Lecture 2

STRONG APPROXIMATION FOR THIN MATRIX GROUPS AND DIOPHANTINE APPLICATIONS

PETER SARNAK
BRISTOL 2016

Affine Sieve

Γ a group of affine polynomial maps of affine n-space \mathbb{A}^{n} which preserve \mathbb{Z}^{n}. Fix $a \in \mathbb{Z}^{n}$.

$O:=\Gamma \cdot a$, the orbit of a under Γ.

$O \subset \mathbb{Z}^{n}, V:=\operatorname{Zcl}(O)$, the Zariski closure of O. V is defined over \mathbb{Q}.

Diophantine analysis of O :

- Strong Approximation; for $q \geqslant 1$

$$
O \xrightarrow{\text { red } \bmod q} \quad V(\mathbb{Z} / q \mathbb{Z}) .
$$

What is the image?

- Sieving for primes or almost primes.

If $f \in \mathbb{Z}\left[x_{1}, x_{2}, \ldots x_{n}\right]$, not constant on O; is the set of $x \in O$ for which $f(x)$ is prime (or has at most a fixed number r prime factors) Zariski dense in V ?

Examples of Γ and Orbits:
(1) Classical (automorphic forms)
$\Gamma \leqslant G L_{3}(\mathbb{Z})$ generated by

$$
\left[\begin{array}{lll}
-1 & 2 & 2 \\
-2 & 1 & 2 \\
-2 & 2 & 3
\end{array}\right],\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 2 \\
2 & 2 & 3
\end{array}\right] \text { and }\left[\begin{array}{lll}
1 & -2 & 2 \\
2 & -1 & 2 \\
2 & -2 & 3
\end{array}\right],
$$

Γ is a finite index subgroup of $O_{f}(\mathbb{Z})$, where

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}-x_{3}^{2}
$$

Γ is an arithmetic group

$$
O=\Gamma \cdot(3,4,5)
$$

yields all (primitive) Pythagorean triples.
(2) Γ linear and "thin", not so classical:
$\Gamma=A \subset G L_{4}(\mathbb{Z})$ the Apollonian Group generated by the involutions $S_{1}, S_{2}, S_{3}, S_{4}$

$$
\left[\begin{array}{cccc}
-1 & 2 & 2 & 2 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
2 & -1 & 2 & 2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
2 & 2 & -1 & 2 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
2 & 2 & 2 & -1
\end{array}\right]
$$

S_{j} corresponds to switching the root x_{j} to its conjugate on the cone

$$
F(x)=0, \text { where }
$$

$$
\begin{aligned}
F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=2\left(x_{1}^{2}+x_{2}^{2}\right. & \left.+x_{3}^{2}+x_{4}^{2}\right) \\
& -\left(x_{1}+x_{2}+x_{3}+x_{4}\right)^{2}
\end{aligned}
$$

$$
A \leq O_{F}(\mathbb{Z})
$$

but while $\operatorname{Zcl}(A)=O_{F}, A$ is of infinite index in $O_{F}(\mathbb{Z})$, i.e. "thin".

The orbits of A in \mathbb{Z}^{4} corresponds to the curvatures of 4 mutually tangent circles in an integral Apollonian packing.

For example $O=A .(-11,21,24,28)$
corresponds to:

Scale the picture by a factor of 252 and let $a(c)=$ curvature of the circle $c=1 / \operatorname{radius}(c)$.

The curvatures are displayed. Note the outer one by convention has a negative sign. By a theorem of Apollonius, place unique circles in the lunes.

The Diophantine miracle is the curvatures are integers!

Γ LINEAR

$$
\Gamma \leqslant G L_{n}(\mathbb{Z})
$$

(OR MORE GENERAL S - INTEGRAL)
$G=Z C l(\Gamma), Z A R I S K I ~ C L O S U R E ~ O F$「IQ Algebraic group

$$
\Gamma \leqslant G(\mathbb{Z})
$$

- Γ IS ARITHMETIC IF IT IS FWITE INDEX IN $G(\mathbb{Z})$ AND IT IS THIN IF NOT.

