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Abstract. We study the distribution of spacings between squares in Z/QZ
as the number of prime divisors of Q tends to infinity. In [3] Kurlberg and
Rudnick proved that the spacing distribution for square free Q is Poisso-
nian, this paper extends the result to arbitrary Q.

1. Introduction

This paper studies the distribution of spacings between squares in Z/QZ as
ω(Q), the number of prime divisors of Q, tends to infinity. In [3] Kurlberg and
Rudnick proved that the spacing distribution for square free Q is Poissonian,
i.e., the same as for a sequence of independent uniformly distributed real numbers
in the unit interval. The purpose of this paper is to extend the result to arbitrary
Q.

The spacing distribution is defined as follows: Let XQ ⊂ {0, 1, . . . , Q − 1} be
a set of representatives of the squares in Z/QZ. Order the NQ elements of XQ

so that x1 < x2 < . . . < xNQ
and form the normalized consecutive spacings

yi = (xi+1 − xi)/s where s = (xNQ
− x1)/NQ is the mean spacing. By putting

point mass (NQ−1)−1 at each yi we obtain a probability distribution with mean
one, and we can now study the limiting distribution as ω(Q) →∞.

For prime Q →∞ the mean spacing is constant and Davenport [1] has proved
that the normalized spacing distribution is a sum of point masses at half integers
k/2 with weight 2−k, and it is easy to see that the same holds true for prime
powers. In the highly composite case the mean spacing tends to infinity since
s roughly equals 2ω(Q). Hence there is a chance that the limiting distribution
has continuous support. Davenport’s result in a sense suggests that quadratic
residues behave, at least with respect to spacing statistics, like independent fair
coin flips. This together with the heuristic that primes are independent suggests
that the limiting distribution for highly composite Q should be Poissonian, i.e.,
the probability density function of the (normalized) spacing to the next square
should be given by P (s) = e−s.

The definition of the level spacing distribution involves ordering the elements
in XQ. In terms of analysis, ordering is a complicated operation, and it is not
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so easy to study the level spacings directly. However, using a combinatorial
argument one can recover the level spacings from the knowledge of all r-level
correlations. (For instance, see lemma 14 of [3].)

Fix an integer r ≥ 2. The r-level correlation is defined as follows: let
C ⊂ Rk−1 be a convex set such that (x1−x2, x2−x3, . . . , xk−1−xx) ∈ C implies
that xi 6= xj for i 6= j. The reason for this condition is that we want to avoid the
self correlation of a point with itself. The r-level correlation with respect to C is
given by:

Rr(C, Q) =
1

NQ

∑
h∈sC∩Zr−1

N(h, Q)

where N(h, Q) is the number of solutions in squares s1, . . . , sr of the equations

si+1 − si ≡ hi mod Q, i = 1, . . . , r − 1.

The main result of this paper is the following:

Theorem 1. With C as above there exists a constant K > 0, depending only on
r and C, such that

Rr(C, Q) = vol(C) + O(exp(−K
√

ω(Q))).

As is well known (for instance, see lemma 14 of [3]) this implies:

Corollary 1. The limiting spacing distribution of squares in Z/QZ as ω(Q) →
∞ is Poissonian.

Remark: In the special case that the exponents of the primes dividing Q are
bounded then the methods in [3] can be generalized. For the general case one can
try to truncate Q, i.e. replace Q by Q̃ in such a way that that the growth of the
exponents is controlled. However, new ideas are needed in order to justify that
the errors introduced by truncating Q and cutting off certain divisor sums are
not too big. Because of the ensuing complications the bound on the error term
in theorem 1 is only of sub-exponential decay in ω(Q), whereas in theorem 1 of
[3] the bound decays exponentially.

Contents of the paper: In section 2 we set up the necessary notation, and in
section 3 we show that the decomposition of N(h, p) used in [3] is valid for prime
powers. Squares that are distinct modulo Q are not necessarily distinct modulo
p, and in section 4 we briefly recall some properties of this modulo p degeneracy
and its relation to lattices and Möebius inversion. Section 5 deals with truncating
Q, i.e., lowering the exponents of the primes dividing Q, as well as truncating
sums over sets of lattices and divisors of Q. In section 6 we use the previous
results to show that a periodicity heuristic is valid, using it we prove theorem 1.
Finally, in the appendix we collect some lemmas on divisor sums used throughout
the text.
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2. Notation

For n an integer we let ω(n) be the number of prime divisors of n. When
writing p|n we will always refer to a prime divisor of n. Let Q =

∏
p|q pαp where

q = rad(Q) is the largest square free divisor of Q. (Note that ω(Q) = ω(q).) Put
Q̃ =

∏
p|q pα̃p where α̃p ≤ αp are to be picked later. If c|q we let C =

∏
p|c pαp

and C̃ =
∏

p|C pα̃p .
In what follows we will use the following convention: If a function, say f , is

defined for prime arguments we let

f(c) =
∏
p|c

f(p).

