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Markoff’'s Surface X:

D(x1,X2,%3) = X7 + X3 + X3 — 3x100%3
X :P(x) =0. —(1)
An affine cubic surface in A°.

e The positive integer solutions to (1) are called
Markoff Triples denoted by M

e The coordinates of x € M are Markoff num-

bers denoted by M.
13,1,34)
1,1
51, 3’#5,13,194)
(1,1,1)—(1,1,2)—(2,1,5)
‘ 29 5 433)
(2’5’29’42,29,1 69)

M:1,2,5,13,29,34.89.169,194. ...



The process of producing new solutions from a
given one is repeated applications of the group
I" of affine polynomial maps of A® generated by

e Permutations of the coordinates

e ‘Vieta Transformations’ switching the roots of
the quadratic on fixing two coordinates.

X5 4 x5 + x5 — 3x1x0x3 = 0

Ry : (x1,x2,x3) = (x1,%2,3x1x0 — X3).

Similarly for R, R;
Markoff (Simple Descent):

M=T-(1,1,1)

The I' orbit of (1,1,1) yields all elements of M.
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M and M arise in many different contexts.
e Diophantine approximation (Markoff)

e Simple closed geodesics on once punctured
hyperbolic surfaces (H. Cohn)

e Algebraic geometry of surfaces classifications
of:
Exceptional vector bundles over P> (Goro-
dentsev + Rudakov)
Smoothable del Pezzo surfaces with singular-
ities (Hacking + Prokhorov)

Little is known about the diophantine properties
of M or M and X (Z.).

e Strong approximation concerns the reduction
of X(Z) mod g and the extent to which this
covers X (Z/qZ.).

e For Ml mod ¢, Frobenius noted that
meM=m=#0,+2/3 (mod p), for p=3(4) a
prime.



Note that I" acts on X(Z/¢7Z) and the strong ap-
proximation problem is connected to

Main Conjecture (MC) (for primes.)

I" acts as permutations of X(Z/pZ) with two
orbits {(0,0,0)} and X*(Z/pZ) = X (Z/ pZ)|{0}.

Note that if MC is true then M 222 X*(Z/pZ.)

IS onto, i.e. we have strong approximation and
Frobenius’ congruence obstruction is the only
one for M.

Theorem 1 (Giant Orbit)

For € > 0 and p large there is a I"-orbit €' (p) in
X*(Z/pZ) for which

X*(Z/pZ)\ € (p)| < p°(note |X*(Z/pZ)|~ p°)

and all I"-orbits Z(p) satisfy |2(p)| > logp.



We can prove MC as long as p> — 1 is not very
“smooth" (that is it does not have a very large
number of small prime factors)

Theorem 2 (Few exceptions to MC)

The set E of primes for which MC fails satisfies

{peE;p<T}| <8<T8, for any € > 0.

An extension of Theorem 2 to composite moduli
g together with a basic sieve allows us to show
that most Markoff numbers are composite.

M®; the Markoff sequence, consists of the x3’s
where (x1,x2,x3) € M and x; < x, < x3.

Conjecture (Frobenius) M> = M.




Markoff Numbers are very sparse:

(Zagier): Y 1~c(logT)* asT — oo(c >0).
m<T
meMS

Theorem 3 (Almost all composite)

Y 1=o0() 1), asT —eo.

pEMS m<T
p<T,p prime meM?®

Our methods apply to more general affine cubic
surfaces S:

Sk : P(x1,x2,x3) = k.

SABCD: x%%—x% +x§—|—x1xz)@ —Ax1+Bx,+Cx3+D

Seen Z AjiXxixi+ ZB]x] + C = Dx1x0x3
1,j=1 Jj=

A;j,B;,C,D integers (non degenerate).
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In all cases we have the group I' =1 of affine
polynomial morphisms generated by the Vieta
transformations, acting on S and S(Z), (p large).

So Markoff’s cubic surface
S4 Cayley’s cubic surface

Sy(R) for different k:

k=2and k=8



SERGE CANTAT, FRANK LORAY

FIGURE 2. Four examples. |. The Cayley cubic S¢ : Il
8(-02,-02,-02,4.39) 5 . S10,0.0,3) 5 IV- 810,0,0,4.1)-



In order to formulate the analogue of MC for the
surfaces S we need.

Theorem 4: There are finitely many finite I's or-
bits on S(Q) and these orbits may be determined
effectively.

Remarkably this determination has been car-
ried out for Sy gcp by Dubrovin/Mazzocco and
Lisovyy/Tykhyy.

For these the finite I-orbits correspond exactly
to the solutions y(z) = y(«, 8,7, 0;z) of Painlevé
VI, which are algebraic functions of z!

) (@) - G SRt

yo-)-2) [ 4 Bz | 7e1) | 8(z—1)
S Tomn 1l [ e A e y i >}

I'a pc <= nonlinear monodromy group of the
Painlave VI.
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With this we have the general MC.

MC (general): Fix SandI's as above. For p large
the I' orbits in S(Z/pZ) consist of the finitely
many finite S(Q) orbits which occur in Z/pZ and
the complement of these, §*(Z/pZ), which is

the big orbit.

e For the surfaces S, this conjecture is equiva-
lent to SL,(F,) t-systems for pairs of genera-
tors under Nielsen moves put forth recently by
Mccullough/Wanderley.

e Our methods lead to the anologues of Theo-
rem 1 and 2 for these S, S.
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Remarks: The passage from MC(general) to
strong approximation is that if S(Z) has a point
with an infinite T-orbit then S(Z) 2% §(Z/pZ.)
contains S*(Z/pZ.).

