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Abstract.

We define and construct splitting and factorization algebras. In order to study these

algebras we introduce residues that generalize classical Schur polynomials. In particular

we show how residues induce Gysin maps between splitting and factorization algebras.

We base our presentation upon well known and classical results on alternating and

symmetric polynomials, that we prove. Throughout we focus on results that are used

to describe the cohomology theories for flag and Grassmann manifolds, both in the

classical, quantum, equivariant, and quantum-equivariant sense. As a consequence we

obtain, for example, an interpretation by factorization algebras of the the astonishing

description by L. Gatto of the cohomology of grassmannians via exterior powers.
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Introduction

Splitting and factorization algebras appear in several branches of mathematics. A
well known and illustrative example is polynomial rings considered as algebras over
the symmetric polynomials. This is the generic example of splitting algebras (see [B],
[EL], [LT1], and [PZ], and further references there).

Another well known example we obtain by adjoining a root to a monic polynomial
in one variable with coefficients in a ring. This useful, and frequently used, construc-
tion splits off a linear term from the polynomial. Successively adjoining roots we
obtain splitting algebras of higher order of the polynomial.

An important class of examples of splitting and factorization algebras, that is
our main motivation for writing these notes, is the cohomology rings of flag and
Grassmann manifolds (see [G], [GS1], [LT1], [LT2] and [LT3], and further references
there). The cohomology ring of the manifold of complete flags in a vector space V of
dimension n is, for example, the splitting algebra for Tn. Moreover, the cohomology
ring of the grassmannian of d-dimensional subspaces of V is the factorization algebra
of Tn in factors of degrees d and n − d. For families of flags or grassmannians
we get the corresponding splitting, respectively factorization, algebra of the Chern
polynomial of the locally free sheaf that defines the family. Quantum, equivariant,
and quantum-equivariant cohomology of grassmannians give more examples. These
are obtained from the factorization algebras by changing bases or by varying the
polynomial we factor (see [GS2], [L1] and [L2], and further references there).

A more unusual example comes from Galois theory, where splitting algebras can
be used to give a presentation of the theory that lies close to the original point of
view (see [EL], [K], and [T]).

In this article we give a self-contained presentation of those parts of the theory
of splitting and factorization algebras that are related to the above examples. In
particular we give bases for factorization algebras that correspond to bases consisting
of classical Schur polynomials for symmetric polynomials and to Schubert cycles in
cohomology. We also construct Gysin maps from splitting algebras to factorization
algebras that correspond to the Gysin maps from cohomology rings of flag manifolds
to cohomology rings of grassmannians in geometry. Our treatment is different from
that in the works mentioned above in that it is based upon the theory of symmetric
polynomials, and thus illustrates the connections between splitting and factorization
algebras and the theory of symmetric polynomials.

It is worth noticing that as a consequence of our presentation we immediately
obtain an interpretation by factorization algebras of the astonishing description of
the cohomology of grassmannians via exterior products given by Letterio Gatto (see
[G], [GS1], [LT1] and [LT2]). In particular we obtain the fundamental determinantal
formulas that correspond to the Giambelli formula and the determinantal formula in
Schubert calculus.

We also indicate how the connection between splitting algebras and polynomial
algebras, mentioned above, gives somewhat exotic proofs of the different parts of the
Main Theorem of Symmetric Polynomials.

The prerequisites for reading this article are knowledge of the definition of rings
and ideals, and of the residue ring of a ring by an ideal. In addition, some knowledge
is needed of basic results on polynomial rings and determinants.
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1. Formal Laurent series and formal power series

In this section we remind the reader of formal Laurent series, and power series
over commutative rings with unit. We also recall some basic results on inversion of
power series, and in particular, the usual relation between elementary and complete
symmetric polynomials.

1.1 Algebras. By a ring A we always mean a commutative ring with unity. An
A-algebra ϕ : A → B is a homomorphism of rings. We shall throughout denote by
A[T ] the A-algebra of polynomials in the variable T with coefficients in A.

1.2 Formal Laurent series. A formal Laurent series in the variable 1
T

is a formal

expression

g(T ) = · · · + a−2T
2 + a−1T + a0 +

a1

T
+
a2

T 2
+ · · · ,

where each ai lies in a ring A. For every A-algebra ϕ : A→ B we write

ϕg(T ) = · · ·+ ϕ(a−2)T
2 + ϕ(a−1)T + ϕ(a0) +

ϕ(a1)

T
+
ϕ(a2)

T 2
+ · · · .

1.3 Formal power series. When 0 = a1 = a2 = · · · we say that the formal Laurent
series g(T ) is a formal power series, and we change the indexing to

g(T ) = b0 + b1T + b2T
2 + · · · .

1.4 Inverting formal power series. Let

p(T ) = Tn − c1T
n−1 + · · ·+ (−1)ncn

be a polynomial in the variable T with coefficients in the ring A. An easy calculation
shows that the equation

1 = (1 − c1T + · · · + (−1)ncnT
n)(1 + s1T + s2T

2 + · · · )

of formal power series has an unique solution with s1, s2, . . . in A, and that each
element si can be expressed as a polynomial in c1, . . . , cn with integer coefficients.
Conversely, an equally easy calculation shows that the elements s1, s2, . . . determine
c1, . . . , cn uniquely and that each element ci can be expressed as a polynomial in
s1, . . . , sn with integer coefficients.

1.5 Example. For every natural number h we have

Th

p(T )
= Th−n

1

1 − c1
T

+ · · ·+ (−1)n cn

Tn

= Th−n
(

1 +
s1
T

+
s2
T 2

+ · · ·
)

= · · · +
sh−n+1

T
+
sh−n+2

T 2
+ · · ·+

sh
Tn

+ · · · . (1.5.1)
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1.6 Formal power series and symmetric polynomials. Let T1, . . . , Tn be alge-

braically independent elements over the ring A and write

P (T ) = (T − T1) · · · (T − Tn) = Tn − C1T
n−1 + · · · + (−1)nCn.

Then
Cj =

∑

0≤i1<···<ij≤n

Ti1 · · ·Tij

is the j’th elementary symmetric polynomial in the variables T1, . . . , Tn. We obtain

1

1 − C1T + · · ·+ (−1)nCnTn
=

1

(1 − T1T ) · · · (1 − TnT )

=

n
∏

i=1

(1 + TiT + T 2
i T

2 + · · · ) = 1 + S1T + S2T
2 + · · · ,

where
Sj =

∑

0≤i1,...,ij≤n

Ti1 · · ·Tij

is the j’th complete symmetric polynomial in the variables T1, . . . , Tn.

2. Residues

Residues will play an important role in the remaining part of this article. We here
define residues and give their main properties.