If Γ Is ARIthmetic the DIOPHANTINE PROBLEMS FOR $\theta=\Pi \cdot a$ BECOME THE USUAL ONES FOR $V(\mathbb{Z})$ $V=\operatorname{zcl}(\theta)$. IF THE ORBIT G.a is CLOSED, $V \cong G / H$ WITH H REDUCTIVE, AND G IS SEMISIMPLE, THEN $V(\mathbb{Z})$ CONSISTS OF FINITELY MANY Γ ORBITS (BOREL- MARISH CHANDRA).

USING THE THEORY OF ARITHMETIC GROUPS AND AUTOMURPHIC FORMS (AND ERGODIC THEORY) IE THE SPECTRAL DECOMPOSITION OF $L^{2}(\Gamma \backslash G(R))$ UNDER THE RIGHT G(R) ACTION, ALLOWS FOR A diophantine analysis of Γ ra.

GHOSH-GORODNIK AND NEV HAVE OBTAINED QUATITATIVE RESULTS ON the diophantine approximation Problem (STRONG APPROXIMATION) IN THIS CONTEXT. IN PARTICULAR IN CERTAIN CASES WHERE THE "FULLY TEMPERED" VERSION of the ramanujan conjectures hold THE SHOW THAT ALMOST ALL POINTS OF $V(\mathbb{R})$ HAVE OPTIMALLY SHARP DIOPHANTINE EXPONENT.

- If Γ ls THin the dIophantine problems are more EXOTIC AND THE FAMILIAR TOOL, GONE.

TOOLS:
STRONG APPROXIMATION:
BASIC CASE: $S L_{M}(\mathbb{Z}) \xrightarrow{\text { onto }} S L_{n}(\mathbb{Z} / \mathbb{Z} \mathbb{Z})$

IF $\Gamma \leqslant S L_{n}(\mathbb{Z})$ AND IS ZARISKI DENSE IN $S L_{n}$ (COULD BE THIN!) WHAT ABOUT $\square \longrightarrow S \operatorname{Ln}(\mathbb{Z} / q \mathbb{Z})$?
THEOREM (MATHEWS-WEISFELER-VASERSTEIN, ALSO NOR, LARSEN-PINK):

THERE 15 A FINITE SET $S=S(\Gamma)$ SUCH THAT FOR $(q, S)=1$

$$
\uparrow \xrightarrow{\bmod q} S L_{n}(\mathbb{Z} \mathbb{Z}) \text { is STILL }
$$

MORE GENERALLY THE ABOVE IS TRUE WITH G REPLACING S LM, G SEMI-SIMPLE AND SIMPLY CONNECTED.

TWO NOVEL TOOLS INVOLVED ARE
(1) EXPANSION OR SUPERSTRONG APPROXIMATIION

It has its roots in the general RAMANUJAN CONJECTURES IN THE THEORY OF AUTOMORPHIC FORMS.
$\Gamma \leqslant G L_{n}(\mathbb{Q})$ Finitely Generated
LET S be A Symmetric SET OF GENERATORS (SE $S S^{-1} \in S$).

FOR $q \geqslant 1$ LET $\Gamma(q) B E T H E$ KERNEL OF REDUCTION MOD q AND LET $X(q)$ be the $|S|$-regular "congruence graph"

$$
(\Gamma / \Gamma(q), S) \text {, VERTICES } \Gamma / \Gamma(q)
$$

AND

$$
x \Gamma(q) \stackrel{\text { TONED }}{\longleftrightarrow} 5 x \Gamma(q)
$$

FOR $s \in S$.

THE CRitical feature is that these CONGRUENCE GRAPHS $X(q)$ FORM AN EXPANDER FAMILY AS $q \rightarrow \infty$.