According to Vojta’'s Conjectures integral points
on affine cubic surfaces are typically rare (de-
pending on the geometry of the divisor at infin-

ity).

The familiar cases for which the integral points
are Zariski dense for example tori, do not obey
strong approximation.

These Markoff like affine cubic surfaces are re-
markable in having only lacunary set of integral
points but which are apparently rich enough for
strong approximation.

The story with rational points on (projective) cu-
bic surfaces is very different, once there are any
such points there is an abundance of them.
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Some points in the proofs which are related to
other works:

X IX%‘FX%"‘X% — 3X1X2X3 =0

If x = (Xl,XQ,Xg) c X*(Z/pZ),

want to connect x via I' to many points. The
plane section y; = x; of X*(p) yields a conic
section in the y,,y; plane containing x and
(x1,R/(x2,x3)),j = 1,2,... where R is the rota-
tion

R(x2,%3) = [x2,%3) [3_3611 (1)]

If 7, is the order of R in SL,(F,) then x is joined
to these ¢, points.

If #, is maximal (i.e. ty, =p—1 or p+1]in IF;‘;,IF;Z])
then the ¢, points cover the full conic section. We
are then in good shape to connect things up via
intersections of these conics in different planes.
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Otherwise we seek among these t; points one
for which the corresponding operation yields a
rotation of order ¢, > ¢, and to repeat. To realize
this we are led to

b 1
b#£1, E4+—=n+—
#1, ¢ ; n -

with & € H;(|H,| = ;) a subgroup of I, or (F"5)
and we want n of large order.

(%)

olf 1, > p'/?*9(§ > 0) then using Weil's R.H.
for curves over finite fields, one can show that
there is an 1 of maximal order.

o If 1; < p!/? then the genus of the correspond-
Ing curve is too large for R.H. to be of use.
In this case we need a nontrivial(exponent
saving) upper bound for solutions to (x) with
é c Hi,n € H», ’Hz‘ < 1.
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We have two methods to achieve this

(A) Stepanov’s transcendence method (auxil-
lary polynomials) for proving R.H. for curves
yields nontrivial bounds for these curves
(Corvaja and Zannier give quite sharp
bounds using a somewhat different method
of hyper-Wronskians and their technique to
estimate ged(u—1,v—1)).

(B) For the specific eqn(x) one can use the finite
field projective “Szemeredi- Trotter Theorem"
of Bourgain. This gives a nontrivial upper
bound for the number of incindences x = gy,
x and y in a subset of P!(F,) and g in a sub-
set of PGL,(IF)).

The above leads to the existence of a very large
connected component C(p) and the connect-
ness of X*(p) as long as p? — 1 is not very
smooth.
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With one caveat: that there may be components
of bounded size as p — «. To deal with these,
we lift to characteristic 0 and face the problem of

determining the finite orbits of I on X (Q). That
is to Theorem 4. If (x;,x2,x3) € X(Q) and the
rotations corresponding to xi,x;, and x3 are of
finite order say dividing n, then we have a solu-

tions to (for Sy)

k=(o+ o)V +(@m+ 0, )+ (g3 + 95 1) —
(@1 + o, DN+ 0, Do+ 3

with @; an n th root of 1.

Our method is to apply Lang’s G,, torsion con-
jecture (Laurent’s theorem) which handles such
finiteness questions for groups generated by lin-
ear and vieta morphisms.
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Lang G,

Let V C (C*)™ be an algebraic set (i.e. one
defined as the zero set of Laurent polynomi-
als) then there are finitely many (effectively
computable) multiplicative subtori Ti,...,7; con-
tained in V such that

[
TORNV =TORN (| JT)),
j=1
where TOR = all torsion points in (C*)™, that is
points whose coordinates are roots of unity.

If p>—1 is very smooth our methods fall short
of proving X*(p) is connected. The following
variant of a conjecture of M. C. Chang and B.
Poonen would suffice.

Conjecture:

Given 6 > 0 and d € N there is a K = K(9,d)
such that for p large and f(x,y) absolutely irre-
ducible over F, and of degree d(f(x,y) = 0 not
a subtorus), then the set of (x,y) in F; for which
f(x,y) = 0 and max(ordx,ordy) < p°, has size
at most K.
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Theorem 2, namely that MC is true for all but
very few exceptions exploits firstly that for most
p, p> — 1 is not smooth.

Erdds and Pomerance show that if 3 <y <y,
for most primes p < x, p% 1 has loglog y prime
factors less than y.

Our stronger bounds for the exceptional set of
primes exploit the specific structure of our prob-
lem and involve extending work of M.C. Chang.

The proof of Theorem 3 (“almost all m € M com-
posite") requires an extension of Zagier's count
to m’s satisfying congruences. This can be
proven either by extending McShane and Rivin’s
treatment of simple closed geodesics on a once
punctured hyperbolic torus, or using recent work
of Athraya, Befetov, Eskin and Mirzakhani.
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