2.1 Definition. Let

gi(T ) = · · · + ai−2T
2 + ai−1T + ai 0 +

ai 1
T

+
ai 2
T 2

+ · · ·

for i = 1, . . . , n be formal Laurent series in the variable 1
T

. We write

Res(g1, . . . , gn) = det

( a11 ... a1n

...
. . .

...
an1 ... ann

)

.

The main properties of residues are summarized in the following result:

2.2 Lemma. Let A be a ring.

(1) Res is A-linear in g1, . . . , gn. That is, for every index i, for every formal

Laurent series g′i, and for every pair of elements a, a′ in A, we have

Res(g1, . . . , agi + a′g′i, . . . , gn) = aRes(g1, . . . , gi, . . . , gn) + a′ Res(g1, . . . , g
′
i, . . . , gn).

(2) Res is alternating in g1, . . . , gn. That is, if gi = gj for some i 6= j we have

Res(g1, . . . , gn) = 0.

(3) Res is zero on polynomials. That is, if at least one gi is a polynomial in T
we have

Res(g1, . . . , gn) = 0.

(4) Res is functorial. That is, when ϕ : A → B is an A-algebra and g1, . . . , gn
have coefficients in A, then

ϕ(Res(g1, . . . , gn)) = Res(ϕg1, . . . ,
ϕgn).
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Proof. All the properties of Res follow directly from Definition 2.1, and the corre-
sponding properties of determinants.

The following result shows, in particular, that the residue generalizes the classical

Schur polynomials (see e.g. [La2], [M2] and [Ma]). It will be used repeatedly in the
following.

2.3 Proposition. Let p(T ) = Tn − c1T
n−1 + · · · + (−1)ncn be in the algebra A[T ]

of polynomials in T with coefficients in A. Moreover, let s−i = 0 for i = 1, 2, . . . , let

s0 = 1, and let s1, s2, . . . be determined by the equation

1 = (1 − c1T + · · · + (−1)ncnT
n)(1 + s1T + s2T

2 + · · · ),

of formal power series. For all natural numbers h1, . . . , hd, we have

Res

(

Th1

p
, . . . ,

Thd

p

)

= det





sh1−n+1 ... sh1−n+d

...
. ..

...
shd−n+1 ... shd−n+d



 .

In particular, when 0 ≤ hi ≤ n− i for i = 1, . . . , d, we have

Res

(

Th1

p
, . . . ,

Thd

p

)

=

{

1 when hi = n− i for i = 1, . . . , d

0 when hj < n− j for some j.

Proof. The first part of the proposition follows immediately from Definition 2.1 and
equation (1.5.1).

From the first part of the proposition it follows that when 0 ≤ hi ≤ n − i for
i = 1, . . . , d the d× d-matrix (shi−n+j) is upper triangular. Moreover, it follows that
there are ones on the diagonal when hi = n − i for i = 1, . . . , d, and a zero on the
diagonal in position (j, j) when hj < n − j. Thus the last part of the proposition
holds.

3. Symmetric and alternating polynomials

Here we recall some terminology concerning symmetric and alternating polynomi-
als.

3.1 Notation, terminology and elementary properties. Let A be a ring and let
T1, . . . , Tn be algebraically independent elements over A. We denote by A[T1, . . . , Tn]
the A-algebra of polynomials in these variables with coefficients in A.

The symmetric group Sn, that is, the group of permutations of 1, 2, . . . , n, operates

on A[T1, . . . , Tn] by

(σf)(T1, . . . , Tn) = f(Tσ(1), . . . , Tσ(n))

for all f ∈ A[T1, . . . , Tn] and σ ∈ Sn. A polynomial f ∈ A[T1, . . . , Tn] is symmetric

when
(σf)(T1, . . . , Tn) = f(T1, . . . , Tn) for all σ ∈ Sn.

The symmetric polynomials in A[T1, . . . , Tn] form an A-algebra A[T1, . . . , Tn]
sym.
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For every element f ∈ A[T1, . . . , Tn] we write

alt(f) =
∑

σ∈Sn

sign(σ)(σf),

where sign(σ) is the sign of the permutation σ. A polynomial of the form alt(f)
for f ∈ A[T1, . . . , Tn] is called alternating. The alternating polynomials form an
A-submodule A[T1, . . . , Tn]

alt of A[T1, . . . , Tn].

For all polynomials f1, . . . , fn in A[T ] we write

(fi(Tj)) =





f1(T1) ... f1(Tn)

...
. . .

...
fn(T1) ... fn(Tn)



 .

Then

alt(f1(T1) · · · fn(Tn)) =
∑

σ∈Sn

sign(σ)f1(Tσ(1)) · · ·fn(Tσ(n)) = det(fi(Tj)).

3.2 Remark. The determinant det(Tn−ij ) = alt(Tn−1
1 · · ·T 0

n) is an alternating poly-
nomial and is called the Vandermonde determinant. An easy calculation shows that
it is equal to

∏

0≤i<j≤n(Ti − Tj). We want however to make the point that this is
not needed in the following. All that we need is that the Vandermonde determinant
is not a zero divisor in A[T1, . . . , Tn], or equivalently, that it is not zero. This follows,
for example, from the expansion of the determinant det(Tn−ij ) that contains a single

monomial of the form Tn−1
1 · · ·T 0

n .

3.3 Lemma. Let T1, . . . , Tn be algebraically independent elements over A, and let

P (T ) = (T − T1) · · · (T − Tn) = Tn − C1T
n−1 + · · · + (−1)nCn.

For all f1, . . . , fn in A[C1, . . . , Cn] we have that Res( f1
P
, . . . , fn

P
) is in A[C1, . . . , Cn].

Proof. It follows from 1.4 and 1.6 that fi

P
is contained inA[C1, . . . , Cn]. The assertion

of the lemma thus follows from Definition 2.1.

4. Residues and symmetric polynomials

In this section we first show how we can use residues to give a natural proof of
a general version of the Jacobi-Trudi Lemma. This Lemma is then used to give the
well known bases for the alternating polynomials as an A-module, and as a module
over the symmetric polynomials. As a consequence we obtain the well known bases
of the symmetric polynomials in terms of Schur polynomials. We also observe that
the residue can be used to define a Gysin type map from a polynomial algebra to
the corresponding algebra of symmetric polynomials. The results of this section will
later be generalized to splitting algebras.
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4.1 The Jacobi-Trudi Lemma. Let T1, . . . , Tn be algebraically independent ele-

ments over the ring A and let

P (T ) = (T − T1) · · · (T − Tn).

For all polynomials f1, . . . , fn in A[T ] we obtain

det(fi(Tj)) = Res

(

f1
P
, . . . ,

fn
P

)

det(Tn−ij ).