THE MAIN EXPANSION THEOREM WHICH IS A CONSEQUENCE OF MANY ADVANCES FROM SPECIAL TO GENERAL AND CHRONOLOGICALLY [XUE-S, GAMBURD, HELFGOTT, BOURGAINGAMBURD, BOURGAIN-GAMBURD-S, PYBERSZABO, BREUILLARD-GREEN-TAO, VARJU I

THEOREM SUPERSTRONG APPROXIMATION (SALEHIVARJU 2011)

THE CONGRUENCE GRAPHS $x(q)$ AS ABOVE FORM AN EXPANDER FAMILY IFF G THE IDENTITY COMPONENT OF $G=Z \ell(\Gamma)$ IS PERFECT,

IE. $\quad G^{0}=\left[G^{0}, G^{0}\right]$
(5)

THIS EXPANSION PROPERTY HAS MANY applications besides the diophantine ORBS METHOD:

- SIEVING IN GROUPS (RIVIN, LUBOTEKY MEIRI, KOWALSK1, \cdots)
- BETTI Numbers of random 3-manifolds (KOWALSKI, DUNFIELD-THURSTON MODEL)
- HEEGARD GENUS OF HYPERBOLIC. 3-MANIFOLD S (LACKENBY, LONG-LUBOTZKY-RED)
- LARGE DISTORTION FOR ISOTOPY CLASSES OF KNOTS IN S^{3} (GROMOV-GUTH)
- Gonality of towers of curves (ZOGRAF, ELLENBERG-HALL-KOWALSKI TO DIOPHANTINE FINITENESS THEOREMS).
- UNIFORM LIMIT MULTIPLICITIES

AFFINE SIEVE:

$$
f \in \mathbb{Z}\left[x_{1}, x_{2}, \ldots x_{n}\right], \theta=\Gamma v
$$

we say that (θ, f) saturates IF THERE IS $N<\infty$ SUCH THAT $\{x \in \theta: f(x)$ has at most τ prime faction $\}$ IS ZARISKI DENSE IN ZCl (θ).

- The minimal such T is the saturation number $T_{0}(\theta, f)$.
EXAMPLES (CLASSICAL):

1) $\tau_{0}(\mathbb{Z}, x(x+2))=2$ IFF TWIN PRIME
2) $\tau_{0}(\mathbb{Z}, x(x+2))<\infty$ RUN 1915
3) $\tau_{0}(\mathbb{Z}, x(x+2)) \leq 3$ CHEN 1973
4) $T_{0}(\mathbb{Z}, x(x+k))=2$ FOR SOME $R<\infty$ y. ZHANG, 2013
5). Given m there are $k_{1}<k_{2} \cdots<k_{m}$ SUCH THAT SUCH THAT
$T_{0}\left(\mathbb{Z},\left(x+k_{1}\right)\left(x+k_{2}\right) \cdots\left(x+k_{m}\right)\right)=m . \begin{aligned} & \text { JMAYNARD } \\ & 2013 .\end{aligned}$

FUNDAMENTAL SATURATION THEOREM OF THE AFFINE SIEVE (SALEHI-S 2O12):
Γ, f as above $\theta=\Gamma V \subset \mathbb{Z}^{n}$ If $G=Z C l(\Gamma)$ is LEV 1 SEMISIMPLE (IE RAD (G) CONTAINS NO TORUS) THEN $T_{0}(\theta, f)<\infty$.

- HEURISTIC ARGUMENTS SHOW THAT THE CONDITION ON RAD (G) IS PROBABLY NECESSARY FOR SATURATION!
- for examples of the THEORY APPLIED TO LOCAL/GLOBAL PRINCIPLES FOR INTEGRAL APOLLONIAN PACKING, SEE
E. FUCHS
A. KONTOROVICl

UBIQUITY OF THIN MATRIX GROUPS?

- there is no decision procedure to TELL WHETHER A GIVEN $A_{1}, \ldots, A_{\text {P }}$ IN $S L_{2}(\mathbb{Z}) \times S L_{2}(\mathbb{Z})$ GENERATES A Thin Group or not (mihalova 1959).
- in practice if Γ is in facet A congruence subgroup of $G(\mathbb{Z})$ AND IS GIVEN in TERMS OF GENERATORS, THEN ONE CAN VERIFY THIS BY PRODUCING GENERATORS. HOWEVER IF Γ IS THIN HOW CAN WE CERTIFY THIS?
- For a true group theorest, thin is THE RULE! GIVEN $A, B \in \mathcal{S} L_{n}$ ((\mathbb{Z}) CHOSEN AT RANDOM, THEN $\Gamma=\langle A, B\rangle$ HAS $G=S L_{n}, \Gamma$ IS FREE AND THIN. (AOUN, FUCHS).
(91)

