








Markoff’s Surface X:

F(x1,x2,x3) = x2
1+ x2

2+ x2
3�3x1x2x3

X : F(x) = 0. ——(1)

An affine cubic surface in A3.

• The positive integer solutions to (1) are called
Markoff Triples denoted by M

• The coordinates of x � M are Markoff num-
bers denoted by M.

M : 1,2,5,13,29,34,89,169,194, . . .
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The process of producing new solutions from a
given one is repeated applications of the group
G of affine polynomial maps of A3 generated by

• Permutations of the coordinates

• ‘Vieta Transformations’ switching the roots of
the quadratic on fixing two coordinates.

x2
1+ x2

2+ x2
3�3x1x2x3 = 0

R1 : (x1,x2,x3) (x1,x2,3x1x2� x3).

Similarly for R2,R3

Markoff (Simple Descent):

M = G · (1,1,1)

The G orbit of (1,1,1) yields all elements of M.
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M and M arise in many different contexts.
• Diophantine approximation (Markoff)
• Simple closed geodesics on once punctured

hyperbolic surfaces (H. Cohn)
• Algebraic geometry of surfaces classifications

of:
Exceptional vector bundles over P2 (Goro-
dentsev + Rudakov)
Smoothable del Pezzo surfaces with singular-
ities (Hacking + Prokhorov)

·
·
·
Little is known about the diophantine properties
of M or M and X(Z).
• Strong approximation concerns the reduction

of X(Z) mod q and the extent to which this
covers X(Z/qZ).

• For M mod q, Frobenius noted that
m �M↵m �⇤ 0,±2/3 (mod p), for p⇤ 3(4) a
prime.
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Note that G acts on X(Z/qZ) and the strong ap-
proximation problem is connected to

Main Conjecture (MC) (for primes.)

G acts as permutations of X(Z/pZ) with two
orbits {(0,0,0)} and X⇥(Z/pZ) = X(Z/pZ)|{0}.

Note that if MC is true then M mod p��� X⇥(Z/pZ)
is onto, i.e. we have strong approximation and
Frobenius’ congruence obstruction is the only
one for M.

Theorem 1 (Giant Orbit)

For e > 0 and p large there is a G-orbit C (p) in
X⇥(Z/pZ) for which

|X⇥(Z/pZ)\C (p)|⌅ pe(note |X⇥(Z/pZ)|⇧ p2)

and all G-orbits D(p) satisfy |D(p)|� logp.
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We can prove MC as long as p2� 1 is not very
“smooth" (that is it does not have a very large
number of small prime factors)

Theorem 2 (Few exceptions to MC)

The set E of primes for which MC fails satisfies

|{p � E; p⌅ T}|⌥
e

T e, for any e > 0.

An extension of Theorem 2 to composite moduli
q together with a basic sieve allows us to show
that most Markoff numbers are composite.

MS; the Markoff sequence, consists of the x3’s
where (x1,x2,x3) �M and x1 ⌅ x2 ⌅ x3.

Conjecture (Frobenius) MS =M.
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Markoff Numbers are very sparse:

(Zagier) : Â
m⌅T

m�MS

1⇧ c(logT )2 as T  •(c > 0).

Theorem 3 (Almost all composite)

Â
p�MS

p⌅T,p prime

1 = o( Â
m⌅T

m�MS

1), as T  •.

Our methods apply to more general affine cubic
surfaces S:

Sk : F(x1,x2,x3) = k.

SA,B,C,D : x2
1+x2

2+x2
3+x1x2x3 =Ax1+Bx2+Cx3+D

Sgen :
3

Â
i, j=1

Ai jxix j +
3

Â
j=1

Bjx j +C = Dx1x2x3

Ai j,Bj,C,D integers (non degenerate).
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In all cases we have the group G = GS of affine
polynomial morphisms generated by the Vieta
transformations, acting on S and S(Z), (p large).

S0 Markoff’s cubic surface
S4 Cayley’s cubic surface

Sk(R) for different k:
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In order to formulate the analogue of MC for the
surfaces S we need.

Theorem 4: There are finitely many finite GS or-
bits on S(Q) and these orbits may be determined
effectively.

Remarkably this determination has been car-
ried out for SA,B,C,D by Dubrovin/Mazzocco and
Lisovyy/Tykhyy.

For these the finite G-orbits correspond exactly
to the solutions y(z) = y(a,b ,g,d ;z) of Painlevé
VI, which are algebraic functions of z!

d2y
dz2 =

1
2(

1
y +

1
y�1 +

1
y�z)(

dy
dz)

2� (1
z +

1
z�1 +

1
y�z)

dy
dz+

+y(y�1)(y�z)
z2(z�1)2

h
a + b z

y2 +
g(z�1)
(y�1)2 +

d (z�1)z
(y�z)2

i

GA,B,C ⌦↵ nonlinear monodromy group of the
Painlave VI.
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With this we have the general MC.

MC (general): Fix S and GS as above. For p large
the G orbits in S(Z/pZ) consist of the finitely
many finite S(Q) orbits which occur in Z/pZ and
the complement of these, S⇥(Z/pZ), which is
the big orbit.

• For the surfaces Sk this conjecture is equiva-
lent to SL2(Fp) t-systems for pairs of genera-
tors under Nielsen moves put forth recently by
Mccullough/Wanderley.