If the function is defined for prime powers, let

f(C) =
∏
p|c

f(pαp)

and
f(C̃) =

∏
p|c

f(pα̃p).

For instance, we let σ(p) = 1 + p−1; by the above convention σ(q) =
∏

p|q σ(p) =∑
c|q c−1.
We let s = Q/NQ denote the mean spacing. (This is slightly different from

what is used in the introduction, but in the limit ω(Q) →∞ the two definitions
agree.) It is easy to see that Npk = pk σ(p)

2

(
1 + O(p−2)

)
, with the error term

always positive, and therefore

(1) 2ω(q)(1−ε) � 2ω(q)

σ(q)
≤ s � 2ω(q)

σ(q)
≤ 2ω(q).

Finally, we let
F (q, t) =

∑
p|q

p−t.

3. Analyzing N(h, Q)

Since x is a square modulo Q if and only if it is a square modulo P for all P |Q,
we see that N(h, Q) is multiplicative. For primes we have:

Lemma 1. We can write

N(h, p) =
∆(h, p)

2r
p (1 + ε(h, p))

where
ε(h, p) �r p−1/2 as p →∞,

and ∆(h, p) = 2k for some 0 ≤ k ≤ r.

Proof. See proposition 4 in [3]. �
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Remark: For p 6= 2 the bound on ε(h, p) follows from the Weil bounds on
the number of points on curves over finite fields. For p = 2 the curve is highly
singular, but the bound holds trivially by choosing a large enough constant.

For prime powers Hensel’s lemma can be used to lift solutions. However, there
are complications due to singularities arising for certain choices of h. (Note that
if all points were smooth, then N(h, pk) = pk−1N(h, p).) The following lemma
shows that there are few solutions that do not lift.

Proposition 1. If b ≥ a then

|N(h, pb)− pb−aN(h, pa)| �r pb−a.

Proof. Recall that N(h, pb) is the number of solutions in squares s1, . . . , sr of the
equations

si+1 − si ≡ hi mod pb, i = 1, . . . , r − 1,

which we may rewrite as

y2
i ≡ ti + x2 mod pb, i = 1, . . . , r − 1,

where ti =
∑i

j=1 hj and we think of x as a preferred parameter. For most
values of x, the equations in yi are smooth, and Hensel’s lemma can be applied
to lift solutions modulo p to solutions for arbitrary high powers. However, at the
non-smooth points the analysis is more involved.

Assume first that p 6= 2. For the pair correlation we get the equation

y2 ≡ x2 + t mod pb.

If x2 + t 6≡ 0 mod p, we’re in the smooth case. If not, then we can write
x2 + t = upk, where u is invertible modulo p and 1 ≤ k ≤ b. Now, y2 ≡ upk

mod pb has a solution iff k is even and u is a square in Fp, or k = b. Thus, if
y2 ≡ x2+t mod pa has a solution which does not lift, this implies that k ≥ a. The
x2 for which solutions cannot be lifted are contained in the (pb)-cosets generated
by −t + (pa), and there are at most |(pa)/(pb)| = pb−a such elements in Z/pbZ.
For r ≥ 3 we observe that the “bad” x2 are contained in the pb-cosets generated
by ∪r−1

i=1 (−ti + (pa)), and there are at most (r − 1)pb−a such x2.
For p = 2 the difference is that a unit has to be a square modulo 8 in order

to be a dyadic square, and we therefore lose a factor of 4 when bounding the
number of “bad” squares. �

Corollary 2. We can write

N(h, pk) =
∆(h, p)

2r
pk
(
1 + ε(h, pk)

)
where

ε(h, pk) �r p−1/2.

Corollary 3. There exists K1 > 0 such that

ε(h, C) ≤ K
ω(c)
1 c−1/2

for all c|q.
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4. ∆, lattices and Möbius inversion

In this section we briefly explain ∆(h, p), which measures how many extra
solutions in squares si of the system

si+1 − si ≡ hi mod p, i = 1, . . . , r − 1,

there are. (For full details see section 4.1 in [3].) For the pair correlation it
works as follows: if h 6≡ 0 mod p then there are roughly Np/2 ' p/4 solutions
of s2 ≡ s1 + h mod p since the “probability” of s1 + h being a square modulo
p is roughly 1/2. However, if h ≡ 0 mod p there is degeneracy; s2 = s1 is
automatically a square. Hence there are Np ' p/2 solutions in this case, and
∆(0, p) = 2 is the corresponding correction factor.

