2. Artinian and noetherian rings.

- (2.1) **Definition.** A ring A is noetherian, respectively artinian, if it is noetherian, respectively artinian, considered as an A-module. In other words, the ring A is noetherian, respectively artinian, if every chain $\mathfrak{a}_1 \subseteq \mathfrak{a}_2 \subseteq \cdots$ of ideal \mathfrak{a}_i in A is stable, respectively if every chain $\mathfrak{a}_1 \supseteq \mathfrak{a}_2 \supseteq \cdots$ of ideals \mathfrak{a}_i in A is stable.
- (2.2) Example. Let K[t] be the polynomial ring in the variable t with coefficients in a field K. Then the residue ring $K[t]/(t^n)$ is artinian and noetherian for all positive integers n. This is because $K[t]/(t^n)$ is a finite dimensional vector space of dimension n.
- (2.3) Example. The ring **Z** is noetherian, but not artinian. All rings with a finite number of ideals, like $\mathbf{Z}/n\mathbf{Z}$ for $n \in \mathbf{Z}$, and fields are artinian and noetherian.
- **(2.4) Example.** The polynomial ring $A[t_1, t_2, ...]$ in the variables $t_1, t_2, ...$ over a ring A is not noetherian since it contains the infinite chain $(t_1) \subset (t_1, t_2) \subset \cdots$ of ideals. It is not artinian either since it contains the infinite chain $(t_1) \supset (t_1^2) \supset (t_1^3) \supset \cdots$.
- (2.5) Proposition. Let A be a ring and let M be a finitely generated A-module.
 - (1) If A is a noetherian ring then M is a noetherian A-module.
 - (2) If A is an artinian ring then M is an artinian A-module.
- \rightarrow Proof. (1) It follows from Proposition (MODULES 1.20) that we have a surjective map $\varphi: A^{\oplus n} \to M$ from the sum of the ring A with itself n times to M. Hence it follows from Proposition (1.7) that M is noetherian.
 - (2) The proof of the second part is analogous to the proof of the first part.
 - (2.6) Corollary. Let $\varphi: A \to B$ be a surjective map from the ring A to a ring B.
 - (1) If the ring A is noetherian then the ring B is noetherian.
 - (2) If the ring A is artinian then the ring B is artinian.
 - *Proof.* (1) Since φ is surjective B is a finitely generated A-module with generator 1. It follows from the Proposition that B is noetherian as an A-module. Then B is clearly noetherian as a B-modules.
 - (2) The proof of the second part is analogous to the proof of the first part.
 - (2.7) Proposition. Let S be a multiplicatively closed subset of a ring A.
 - (1) If A is noetherian then $S^{-1}A$ is noetherian.
 - (2) If A is artinian then $S^{-1}A$ is artinian.
- Proof. (1) It follows from Remark (MODULES 3.13) that every ideal \mathfrak{b} in the localization $S^{-1}A$ satisfies $\varphi_{S^{-1}A}(\mathfrak{b})S^{-1}A = \mathfrak{b}$. Every chain $\mathfrak{b}_1 \subseteq \mathfrak{b}_2 \subseteq \cdots$ of ideals in $S^{-1}A$ therefore gives a chain $\varphi_{S^{-1}A}^{-1}(\mathfrak{b}_1) \subseteq \varphi_{S^{-1}A}^{-1}(\mathfrak{b}_2) \subseteq \cdots$ of ideals in A. Since A is noetherian there is a positive integer n such that $\varphi_{S^{-1}A}^{-1}(\mathfrak{b}_n) = \varphi_{S^{-1}A}^{-1}(\mathfrak{b}_{n+1}) = \cdots$. Consequently we have that $\mathfrak{b}_n = \mathfrak{b}_{n+1} = \cdots$. Hence $S^{-1}A$ is noetherian.
 - (2) The proof of the second part is analogous to the proof of the first part. chains2

21. marts 2002

(2.8) Remark. A noetherian ring has only a finite number of minimal prime ideals. This is because $\operatorname{Spec}(A)$ is a noetherian topological space since the descending chains of closed subsets of $\operatorname{Spec}(A)$ correspond to ascending chains of ideals in A by Remark (RINGS 5.2). By Proposition (TOPOLOGY 4.25) $\operatorname{Spec}(A)$ has only a finite number of irreducible components. However, it follows from Proposition (TOPOLOGY 5.13) that the irreducible components of $\operatorname{Spec}(A)$ correspond bijectively to the minimal prime ideals in A.

