα

T
∑

s

f(xt, ut, t)

=
d
dα

{
T
∑

s

[H(xt, ut, λt+1, µ, νt, t)− λt+1 · xt+1]− µ ·Q
}

=
T
∑

s

Hα(xt, ut, λt+1, µ, νt, t) +
T
∑

s

{

Hx ·
dxt
dα

+Hλ ·
dλt+1

dα
+Hµ ·

dµ
dα

+Hν ·
dνt
dα
− dλt+1

dα
· xt+1 − λt+1 ·

dxt+1

dα

}

− dµ
dα
·Q

=
T
∑

s

Hα(xt, ut, λt+1, µ, νt, t) +
T
∑

s

[Hx − λt] ·
dxt
dα

+
T
∑

s

[Hλ − xt+1] · dλt+1

dα

+
{(

T
∑

s

Hµ

)

−Q
}

· dµ
dα

+
T
∑

s

Hν ·
dνt
dα

+ λs ·
dxs
dα
− λT+1 ·

dxT+1

dα

Using (Ex), Hλ−xt+1 = g(xt, ut, t)−xt+1 = 0,
T
∑

s

Hµ −Q =
T
∑

s

k(xt, ut, t)−Q

= 0 and Hν = h(. . .) = 0, we get

dV
dα

=
T
∑

s

Hα(xt, ut, λt+1, µ, νt, t) + λs ·
dxs
dα
− λT+1 ·

dxT+1

dα
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Here, either λs = 0 (if s is a free boundary) or dxs/dα = 0 (if xs is given); hence
the λs-term = 0, and similarly the λT+1-term = 0. The other derivatives are
shown similarly. Q.E.D.

Uncertainty
Let t be time, ξt a stochastic process, Et the expectations operator conditional

on It, the information set available at time t; in particular, t′ < t ⇒ It′ ⊆ It.
Consider the problem of finding sequences xt = (x1

t , . . . , x
n
t ) and ut = (u1

t , . . . , u
m
t )

so as to maximize the sum

Es
T
∑

s

f(xt, ut, ξt, t) where xt, ut ∈ It, subject to the constraints

xjt+1 = gj(xt, ut, ξt, t), t = s, . . . , T j = 1, . . . , n
T
∑

s

kj(xt, ut, ξt, t) = Qj j = 1, . . . , J1

hj(xt, ut, ξt, t) = 0 t = s, . . . , T j = s, . . . , J2

ut ∈ Γt ∈ It Γt some convex subset of Rm

Of course, J1 = 0 means that there are no summation restrictions, and similarly
if J2 = 0. Define the Hamiltonian

H(xt, ut, ξt, λt+1, µ, νt, t) = f(xt, ut, ξt, t) + λt+1 · g(xt, ut, ξt, t)

+µ · k(xt, ut, ξt, t) + νt · h(xt, ut, ξt, t)

where we of course have used vector notation: g(·) = (g1(·), . . . , gn(·)); λt =
(λ1
t , . . . , λ

n
t ), etc. The Lagrangean multipliers λj and νj are stochastic processes

and the µj : s are stochastic variables (i.e., independent of t) such that µ ∈ Is and
λt ∈ It. It is easy to verify that

Es
T
∑

s

f(xt, ut, ξt, t) = Es
T
∑

s

[H(·)− λt+1 · xt+1]− µ ·Q

Assumption: The Hamiltonian H(xt, . . . , t) is concave in the variables (xt, ut)
and continuously differentiable wrt x.

By lemma 1, if ut ∈ argmax
u∈Γt

EtH(xt, ut, ξt, λt+1, µ, νt, t) and (x̃t, ũt) is any feasible

pair, then

EtH(xt, ut, ξt,λt+1, µ, νt, t)− EtH(x̃t, ũt, ξt, λt+1, µ, νt, t)

≥ EtHx(xt, ut, ξt, λt+1, µ, νt, t) · [xt − x̃t]

Hence, if (xt, ut) is a fixed feasible pair such that

ut ∈ argmax
u∈Γt

EtH(xt, ut, ξt, λt+1, µ, νt, t)
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and (x̃t, ũt) is any feasible pair, then

Es
T
∑

s

f(xt, ut, ξt, t)− Es
T
∑

s

f(x̃t, ũt, ξt, t)

= Es
T
∑

s

{

H(xt, ut, ξt, λt+1, µ, νt, t)−H(x̃t, ũt, ξt, λt+1, µ, νt, t)
}

−Es
T
∑

s

λt+1 · [xt+1 − x̃t+1]