Proof. We use the division algorithm to the polynomial fi(T ) modulo P (T ) over the
algebra A[T1, . . . , Tn] and obtain

fi(T ) = qi(T )P (T ) + ri(T )

where qi(T ) and ri(T ) have coefficients in A[T1, . . . , Tn], and ri(T ) is of degree less
that n in T . Since Res is linear in f1, . . . , fn and zero on polynomials by Lemma 2.2
we obtain

Res

(

f1
P
, . . . ,

fn
P

)

= Res
(

q1 +
r1
P
, . . . , qn +

rn
P

)

= Res
(r1
P
, . . . ,

rn
P

)

.

Moreover, since P (Tj) = 0 for j = 1, . . . , n, we obtain the equations det(fi(Tj)) =
det(qi(Tj)P (Tj)+r(Tj)) = det(ri(Tj)). Since both Res and det are linear in r1, . . . , rn
it suffices to prove the lemma when ri = Thi with 0 ≤ hi < n for i = 1, . . . , n.
Moreover, since Res is alternating in r1, . . . , rn by Lemma 2.2, and the same is true
for det, we can assume that n > h1 > · · · > hn ≥ 0, that is, we can assume that
hi = n − i for i = 1, . . . , n. However, then the lemma follows from the equality

Res(T
n−1

P
, . . . , T

0

P
) = 1 of Proposition 2.3.

The next result gives the bases of A[T1, . . . , Tn]
alt alluded to above. As a corollary

we obtain a basis for A[T1, . . . , Tn]
sym as an A-module in terms of Schur polynomials.

4.2 Theorem. Let T1, . . . , Tn be algebraically independent elements over the ring A.

(1) The A-module A[T1, . . . , Tn]
alt is an A[T1, . . . , Tn]

sym-submodule of the alge-

bra A[T1, . . . , Tn], and the homomorphism A[T1, . . . , Tn] → A[T1, . . . , Tn]
alt

that maps f to alt(f) is A[T1, . . . , Tn]
sym-linear.

(2) As an A[T1, . . . , Tn]
sym-module A[T1, . . . , Tn]

alt is free of rank 1 with basis the

Vandermonde determinant det(Tn−ij ).

(3) As an A-module A[T1, . . . , Tn]
alt is free with basis det(Thi

j ) for h1 > · · · >
hn ≥ 0.

Proof. (1) For g ∈ A[T1, . . . , Tn]
sym and f ∈ A[T1, . . . , Tn]

alt we have

alt(gf) =
∑

σ∈Sn

sign(σ)σ(gf) =
∑

σ∈Sn

sign(σ)gσ(f) = g alt(f),

that proves assertion (1).
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(2) It follows from assertion (1) that we have an inclusion of A[T1, . . . , Tn]
sym-

modules A[T1, . . . , Tn]
sym det(Tn−ij ) ⊆ A[T1, . . . , Tn]

alt. Since det(Tn−ij ) is not a zero

divisor in A[T1, . . . , Tn], as observed in 3.2, it suffices to show the converse inclusion.
From the definition of A[T1, . . . , Tn]

alt it is clear that this A-module is generated
by the elements alt(f1(T1) · · ·fn(Tn)) = det(fi(Tj)) for all f1, . . . fn i A[T ]. Thus
it follows from the Jacobi-Trudi Lemma 4.1 that the A-module A[T1, . . . , Tn]

alt is

generated by the elements Res( f1
P
, . . . , fn

P
) det(Tn−ij ), where P (T ) = (T −T1) · · · (T −

Tn). Since Res( f1
P
, . . . , fn

P
) is in A[T1, . . . , Tn]

sym for all f1, . . . , fn in A[T ], as we noted

in Lemma 3.3, it follows that A[T1, . . . , Tn]
alt ⊆ A[T1, . . . , Tn]

sym det(Tn−ij ), as we
wanted to show.

(3) As we just saw the A-module A[T1, . . . , Tn]
alt is generated by the elements

Res( f1
P
, . . . , fn

P
) det(Tn−ij ) for all f1, . . . , fn in A[T ]. Since Res is linear in f1, . . . , fn

by Lemma 2.2 it is generated by the elements with fi = Thi for i = 1, . . . , n, and
since Res is alternating by the same lemma we can assume that h1 > · · · > hn ≥

0. However, the elements det(Thi

j ) = Res(T
h1

P
, . . . , T

hn

P
) det(Tn−ij ) for h1 > · · · >

hn ≥ 0 are linearly independent over A because det(Thi

j ) is the only one of these

polynomials in T1, . . . , Tn that contains the monomial Th1

1 · · ·Thn
n .

4.3 Corollary. Let P (T ) = (T − T1) · · · (T − Tn) = Tn −C1T
n−1 + · · ·+ (−1)nCn.

(1) The homomorphism

∂(P ) : A[T1, . . . , Tn] → A[T1, . . . , Tn]
sym

defined by ∂(P )(f1(T1) · · ·fn(Tn)) = Res( f1
P
, . . . , fn

P
) is linear as a homomor-

phism of A[T1, . . . , Tn]
sym-modules.

(2) The A-module A[T1, . . . , Tn]
sym is free with basis Res(T

h1

P
, . . . , T

hn

P
) for h1 >

· · · > hn ≥ 0.
(3) We have A[T1, . . . , Tn]

sym = A[C1, . . . , Cn].

Proof. It follows from assertion (2) of the theorem that multiplication by det(Tn−ij )

gives an isomorphism µ : A[T1, . . . , Tn]
sym → A[T1, . . . , Tn]

alt of A[T1, . . . , Tn]
sym-

modules. Moreover, it follows from the Jacobi-Trudi Lemma 4.1 that µ∂(P ) = alt.
Thus assertions (1) and (2) follow from assertions (1) and (3) of the theorem.

(3) It is clear that we have an inclusion A[C1, . . . , Cn] ⊆ A[T1, . . . , Tn]
sym. The

converse inclusion follows from assertion (2) since Lemma 3.3 shows that the element

Res(T
h1

P
, . . . , T

hn

P
) lies in A[C1, . . . , Cn].

5. Splitting and factorization algebras

Here we first define splitting and factorization algebras and give the two most
common constructions of splitting algebras. We obtain a basis for splitting algebras
as a module, and also a proof of the existence of factorization algebras.

Both splitting and factorization algebras can be constructed in many alternative
ways (see [B], [EL], [LT1] and [PZ]). Each construction provides a different perspective
of the field. Properties that are obvious in one construction may be complicated in
another. The connections between the different constructions are thus of separate
interest.
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5.1 Definition. Let

p(T ) = Tn − c1T
n−1 + · · · + (−1)ncn

be in the algebra A[T ] of polynomials in the variable T over the ring A. Moreover,
let m1, . . . , mr be positive integers such that

m1 + · · ·+mr = n.

A factorization of p(T ) in factors of degrees m1, . . . , mr over an A-algebra ψ : A→ B
is an ordered set of polynomials q1, . . . , qr of degrees m1, . . . , mr in B[T ] such that

ψp(T ) = Tn − ψ(c1)T
n−1 + · · ·+ (−1)nψ(cn) = q1(T ) · · · qr(T ).