For the higher correlations the “probability” of s1, s1+h1, s1+h1+h2, . . . , s1+
h1 + . . . hr−1 all being squares is roughly 2−r, unless the values of the hi’s forces
some of the si’s to be equal. More precisely, if we let Hp be the union of linear
subspaces in (Z/pZ)r−1 that corresponds to some si’s being equal, then the con-
dition for degeneracy translates into h lying in a unique smallest linear subspace
H ∈ Hp, and the corresponding correction factor is 2codim(H).

Using Möbius inversion we can express the function ∆(h, p) = 2codim(H) as
a linear combination of characteristic functions of the linear subspaces in Hp.
Pulling the subspaces in (Z/pZ)r−1 back to Zr−1 gives a set of lattices Lp, and
∆(h, p) =

∑
L∈Lp

λ(L)δL(h) where δL is the characteristic function of the lattice
and λ(L) are certain coefficients (see section 4.1 in [3].) Note that the set of
values {λ(L) : L ∈ Lp } is independent of p, and that λ(L) = 1 for the the
maximal lattice L = Zr−1.

For divisors c|q, we then have

∆(h, c) =
∏
p|c

∆(h, p) =
∏
p|c

 ∑
Lp∈Lp

λ(Lp)δLp(h)

 =
∑
g|c

∑
L∈L

supp(L)=g

λ(L)δL(h)

where the inner sum is over the collection L of all lattices of the form ∩p|qLp, Lp ∈
Lp, the coefficient λ(∩p|qLp) is given by

∏
p|q λ(Lp), and where we let supp(L), the

support of L, be the largest square free divisor of the discriminant disc(L). (The
discriminant is as usual the volume of the fundamental domain of the lattice.)

Remark: If L = ∩p|qLp and p does not divide supp(L) then Lp = Zr−1 and
λ(Lp) = 1. Consequently, L = ∩p| supp(L)Lp and λ(L) =

∏
p| supp(L) λ(Lp).

For future reference we have the following lemmas:

Lemma 2.
|λ(L)| �r supp(L)ε,

and ∑
L∈L

supp(L)=g

1 �r gε.
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Proof. Immediate by the previous remark and the fact that λ(Lp), |Lp| �r 1. �

Lemma 3. The following bound holds:

∆(h, c) � cε.

Proof. By the previous remark there exists a constant K2, depending only on r,
such that ∆(h, p) ≤ K2. Hence ∆(h, c) =

∏
p|c ∆(h, p) ≤ K

ω(c)
2 � cε. �

By assumption the convex set C has empty intersection with the linear sub-
spaces, or walls, corresponding to

∑
i≤j≤k hj = 0 for 1 ≤ i ≤ k ≤ r − 1. The

lattices in L correspond to integer points that are congruent to the walls modulo
some divisor of Q. Thus, if the support of a lattice is sufficiently large compared
to the size of sC we expect it to have empty intersection with sC, and this is in
fact true:

Lemma 4. If C does not intersect with the walls and supp(L) �C sr(r−1)/2 then
sC ∩ L = ∅.

Proof. See lemma 7 in [3]. �

If L ⊂ Rn is a lattice and X ⊂ Rn is a set with nice boundary, for instance
if X is convex, then it is well known that the number of lattice points in t · X
equals tn vol(X)

disc(L) + OX,L(tn−1), where the error term depends on the set X and
the lattice L. The Lipschitz principle (Davenport [2], Schmidt [4]) allows us to
bound the error uniformly with respect to integer lattices L ⊂ Zn:

Proposition 2. Let L ⊂ Zn be a lattice of discriminant disc(L), and C a convex
set. Suppose that C lies in a ball of radius R. Then

#(L ∩ C) =
vol(C)
disc(L)

+ OC(Rn−1)

where the error term only depends on C.

Proof. For details see lemma 16 in [3]. �

The following bounds the sum of ∆(h, q) over all integer points in sC.

Lemma 5. ∑
h∈sC∩Zr−1

∆(h, q) �r sr−1 exp (O (log log (ω(q))))

Proof. Rewriting the sum using Möbius inversion and using proposition 2 we get∑
h∈sC∩Zr−1

∆(h, q) =
∑
g|q

∑
L∈L

supp(L)=g

λ(L)
∑

h∈sC∩L

1

=
∑
g|q

∑
L∈L

supp(L)=g

λ(L)
(

vol(sC)
disc(L)

+ O(sr−2)
)

.
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By lemma 4 we may assume that g ≤ sr(r−1)/2, and we may estimate the terms
involving O(sr−2) by∑

g|q
g≤sr(r−1)/2

∑
L∈L

supp(L)=g

|λ(L)|sr−2 � sr−2
∑
g|q

g≤sr(r−1)/2

g2ε

using lemma 2. But ∑
g|q

g≤sr(r−1)/2

g2ε � s2εr(r−1)/2
∑
g|q

g≤sr(r−1)/2

1 � sε′

by lemma 13 and hence the error terms only contribute O(sr−2+ε). The main
term ∑

g|q
g≤sr(r−1)/2

∑
L∈L

supp(L)=g

λ(L)
vol(sC)
disc(L)

is trivially bounded by

vol(sC)
∑
g|q

∑
L∈L

supp(L)=g

|λ(L)|
disc(L)

.