- (2.9) Remark. The radical $\mathfrak{r}(A)$ of a noetherian ring A is nilpotent, that is, we have $\mathfrak{r}(A)^n = 0$ for some integer n. This follows from Remark (RINGS 4.8) because $\mathfrak{r}(A)$ is finitely generated ideal.
- (2.10) Theorem. (The Hilbert basis theorem) Let A be a noetherian ring and B a finitely generated algebra over A. Then B is a noetherian ring.
- Proof. It follows from Proposition (RINGS 3.6) that we have a surjective homomorphism $A[t_1, t_2, \ldots, t_n] \to B$ of A-algebras from the polynomial ring $A[t_1, t_2, \ldots, t_n]$ in the variables t_1, t_2, \ldots, t_n over A. Hence it follows from Corollary (2.6) that is suffices to prove that the polynomial ring $A[t_1, t_2, \ldots, t_n]$ is noetherian. If we can prove that the polynomial ring C[t] in one variable t over a noetherian ring C[t] is noetherian, it clearly follows by induction on n that $A[t_1, t_2, \ldots, t_n]$ is noetherian. Hence it suffices to prove that A[t] is noetherian.

Let $\mathfrak b$ be an ideal in A[t]. We shall show that $\mathfrak b$ has a finite number of generators. Let $\mathfrak a$ be the collection of elements $f \in A$ such that there is a polynomial $f_0 + f_1 t + \cdots + f_{n-1} t^{n-1} + f t^n$ in $\mathfrak b$. It is clear that $\mathfrak a$ is an ideal in A. Since A is noetherian we can find generators g_1, g_2, \ldots, g_m of $\mathfrak a$. For every $i = 1, 2, \ldots, m$ we can find a polynomial $p_i(t) = g_{i,0} + g_{i,1}t + \cdots + g_{i,d_i-1}t^{d_i-1} + g_it^{d_i}$ in $\mathfrak b$. Let $d = \max_{i=1}^m (d_i)$.

For each polynomial $f(t) = f_0 + f_1 t + \dots + f_e t^e$ in $\mathfrak b$ we can find elements h_1, h_2, \dots, h_m in A such that $f_e = h_1 g_1 + h_2 g_2 + \dots + h_m g_m$. If $e \geq d$ the polynomial $f(t) = h_1 t^{e-d_1} p_1(t) - h_2 t^{e-d_2} p_2(t) - \dots - h_m t^{d-d_m} p_m(t)$ is of degree strictly less than e. It follows by descending induction on e that we can find polynomials $h_1(t), h_2(t), \dots, h_m(t)$ such that $g(t) = f(t) - \sum_{i=1}^m h_i(t) p_i(t)$ is of degree strictly less than d. Since $f(t) \in \mathfrak b$, and all the polynomials $p_i(t)$ are in $\mathfrak b$, we have that $g(t) \in \mathfrak b$. Hence g(t) is in the A-module $M = (A + tA + \dots + t^{d-1}A) \cap \mathfrak b$. It follows from Corollary (1.8) and Proposition (1.7) that M is a noetherian module. Hence we can find a finite number of generators $q_1(t), q_2(t), \dots, q_n(t)$ of M. Then $\mathfrak b$ will be generated by the polynomials $p_1(t), p_2(t), \dots, p_m(t), q_1(t), q_2(t), \dots, q_n(t)$. Hence $\mathfrak b$ is finitely generated as we wanted to prove. Since all ideals $\mathfrak b$ of B are finitely generated it follows from Lemma (1.6) that B is noetherian as a module over itself, and hence noetherian.

(2.11) Proposition. In an artinian ring all the prime ideals are maximal.

