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2. Artinian and noetherian rings.

(2.1) Definition. A ring A is noetherian, respectively artinian, if it is noetherian,
respectively artinian, considered as an A-module. In other words, the ring A is
noetherian, respectively artinian, if every chain a1 ⊆ a2 ⊆ · · · of ideal ai in A is
stable, respectively if every chain a1 ⊇ a2 ⊇ · · · of ideals ai in A is stable.

(2.2) Example. Let K[t] be the polynomial ring in the variable t with coefficients in
a field K. Then the residue ring K[t]/(tn) is artinian and noetherian for all positive
integers n. This is because K[t]/(tn) is a finite dimensional vector space of dimension
n.

(2.3) Example. The ring Z is noetherian, but not artinian. All rings with a finite
number of ideals, like Z/nZ for n ∈ Z, and fields are artinian and noetherian.

(2.4) Example. The polynomial ring A[t1, t2, . . . ] in the variables t1, t2, . . . over a
ring A is not noetherian since it contains the infinite chain (t1) ⊂ (t1, t2) ⊂ · · · of
ideals. It is not artinian either since it contains the infinite chain (t1) ⊃ (t21) ⊃ (t31) ⊃
· · · .
(2.5) Proposition. Let A be a ring and let M be a finitely generated A-module.

(1) If A is a noetherian ring then M is a noetherian A-module.
(2) If A is an artinian ring then M is an artinian A-module.

Proof. (1) It follows from Proposition (MODULES 1.20) that we have a surjective→
map ϕ : A⊕n → M from the sum of the ring A with itself n times to M . Hence it
follows from Proposition (1.7) that M is noetherian.→

(2) The proof of the second part is analogous to the proof of the first part.

(2.6) Corollary. Let ϕ : A → B be a surjective map from the ring A to a ring B.

(1) If the ring A is noetherian then the ring B is noetherian.
(2) If the ring A is artinian then the ring B is artinian.

Proof. (1) Since ϕ is surjective B is a finitely generated A-module with generator
1. It follows from the Proposition that B is noetherian as an A-module. Then B is
clearly noetherian as a B-modules.

(2) The proof of the second part is analogous to the proof of the first part.

(2.7) Proposition. Let S be a multiplicatively closed subset of a ring A.

(1) If A is noetherian then S−1A is noetherian.
(2) If A is artinian then S−1A is artinian.

Proof. (1) It follows from Remark (MODULES 3.13) that every ideal b in the local-→
ization S−1A satisfies ϕS−1A(b)S−1A = b. Every chain b1 ⊆ b2 ⊆ · · · of ideals in
S−1A therefore gives a chain ϕ−1

S−1A(b1) ⊆ ϕ−1
S−1A(b2) ⊆ · · · of ideals in A. Since A is

noetherian there is a positive integer n such that ϕ−1
S−1A(bn) = ϕ−1

S−1A(bn+1) = · · · .
Consequently we have that bn = bn+1 = · · · . Hence S−1A is noetherian.

(2) The proof of the second part is analogous to the proof of the first part.
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(2.8) Remark. A noetherian ring has only a finite number of minimal prime ideals.
This is because Spec(A) is a noetherian topological space since the descending chains
of closed subsets of Spec(A) correspond to ascending chains of ideals in A by Remark
(RINGS 5.2). By Proposition (TOPOLOGY 4.25) Spec(A) has only a finite number→→
of irreducible components. However, it follows from Proposition (TOPOLOGY 5.13)→
that the irreducible components of Spec(A) correspond bijectively to the minimal
prime ideals in A.

(2.9) Remark. The radical r(A) of a noetherian ring A is nilpotent, that is, we
have r(A)n = 0 for some integer n. This follows from Remark (RINGS 4.8) because→
r(A) is finitely generated ideal.

(2.10) Theorem. (The Hilbert basis theorem) Let A be a noetherian ring and B a
finitely generated algebra over A. Then B is a noetherian ring.

Proof. It follows from Proposition (RINGS 3.6) that we have a surjective homomor-→
phism A[t1, t2, . . . , tn] → B of A-algebras from the polynomial ring A[t1, t2, . . . , tn] in
the variables t1, t2, . . . , tn over A. Hence it follows from Corollary (2.6) that is suffices→
to prove that the polynomial ring A[t1, t2, . . . , tn] is noetherian. If we can prove that
the polynomial ring C[t] in one variable t over a noetherian ring C is noetherian, it
clearly follows by induction on n that A[t1, t2, . . . , tn] is noetherian. Hence it suffices
to prove that A[t] is noetherian.