Using multiplicativity once more we get∑
g|q

∑
L∈L

supp(L)=g

|λ(L)|
disc(L)

=
∏
p|q

∑
L∈Lp

|λ(L)|
disc(L)

 .

Now, if L ∈ Lp then disc(L) is a power of p, and unless L = Zr−1 the power
is ≥ 1. Since λ(Zr−1) = 1 we see that

∑
L∈Lp

|λ(L)|
disc(L) = 1 + O(p−1). Recalling

that the number of lattices in Lp and the set of values {λ(L) : L ∈ Lp } are
independent of p we see that the error is uniform in p. Thus∑

g|q

∑
L∈L

supp(L)=g

|λ(L)|
disc(L)

�
∏
p|q

(
1 + O(p−1)

)

� exp

∑
p|q

O(p−1)

 = exp (O (Fq(1)))

By lemma 10, Fq(1) = O (log log (ω(q))) and we are done. �

5. Truncations

In order to use periodicity in section 6 we will need to control the error when
we replace Q =

∏
p|q pαp by Q̃ =

∏
p|q pα̃p , where

α̃p = min(d1/2 +
√

ω(q)

7 log2 pe, αp).
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We will also need to show that sums over large divisors and lattices are small.

5.1. Truncating Q. First note that if α̃p < αp then

p−α̃p ≤ p−1/2 exp

(
−
√

ω(q)
K3

)
for K3 > 7

log 2 . The following shows that we are not committing too large of an
error when we truncate Q.

Proposition 3. There exists K4 > 0 such that

Rr(C, Q) = s
∑

h∈sC∩Zr−1

N(h, Q̃)
Q̃

+ O
(
exp(−K4

√
ω(q))

)
.

Proof. First we prove the following claim:

|N(h, Q)
Q

− N(h, Q̃)
Q̃

| = 1
Q

∣∣∣∣∣∣
∏
p|q

N(h, pαp)−
∏
p|q

N(h, pα̃p)pαp−α̃p

∣∣∣∣∣∣
� ∆(h, q)

2rω(q)
exp

(
K5

√
ω(q)

log ω(q)
−
√

ω(q)
K3 + 1

)
.

Letting Ap = N(h, pαp) and Bp = N(h, pα̃p)pαp−α̃p we have |Ap−Bp| �r pαp−α̃p

by proposition 1. We may assume that Bp is nonzero for all p since Bp = 0 implies
that Ap = 0 (there are no solutions to lift), and if Ap = Bp = 0 the bound holds
trivially. Now,

|
∏
p|q

Ap −
∏
p|q

Bp| =

∏
p|q

Bp

∣∣∣∣∣∣
∏
p|q

(
1 +

Ap −Bp

Bp

)
− 1

∣∣∣∣∣∣
=

∏
p|q

Bp

∣∣∣∣∣∣exp

∑
p|q

log
(

Ap −Bp

Bp
+ 1
)− 1

∣∣∣∣∣∣�
∏

p|q

Bp

∑
p|q

∣∣∣∣Ap −Bp

Bp

∣∣∣∣
Thus

|N(h, Q)
Q

− N(h, Q̃)
Q̃

| �
∑
p0|q

∏
p| q

p0

Bp

pαp

 |Ap0 −Bp0 |
p

αp0
0

�
∑
p0|q

∏
p| q

p0

N(h, pα̃p)
pα̃p

 p
−α̃p0
0

�
∑
p0|q

∏
p| q

p0

∆(h, p)
2r

(1 + K1p
−1/2) exp

(
−
√

ω(q)
K3

)
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by corollary 3 and since we can assume that α̃p < αp. (If they are equal then
Ap = Bp.) This is in turn bounded by

ω(q) exp

(
−
√

ω(q)
K3

)∏
p|q

(1 + K1p
−1/2)

since ∆(h,p)
2r ≤ 1. By lemma 12

∏
p|q

(1 + K1p
−1/2) � exp

(
K5

√
ω(q)

log ω(q)

)

and we have proved the claim.
Summing over all h and applying lemma 5 gives that

s
∑

h∈sC∩Zr−1

∆(h, q)
2rω(q)

� sr

2rω(q)
exp (O(log log ω(q))) � exp (O(log log ω(q))) .