UNIVERSAL QUANTUM GATE GROUPS:
the primary golden gate group ए WAS GENERATED BY
C CLIFFORD GROUP OF ORDER 24 iN

$$
G=P U(2)
$$

And

$$
T=T_{4}=\left[\begin{array}{ll}
1 & 0 \\
0 & e^{i \pi / 4}
\end{array}\right]
$$

(" $\pi / 8$-GATE")
the key was that Γ is arithmetic.
WHAT IF instead we add To C A $\pi / 2 n$ GATE ($T T$ WILL STILL BE UNIVERSAL)

$$
T_{M}=\left[\begin{array}{ll}
1 & 0 \\
0 & e^{i \pi / n}
\end{array}\right] \text { ? }
$$

(asked and studied by FOREST, GOSSE T KLIUSHNIKOU,MCKINON)
In (SARNAK LETTER 2O15) I INDICATE A PROOF THAT UNLESS $n=3,4,8,12$. Γ WILL BE THIN!

HyPERBOLIC REFLECTION GROUPS (VINBERG):
$f\left(x_{1}, \ldots, x_{n}\right)$ a RATIONAL QUADRATic FORM OF SIGNATURE $(n-1,1), n \geqslant 5$. $G=O_{f}, G(\mathbb{Z})$ ARITHMETIC. $R_{p}(\mathbb{Z})$ THE (NORMAL) SUBGROUP OF $G(\mathbb{Z})$ GENERATED BY β^{\prime} 's WHICH iNDUCE HYPERBOLIC REFLECTIONS ON $\left\|\|^{n-1}\right.$. THEN EXCEPT FOR RARE CASES

$$
O_{f}(\mathbb{Z}) / R_{f}(\mathbb{Z}) \mid=\infty .
$$

MONODROMY GROUPS: A NATURAL GEOMETRIC SOURCE OF FINITELY GENERATED SUBGROUPS OF $G_{n}(\mathbb{Z})$ Is THE MONODROMY REPRESENTATION ON COHOMOLOGY OF A FAMILY OF ALGEBRAIC VARIETIES, VARIATONS OF HODGE STRUCTURES, MONODROMY OF LINEAR DIFFERENTIAL EQUATIONS, ...

- The basic question as to Whether in the case of variation of hodge structures the monodromy Γ IS ARITHMETIC WAS POSED IN 1973 BY GRIFFITHS AND SCHMID.
- They show that if the period MAP FROM THE PARAMETER SPACE S TO THE PERIOD DOMAIN D IS OPEN THE Γ IS ARITHMETIC.
ONE PARAMETER HYpERGEOMETRIC ${ }^{\circ} F_{n=1}$:

$$
\alpha, \beta \in \mathbb{Q}^{n}, 0 \leq \alpha_{j}<1,0 \leq \beta_{j}<1
$$

(*)

$$
D u=0,
$$

$$
\begin{aligned}
& \theta=z \frac{d}{d z} \\
& D=\left(\theta+\beta_{1}-1\right)\left(\theta+\beta_{-1}-\cdots\left(\theta+\beta_{n}-1\right)-z\left(\theta+\alpha_{1}\right) \cdots\left(\theta+\alpha_{n}\right)\right.
\end{aligned}
$$

Solutions Are

$$
\left.z^{1-\beta_{i}} F_{n-1}\left(1+\alpha_{i}-\beta_{i}\right) ;+\alpha_{n}-\beta_{i} ; 1+\beta_{i} \beta_{i} . \cdot v_{-1}+\beta_{n}-\beta_{i} \mid z\right)
$$

