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2. Artinian and noetherian rings.

(2.1) Definition. A ring A is noetherian, respectively artinian, if it is noetherian,
respectively artinian, considered as an A-module. In other words, the ring A is
noetherian, respectively artinian, if every chain a; C ay C --- of ideal a; in A is
stable, respectively if every chain a; D ay O --- of ideals a; in A is stable.

(2.2) Example. Let K[t] be the polynomial ring in the variable ¢ with coefficients in
a field K. Then the residue ring K[t]/(¢") is artinian and noetherian for all positive
integers n. This is because K[t]/(t™) is a finite dimensional vector space of dimension
n.

(2.3) Example. The ring Z is noetherian, but not artinian. All rings with a finite
number of ideals, like Z/nZ for n € Z, and fields are artinian and noetherian.

(2.4) Example. The polynomial ring A[t1,ts,...] in the variables t1,ts,... over a
ring A is not noetherian since it contains the infinite chain (¢;) C (¢1,t2) C --- of
ideals. It is not artinian either since it contains the infinite chain (¢1) D (t3) D (¢3) D

(2.5) Proposition. Let A be a ring and let M be a finitely generated A-module.

(1) If A is a noetherian ring then M is a noetherian A-module.
(2) If A is an artinian ring then M is an artinian A-module.

Proof. (1) It follows from Proposition (MODULES 1.20) that we have a surjective
map ¢ : A®™ — M from the sum of the ring A with itself n times to M. Hence it
follows from Proposition (1.7) that M is noetherian.

(2) The proof of the second part is analogous to the proof of the first part.

(2.6) Corollary. Let ¢ : A — B be a surjective map from the ring A to a ring B.

(1) If the ring A is noetherian then the ring B is noetherian.
(2) If the ring A is artinian then the ring B is artinian.

Proof. (1) Since ¢ is surjective B is a finitely generated A-module with generator
1. It follows from the Proposition that B is noetherian as an A-module. Then B is
clearly noetherian as a B-modules.

(2) The proof of the second part is analogous to the proof of the first part.

(2.7) Proposition. Let S be a multiplicatively closed subset of a ring A.

(1) If A is noetherian then S™!A is noetherian.
(2) If A is artinian then S™1'A is artinian.

Proof. (1) It follows from Remark (MODULES 3.13) that every ideal b in the local-
ization S™'A satisfies 0g-14(0)ST1A = b. Every chain by C by C --- of ideals in
S~1 A therefore gives a chain goEllA(bl) C @EEIA([JQ) C ... of ideals in A. Since A is
noetherian there is a positive integer n such that gogllA(bn) = gpgllA(an) = .-,
Consequently we have that b,, = b,,1; = ---. Hence S~!A is noetherian.

(2) The proof of the second part is analogous to the proof of the first part.
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(2.8) Remark. A noetherian ring has only a finite number of minimal prime ideals.
This is because Spec(A) is a noetherian topological space since the descending chains
of closed subsets of Spec(A) correspond to ascending chains of ideals in A by Remark
(RINGS 5.2). By Proposition (TOPOLOGY 4.25) Spec(A) has only a finite number
of irreducible components. However, it follows from Proposition (TOPOLOGY 5.13)
that the irreducible components of Spec(A) correspond bijectively to the minimal
prime ideals in A.

(2.9) Remark. The radical t(A) of a noetherian ring A is nilpotent, that is, we
have t(A)"™ = 0 for some integer n. This follows from Remark (RINGS 4.8) because
t(A) is finitely generated ideal.

(2.10) Theorem. (The Hilbert basis theorem) Let A be a noetherian ring and B a
finitely generated algebra over A. Then B is a noetherian ring.

Proof. 1t follows from Proposition (RINGS 3.6) that we have a surjective homomor-
phism A[ty,ts,...,t,] — B of A-algebras from the polynomial ring Alty,ts, ..., t,] in
the variables t1, to, ..., t, over A. Hence it follows from Corollary (2.6) that is suffices
to prove that the polynomial ring A[tq,to,...,t,] is noetherian. If we can prove that
the polynomial ring C[t] in one variable ¢ over a noetherian ring C' is noetherian, it
clearly follows by induction on n that A[tq,to,...,t,] is noetherian. Hence it suffices
to prove that Alt] is noetherian.

Let b be an ideal in A[t]. We shall show that b has a finite number of generators.
Let a be the collection of elements f € A such that there is a polynomial fo + fit +
oo faoqt™ 4 ft" in b. It is clear that a is an ideal in A. Since A is noetherian
we can find generators ¢i,¢s2,...,9m of a. For every ¢ = 1,2,...,m we can find a
polynomial p;(t) = gi0 + giat + -+ gig,—1t% 1 + g;it% in b. Let d = max™,(d;).