Proof. Let \mathfrak{p} be a prime ideal. We must show that for each element $f \in A \setminus \mathfrak{p}$ we have that $Af + \mathfrak{p} = A$. Since A is artinian the chain $Af + \mathfrak{p} \supseteq Af^2 + \mathfrak{p} \supset \cdots$ must

21. marts 2002

 \mathbf{n}

CHAINS 2.3

stabilize. Hence there is a positive integer n such that $f^n = gf^{n+1} + h$ for some $g \in A$ and $h \in \mathfrak{p}$. Hence $f^n(1-gf) \in \mathfrak{p}$. Since \mathfrak{p} is a prime ideal and $f \notin \mathfrak{p}$ we have that $1 - gf \in \mathfrak{p}$. Hence there is an $e \in \mathfrak{p}$ such that 1 - gf = e. The ideal $Af + \mathfrak{p}$ consequently contains the element gf - e = 1 and thus is equal to A is we wanted to prove.

(2.12) Proposition. Let A be a ring and $\mathfrak{m}_1, \mathfrak{m}_2, \cdots$ different maximal ideals in A. Then $\mathfrak{m}_1\mathfrak{m}_2\cdots\mathfrak{m}_n$ is a proper submodule of $\mathfrak{m}_1\mathfrak{m}_2\cdots\mathfrak{m}_{n-1}$.

Proof. Since the ideals \mathfrak{m}_i are maximal we can for each $i=1,2,\ldots,n-1$ find an element $f_i \in \mathfrak{m}_i \setminus \mathfrak{m}_n$. Assume that $\mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_{n-1} = \mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_n$. Then we have that $f_1 f_2 \cdots f_{n-1} \in \mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_{n-1} = \mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_n \subseteq \mathfrak{m}_n$, which is impossible since \mathfrak{m}_n is a prime ideal and $f_i \notin \mathfrak{m}_n$ for $i = 1, 2, \ldots, n-1$. This contradicts the assumption that $\mathfrak{m}_1\mathfrak{m}_2\cdots\mathfrak{m}_n=\mathfrak{m}_1\mathfrak{m}_2\cdots\mathfrak{m}_{n-1}$. Hence $\mathfrak{m}_1\mathfrak{m}_2\cdots\mathfrak{m}_n$ is a proper submodule of $\mathfrak{m}_1\mathfrak{m}_2\cdots\mathfrak{m}_{n-1}$.

(2.13) Corollary. An artinian ring has a finite number of maximal ideals.

Proof. If it had an infinite number of maximal ideals we could find an infinite sequence $\mathfrak{m}_1, \mathfrak{m}_2, \cdots$ of different maximal ideals. Then it follows from the Proposition that we have an infinite chain $\mathfrak{m}_1 \supset \mathfrak{m}_1 \mathfrak{m}_2 \supset \cdots$ of ideals in A. This contradicts that A is artinian. Thus A has only a finite number of maximal ideals.

(2.14) Proposition. In an artinian ring the radical is nilpotent.

Proof. Since A is artinian the sequence of ideals $\mathfrak{r}(A) \supseteq \mathfrak{r}(A)^2 \supseteq \cdots$ is stable. Thus there is a positive integer n such that $\mathfrak{a} := \mathfrak{r}(A)^n = \mathring{\mathfrak{r}}(A)^{n+1} = \cdots$. We shall prove that $\mathfrak{a}=0$. Assume to the contrary that $\mathfrak{a}\neq 0$. Consider the collection !! \mathcal{B} of ideals \mathfrak{b} in A such that $\mathfrak{ab} \neq 0$. Then \mathcal{B} is not empty since \mathfrak{a} is in \mathcal{B} . Since A is artinian we have that \mathcal{B} contains a minimal element \mathfrak{c} . Then there is an $f \in \mathfrak{c}$ such that $\mathfrak{a}f \neq 0$. Since \mathfrak{c} is minimal in \mathcal{B} and $(f) \subseteq \mathfrak{c}$ we must have that $\mathfrak{c} = (f)$. We have that $(f\mathfrak{a})\mathfrak{a} = f\mathfrak{a}^2 = f\mathfrak{a} \neq 0$ and $(f\mathfrak{a}) \subseteq (f) = \mathfrak{c}$. By the minimality of \mathfrak{c} we obtain that $(f\mathfrak{a})=(f)$. Hence there is an element $g\in\mathfrak{a}$ such that fg=f. Hence $f = fg = fg^2 = \cdots$. However, since $g \in \mathfrak{a} \subseteq \mathfrak{r}(A)$, we have that $g^n = 0$ for some positive integer n. Thus f=0 which is impossible since $\mathfrak{a}f=\mathfrak{a}\mathfrak{c}\neq 0$. This contradicts the assumption that $\mathfrak{a} \neq 0$. Hence $\mathfrak{a} = 0$ as we wanted to prove.

