2. Hilbert polynomials.

(2.1) Definition. Let A be a ring. An additive function $\lambda = \lambda_A$ on finitely generated A-modules associates to every finitely generated A-modules M an integer $\lambda(M)$ and satisfies the property:

For every exact sequence of finitely generated A-modules

$$0 \to M' \to M \to M'' \to 0$$

we have

$$\lambda(M) = \lambda(M') + \lambda(M'').$$

(2.2) Remark. Let $M' = (0)$ and thus $M = M''$. We see that $\lambda((0)) = 0$.

(2.3) Example. It follows from Proposition (CHAINS 1.15) that when A is an artinian ring the *length* is an additive function on finitely generated A-modules. In particular the vectors space dimension is an additive function on finite dimensional vector spaces.

(2.4) Remark. Let $A = \bigoplus_{n=0}^{\infty} A_n$ be a graded ring that is finitely generated as an A_0-algebra, and let $M = \bigoplus_{n=0}^{\infty} M_n$ be a finitely generated A-module. Then each M_n is a finitely generated A_0-module. In fact when we replace, if necessary, a set of generators for the A_0-algebra A, and a set of generators for the A-module M by their homogeneous components, we see that the A_0-algebra A can be generated by a finite set f_1, f_2, \ldots, f_p of homogeneous elements of A, respectively that the A-module M can be generated by a finite set x_1, x_2, \ldots, x_q of homogeneous elements of M. If $f_i \in A_{m_i}$ for $i = 1, 2, \ldots, p$ and $x_i \in M_{n_i}$ for $i = 1, 2, \ldots, q$ we clearly have that M_n is generated, as an A_0-module, by the elements $f_i_1 f_i_2 \cdots f_i_r x_j$ for all collections of integers i_1, i_2, \ldots, i_r between 1 and p and and j between 1 and q, and with $m_{i_1} + m_{i_2} + \cdots + m_{i_r} + n_j = n$.

In particular, it follows from Proposition (1.6) that for any noetherian graded ring A and finitely generated graded module M, the homogeneous part M_n is finitely generated for all n.

(2.5) Definition. Let $A = \bigoplus_{n=0}^{\infty} A_n$ be a graded ring that is finitely generated as an A_0-algebra, and let $M = \bigoplus_{n=0}^{\infty} M_n$ be a finitely generated A-module. Moreover let λ be an additive function on finitely generated A_0-modules. The *Poincaré series* of the A-module M is the power series!!

$$P_\lambda(M, t) = \sum_{n=0}^{\infty} \lambda(M_n) t^n$$

in the variable t with coefficients in \mathbb{Z}.
(2.6) Example. Let \(A = K[t_1, t_2, \ldots, t_n] \) be the polynomial ring in the variables \(t_1, t_2, \ldots, t_n \) over a field \(K \). Then \(A = \oplus_{i=0}^{\infty} A_i \) where \(A_i \) is the vector space of all homogeneous polynomials of degree \(n \). Let \(\lambda(M) = \dim_K(M) \) for all finite dimensional vector spaces \(M \) over \(K \). Then \(P_\lambda(A, t) = \sum_{i=0}^{\infty} (i^{n+1}) t^i = 1/(1 - t)^n \).

(2.7) Example. Let \(K[t_1, t_2] \) be the polynomial ring in the variables \(t_1, t_2 \) over a field \(K \). Moreover let \(A = K[t_1, t_2]/(t_1^2, t_1 t_2) \) be the residue ring of the polynomial ring \(K[t_1, t_2] \) modulo the ideal \((t_1^2, t_1 t_2) \), and let \(u \) and \(v \) be the residue classes of \(t_1 \), respective \(t_2 \) in \(A \). Then \(u^2 = 0 = uv \) and we have that \(A = K \oplus (Ku + K v) \oplus K v^2 \oplus K v^3 \oplus \cdots \). Hence \(P_\lambda(A, t) = 1 + 2t + t^2 + t^3 + \cdots = (1 + t - t^2)/(1 - t) \).

(2.8) Example. Let \(K[t_1, t_2] \) be the polynomial ring in the variables \(t_1, t_2 \) over a field \(K \). Moreover let \(A = K[t_1, t_2]/(t_1^2 + t_2^2) \) be the residue ring of the polynomial ring \(K[t_1, t_2] \) modulo the ideal \((t_1^2 + t_2^2) \), and let \(u \) and \(v \) be the residue classes of \(t_1 \) respectively \(t_2 \) in \(A \). Then \(u^2 + v^2 = 0 \) and \(A = K \oplus (Ku + K v) \oplus (Kw + K v^2) \oplus (K v + K v^3) \oplus \cdots \). Hence \(P_\lambda(A, t) = 1 + 2t + 2t^2 + \cdots = (1 + t - t^2)/(1 - t) \).