For each polynomial f(t) = fo + fit + -+ + fet® in b we can find elements
hi,ho,..., hy, in A such that fo = hig1 + hoges + -+ + hmgm. If € > d the poly-
nomial f(t) = hit®"%py(t) — hot® " %2py(t) — -+ — hyptd=9mp,.(t) is of degree stricly
less than e. It follows by descending induction on e that we can find polynomials
hi(t), ha(t), ..., hm(t) such that g(t) = f(t) — D~ hi(t)pi(t) is of degree strictly
less than d. Since f(t) € b, and all the polynomials p;(¢) are in b, we have that
g(t) € b. Hence g(t) is in the A-module M = (A +tA+---+t¢"1A)Nb. Tt follows
from Corollary (1.8) and Proposition (1.7) that M is a noetherian module. Hence
we can find a finite number of generators ¢ (), g2(t), ..., qn(t) of M. Then b will be
generated by the polynomials p1(t), p2(t), ..., pm(t),q1(t), q2(t), ..., q.(t). Hence b is
finitely generated as we wanted to prove. Since all ideals b of B are finitely generated
it follows from Lemma (1.6) that B is noetherian as a module over itself, and hence
noetherian.

(2.11) Proposition. In an artinian ring all the prime ideals are maximal.

Proof. Let p be a prime ideal. We must show that for each element f € A\ p we
have that Af +p = A. Since A is artinian the chain Af +p D Af? +p DO --- must



ALGBOOK CHAINS 2.3
21. marts 2002

stabilize. Hence there is a positive integer n such that f* = gf"*! + h for some
g€ Aand h € p. Hence f"(1 — gf) € p. Since p is a prime ideal and f ¢ p we have
that 1 — gf € p. Hence there is an e € p such that 1 — gf = e. The ideal Af + p
consequently contains the element gf —e = 1 and thus is equal to A is we wanted to
prove.

(2.12) Proposition. Let A be a ring and my, my, - - - different maximal ideals in A.
Then myms - - -m,, is a proper submodule of mimsy ---m,_1.

Proof. Since the ideals m; are maximal we can for each 7 = 1,2,...,n — 1 find an
element f; € m;\m,. Assume that myms---m,_1 = mymy---m,. Then we have that
fifer  fnor €Emmg - my, 1 = mymy - --m,, C m,, which is impossible since m,, is
a prime ideal and f; ¢ m,, for i = 1,2,...,n — 1. This contradicts the assumption
that myms---m, = mmsy---m,_;1. Hence mymsy---m, is a proper submodule of
mmmyg:---mMy,_1.

(2.13) Corollary. An artinian ring has a finite number of maximal ideals.

Proof. 1f it had an infinte number of maximal ideals we could find an infinite sequence
my, my, - - - of different maximal ideals. Then it follows from the Proposition that we
have an infinite chain m; D mymy O --- of ideals in A. This contradicts that A is
artinian. Thus A has only a finite number of maximal ideals.

(2.14) Proposition. In an artinian ring the radical is nilpotent.

Proof. Since A is artinian the sequence of ideals t(A) D t(A)? D --- is stable. Thus
there is a positive integer n such that a := t(4)" = v(4)"™! = .... We shall prove
that a = 0. Assume to the contrary that a # 0. Consider the collection !!B of
ideals b in A such that ab # 0. Then B is not empty since a is in B. Since A
is artinian we have that B contains a minimal element ¢. Then there is an f € ¢
such that af # 0. Since ¢ is minimal in B and (f) C ¢ we must have that ¢ = (f).
We have that (fa)a = fa? = fa # 0 and (fa) C (f) = ¢. By the minimality of
¢ we obtain that (fa) = (f). Hence there is an element g € a such that fg = f.
Hence f = fg = fg? = ---. However, since g € a C t(A), we have that g" = 0 for
some positive integer n. Thus f = 0 which is impossible since af = ac # 0. This
contradicts the assumption that a # 0. Hence a = 0 as we wanted to prove.

(2.15) Lemma. Let A be a ring and let my, my, ..., m, be, not necessarily different,
maximal ideals in A such that myms---m, = 0. Then A is artinian if and only if A
is noetherian.