We say that an A-algebra ϕ : A→ Factm1,...,mr

A (p) is a factorization algebra for p(T )
over A in factors of degrees m1, . . . , mr when we have a factorization

ϕp(T ) = p1(T ) · · ·pr(T )

over Factm1,...,mr

A (p) in factors of degrees m1, . . . , mr, and when ϕ satisfies the fol-
lowing universal property:

For every A-algebra ψ : A→ B such that we have a factorization

ψp(T ) = q1(T ) · · · qr(T )

of p(T ) over B in factors of degrees m1, . . . , mr, there is a unique A-algebra homo-
morphism

χ : Factm1,...,mr

A (p) → B

such that
χϕpi(T ) = qi(T ) for i = 1, . . . , r.

We call ϕp(T ) = p1(T ) · · ·pr(T ) the universal factorization of p(T ) over A.
When r = d+ 1 and 1 = m1 = · · · = md we write

Fact1,...,1,mr

A (p) = SplitdA(p)

and call SplitdA(p) the d’th splitting algebra for p(T ) over A. The universal factoriza-
tion

ϕp(T ) = (T − ξ1) · · · (T − ξd)pd+1(T )

we call the universal splitting and we call ξ1, . . . , ξd the universal roots. Moreover,
we let

SplitA(p) = SplitnA(p)

and call SplitA(p) the splitting algebra for p(T ) over A. For every integer d such that
0 ≤ d ≤ n we write

Factd,n−dA (P ) = FactdA(p).

9



5.2 Example. As mentioned in the introduction we obtain a first splitting algebra
for a monic polynomial p of degree n in A[T ] by adjunction of a root of p(T ) to A.

More precisely, we have that A[T ]/(p) is a first splitting algebra Split1A(p) of p(T )
over A, or a factorization algebra Fact1A(p) of p(T ) over A in factors of degrees 1 and
n − 1. The universal splitting is ϕp(T ) = (T − ξ)p2(T ), where ξ is the class of T
modulo p(T ). Similarly A[T ]/(p) is a factorization algebra Factn−1

A (p) of p(T ) over
A in factors of degrees n− 1 and 1 with universal factorization p1(T )(T − ξ).

5.3 Remark and convention. From Example 5.2 and the well known properties
of the A-algebra A[T ]/(p) it follows that Split1A(p) is a free A-module with a basis
1, ξ, . . . , ξn−1. Since 1 is part of this basis the map A→ Split1A(p) is injective. When
it can cause no confusion we shall identify A with its image in Split1A(p) via this map.

5.4 Remark. Two factorization algebras B1, B2 for p(T ) over A in factors of degrees
m1, . . . , mr are canonically isomorphic as A-algebras. This is because it follows from
the universal properties of B1 and B2 that we have unique A-algebra homomorphisms
ψ2 : B2 → B1, respectively ψ1 : B1 → B2, and, again by the uniqueness, we have
that ψ2ψ1 and ψ1ψ2 are the identity maps of B1, respectively of B2.

We now prove the existence of splitting algebras.

5.5 Theorem (Construction 1). Let p(T ) = Tn − c1T
n−1 + · · · + (−1)ncn be in

A[T ] and let

P (T ) = (T − T1) · · · (T − Tn) = Tn − C1T
n−1 + · · · + (−1)nCn,

where T1, . . . , Tn are algebraically independent elements over A. Then the residue

algebra

A[T1, . . . , Tn]/(C1 − c1, . . . , Cn − cn)

of the polynomial algebra A[T1, . . . , Tn] modulo the ideal generated by the elements

C1 − c1, . . . , Cn − cn is a splitting algebra for p(T ) over A. The residue classes

ξ1, . . . , ξn of T1, . . . , Tn are the universal roots.

Proof. Let
ϕ : A→ A[ξ1, . . . , ξn]

be the A-algebra. The residue class of Ci by the canonical map

χ : A[T1, . . . , Tn] → A[ξ1, . . . , ξn]

is then ϕ(ci), and we have

ϕp(T ) = Tn − ϕ(c1)T
n−1 + · · ·+ (−1)nϕ(cn)

= Tn − χ(C1)T
n−1 + · · ·+ (−1)nχ(Cn) = χP (T ) = (T − ξ1) · · · (T − ξn).

Thus p(T ) splits completely over A[ξ1, . . . , ξn].
Let ψ : A→ B be an A-algebra such that

ψp(T ) = (T − b1) · · · (T − bn)
10



in B[T ]. We define an A-algebra homomorphism

χ′ : A[T1, . . . , Tn] → B

by χ′(Ti) = bi for i = 1, . . . , n. Then χ′

P (T ) = (T−b1) · · · (T−bn), and thus ψp(T ) =
χ′

P (T ), that is, we have ψ(ci) = χ′(Ci) for i = 1, . . . , n. Thus χ′(ϕ(ci)) = χ′(Ci) for
i = 1, . . . , n. Consequently χ′ factors via an A-algebra homomorphism

χ : A[ξ1, . . . , ξn] → B

such that χ(ξi) = bi for i = 1, . . . , n. The A-algebra homomorphism χ is uniquely
determined by the equalities χ(ξi) = bi for i = 1, . . . , n. Hence we have proved that
A[ξ1, . . . , ξn] is a splitting algebra for p(T ) over A with universal roots ξ1, . . . , ξn.

5.6 Example. With notation as in Theorem 5.5 we obtain that A[T1, . . . , Tn] is a
splitting algebra for P (T ) over A[C1, . . . , Cn] with universal roots T1, . . . , Tn.

In Example 5.6 we saw a property of splitting algebras that is an immediate
consequence of the construction of 5.5. With this construction it is however hard
to give the standard basis for a splitting algebra as an A-module. To illustrate that
different constructions of splitting algebras can give easy proofs of some properties
but make it hard to prove other results, we give a second construction in which the
assertion of Example 5.6 is slightly hard to verify, but where we immediately obtain
an A-module basis. This basis is fundamental to the theory of splitting algebras as
we shall see.

5.7 Theorem (Construction 2). Let p(T ) = Tn − c1T
n−1 + · · · + (−1)ncn be in

A[T ]. We construct, by induction on d, a series of algebras

A = A0 ⊆ A1 ⊆ · · · ⊆ Ad

and polynomials p(T ) = q1(T ), . . . , qd+1(T ) with qi in Ai−1[T ] by,

Ai = Ai−1[T ]/(qi) and qi+1(T ) =
qi(T )

T − ξi
,

where ξi is the class of T in Ai. Then Ad is a d’th splitting algebra for p(T ) over A
with universal roots ξ1, . . . , ξd.

In particular we have that Ad is a free A-module with basis ξh1

1 · · · ξhd

d with 0 ≤

hi ≤ n− i for i = 1, . . . , d.