(2.9) Lemma. Let \(A = \oplus_{n=0}^{\infty} A_n \) be a noetherian graded ring and let \(M = \oplus_{n=0}^{\infty} M_n \) be a finitely generated \(A \)-module. Moreover let \(\lambda \) be an additive function on finitely generated \(A_0 \)-modules. For every homogeneous element \(f \in A_m \) with \(m > 0 \) we have an exact sequence of \(A \)-modules

\[
0 \rightarrow L \rightarrow M \xrightarrow{f_M} M \rightarrow N \rightarrow 0
\]

where \(L \) and \(N \) are finitely generated \((A/fA)\)-modules, and

\[
(1 - t^m) P_\lambda(M, t) = P_\lambda(N, t) - t^m P_\lambda(L, t).
\]

(2.9.1)

Proof. For each integer \(n \geq -m \) we have an exact sequence

\[
0 \rightarrow L_n \rightarrow M_n \xrightarrow{f_M} M_{m+n} \rightarrow N_{m+n} \rightarrow 0
\]

(2.9.2)

where \(L_n \) and \(N_{m+n} \) are defined as the kernel, respectively the cokernel of the map \(f_M \). Let \(L = \oplus_{n=0}^{\infty} L_n \) and \(N = \oplus_{n=0}^{\infty} N_n \). Then \(L \) and \(N \) are \(A \)-modules, and we have an exact sequence (2.6.1). Since \(M \) is noetherian by Lemma (CHAINS 1.6) it follows from Proposition (1.7) that \(L \) and \(N \) are noetherian \(A \)-modules. In particular it follows from Remark (2.4) that \(L_n \) and \(N_n \) are finitely generated \(A_0 \)-modules for all \(n \). It follows from (2.9.3) that we have equations

\[
\lambda(M_{m+n}) - \lambda(M_n) = \lambda(N_{m+n}) - \lambda(L_n) \quad \text{for } n = -m, -m + 1, \ldots.
\]

(2.9.4)

Multiply both sides of (2.9.4) by \(t^{n+m} \) for \(n = -m, -m + 1, \ldots \), and sum the right and left hand sides of the resulting equations. We obtain equation (2.9.2) of the Lemma.

Finally we note that \(fL = 0 \) and \(fN = 0 \). Hence \(L \) and \(N \) are in fact \(A/fA \)-modules.
(2.10) Theorem. (Hilbert-Serre) Let \(A \) be a noetherian graded ring, generated as an \(A_0 \)-module by \(m \) homogeneous elements of degrees \(p_1, p_2, \ldots, p_m \). Moreover let \(M \) be a finitely generated graded \(A \)-module, and \(\lambda \) an additive function on finitely generated \(A_0 \)-modules. Then

\[
P_\lambda(M, t) = f(t) / \prod_{i=1}^{m} (1 - t^{p_i})
\]

in the ring \(\mathbb{Z}[[t]] \) of power series in the variable \(t \) over the integers, where \(f(t) \) is a polynomial in \(\mathbb{Z}[t] \) and \(1/(1 - t^{p_i}) = 1 + t^{p_i} + t^{2p_i} + \cdots \).

Proof. We prove the Theorem by induction on \(m \). When \(m = 0 \) we have that \(A = A_0 \), and since \(M \) is finitely generated \(M_n = 0 \) for all sufficiently large \(n \). Consequently \(P_\lambda(M, t) \) is a polynomial when \(m = 0 \).

Assume that \(m > 0 \) and that the Theorem holds for \(m - 1 \). Let \(f_1, f_2, \ldots, f_m \) be homogeneous elements of positive degrees \(p_1, p_2, \ldots, p_m \) respectively that generate \(A \) as an \(A_0 \)-algebra. It follows from Lemma (2.9) with \(f = f_m \) that

\[
(1 - t^{p_m}) P_\lambda(M, t) = P_\lambda(N, t) - t^{p_m} P_\lambda(L, t)
\]

where \(L \) and \(N \) are \((A/f_m A) \)-modules. We have that the \(A_0 \)-algebra \(A/f_m A = A_0[f_1, f_2, \ldots, f_m]/f_m A \) is generated by the residue classes of \(f_1, f_2, \ldots, f_{m-1} \). It follows from the induction hypothesis that \(P_\lambda(N, t) = g(t) / \prod_{i=1}^{m-1} (1 - t^{p_i}) \) and \(P_\lambda(L, t) = h(t) / \prod_{i=1}^{m-1} (1 - t^{p_i}) \), where \(g(t) \) and \(h(t) \) are polynomials in \(\mathbb{Z}[t] \). Equation (2.10.1) consequently follows from equation (2.10.2).