Proof. We have a chain A =mg D m; D mmy D mymomg D --- D mmy---m, =0

of ideals in A. Let M; = mymg---m;_1/mymy---m; for ¢ = 1,2,...,n. Then each
M; is an A/m;-module, that is, a vector space over A/m;. Hence M; is artinian if
and only if it is noetherian. For ¢ = 1,2,...,n we have an exact sequence

O—>m1m2-~-mi—>m1m2---mi,1 —>Mi—>0.
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It follows from Proposition (1.7) that myms---m; and M; are artinian, respectively
noetherian, if and only if myms---m;_; is artinian, respectively noetherian. By
descending induction on ¢ starting with M,, = myms---m,_1 we obtain that the
module myms - - -m; is artinian if and only if it is noetherian. For i = 0 we obtain
that A is artinian if and only if it is noetherian.

(2.16) Remark. Let A be a local noetherian ring with maximal ideal m, and let
q be an m-primary ideal. Then A/q is an artinian ring. To show this we first note
that m = ¢(q). Since A is noetherian m is finitely generated, and thus it follows from
Remark (RINGS 4.8) that a power of the maximal ideal in the noetherian local ring
A/q is zero. Hence it follows from Lemma (2.15) that A/q is artinian.

(2.17) Theorem. A ring is artinian if and only if it noetherian and has dimension
0.

Proof. When A is artinian it follows from Proposition (2.11) that dim(A) = 0. It
follows from Corollary (2.13) that the ring A has a finite number of maximal ideals
mp, My, ..., m,. We have that mymy---m, CmyNmeN---Nm, Ct(A). Since t(A)
is nilpotent by Proposition (2.14) it follows from Lemma (2.15) that A is noetherian.

Conversely assume that A is noetherian of dimension 0. Then every prime ideal is
maximal, and from Remark (2.8) it follows that A has finitely many maximal ideals
my, My, ..., m,. Again mymy---m, C t(A). If follows from Remark (RINGS 4.8)
that t(A) is nilpotent. Hence it follows from Lemma (2.15) that A is artinian.

(2.18) Proposition. An artinian ring is isomorphic to the direct product of a finite
number of local artin rings.

More precicely, when A is an artinian ring the canonical map A — HmGSpeC( A) A
obtained from the localization maps A — Aj;_ is an isomorphism.

Proof. By Corollary (2.13) we have that Spec(A) consists of a finite number of
points, and by Proposition (2.11) the points are closed. Hence Spec(A) is a dis-
crete topological space. Since Ogpec(a) is a sheaf there is an injective map A =
P(SpeC(A)uospec(A)) - HwESpec(A) Ay, = erspec(A) Ospec(a),z- However each
point z is open in Spec(A). Hence A;, = I'({z}, Ospec(a)), and {z} N {y} = 0 when
x # y. It follows that we can glue any collection of sections s, € I'({z}, Ogpec(a))
for € Spec(A) to a section s € I'(Spec(A), Ogpec(a)). Hence the map A —

HmespeC(A) [14;, is also surjective.
(2.19) Exercises.

1. Show that if S is a multiplicatively closed subset of a ring A such that S~'A4 is
noetherian. Then A is not necessarily noetherian.

2. Let Klt1,t,...] be the polynomial ring in the infinitely many variables t1,to, . ..
over a field K. Morever let K(t1,t2,...) be the localization of K|[t1,ts,...] in the
multiplicatively closed subset of K|t1,ts,...] consisting of all non-zero elements.

(1) Show that K(t1,t2,...) is noetherian.
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(2) Show that K(t1,ta,...) ®K K(t1,t2,...) is not Noetherian.

3. Let A aring. Give an example of a ring A that is not noetherian, but is such
that Spec(A) is noetherian.

4. Let M be a noetherian A-module. Show that the ring A/ Ann4 (M) is noetherian.

5. Prove that there is only a finite number of minimal primes in a noetherian ring
A without using properties of the topological space Spec(A).

6. Let A be a ring. We say that two ideals a and b in A are coprime if a +b = A.
Let a,as,...,a, be ideals of A that are pairwise comprime. We define a map

@:AeﬁA/ai
i=1

by ©(f) = (Paja, (f),Pa/a,(f),---spasa,(f)) for all f € A.

(1) Show that if a and b are coprime, then a” and b"™ are coprime for all positive
integers m and n.

) Show that for all ¢ the ideals a; and N;xja; are coprime.

) Show that the homomorphism ¢ is a ring homomorphism with kernel N}, a;.

) Show that the homomorphism ¢ is surjective.

) Use parts (1), (2), (3), and (4) to prove that an artin ring is the direct product
of a finite number of artinian rings.