Proof. We first note that, by definition, qi(T ) is of degree n−i−1, and by Remark 5.3
Ai is a free Ai−1-module with basis 1, ξi, . . . , ξ

n−i
i . Moreover, by the same Remark,

we consider Ai−1 as a subset of Ai. This justifies the inclusions in the theorem, and
also proves the last part of the theorem.

We show the first part of the theorem by induction on d. It holds for d = 0 because
A0 = A is a zeroth splitting algebra for p(T ) over A. Assume that the theorem holds
for d− 1. Let ϕ : A→ B be an algebra such that

ϕp(T ) = (T − b1) · · · (T − bd)q(T )
11



in B[T ]. By the induction assumption we have an A-algebra homomorphism

χ : Ad−1 → B

uniquely determined by χ(ξi) = bi for i = 1, . . . , d−1. We thus obtain that χqd(T ) =
χp(T )

(T−b1)···(T−bd−1)
= (T − bd)q(T ). It follows from Example 5.2 that Ad is a first

splitting algebra for qd(T ) over Ad−1 with universal root ξd. Consequently we have
a unique Ad−1-algebra homomorphism

ψ : Ad → B

such that ψ(ξd) = bd. Since the restriction of ψ to Ad−1 is χ it follows that the
equations ψ(ξi) = bi for i = 1, . . . , d uniquely determine ψ. We have thus proved
that Ad is a d’th splitting algebra for p(T ) over A with universal roots ξ1, . . . , ξd.

5.8 Remark and convention. Since 1 is part of the basis given in Theorem 5.7 it
follows that the algebra homomorphism ϕ : A→ SplitA(p) is injective. When it can
cause no confusion we shall identify A with its image in SplitA(p) by ϕ. In particular
we write ϕp(T ) = p(T ).

The following result is one of many similar results that follow from the universal
properties of splitting and factorization algebras. We have chosen this particular
version because it is simple and illustrates well the underlying principles, and because
we shall use it later.

5.9 Lemma. Let p(T ) = Tn − c1T
n−1 + · · · + (−1)ncn be in A[T ] and let A1 =

FactdA(p) be a factorization algebra for p(T ) over A with universal factorization

p(T ) = p1(T )p2(T ) where p1(T ) is of degree d. Then a splitting algebra SplitA1
(p1)

for p1(T ) over A1 is a d’th splitting algebra SplitdA(p) for p(T ) over A, and the uni-

versal roots in SplitA1
(p1) are the universal roots in SplitdA(p).

Proof. Let ϕ : A→ B be an A-algebra homomorphism such that

ϕp(T ) = (T − b1) · · · (T − bd)q(T )

in B[T ]. From the universal property of A1 = FactdA(p) we obtain a unique A-algebra
homomorphism

χ : FactdA(p) → B

such that
χp1(T ) = (T − b1) · · · (T − bd).

Let ω : A → A1 = FactdA(p) and ω1 : A1 = FactdA(p) → SplitA1
(p1) denote the

algebra homomorphisms. Then

ω1ωp(T ) = (T − π1) · · · (T − πd)
ω1p2(T )

where π1, . . . , πd are the universal roots of SplitA1
(p1). Consequently it follows from

the universal property of SplitA1
(p1), used to the A1-algebra χ : A1 → B and the

polynomial p1(T ), that we have a unique A1-algebra homomorphism

ψ : SplitA1
(p1) → B

12



such that ψ(πi) = bi for i = 1, . . . , d.
The equations ψ(πi) = bi for i = 1, . . . , n determine ψ uniquely as an A1-algebra

homomorphism, and since the equation χp1(T ) = (T − b1) · · · (T − bd) determines χ
we obtain that ψ is also determined by the equations ψ(πi) = bi for i = 1, . . . , d as an
A-algebra homomorphism. We have thus proved that SplitA1

(p1) is a d’th splitting
algebra for p(T ) over A with universal roots π1, . . . , πd.

We can now show that factorization algebras exist and simultaneously give an
explicit description of such algebras.

5.10 Theorem. Let SplitA(p) be a splitting algebra for the monic polynomial p of

degree n in A[T ] with universal roots ξ1, . . . , ξn. Moreover, let m1, . . . , mr be positive

integers such that m1 + · · ·+mr = n. For j = 1, . . . , r and i = 1, . . . , mj we let

ξi(j) = ξi+m1+···+mj−1
and pj(T ) = (T − ξ1(j)) · · · (T − ξmj

(j))

with m0 = 0. Then the A-algebra in SplitA(p) = A[ξ1, . . . , ξn] generated by the

coefficients of the polynomials p1(T ), . . . , pr(T ) is a factorization algebra for p(T ) in

factors of degrees m1, . . . , mr and

p(T ) = p1(T ) · · ·pr(T )

is the universal splitting.

Proof. Let ϕ : A→ B be an A-algebra such that we have a factorization

ϕp(T ) = q1(T ) · · · qr(T )

in B[T ] in factors of degrees m1, . . . , mr. Using the convention of 5.8 we construct
a sequence of algebras B = B0 ⊂ B1 ⊂ · · · ⊂ Br with Bj = SplitBj−1

(qj) for

j = 1, . . . , r. Let π1(j), . . . , πmj
(j) be the universal roots in Bj = SplitBj−1

(qj).
Then we have a splitting

ϕp(T ) =

r
∏

j=1

(T − π1(j)) · · · (T − πmj
(j)) = q1(T ) · · · qr(T )

over Br[T ]. It consequently follows from the universal property of SplitA(p) that we
have an A-algebra homomorphism

χ : SplitA(p) → Br

such that χ(ξi(j)) = πi(j) for j = 1, . . . , r and i = 1, . . . , mj. Then χpj(T ) = qj(T )
for j = 1, . . . , r. In particular we have that the homomorphism χ induces an A-
algebra homomorphism ψ : C → B from the A-algebra C in A[ξ1, . . . , ξd] generated
by the coefficients of p1(T ), . . . , pr(T ) such that ψpj(T ) = qj(T ) for j = 1, . . . , r.
Moreover, ψ is uniquely determined by its values on these coefficients. Consequently
C is a factorization algebra for p(T ) in factors of degrees m1, . . . , mr, and with
universal splitting p(T ) = p1(T ) · · ·pr(T ), as we wanted to prove.

13



5.11 Corollary. Let d be an integer such that 0 ≤ d ≤ n. We have, with the

notation of the theorem, that A[ξ1, . . . , ξd] is a d’th splitting algebra SplitdA(p) of p(T )
over A with universal roots ξ1, . . . , ξd.

The A-algebra in A[ξ1, . . . , ξd] that is generated by the coefficients of the polynomial

p1(T ) = (T − ξ1) · · · (T − ξd) is a factorization algebra FactdA(p) for p(T ) over A with

universal splitting p(T ) = p1(T )p2(T ), where p2(T ) = (T − ξd+1) · · · (T − ξn).