= Es
T
∑

s

{

EtH(xt, ut, ξt, λt+1, µ, νt, t)−EtH(x̃t, ũt, ξt, λt+1, µ, νt, t)
}

−Es
T
∑

s

λt+1 · [xt+1 − x̃t+1]

≥ Es
T
∑

s

EtHx(xt, ut, ξt, λt+1, µ, νt, t) · [xt − x̃t]− Es
T
∑

s

λt+1 · [xt+1 − x̃t+1]

= Es
T
∑

s

[EtHx(xt, ut, ξt, λt+1, µ, νt, t)− λt] · [xt − x̃t]

+λs · [xs − x̃s]− Es
{

λT+1 · [xT+1 − x̃T+1]
}

The following conditions on (xt, ut, λt, µ, νt) are obviously sufficient for this ex-
pression to be ≥ 0, and hence sufficient conditions for (xt, ut) to be a solution to
the maximization problem:

(Exj) EtHxj (xt, ut, ξ, λt+1, µ, νt, t)− λjt = 0 t = s, . . . , T j = 1, . . . , n

(Mu) ut ∈ argmax
u∈Γt

EtH(xt, ut, ξ, λt+1, µ, νt, t) t = s, . . . , T

for any j = 1, . . . , n, either xjT+1 is given, or else

(TUxj) λjT+1 = 0

for any j = 1, . . . , n, either xjs is given, or else

(TLxj) λjs = 0

Infinite horizon
Let in the previous case T = ∞. The following transversality condition re-

places (TUxj) as a sufficient condition, and the derivation parallels that of the
case with no uncertainty:

(TU∞xj) lim inf
t→∞

Eτλt · x̃t ≥ 0 for all feasible x̃t and lim
t→∞

Eτλt · xt = 0 ∀τ
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The envelope theorem
Let V = maxEs

∑T
s f(xt, ut, ξt, t) and let α be a parameter which does not

influence Q, s, T, Γt, ξt or any of the boundary values of x, if any are given
as constraints. Assume also that the probability measures of xt, ut, ξt, λt+1, µ, νt
conditional on It are independent of α, of xjs if xjs is given as a constraint, and of
xjT+1 if xjT+1 is given as a constraint. Assume that the sufficient conditions given
above are satisfied and that ut is uniquely determined by (Mu). Then

dV
dα

= Es
T
∑

s

Hα(xt, ut, ξ, λt+1, µ, νt, t)

dV

dxjs
= λjs if xjs is given as a constraint

dV

dxjT+1

= −EsλjT+1 if xjT+1 is given as a constraint

dV
dQj

= −µj j = 1, . . . , J1

The proof parallels that of the certainty case, so we omit it.

Bellman’s approach to the uncertainty case
A popular way to treat the uncertainty case is to use Bellman’s equation. We

now show that Bellman’s approach often leads to the same equations as Pontrya-
gin’s, i.e., those we have derived. Let us look at the maximization problem in
the uncertainty case again, where we only have the first type of constraint, i.e.,
xjt+1 = gj(xt, ut, ξt, t), and xs is given. Let

V (xs; s) ≡ maxEs
T
∑

s

f(xt, ut, ξt, t)

Then Bellman’s principle states that V satisfies the functional equation

V (xt; t) = maxEt{f(xt, ut, ξt, t) + V (xt+1; t+ 1)} (FE)

where xjt+1 = gj(xt, ut, ξt, t)

We assume that the probability measure of ξt conditional on It is independent of
ut and xt. The first order condition for this maximization problem is then

Et{fu(xt, ut, ξt, t) + Vx(xt+1; t+ 1)gju(xt, ut, ξt, t)} = 0

We introduce the notation λt+1 ≡ Vx(xt+1; t + 1) (cf. the envelope theorem), so
this equation becomes

Et{fu(xt, ut, ξt, t) + λt+1gju(xt, ut, ξt, t)}
which is the same as our equation (Mu): EtHu(xt, ut, ξt, λt+1, t) = 0. If we
differentiate the functional equation (FE) wrt xt, using the envelope theorem, we
get

Vx(xt; t) = Et{fx(xt, ut, ξt, t) + Vx(xt+1; t+ 1)gjx(xt, ut, ξt, t)}
which with our λ-notation becomes

λt = E{fx(xt, ut, ξt, t) + λt+1gjx(xt, ut, ξt, t)}
which is precisely our equation (Ex): EtHx(xt, ut, ξt, λt+1, t)− λt = 0.
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