Let b be an ideal in A[t]. We shall show that b has a finite number of generators.
Let a be the collection of elements f ∈ A such that there is a polynomial f0 + f1t +
· · · + fn−1t

n−1 + ftn in b. It is clear that a is an ideal in A. Since A is noetherian
we can find generators g1, g2, . . . , gm of a. For every i = 1, 2, . . . , m we can find a
polynomial pi(t) = gi,0 + gi,1t + · · ·+ gi,di−1t

di−1 + git
di in b. Let d = maxm

i=1(di).
For each polynomial f(t) = f0 + f1t + · · · + fet

e in b we can find elements
h1, h2, . . . , hm in A such that fe = h1g1 + h2g2 + · · · + hmgm. If e ≥ d the poly-
nomial f(t) = h1t

e−d1p1(t) − h2t
e−d2p2(t) − · · · − hmtd−dmpm(t) is of degree stricly

less than e. It follows by descending induction on e that we can find polynomials
h1(t), h2(t), . . . , hm(t) such that g(t) = f(t) − ∑m

i=1 hi(t)pi(t) is of degree strictly
less than d. Since f(t) ∈ b, and all the polynomials pi(t) are in b, we have that
g(t) ∈ b. Hence g(t) is in the A-module M = (A + tA + · · ·+ td−1A) ∩ b. It follows
from Corollary (1.8) and Proposition (1.7) that M is a noetherian module. Hence→→
we can find a finite number of generators q1(t), q2(t), . . . , qn(t) of M . Then b will be
generated by the polynomials p1(t), p2(t), . . . , pm(t), q1(t), q2(t), . . . , qn(t). Hence b is
finitely generated as we wanted to prove. Since all ideals b of B are finitely generated
it follows from Lemma (1.6) that B is noetherian as a module over itself, and hence→
noetherian.

(2.11) Proposition. In an artinian ring all the prime ideals are maximal.

Proof. Let p be a prime ideal. We must show that for each element f ∈ A \ p we
have that Af + p = A. Since A is artinian the chain Af + p ⊇ Af2 + p ⊃ · · · must
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stabilize. Hence there is a positive integer n such that fn = gfn+1 + h for some
g ∈ A and h ∈ p. Hence fn(1− gf) ∈ p. Since p is a prime ideal and f /∈ p we have
that 1 − gf ∈ p. Hence there is an e ∈ p such that 1 − gf = e. The ideal Af + p
consequently contains the element gf − e = 1 and thus is equal to A is we wanted to
prove.

(2.12) Proposition. Let A be a ring and m1, m2, · · · different maximal ideals in A.
Then m1m2 · · ·mn is a proper submodule of m1m2 · · ·mn−1.

Proof. Since the ideals mi are maximal we can for each i = 1, 2, . . . , n − 1 find an
element fi ∈ mi\mn. Assume that m1m2 · · ·mn−1 = m1m2 · · ·mn. Then we have that
f1f2 · · · fn−1 ∈ m1m2 · · ·mn−1 = m1m2 · · ·mn ⊆ mn, which is impossible since mn is
a prime ideal and fi /∈ mn for i = 1, 2, . . . , n − 1. This contradicts the assumption
that m1m2 · · ·mn = m1m2 · · ·mn−1. Hence m1m2 · · ·mn is a proper submodule of
m1m2 · · ·mn−1.

(2.13) Corollary. An artinian ring has a finite number of maximal ideals.

Proof. If it had an infinte number of maximal ideals we could find an infinite sequence
m1, m2, · · · of different maximal ideals. Then it follows from the Proposition that we
have an infinite chain m1 ⊃ m1m2 ⊃ · · · of ideals in A. This contradicts that A is
artinian. Thus A has only a finite number of maximal ideals.

(2.14) Proposition. In an artinian ring the radical is nilpotent.

Proof. Since A is artinian the sequence of ideals r(A) ⊇ r(A)2 ⊇ · · · is stable. Thus
there is a positive integer n such that a := r(A)n = r(A)n+1 = · · · . We shall prove
that a = 0. Assume to the contrary that a 6= 0. Consider the collection !!B ofn
ideals b in A such that ab 6= 0. Then B is not empty since a is in B. Since A
is artinian we have that B contains a minimal element c. Then there is an f ∈ c
such that af 6= 0. Since c is minimal in B and (f) ⊆ c we must have that c = (f).
We have that (fa)a = fa2 = fa 6= 0 and (fa) ⊆ (f) = c. By the minimality of
c we obtain that (fa) = (f). Hence there is an element g ∈ a such that fg = f .
Hence f = fg = fg2 = · · · . However, since g ∈ a ⊆ r(A), we have that gn = 0 for
some positive integer n. Thus f = 0 which is impossible since af = ac 6= 0. This
contradicts the assumption that a 6= 0. Hence a = 0 as we wanted to prove.

(2.15) Lemma. Let A be a ring and let m1, m2, . . . ,mn be, not necessarily different,
maximal ideals in A such that m1m2 · · ·mn = 0. Then A is artinian if and only if A
is noetherian.