WHERE \checkmark MEANS OMIT $1+\beta_{i}-\beta_{i}$ AND

$$
{ }_{n} F_{n-1}\left(\rho_{1}, \ldots, \rho_{n} ; \eta_{1}, \ldots \eta_{n-1}(z)=\sum_{k=0}^{\infty} \frac{\left(\rho_{1}\right)_{k} \cdot\left(\rho_{n}\right)_{k}}{\left(\eta_{1}\right)_{k} \cdot\left(\eta_{n-1}\right)_{k}} \frac{z^{k}}{k!}\right.
$$

(*) is Singular at $z=0,1, \infty$ AND THE MONODROMY GROUP $H(\alpha, \beta)$ is gotten by analytic continuation Along Paths in $\mathbb{P}^{1} \mid\{0,1, \infty\}$ of A BASIS OF SOLUTIONS.

WE RESTRICT TO α, β SUCH THAT $H(\alpha, \beta)$ is UP TO CONJUGATION IN $G L_{n}(\mathbb{Z})$.

BEUIRERS AND HECKMAN COMPUTE

$$
G=\operatorname{Zcl}(H(\alpha, \beta))
$$

EXPLICITLY iN TERMS OF α, β.
IN THIS SELF-DUAL SETTING G II
(i) FINITE (SPORDIC LIST $n \leq 8$, ONE FAMILY
(ii) O_{n}
(iii) S_{n} (ONLy occurs in $i n$ Ever).

VENKATARAMANA (2012): $n \geq 2$ EVEN

$$
\begin{aligned}
& \alpha=\left(\frac{1}{2}+\frac{1}{n+1}, \frac{1}{2}+\frac{2}{n+1}, \cdots, \frac{1}{2}+\frac{n n}{n+1}\right) \\
& \beta=\left(0, \frac{1}{2}+\frac{1}{n}, \frac{1}{2}+\frac{2}{n}, \cdots, \frac{1}{2}+\frac{n+1}{n}\right)
\end{aligned}
$$

THEN $G(\alpha, \beta)=S p_{n} \quad$ AND
$H(\alpha, \beta)$ IS ARITHMETIC!
(14)
there $A R e \quad 112(\alpha, \beta)$'s giving $G(\alpha, \beta)=S P_{4}, A L L$ COMING FROM VARIATIONS OF INTEGRAL HODGE structures (doran-morgan).
OF THESE MORE THAN HALF ARE ARITHMETIC (SINGH - VENKATARAMANA 2012)

14 CORRESPOND TO CALABI-YAU FAMILIES OF 3-FOLDS
EG: $\quad \alpha=(0,0,0,0), \beta=\left(\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}\right)$
「DWORK FAMILY,
CANDELAS ET AL
BRAV-THOMAS (2O12) SHOW THAT SEVEN OF THESE ARE THIN, WHILE SINGH THAT THE OTHER SEVEN ARE ARITHMETIC.

BRAV-THOMAS SHOW THAT THE GENERATORS OF $\pi_{1}\left(\mathbb{P}^{\prime} \backslash\{0,1, \infty\}\right), A$ AND C ABOUT O AND 1 PLAY Generalized ping-pong on a COMPLICATED POLYHEDRAL SUBSET OF \mathbb{P}^{3}.

HyPERBOLIC HYPERGEOMETRICS (FUCHI- $\begin{aligned} & \text { MEIR1-5) } \\ & \text { LOIS }\end{aligned}$ 2013
(α, β) is HHM IF $G(\alpha, \beta)$ IS ORTHOGONAL AND OF SIGNATURE $(n-1,1)$. (IN THIS CASE 11 IS ODD)

THEOREM 1 (F-M-S)
WITH THE EXCEPTION OF AN ExplIaT (LONG) LIST OF FiTLY MANY (α, β) 's ALL WITH $n \leqslant 9$, ALL HMM's COME IN SEVEN INFINITE PARAMETRIC FAMILIES.