(2.15) Lemma. Let A be a ring and let $\mathfrak{m}_1, \mathfrak{m}_2, \ldots, \mathfrak{m}_n$ be, not necessarily different, maximal ideals in A such that $\mathfrak{m}_1\mathfrak{m}_2\cdots\mathfrak{m}_n=0$. Then A is artinian if and only if A is noetherian.

Proof. We have a chain $A = \mathfrak{m}_0 \supset \mathfrak{m}_1 \supseteq \mathfrak{m}_1 \mathfrak{m}_2 \supseteq \mathfrak{m}_1 \mathfrak{m}_2 \mathfrak{m}_3 \supseteq \cdots \supseteq \mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_n = 0$ of ideals in A. Let $M_i = \mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_{i-1}/\mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_i$ for $i = 1, 2, \ldots, n$. Then each M_i is an A/\mathfrak{m}_i -module, that is, a vector space over A/\mathfrak{m}_i . Hence M_i is artinian if and only if it is noetherian. For i = 1, 2, ..., n we have an exact sequence

$$0 \to \mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_i \to \mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_{i-1} \to M_i \to 0.$$

21. marts 2002

It follows from Proposition (1.7) that $\mathfrak{m}_1\mathfrak{m}_2\cdots\mathfrak{m}_i$ and M_i are artinian, respectively noetherian, if and only if $\mathfrak{m}_1\mathfrak{m}_2\cdots\mathfrak{m}_{i-1}$ is artinian, respectively noetherian. By descending induction on i starting with $M_n = \mathfrak{m}_1\mathfrak{m}_2\cdots\mathfrak{m}_{n-1}$ we obtain that the module $\mathfrak{m}_1\mathfrak{m}_2\cdots\mathfrak{m}_i$ is artinian if and only if it is noetherian. For i=0 we obtain that A is artinian if and only if it is noetherian.

- (2.16) Remark. Let A be a local noetherian ring with maximal ideal \mathfrak{m} , and let \mathfrak{q} be an \mathfrak{m} -primary ideal. Then A/\mathfrak{q} is an artinian ring. To show this we first note that $\mathfrak{m} = \mathfrak{r}(\mathfrak{q})$. Since A is noetherian \mathfrak{m} is finitely generated, and thus it follows from Remark (RINGS 4.8) that a power of the maximal ideal in the noetherian local ring A/\mathfrak{q} is zero. Hence it follows from Lemma (2.15) that A/\mathfrak{q} is artinian.
- (2.17) **Theorem.** A ring is artinian if and only if it noetherian and has dimension 0.
- Proof. When A is artinian it follows from Proposition (2.11) that $\dim(A) = 0$. It follows from Corollary (2.13) that the ring A has a finite number of maximal ideals $\mathfrak{m}_1, \mathfrak{m}_2, \ldots, \mathfrak{m}_n$. We have that $\mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_n \subseteq \mathfrak{m}_1 \cap \mathfrak{m}_2 \cap \cdots \cap \mathfrak{m}_n \subseteq \mathfrak{r}(A)$. Since $\mathfrak{r}(A)$ is nilpotent by Proposition (2.14) it follows from Lemma (2.15) that A is noetherian.
 - Conversely assume that A is noetherian of dimension 0. Then every prime ideal is maximal, and from Remark (2.8) it follows that A has finitely many maximal ideals $\mathfrak{m}_1, \mathfrak{m}_2, \ldots, \mathfrak{m}_n$. Again $\mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_n \subseteq \mathfrak{r}(A)$. If follows from Remark (RINGS 4.8) that $\mathfrak{r}(A)$ is nilpotent. Hence it follows from Lemma (2.15) that A is artinian.
 - (2.18) Proposition. An artinian ring is isomorphic to the direct product of a finite number of local artin rings.