Proof. The first assertion of the corollary follows immediately from the second con-
struction 5.7.

To prove the second assertion we take r = 2 in the theorem. From the universal

factorization p(T ) = p1(T )p2(T ) we obtain p2(T ) = p(T )
p1(T ) . Thus it follows from 1.4

that the coefficients of p2(T ) lie in the A-algebra generated by the coefficients of
p1(T ).

6. Applications to symmetric polynomials

Splitting algebras provide a slightly different point of view of symmetric polyno-
mials than the usual one. We shall illustrate this by explaining how to prove the
Main Theorem of Symmetric Polynomials via splitting algebras.

There are many analogies between polynomial algebras in a finite number of vari-
ables and splitting algebras. We mention, without proofs, how the symmetric group
operates on splitting algebras and some results on the algebra of invariant elements
under this action.

6.1 Lemma. Let P (T ) = (T − T1) · · · (T − Tn) = Tn − C1T
n−1 + · · · + (−1)nCn,

where the elements T1, . . . , Tn are algebraically independent over the ring A. Then

the elementary symmetric polynomials C1, . . . , Cn are algebraically independent over

A.

Proof. Let U1, . . . , Un be algebraically independent elements over A and denote by
A[U1, . . . , Un][π1, . . . , πn] a splitting algebra for Q(T ) = Tn−U1T

n−1+· · ·+(−1)nUn
over A[U1, . . . , Un] with universal roots π1, . . . , πn. Since the coefficients of a poly-
nomial can be expressed as elementary symmetric polynomials in its roots we have
an equality A[U1, . . . , Un][π1, . . . , πn] = A[π1, . . . , πn].

Let
ϕ : A[U1, . . . , Un] → A[C1, . . . , Cn]

be the A-algebra homomorphism defined by ϕ(Ui) = Ci for i = 1, . . . , n. Then

ϕQ(T ) = Tn − C1T
n−1 + · · ·+ (−1)nCn = (T − T1) · · · (T − Tn)

over A[T1, . . . , Tn]. It follows from the universal property for the splitting algebra
A[π1, . . . , πn] that there is a unique homomorphism of A[U1, . . . , Un]-algebras

χ : A[π1, . . . , πn] → A[T1, . . . , Tn]

such that χ(πi) = Ti for i = 1, . . . , n, where A[T1, . . . , Tn] is an A[U1, . . . , Un]-algebra
via ϕ and the inclusion of A[C1, . . . , Cn] in A[T1, . . . , Tn]. Since T1, . . . , Tn are al-
gebraically independent over A we must have that π1, . . . , πn are algebraically inde-
pendent over A. Thus χ is an isomorphism of A-algebras. The restriction of χ to
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A[U1, . . . , Un] clearly induces the homomorphism ϕ. Consequently ϕ is an isomor-
phism. In particular, we have that C1, . . . , Cn are algebraically independent over
A.

We have in previous sections proved two of the parts of the Main Theorem of
Symmetric Polynomials. The above lemma gives the final piece of this result.

6.2 The Main Theorem of Symmetric Polynomials. Let C1, . . . , Cn be the ele-

mentary symmetric polynomials in the algebraically independent elements T1, . . . , Tn
over A, and let A[T1, . . . , Tn]

sym be the polynomials that are invariant under the

action of the symmetric group Sn.

(1) A[T1, . . . , Tn]
sym = A[C1, . . . , Cn].

(2) The elements C1, . . . , Cn are algebraically independent over A.

(3) A[T1, . . . , Tn] is a free A[T1, . . . , Tn]
sym-module with basis Th1

1 · · ·Thn
n , where

0 ≤ hi ≤ n− i for i = 1, . . . , n.

Proof. (1) The first assertion is Corollary 4.3 (3).
(2) The second assertion is Lemma 6.1.
(3) It follows from Example 5.6 that A[T1, . . . , Tn] is the splitting algebra for the

polynomial P (T ) = Tn − C1T
n−1 + · · · + (−1)nCn over A[C1, . . . , Cn], and conse-

quently over A[T1, . . . , Tn]
sym by the first assertion. Assertion (3) thus follows from

Theorem 5.7.

6.3 The action of the symmetric group. Let SplitA(p) be a splitting algebra
of the monic polynomial p of degree n in A[T ] with universal roots ξ1, . . . , ξn. It
follows from the universal property of SplitA(p) that for every permutation σ in the
symmetric group Sn we have a unique A-algebra homomorphism

ϕσ : SplitA(p) → SplitA(p)

such that ϕσ(ξi) = ξσ(i) for i = 1, . . . , n. This clearly defines an action of Sn on
SplitA(p) = A[ξ1, . . . , ξn]. It is an interesting problem to determine the invariants of
the splitting algebra under this action. In [EL] we prove the following partial result:

The invariants of SplitA(p) under the action of Sn are A when at least one of the

following two conditions are fulfilled:

(1) The element
∏

i6=j(ξi − ξj) is regular in A.

(2) The element 2 is regular in A.

A more complete and refined result is given by Anders Thorup in [T].

7. Gysin maps and module bases for factorization algebras

Gysin maps are important in geometry. Here we shall show how the Gysin map
for polynomial algebras in 4.3 (1) can be used to obtain Gysin maps on splitting
algebras. We also show how the Gysin maps can be used to find module bases for
factorization algebras.

We define Gysin maps in terms of the residue. In [M1], [F], [La1], [La2], and [Ma]
(see also further references there) it is defined by divided difference operators. The
connection between the two approaches is explained in [LT1] (where one can also find
further references).
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7.1 Theorem. Let p(T ) = Tn−c1T
n−1+· · ·+(−1)ncn be in A[T ] and let SplitA(p) =

A[ξ1, . . . , ξn] be a splitting algebra for p(T ) over A with universal roots ξ1, . . . , ξn.
Then we have a surjective A-module homomorphism

∂(p) : A[ξ1, . . . , ξn] → A

determined by ∂(p)(f1(ξ1) · · ·fn(ξn)) = Res( f1
p
, . . . , fn

p
) for all polynomials f1, . . . , fn

in A[T ].

Proof. Let T1, . . . , Tn be algebraically independent elements over A and let

P (T ) = (T − T1) · · · (T − Tn) = Tn − C1T
n−1 + · · · + (−1)nCn.

It follows from Corollary 4.3 (1) that we have an A[T1, . . . , Tn]
sym-linear homomor-

phism
∂(P ) : A[T1, . . . , Tn] → A[T1, . . . , Tn]

sym

determined by ∂(P )(f1(T1) · · ·fn(Tn)) = Res( f1
P
, . . . , fn

P
). Since C1, . . . , Cn are alge-

braically independent over A by Lemma 6.1, and A[T1, . . . , Tn]
sym = A[C1, . . . , Cn]

by Corollary 4.3 (3) we have an A-algebra homomorphism

ϕ : A[T1, . . . , Tn]
sym → A

defined by ϕ(Ci) = ci for i = 1, . . . , n. In particular, we have ϕP (T ) = p(T ).