FOR THE HHM'S WE GIVE A ROBUST OBSTRUCTION TO H($\alpha, \beta)$ BEING ARITHMETIC, THAT is A CERTIFICATE FOR $H(\alpha, \beta)$ TO BE THIN.
(16)
f A RATIONAL QUADRATIC FORM $f(x)=(x, x)$ INTEGRAL on a lattice l

$$
\left\{(x, x)=-2: x_{1}>0\right\}=H^{n-1}
$$

IF $(v, v) \neq 0, v \in L$ THEN THE linear reflection

$$
T_{v}(y)=y-\frac{2(v, y)}{(v, v)} v, \text { is } \operatorname{IN} O_{I F}(v, v)= \pm 2 .
$$

- If $(v, v)>0$ THEN τ_{v} induces A HYPERBOLIC REFLECTION ON \mathbb{H}^{n+1}.
- If $(v, v)<0$ THEN $T_{v} \in Q_{q}$ induces a partan involution on $\|^{n+1}$.
KEY POINT: FOR HHM'S

$$
H(\alpha, \beta)=\langle A, B\rangle
$$

A LOCAL MONODROMY ABOUT O
B LOCAL MONODROMY ABOUT ∞
FIND $C=A^{-1} B$ Is A CARTAN involution.
UP TO COMMENSURABILITY $H(\alpha, \beta)$ IS GENERATED BY THE CARTAN INVOLUTIONS

$$
A^{k} C A^{-k}, k \in \mathbb{Z}
$$

(18)

$$
R_{2}(L):=\{v \in L:(v, v)=2\}
$$

THE INTEGRAL ROOT VECTORS GIVING HYPERBOLIC REFLECTIONS

$$
R_{-2}(L):=\{v \in L:(v, v)=-2\}
$$

THE INTEGRAL. ROOT VECTORS GIVING CARTAN INVOLUTIONS.
ACCORDING TO VINBERG/NIKULIN EXCEPT FOR SPECIAL L'S

$$
\left|O(L) / R_{2}(L)\right| \simeq \infty
$$

LET $\quad \Delta \subset R_{-2}(L)$
WE GIVE A CONDITION UNDER WHICH $\left\langle T_{v}: v \in \Delta\right\rangle$ HAS FINITE IMAGE IN $O(L) / R_{2}(L)$.

MINIMAL DISTANCE GRAPH $X(L)$:
THE VERTICES OF $X(L)$ ARE THE CARTAN ROOTS $R_{-2}(L)$ AND JOIN v TO ω IF $(v, w)=-3$ (MINIMAL DISTANCE THEY CAN BE) PROPOSITION IF \triangle IS CONTANED IN A CONNECTED COMPONENT OF $X(L)$ THEN
$\left\langle T_{v}: v \in \Delta\right\rangle$ has finite image $\operatorname{IN} O(L) / R_{2}(L)$.

WITH THIS WE CAN SHOW THAT MOST OF THE HHM'S are Thin.
(20)

THEOREM
n ODD

$$
\alpha=\left(0, \frac{1}{n+1}, \frac{2}{n+1}, \cdots, \frac{n-1}{2(n+1)}, \frac{n+3}{2(n+1)}, \frac{n \cdot 1}{n+1}\right), \beta=\left(\frac{1}{2}, \frac{1}{n}, \frac{2}{n}, \cdot \frac{n-1}{n}\right)
$$

AND

$$
\alpha=\left(\frac{1}{2}, \frac{1}{2 n-2}, \frac{3}{2 n-2}, \cdots, \frac{2 n-3}{2 n-2}\right), \beta=\left(0,0,0, \frac{1}{n-2},, \frac{n-3}{n-2}\right)
$$

ARE HYPERBOLIC HYPERGEOMETRIC AND ARE ARITHMETK IF $n=3$ AND THIN $n \geq 5$.

CONJECTURE
There are only FINITELY MANY HHM'S WHICH ARE ARITHMETIC.

- H. PARK (ThESIS 2013) SHOWS THAT THE HMM

$$
\alpha=\left(0, \frac{1}{6}, \frac{1}{3}, \frac{2}{3}, \frac{5}{6}\right), \beta=\left(\frac{1}{5}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{4}{5}\right)
$$

is Geometrically finite (And thin).
(21)

References to most of the AbOVE CAN BE FOUND IN THE SURE Y
"NOTES ON THIN MATRIX GROUPS" P. SARNAK

MSRI PUBL. 61 (2014) 343-362.