Hence

s
∑

h∈sC∩Zr−1

|N(h, Q)
Q

− N(h, Q̃)
Q̃

|

� exp

(
O (log log(ω(q))) + K5

√
ω(q)

log ω(q)
−
√

ω(q)
K3 + 1

)
.

and we are done as s = Q/NQ and thus

Rr(C, Q) =
1

NQ

∑
h∈sC∩Zr−1

N(h, Q) = s
∑

h∈sC∩Zr−1

N(h, Q)
Q

.

�

Corollary 4. There exists K4 > 0 such that

Rr(C, Q) =
s

2rω(q)

∑
c|q

∑
h∈sC∩Zr−1

∆(h, q)ε(h, C̃) + O
(
exp(−K4

√
ω(q))

)
.

Proof. Immediate since

N(h, Q̃)
Q̃

=
∏
p|q

∆(h, p)
2r

(
1 + ε(h, pα̃p)

)
=

∆(h, q)
2rω(q)

∑
c|q

ε(h, C̃).

�

The choice of α̃p also gives some control of the size of C̃ when ω(c) ≤
√

ω(q):

Lemma 6. If c|q and ω(c) ≤
√

ω(q) then C̃ ≤ c3/2s1/6.
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Proof. We have α̃p ≤ 3/2 +
√

ω(q)

7 log2 p and thus

log2 C̃ ≤ 3/2 log2 c +
∑
p|c

log2 p

√
ω(q)

7 log2 p
≤ 3/2 log2 c + ω(c)

√
ω(q)
7

≤ 3/2 log2 c +
ω(q)

7
.

Exponentiating we get C̃ ≤ c3/22ω(q)/7 � c3/2s1/7+ε � c3/2s1/6. �

5.2. Truncating divisor sums. In order to use periodicity in section 6 we need
the product of C̃ and certain discriminants of lattices to be small. We will prove
that the contribution of terms where this is not the case is negligible. First we
show that c with many divisors, or of large size, can be neglected.

Lemma 7. There exists K6 > 0 such that
s

2rω(q)

∑
c|q

∑
h∈sC∩Zr−1

∆(h, q)ε(h, C̃)

=
s

2rω(q)

∑
c|q

c≤s1/3

ω(c)≤
√

ω(q)

∑
h∈sC∩Zr−1

∆(h, q)ε(h, C̃) + O

(
exp

(
−K6

2

√
ω(q)

))
.

Proof. By corollary 3, ∑
h∈sC∩Zr−1

∣∣∣∆(h, q)ε(h, C̃)
∣∣∣

� c−1/2K
ω(c)
1

∑
h∈sC∩Zr−1

∆(h, q).

Moreover,
s

2rω(q)

∑
h∈sC∩Zr−1

∆(h, q) � sr

2rω(q)
exp (O(log log ω(q)))

� exp (O(log log ω(q)))
by lemma 5 and the result now follows from lemma 12. �

5.3. Truncating lattice sums. Writing ∆(h, q) = ∆(h, c)·∆(h, q
c ) and expand-

ing the second term

∆(h,
q

c
) =

∑
g| q

c

∑
L∈L

supp(L)=g

λ(L)δL(h)

we get
s

2rω(q)

∑
c|q

c≤s1/3

ω(c)≤
√

ω(q)

∑
h∈sC∩Zr−1

∆(h, q)ε(h, C̃)
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=
s

2rω(q)

∑
c|q

c≤s1/3

ω(c)≤
√

ω(q)

∑
g| q

c

∑
L∈L

supp(L)=g

λ(L)
∑

h∈sC∩L

ε(h, C̃)∆(h, c).

We now show that lattices with large discriminants can be neglected:

Lemma 8.
s

2rω(q)

∑
c|q

c≤s1/3

ω(c)≤
√

ω(q)

∑
g| q

c

∑
L∈L

supp(L)=g

λ(L)
∑

h∈sC∩L

ε(h, C̃)∆(h, c)

=
s

2rω(q)

∑
c|q

c≤s1/3

ω(c)≤
√

ω(q)

∑
g| q

c

g≤sr(r−1)/2

∑
L∈L

supp(L)=g

disc(L)≤s1/3

λ(L)
∑

h∈sC∩L

ε(h, C̃)∆(h, c)

+ O(s−1/3+ε).

Proof. By lemma 4, we may assume that g ≤ sr(r−1)/2. By corollary 3, and
lemma 3 ε(h, C̃)∆(h, c) � c−1/2+ε, thus∑

h∈sC∩L

ε(h, C̃)∆(h, c) � c−1/2+ε
∑

h∈sC∩L

1.

By proposition 2 ∑
h∈sC∩L

1 =
vol(sC)
disc(L)

+ O(sr−2).