More precisely, when A is an artinian ring the canonical map $A \to \prod_{x \in \text{Spec}(A)} A_{j_x}$ obtained from the localization maps $A \to A_{j_x}$ is an isomorphism.

Proof. By Corollary (2.13) we have that $\operatorname{Spec}(A)$ consists of a finite number of points, and by Proposition (2.11) the points are closed. Hence $\operatorname{Spec}(A)$ is a discrete topological space. Since $\mathcal{O}_{\operatorname{Spec}(A)}$ is a sheaf there is an injective map $A = \Gamma(\operatorname{Spec}(A), \mathcal{O}_{\operatorname{Spec}(A)}) \to \prod_{x \in \operatorname{Spec}(A)} A_{j_x} = \prod_{x \in \operatorname{Spec}(A)} \mathcal{O}_{\operatorname{Spec}(A),x}$. However each point x is open in $\operatorname{Spec}(A)$. Hence $A_{j_x} = \Gamma(\{x\}, \mathcal{O}_{\operatorname{Spec}(A)})$, and $\{x\} \cap \{y\} = \emptyset$ when $x \neq y$. It follows that we can glue any collection of sections $s_x \in \Gamma(\{x\}, \mathcal{O}_{\operatorname{Spec}(A)})$ for $x \in \operatorname{Spec}(A)$ to a section $s \in \Gamma(\operatorname{Spec}(A), \mathcal{O}_{\operatorname{Spec}(A)})$. Hence the map $s \in \Gamma(x)$ is also surjective.

(2.19) Exercises.

- 1. Show that if S is a multiplicatively closed subset of a ring A such that $S^{-1}A$ is noetherian. Then A is not necessarily noetherian.
- **2.** Let $K[t_1, t_2, ...]$ be the polynomial ring in the infinitely many variables $t_1, t_2, ...$ over a field K. Morever let $K(t_1, t_2, ...)$ be the localization of $K[t_1, t_2, ...]$ in the multiplicatively closed subset of $K[t_1, t_2, ...]$ consisting of all non-zero elements.
 - (1) Show that $K(t_1, t_2, ...)$ is noetherian.

21. marts 2002

- (2) Show that $K(t_1, t_2, ...) \otimes_K K(t_1, t_2, ...)$ is not Noetherian.
- **3.** Let A a ring. Give an example of a ring A that is not noetherian, but is such that $\operatorname{Spec}(A)$ is noetherian.
- **4.** Let M be a noetherian A-module. Show that the ring $A/\operatorname{Ann}_A(M)$ is noetherian.
- **5.** Prove that there is only a finite number of minimal primes in a noetherian ring A without using properties of the topological space $\operatorname{Spec}(A)$.
- **6.** Let A be a ring. We say that two ideals \mathfrak{a} and \mathfrak{b} in A are coprime if $\mathfrak{a} + \mathfrak{b} = A$. Let $\mathfrak{a}_1, \mathfrak{a}_2, \ldots, \mathfrak{a}_n$ be ideals of A that are pairwise comprime. We define a map

$$\varphi:A\to \prod_{i=1}^n A/\mathfrak{a}_i$$

by $\varphi(f) = (\varphi_{A/\mathfrak{a}_1}(f), \varphi_{A/\mathfrak{a}_2}(f), \dots, \varphi_{A/\mathfrak{a}_n}(f))$ for all $f \in A$.

- (1) Show that if \mathfrak{a} and \mathfrak{b} are coprime, then \mathfrak{a}^m and \mathfrak{b}^n are coprime for all positive integers m and n.
- (2) Show that for all i the ideals \mathfrak{a}_i and $\cap_{i\neq j}\mathfrak{a}_j$ are coprime.
- (3) Show that the homomorphism φ is a ring homomorphism with kernel $\bigcap_{i=1}^n \mathfrak{a}_i$.
- (4) Show that the homomorphism φ is surjective.
- (5) Use parts (1), (2), (3), and (4) to prove that an artin ring is the direct product of a finite number of artinian rings.