From Lemma 2.2 (4) it follows that ϕ∂(P )(f1(T1) · · ·fn(Tn)) = ϕRes( f1
P
, . . . , fn

P
) =

Res( f1
p
, . . . , fn

P
) for all f1, . . . , fn in A[T ]. In order to show the existence of ∂(p)

it thus follows from Theorem 5.5 that we must show that ϕ∂(P ) vanishes on the
ideal in A[T1, . . . , Tn] generated by the elements C1 − c1, . . . , Cn − cn. However, we
observed that ∂(P ) is A[T1, . . . , Tn]

sym-linear, and thus

ϕ∂(P )((Ci − ci)f1(T1) · · · fn(Tn))

= ϕ(Ci)∂(P )(f1(T1) · · ·fn(Tn)) − ϕ(ci)∂(P )(f1(T1) · · ·fn(Tn)) = 0.

Consequently we have shown the existence of ∂(p).
We have that ∂(p) is surjective since it is A-linear and ∂(p)(ξn−1

1 · · · ξ0n) = 1 by
Proposition 2.3.

7.2 Corollary. Let SplitdA(p) be a d’th splitting algebra for p(T ) over A with univer-

sal roots ξ1, . . . , ξd, and let FactdA(p) be a factorization algebra for p(T ) over A with

universal splitting p(T ) = p1(T )p2(T ), where p1(T ) is of degree d.

(1) We have a surjective homomorphism of FactdA(p)-modules

∂(p1) : SplitdA(p) → FactdA(p)

such that ∂(p1)(f1(ξ1) · · ·fd(ξd)) = Res( f1
p1
, · · · , fd

p1
) for all f1, . . . , fd in A[T ].

(2) FactdA(p) is a free A-module of rank
(

n
d

)

with basis

∂(p1)(π
h1

1 · · ·πhd

d ) = Res

(

Th1

p1
, . . . ,

Thd

p1

)

for n > h1 > · · · > hd ≥ 0.
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(3) We have a surjective homomorphism of A-modules

∂S(p) : SplitdA(p) → A

such that ∂S(p)(f1(ξ1) · · ·fd(ξd)) = Res( f1
p
, . . . , fd

p
) for all f1, . . . , fd in A[T ].

(4) We have a unique homomorphism of A-modules

∂F : FactdA(p) → A

such that ∂S(p) = ∂F(p)∂(p1). This homomorphism is determined by the

equality ∂F(p)(Res( f1
p1
, . . . , fd

p1
)) = Res( f1

p
, . . . , fd

p
) for all f1, . . . , fd in A[T ].

Proof. (1) It follows from Lemma 5.9 that SplitdA(p) is a splitting algebra SplitA1
(p1)

for p1(T ) over A1 = FactdA(p) with universal roots ξ1, . . . , ξd. The existence of ∂(p1)
thus follows from the theorem.

(2) Since Res is linear in f1, . . . , fd by Lemma 2.2 it follows, in particular, that

FactA(p) is generated as an A-module by the elements ∂(p1)(π
h1

1 · · ·πhd

d ) where 0 ≤

hi ≤ n− i for i = 1, . . . , d. Since ∂(p1) is alternating in f1, . . . , fd by Lemma 2.2 we

have that FactdA(p) is generated as an A-module by the elements ∂(p1)(π
h1

1 · · ·πhd

d )
with n > h1 > · · · > hd ≥ 0.

It remains to prove that these elements are linearly independent over A. To show
this we use the natural inclusions of algebras A ⊆ FactdA(p) ⊆ SplitdA(p). Here

SplitdA(p) is a free A-module of rank n(n− 1) · · · (n− d+ 1), and is a free FactdA(p)-

module of rank d(d − 1) · · ·1. Since FactdA(p) is generated, as an A-module by the
(

n
d

)

= n(n−1)···(n−d+1)
d(d−1)···1

elements ∂(p1)(π
h1

1 · · ·πhd

d ) for n > h1 > · · · > hd ≥ 0, it

follows that these elements form an A-module basis for FactdA(p).

(3) It follows from Definition 2.1 and Proposition 2.3 that Res( f1
p
, . . . , fd

p
) =

Res( f1
p
, . . . , fd

p
, T

n−d−1

p
, . . . , T

0

p
) for all f1, . . . , fd in A[T ]. Thus we obtain ∂S(p) as

the restriction of ∂(p) of the theorem to the A-submodule in A[ξ1, . . . , ξd] generated

by the elements f1(ξ1) · · ·fd(ξd)ξ
n−d−1
d+1 · · · ξ0n.

(4) It follows from assertion (2) that we can define an A-module homomorphism

∂F(p) by ∂F(p)(Res( f1
p1
, . . . , fd

p1
)) = Res( f1

p
, . . . , fd

p
) for all f1, . . . , fd in A[T ]. It is

clear that we have ∂S(p) = ∂F(p)∂(p1), and since ∂(p1) is surjective this equality
determines ∂F(p) uniquely.

8. Exterior products and factorization algebras

We finally show how exterior products introduced by Gatto ([G], [GS1]) to describe
the cohomology of grassmannians (see also [LT1] and [LT2]) fit into the theory we
have described in the previous chapters.

The first of the two below results is the main result of [LT1], and the second is
the main result of [LT2].

8.1 Theorem. Let T1, . . . , Tn be algebraically independent elements over the ring A,

and let

P (T ) = (T − T1) · · · (T − Tn).
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Then there is an isomorphism of A-modules

n
∧

A[T ] → A[T1, . . . , Tn]
sym (8.1.1)

that maps f1 ∧ · · · ∧ fn to Res( f1
P
, . . . , fn

P
).

The isomorphism (8.1.1) induces a structure on
∧n

A[T ] as an A[T1, . . . , Tn]
sym-

module that makes the canonical homomorphism A[T1, . . . , Tn] →
∧n

A[T ] that takes

the element f1(T1) · · ·fn(Tn) to f1 ∧ · · · ∧ fn to an A[T1, . . . , Tn]
sym-module homo-

morphism.

With this A[T1, . . . , Tn]
sym-module structure on

∧n
A[T ] we have the determinantal

formula

f1 ∧ · · · ∧ fn = Res

(

f1
P
, . . . ,

fn
P

)

Tn−1 ∧ · · · ∧ T 0

for all f1, . . . , fn in A[T ].