Now,

s

2rω(q)

∑
c|q

c≤s1/3

ω(c)≤
√

ω(q)

c−1/2+ε
∑
g| q

c

g≤sr(r−1)/2

∑
L∈L

supp(L)=g

disc(L)≥s1/3

|λ(L)|
(

vol(sC)
disc(L)

+ O(sr−2)
)

� s

2rω(q)

∑
c|q

c≤s1/3

ω(c)≤
√

ω(q)

c−1/2+ε
∑
g| q

c

g≤sr(r−1)/2

g2ε

(
vol(sC)

s1/3
+ O(sr−2)

)

by lemma 2. Thus we need to show that

vol(C)sr

2rω(q)

∑
c|q

c≤s1/3

ω(c)≤
√

ω(q)

c−1/2+ε
∑
g| q

c

g≤sr(r−1)/2

O(s−1/3) = O(s−1/3+ε).
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By lemma 13 ∑
g| q

c

g≤sr(r−1)/2

s−1/3 � s−1/3+ε,

and ∑
c|q

c≤s1/3

ω(c)≤
√

ω(q)

c−1/2+ε �
∑
c|q

c≤s1/3

ω(c)≤
√

ω(q)

O(1) � sε.

Since vol(C)sr

2rω(q) ≤ vol(C)
σ(q)r ≤ 1 we see that the sum over L such that disc(L) ≥ s1/3

is O(s−1/3+ε). �

6. Periodicity

We are now in the position of using periodicity of ε(h, C̃)∆(h, c) modulo C̃,
i.e. if disc(L) · C̃ ≤ s then∑

h∈sC∩L

ε(h, C̃)∆(h, c) ' vol(sC)
disc(C̃L)

∑
h mod C̃

ε(h, C̃)∆(h, c),

which is made rigorous by:

Proposition 4. If disc(L) · C̃ ≤ s then∑
h∈sC∩L

ε(h, C̃)∆(h, c) =
vol(sC)

disc(C̃L)

∑
h mod C̃

ε(h, C̃)∆(h, c) + O(C̃c−1/2+εsr−2)

Proof. See 6.10 in [3]. �

Summing over c, g and L we get:

Corollary 5.
s

2rω(q)

∑
c|q

c≤s1/3

ω(c)≤
√

ω(q)

∑
g| q

c

g≤sr(r−1)/2

∑
L∈L

supp(L)=g

disc(L)≤s1/3

λ(L)
∑

h∈sC∩L

ε(h, C̃)∆(h, c)

=
s

2rω(q)

∑
c|q

c≤s1/3

ω(c)≤
√

ω(q)

∑
g| q

c

g≤sr(r−1)/2

∑
L∈L

supp(L)=g

disc(L)≤s1/3

λ(L)
vol(sC)

disc(C̃L)

∑
h mod C̃

ε(h, C̃)∆(h, c)

+O


s

2rω(q)

∑
c|q

c≤s1/3

ω(c)≤
√

ω(q)

∑
g| q

c

g≤sr(r−1)/2

∑
L∈L

supp(L)=g

disc(L)≤s1/3

|λ(L)|C̃c−1/2+εsr−2

 .
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Proof. Immediate since the bounds on c, ω(c) and disc(L) forces C̃ · disc(L) to
be smaller than s by lemma 6. �

6.1. Estimating the error term. By lemma 6, C̃c−1/2+ε ≤ cs1/6+ε ≤ s1/2+ε.
This together with lemma 2 gives that the error term is bounded by

sr−1

2rω(q)

∑
c|q

c≤s1/3

ω(c)≤
√

ω(q)

∑
g| q

c

g≤sr(r−1)/2

g2εs1/2+ε � sr−1

2rω(q)

∑
c|q

c≤s1/3

ω(c)≤
√

ω(q)

∑
g| q

c

g≤sr(r−1)/2

s1/2+2ε

which, by lemma 13, is

� sr−1

2rω(q)
s1/2+3ε � s−1/2+3ε

and can thus be neglected.

6.2. The main term. In order to evaluate the main term we need to complete
the sum, i.e. extend it to all lattices and divisors:

Lemma 9. There exists K7 > 0 such that

s

2rω(q)

∑
c|q

c≤s1/3

ω(c)≤
√

ω(q)

∑
g| q

c

g≤sr(r−1)/2

∑
L∈L

supp(L)=g

disc(L)≤s1/3

λ(L)
vol(sC)

disc(C̃L)

∑
h mod C̃

ε(h, C̃)∆(h, c)

=
s

2rω(q)

∑
c|q

∑
g| q

c

∑
L∈L

supp(L)=g

λ(L)
vol(sC)

disc(C̃L)

∑
h mod C̃

ε(h, C̃)∆(h, c)

+O
(
exp

(
−K7

√
ω(q)

))
.