(2.11) Corollary. Let \(A \) be a noetherian graded ring that is finitely generated as an \(A_0 \)-algebra by \(m \) elements of degree 1. Moreover let \(M \) be a finitely generated graded \(A \)-module. Write

\[
P_\lambda(M, t) = f(t) / (1 - t)^m = g(t) / (1 - t)^p
\]

where \(0 \leq p \leq m \) and \(g(t) \) is a polynomial in \(\mathbb{Z}[t] \) with \(g(1) \neq 0 \). Then there is a polynomial \(h(t) \) in \(\mathbb{Q}[t] \) of degree \(p - 1 \) such that \(\lambda(M_n) = h(n) \) for all sufficiently large \(n \). Here we define the degree of the zero polynomial as \(-1\).

Proof. When \(p = 0 \), that is, when \((1 - t)^m \) divides \(f(t) \) we have that \(P_\lambda(M, t) \) is a polynomial. Consequently we have that \(\lambda(M_n) = 0 \) when \(n \) is larger than the degree of \(P_\lambda(M, t) \). Hence the Corollary holds when \((1 - t)^m \) divides \(f(t) \).

Assume that \(0 < p \leq m \). Write \(g(t) = \sum_{n=0}^{q} g_n t^n \) with \(g_n \in \mathbb{Z} \). Since \(1/(1 - t)^p = \sum_{n=0}^{\infty} \frac{(n+p-1)}{p-1} t^n \) in \(\mathbb{Z}[[t]] \), we have that

\[
g(t) / (1 - t)^p = \sum_{n=0}^{\infty} \sum_{i+j=n} g_i \binom{j+p-1}{p-1} t^n.
\]
Consequently $\lambda(M_n) = \sum_{i+j=n} g_i (t^{i+p-1}) = \sum_{i=0}^{q} g_i (t^{n-i+p-1})$. We write $(t) = (1/n!)t(t-1)\cdots(t-n+1)$ in $\mathbb{Q}[t]$, and we let $h(t) = \sum_{i=0}^{q} g_i (t^{i+p-1})$. Then $h(t)$ is a polynomial of degree $p - 1$ because the coefficient of t^{p-1} is $(1/(p-1)!) \sum_{i=0}^{q} g_i = (1/(p-1)!)(1) \neq 0$. Moreover we have that $\lambda(M_n) = h(n)$ when $n \geq q$, and we have proved the Corollary.

(2.12) Definition. Let $A = \bigoplus_{n=0}^{\infty} A_n$ be a graded noetherian ring which is generated as an A_0-module by elements of degree 1. Moreover let M be a finitely generated A-module, and let λ be an additive function on finitely generated A_0-modules. The polynomial $!h(t)!$ in $\mathbb{Q}[t]$ such that $h(n) = \lambda(M_n)$ for all sufficiently large n is called the Hilbert polynomial of M with respect to λ. We denote by $!!d_\lambda(M)$ the degree of the Hilbert polynomial. Here we define the degree of the zero polynomial as -1.

(2.13) Example. Let $K[t_1, t_2, \ldots, t_n]$ be the polynomial ring in the variables t_1, t_2, \ldots, t_n over a field K. We saw in Example (2.6) that the Hilbert polynomial $h(t)$ is $(t^{n+1})/(n+1) = (1/(n-1)!(t + n - 1)(t + n - 2)\cdots(t + 1)$.

(2.14) Example. Let $A = K[u, v]$ with $u^2 = 0 = uv$ be the ring of Example (2.7). Then the Hilbert polynomial $h(t)$ is equal to 1.

(2.15) Example. Let $A = K[u, v]$ with $u^2 + v^2 = 0$ be the ring of Example (2.8). Then the Hilbert polynomial $h(t)$ is equal to 2.

(2.16) Lemma. Let A be a noetherian graded ring that is generated as an A_0-module by elements of degree 1. Moreover let M be a finitely generated A-module, and let λ be an additive function on finitely generated A_0-modules. For every homogeneous element $f \in A$ of positive degree which is M-regular we have that

$$d_\lambda(M) = d_\lambda(M/fM) + 1.$$

Proof. Let f be homogeneous of degree $m > 0$. Since f is M-regular the map $f_M : M \to M$ is injective. Hence it follows from the exact sequence (2.9.1) that $L = 0$, and we obtain from equation (2.9.2) that

$$(1 - t^m)P_\lambda(M, t) = P_\lambda(M/fM, t).$$

Write $P_\lambda(M, t) = g(t)/(1 - t)^p$ and $P_\lambda(M/fM, t) = h(t)/(1 - t)^q$ where $g(t)$ and $h(t)$ are polynomials in $\mathbb{Z}[t]$ with $g(1) \neq 0$ respectively $h(1) \neq 0$. Then $(1 - t^m)(1 - t)^qg(t) = (1 - t)^ph(t)$. Since $1 - t^m = (1 - t)(1 + t + \cdots + t^{m-1})$ and $(1 + t + \cdots + t^{m-1})(1) = m \neq 0$ we have that $p = q + 1$. That is, we have $d_\lambda(M) = d_\lambda(M/fM) + 1$, and we have proved the Lemma.