Proof. The map

∂(P ) : A[T1, . . . , Tn] → A[T1, . . . , Tn]
sym

of Lemma 4.3 that is determined by ∂(P )(f1(T1) · · ·fn(Tn)) = Res( f1
P
, . . . , fn

P
) is

multilinear and alternating in f1, . . . , fn by Lemma 2.2. Consequently it factors via
the canonical homomorphism A[T1, . . . , Tn] →

∧n
A[T ] in an A-module homomor-

phism (8.1.1). This homomorphism maps the A-module basis Th1 ∧ · · · ∧ Thn with

h1 > · · · > hn ≥ 0 of
∧n

A[T ] to the elements Res(T
h1

P
, . . . , T

hn

P
) with h1 > · · · >

hn ≥ 0. The latter elements form an A-module basis for A[T1, . . . , Tn]
sym by Corol-

lary 4.3 (2). Consequently (8.1.1) is an A-module isomorphism. The assertions on
the A[T1, . . . , Tn]

sym-module structure are obvious.

The determinant formula follows since f1 ∧ · · · ∧ fn and Res( f1
P
, . . . , fn

P
)Tn−1 ∧

· · · ∧ T 0 map to the same element by the map (8.1.1) since Res(T
n−1

P
, . . . , T

0

P
) = 1

by Proposition 2.3.

8.2 Theorem. Let p(T ) be a monic polynomial of degree n in A[T ] and let FactdA(p)
be a factorization algebra for p(T ) with universal splitting p(T ) = p1(T )p2(T ) where

p1(T ) has degree d. Moreover, let A[ξ] = A[T ]/(p) with ξ the class of T modulo p(T ).
Then we have an A-module isomorphism

d
∧

A[ξ] → FactdA(p) (8.2.1)

that maps f1(ξ) ∧ · · · ∧ fd(ξ) to Res( f1
p1
, . . . , fd

p1
).

The isomorphism (8.2.1) induces a FactdA(p)-module structure on
∧d

A[ξ] that

makes the canonical homomorphism
∧d

A[T ] →
∧d

A[ξ] to an A[T1, . . . , Td]
sym-

module homomorphism when we consider
∧d

A[ξ] as an A[T1, . . . , Td]
sym-module via

the surjection ϕ : A[T1, . . . , Td]
sym → FactdA(p1) that is determined by the equation

ϕ((T − T1) · · · (T − Td)) = p1(T ).
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With this FactdA(p)-module structure on
∧d

A[ξ] we have a determinantal formula

f1(ξ) ∧ · · · ∧ fd(ξ) = Res

(

f1
p1
, . . . ,

fd
p1

)

ξd−1 ∧ · · · ∧ ξ0.

Proof. Let T1, . . . , Td be algebraically independent elements over A and let

P1(T ) = (T − T1) · · · (T − Td) = T d − C′
1T

d−1 + · · ·+ (−1)dC′
d.

By Corollary 4.3 (3) we obtain that A[T1, . . . , Td]
sym = A[C′

1, . . . , C
′
d], and from

Theorem 8.1 we obtain an A[T1, . . . , Td]
sym-module homomorphism

χ :
d
∧

A[T ] → A[T1, . . . , Td]
sym

determined by χ(f1 ∧ · · · ∧ fd) = Res( f1
P1
, . . . , fd

P1
) for all f1, . . . , fd in A[T ].

Let SplitA(p) = A[ξ1, . . . , ξn] be a splitting algebra for p(T ) over A with universal
roots ξ1, . . . , ξd, and write

p1(T ) = (T − ξ1) · · · (T − ξd) = T d − c′1T
d−1 + · · · + (−1)dc′d.

It follows from Corollary 5.11 that the algebra A[c′1, . . . , c
′
d] in A[ξ1, . . . , ξd] is a

d’th factorization algebra FactdA(p) for p(T ) over A with universal splitting p(T ) =
p1(T )p2(T ), where p2(T ) = (T − ξd+1) · · · (T − ξn).

By Lemma 6.1 we have that C′
1, . . . , C

′
d are algebraically independent over A.

Thus we have an A-algebra homomorphism

ψ : A[C′
1, . . . , C

′
d] → A[c′1, . . . , c

′
d] = FactdA(p)

defined by ψ(C′
i) = c′i for i = 1, . . . , d. We obtain that

p(T ) = p1(T )p2(T ) = (T d − c′1T
d−1 + · · ·+ (−1)dc′d)p2(T ) = ψP1(T )p2(T )

in FactdA(p). Consequently it follows from Lemma 2.2 that, for all f1, . . . , fd in A[T ]
and all natural numbers h, we have

ψχ(Thp ∧ f2 ∧ · · · ∧ fd) = ψRes

(

Thp

P1
,
f2
P1
, . . . ,

fd
P1

)

= Res

(

ψ(Thp)
ψP1

,
ψf2
ψP1

, . . . ,
ψfd
ψP1

)

= Res

(

Thp2,
f2
p1
, . . .

fd
p1

)

= 0,

where we consider p(T ) as an element in either of the algebras of the inclusion A[T ] ⊆
A[C′

1, . . . , C
′
d][T ] or in A[c′1, . . . , c

′
d][T ], in accordance with the convention in 5.8.

Thus ψχ :
∧d

A[T ] → FactdA(p) is zero on the elements of the form Thp ∧ f2 ∧ · · · ∧

fd. However these elements generate the kernel of the canonical map
∧d

A[T ] →
∧d

A[ξ], since A[T ] is the direct sum, as an A-module, of the kernel (p) = Ap +
ATp+AT 2p+ · · · of the homomorphism A[T ] → A[ξ] and the A-module A+AT +
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· · · + ATn−1. Consequently the homomorphism ψχ factors via the canonical map
∧d

A[T ] →
∧d

A[ξ] in the A-module homomorphism (8.2.1). This homomorphism

maps the A-module basis ξh1∧· · ·∧ξhd with n > h1 > · · · > hd ≥ 0 for
∧d

A[ξ] to the

elements Res(T
h1

P1
, . . . , T

hd

P1
) with n > h1 > · · · > hd ≥ 0 that form an A-module basis

for FactdA(p) by Corollary 7.2. Consequently (8.2.1) is an A-module isomorphism.

The assertions on the FactdA(p)-module structure follow easily from the commuta-
tive diagram

∧d
A[T ] −−−−→ A[T1, . . . , Td]

sym





y





y
ψ

∧d
A[ξ] −−−−→ FactdA(p)

where the upper and lower maps are the isomorphisms (8.1.1), respectively (8.2.1),
and where the left homomorphism is the canonical map.

The determinantal formula follows since the elements f1(ξ) ∧ · · · ∧ fd(ξ) and

Res( f1
p1
, . . . , fd

p1
)ξd−1 ∧ · · · ∧ ξ0 map to the same element by the map (8.2.1) because

Res(T
d−1

p1
, · · · , T

0

p1
) = 1 by Proposition 2.3.
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