Proof. By lemma 3 and corollary 3,

1
C̃r−1

∑
h mod C̃

ε(h, C̃)∆(h, c) � c1/2+ε

and we can therefore use the same bounds as in lemma 8 to include the terms
for which disc(L) ≥ s1/3. Since∑

L∈L
supp(L)=g

λ(L)
disc(C̃L)

� g2ε−1

we can use lemma 13 to include g ≥ sr(r−1)/2. Finally, similar bounds used in
lemma 7 allows us to extend the sum to include all c, C̃. �
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The completed sum is multiplicative, and we can evaluate it as follows: Ex-
panding N(h, Q̃) we see that

1
NQ̃

∑
h∈(Z/Q̃Z)r−1

N(h, Q̃) =
sQ̃

2rω(q)

∑
c|q

∑
g| q

c

∑
L∈L

supp(L)=g

λ(L)
∑

h mod Q̃
h∈L

ε(h, C̃)∆(h, c).

Since disc(L) and c are coprime the intersection of a fundamental domain of C̃L

with L consists of a full set of representatives of Zr−1/C̃Zr−1 (see lemma 8 in [3].)
Now, Rr−1/Q̃Zr−1 can be expressed as a disjoint union of Q̃r−1

disc(C̃L)
translates of

the fundamental domain for C̃L, and thus∑
h mod Q̃

h∈L

ε(h, C̃)∆(h, c) =
Q̃r−1

disc(C̃L)

∑
h mod C̃

ε(h, C̃)∆(h, c).

Hence
1

NQ̃

∑
h∈(Z/Q̃Z)r−1

N(h, Q̃)

=
sQ̃

2rω(q)

∑
c|q

∑
g| q

c

∑
L∈L

supp(L)=g

λ(L)
Q̃r−1

disc(C̃L)

∑
h mod C̃

ε(h, C̃)∆(h, c).

On the other hand, ∑
h∈(Z/Q̃Z)r−1

N(h, Q̃) = Nr
Q̃

since all r-tuples of squares are accounted for when we sum over all h. Hence

sQ̃

2rω(q)

∑
c|q

∑
g| q

c

∑
L∈L

supp(L)=g

λ(L)
disc(C̃L)

∑
h mod C̃

ε(h, C̃)∆(h, c) =
(

NQ̃

Q̃

)r−1

=
1

sr−1

Q̃

,

and thus

s

2rω(q)

∑
c|q

∑
g| q

c

∑
L∈L

supp(L)=g

λ(L)
vol(sC)

disc(C̃L)

∑
h mod C̃

ε(h, C̃)∆(h, c)

=
vol(C)sr

2rω(q)

∑
c|q

∑
g| q

c

∑
L∈L

supp(L)=g

λ(L)
disc(C̃L)

∑
h mod C̃

ε(h, C̃)∆(h, c)

= vol(C) sr

sQ̃

1
sr−1

Q̃

= vol(C)

(
s

sQ̃

)r

,
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and we will be done if we can show that s
sQ̃

= 1 + O(exp(−C
√

ω(q)) for some
C > 0. Now, it is easy to see that

Npk = pk−1 p− 1
2

+ pk−1−2 p− 1
2

+ . . . +
p− 1

2
pk−1−2(dk/2e−1) + 1,

which implies that

Npk

pk
=

σ(p)
2

(
1 + p−2 + . . . + p−2(dk/2e−1) +

2
σ(p)

p−k

)
.

We may assume that α̃p < αp, hence

s

sQ̃

=
∏
p|q

(
1 + O(p−α̃p)

)
= exp

∑
p|q

log
(
1 + O(p−α̃p))

)
= exp

∑
p|q

O(p−α̃p)

 .

But ∑
p|q

p−α̃p �
∑
p|q

p−1/2 exp

(
−
√

ω(q)
K3

)
� ω(q) exp

(
−
√

ω(q)
K3

)

� exp

(
−
√

ω(q)
K3 + 1

)
.

Thus
s

sQ̃

= 1 + O

(
exp

(
−
√

ω(q)
K3 + 1

))
and we have proved theorem 1.

Appendix

Recall that q is assumed to be square free. (See section 2.)

Lemma 10. Let p1 be the smallest prime dividing q. With F (q, t) =
∑

p|q p−t

and k > 0 an integer we have

F (q, k/2) ≤


O
(√

ω(q)
log ω(q)

)
if k = 1,

O (log(log(ω(q)))) if k = 2,
3p

1−k/2
1 if k ≥ 3.