Proof. We have a chain A = m0 ⊃ m1 ⊇ m1m2 ⊇ m1m2m3 ⊇ · · · ⊇ m1m2 · · ·mn = 0
of ideals in A. Let Mi = m1m2 · · ·mi−1/m1m2 · · ·mi for i = 1, 2, . . . , n. Then each
Mi is an A/mi-module, that is, a vector space over A/mi. Hence Mi is artinian if
and only if it is noetherian. For i = 1, 2, . . . , n we have an exact sequence

0 → m1m2 · · ·mi → m1m2 · · ·mi−1 → Mi → 0.
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It follows from Proposition (1.7) that m1m2 · · ·mi and Mi are artinian, respectively→
noetherian, if and only if m1m2 · · ·mi−1 is artinian, respectively noetherian. By
descending induction on i starting with Mn = m1m2 · · ·mn−1 we obtain that the
module m1m2 · · ·mi is artinian if and only if it is noetherian. For i = 0 we obtain
that A is artinian if and only if it is noetherian.

(2.16) Remark. Let A be a local noetherian ring with maximal ideal m, and let
q be an m-primary ideal. Then A/q is an artinian ring. To show this we first note
that m = r(q). Since A is noetherian m is finitely generated, and thus it follows from
Remark (RINGS 4.8) that a power of the maximal ideal in the noetherian local ring→
A/q is zero. Hence it follows from Lemma (2.15) that A/q is artinian.→
(2.17) Theorem. A ring is artinian if and only if it noetherian and has dimension
0.

Proof. When A is artinian it follows from Proposition (2.11) that dim(A) = 0. It→
follows from Corollary (2.13) that the ring A has a finite number of maximal ideals→
m1, m2, . . . , mn. We have that m1m2 · · ·mn ⊆ m1 ∩m2 ∩ · · · ∩mn ⊆ r(A). Since r(A)
is nilpotent by Proposition (2.14) it follows from Lemma (2.15) that A is noetherian.→→

Conversely assume that A is noetherian of dimension 0. Then every prime ideal is
maximal, and from Remark (2.8) it follows that A has finitely many maximal ideals→
m1, m2, . . . , mn. Again m1m2 · · ·mn ⊆ r(A). If follows from Remark (RINGS 4.8)→
that r(A) is nilpotent. Hence it follows from Lemma (2.15) that A is artinian.→
(2.18) Proposition. An artinian ring is isomorphic to the direct product of a finite
number of local artin rings.

More precicely, when A is an artinian ring the canonical map A → ∏
x∈Spec(A) Ajx

obtained from the localization maps A → Ajx is an isomorphism.

Proof. By Corollary (2.13) we have that Spec(A) consists of a finite number of→
points, and by Proposition (2.11) the points are closed. Hence Spec(A) is a dis-→
crete topological space. Since OSpec(A) is a sheaf there is an injective map A =
Γ(Spec(A),OSpec(A)) → ∏

x∈Spec(A) Ajx =
∏

x∈Spec(A)OSpec(A),x. However each
point x is open in Spec(A). Hence Ajx = Γ({x},OSpec(A)), and {x} ∩ {y} = ∅ when
x 6= y. It follows that we can glue any collection of sections sx ∈ Γ({x},OSpec(A))
for x ∈ Spec(A) to a section s ∈ Γ(Spec(A),OSpec(A)). Hence the map A →∏

x∈Spec(A)

∏
Ajx is also surjective.

(2.19) Exercises.
1. Show that if S is a multiplicatively closed subset of a ring A such that S−1A is
noetherian. Then A is not necessarily noetherian.
2. Let K[t1, t2, . . . ] be the polynomial ring in the infinitely many variables t1, t2, . . .
over a field K. Morever let K(t1, t2, . . . ) be the localization of K[t1, t2, . . . ] in the
multiplicatively closed subset of K[t1, t2, . . . ] consisting of all non-zero elements.

(1) Show that K(t1, t2, . . . ) is noetherian.
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(2) Show that K(t1, t2, . . . )⊗K K(t1, t2, . . . ) is not Noetherian.
3. Let A a ring. Give an example of a ring A that is not noetherian, but is such
that Spec(A) is noetherian.
4. Let M be a noetherian A-module. Show that the ring A/ AnnA(M) is noetherian.
5. Prove that there is only a finite number of minimal primes in a noetherian ring
A without using properties of the topological space Spec(A).
6. Let A be a ring. We say that two ideals a and b in A are coprime if a + b = A.
Let a1, a2, . . . , an be ideals of A that are pairwise comprime. We define a map

ϕ : A →
n∏

i=1

A/ai

by ϕ(f) = (ϕA/a1(f), ϕA/a2(f), . . . , ϕA/an
(f)) for all f ∈ A.

(1) Show that if a and b are coprime, then am and bn are coprime for all positive
integers m and n.

(2) Show that for all i the ideals ai and ∩i 6=jaj are coprime.
(3) Show that the homomorphism ϕ is a ring homomorphism with kernel ∩n

i=1ai.
(4) Show that the homomorphism ϕ is surjective.
(5) Use parts (1), (2), (3), and (4) to prove that an artin ring is the direct product

of a finite number of artinian rings.