• Our methods lead to the anologues of Theo-
rem 1 and 2 for these Sgen’s.
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Remarks: The passage from MC(general) to
strong approximation is that if S(Z) has a point
with an infinite G-orbit then S(Z) mod p��� S(Z/pZ)
contains S⇥(Z/pZ).

According to Vojta’s Conjectures integral points
on affine cubic surfaces are typically rare (de-
pending on the geometry of the divisor at infin-
ity).

The familiar cases for which the integral points
are Zariski dense for example tori, do not obey
strong approximation.

These Markoff like affine cubic surfaces are re-
markable in having only lacunary set of integral
points but which are apparently rich enough for
strong approximation.

The story with rational points on (projective) cu-
bic surfaces is very different, once there are any
such points there is an abundance of them.
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Some points in the proofs which are related to
other works:

X : x2
1+ x2

2+ x2
3�3x1x2x3 = 0

If x = (x1,x2,x3) � X⇥(Z/pZ),
want to connect x via G to many points. The
plane section y1 = x1 of X⇥(p) yields a conic
section in the y2,y3 plane containing x and
(x1,Rj(x2,x3)), j = 1,2, . . . where R is the rota-
tion

R(x2,x3) = [x2,x3]


3x1 1
�1 0

�

If t1 is the order of R in SL2(Fp) then x is joined
to these t1 points.

If t1 is maximal (i.e. t1 = p�1 or p+1[in F⇥p,F⇥p2])
then the t1 points cover the full conic section. We
are then in good shape to connect things up via
intersections of these conics in different planes.
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Otherwise we seek among these t1 points one
for which the corresponding operation yields a
rotation of order t2 > t1, and to repeat. To realize
this we are led to

b �= 1, x +
b
x

= h +
1
h

——(⇥)

with x � H1(|H1| = t1) a subgroup of F⇥p or (F⇥p2)
and we want h of large order.

• If t1 > p1/2+d(d > 0) then using Weil’s R.H.
for curves over finite fields, one can show that
there is an h of maximal order.

• If t1 ⌅ p1/2 then the genus of the correspond-
ing curve is too large for R.H. to be of use.
In this case we need a nontrivial(exponent
saving) upper bound for solutions to (⇥) with
x � H1,h � H2, |H2|⌅ t1.
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We have two methods to achieve this

(A) Stepanov’s transcendence method (auxil-
iary polynomials) for proving R.H. for curves
yields nontrivial bounds for these curves
(Corvaja and Zannier give quite sharp
bounds using a somewhat different method
of hyper-Wronskians and their technique to
estimate gcd(u�1,v�1)).

(B) For the specific eqn(⇥) one can use the finite
field projective “Szemeredi-Trotter Theorem"
of Bourgain. This gives a nontrivial upper
bound for the number of incindences x = gy,
x and y in a subset of P1(Fp) and g in a sub-
set of PGL2(Fp).

The above leads to the existence of a very large
connected component C(p) and the connect-
ness of X⇥(p) as long as p2 � 1 is not very
smooth.
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With one caveat: that there may be components
of bounded size as p •. To deal with these,
we lift to characteristic 0 and face the problem of
determining the finite orbits of G on X(Q). That
is to Theorem 4. If (x1,x2,x3) � X(Q) and the
rotations corresponding to x1,x2, and x3 are of
finite order say dividing n, then we have a solu-
tions to (for Sk)

k = (j1+j

�1
1 )2+(j2+j

�1
2 )2+(j3+j

�1
3 )2�

(j1+j

�1
1 )(j2+j

�1
2 )(j3+j

�1
3 )

with j j an n th root of 1.

Our method is to apply Lang’s Gm torsion con-
jecture (Laurent’s theorem) which handles such
finiteness questions for groups generated by lin-
ear and vieta morphisms.
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Lang Gm:
Let V ⌃ (C⇥)m be an algebraic set (i.e. one
defined as the zero set of Laurent polynomi-
als) then there are finitely many (effectively
computable) multiplicative subtori T1, . . . ,Tl con-
tained in V such that

TOR�V = TOR� (
l[

j=1

Tj),

where TOR = all torsion points in (C⇥)m, that is
points whose coordinates are roots of unity.

If p2� 1 is very smooth our methods fall short
of proving X⇥(p) is connected. The following
variant of a conjecture of M. C. Chang and B.
Poonen would suffice.
Conjecture:
Given d > 0 and d � N there is a K = K(d ,d)
such that for p large and f (x,y) absolutely irre-
ducible over Fp and of degree d( f (x,y) = 0 not
a subtorus), then the set of (x,y) in F2

p for which
f (x,y) = 0 and max(ordx,ordy) ⌅ pd , has size
at most K.

18



Theorem 2, namely that MC is true for all but
very few exceptions exploits firstly that for most
p, p2�1 is not smooth.

Erdös and Pomerance show that if 3 ⌅ y ⌅ x,
for most primes p � x, p± 1 has loglog y prime
factors less than y.

Our stronger bounds for the exceptional set of
primes exploit the specific structure of our prob-
lem and involve extending work of M.C. Chang.

The proof of Theorem 3 (“almost all m�M com-
posite") requires an extension of Zagier’s count
to m’s satisfying congruences. This can be
proven either by extending McShane and Rivin’s
treatment of simple closed geodesics on a once
punctured hyperbolic torus, or using recent work
of Athraya, Befetov, Eskin and Mirzakhani.
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