Proof. For the cases k = 1 and k = 2 we may assume that q is the product
of the first ω(q) primes, and the bounds are then immediate consequences of
the prime number theorem, together with the fact that the ω(q)-th prime is
roughly of size ω(q) log ω(q). For k ≥ 3, we note that the sum is bounded by
p
−k/2
1 +

∫∞
p1

x−k/2dx < p
−k/2
1 + (k/2− 1)−1p

1−k/2
1 < 3p

1−k/2
1 . �
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Corollary 6. There exist K5 > 0 such that∏
p|q

(1 + K1p
−1/2) � exp

(
K5

√
ω(q)

log(ω(q))

)
.

Proof. ∏
p|q

(1 + K1p
−1/2) = exp

∑
p|q

log(1 + K1p
−1/2)


� exp

∑
p|q

K1p
−1/2

 = exp (K1F (q, 1/2)) .

�

Lemma 11. There exists C > 0 such that∑
c|q

ω(c)≥
√

ω(q)

K
ω(c)
1 c−1/2 �K1 exp(−C

√
ω(q)).

Proof. Let

f(z) =
∏
p|q

(1 + zK1p
−1/2) =

ω(q)∑
k=0

zkak

where ak =
∑

c|q,ω(c)=k K
ω(q)
1 c−1/2. By Cauchy’s theorem

an =
1

2πi

∫
|z|=2

f(z)
zn+1

dz

and thus

|an| ≤
1
2π

∫
|z|=2

|f(z)|
2n+1

|dz|.

Write q = q1 · q2 where q1 =
∏

p|q
p≤9K2

1

p, q2 =
∏

p|q
p>9K2

1

p and let

fi =
∏
p|qi

(1 + zK1p
−1/2).

Clearly |f1(z)| �K1 1 for |z| ≤ 2. Moreover,

f2(z) =
∏
p|q2

(1 + zK1p
−1/2) = exp

∑
p|q2

log(1 + zK1p
−1/2)


= exp

( ∞∑
k=1

(−1)k+1

k
F (q2, k/2)(zK1)k

)
.
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By lemma 10, F (q2, k/2) ≤ 3(9K2
1 )1−k/2 for k ≥ 3 and thus

f2(z) = exp
(

zK1F (q2, 1/2)− (zK1)2

2
F (q2, 1) + g(z)

)
where g(z) is an analytic function whose n-th coefficient of its power series ex-
pansion around zero is bounded by K2

1 · 33−n. Consequently, |g(z)| is uniformly
bounded in q as well as z for |z| ≤ 2. Hence

|an| �
exp

(
2K1F (q, 1/2) + (2K1)

2

2 F (q, 1)
)

2n+1

for |z| ≤ 2. By the bounds on F (q, 1/2) and F (q, 1) in lemma 10 we see that

|an| �
exp

(
O
(√

ω(q)
log ω(q)

))
2n

.

Thus,

∑
c|q

ω(c)≥
√

ω(q)

K
ω(c)
1 c−1/2 =

ω(q)∑
k=
√

ω(q)

ak � exp

(
O

(√
ω(q)

log ω(q)

)) ∞∑
k=
√

ω(q)

1
2n

� exp

(
O

(√
ω(q)

log ω(q)

))
1

2
√

ω(q)

� exp

(
O

(√
ω(q)

log ω(q)

)
−
√

ω(q) log(2)

)
� exp(−C

√
ω(q))

for any C < log 2. �

Lemma 12. Let f be a multiplicative function such that f(c) ≤ c−1/2K
ω(c)
1 for

some constant K1 > 0. Then there exists constants K5,K6 such that for all q∑
c|q

f(c) =
∑
c|q

c≤s1/3

f(c) + O(s−1/6+ε) =
∑
c|q

c≤s1/3

ω(c)≤
√

ω(q)

f(c) + O
(
exp

(
−K6

√
ω(q)

))

and ∑
c|q

f(c) � exp

(
K5

√
ω(q)

log(ω(q))

)
.

Proof. For the first assertion we note that f(c) ≤ c−1/2K
ω(c)
1 implies that∑

c|q
c≥s1/3

|f(c)| �
∑
c|q

c≥s1/3

c−1/2K
ω(c)
1 �

∑
c|q

c≥s1/3

c−1/2+ε,
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which by lemma 13 is bounded by s−1/6+ε. The second assertion follows from
lemma 11, and the last follows from corollary 6. �

Lemma 13. Let q be the largest square free divisor of Q, and let s = Q/NQ

where NQ is the number of squares modulo Q (see section 2 for more details.)
Let α, β > 0. Then ∑

c|q
c≥sα

c−β � s−αβ+ε.

Moreover, ∑
c|q

c≤sα

1 � sε.

Proof. For Q square free (i.e. Q = q and s = 2ω(q)/σ(q)) this is lemma 18 and
19 in [3], and the general case then follows from equation 1. �
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