(2.17) Exercises.
1. Let $K[u, v]$ be the ring of polynomials in the independent variables u, v with coefficients in a field K. Moreover, let $S = K[u, v]/(u^2, uv^m)$ be the residue ring of $K[u, v]$ modulo the ideal (u^2, uv^m).

(1) Determine the polynomial $g(t)$ in $\mathbb{Z}[t]$ and the non-negative integer p such that

$$P_\lambda(S, t) = g(t)/(1 - t)^p$$

and $g(1) \neq 0$, when $\lambda = \dim_K$.

(2) Determine the Hilbert polynomial of S with respect to \dim_K.

2. Let $K[u, v]$ be the ring of polynomials in the independent variables u, v with coefficients in a field K. Let $S = K[u, v]/(u^2, v^m)$ be the residue ring of $K[u, v]$ modulo the ideal (u^2, v^m).

(1) Determine the polynomial $g(t)$ in $\mathbb{Z}[t]$ and the non-negative integer p such that

$$P_\lambda(S, t) = g(t)/(1 - t)^p$$

and $g(1) \neq 0$, when $\lambda = \dim_K$.

(2) Determine the Hilbert polynomial of S with respect to \dim_K.

3. Let $K[t_1, t_2, \ldots, t_n]$ be the ring of polynomials in the independent variables t_1, t_2, \ldots, t_n over a field K. Moreover, let $f(t_1, t_2, \ldots, t_n)$ be a polynomial of degree $d > 0$, and let $S = K[t_1, t_2, \ldots, t_n]/(f(t_1, t_2, \ldots, t_n)$ be the residue ring of $K[t_1, t_2, \ldots, t_n]$ modulo the ideal $(f(t_1, t_2, \ldots, t_n)$ generated by $f(t_1, t_2, \ldots, t_n)$.

(1) Determine the polynomial $g(t)$ in $\mathbb{Z}[t]$ and the non-negative integer p such that

$$P_\lambda(S, t) = g(t)/(1 - t)^p$$

and $g(1) \neq 0$, when $\lambda = \dim_K$.

(2) Determine the Hilbert polynomial of S with respect to \dim_K.

4. Let $K[t_0, t_1, \ldots, t_n]$ be the ring of polynomials in the independent variables t_0, t_1, \ldots, t_n with coefficients in a field K with infinitely many elements. For every point $b = (b_0, b_1, \ldots, b_n$ in the cartesian product K^{n+1} of the field K with itself $n+1$ times, and for every element κ in K we write $\kappa b = (\kappa b_0, \kappa b_1, \ldots, \kappa b_n$. Moreover for every collection of points a_1, a_2, \ldots, a_m in K^{n+1} we write

$$\mathcal{I}(a_1, a_2, \ldots, a_m) = \{ f \in K[t_0, t_1, \ldots, t_n]: f(\kappa a_i) = 0 \text{ for } i = 1, 2, \ldots, m \text{ and all }\kappa \in K \}.$$

(1) Show that $\mathcal{I}(a_1, a_2, \ldots, a_m)$ is a homogeneous ideal in $K[t_0, t_1, \ldots, t_n]$.

(2) Let $S = K[t_0, t_1, \ldots, t_n]/\mathcal{I}(a_1, a_2, \ldots, a_m)$. Show that

$$\dim_K(\mathcal{I}(a_1, a_2, \ldots, a_m)) \geq \max(0, \left(\binom{n+d}{d} - m\right)).$$
(3) Show that for every non-empty collection \(\mathcal{P} \) of homogeneous polynomials in \(K[t_0, t_1, \ldots, t_n] \) of positive degree the subset

\[
V(\mathcal{P}) = \{ b \in K^{n+1} : g(b) = 0 \text{ for all } f \in \mathcal{P} \}
\]

of \(K^{n+1} \) is different from \(K^{n+1} \).

(4) Show that we can find points \(a_1, a_2, \ldots, a_m \) in \(K^{n+1} \) such that

\[
dim_K(\mathcal{I}(a_1, a_2, \ldots, a_m)) = \max(0, \binom{n + d}{d} - m).
\]

(5) Determine the polynomial \(g(t) \) in \(\mathbb{Z}[t] \) and the non-zero integer \(p \) such that

\[
P_\lambda(S, t) = g(t)/(1 - t)^p
\]

and \(g(1) \neq 0 \), when \(\lambda = \dim_K \).